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Ultrasound Doppler Measurements of Low
Velocity Blood Flow: Limitations Due to
Clutter Signals from Vibrating Muscles

Andreas Heimdal, Student Member, IEEE, and Hans Torp, Member, IEEE

Abstract—Skeletal muscles vibrate under sustained con-
traction, and generate low frequency side band clutter in
the doppler signal. Both shivering in the hand of the op-
erator and muscle vibrations in the patient itself give rise
to the clutter. Clutter rejection filters are commonly used
to remove the low frequency components, but the doppler
signal from low velocity blood flow is then also lost. This
paper describes a model for the pulsed wave (PW) doppler
signal from vibrating muscles, reviews a model for the PW
doppler signal from moving blood, and by comparing these
models presents a theoretical minimum for detectable blood
velocity in small vessels, being typically 6.4 mm/s for 6 MHz
doppler. The limit has a nonlinear relation to the ultrasound
frequency. The model also shows that the radial component
of the muscle vibrations can be estimated from the phase
of the doppler signal.

I. Introduction

Skeletal muscle tension is known to oscillate invol-
untarily under sustained contraction [1]. This is caused

by the mechanism for maintaining contraction which is
based on repetitive nervous stimulation of the muscle.
Increased force is achieved by increased stimulation fre-
quency. The vibrations produce low frequency sound, and
frequencies in the range 5 to 36 Hz have been reported
[2], [3]. The sound intensity has been found to be propor-
tional to the load on the muscle. The heart muscle does
not vibrate in the same manner, but vibrations in the sur-
rounding tissue when the heart valves open and close, as
well as oscillations in the valve leaflets themselves are re-
ported [4], [5].

The detection of low velocity blood flow with ultrasound
doppler techniques is limited by clutter noise. The doppler
signal spectrum from a perfectly still target will have only
a DC component. A vibrating target will introduce low
frequency side bands around this DC component. Vibrat-
ing muscles in the hand of the operator holding the ul-
trasound probe, as well as vibrating targets in the imaged
region of the patient itself will introduce this low frequency
side band noise. Traditionally, clutter noise has been con-
sidered to arise mainly from vessel wall motion and gross
tissue motion. The effect of this motion is a frequency shift
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of the DC component and the side bands in the signal spec-
trum according to the doppler equation. The lower limit
for blood flow detection is thus a sum of the velocity corre-
sponding to the bandwidth of the vibration clutter and the
velocity of the tissue motion. In peripheral and coronary
arteries the vessel wall can have velocities up to 5 mm/s
[6], while the gross tissue motion in the myocardium can
have velocities up to 55 mm/s [7, p. 133]. The effect of the
clutter noise can be reduced by minimizing the size of the
sample volume [8], but even when the whole sample vol-
ume is inside a blood vessel, vibration clutter noise from
reverberations and side lobes can dominate the signal.

Low velocity blood flow occurs mainly in the capillar-
ies. During resting conditions, the average velocity is 0.33
mm/s [9]. The skin capillary blood cell velocity has for
instance been measured to 0.60 ± 0.51 mm/s [10]. Mea-
suring capillary blood flow is of great clinical value since
the efficiency of the exchange of nutrients between blood
and tissue is given by this flow. Measuring the low veloc-
ity blood flow in tumor vessels is also a field of current
interest [11], [12]. Low average velocities are also found
in venules, small veins, arterioles, and small arteries, with
3.3 mm/s, 10 mm/s, 20 mm/s, and 40 mm/s, respectively
[9]. The mean flow velocity of the dorsal pedal artery is
for instance 34± 16 mm/s .

The weakest detectable echo from blood can, depend-
ing on the dynamic range of the ultrasound scanner, be
more than 100 dB weaker than the echo from tissue. To
detect the low amplitude blood signal, clutter rejection fil-
ters that suppress the strong low frequency components
from the tissue movements are commonly used. A better
design of the rejection filters will be possible given better
knowledge of the clutter signal that is supposed to be re-
moved. In this paper a model for the clutter signal from
vibrating muscles is presented and a model for the doppler
signal from moving blood is reviewed. By comparing these
models we present a table of the theoretically minimum
detectable blood velocities at different ultrasound frequen-
cies.

II. Doppler Signal Models

In pulsed wave (PW) doppler, several pulses are fired in
the same direction at a rate given by the pulse repetition
frequency (PRF). By demodulating and sampling the echo
signal from each pulse at the same lag τSV = 2rSV/c, where
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Fig. 1. The spatial coordinates used in the doppler signal model.

c is the speed of sound, one can construct the complex
doppler signal from a small sample volume (SV) at distance
rSV from the transducer:

x(t) = α

∫
SV

s(τSV − 2r/c)ei(ω0τSV−2k0r)B(r)v(r, t)dr.
(1)

Here the integration is performed over the sample volume
in the spatial co-ordinates r(r, φ, ψ), as shown in Fig. 1.
In the model, s(t) is the complex envelope of a received
pulse from a point scatterer, B(r) is the two-way beam
profile, describing the spatial sensitivity of the transducer,
v(r, t) is the scattering fluctuation, k0 = ω0/c is the wave
number, ω0 is the angular center frequency of the pulse,
and α is a constant combining the attenuation, gain, and
receiver sensitivity. The signal is a function of time after
the first fired pulse. Since each pulse is sampled only once
in the sample volume, only the discrete samples x(t = mT )
of the signal are available, where T = 1/PRF is the time
between each pulse.

A. Vibration Clutter Signal Model

To model the complex doppler signal from vibrating tis-
sue we assume that the imaged tissue can be approximated
with point scatterers randomly distributed in the sample
volume, and that all the scatterers have uniform motion.
The position of scatterer number n is then described by:

rn(t) = [rn − dr(t)]er + [φn − dφ(t)]eφ + [ψn − dψ(t)]eψ
(2)

where er, eφ, and eψ are the unit vectors in the radial,
lateral (in the scan plane), and elevation directions, re-
spectively. The scatterer mean positions (rn, φn, ψn) are
randomly distributed in the sample volume, while the zero
mean displacement functions dr(t), dφ(t), and dψ(t) are
equal for all the scatterers. This means that no deforma-
tion of the tissue is included in the model. This is rea-
sonable when vibrations of the probe itself dominate, or

when the sample volume is small compared to the size of
the muscle. The three displacement functions are also as-
sumed to have the same frequency components.

With point scatterers as described in (2), the scattering
fluctuation function is a sum of Dirac delta functions:

v(r, t) =
∑
n

δ(r − rn(t)) (3)

and the complex doppler signal becomes

x(t) = α
∑
n

s(τSV−2(rn−dr(t))/c)ei(ω0τSV−2k0(rn−dr(t)))

×B(rn − dr(t), φn − dφ(t), ψn − dψ(t)) (4)

which is recognized as a sum of signals that are simul-
taneously phase modulated (PM) with a function of the
radial component of the movement, and amplitude mod-
ulated (AM) with the pulse envelope function s(n, t) and
the beam profile function B(n, t) which together have all
the spatial components of the movement as arguments.

AM signals have a bandwidth equal twice the maximum
frequency of the modulating signal. Because PM signals in
addition have an infinite number of side-bands, the phase
modulation will give larger bandwidth than the amplitude
modulation. In a practical situation there will always be
additive white noise present. Since only a limited number
of the side-bands are above the noise floor, a practical PM
bandwidth can be found. A bandwidth requirement used
for transmission of a PM signal over a radio channel is
given by Carson’s rule [14]:

W ≈ 2∆f
(

1 +
1
β

)
(5)

where the frequency deviation ∆f is the maximum instan-
taneous frequency which in our case becomes

∆f =
k0

π
max
t

(
d[dr(t)]
dt

)
(6)

and the modulation index is

β = ∆f/fm (7)

where fm is the maximum frequency of the modulating sig-
nal dr(t). The modulation index represents the maximum
phase deviation of the PM signal. Since the PM bandwidth
is independent of the summation index n in (4), the total
signal bandwidth will equal the PM bandwidth. A high
dynamic range ultrasound clutter signal will have a higher
bandwidth than given by (5).

A more thorough description of the frequency spectrum
of the clutter signal in (4) can be found if we assume the
amplitude of the motion is much smaller than the spa-
tial size of the point spread function. This means that the
value of the pulse envelope and the beam profile can be
approximated as constant for each n, s(n, t) = sn, and
B(n, t) = Bn, which means the doppler signal can be writ-
ten

x(t) = α

(∑
n

snBne
i(ω0τSV−2k0rn)

)
ei2k0dr(t) = Aei2k0dr(t)

(8)
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which is a PM signal modulated with the scaled radial
displacement function 2k0dr(t). The complex constant A
gives the amplitude and mean phase lag of the signal.

As seen from (8), the radial displacement function can
be found from the phase of the doppler signal

dr(t) =
1

2k0
[arg(x(t))− arg(A)]. (9)

In practice the DC component is removed from the signal
through high pass filtering in the receiver, so the phase of
the constant A must be estimated from the motion pattern
of x(t) in the complex plane, as described in the Appendix.

The Fourier spectrum of the vibration clutter signal can
be analytically described for a single frequency radial dis-
placement function

dr(t) = a cos(2πfvt) (10)

where a is the vibration amplitude, and fv is the vibration
frequency. Inserting this into (8) we get a single tone PM
signal. The modulation index in (7) will in this case be

β = 2k0a. (11)

The Fourier spectrum of the signal in (8) can be found
to be [14]:

X(f) = A
∞∑

n=−∞
Jn(2k0a)δ(f − nfv) (12)

where the Jn is the n’th order Bessel function of the first
kind. The corresponding clutter signal power spectrum is

Pc(f) = |X(f)|2 = |A|2
∞∑

n=−∞
J2
n(2k0a)δ(f − nfv).

(13)

Sample power spectra for different values of β are given
in Fig. 2. A frequency normalized to the vibration fre-
quency fv is used on the x-axes of the plots. For signals
specularly reflected from vibrating targets the ultrasound
frequency dependency of the amplitude factor A is negligi-
ble, while for volume scattering the frequency dependency
varies [15].

|A(f0)| ∝


f0

0 = 1 Specular scattering
fp0 , 0 < p < 2 Volume scattering
f2

0 Rayleigh scattering
.
(14)

The spectra of arbitrary radial displacement functions
are more cumbersome to develop analytically, as the to-
tal spectrum is a convolution of the PM spectra for each
frequency component in the displacement function. Still
the bandwidth is restricted as in (5). Since the vibration
usually is caused by several muscle groups working simul-
taneously, the radial displacement function is expected to
be a narrowband signal rather than a single frequency sig-
nal. A numerical estimation of the spectrum can be found
by simulating a band limited signal, inserting it in (8) and

Fig. 2. Sample power spectra of a PM signal modulated with a
single frequency modulating signal for varying modulation indices:
(a) β = 0.2, (b) β = 1, (c) β = 5. The frequency axis is in each panel
normalized to the vibration frequency.
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Fig. 3. The radial motion estimated from the doppler signal from a
hand-held transducer and a fixed target. The corresponding vibration
power spectrum is given in Fig. 4(a).

estimating the spectrum of the resulting doppler signal.
For modulation indices β � 1, the exponential function
in (8) can be estimated with 1 + i2k0dr(t), indicating that
the doppler signal has the same bandwidth as the displace-
ment signal.

In color flow imaging, only short time segments up to
50 ms of the doppler signal are available. If the time seg-
ment is much smaller than 1/fm, which is the case for
fm � 20 Hz, the movement of the tissue is so slow that it
appears to have an approximately constant velocity, and
the doppler spectrum estimate gets a narrow frequency
band centered around the doppler shift frequency.

B. Blood Signal Model

To obtain a simple model, blood flow with constant rec-
tilinear velocity is considered. The velocity is in spheri-
cal components described by ν = (νr, rνφ, rνψ). The PW
doppler signal from blood can be described using the same
model as in (1) if the scattering fluctuation is defined as
v(r, t) = van(r, t), where n(r, t) is the local concentra-
tion of red blood cells, and va is a scaling factor [16]. The
cell concentration can be assumed to be delta-correlated
in space. The backscattering will then be in the form of
Rayleigh scattering, and the amplitude constant α will
have the following ultrasound frequency dependency [17]:

α = αb(f0) = αb0f
2
0 . (15)

A simple model for the autocorrelation function of the

Fig. 4. Power spectra of the radial displacements for (a) a fixed target
and a hand-held probe, (b) a relaxed biceps muscle and a fixed probe,
and (c) a strained biceps muscle and a fixed probe.
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doppler signal from blood is [16]:

R(τ) ≈ α2
b exp

(
−3(νrτ)2

2L2 − 3(νφτ)2

2Θ2

− 3(νψτ)2

2Θ2 + i2k0νrτ

)
(16)

where L is the pulse length, and Θ is the −3.25 dB beam
opening angle. The ultrasound frequency dependencies of
these two parameters are [15]:

L(f0) = Np
c

f0

Θ(f0) =
c

f0D

(17)

where Np is the number of periods in the pulse burst, and
D is the transducer diameter. The blood signal power spec-
trum is found as the Fourier transform of the autocorrela-
tion function to be

Pb(f) ≈

α
2
b

∣∣∣∣√π

b

∣∣∣∣ exp
(
−π

2

b

(
f − 2f0

νr
c

)2
)
, b > 0

α2
bδ
(
f − 2f0

νr
c

)
, b = 0

b =
3
2

(
ν2
r

L2 +
ν2
φ

Θ2
+
ν2
ψ

Θ2

)
.

(18)

III. Materials and Methods

A 6 MHz annular array transducer and a CFM-800 ul-
trasound scanner (Vingmed Sound AS, Horten, Norway)
were used to collect ultrasound doppler data. In the scan-
ner the doppler signal was quadrature demodulated, and
the complex analog doppler signal, without fixed target
canceling (FTC), was transferred to a Macintosh com-
puter as a stereo audio signal and digitized with 12 bits at
44 kHz. The computer audio input was band limited 10 Hz
to 19 kHz, so the DC component of the doppler signal had
to be estimated as described in the Appendix. The digi-
tized signal was decimated to 4.4 kHz for memory reasons.
MATLAB was used for signal processing in the computer.

A point scatterer in a basic quality assurance phantom
(ATS Laboratories, Inc., Bridgeport, CT) was used as tar-
get when studying the vibrations caused by holding the
probe with the hand. The speed of sound in the phantom
was 1440 m/s, and this was taken into account when cal-
culating the wave number k0 in (9). A muscle interface of
the biceps muscle of a volunteer was used as a target when
studying muscle vibrations in the patient. For the muscle
recordings the probe was fixed. The wavelength was in this
setting 257 µm, and the beam opening angle 2.0 degrees
or equivalently the beam width was 2.5 mm at a range of
5 cm.

The power spectrum of each recorded doppler sig-
nal recording was estimated using a nonoverlapping pe-
riodogram on a signal subset of length 1500 samples win-
dowed with a Hanning window. Using the method of (9),

TABLE I
The Parameters Used When Simulating the Blood and

Clutter Signal Power Spectra.

Speed of sound c = 1540 m/s
Muscle vibration amplitude a = 25 µm
Muscle vibration frequency fv = 10 Hz
Tissue signal power factor α2 = |A(f0)| = 0 dB
Blood signal power factor α2

b = −60 dB (at 6 MHz)
Ultrasound transducer diameter D = 10 mm
Number of periods in the burst Np = 10

the radial motion of the target was estimated from the
doppler signal, and the power spectrum of this motion was
also calculated using a nonoverlapping periodogram, and
smoothed by zero-padding the signal to length 4096. As an
example, Fig. 3 shows the radial motion estimated from
the doppler signal from a hand held transducer. The cor-
responding vibration power spectrum is given in Fig. 4(a).

From the measured signals we got the muscle vibration
amplitude and frequency, which were the necessary pa-
rameters to simulate the clutter power spectrum in (13).
We could then find the minimum blood velocities that are
detectable, i.e., the minimum velocities which give a simu-
lated blood power spectrum Pb(f) from (18) that lies above
the peaks in the clutter power spectrum Pc(f). Since we
know the ultrasound frequency dependency of all the fac-
tors involved, we can find the minimum detectable blood
velocity as a function of the ultrasound frequency. The
frequency dependent attenuation is equal for blood and
muscle, so it could be ignored in this case. The parameter
values used in the simulations are given in Table I.

IV. Results

Two power spectra of the doppler signal from a fixed
point scatterer are shown in Figs. 5(a) and (b). In Fig. 5(a)
the probe was fixed, and in Fig. 5(b) the probe was hand
held. Notice that the bandwidth increases when the probe
is hand held. Figs. 5(c) and (d) show the power spectra
of the doppler signal from a relaxed and strained biceps
muscle, respectively. Notice the increased bandwidth when
the muscle in strained.

The radial displacements were estimated and their
power spectra are shown in Fig. 4. Table II lists the re-
sults of the recordings; the measured doppler bandwidth,
the maximum amplitude and the principal frequency of the
estimated displacement signal, and the estimated modula-
tion index.

Using a vibration amplitude 25 µm and a vibration fre-
quency 10 Hz, the clutter power spectrum in (13) was
estimated for different ultrasound frequencies. The blood
power spectrum of (18) was estimated for each of the ul-
trasound frequencies, and for varying blood velocities. An
example of the two spectra for an ultrasound frequency of
6 MHz is shown in Fig. 6. In Fig. 6(a) the blood velocity is
4.5 mm/s, and in Fig. 6(b) 9.0 mm/s, indicating that the
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Fig. 5. Doppler spectra from (a) a fixed target using a fixed probe, (b) a fixed target using a hand-held probe, (c) a relaxed biceps muscle
using a fixed probe, and (d) a strained biceps muscle using a fixed probe.

TABLE II
Estimated Parameters From the 6 MHz Doppler Measurements. The Doppler Signal Bandwidth is Found from the Power

Spectra in Fig. 5. The Vibration Amplitude is Found as the Maximum of the Displacement Signal Estimated Using (9). The

Principal Vibration Frequencies are Found from the Power Spectra of the Displacement Signals in Fig. 4.

The Modulation Index is Found from (7).

Measured −60 dB Maximum Principal
Doppler single vibration vibration

Probe sided bandwidth amplitude frequency Modulation
setting Target [Hz] [µm] [Hz] index, β

Fixed Fixed point scatterer 2.9 0.12 0 –
Hand held Fixed point scatterer 59 24 10 1.4

Fixed Relaxed biceps muscle 47 15 8.1 0.77
Fixed Strained biceps muscle 95 32 8.1 2.0
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TABLE III
Lowest Detectable Blood Velocity at Different Ultrasound Frequencies for the Parameter Settings Given in Table I.

The Velocities are Given for Ultrasound Beam Directions Parallel to the Blood Flow Direction.

The Modulation Index β is Found from (11).

Minimum detectable blood velocity [mm/s]
Ultrasound frequency [MHz] Modulation index, β at 0 degrees’ insonation angle

1 0.20 29
2 0.41 16
4 0.82 8.7
6 1.2 6.4
8 1.6 5.2
10 2.0 4.6
15 3.1 3.5
20 4.1 3.0
30 6.1 2.5
50 10 2.1
100 20 1.7

minimum blood velocity that is detectable is between these
values. For each ultrasound frequency the minimum blood
velocity was found in the same fashion, and the results are
shown in Table III. Notice that, while the modulation in-
dex is linearly dependent on the ultrasound frequency, the
minimum detectable velocity has a nonlinear relationship
to the ultrasound frequency.

V. Discussion

As shown in Figs. 4(a) and (b), low frequency side bands
in the doppler signal are introduced when the ultrasound
probe is held by the operator. This is caused by the vi-
brations in the hand and arm muscles of the operator,
that impose a vibration on the transducer relative to the
phantom target. As shown in Figs. 4(c) and (d), vibrations
in the skeletal muscles of a patient also introduce similar
side-bands. If both vibration patterns are present during a
recording, they add up to a total vibration with expected
amplitude equal to

√
2 times the root-mean-square of the

two original vibration amplitudes.
Some of the approximations made when developing the

theory and when simulating the vibration clutter signal
are verified by the experiments. As shown in Table II, the
amplitude of the muscle vibrations is much smaller than a
wavelength. This means that the approximations leading
to (8) are valid. The power spectra in Fig. 4 show that a
typical muscle vibration is a band pass signal. By compar-
ing the simulated clutter signal in Fig. 6 and the measured
signal in Fig. 5(b) it still seems that simulating a vibration
signal using a single frequency is reasonable.

The validity of the low velocity limits presented in Ta-
ble III is restricted by several conditions. First, when sim-
ulating the clutter spectrums, we have assumed an unlim-
ited observation time. For observation times much shorter
than the muscle vibration period 1/fv, the clutter sig-
nal spectrum estimate has only a narrow frequency band
around the doppler shift frequency, as described in Sec-
tion IIA. The blood velocity measurements are then lim-

ited to the instantaneous velocity of the vibrating probe
or muscle. Second, the effects of vessel wall motion and
gross tissue motion have been ignored. When such mo-
tion is present, the low velocity limit is the sum of the
velocity found in Table III and the velocity of the vessel
wall or gross tissue motion, as described in the introduc-
tion. Third, as seen in Table I, a specified blood-to-clutter
signal level of −60 dB has been used when simulating the
blood and clutter spectra. If a higher blood-to-clutter level
is obtained, for example by the use of contrast agents, the
low velocity limit will be lower. The exact limit for other
blood-to-signal levels can be estimated using the method
described.

Other publications have shown measurements of blood
flow velocities below the limits predicted in Table III. In
[18], a 5 MHz doppler technique using no rejection filter
and long acquisition time was able to measure velocities
down to 1 mm/s in a flow phantom. This is lower than the
result predicted in Table III, but muscle vibration clutter
signal was not considered or present during the acquisition.
Also the blood-to-clutter level was not given, and might
have been higher than −60 dB.

VI. Conclusions

We have found that involuntary skeletal muscle vibra-
tions in the hand of the operator and in the patient itself
introduce a phase modulation of the doppler signal. The
radial component of the vibration can be found from the
phase of the doppler signal. The vibrations introduce low
frequency side-bands in the signal and limit the possibility
of detecting low velocity blood flow. Our measurements
and simulations, assuming −60 dB blood-to-clutter level,
indicate that capillary blood flow is not detectable when
muscle vibration is present, and will therefore not be visi-
ble in velocity and/or power color flow images. The flow in
larger vessels like arterioles and small arteries is detectable
for ultrasound frequencies higher than 4 MHz.
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Fig. 6. Simulated doppler signal power spectra from a vibrating scat-
terer (solid line) and constant blood flow (dashed line), for blood
velocities of (a) 4.5 mm/s and (b) 9 mm/s. An ultrasound frequency
of 6 MHz was used in the simulation.

Appendix

During the digitizing of the doppler signal, we were not
able to avoid high pass filtering of the doppler signal. To
estimate the power of the DC component of the doppler
signal, the probe was at the end of each recording pulled
rapidly away from the target. This caused a shift of the
spectrum, so that the high pass filter did not remove any
significant amount of the power, and the total power could
be calculated by integrating this spectrum. The power of
the DC component could then be found from the difference
between the calculated total power and the power of the
original high pass filtered signal.

To estimate the phase of the DC component, the geome-
try of the doppler signal in the complex plane can be used.
For small modulation indices the complex signal samples
lie approximately on a small part of a circle arc. The DC
vector is then perpendicular to the tangent of this arc, and
the phase can be found as the angle of the vector. From (9)
we see that an error in the phase introduces a bias in the
amplitude of the estimated radial displacement function.
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