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Interpolation Methods for Time-Delay
Estimation Using Cross-Correlation

Method for Blood Velocity
Measurement

Xiaoming Lai and Hans Torp, Member, IEEE

Abstract—The cross-correlation method (CCM) for
blood flow velocity measurement using Doppler ultrasound
is based on time delay estimation of echoes from pulse-
to-pulse. The sampling frequency of the received signal is
usually kept as low as possible in order to reduce compu-
tational complexity, and the peak in the correlation func-
tion is found by interpolating the correlation function. The
parabolic-fit interpolation method introduces a bias at low
sampling rate to the ultrasound center frequency ratio. In
this study, four different methods are suggested to improve
the estimation accuracy: (1) Parabolic interpolation with
bias-compensation, derived from a theoretical signal model.
(2) Parabolic interpolation combined with linear filter in-
terpolation of the correlation function. (3) Parabolic in-
terpolation to the complex correlation function envelope.
(4) Matched filter interpolation applied to the correlation
function. The new interpolation methods are analyzed both
by computer simulated signals and RF-signals recorded
from a patient with time delay larger than 1=f0, where f0 is
the center frequency. The simulation results show that these
methods are more accurate than the parabolic-fit method.
From the simulation, the worst estimation accuracy is about
1.25% of 1=f0 for the parabolic-fit interpolation, and it is
improved by the above methods to less than 0.5% of 1=f0
when the sampling rate is 10 MHz, the center frequency
is 2.5 MHz and the bandwidth is 1 MHz. This improve-
ment also can be observed in the experimental data. Fur-
thermore, the matched filter interpolation gives the best
performance when signal-to-noise ratio (SNR) is low. This
is verified both by simulation and experimentation.

I. Introduction

Blood velocity is an important parameter for the
clinical diagnosis of vascular disease. Ultrasound has

become an indispensable noninvasive tool for blood veloc-
ity measurement. The pulsed wave Doppler technique is
widely used because it can provide range resolution. With
this method, sequential short ultrasound pulses are trans-
mitted into the vessel or heart at a pulse repetition fre-
quency (PRF). Return signals are received sequentially af-
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ter a certain delay following the pulse transmission. Due
to the movement of the scatterers, the received echo is a
time-delayed version of the echo from the previous pulse
if time transit effects are not considered. In the conven-
tional autocorrelation method [1], this time shift is esti-
mated from the pulse-to-pulse phase shift of the complex
signal envelope. In the cross-correlation method (CCM) [2]
and [3], the time shift of the echoes is estimated directly
from the RF-signal. It has advantages over the Doppler
method [4] in some circumstances. The main advantages
are that CCM is a wideband estimator and it does not
suffer from the Nyquist limit. The main drawback is the
computational load due to RF-signal processing.

In the CCM, the time delay is estimated by searching for
the maximum correlation coefficient between the succes-
sive received echoes. If the received echoes are denoted as
p(t, k), where t is the elapsed time after pulse transmission
that corresponds to a certain depth from the transducer,
k is the pulse number, its two-dimension (2-D) correlation
function is denoted R(τ,m), which is defined as:

R(τ,m) =
∫
t

(∑
k

p(t, k)p(t+ τ, k +m)

)
dt.

In the CCM, we use R(τ,m) with m = 1 for estimating
the time delay. Then the correlation function has max-
imum magnitude in the time delay τν , i.e., R(τν , 1) =
maxτ R(τ, 1).

A 2-D correlation function model was given in [5]. The
magnitude of the correlation function has a shape close to
the Gaussian function [5]. With the approximated Gaus-
sian envelope and without lateral transit time effect, a the-
oretical RF correlation model is:

R(τ, 1) = exp
(
−(τ − τν)2

2σ2

)
cos(2πf0(τ − τν))

τν = −2Tν cos θ
c

. (1)

In which σ is the standard derivation that is related to the
transmitted signal bandwidth B by B = 2/σ. T is pulse
repetition period, ν is the blood velocity, c is the ultra-
sound speed, and θ is the angle between the ultrasound
beam and blood vessel. Fig. 1 is an illustration of the RF
correlation function.
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Fig. 1. RF correlation function R(τ,m) when m = 1.

In practice, the echo signal is discrete due to sampling
in time. The true location of the maximum correlation co-
efficient is not constrained to discrete increments, and it
may fall between the discrete sampling points that result
in estimation inaccuracy. An interpolation technique usu-
ally is used to improve the time delay estimation accuracy
[9]. Special interests to discuss the interpolation methods
with low sampling rate are: first, the computation to cal-
culate the correlation function and to filter the wall signal
can be reduced. The received signal is usually composed
of not only the blood signal but also the clutter signals
or wall signal from the boundary and wall vessel; there-
fore, it is necessary to remove the wall signal prior to the
time-delay estimation. This is generally implemented by a
highpass filter or a wall filter. This filtering is performed on
the signal from the same depth. When the sampling rate
is lower, wall filtering calculations will be reduced. Second,
most scanners use the Doppler method based on the base-
band complex signal. The sampling rate is usually low in
those systems. In order to implement the cross-correlation
technique in those systems, the interpolation methods were
investigated.

The most widely used interpolation method is the
parabolic-fit that is simple, but its estimation bias is high
when the sampling rate to center frequency ratio (fs/f0)
is low (in the order of 4) [6], [9], and [11]. In addition to
the parabolic-fit, the cosine-fit [7], [8], and [9] and the re-
constructive interpolation methods [9] also are used. The
cosine-fit interpolation can be used at fs/f0 = 4 with high
estimation accuracy; but as mentioned in [7], it has veloc-
ity aliasing for velocities exceeding the Nyquist limit. The
reconstructive interpolation method [9] and [10] is based
on the Nyquist sampling theorem, that is, a band-limited
continuous-time signal can be reconstructed from its dig-
ital samples. The key component in the reconstruction is
the ideal lowpass filter. This cannot be implemented in a
practical system, a reasonable approximated lowpass filter
is used. Therefore, an approximated, continuous-time sig-
nal is reconstructed. Its computational time, however, is
usually longer than the other interpolation methods.

In this work, four other interpolation methods are pro-
posed and evaluated. The paper is organized as follows: In
Section II, the four interpolation methods are described.

Fig. 2. An illustration of the parabolic fitting.

In Section III, the performance of the cosine-fitting in-
terpolation method, the reconstruction filter interpolation
method, and the other four interpolation methods de-
scribed in Section II are compared by simulations. In Sec-
tion IV, the four interpolation methods are evaluated by
the experiments.

II. Interpolation Methods Description

A. Parabolic Interpolation with Bias-Compensation

Fig. 1 shows that the interpolation is necessary to
get good time-delay estimation. One simple interpolation
method is parabolic-fitting, which has been used in many
applications. In our application, the parabolic fitting is
performed near the peak and only requires a few opera-
tions. An illustration of parabolic fit is shown in Fig. 2.
The parabola has the form y(x) = ax2 + bx+ c. The loca-
tion of the maximum coefficient is:

δ = −b/2a = (y(−1)− y(1))/2(y(−1)− y(0) + y(1)).
(2)

The parabolic-fit works well where the RF correlation
function is sampled at a high rate, but it has substan-
tial bias when the sampling rate is low. Specifically, it in-
duces high bias to low Q-factor (Q = f0/B) signal, which
corresponds to a narrow correlation function curve. The
parabolic interpolation bias also depends on the location
of the time delay, or blood velocity ν. The theoretical mean
and variance for a discrete signal with parabolic peak fit
was derived in [11].

For a given velocity ν, the parabolic interpolation bias
b is:

b = f

(
ν,
fs
f0
, Q

)
= ν − ν̂

(
ν,
fs
f0
, Q

)
(3)

where f is a function of argument ν, fs/f0, and Q; ν is the
estimated velocity and ν̂

(
ν, fsf0

, Q
)

implies ν̂ is a function
of argument ν, fs/f0, and Q.

If we can predict the bias b, one should be able to com-
pensate for it by using this priori knowledge. A theoreti-
cal prediction of the bias b in our application can be ob-
tained from the correlation function model described in (1)
where the oversampling fs/f0 and Q-factor are given. It is
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shown in Appendix 1 that in most applications, ν̂ and ν
are uniquely determined when fs/f0 and Q are given. We
can use a zero order approximation:

f

(
ν,
fs
f0
, Q

)
≈ f

(
ν̂,
fs
f0
, Q

)
. (4)

Rewrite (3) as:

ν = ν̂ + b = ν̂ + f

(
ν̂,
fs
f0
, Q

)
. (5)

The blood velocity estimated by (5) is a parabolic fit
with bias compensation. Bias b is obtained from the theo-
retical correlation function model. The bias compensation
may be implemented by a lookup table.

1. False Peaks and Aliasing: In the CCM, the velocity
is estimated by the time delay, which has the maximum
correlation magnitude. In practice, there may be peak hop-
ping or false peak errors, that is, the main peak may be
mistaken for subsidiary peak due to the estimation vari-
ance of the correlation function. In the Doppler method
[1], there is velocity aliasing when the true velocity is be-
yond the Nyquist limit. The aliasing appears at a multiple
of two times the Nyquist limit velocity. As discussed in
[18], the false peaks in the CCM appear at time delays
equivalent to a multiple of two times Nyquist velocity in
the Doppler method; therefore, they are the same kind of
errors in the sense of aliasing. Thus, the peak hopping or
false peak detection also is called aliasing in this paper, and
the velocity which corresponds to the time delay 1/2f0 is
called the Nyquist limit.

The parabolic fit can be applied only locally around
the peak. As a result, the first step in the parabolic-fit
is to select the peak from the discrete correlation coeffi-
cients. Therefore, it can improve accuracy only when the
global peak is correctly selected from the discrete samples.
When fs/f0 is low, the false maximum from the subsidiary
peak is selected. As a result, aliasing occurs. Aliasing oc-
curs more frequently with the narrowband signal because
its envelope of the correlation function is flat. An aliasing
example is shown in Fig. 3.

2. Effect of Frequency Dependent Attenuation: In the
parabolic fit with bias compensation, frequency-dependent
attenuation may cause performance degradation. However,
it is impractical to use the center frequency of the received
signal, and in this method the center frequency of the
received signal is assumed to be equal to the center fre-
quency of the transmitted signal. Nevertheless, this does
not significantly affect the estimation results because the
estimated velocity bias in the parabolic fit with bias com-
pensation is related to oversampling fs/f0 instead of f0.
When f0 has a shift ∆f , fs/(f0 +∆f) has little difference
to fs/f0.

3. Effect of Signal Decorrelation: The correlation func-
tion model in (1) does not include the effect of signal decor-
relation. When there is serious signal decorrelation, the

Fig. 3. An illustration that the false maximum in the discrete corre-
lation function has occurred when the ratio of the sampling rate to
the center frequency is low.

bias-compensation method may increase estimation bias
and variance. However, in our experimentation and simu-
lation for signals in which the lateral time transit effect has
been included, the bias-compensation method still works
well. No significant difference has been observed, as com-
pared to the results of other methods.

B. Parabolic-fit Interpolation Combined with
Linear Filter Interpolation

The parabolic-fit interpolation uses a few correlation
coefficients in the vicinity of the maximum discrete point.
According to Appendix 2, the requirement for oversam-
pling to reduce the chance of aliasing is:

fs
f0

>
π

acos[exp(−2Q2)]
. (6)

In many cases, this requirement is not satisfied. In-
creasing fs/f0 to Lfs/f0 can reduce the chance of alias-
ing; where L is the interpolation rate. It also reduces in-
terpolation error by using parabolic fitting. According to
(6), the required L depends on the Q-factor of the sig-
nal. For a Q = 1 signal, if Lfs/f0 > 6.42, there will be
no aliasing induced by peak hopping error. Therefore, for
a transmitted signal with an approximated two cycle pe-
riod pulse (the central frequency is 2.5 MHz in our simu-
lations later), an interpolation rate L = 2 is sufficient to
reduce the aliasing error induced due to low oversampling
fs/f0 = 4. Furthermore, the estimation bias introduced
by the parabolic-fitting is small when L = 2. From Fig. 4,
the estimation bias has been reduced when fs/f0 = 4 is
increased to fs/f0 = 8.

The digital approach of the linear filter interpolation
is usually used to increase the sampling rate from fs/f0
to Lfs/f0 by using a lowpass filter [10]. The process of
increasing the sampling rate is described in [10] and a di-
agram for linear filter interpolation is plotted in Fig. 5.
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Fig. 4. The predicted mean velocity for discrete signals with
parabolic-fitting.

Fig. 5. Block diagram of the linear filter interpolation.

If the sampling rate fs of the RF correlation function
R(m, 1) is interpolated to a sampling rate f ′s, L = f ′s/fs,
then there are L− 1 new sample points between each pair
of points of R(m, 1). Initially, we set these interpolation
point to zero, creating the signal:

w(n, 1) =

{
R
(
n
L , 1

)
n = 0,±L,±2L . . .

0 otherwise
. (7)

The spectrum of w(n, 1) contains not only baseband
frequencies (i.e., −π/L to π/L) of interest, but also the
images of the baseband frequencies centered at harmonics
of the original sampling frequency (±2π/L,±4π/L, . . . ).
Normally, to recover the baseband signal of interest and
to eliminate the unwanted image components, it is neces-
sary to use a digital anti-aliasing filter with near an ideal
lowpass characteristic:

H(ω) =

{
1 |ω| < π

L

0 otherwise
. (8)

A simple filter design, for the case L = 2, is by the
window design method:

h(n) =
sin
(
πn
2

)
πn
2

, n = 0,±1,±2, . . .M, (9)

where M is the length of the window and h(n) has the
coefficient with:

h(n) =

{
1 n = 0
0 n = ±2,±4, . . .

(10)

This satisfies the zero-crossing criterion of ideal filters and
is an efficient design where every other coefficient is zero
and need not be computed in a practical implementation.

In addition to the filter in (9), other halfband filters
[10] are also of interest for interpolation by a factor of
two. They have a spectrum symmetric property where:

H(ω) = 1−H(π − ω)

This also improves computation efficiency.
In this interpolation method, the sampling rate of the

correlation coefficients is increased by a small factor before
the parabolic fit. This is more efficient than the reconstruct
filter interpolation [9] in which the interpolation rate L
has to be very high (L = 50) to get similar estimation
accuracy.

C. Parabolic Interpolation to the
Complex Correlation Function Envelope

Most existing ultrasound scanners are already equipped
to demodulate RF signal to the baseband signal. The sam-
pling rate is lower in the baseband than that in RF-data.
The minimum sampling rate is determined by the sam-
pling theorem. To realize the cross-correlation technique
on these scanners, the cross-correlation function is calcu-
lated and interpolated in the baseband, and then remod-
ulated to the RF domain. It is easier to interpolate the
baseband signal because it is slowly varying compared to
the RF signal.

The modulation formula from baseband correlation
function Rx(τ, k) to RF-band correlation function R(τ, k)
[12] is:

R(τ, k) = 0.5Re(Rx(τ, k) exp(j2πf0τ)). (11)

From (1), the expected shape of the correlation function
Rx is Gaussian shape. It is conceivable that a simple way
is to parabolic fit the Gaussian function locally, that is,
using several samples of the correlation function centered
around its magnitude peak. An illustration of parabolic in-
terpolation in the complex envelope is shown in the Fig. 6.

Modulation from the complex envelope to the RF cor-
relation signal is the most costly step in terms of com-
putation. One way to reduce computation is to modulate
iteratively around the magnitude peak [9]. At each itera-
tion, only a few points are modulated to the RF band, and
the RF magnitude is compared among those points.

D. Matched Filtering for Interpolation

1. Matched Filtering for Time-Delay Estimation:
Time-delay estimation is used in many applications. A
generalized cross-correlation method was developed in the
work [15]. The block diagram is in Fig. 7.

Due to the deteriorating effect of the noise on time delay
detection, a false peak may be produced and cause a false
estimate of the time delay. The purpose of the optimum
linear filter is to minimize the occurrence of false peaks.
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Fig. 6. An illustration of parabolic interpolation applied to the complex correlation function envelope. ‘∗’ is for sampled points. ‘-’ is for the
interpolated curve.

Fig. 7. Diagram of time delay estimate.

The received signal from two successive pulses is
given by:

z(t, k) = y(t, k) + n1(t, k) (12)
z(t+ τ, k + 1) = y(t+ τ, k + 1) + n2(t+ τ, k + 1)

(13)

where y is the blood signal, n1, n2 are white Gaussian
noise, and z is the received signal. The correlation func-
tion is:

Rz(τ, 1) = Ry(τ, 1)+Ry,n1(τ, 1)+Rn2,y(τ, 1)+Rn1,n2(τ, 1)

but due to the finite observation time, in general,
〈Ry,n(τ, 1)〉 + 〈Rn,y(τ, 1)〉 and Rn1,n2(τ, 1) are not zero,
and thus contribute to the noise of the correlation func-
tion. The noise depends on the SNR of the signal and the
length of the finite observation time. According to the cri-
teria of maximizing expected signal peak at τ relative to
the background noise, the resulting optimum filter [8] in
terms of signal-and-noise spectral density is:

w(ω) = Φy(ω)/

Φn1(ω)Φn2(ω) + Φy(ω)(Φn1(ω) + Φn2(ω)) + Φ2y(ω)
(14)

where Φy(ω) is the Fourier transform of the correlation
function Ry and Φn1(ω), and Φn2(ω) are the noise spectral
densities.

From (14), it is seen that it is certainly difficult to de-
sign the true optimum filter since it has a complicated re-
lationship to signal and noise spectral characteristics. The
Eckart filter is used in practice. It uses the criterion that
maximizes the ratio of mean correlator output due to the
signal present to the variance of the correlator output due
to noise alone. The resulting filter is:

W (ω) = Φy(ω)/Φn1(ω)Φn2(ω). (15)

To the white noise, the spectral densities Φn1(ω) and
Φn2(ω) are independent of ω. In this case, this subopti-
mal linear filter is a matched filter with impulse response
w(τ) = Ry(τ, 1). The matched filter for estimating time
delay is:

m(τ) =
∫

(R̂(t, 1))Ry(τ − t, 1) dτ1 (16)

where R̂(t, 1) is the estimated correlation function from
the signal, and Ry(τ, 1) is the correlation function model.
A correlation function model in which transit time effect
is not taken into account is used and it is:

Ry(τ, 1) = exp
(
− τ2

2σ2

)
cos(2πf0τ). (17)

The peak detector is performed on filtered signal m(τ).
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Fig. 8. Block of the match filtering and interpolation.

The optimum filter obtained in [15] was based on two
conditions. One is that only two pulses have been transmit-
ted. The other is that there is no decorrelation between the
two received echoes. This is not the case here because more
than two pulses have been transmitted and transverse ve-
locity components are present. However, for simplicity, we
still use the optimum filter of [15].

2. Matched Filter for Interpolation: The matched filter
also can be used in the interpolation for estimation time
delay when the RF-signal is sampled with a low sampling
rate. The matched filter is the expected correlation func-
tion as in (17). Thus, it can be sampled according to our
requirements.

In this application, the matched filter is sampled by f ′s,
which is rather higher than fs and where 1/f ′s satisfies the
resolution of the time delay estimation. This densely sam-
pled matched filter also can be used as an anti-aliasing
filter in the linear interpolation, where it is unnecessary
to use an additional narrowband anti-aliasing filter. Thus,
the matched filter has two functions: one is that it is a
suboptimal linear filter which maximizes the signal peak
to output noise; the other is that it replaces the narrow-
band anti-aliasing filter, which eliminates the image spec-
tra produced in the zero padding. An implementation of
the matched filter interpolation is illustrated in Fig. 8.

The correlation function is sampled by fs. L is the inter-
polation rate; w(n, 1) is a function after L−1 new zero val-
ues between each pair of sample values of R̂(m, 1) has been
padded. It has the same sampling rate f ′s as the matched
filter R(n, 1). The typical spectra is illustrated in Fig. 9.

III. Evaluating the Interpolation Methods

by Simulation

The blood signal model used here is the same as in
[18], where the 2-D blood signal is generated by a 2-D
convolution between the echo response h(t, k) from a sin-
gle scatterer and a 2-D Gaussian random signal n(t, k).
In this model, the transit time effect in the lateral beam
profile direction is included. The echo response in this sim-
ulation is:

h(t, k) = exp
(
−t2
σ2

)
cos(2πf0t)b(kTν sin θ)

where b is the transverse beam profile and it is assumed to
be a Gaussian function [5]. b(d) = exp(−3d2/2B2) is used
in our simulation, where B is the beam width. A Gaussian
shape envelope in the echo response was used, as discussed
in [18]. With a wideband signal, the standard deviation is

set to σ = 1/f0, giving a pulse length of approximately two
cycle periods. The pulse bandwidth BW is defined as 1/σ,
where the magnitude of the envelope decreases by 8.69 dB.

The used parameters are given as follows: pulse repeti-
tion frequency prf, 6,564 Hz; ultrasonic measurement angle
θ, 10 degree; speed of sound c, 1,540 m/s; temporal aver-
aging ta, 1.8 ms; beamwidth, 2 mm; depth averaging ra,
2.4 µs; center frequency f0, 2.5 MHz; bandwidth for trans-
mitted signal, 2.5 MHz. From the above parameters, the
Nyquist velocity is 1.0265 (m/s).

If the blood signal is given by z(t, k) = y(t, k)+n1(t, k),
where y is the signal and n1 is the noise, the signal-to-noise
ratio for the sampled blood signals is defined as:

SNR = 10 log
∑
n

∑
k y

2(n, k)∑
n

∑
k n

2
1(n, k)

. (18)

A. Velocity Estimation Bias and Standard Deviation
by Using Different Interpolation Methods

In [16], it was indicated that the mean frequency esti-
mate based on the correlation function has a distribution
close to a Gaussian function, and the estimation variance
possesses a chi-square distribution. In [18], it was shown
that the CCM method and the mean frequency estimate
method have the similar estimation results. Therefore, the
estimation variance of the CCM method possesses a chi-
square distribution. Reliability of the simulation is indi-
cated by the 95% confidence interval. It can be obtained
from the statistic [16], which is: [0.84SD, 1.25SD] where
SD is the estimated standard derivation.

Table I lists the results of velocity estimation bias and
standard deviation (SD) by using different interpolation
methods from 50 independent simulations. A is parabolic-
fit without bias compensation. B is the cosine-fit interpola-
tion. Method 1 is the parabolic-fit with bias-compensation.
Method 2 is the parabolic-fit combined with linear filter
interpolation. Method 3 is the parabolic interpolation to
the complex correlation function envelope. Method 4 is the
matched filter interpolation.

The results show that method 1 reduces velocity estima-
tion bias significantly. Cosine-fit interpolation gives simi-
lar results. Because the parabolic-fit method suffers from
aliasing, it is usually limited by the Nyquist limit (the time
delay is within 1/2f0). Thus, only the estimation results to
the velocities within the Nyquist limit are given in those
methods.

For method 2, 3, and 4, velocities beyond the Nyquist
limit, or the time delay beyond 1/f0 have been estimated.
The results for velocities that are within the Nyquist limit
are similar to the results of method 1. It should be men-
tioned that since method 3 operates with the demodu-
lated signals, the sampling rate also can be reduced from
10 MHz (fs/f0 = 4) to 5 MHz (fs/f0 = 2) or even 2.5 MHz
(fs/f0 = 1).

The sampling rate for the matched filter is 50 times
higher than that of the signal, i.e., 500 MHz. The theoret-
ical velocity accuracy is about 0.5% of 1/f0 in this case.
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Fig. 9. Typical correlation function waveforms and their spectra for matched filter interpolation. Here the interpolation rate is 2.
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TABLE I
Velocity Estimation Bias and Standard Deviation (SD) (% Nyquist Velocity) SNR = 30 dB, fs/f0 = 4.

0.2 m/s 0.5 m/s 1.2 m/s 2.2 m/s 3.2 m/s 4.2 m/s

Bias A −2.1919 0.3215 — — — —
B −0.6332 −0.0779 — — — —

Method 1 −0.0585 −0.0560 — — — —
Method 2 −0.3082 −0.5832 0.4834 0.5210 0.7866 0.3295
Method 3 −0.093 −0.049 0.097 0.010 0.195 0.023
Method 4 0.434 0.591 0.818 0.880 0.721 0.418

SD A 1.2859 1.1593 — — — —
B 1.0619 1.4126 — — — —

Method 1 1.0326 1.4189 — — — —
Method 2 1.1412 1.4588 1.8770 1.9351 2.5188 3.0802
Method 3 0.922 1.442 1.724 1.812 2.289 2.871
Method 4 1.007 1.474 1.841 1.938 2.565 3.079

The results show that there is no significant difference to
the results of methods 2 and 3.
B. Performance Comparison Between the Interpolation
Methods in the Low Signal-to-Noise Ratio Circumstance

As mentioned previously, due to the deteriorating effect
of noise on the time delay detection, a false peak in the
correlation function may have appeared. This leads to a
wrong estimation. The simulation in this section shows
that the probability for wrong peak detection is reduced
by using the matched filter method.

The four interpolation methods mentioned in this pa-
per are applied to the simulation signal for Q = 3 and
SNR = −6 dB for comparison. The length of the trans-
mitted pulse is approximately six cycle periods. In this
case, the required interpolation rate L for method 2 is 5
according to (6).

The results are from 900 simulations. The velocities
vary from 0.1 m/s to 0.9 m/s in interval of 0.1 m/s (the
Nyquist limit is 1.0265 m/s). In this simulation, the veloc-
ity estimation range has not been limited for method 1.
The purpose is to display the aliasing error due to low
oversampling.

Histograms for velocity estimation bias are plotted as
in Fig. 10. The distribution of the bias around zero shows
the velocity estimation variance. Due to aliasing, some es-
timates were distributed around twice the Nyquist limit,
which corresponds the time delay 1/f0.

From the simulation results, the matched filter gives
best performance at low SNR. This improvement is even
more significant for narrow bandwidth signals because the
matched filter is more efficient in removing noise in the
narrow band cases.

C. Computation Comparison

To implement the CCM method, the received RF data
needs to pass through a high-pass filter prior to the cor-
relation function calculation. The computation require-
ments are usually high when the sampling rate is high, due
to filtering and correlation function calculations. Table II
gives approximated number of multiplication operations

for fs/f0 = 8 with the parabolic interpolation method
and fs/f0 = 4 with the four new interpolation methods.
All the methods listed in Table II give similar estimation
accuracy; however, the number of operations required for
the case fs/f0 = 4 is reduced.

In Table III, we assume that a regression filter is used as
a high pass filter [19] and the number of operations needed
for the high pass filter is 2(p+ 1)K [20] in which p is the
order of the regression filter, andK is number of samples in
the temporal direction. The number of operations required
for the correlation function calculation is assumed to be
proportional to data block size N ∗K, where N is number
of samples in the depth direction.

When fs/f0 = 8, the parabolic interpolation method
is used and only one division is required as in (2). When
fs/f0 = 4, interpolation method 1 uses parabolic fitting
followed by a look-up table for compensation. Only one
division is needed in this interpolation method.

In interpolation method 2, we interpolate the correla-
tion function R(n, 1) by a small rate using a linear filter
interpolation method. In our simulation, we used a half-
band filter and the number of operations for this linear
filter interpolation is 51.

In interpolation method 3, we have to modulate the
complex signal to the RF domain. This is a time-
consuming process. In order to save the computation time,
we modulate some samples and choose the global maxi-
mum. Then we use iteration around the maximum sam-
ples. At each iteration, only two samples are modulated.
In our simulation, total number of operations for this in-
terpolation method is 88.

In interpolation 4, the computation requirements are
usually high for the high interpolation rate. To save the
computation time, we used a method similar to the in-
terpolation method 3. In our simulation, the number of
operations is 748. A summary of the number of operations
is in Table III. The histogram in Fig. 11 shows the differ-
ence of the number of operations for the case when N = 48
(fs/f0 = 8), K = 32, and p = 3.

The number of operations is reduced when fs/f0 is re-
duced to 4. Furthermore, the number of operations can
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Fig. 10. Histograms (from 900 simulations) for velocity estimation bias with simulation signal Q = 3 and SNR = −6 dB.

TABLE II
Summarizes the Characteristics of the Interpolation Methods.

Method 11 Method 2 Method 3 Method 4

Perform on RF or baseband RF-band RF-band Baseband RF-band
signal
Oversampling fs/f0 fs/f0 = 4 fs/f0 = 4 fs/f0 = 1, 2, 4 fs/f0 = 4
Estimation error Small Small Small Small
Velocity estimation range Within the Excess the Excess the Excess the

Nyquist limit Nyquist limit Nyquist limit Nyquist limit
Computation time Short Medium Medium Long
Using a priori information Yes No No Yes
of the theoretical correlation
model
Performance for low SNR Not good Not good Not good Best
1Method 1: parabolic fit with bias compensation, method 2: parabolic fit combined with linear fil-
ter interpolation, method 3: parabolic fit to the complex correlation envelope, method 4: matched
filter interpolation.
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TABLE III
A Comparison of the Number of Operations for Different Interpolation Methods.

fs/f0 = 8 fs/f0 = 4

Parabolic-
fitting Method 1 Method 2 Method 3 Method 4

Wall filter N(p+ 1)K N(p+ 1)K/2
Correlation function N ∗K NK/2
Interpolation 1 1 51 88 748
Total for case N = 48, 7,681 3,841 3,891 3,928 4,588
K = 32, and p = 3

Fig. 11. A comparison of the number of operations for different in-
terpolation methods.

be reduced significantly when the original fs/f0 is higher
than 8.

D. Summary the Simulation Results

From simulation results, when the true velocity is within
the Nyquist limit, method 1 gives similar performance to
other interpolation methods, and it has a shortest compu-
tation time. Methods 2, 3, and 4 give good results, up to
4 times the Nyquist limit. Method 4 gives the best perfor-
mance when the signal-to-noise ratio is low. Table II sum-
marizes the characteristics of the interpolation methods.
The choice of the interpolation method depends mainly
on the specific application.

IV. Experimental Evaluation

The interpolation methods are verified by experimen-
tal data from the human subclavian artery. The RF data
from a ultrasound scanner (CFM 800, Vingmed Sound AS,
Norway) was collected in real time via a custom data ac-
quisition system. The slow tissue movement signal in the
raw data was removed by a 4th order IIR butterworth high
pass filter with normalized cutoff frequency 0.155. Then
the data was demodulated with center frequency 2.5 MHz.

A. The Parabolic Interpolation with Bias-Compensation
Applied to Experimental Data with the Velocities
Within the Nyquist Limit

The parameters in this experiment were the same as
in the simulations. When method 1 is applied to the sig-
nal with fs/f0 = 4, aliasing often occurs. Thus, we only
applied this method to a set of experimental data with
velocities within the Nyquist limit. The experimental re-
sults from the subclavian artery are shown in Fig. 12. The
cosine-fit method also is applied to the same experimental
data for comparison.

Method 1 has significantly improved the estimation re-
sult. There is no significant difference between method 1
and the cosine-fit interpolation method.

B. The Interpolation Methods Applied to the Experimental
Data with Velocities Beyond the Nyquist Limit

Experimental data from the subclavian artery with ve-
locities up to twice the Nyquist limit were obtained. In
the experiment, the oversampling fs/f0 = 4. The results
in Figs. 13 and 14 show that methods 2, 3, and 4 can in-
terpolate the correlation function with velocities beyond
the Nyquist limit. From Figs. 14(a), (b), and (c), (c) has
fewest velocity aliasing errors. Because the Q-factor in this
experiment data is only 1, the performance improvement
of the matched filter interpolation is not as significant as
that in the simulation where Q is 3.

In Fig. 14, velocity aliasing errors can be seen. This is
due to the fact that factors such as depth averaging time
and temporal averaging time, correlation function estima-
tor, and signal-to-noise ratio, all can affect the estimation
variance of the correlation function. Furthermore, the per-
formance of the interpolation methods are somewhat lim-
ited by the use of decimation of the RF signal to achieve
the low sampling rate in the experimental evaluation be-
cause the Doppler signal is usually not a narrow band-
limited signal. As a consequence, the likely performance
of the estimator will be poorer than shown in the sim-
ulation. The matched filter method can reduce only the
velocity aliasing error caused by low signal-to-noise ratio.
Aliasing can be further reduced by a 2-D tracking method.
It is based on the knowledge from flow physics that the
blood velocity is continuous both in depth and temporal
directions, while aliasing makes the velocity discontinu-
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Fig. 12. Experimental evaluation of parabolic fit with bias compensation, parabolic-fit and cosine-fit interpolation methods.

Fig. 13. Experimental evaluation: methods 2, 3, and 4 applied to the experimental data with velocities beyond the Nyquist limit. The ‘--’ in
(a) parabolic-fit to the complex correlation envelope, ‘–’ in (a) and (b) matched filter interpolation, ‘--’ in (b) parabolic-fit combined with
linear filter interpolation.

ous. When a velocity discontinuity in the velocity image
is detected, twice the Nyquist velocity should be added
or subtracted until the difference between its velocity and
the velocity of neighboring points is within the Nyquist
limit. The velocity image after 2-D tracking is shown in
Fig. 14(d). This 2-D tracking is sensitive to the selection
of start point. It cannot work well when there are too many
aliasing errors. Therefore, the aliasing should be reduced
as much as possible before applying 2-D tracking.

V. Conclusions

Four interpolation methods for time delay estimation
in the RF-signal cross-correlation technique for blood ve-
locity measurement are presented. All the methods have
higher velocity estimation accuracy than the parabolic fit
when fs/f0 is 4. The estimation accuracy is improved from
1.25% to 0.5% of 1/f0 compared to the parabolic fit inter-
polation method when fs/f0 = 4 and Q = 1.

The first method, parabolic fit with bias-compensation,
has shortest computation time, but suffers from aliasing

at low oversampling. It works well if the velocity range is
limited within the Nyquist limit that corresponds to the
time delay 1/2f0.

The second method, parabolic fit combined with linear
filter interpolation, avoids much aliasing by interpolating
the correlation function at a higher sampling rate. Its com-
putation time is between methods 1, 3, and 4.

The third method, parabolic fit to the complex correla-
tion function envelope, performs as well as method 2, but
requires intensive computations modulating the baseband
signal to the RF-band. An iterative approach can reduce
computation time greatly.

The fourth method, matched filter interpolation, maxi-
mizes the expected peak value relative to noise. Therefore,
it has the best performance when SNR is low. This per-
formance improvement is more significant for narrow-band
signals.

The interpolation methods were verified by simulations
with velocities up to four times the Nyquist limit corre-
sponding to the time delay 2/f0. Further verification was
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Fig. 14. Velocity image of the subclavian artery with the velocities up to twice the Nyquist limit.

provided by in vivo measurements in a subclavian artery
with velocities up to four times the Nyquist limit. Veloc-
ity images have been obtained using methods 2, 3, and 4.
Most pixels seem to display the correct velocities, but a
small number of pixels still demonstrate aliasing. A 2-D
tracking was used to further reduce aliasing.
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Appendix 1

The explanation for the unique determined relation of
v and ν: from Fig. 4 [6] and [11], the predicted velocity
bias b can be approximated by:

ν̂ = ν − b = ν − p sin
N

200
πν (19)

where p is the maximum magnitude of the estimation bias.
N = fs/f0 is oversampling, ν is the true velocity in terms
of percent of the Nyquist limit.

The first order derivative with respect to ν is:

ν̂′ = 1− p N
200

π cos
N

200
πν (20)
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when p N
200π < 1, i.e.:

pN <
200
π

(21)

then ν′ is strictly positive, and it is a monotonic function
of ν; (21) usually is true, for instance, pN = 2.5× 4 < 200

π
for the signal with Q = 1 shown in Fig. 4.

Appendix 2

The requirement of oversampling to reduce likelihood
of aliasing in the curve fitting : Considering the correla-
tion function R(τ, 1) and its sampled version R

(
n
fs
, 1
)
,

if the true time delay τν happens to lie midway between
two sampled points and a subsidiary peak lies on a sam-
pled point, the possibility exists that the sample point of
the subsidiary peak has a higher value than the point of
the true peak, causing aliasing (refer to Figs. 1 and 3). In
the worst case, we have sample points at τν ± 1

2fs
(half

sampling period on both sides of τν) and at τν ± 1
f0

(the
two nearest subsidiary peaks on both sides of τν). Aliasing
occurs when:

R

(
τν +

1
2fs

, 1
)
≤ R

(
τν +

1
f0
, 1
)
. (22)

Assuming the correlation function model (1), then (22)
becomes:

exp

−
(

1
2fs

)2

2σ2

 cos
(

2πf0

2fs

)
≤ exp

−
(

1
f0

)2

2σ2

 .
(23)

Because fs is usually high compared to 1
σ , we use the ap-

proximation:

exp

−
(

1
2fs

)2

2σ2

 ≈ 1. (24)

Then (23) can be written as:

cos
(
πf0

fs

)
≤ exp(−1/2(σf0)2). (25)

The required oversampling to reduce likelihood of alias-
ing is:

fs
f0

>
π

acos[exp(−1/2(σf0)2)]
=

π

acos[exp(−2Q2)]
.
(26)
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