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An Extended Autocorrelation Method for
Estimation of Blood Velocity
Xiaoming Lai, Hans Torp, Member, IEEE, and Kjell Kristoffersen

Abstract—The conventional autocorrelation method
(AM) to estimate the blood velocity for color flow imaging
(CFI) is based on the phase estimation of the autocorrela-
tion function. In this paper, a new extended autocorrelation
method (EAM) that uses both phase and magnitude of the
two dimensional (depth and temporal direction) autocor-
relation function for estimating the blood velocity is pre-
sented. It is shown that the EAM has similar performance
as the cross-correlation method (CCM). Both of them have
smaller estimation variance than the AM and have the abil-
ity to estimate velocities beyond the Nyquist velocity, but
the EAM is more computationally efficient than the CCM.
A 2-D blood flow signal with rectilinear velocity including
the transit time effect has also been simulated and the re-
sults are presented in this paper. For comparison, the EAM
and the CCM have been applied to the simulated signals in
which the flow velocities are up to four times the Nyquist
velocity. The EAM has been further verified by experimen-
tal RF data from the subclavian artery.

I. Introduction

Doppler ultrasound is an important noninvasive
technique for measuring blood velocity in order to di-

agnose cardiovascular diseases. The pulsed Doppler tech-
nique is widely used at the present time because it also
offers range resolution. With this method, sequential short
ultrasound pulses are transmitted into the vessel or heart
at the pulse repetition frequency (PRF). Returned signals
are received sequentially at a certain delay after the pulse
transmission. The blood velocity within selected ranges
can be estimated from the received signal. Sweeping the
beam across the vessel gives a complete measurement of a
2-D flow profile in the vessel which includes velocity and
its variance. A color flow image is obtained by coding the
velocities. The velocity variance also has been used to mod-
ulate the color in some display modes.

Today, two widely used velocity estimation methods are
the autocorrelation technique (AM) and the time domain
technique (CCM). The AM technique was first developed
for weather radar applications and applied to ultrasound
blood velocity measurement later [1]. It is based on the
phase estimation for successive pulses from the complex
demodulated signal. Because of its computational simplic-
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ity, most ultrasound scanners for CFI use this method to-
day. However, the AM is regarded as a narrowband esti-
mation method because it has small estimation variance
when the bandwidth of the received signal is narrow. Its
estimation variance increases greatly when the bandwidth
of the received signal is wide. This leads to poor image
quality. On the other hand, reduced bandwidth limits the
range resolution, so there is a trade-off between velocity
estimation variance and range resolution.

The sampled nature of the pulsed Doppler introduces
a limit on the maximum velocity which can be measured.
The maximum velocity is referred to as the Nyquist limit
and is given by:

v =
c× PRF
4f0 cos θ

(1)

where c is the sound velocity, f0 is the transmitted center
frequency, and θ is the angle between the ultrasound beam
and the blood vessel. Velocities exceeding this Nyquist
limit are often found in various jet flows in heart defects
(valve stenoses and regurgitations, ventricular septal de-
fect, etc.).

The CCM is an alternative algorithm for blood velocity
estimation [2], [3]. The CCM is based on estimation of the
time delays of the received RF echoes from the pulse-to-
pulse cross-correlation function. It is superior to the AM
in some aspects, but its computation is considerably more
time consuming. In practical applications, the received sig-
nal is sampled along the depth direction with a certain
rate. Because the CCM is performed on the RF-signal,
the minimum sampling rate is much higher than that in
the baseband. In addition, the location of the maximum in
the cross-correlation function is not constrained to discrete
increments, and hence, the true location of the maximum
has to be estimated by means of interpolation methods.
The estimation accuracy depends on the ratio of the sam-
pling rate to the center frequency. In order to improve
the estimation accuracy for low ratio of the sampling rate
to the center frequency, some time consuming interpola-
tion techniques have to be used. Besides the CCM, there
are some other velocity estimation techniques such as the
2-D Fourier transform method [4] and the maximum like-
lihood estimator [5], [6] which are superior to the AM,
but the computation requirements are higher. These tech-
niques will not be discussed further in this work.

In this paper, the EAM which is developed from the
AM, is presented and compared to the CCM. This paper
is organized as follows: In Section II, a 2-D correlation
function model based on [9] is introduced. From this 2-
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D correlation function model, a simulation model for 2-D
blood signal is obtained. In Section III, the EAM tech-
nique is described, and a theoretical comparison between
EAM and CCM is given. In Section IV, the EAM is ana-
lyzed by simulation. In Section V, the EAM is verified by
experiment.

II. The Correlation Function and

Blood Signal Model

A. The Correlation Function Model

The correlation function plays an important role in the
estimation of blood velocity parameters. Most velocity es-
timators are based on the correlation function. This is be-
cause the received blood signal is a Gaussian random sig-
nal [7] which is completely characterized by its correlation
function [8]. Therefore, the blood velocity parameters are
included in the correlation function. In this section, a 2-D
correlation function model based on [9] is introduced.

The received 2-D RF signal is denoted as p(t, k) where
t is the elapsed time after pulse transmission which cor-
responds to a certain depth from the transducer and k is
the pulse number. Its correlation function is defined by the
statistical ensemble average of the signal product:

R(τ,m) ≡ 〈p(t, k)p(t+ τ, k +m)〉 (2)

assuming that f(t) = r(t) cosω0t is the transmitted pulse,
where r(t) is the envelope of the transmitted signal, ω0
is transmitted center frequency, and assuming that s(t) =
e(t) cosωct is the received signal from a single scatterer,
where e(t) is the envelope of the received pulse and ωc
is the mean frequency of the received pulse. The function
e(t) is determined by the convolution of the envelope of
the transmitted pulse, the impulse response of transmis-
sion and reception transducer. The mean frequency of the
received pulse may be different from the center frequency
of transmitted pulse. This is because, when there is the ef-
fect of the frequency dependent attenuation and frequency
random fluctuation, the envelope and the center frequency
of the received pulse are altered [10]. The major effect is a
shift in the spectral mean. Thus, the effect to the envelope
will be neglected. The mean frequency is shifted from ω0
to ωc.

When the effect of the beam profile is taken into ac-
count and b(d) is the transverse beam sensitivity function,
where d is the distance from the ultrasonic beam center
axis, the received pulse is: s(t)b(d). This is based on the
assumption of separability of the radial and transverse im-
pulse response [9]. In [11], with the stationary and uniform
velocity field assumption, the RF correlation function is
given by:

R(τ, k) = Re(τ − kτv) cos(ωc(τ − kτv))RB(kTv sin θ)
(3)

Re(τ) is the correlation function of e(t) and RB(kTv sin θ)
is the correlation function of lateral sensitivity function

Fig. 1. The 2-D blood signal model.

Fig. 2. Left plot is the illustration of the echo response h(t, k) from
a single scatterer. Right plot is the simulated blood signal p(t, k).

B(d).

τv = −2Tv cos θ
c

(4)

τv is the delay between echoes from two subsequent pulses
caused by the scatterer movement, v cos θ and v sin θ are
the velocity components in the radial (along the ultrasonic
beam) and the lateral (transversal to the ultrasonic beam)
direction. T is the pulse repetition period. The radial ve-
locity toward the transducer is defined as positive velocity.
Note that the autocorrelation model in (3) includes decor-
relation caused by lateral velocity components. Decorre-
lation caused by velocity gradients may be included by
integrating (3) over the corresponding velocity distribu-
tion.

B. Simulation Model for the Blood Signal

Assuming the echo response of a single moving scatterer
is defined by:

h(t, k) = s(t− kτv)b(kTv sin θ). (5)

The 2-D blood signal can be written as a 2-D convolution
between the echo response and the 2-D Gaussian random
signal n(t, k)

p(t, k) = h(t, k)⊗ n(t, k). (6)

Then the correlation function of the blood signal in (6)
equals R(τ, k) in (3).

Fig. 1 shows the simulation model for the blood signal,
including additive white noise to account for the thermal
noise from the transducer and receiver amplifier. Fig. 2
shows the echo response h(t, k) from a scatterer and the
simulated RF blood signal p(t, k).
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III. The Extended Autocorrelation Method

A. The Conventional Autocorrelation Method
with Frequency Compensation

In the conventional autocorrelation method (AM), the
complex correlation function with lag one in the tempo-
ral direction is used to calculate the normalized mean fre-
quency [1]. Using the notation for the 2-D correlation func-
tion, the normalized mean frequency in the temporal di-
rection is estimated as [12]:

$ =phase (Rx(0, 1)). (7)

From the Doppler equation, the velocity estimate is calcu-
lated, assuming that the center frequency of the received
signal is constant and equal to the transmitted frequency
f0

v =
c$PRF

4πf0 cos θ
. (8)

Frequency dependent attenuation and frequency random
fluctuation effects cause variations in the received signal
center frequency. This results in velocity bias and estima-
tion variance. The effect of the frequency-dependent at-
tenuation becomes significant especially in the wideband
signals. This effect can be reduced by estimating the cen-
ter frequency of the received signal fc and using it for the
estimation,

v =
c$PRF

4πfc cos θ
. (9)

The deviation of the received signal center frequency ∆f =
fc−f0 is estimated from the autocorrelation function with
lag in the depth range direction:

∆f =
phase (Rx(τ, 0))

2πτ
. (10)

This method is referred to as “AM with frequency com-
pensation” and also is described in [12] and [13].

B. The Extended Autocorrelation Method

From the discussion in the previous section, we know
that both the envelope and the phase of the correlation
function include velocity information. The AM uses only
the phase to estimate the velocity. Due to the periodicity
of the phase, aliasing will occur for velocities exceeding the
Nyquist limit.

A new method, the extended autocorrelation method
(EAM), which uses both the phase and the magnitude
of the correlation function to estimate the velocity has
been developed. The phase information is used for ac-
curate velocity estimation, and the magnitude is used to
solve the ambiguity. As in the correlation function model,
the time delay τv and the phase −ωcτv which account for
the Doppler shift, both include velocity information. The

phase −ωcτv is proportional to the time delay; however,
due to the periodicity of the phase, the phase estimation
wraps the time delay information. When the time delay in-
creases and −ωcτv is beyond |π|, the phase estimation still
lies within |π| and aliasing occurs. Because the time do-
main method CCM directly estimates the time delay, there
is no velocity ambiguity. The time delay estimation in the
CCM is found by maximizing the RF correlation function,
R(τ, 1). The maximum magnitude of R(τ, 1) occurs when
τ = τv. It is seen from (3) that the envelope correlation
function Re(τ − τv) attains its maximum and the phase
equals −ωcτv. Thus, the CCM combines the envelope and
the phase information which leads to no velocity ambigu-
ity. If the envelope information was discarded, there would
be the same velocity ambiguity problem as in the AM.

The relation between the phase and the time delay is:

$ =phase (Rx(0, 1))
= ((−2πfcτv+ sign (−2πfcτv)π))2π

(11)

where (( ))2π denotes ((−2πfcτv+ sign (−2πfcτv)π))
modulo 2π, sign is for the sign function.

The time delay τv will not be estimated correctly when
| − 2πfcτv| > |π|.

The phase estimate results in a number of possible time
delay candidates:

phase (Rx(0, 1)) + 2nπ = −2πfc × τn n = 0,±1,±2 . . . ,
(12)

where τn denotes delay candidates. When n = 0, the ve-
locity is below the Nyquist limit. Rearranging (12) gives:

τn = − $

2πfc
− n

fc
n = 0,±1,±2 . . . , (13)

Because the peak of the envelope is located in τv, the true
delay candidate is found by maximizing the envelope of
the correlation function, n′ = maxn(R(τn, 1)). This is the
basic idea for the EAM method.

In its simplest form, the time delay candidates are found
from the phase of Rx(0, 1). In the appendix, a complete
relation between the phase of the 2-D correlation function
and the mean frequency in both directions is given, and
the normalized mean frequency in the temporal direction
can be estimated by:

$ =phase (Rx(τ, 1))−∆ωτ. (14)

This means that the normalized mean frequency in the
temporal direction can be estimated by the phase Rx(τ, 1)
for any τ in addition to the phase of Rx(0, 1) for τ = 0.
It also is seen that the phase Rx(τ, 1) is independent of
τ when there is no frequency shift of the received blood
signal from ω0, i.e. ∆ω = 0.

For real signals, the envelope of the correlation func-
tion is discrete for the sampled echo signal, but the delay
candidates can be at any position, and it is necessary to
reconstruct the envelope for all τ ’s by interpolation tech-
niques. Unlike in the CCM where a high performance in-
terpolation technique is needed to locate the precise delay,
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Fig. 3. An illustration of the EAM. ∗ represents the amplitude of cor-
relation function Rx(τ, 1) in sampling points. The dash curve repre-
sents the reconstructed envelope of Rx(τ, 1). τ−1, τ0, τ1 are the three
candidates for the velocity. τ0 is the candidate for the true velocity
in this example because it corresponds to maximum amplitude.

the interpolation technique is not so crucial in the EAM;
a parabolic interpolation usually results in good perfor-
mance, even with low depth sampling rate.

In the EAM, several delay candidates, τn, are found by
extending the phase estimation result$ periodically. Then
the n which gives the maximum amplitude of Rx(τn, 1) is
determined. The EAM algorithm is illustrated in Fig. 3.

C. Comparison Between the EAM and the CCM

At present, the AM and the CCM are the two most
commonly used techniques for estimating blood flow ve-
locity. The CCM is usually referred to as a time domain
technique, whereas the AM is referred to as a frequency
domain Doppler technique. The advantages of the time
domain method over the Doppler technique are discussed
in [14] and [15]. The EAM is developed from the AM and,
therefore, it is performed on the baseband complex signals.
In contrast, the CCM is performed on the real valued RF
signals. It is worthwhile to compare the EAM with the
time domain method CCM, and it is interesting to see in
the following discussion that those two methods essentially
estimate the same parameter. We will first briefly discuss
the CCM algorithm.

1. The CCM: In the cross-correlation method, the ob-
ject is to find the time delay τv by searching for the location
of the maximum of the RF correlation function R(τ, 1):

τv = maxτ (R(τ, 1)).

A typical example of a RF correlation function is given
in Fig. 4. The RF correlation function is the product of
the envelope and the modulating signal cos 2πfc(τ − τv).
The modulating signal is a periodic function with multiple
peaks at 2πfc(τ − τv) = 2nπ, which can be reformulated
to:

τ = ((τv+ sign (τv)fc))2fc +
n

fc
n = 0,±1,±2 . . .

(15)

When the envelope of the correlation function is constant,
several peaks will have the same magnitude. For a shaped
envelope, differences in the magnitude of the peaks appear,
and this makes it possible to pick out the true peak.

In a practical implementation, the RF correlation func-
tion R(τ, 1) is discrete and interpolation is necessary in

Fig. 4. An illustration of a RF correlation function which is the prod-
uct of the modulation function and the envelope. The modulation
function determines the precise delay locations, the envelope deter-
mines the true delay τv from delay locations.

order to estimate precise time delays. The interpolation
is used in order to locate the peak in the RF correlation
function; therefore, the interpolation technique is crucial
in order to obtain good estimation accuracy.

2. A theoretical comparison of the EAM and the CCM:
The relation between the complex demodulated signal
x(t, k) and the RF signal p(t, k) is:

p(t, k) = Re(x(t, k)ejω0t). (16)

The complex correlation function is defined as:

Rx(τ,m) = 〈x∗(t, k)x(t+ τ, k +m)〉

and RF real correlation function is

R(τ,m) = 〈p(t, k)p(t+ τ, k +m)〉.

By some algebraic manipulations, the following relation is
obtained

R(τ,m) =
1
2
Re(ejω0τRx(τ,m))

+
1
2
Re(ejω0τ 〈x∗(t, k)x(t+ τ, k +m)ej2ω0t〉). (17)

The second term has zero mean and will approach zero
when the smoothing in depth direction extends to more
than one period of the transmitted signal. This is usually
the case due to the high frequency of the transmitted sig-
nal. So (17) can be approximated to:

R(τ,m) ≈ 1
2
Re(ejω0τRx(τ,m)). (18)

Usually, only the correlation function with temporal lag
one (m = 1) is used in both the CCM and the EAM.

If the magnitude of the complex correlation function
|Rx(τ, 1)| is sufficiently smooth compared to the modula-
tion function cos(ω0τ), then the peak τ = τv in the RF
correlation function R(τ, 1) occurs when:

phase (Rx(τv, 1)) + ω0τv + 2nπ = 0 n = 0,±1,±2 . . .
(19)
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By combining (14) and (19), the following relation between
the time delay τv and the mean frequency estimate $ is
obtained:

∆wτv + ω + ω0τv + 2nπ = 0. (20)

The time delay τv is:

τv =
−$ − 2πn
ω0 + ∆w

. (21)

Observe that τv is the same as the delay candidates - τn
in the EAM. The time delay τv in (21) is not unique, but
the true velocity corresponds to the delay which maximize
the envelope.

3. Comparison of the processing time: The processing
time is mainly spent on calculating the correlation func-
tion in the CCM and in the EAM. Although the interpo-
lation step also requires substantial processing time, espe-
cially when the sampling frequency in the depth direction
is low, the computational efficiency is comparable to that
of the correlation function. The processing time depends
on the number of data samples. The EAM operates on
the complex signal where the sampling rate can be de-
creased substantially compared to the CCM. This reduces
the computational requirement. By calculation, one depth
sample delay corresponds to 2f0/fs times the Nyquist ve-
locity. In order to estimate velocities up to four times the
Nyquist velocity, 2fs/f0 samples are required in the depth
direction.

For instance, if the sampling frequency of the demod-
ulated signal fsd, equals the transmitted frequency, five
correlation coefficients are required to estimate a velocity
range of four times the Nyquist limit.

In the EAM, the calculations are: five complex correla-
tion coefficients from the data block N×K, where N is the
depth averaging samples and K is the temporal averaging
samples.

In the CCM, the calculations are: 5fs/fsd correlation
coefficients from the data block N ×

(
fs
fsd

)
K.

Assuming that the calculation of the correlation func-
tion is proportional to the data size, the ratio of the cal-
culation of the correlation coefficients of the CCM to the
EAM is:

1
2

(
fs

fsd

)2

(22)

When fs = 10 MHz, fsd = 2.5 MHz, the ratio is 8, but in
this case the interpolation method in the CCM is time con-
suming. The total computation in the EAM is much less
than the CCM. When fs = 20 MHz, a parabolic interpo-
lation method for the CCM works well, the interpolation
step will not take too much time, but the ratio of the cor-
relation function calculation in (22) is 32.

TABLE I
Parameters for Simulations.

Parameter Value

Center frequency f0 2.5 MHz
Pulse bandwidth BW 2.5 MHz
Pulse repetition frequency PRF 6564 Hz
Speed of sound c 1540 m/s
Measurement angle θ 10 degree
Temporal averaging 1.8 ms or 12 samples for the

signal of prf 6564 Hz
Depth averaging 3 ∗ 0.8 µs or 24 samples for

the signal of fs = 10 MHz and
f0 = 2.5 MHz

Beam width B 2 mm

IV. Analysis of the EAM and the CCM

by Simulations

A. Simulation Signal and Parameters

A 2-D Gaussian random signal based on the blood sig-
nal model in Section II is simulated. The length of the
wideband transmitted pulse is approximately two cycle
periods. Typically, a wideband transmitted pulse is min-
imum phase with a rapid rise and more gradual fall of
the pulse envelope. However, a Gaussian shape envelope
of the received signal was used in our simulations. What is
important for the performance is the envelope of the corre-
lation function, which will approach a Gaussian form, also
for the minimum phase pulse. The received signal from a
scatterer is then:

s(t)b(d) = exp
(
−t2
σ2

)
cos(2πf0t)b(kTv sin θ).

The standard deviation is set to σ = 1/f0, giving a
pulse length of approximately two cycle periods. The pulse
bandwidth BW is defined as 1/σ which the magnitude
of the envelope decreases 8.69 dB. The transverse beam
profile b is assumed to Gaussian function [9] and b(d) =
exp(−3d2/2B2) is used in our simulation, where B is the
beamwidth.

The other parameters for all the simulations in the pa-
per are given in Table I.

The Nyquist velocity is determined by (1) and equals
1.0265 m/s with the given parameters.

B. Signal to Noise Ratio

White noise is added to the final RF signal as shown
in Fig. 1. The signal-to-noise ratio for the blood signal is
defined as:

SNR = 10 log

∑
n

∑
k

p2(n, k)∑
n

∑
k

n2
0(n, k)

(23)

p0(n, k) = p(n, k) + n0(n, k). (24)
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Fig. 5. Standard deviation of velocity estimation by the CCM and
the EAM. Solid line is for the CCM. ‘∗’ is for the EAM, dash lines
indicate the 95% confidence interval based on the standard deviation
of the CCM. SNR = 30 dB in left plot, SNR = 0 in right plot.

The complex signal x(n, k) is obtained by demodulating
the RF-signal p0(n, k). Signals with SNR = 30 dB and
SNR = 0 dB are used for the simulations in this work.

C. Simulation Results

The estimation results for the CCM and the EAM are
shown in Fig. 5. The sampling rate fs is 10 MHz for both
methods.

The blood signal is a random signal. Because the mean
frequency estimate based on the correlation function has
a distribution close to Gaussian [5], the estimation vari-
ance possesses a chi-square distribution. To evaluate the
estimator of the CCM and the EAM, the estimation re-
sults in this work are based on 50 independent simula-
tions. A confidence interval for the variance of a normal
random variable can be obtained from the statistic [19],
which is: [

√
49/70.222s,

√
49/31.555s], where s is the es-

timated standard derivation. This parameter gives the re-
liability of this simulation. The 95% confidence interval of
the standard deviation for the CCM is plotted in Fig. 5.
The simulation results in Fig. 5 show that the CCM and
the EAM have similar performance, especially when the
signal-to-noise ratio is high. They can estimate velocities
up to four times Nyquist velocity and give similar vari-
ance. The estimation variance depends on the correlation
length of the signal. For the highest velocities, the correla-
tion length decreases due to the transit time through the
ultrasound beam, giving increased estimation variance.

Because the EAM operates on the complex demodu-
lated signals, the sampling rate fs can be reduced down to
the bandwidth of the signal, which is BW = 2.5 MHz.
However, the CCM operates on the RF signal which
requires a sampling rate of 2f0 + BW . In the simula-
tions fs = 2.5 MHz, 5 MHz, and 10 MHz are used for
EAM, and fs = 10 MHz is used for CCM. The estima-
tion results for the EAM with sampling rate 10 MHz,
5 MHz, and 2.5 MHz are shown in Fig. 6. The 95% con-
fidence interval of the standard deviation for this simula-
tion is: [

√
49/70.222s,

√
49/31.555s], where s is the esti-

mated standard derivation. The 95% confidence interval of
the standard deviation for the EAM in the sampling rate
10 MHz is shown in Fig. 6.

The results for the EAM with sampling rate 10 MHz,

Fig. 6. Standard deviation of the velocity estimator EAM in sampling
rate 10 MHz, 5 MHz, and 2.5 MHz. Solid line is for the sampling rate
10 MHz, ‘∗’ is for the sampling rate 5 MHz, and ‘-.’ is for the sampling
rate 2.5 MHz. SNR = 30 dB in left side, SNR = 0 in right side.

5 MHz, and 2.5 MHz are not significantly different when
the signal to noise ratio is high. When the signal-to-noise
ratio is low, the standard deviation in the case of sam-
pling rate 2.5 MHz is slightly higher than for sampling
rate 10 MHz and 5 MHz.

D. Discussion on the Effects of the
Parameters to the EAM

1. The effects of the pulse bandwidth and signal-to-noise
ratio to the EAM: The velocity estimation variance and
sensitivity versus the pulse bandwidth and signal-to-noise
ratio was discussed in [17]. The velocity estimation vari-
ance decreases and the sensitivity increases with increas-
ing pulse bandwidth as long as the signal to noise ratio
is sufficiently high. Under poor SNR conditions, the pulse
bandwidth should be reduced in order to increase the sensi-
tivity. Global error which is caused by choosing the wrong
peak in the correlation function decreases with the pulse
bandwidth [20]. This is because the shape of the envelope
affects the searching of the maximum. A sharp envelope
makes it easy to tell the main peak from subsidiary peaks.
A flatter envelope makes it difficult to find the main peak.
Sometimes the wrong peak is chosen and the ambiguity as-
sociated with aliasing occurs. The shape of the correlation
function envelope is determined by the pulse bandwidth.
High pulse bandwidth signal corresponds to a sharp enve-
lope. Narrow pulse bandwidth signal corresponds to a flat
envelope.

Thus, there is trade-off between the wideband pulse and
narrow band pulse because the optimization for the veloc-
ity estimation variance and sensitivity are contradictory.

2. The effect of the depth averaging time and the tem-
poral averaging time to the EAM: Increasing the depth
averaging time and temporal averaging time decreases the
estimation variance [21]. The depth averaging determines
the range resolution. In order to get a high range resolu-
tion, the depth averaging cannot be too long. The temporal
averaging time affects the frame rate. In order to keep a
high frame rate in color flow imaging, the temporal av-
eraging time cannot be too long. The temporal samples
are typically 6 to 16. With a pulse repetition frequency of
5 kHz, this corresponds to 1.2 to 3.2 msec averaging time.



1338 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 44, no. 6, november 1997

Fig. 7. Comparing the AM to the AM with frequency compensation
method. Left plot is the results of the AM, right plot is the results
of the AM with frequency compensation.

3. The effect of measurement angle and velocity of scat-
terers to the EAM: When the measurement angle in-
creases, the transverse velocity increases. This increases
the estimation variance due to the decorrelation caused by
the beam profile. For the higher velocities, the transverse
velocities are higher. This increases estimation variance
the same way as increasing the measurement angle does.

In summary, the parameters which affect the estimation
results in the CCM also can affect the estimation results
in the EAM.

V. Experiment Verification

The EAM was verified by experimental data from the
subclavian artery. The CCM also was applied to the ex-
perimental data for comparison. The RF data from a ul-
trasound scanner (Vingmed CFM 800) was collected in
real-time via a custom data grabbing system. The slow
tissue movement signal in the raw data was removed by a
4 order IIR butterworth high pass filter with normalized
cutoff frequency 0.155. Then the data was demodulated
with the center frequency 2.5 MHz.

A. The AM with Frequency Compensation is Applied
to the Experimental Data from the Subclavian Artery

The quality improvement achieved by the frequency
compensation is shown in Fig. 7. Left plot is the estima-
tion result by the AM. Right plot is the estimation result
by the AM with frequency compensation. The curve in
the right plot is smoother than the left, indicating lower
estimation variance.

B. Comparison Between the EAM and the CCM
When the Velocities Are Within the Nyquist Limit

The depth averaging in this experiment was 0.8 µs, i.e.,
eight samples in depth direction for fs = 10 MHz, f0 =
2.5 MHz. The other parameters in the upper plots (a), (b)
in Fig. 8 were the same as in the simulation in this paper.
They show no difference between the two methods. Both
of them give good results.

C. Comparison Between the EAM and the CCM When
There Are Velocities Beyond the Nyquist Velocity But
Within Two Times the Nyquist Limit

In the middle plots (c), (d) in Fig. 8 are the results
from another set of experimental data from the subcla-
vian artery. The pulse repetition frequency was reduced to
4 Khz, hence the Nyquist velocity is reduced. The depth
averaging is 1.2 µs, i.e., 12 samples for fs = 10 MHz,
f0 = 2.5 MHz. The temporal averaging is 6 ms, i.e., 24
samples. The overlap between temporal averaging is 3 ms.
The performance of the two methods are similar.

D. Comparison Between the EAM and the CCM When
There Are Velocities up to Four Times Nyquist Limits

The data in this experiment was acquired by decimating
the RF data in experiment C in order to reduce the pulse
repetition frequency, hence a lower Nyquist limit was ob-
tained. This decimation was done before the wall motion
filter. The depth averaging in this experiment is 1.2 µs,
i.e., 12 samples for fs = 10 MHz, f0 = 2.5 MHz. The
temporal averaging is 6 ms, i.e., 12 pulses by repetition
frequency 2 Khz. The overlap between temporal averaging
is 3 ms. The results in the lower plots (e), (f) in Fig. 8
show that both the EAM and the CCM can estimate the
velocities up to four times the Nyquist limit. Nevertheless,
there were global errors in the results.

Two gray scale velocity images in the upper (a) and
middle (b) in Fig. 9 are by the EAM and the CCM, re-
spectively. The experimental data is the same as in the
experiment C. The depth averaging was 1.2 µs and the
temporal averaging was 3 ms. There was no overlap be-
tween temporal averaging. Velocities within two times the
Nyquist limits have been estimated. There was no signifi-
cant difference between the two images. Global errors can
be seen in both images. In order to reduce the global er-
rors, a 2-D tracking method can be used. This is based on
the knowledge from flow physics that the blood velocity
is continuous both in depth and temporal directions. The
global error is always two times the Nyquist limit, which
makes the velocity discontinuous. The tracking method
means a comparison between the present point and the
previous neighboring points. If the velocity varies beyond
the Nyquist limit, the present point is taken to have global
error. In this case two times the Nyquist velocity should
be added or subtracted to the velocity in the present point
until the difference between its velocity and the velocity
of previous neighboring points is within the Nyquist limit.
The lower image (c) in Fig. 9 is the result of the upper
image (a) of Fig. 9 by 2-D tracking. It is seen that the
quality of the velocity image has been improved. It should
be mentioned that the velocities in the previous neighbor-
ing points is important for tracking. If the velocities of
the reference points—neighboring points are incorrect—it
may cause velocity images with large errors.

In Fig. 10, there are three gray scale velocity images in
which velocities within four times the Nyquist limit have
been estimated by the EAM and the CCM, respectively.
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Fig. 8. Experimental data from subclavian artery analyzed by the EAM and the CCM. Left plots (a), (c), and (e) are the results by the
EAM. Right plots (b), (d), and (f) are the results by the CCM. Upper plots (a) and (b): the Nyquist limit is 1.0265 m/s and the velocities
are within the Nyquist limit. Middle plots (c) and (d): the Nyquist limit is 0.6255 m/s and the velocities are within two times the Nyquist
limit. Lower plot (e) and (f): the Nyquist limit is 0.3128 m/s and the velocities are within four times the Nyquist limit.
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Fig. 9. Velocity image from subclavian artery analyzed by the EAM
and the CCM. The Nyquist limit is 0.6255 m/s and the velocities
are within two times the Nyquist limit. Upper image (a) is the result
by the EAM. Middle image (b) is the result by the CCM. Lower
image (c) is obtained from the upper image with 2-D tracking.

The experimental data is the same as in experiment D.
The depth averaging was 1.2 µs, the temporal averaging
was 6 ms with 3 ms overlap between temporal averaging.
There was no significant difference between the two images
(a) and (b) in Fig. 10. The global errors can be seen in both
images. The global errors can be reduced by 2-D tracking.
This is shown in the lower image (c) in Fig. 10.

VI. Conclusions

A new extended autocorrelation method to estimate the
velocity in color flow imaging is presented. Compared to
the autocorrelation method, it has small estimation vari-
ance and the capability to estimate velocities beyond the
Nyquist limit. The performance improvement can be ex-
plained by the depth information added in the estimation.
The small estimation variance is due to the frequency com-
pensation using several samples of the signal in the depth
range. The capability to estimate velocities beyond the
Nyquist limit is due to the envelope of the correlation func-
tion in depth being used. Frequency dependent attenuation
and random fluctuation has not affected the EAM velocity
estimation due to the frequency compensation. It is shown
that the EAM and the CCM have similar performance.

The processing time is mainly spent in the calculation
of the complex correlation function in the EAM. In the
CCM, the processing time is spent on the calculation of
the RF correlation function in addition to the interpolation
method. Because the EAM performs on the demodulated
complex data in contrast to the RF data in the CCM, the
computation requirement has been reduced greatly in the
EAM.

The estimate result to the EAM, as to the CCM, can
be affected by many factors, such as the SNR, the pulse
bandwidth, measurement angle, scatterer velocities, and
the data block size. The global errors can be observed when
estimating the velocity exceeding the Nyquist limit. By
applying a 2-D tracking method, the global error can be
reduced.

The EAM has been verified by simulations and ex-
perimental RF data with velocities up to four times the
Nyquist limit. The CCM has also been applied to the sim-
ulation and experimental RF data for comparison.
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Fig. 10. Velocity image from subclavian artery analyzed by the EAM
and the CCM. The Nyquist limit is 0.3128 m/s and the velocities are
within four times the Nyquist limit. Upper image (a) is the result
by the EAM. Middle image (b) is the result by the CCM. Lower
image (c) is obtained from the upper image (a) with 2-D tracking.

Appendix

Mean Frequency Estimator

It is shown that the complex Doppler signal is a complex
Gaussian process. Therefore, the autocorrelation function
Rx(τ, n) and the power spectrum density G(ω1, ω2) is a
Fourier transform pair. The autocorrelation function can
be written as:

Rx(τ, n) =

∞∫
−∞

π∫
−π

G(ω1, ω2)ejω1τ+jω2ndω1 dω2.
(25)

Let ∆ω denote mean frequency in depth direction, $ is
the mean frequency in the temporal direction. They are
defined by:

$ =

∞∫
−∞

π∫
−π

ω2G(ω1, ω2)dω1 dω2/

∞∫
−∞

π∫
−π

G(ω1, ω2)dω1 dω2
(26)

∆ω =

∞∫
−∞

π∫
−π

ω1G(ω1, ω2)dω1 dω2/

∞∫
−∞

π∫
−π

G(ω1, ω2)dω1 dω2.
(27)

Expanding ejω1τ+jω2n in (25) by a power series in the
points ∆ω, $

Rx(τ, n) = ej∆ωτ+j$n

 ∞∫
−∞

π∫
−π

dω1 dω2G(ω1, ω2)

× ej(ω1−∆ω)τ+j(ω2−$)n

 (28)

= ej∆ωτ+j$n

∞∫
−∞

π∫
−π

dω1 dω2G(ω1, ω2)

×
(

1 + j(ω1 −∆ω)τ + j(ω2 −$)n

−1
2
(ω1 −∆ω)2 − 1

2
(ω2 −$)2 + . . . )

)

Rx(τ, n) ≈ ej∆ωτ+j$n

∞∫
−∞

π∫
−π

dω1 dω2G(ω1, ω2)

×
(

1− 1
2
(ω1 −∆ω)2 − 1

2
(ω2 −$)2 + . . . )

)
.

(29)

The first power term in (28) is zero. The approximation in
(29) is valid when G(ω1, ω2) vanishes outside a small area
around ω1 = ∆ω, ω2 = $, the third and higher term ap-
proach zero. That implies G(ω1, ω2) should have a narrow
2-D bandwidth. So (29) is a good approximation to the
higher sampling rate signal both in the depth and tempo-
ral direction because this signal has a narrow bandwidth.

From (29), the relation between the phase and the mean
frequencies is:

phase (Rx(τ, n)) = ∆ωτ +$n. (30)
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The mean frequencies in the 2-D sampled signal is given
by:

∆ω =
phase (Rx(1, 0))

Ts
(31)

$ =
phase (Rx(0, 1))

T
(32)

Ts is the sampling period in depth direction. T is the pulse
repetition period.
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[2] O. Bonnefous and Pesquė, “Time domain formulation of pulse-
Doppler ultrasound and blood velocity estimation by cross-
correlation,” in Ultrason. Imaging, vol. 8, pp. 73–85, 1986.
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