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E. Wall motion rejection for 2D Doppler

 The first multi-gated Doppler used a separate signal processing unit for each depth which made the equipment quite complex. To obtain cost effective signal processing, much work was done in the late seventies and early eighties based on the use of one signal processing unit for all depths. This is called serial signal processing since the back-scattered signals from deeper depths arrive in series for each range cell. The processing unit operates on the signal as it returns, to generate a velocity estimate from each range.
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 Figure 10-26. Block diagram of fixed target canceller, a). Illustration of how the signal from a stationary target is removed by subtracting the back-scattered signal from two consecutive pulses, b). If the target moves between the two pulses, the subtraction will not fully cancel the signal, c). This is the difference between the signal from tissue, that moves slowly and is cancelled out, and the signal from blood which moves faster and will pass through.

The first experiments with serial processing were presented in 1975 using the moving target indicator (MTI) technique, that was previously developed for radar and sonar systems. In the simplest form of this technique, the back-scattered signals from two consecutive ultrasound pulses are subtracted so that the signals from targets that do not move are removed as illustrated in Figure 10-26b. This is called fixed target canceller (FTC). For peripheral vessels where the tissue structures are moving slowly, this method removes the signals from the tissue so that we are left with the signals from the blood, which are moving targets (hence the name MTI). The blood velocity profile along the beam is then estimated from the Doppler frequency.

 The FTC is the same as the high pass filter for the PW/CW Doppler as described in Section 2.6B. It removes the low Doppler frequencies from the tissues that move slowly and allows the high Doppler frequencies from the blood which moves faster to pass through. We therefore use the term FTC and high pass filter interchangeably.

 For cardiac examination, the simple fixed target canceller in Figure 10-26 is not adequate for removing the tissue signals, since the cardiac walls are moving rapidly ( ~ 20 cm/sec ) and produce quite large Doppler shifts.  For this reason, a considerable amount of wall motion was present in the first color flow mappers. What is needed for the heart is a slow target canceller (STC) rather than a fixed target canceller. STC's which compare the signals from several consecutive ultrasound pulses have been designed to solve this problem. In Figure 10-27 the frequency response for the simple fixed target canceller is compared with a higher order Butterworth filter.

However, one frequently notes that wall motion artifacts are still a problem in many color flow imaging systems. Thus, for cardiac examination, the STC is one of the most critical components of the instrument for good quality color flow imaging, and thus requires highly advanced design. We review some aspects of STC's below.

Let x(n) be the complex envelope of the Doppler signal from pulse n, sampled at a constant depth range. The STC output signal y(k) at time sample k is then formed as a combination of x(n) from several pulses. With the continuous beam sweep as with mechanical scanning we have a long sequence of the input signal x(n) for input to the STC filter.  
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Figure 10-27. Frequency response of the simple FTC compared with a 6 order Butterworth high pass filter.

A standard linear time invariant filter of the type

 


(10.37)

 is then often used. The filter impulse response is h(n), which can be both of the IIR (infinite impulse response) and the FIR (finite impulse response) type. The filter is designed as a standard high pass filter that attenuates the low frequency Doppler shifts from the tissue.

With electronic scanning, the beam direction is stepped in discrete directions, while transmitting several pulses for each direction. This produces a finite number of signal samples (x(1),..., x(N)) for each beam direction. Using the time invariant filter, we will get a settling time of the filter for each new beam direction, as illustrated in Figure 10-28.  This can partly be avoided by using a time variant filter, where the impulse response is different for each sample of the output signal.  The filter should however be linear, in order to avoid inter-modulation between the tissue signal and the blood signal.  Since the filter is linear, it can be described mathematically as a linear transform on the N dimensional complex vector space CN, and can therefore be performed by multiplying the input vector with a NxN  transformation matrix A = {a(n,m)}
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(10.38)
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Figure 10-28. The settling time of the high pass filter for a phased array scanner.

A time invariant FIR filter with an impulse response h(n), n=0,1,..,M  has a filter matrix given by:
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(10.39)

Note that the first M samples in the output signal is zero.  The frequency response of the FIR filter can be defined by the Fourier transform of the impulse response h(n).  This definition of the frequency response can not be applied to the general linear filter.  However, a frequency response function Ho(ω)  can be defined as the power of the output signal when the input is a complex harmonic signal.
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(10.40)
The quantity Ak(ω)  is the Fourier transform of row number k in the filter matrix.  Since the transform is linear, a constant phase shift of the input signal will give a factor eiω with unit length, and will therefore not influence the output power.  This means that the frequency response in (10.40) is well defined.  This is a unique property for complex base band signals.

For real valued signals, an ensemble average over all possible phases of the input signal is necessarily in order to obtain a well defined frequency response .  In the complex case, the power of the real- and imaginary parts both varies with the phase of the input signal in such a way that the sum is constant.  Note that for FIR filters, the frequency response defined in (10.40) coincide with the usual definition.
[4]
If the filter matrix elements attain complex values, non-symmetric frequency responses can be obtained, which is useful for adaptive clutter filters, where the Doppler shift of the tissue signal is estimated from the signal.   

Unlike the linear convolution filter, the output will not in general be a complex harmonic sequence, but may contain frequency components which are not present in the input signal.  This property can cause severe problems in color flow imaging, where strong clutter signals may generate higher frequency components which affect both the center frequency and the bandwidth estimate.  This frequency distortion is only absent for FIR-filters, where the number of non-zero output samples must be reduced to N-M, where M is the FIR filter order.   A reduction of the number of output samples will increase the variance in the velocity parameter estimates, and should therefore be minimized.  Several methods have been proposed for reducing the "ring-down time" in the filter .  The basic idea is to extend the signal interval by some sort of prediction, followed by a FIR or IIR convolution filter.  As long as the predicted values are formed by linear combinations of the original input signal, the total filter operation will still be linear, and can therefore be performed by a matrix multiplication.
[10]
Another approach was taken by Hoeks et. al , where the clutter signal was estimated by a least square fitting to a straight line, and then subtracted from the input signal.  This is one example from a class of filters which is called regression filters.  If we assume that the clutter signal is contained in a subspace κ of CN, the projection transform Pκ  from CN  into κ  gives the least square fit to the clutter component.  The clutter filter will then have the form  A = I -  Pκ, which is a projection into the orthogonal complement of  κ  
[4]
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Fig. 10-29 Frequency spectra for the Legendre polynomials, |Bp|™ for p=0, 1, 2, 3, and the frequency response for the 3rd order polynomial regression filter.  N=10. 

If {b‚, b⁄,...,bP} is an orthonormal basis for κ, the filter operation can be performed by calculating the projection along each basis vector, and subtract the projections from the original signal.  The filter matrix {a(n,m)} and the frequency transfer function for the regression filter get the following form:
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(10.41)

The Legendre polynomials form a set of basis functions which is suitable for clutter rejection filters.  The Legendre polynomials can be obtained by applying the Gram-Schmidth orthonormalization process to the series of polynomials {1, n, n2,...,nP}.  In Fig. 10-29 the frequency responses for the polynomial basis functions are shown, for N=10, and p=0,1,2,3.  The corresponding clutter rejection filter is equivalent to a least square polynomial fit of order P to the clutter component.  Note that the basis functions are real valued, giving a symmetric frequency response.  Fig. 10-30 shows the frequency responses for the polynomial projection filter, for different order P. 

Further reading: see [9, 10, 11] 
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Figure 10-30.   Frequency response for the Legendre polynomial regression filter, with order P=0, 1, 2, 3, and 4.  N=10.
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