# Three Dimensional Ultrasound Imaging

Hans Torp/ Sevald Berg/Kjell Kristoffersen m/flere
Department of circulation and medical imaging
NTNU





# **Acquisition**

Reconstruction

**Filtering** 

**Visualization** 

**Analysis** 

### Collecting ultrasound data

- Motor devices (paper B, C, E)
- Postition locator systems (paper F)
- 2D-arrays

### Important factors

- Accuracy
- Callibration
- Temporal and spatial resolution
- Cardiac gating

# Acquisition Reconstruction Filtering Interpolation Build 3D data volumes: Cardiac gating Reorganizing data Temporal and spatial resolution Interpolation Visualization Analysis















## Transvaginal 3D probe

- Specially designed 3D probe
- 7.5 MHz annular array transducer
- Raw digital ultrasound data
- No externally moving parts
- Tilted scanning angle





























# Transducer Thinning

- Sparse 50 x 50 element transducer
- Every second element used for transmitter, totally 253:
- 256 elements for receiver, x, found by genetic optimization:
  - no overlap with transmitter elements to simplify system electronics
  - optimizes beamwidth and sidelobes of ultrasound beam
  - 10<sup>358</sup> different layouts to search, (only 10<sup>80</sup> electrons in the universe!)
- Joint work with IBMT/Fraunhofer Institut





























