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Statistical evaluation of clutter filters in color flow imaging
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Abstract

The filter used to separate blood signals from the tissue clutter signal is an important part of a color flow system. In this paper,
statistical detection theory is used to evaluate the quality of the most commonly used clutter filters. The probability of falsely
classifying a sample volume as containing blood is kept below a specified threshold. With this constraint, the probability of
correctly detecting blood is calculated for all the filters. Using a measured clutter signal, we found that polynomial regression
filters and projection-initialized IIR filters are best among the commonly used filters. The probability of correctly detecting blood
with velocity 10.1 cm/s was 0.32 for both these filters. The corresponding value for the optimal detector was 0.81, whereas a
regression filter that depends on the clutter signal statistics achieved a blood detection probability of 0.72. © 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction for the tissue signal, and a theoretical signal model is
used for the blood. In this way the performance of the
different filters is evaluated in different imagingIn color flow imaging, the signal from blood is much

weaker than the signal from tissue. It is therefore difficult situations.
to decide if blood is present or not in a given sample
volume, especially when imaging small vessels in moving
tissue. Commonly used clutter filters to reject the tissue 2. Signal model
signal are FIR filters, IIR filters with zero-, step-, and
projection-initialization, and regression filters. With an The signal vector x is the complex demodulated
efficient clutter filter, the color flow system will reliably Doppler signal from a single sample volume and consists
detect sample volumes where blood is present. Statistical of N temporal samples. It is a zero mean complex
detection theory can be used to evaluate quantitatively Gaussian process with three independent components:
the performance of the different clutter filters, and to clutter, white noise, and blood. The signal is charac-
find the optimal blood detector. The aim is to maximize terized by the correlation matrix R

x
, which is given by

the probability of blood detection given a value of the
R
x
=Rc+s2nI+Rb , (1)probability of false alarm. It can be shown that, with a

Gaussian signal model, the optimal blood detector com- where Rc is the clutter correlation matrix, s2n is the noise
pares the power at the output of a clutter filter with a variance, I is the identity matrix, and Rb is the blood
threshold. This is a common method used in color flow correlation matrix.
systems. The optimal clutter filter depends on both the
clutter and blood signal statistics and is difficult to
implement in practice. In this study we compare the 3. Clutter filters
blood detection performance of the different clutter
filters with each other and with the optimal filter. In A general linear filter is described by a matrix multi-
vivo digital RF data are used to calculate the statistics plication of the signal vector, y=Ax. The matrix rows

are a set of (possibly) different FIR filters for each time
instant. With a time variant filter, a frequency response* Corresponding author. Fax: +47-735-98613.
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output signal when the input is a complex harmonic minimum phase filter has the steepest transition region.
It is advantageous with a filter zero at zero frequencysignal:
since this removes the mean value of the signal, and
thus the signal from stationary tissue. This is accom-H

2
(v)=

1

N
(Ae

v
)1TAe

v
=

1

N
dAe

v
d2 , (2)

plished by a filter of odd order.

where e
v
=[1 eiv, ei(N−1)v]T is a vector of N samples of

a complex sinusoid, and (Ae
v
)1T means that the vector 3.2. IIR filters

is complex conjugated and transposed. To get a well-
defined frequency response for a real valued signal, an IIR filters have both zeros and poles, and are
ensemble average over all possible phases is necessary, described by the transfer function H(z)=SK

k=0 b
k
z−k/

as described in Ref. [1]. SK
k=0 a

k
z−k , where K is the filter order. Because of the

poles, the output consists of a transient signal in addition
3.1. FIR filters to the steady state signal. In Ref. [4] a matrix formula-

tion of an IIR filter is developed:
FIR filters are described by the transfer function

H(z)=SM
k=0 b

k
z−k , where M is the filter order. It is y=CV(0)+Dx, (3)

possible for FIR filters to have a linear phase response
where V(0) is a vector containing the initial values ofby imposing symmetry constraints on the impulse
the K filter registers. The goal of filter initialization isresponse [2], but for the same order a better amplitude
to choose a value of V(0) that minimizes the transientresponse can be obtained by discarding the phase. The
response. Three different initialization techniques arelinear phase FIR filters considered in this paper were
considered below.designed using the McClellan–Parks algorithm [2]. The

minimum phase FIR filters were designed by factoriza-
tion of a linear phase filter of order 2M as described 3.2.1. Zero initialization
in Ref. [3]. The filter registers are simply set to zero, V(0)=0.

The signal consists of N samples, but the first M
output samples must be discarded since the output is
not valid until the input data reach all the filter registers. 3.2.2. Step initialization
This means that only N−M samples are available for The input signal is assumed to have a constant value
estimating flow parameters, resulting in increased esti- equal to the first signal sample x(0). The transient for
mator variance. The FIR filter can be formulated as an such a signal is suppressed by setting V(0)=x(0)
(N−M )×N matrix with a time-shifted version of the Vstep(2), where Vstep(2) is the filter state an infinitely
impulse response in each row. For FIR filters, the long time after a unit step is applied at the input.
frequency response defined in Eq. (2) is equal to the
squared magnitude of the Fourier transform of

3.2.3. Projection initializationthe impulse response, H2(v)=|H(v)|2.
By setting V(0)=−(CTC )−1CTDx, the output of theThe frequency responses of linear- and minimum-

projection initialized IIR filter is given byphase FIR filters of order five in Fig. 1 show that the
y=[I−C(CTC )−1CT]Dx. The matrix C(CTC )−1CT is
recognized as the projection into the range of the matrix
C, and thus into the K-dimensional subspace containing
the transient response [4]. The output of the filter is
thus the projection of the steady state response into the
orthogonal complement of the transient subspace. In
addition to removing the transient signal, the component
of the steady state response in the transient subspace is
removed.

The frequency response of a fourth-order Chebyshev
filter with the different initializations applied to a signal
vector of length N=9 is shown in Fig. 2 For this short
signal length only the projection initialization results in
a sufficient stopband width, but the transition band is
much wider than expected from the steady state
response. The transient dies out with time, but, for this
short signal, no significant improvement was obtainedFig. 1. Frequency responses of fifth-order FIR filters. The vertical line

indicates the experimental clutter velocity. by discarding the first samples.
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the response of the projection-initialized IIR filter in
Fig. 2.

3.4. An adaptive regression filter

A more efficient clutter filter is obtained by using a
filter matrix that depends on the clutter signal statistics
[6 ]. This filter is based on the discrete Karhunen–Loève
transform (DKLT) [7], which is a generalization of the
discrete Fourier transform for random signals. The
DKLT is a signal expansion using the eigenvectors of
the correlation matrix as basis vectors. In the adaptive
regression filter, the eigenvectors of Rc corresponding to
the K largest eigenvalues are used as a basis for the
clutter space. This filter is optimal in the sense that, forFig. 2. Frequency responses of a fourth-order Chebyshev filter with
a given order K, it removes the best statistical meandifferent initializations. The signal vector length is N=9, and the 1 dB

cut-off frequency of the steady state response is 0.1. The vertical line square approximation of the clutter signal.
indicates the experimental clutter velocity.

4. Detection of blood3.3. Regression filters

In the blood detection problem a decision rule forA regression filter calculates the best least squares fit
each sample volume is sought to decide which of theof the signal to a set of curveforms modeling the clutter
hypothesesspace, and subtracts this clutter approximation from the

original signal. The curveforms span a subspace of the H
0
: no blood is present H

1
: blood is present (4)

N-dimensional signal space that we call the clutter space.
is true. The observed vector is complex Gaussian underThe regression filter matrix is given by A=I−P, where
both hypotheses, but with different correlation matricesP is a projection matrix into the clutter space. In a

polynomial regression filter of order K, the polynomials R
x|H

0

=Rc+s2nIof order zero to K are used as a basis for a
R
x|H

1

=Rc+s2nI+Rb=R
x|H

0

+Rb . (5)K+1-dimensional clutter space [5].
The output vector of both regression filters and The detector is characterized by the probability of false

projection-initialized IIR filters is contained in a sub- alarm PF and the probability of detection PD defined by
space of the N-dimensional vector space. This results in
very similar frequency responses, as observed by com- PF=P(choose H

1
|H

0
is true)

paring the response of the third-order polynomial regres-
PD=P(choose H

1
|H

1
is true). (6)

sion filter (four-dimensional clutter space) in Fig. 3 with
The assumption in the development of the optimal
detector is that the probability density function of the
observation vector, p

x|H
i

, is known under both H0 and
H1. In this case the Neyman–Pearson lemma [8] tells us
that PD is maximized under the constraint PF≤a by a
likelihood ratio test [LRT, L(x)] given by

L(x)=
p

x|H
1

(x|H
1
)

p
x|H

0

(x|H
0
)
7

H
0

H
1 c. (7)

The Bayes theory of hypothesis testing also leads to the
LRT in Eq. (8). In Ref. [9] the LRT is simplified to

l(x)=d [I−(I+L)−1 ]1/2E1Txd27
H
0

H
1 g, (8)

where l(x) is a sufficient statistic of the test in Eq. (7),
and E and L solves the generalized eigenvalue problemFig. 3. Frequency responses of polynomial regression filters of order
RbE=R

x|H
0

EL. Eq. (8) shows that the optimal detector0–3 with signal vector length N=9. The vertical line indicates the
experimental clutter velocity. passes the signal through a signal-dependent filter, and
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compares the power of the filtered signal to a threshold. lated for the different filters and different blood veloci-
ties. As expected, the performance improves withConventional color flow systems have the same struc-

ture, but with a suboptimal filter matrix. The probabili- increased blood velocity for all the filters. For our clutter
signal, the step-initialized IIR filter has poor perfor-ties of detection and false alarm can be calculated as

described in Ref. [9] and used to compare the detector mance for all the blood velocities. The clutter is not
sufficiently rejected, as can be explained by the narrowperformance of the different filters.
stopband for step initialization seen in Fig. 2. There was
no significant increase in the −40 dB stopband width
for step initialization by increasing the steady state cut-5. Experimental results
off frequency and/or the filter order. An improvement
is expected by increasing the number of signal samples,5.1. Data acquisition
but even for 32 signal samples the stopband is very
narrow, as shown in Ref. [4]. Only narrowband clutterTo evaluate the detectors, digital RF data were

recorded using a GE Vingmed Ultrasound System Five signals can thus be sufficiently rejected by step-initialized
IIR filters. The FIR filters have poor performance forultrasound scanner with a linear array transducer. The

data were recorded from the thyroid gland with substan- low velocities. The polynomial regression filter and the
projection-initialized IIR filter have similar perfor-tial probe movement during the recording. The scanner

was set up with center frequency 5.7 MHz, pulse length mances and are best among the non-adaptive filters for
low velocities. For higher velocities, the FIR filters are0.525 ms, radial sampling frequency 2 MHz, nine tempo-

ral samples in each sample volume, and pulse repetition slightly better. For all the non-adaptive filters there is a
slight variation in PD for large velocities. This variationfrequency 5 kHz, giving a Nyquist velocity of 34 cm/s.

The digital data were stored as complex baseband signals seems to coincide with the passband ripple. The adaptive
regression filter has an overall higher PD than any ofwhere the in-phase and quadrature signal samples were

represented as 16 bit integers. This data were transferred the non-adaptive filters, with a very large improvement
for the lowest blood velocities.from the scanner and processed on a standard computer

using MATLAB.
An estimate of R

x|H
0

was found by spatial averaging
in a region with approximately constant clutter proper-
ties. The white noise power s2n was estimated by averag- 6. Conclusions
ing the three smallest eigenvalues of R

x|H
0

, resulting in
an estimated clutter to white noise ratio of 52 dB. The Among the non-adaptive clutter filters, the projection

initialized IIR and polynomial regression filters providemean tissue movement was estimated to 1.0 cm/s. The
signal from blood was modeled as a single frequency the largest overall probability of blood detection. FIR

filters are inferior for low blood velocities, with a smallsignal, specified by the blood velocity and power. The
blood signal to white noise ratio was set to 6 dB in all improvement by allowing non-linear phase. For IIR

filters, projection initialization was the only initializationthe calculations.
scheme resulting in reliable blood detection with the
measured clutter signal. However, owing to the initializa-5.2. Filter performance
tion, there is no longer any computational advantage in
using an IIR filter compared with a regression filter.The filter performances are summarized in Table 1.

The probability of false alarm is kept constant at The adaptive regression filter is relatively close to the
optimum detector. In the given clutter conditions it isPF=0.05, and the probability of detection PD is calcu-

Table 1
Probability of detection PD for different filters and blood velocities. The probability of false alarm is kept constant at PF=0.05

Velocity (cm/s) PD

Optimal Adap. regression Poly. regression Proj. init. IIR Step init. IIR FIR min. phase FIR lin. phase

6.8 0.50 0.34 0.07 0.07 0.05 0.06 0.06
10.1 0.81 0.72 0.32 0.32 0.05 0.23 0.16
13.5 0.88 0.81 0.65 0.65 0.05 0.57 0.49
16.9 0.90 0.81 0.74 0.74 0.05 0.73 0.70
20.3 0.92 0.82 0.73 0.72 0.05 0.77 0.77
23.7 0.92 0.82 0.75 0.73 0.05 0.75 0.80
27.0 0.92 0.82 0.75 0.74 0.05 0.72 0.79
30.4 0.92 0.83 0.75 0.73 0.05 0.73 0.77
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