
IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 42, NO. 5, SEPTEMBER 1995 899

On the Joint Probability Density Function
for the Autocorrelation Estimates

in Ultrasound Color Flow Imaging
Hans Torp, Member, IEEE, Kjell Kristoffersen, and Bjørn A. J. Angelsen, Senior Member, IEEE

Abstract—Autocorrelation estimates of the Doppler signal with
zero and unity lag are commonly used for color coding algorithm
in 2-D color flow imaging. Signal power, center frequency, and
bandwidth are derived from these two autocorrelation estimates,
and combined in a color coding scheme. In this paper com-
puter simulations show that the joint probability density function
(PDF) for the autocorrelation estimates has a form which differs
significantly from a Gaussian distribution. However, the PDF
for the normalized autocorrelation estimates is shown to have a
form closer to a Gaussian distribution, which means that the
first- and second-order moments gives an adequate statistical
description of the set of estimators. Analytical approximations
for the first- and second-order moments in the joint PDF for
the normalized autocorrelation estimates of all lags are derived,
and the expressions are verified by computer simulations. Using
this results, an expression for the probability density function of
the correlation angle estimate is derived, showing a close fit to
simulation results. Numerical results show that the performance
of the correlation angle estimate can be improved significantly by
applying spatial averaging to the autocorrelation estimates.

NOMENCLATURE

Autocorrelation function for the
Doppler signal with lag in radial
direction, and lag in temporal
direction.
Autocorrelation estimate of

.
Phase of the complex autocorrela-
tion estimate .
Normalized autocorrelation func-
tion.
Normalized autocorrelation func-
tion estimate.
Covariance between
and .
Covariance between
and .
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I. INTRODUCTION

ULTRASOUND Doppler signals from blood can be mod-
eled as a zero mean, complex Gaussian process which is

characterized by its complex valued autocorrelation function
[1], [2]. By estimating the autocorrelation function of the
process, the three parameters signal power, bandwidth, and
center frequency can be deduced and used to characterize the
blood flow [3]. The statistical properties of the autocorrela-
tion estimates have previously been studied to some detail.
Analytical expressions for the second-order moments of the
autocorrelation estimates can be found in [4], [5] and these
results are generalized to 2-D (range-time) Doppler data in [6].
Bias and variance of mean frequency and bandwidth estimators
have been determined from these results under the assumption
of low fractional variance and strong filtering [6]. In color
flow imaging a combination of signal power, center frequency
and/or bandwidth are combined in a color code for display.
Usually, the signal power is compared to a threshold to reject
noise in the image, but color schemes where the signal power
modulates the color intensity or hue is also used. The latter
types include “power-mode,” where only the signal power
determines the color, as well as color schemes where the
center frequency determines the hue, and the power determines
the brightness [6], [7]. In designing optimum color schemes,
the statistical properties of each individual signal parameter
as well as the statistical dependency between the parameters
should be taken into account. This information is contained
in the joint probability density distribution (PDF) for the set
of parameters.

Both the center frequency and the bandwidth estimate are
nonlinear mappings of the complex autocorrelation estimates,
which makes it difficult to deduce analytical expressions for
the joint PDF. However, the composite mapping from the
autocorrelation estimates into the three dimensional color-
space (red, green, and blue) can be optimized directly, without
first calculating the center frequency and bandwidth. In the
most general formulation, color flow imaging is a mapping
from the set of autocorrelation estimates into color-space. If
the joint PDF is known for the different flow situations, a
mapping which gives maximum color contrast can be con-
structed. Practical use of this is difficult to achieve without
a parametric model for the PDF, and in this paper the set
of autocorrelation estimates is adapted to a multidimensional
Gaussian distribution.
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Second-order moments for the set of autocorrelation esti-
mates with arbitrary lags in radial and temporal direction has
been treated in an earlier paper [6]. In this paper computer
simulations show that the joint PDF for the autocorrelation
estimates has a form which differs significantly from a Gauss-
ian distribution. By normalizing the autocorrelation estimates
with the signal power estimate, the PDF shows a better fit to
a Gaussian distribution, which is demonstrated by computer
simulations in Section II. In Section III, approximate analytical
expressions for the first- and second-order moments for the
normalized correlation estimates are derived. In Section IV the
probability density function for the correlation angle estimator
is studied; analytical expressions are compared to results from
computer simulations.

II. THE JOINT PROBABILITY DENSITY FUNCTION

FOR THE AUTOCORRELATION ESTIMATES

In this section, a 1-D discrete time complex Gaussian
process is considered. The autocorrelation estimate with
lag m is obtained by averaging the product terms of the signal

(1)

To evaluate the shape of the joint PDF for ,
computer simulations have been performed. The output of a
correlation estimator with lag , and is plotted in
scatter diagrams for simulated signals with different power
spectra. The signal was obtained by generating a complex
white noise sequence with a random number generator, and
then shaping the power spectrum by filtering with a complex
FIR band-pass filter, with variable bandwidth and center
frequency. A triangular envelope was selected for the filter
impulse response, which corresponds to a rectangular burst
transmitted pulse, and a receiver filter with rectangular impulse
response matched to the transmitted pulse. Independent white
noise was added to get a signal with a pre-determined signal
to noise ratio, and the resulting signal was high-pass filtered
with a cutoff frequency of 0.65 radians to simulate the effect
of a typical wall motion filter.

Since is real valued, the estimators form a 3-D real
valued vector . To
visualize the 3-D probability density function, scatter plots
generated from computer simulations are shown in two differ-
ent 2-D projections. A necessary (but not sufficient) condition
for the three dimensional vector to be Gaussian is that both
projections are Gaussian distributed. The results from the
simulations are shown in Fig. 1 for two different projections of
the three dimensional vector

. At the top the -plane is shown, and
at the bottom the -plane is shown. Scatter plots from three
signals with different center frequencies and bandwidths were
included in the same diagram.

The scatter plots for the two narrow-band signals, both with
fractional rms bandwidth , show that the PDF
has a form which is highly different from a Gaussian PDF.
In the complex plane, the PDF shows an asymmetric,

Fig. 1. Scatter diagram of the autocorrelation estimator with lag m = 0 and
m = 1 for three different signals. To the right, signal with center frequency
!1 = 0:5�, B = 0:05� to the left, signal with !1 = 1:5�, B = 0:15�, and
in the middle, high-pass filtered white noise.

Fig. 2. Scatter diagram for the normalized correlation estimator ���(m) with
lag m = 1; 2; 3; and 8. The ellipses indicate the form of a Gaussian
approximation of the PDF.

parabolic shape, with a long tail reaching beyond the limits of
the plotting diagram.

Another observation in Fig. 1 is the high correlation be-
tween and . This indicates that the quotient

could have a lower fractional variance
than the numerator and the denominator separately. This is
demonstrated in Fig. 2 where the scatter diagram for the
normalized autocorrelation function , and
is shown for a signal with center frequency radians,
fractional rms bandwidth of 10%, and signal to noise ratio 20
dB. The PDF of is seen to be much closer to a Gaussian
form than the PDF of . The mean and variances in and

direction as well as the correlation coefficient is estimated
from the simulated data, and the result is plotted as ellipses
which correspond to the contour for the corresponding
Gaussian PDF. This is described in more details in Section
III, (5).

The next step is to look at the joint probability density
for and , and to study the effect of adding broad
band noise. Since the noise is independent of the signal, the



TORP et al.: ON THE JOINT PROBABILITY DENSITY FUNCTION FOR THE AUTOCORRELATION ESTIMATES 901

Fig. 3. The effect of adding noise to a narrow band signal, on the estimate
of R(0) and R(1). Scatter diagram of R(1) against R(0) for noise only,
signal only, and signal in noise. Signal to noise ratio is 3 dB.

Fig. 4. Scatter diagram of ���(1) against R(0) to the left, and ���(1) against
log fR(0)g to the right for signal only, and signal in noise.

correlation estimate is a sum of the estimate of the
signal alone and the noise alone, plus some product terms
between signal and noise, which have zero mean value. The
estimator will then be a sum of two independent random
variables (neglecting the product terms), and the PDF for
signal in noise equals the convolution of the PDF’s for the two
random variables. This is demonstrated in Fig. 3, left panel,
where is plotted against for signal only, noise
only, and signal plus noise. The PDF for the signal only, is
concentrated around the line of identity, and after convolution
with the circular shaped PDF for the noise, the result is
a translation upwards, and a broadening around the line of
identity which equals the diameter of the PDF for noise. The
upwards shift from the line of identity in the PDF, introduces
a negative bias in the normalized autocorrelation estimate

, which increases with decreasing .
This leads to a significant correlation between the estimate of

, and , and the joint PDF for and gets
the “banana-shape,” which is shown in Fig. 4, left panel. This
non-Gaussian shape is mainly caused by the power estimate

, which has a PDF similar to a distribution. By taking
the logarithm of , the PDF will be closer to a Gaussian
distribution, and the result of this operation is shown in Fig.
4, right panel.

III. STATISTICAL PROPERTIES OF THE

NORMALIZED AUTOCORRELATION ESTIMATE

In this section the general case of a 2-D complex Gaussian
process is treated. The autocorrelation function with
radial lag , and lateral lag is estimated as a weighted sum

of the signal product terms.

(2)

By taking the expected value of each term in (2), it can
be verified that this estimator is unbiased, provided that
the sum of the weighting coefficients equals unity.
The second-order moments for the set of autocorrelation
estimates have been treated in a previous paper [6], and the
formulas are referred in Appendix A. The normalized auto-
correlation function is estimated by the formula

. Although has zero bias for
all ( ), this is not the case for , due to the
division, and the statistical dependency between and

. By substituting the division with a second-order
linearization, the bias and covariance can be expressed by
the covariance of . The covariance between

and is found by first-order linearization
of around the point . More details
can be found in Appendix A.

(3)

Notation conventions:

and are arbitrary lags, .
Example: The first- and second-order moments of the

3-D estimate (
are worked out in detail for a signal with

angular center frequency , with additive, high-
pass filtered noise. The total signal including noise has
symmetric Doppler spectrum, and hence the expectation value
of is real valued for all , and the covariance’s

. The nonzero first- and second-
order moments are
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Fig. 5. Two projections (x; z) and (x; y) of the 3-D probability distribution
of (x; y; z) = [���(0; 1)]; log [R(0)], for signal in noise with SNR 20 db, 3
dB, and �1 dB. To the left simulation results are shown, and to the right
are the corresponding values calculated from (5).

(4)

Equation (4) gives a full second-order characterization of
the 3-D estimator , for
any lag . To check the validity of the approximations which
lead to (4), the results are compared with computer simulations
for some typical signal spectra. The test signals are generated
as described in Section II, with three different signal to noise
ratios. The output of the estimators are shown in Fig. 5 as
scatter plots in the ( , ) plane and the ( , ) plane.

The variances , and the correlation coefficient were
calculated in each projection ( ), and the results indicated
with an ellipse

(5)

which is the contour = in the
corresponding 2-D Gaussian probability distribution. In Fig. 5
the ellipses in the left panel is given by the simulation results,
whereas the ellipses in the right panel is calculated from (4).
Numerical results are listed in Table I, both from the computer
simulations, and the corresponding values calculated from (4).

The 3-D joint probability function can be used in clas-
sification of a color flow image into regions with different

TABLE I
FIRST- AND SECOND–ORDER MOMENTS OF (x; y; z) = [���(1)]; log [R(0)].

CENTER FREQUENCY !1 = �, WHICH MAKES THE CORRELATION COEFFICIENTS

�xy AND �yz VANISH. AVERAGING FILTER LENGTH M = 32, TRANSIT

TIME Tt = 8, HIGH-PASS FILTER CUTOFF FREQUENCY !0 = 0:65

Fig. 6. An illustration of the joint PDF of (x; z) for three different regions
in a color flow image.

characteristic flow patterns. In Fig. 6 the joint PDF is shown
for three different flow regions; one with laminar flow giving
low bandwidth, one with turbulent flow and high bandwidth,
and the third with only noise.

IV. PROBABILITY DISTRIBUTION OF

THE CORRELATION ANGLE ESTIMATE

The correlation phase angle estimate, defined as
, is frequently used as a center frequency estima-

tor. Approximate expression for the variance of this estimator
can be found in [5], [8], under the assumption of low fractional
variance of . Time domain expression for the variance
have been derived in [4], and the result is generalized in [6] to
include the covariance of the set of correlation angle estimators

with arbitrary lag in radial and temporal direction:

(6)
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More detailed statistical analysis of the correlation angle
estimator is done by Zrni’c [5, pp. 118]. He developed
expressions for the probability distribution function (PDF)
of the estimator, assuming that the real and imaginary part
of the complex autocorrelation estimate are jointly
Gaussian random variables. However, for short smoothing
filters, which are commonly used in color flow imaging, the
PDF of differs much from a Gaussian form, (see
Fig. 1). On the contrary, the normalized correlation estimate

has a PDF much closer to the Gaussian form, and
(4) gives the first- and second-order moments, which has been
shown to match well with simulation results. Since the signal
power is real valued and greater than zero, the phase
of and coincide, and the PDF of the phase
angle can be expressed by the first- and second-order moments
of . A closed form expression for the phase angle
PDF is derived below, under the assumption of symmetrical
Doppler spectrum.

Without loss of generality the center frequency is assumed
to be zero in the following. When the Doppler spectrum is
symmetric with zero center frequency, the real and imaginary
parts of are uncorrelated, and the mean value is
real valued. The distribution of ( is then
characterized by the three real valued parameters , ,
and , which are given in (4). This leads to the following
expression for the PDF of the phase angle estimator

(see Appendix B):

(7)

This result is compared to computer simulations in Fig.
7, for a complex Gaussian signal in white noise, with two
different SNR ( 6 dB, and 0 dB). The signal is generated
as described in Section II, the rms bandwidth is 0.06 , and
smoothing filter length is 16. Simulations has been performed
on data sequences of 50 000 samples.

By numerical integration, the variance of the phase angle
estimate has been calculated, using (7). In Fig. 8 the stan-
dard deviation is plotted as a function of signal bandwidth,
compared to the analytical expression of phase angle variance
in (6). It turns out that the results coincide when the total
bandwidth of the signal including noise is fairly low, even
for short smoothing filter length. This corresponds to a PDF
for which is concentrated in a region away from
the origin in the complex plane. When the SNR decreases,
the PDF of moves toward the origin, and the phase
angle distribution gets large side lobes. In this case the values
obtained from (6) underestimates the variance, especially for

Fig. 7. Probability density for the phase of ���(0; 1) for SNR = �6 dB to the
left, and SNR = 0 dB to the right. The black dots are simulation results. Note
that the left figure has linear scale, whereas the right figure has logarithmic
scale on the vertical axis.

Fig. 8. Standard deviation of the phase angle estimate as a function of
bandwidth, using (6) (curve 1), compared with the results obtained from
numeric integration using PDF in (7) (curve 2). To the right are curves of
the PDF for B = 0:01, 0:06, and 0:13. The signal has a Gaussian spectrum
with white noise, SNR = 0 dB, and the averaging filter length M = 16.

low bandwidth signals. The two methods are compared in Fig.
8 which shows the standard deviation as a function of signal
bandwidth, with a SNR of 0 dB, and an averaging filter length

. Curve 1 in the left panel is calculated from (6),
and shows a monotone increasing dependency on bandwidth.
Curve 2 is calculated from the PDF of (7), and shows a
nonmonotone dependency on bandwidth, with a minimum
at . This effect was observed with computer
simulated data by Zrni’c [5] , which shows a dependency on
bandwidth which matches well with curve 2, Fig. 8. In the right
panel, the PDF for three selected bandwidth values are shown.
The main-lobe width decreases with decreasing bandwidth,
whereas the side lobes become excessive for low bandwidth,
giving an increased variance. For better signal to noise ratio,
the nonmonotone relation between the signal bandwidth and
estimator standard deviation disappears, as illustrated in Fig. 9.

The effect of radial averaging on the variance of the
autocorrelation estimates has been studied in an earlier paper
[6]. When the radial sampling rate equals the transmitted pulse-
length, the variance reduction was shown to be approximately
proportional to the averaging filter bandwidth. In Fig. 10,
the effect of radial averaging on the phase angle estimator
performance is demonstrated. The reduction in variance due
to radial averaging is larger than the decrease in averaging
filter bandwidth, especially when the signal bandwidth is low.
In this example the standard deviation is reduced by a factor
varying from 4 to 2 due to 3 point radial averaging when the
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Fig. 9. Standard deviation of the phase estimate as a function of bandwidth
for three different SNR, 0 dB, 6 dB, and 20 dB. The signal has a Gaussian
spectrum with white noise, and the smoothing filter length M = 16.

Fig. 10. The effect of radial averaging on the phase angle distribution. To the
left: Standard deviation as a function of rms-bandwidth B. To the right: Phase
angle probability density distribution for B = 0:06. The lower curves are with
3 point radial averaging filter, and the upper are without radial averaging.
The middle curve to the left shows the effect of 3 point radial averaging of
the angle estimate. Signal to noise ration SNR = 0 dB, and the temporal
averaging M = 16.

rms signal bandwidth is lower than 0.2. A similar averaging
applied after calculating the phase angle is included in Fig.
10, showing a significantly lower variance reduction.

V. DISCUSSION AND CONCLUSION

The joint probability density function for the estimates
, and has been shown to fit fairly close

to a 3-dimensional Gaussian probability distribution for some
typical examples of Doppler spectra. Estimated values for the
first and second moments showed good agreement with the
analytical expressions developed in Section III. This gives a
parametric model of the joint PDF, where the parameters are
given by the spectral signal properties, as outlined in (5). The
parametric model can be used to design optimum color display
schemes, with enhanced contrast between different types of
blood flow patterns.

The results have been used here to find a more accurate
form of the PDF of the correlation angle estimator. Variance
calculated from this result shows a nonlinear dependency of
bandwidth, which is in agreement with the simulation results
presented by Zrni’c [5]. Radial averaging was shown to have
a large influence on the phase angle estimator variance. For
low signal bandwidth, and low SNR the variance was reduced
16 times with 3 point radial averaging. The same averaging
filter applied after the mean frequency estimator will reduce
the variance at most 3 times. At higher bandwidth, the variance
reduction is less pronounced, but still significantly higher than

3. This effect can be explained as follows: As long as the
fractional variance of the complex estimator is small,
the phase angle distribution will be fairly concentrated around
its mean value. When the fractional variance of
approaches 1, the phase angle estimate will be spread over
the whole interval , and its variance will increase
faster than the variance of .

A practical consequence of this result is that spatial aver-
aging should be applied to the autocorrelation estimates, and
not to the derived signal parameters like the mean frequency,
in order to achieve maximum variance reduction.

APPENDIX A
COVARIANCE EXPRESSIONS FOR THE NORMALIZED

AUTOCORRELATION ESTIMATES, (3)

In this section formulas for the first- and second-order
moments for the normalized autocorrelation estimates are de-
veloped. The covariance between the complex autocorrelation
estimates, as defined in (2) are treated in an earlier paper [6],
and is given by

(A1)

Without loss of generality, the signal power is as-
sumed to equal 1 in the following. The zero mean stochastic
variables , are defined as

The second-order moments of are

Linearizing to second-order, and to
first-order yields
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The bias of is then

Using first-order linearization, the covariance terms are

To simplify notation, , and

APPENDIX B
PROBABILITY DENSITY FUNCTION FOR

THE CORRELATION ANGLE ESTIMATE

Let be a complex random variable, where the
real and imaginary parts are independent Gaussian random
variables with mean values , , and variances

. The probability density function for the phase angle
of is calculated in the following. In polar coordinates
the PDF for the complex variable has the form

(B1)

where the parameters , , and are defined as

(B2)

The PDF for the phase is obtained by integration of

over

(B3)

where the error function erfc is defined as

(B4)

Setting , gives the final form of the
probability function for the phase angle

(B5)
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