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Autocorrelation Techniques in Color Flow 
Imaging: Signal Model and Statistical 

Properties of the Autocorrelation Estimates 
Hans Torp, Member, IEEE, Kjell Kristoffersen, and Bjom A. J. Angelsen, Senior  Member, IEEE 

Abstract-A review of the scattering theory  for  moving  blood, 
and  a  model  for  the  signal  in  a multigated pulsed  wave  Doppler 
system is presented. The model describes the relation between 
a general time-variable velocity  field  and  the signal correlation 
in space and  time,  including  the effect of movement of the 
ultrasonic beam  for color flow imaging systems with mechanical 
scanning. In the case of  a constant and rectilinear velocity field, a 
parametric  model  for  the autocorrelation function is deduced. 
General formulas for  a  full second order characterization of 
the set of autocorrelation estimates, with arbitrary lags in  the 
spatial and temporal directions, are developed. The formulas are 
applied to  the  parametric  model,  and  numerical  results  for  the 
estimator variance  are  presented. A qualitative evaluation of the 
theoretical  results  has  been  performed  by offline-processing of 
2-D Doppler signals from  a color flow imaging scanner. The 
benefit of spatial and temporal averaging is demonstrated by 
using  different averaging filters to the same set of recorded data. 

G 
A 

NOMENCLATURE 

Wave number 
Velocity field as  a  function of space 
T and time t .  
Spherical  coordinates with center in the 
transducer  rotation-center  and  scanning 
plane in 4) = 0. 
Spherical  components of the velocity 
field. 
Radial  range  gate  function 
Pulse  repetition  time  interval. 
Blood  cell  fluctuation,  spectral  density. 
Displacement of a fluid element  during 
time r 
Radial  component of the  displacement C. 
Distance  between the range  gates in the 
radial direction. 
Radial length of the  sample volume. 
Radial  transit  time. 
Lateral  transit time. 
Transversal  transit  time. 
Transducer  rotation  angular  velocity. 
Doppler  frequency  shift 

Manuscript received  July l ,  1993;  revised March 14, 1994;  accepted  March 
16, 1994. This work  was  supported  by the Norwegian  Research  Council. 

H. Torp and B.  A. J .  Angelsen are with  the  Department of Biomedical 
Engineering,  Medical  Technical  Center, N-7005 Trondheirn, Norway. 

K. Kristoffersen is with  Vingmend  Sound  Research  Department,  Vollsveien 
13C, N-l324 Lysaker,  Norway. 

IEEE Log Number 9403352. 

W d  = 2 ' T T f d  Normalized  angular  Doppler  frequency 
shift 

69 Convolution  operator 
R(n,  m) Autocorrelation  function  for  the  Doppler 

R(n,   m)  Autocorrelation estimate of R(n,  m).  
4(n,  m) Phase of the  complex  autocorrelation 

4% m) 2-D  smoothing  filter  coefficients. 

R(n2, m21 

wn2 ,  m2) 

signal with lag n in radial 
direction,  and  lag m in temporal  direction. 

estimate R(n,   m)  

C,(nl, ml, n2,mz) Covariance  between R(n1,  ml)* and 

C(n1, ml ,  n2! m2) Covariance  between R(n1, ml) and 

A 
I. INTRODUCTION 

UTOCORRELATION  TECHNIQUES  for  two- 
dimensional (2-D) velocity  imaging  were first developed 

for  weather  Radar  applications [l], and  later  applied  to  blood 
velocity imaging  [2].  Originally,  each  range  cell  along  the 
beam  was  processed  individually,  to  estimate the signal 
parameters.  More  recently  algorithms using data  from  several 
range  cells  have  been  presented  [3], [4]. In this case  the 
movement of the  blood  between  the  range  cells  has an 
influence on the  statistical  properties of the  estimates. It is 
therefore  convenient  to  model  the  received  signal  as  a  2-D 
complex  Gaussian  process,  described by an autocorrelation 
function with lag in both the  radial  (along  the  beam), and the 
temporal  directions.  For  color flow imaging with a  mechanical 
sector  scan,  the  movement of the ultrasonic  beam  over  the 
sector  must be taken into account.  This  movement  causes 
rapid changes in the  signal  properties as the beam  sweeps 
over  different  flow-patterns in the body. To maintain  spatial 
resolution, only a small number of signal  samples  can be 
used for  calculation of the blood flow parameters  at  each 
point of the sector,  giving  autocorrelation  estimates with a 
high  fractional  variance. 

A  number of authors  have  modeled  the  Doppler  signal 
from  moving blood as  a  zero-mean  Gaussian  process, with 
power  spectrum  equal to a  blurred version of the velocity 
distribution  inside the sample  volume [5]-[7]. To justify the 
Gaussian  assumption, the received  signal is modeled  as  a  sum 
of independent  signal  components  from  a  large  number of 
point-scatterers,  each  contributing  a  slightly modified replica 
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of the  transmitted  pulse, with a  delay  according  to  the  distance 
from the transducer. In [4]  a  scattering  model  for blood 
is  given,  based  on  a  random  continuum  model  for  the red 
blood cell distribution,  which  leads to an expression  for  the 
autocorrelation  function of the  received  signal.  The  random 
continuum  approach  has  also  been used in a  recent  work 
of MO et al. [S] to characterize  the  power  spectrum  in 
continuous  wave Doppler. Bonnefous et al. [3] describe  the 
cross  correlation  between the consecutive  received RF signals 
in a  color flow mapping  system due to  the  movement of the 
red  blood  cells.  Ferrara et al. [4],  describe  the  received  signal 
as  a  one-dimensional (l-D) complex  Gaussian  process,  and 
show  how  the  autocorrelation  function  for  a uniform velocity 
field is nearly periodic, with period  close  to the pulse  repetition 
time. In [9] their  model  is  extended  to  account  for  frequency 
dependent  scattering  and  attenuation. 

This  paper  is  organized  as  follows. In Section I1 and 111, 
the  autocorrelation  function  for the signal  is  described  for 
a  general  velocity field, based on the  random  continuum 
scattering  model  for  moving blood. Section IV describes  the 
rectilinear flow situation,  where  the  magnitude of the  complex 
autocorrelation  function  gets  a  Gaussian  form,  described by 
three  parameters.  Section V contains  general  formulas  for 
the covariance of the  set of autocorrelation  estimates.  These 
results  are  applied  to  the  parametric  model in Section VI. 
Experimental  results with color flow images,  showing  the 
benefit of radial averaging,  are  presented in Section VII. 

11. TRANSIENT PULSE ECHO RESFQNSE FROM BLOOD 

The signal model  presented in this  paper is based on a 
random  continuum  model  for the scattering  from blood [lo]. 
The spatial  fluctuations in mass  density  and  compressibility, 
which  determine  the  incoherent  part of the scattering,  are 
assumed  to be proportional to the  spatial fluctuation in the red 
blood cell  concentration n b ( ~ , t ) ,  where  is  spatial  position, 
and t is time. The fluctuation  function is defined as  the 
difference  between  the  actual  cell  concentration  and  its  local 
average.  Thus nb(T, t )  is  a  zero-mean,  random  process in space 
and  time.  Assuming  a  short  correlation in space for  a fixed 
time t ,  and  neglecting  diffusion, the autocorrelation  function 
for n a ( ~ ,  t )  is  approximated  as [ 101 

where ((E, t ,  T )  is  the  displacement of the fluid element in 
position  during the time interval t to t + T .  The  function 
T(T, t )  is  the  variance  per unit volume in the  number of 
blood cells  inside  a small volume AV, and this  quantity  is 
proportional  to  the  backscattering  coefficient  from blood. For 
stationary  velocity  fields,  the  function T(r, t )  as well as  the 
displacement  function will be independent of time t .  In this 

The point scatterer  response e( t ,r)  is  defined  as the electri- 
cal  response in the  receiver  from  a point scatterer in position 
when the transducer is excited with an electrical pulse at  time 
t = 0. The  waveform  as well as  the  amplitude of the point 
scatterer  response e ( t ,  T) are influenced both by the aperture 
geometry, and by the frequency  dependent  attenuation  and 
scattering of the insonified medium. To obtain the signal  from 
blood, the point  scatterer  response  is  multiplied with the  cell 
concentration  function  at the time when the  transmitted  pulse 
arrives at the  point K, and the product is integrated  over  space. 

y(t) = 1 d3re(t, r)nb ( E ,  t - '> 
C 

Here c is the  speed of sound  and T = Irl is the distance 
from  the  origin,  which  is in the  center of the transducer.  The 
round-trip  time  for  the  echo  is t = %. The  blood  velocity 
is  much  lower  than the speed of sound, so it  is  reasonable 
to neglect the movement of the blood  cells  during the short 
time  when the pulse transverses the blood sample. This  means 
that nb(r, t - f )  X n b ( ~ ,  t / 2 )  in (2). Both  the  waveform  and 
the  amplitude of the point  scatterer  response e ( t : T )  will vary 
with the spatial  position of the  scatterer. In a  region  near  the 
beam  axis  and  the  focal  point,  the  received  waveform will 
be close to a  replica of the  transmitted  waveform, whereas in 
the  sidelobes of the  beam, the received  waveform will have  a 
longer,  and  more  irregular  shape [ I l l .  

The  spatial  variation of the point scatterer  response  ampli- 
tude depends  to  some  extent  on  the  transmitted pulse wave 
form.  For  continuous  wave  excitation,  the beam profile in 
the far field has a  form  close to a  sinc  function with one 
main  lobe  and  periodical  side  lobes [12]. For the short pulse 
excitation, the main  lobe  has  almost the same  shape, while 
the  side  lobes  are  smeared  out [ 1 l].  The  excitation  waveform 
most  commonly used  in ultrasound Doppler  is  a  wave burst 
with a  rectangular  envelope.  The  resulting  beam profile will 
consequently  be  something  in-between the two  extreme  cases, 
continuous wave, and  delta  pulse  excitation,  depending on the 
pulse  length. 

The  following  example  shows that the  contribution  from  the 
side  lobes in the  ultrasonic  beam can be neglected.  Suppose 
that  the  transducer  insonates  a  large blood vessel, so that 
the  entire  beam,  including the side lobes resides  inside  the 
blood  vessel.  The  contribution to the power of the  Doppler 
signal  from  a  small  volume  element of blood in position 
is  proportional to the 4th  power of the  ultrasonic  pressure 
amplitude in E, assuming that the same  transducer  is used for 
transmit  and  receive.  The  volume  elements will behave  like 
independent  scatterers  due  to  the  short  correlation  distance in 
the blood cell  fluctuation.  For  a  transducer with a  circular 
symmetric  beam profile E(ro), where T O  is the  distance  from 
the beam  axis, the contribution  to the signal  power  from  a 
cylindrical  volume  around the beam  axis, with radius R is 
found by integration, using cylindrical  coordinates ( T O ,  4 )  

case,  the  process nb(r, t )  is  stationary  in  time. If in addition 
the  velocity field is  rectilinear  and  uniform, and the quantity 
y is constant in space, the process n b ( ~ ,  t )  will be  stationary P(R)  1 drod4 To  ~ ( r ~ ) ~  = dro 2Tro~(ro)4  (3) 
in both space  and  time. Irol<R 0 
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Fig. 1. The  beam  profile  in  the  far  field  from  a  circular  disk  transducer of 
radius a ,  and  the  power  fraction form a  cylindrical  region  around  the  beam 
center axis, as  a  function of distance  rofrom  the axis. The  horizontal axis is 
scaled in the dimensionless parameter k o a r ~ / d ,  where ka is the  wavenumber, 
and d is the  distance  from  the  transducer. 

In Fig. 1 the  one-way beam profile E ( R ) ,  and  the  cor- 
responding  fractional  power  contribution P(R)/P(co)  are 
plotted  as  a  function of the distance R from the beam  center 
axis.  Observe that with this  beam  profile,  which  is  the far- 
field approximation of a  plane,  circular  disk  transducer, 94% 
of the  power  comes  from  the  region  inside  the -6 dB beam 
opening  angle. 

The  axial  variation of the point scatterer  response  waveform 
will still be significant,  caused  by  aperture  geometry  and 
frequency  dependent  attenuation  and  scattering.  This  variation 
will be slow  compared  to the pulselength, so that locally, the 
point scatterer  response  can be separated in a  normalized pulse 
waveform p(t)eiWDt, and  a  spatial  sensitivity  function B(r-). 
After quadrature  demodulation,  the  complex  Doppler  signal 
takes on the form 

Two way beam-profile  amplitude: B 
Complex  envelope of the point scatterer  response: P( t>  
Receiver  lowpass filter impulse  response: h(t)  
Wavenumber  for the received  signal  center 

frequency: ko = W O  / c  
Thermal  additive  noise: no(t) 

Note that the  pulse  waveform p will change with the 
elapsed  time t after  transmission,  due  to  frequency  dependent 
attenuation.  The  noise no(t) is  assumed  to be white, and 
independent of the  signal.  The  temporal variation of-the blood 
cell fluctuation nb(T, t / 2 )  is  assumed to be slow,  compared 
to the speed of sound,  and  is  therefore  not  affected by the 
receiver filter. 

111. AUTOCORRELATION FUNCTION FOR THE RECEIVED SIGNAL 

Assume that the transducer is excited with a  series of pulses, 
with repetition time interval T.  The  received  signal  from  the 

mth pulse  is  (neglecting  contribution  from  previous  pulses) 

To account the movement of the  beam in mechanical 
scanner  systems, the transducers  spatial  sensitivity  function 
is  indexed with the  pulse  number B m ( ~ ) .  The  convolution of 
the transmitted  pulse  and the receiver filter impulse  response 
determines the radial extension of the  sample  volume,  and  is 
denoted S( i c t )  = p @ h(t) .  Note that S is  in  general  complex 
valued, but for  symmetrical  spectrum  around WO, this  function 
will  be real  valued.  In  a  practical  system, the signal  is  sampled 
in the  continuous time parameter t ,  which  corresponds  to  the 
radial  position T = c t / 2 .  After  sampling with radial  increments 
A, the signal can be described  by  a 2-D complex  Gaussian 
matrix z(n! m) = x,( F), with a  joint  probability  density 
function  defined in terms of the  autocorrelation  function  with 
lag n in radial,  and m in temporal  direction. 

R(? m; no, mo) = (4n0, mol* . x ( n 0  + 71, m0 + m ) )  (6) 

The  expression  for the autocorrelation of the red blood cell 
concentration in (1) is  now used to  derive  an  expression  for 
R(n, m; no, mo), valid for  a  general velocity field. Note that 
the  blood  cell  concentration  is  assumed  to be delta-correlated 
in space. 

The  entity is the  component of the  displacement  function 
- C in the  radial  direction.  The  receiver noise component  is 
independent of the signal  from  blood,  causing the cross- 
correlation  term  to  disappear. NO is  the  noise  power,  and  the 
function h2 is  the  autocorrelation  integration  operator  applied 
to  the  receiver filter impulse  response 

hz(t) du h(u) h(. + t )  J (8) 

When  the flow velocity field is  locally  rectilinear  and 
constant  (i.e., within the size of the sample  volume),  the 
displacement  function [(E! t ,  7 )  z ~ ( r !  t ) ~ ,  and the phase 
2k& relates  directly tothe radial velocity component up. 

Iv. A PARAMETRIC MODEL FOR THE 
AUTOCORRELATION FUNCTION IN REGIONS 

WITH LOCALLY RECTILINEAR BLOOD Row 
The  general  expression  for  the  autocorrelation  function 

given in (7) is not very useful for  quantitative  evaluation of 
color flow imaging  algorithms. To obtain  a  reasonably  simple 
model,  blood flow regions with a  constant  rectilinear  velocity 
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field in space  and  time  is  considered.  The  scattering  cross sec- 
tion per unit  volume  blood Y ( E )  is  also  assumed  to be constant 
in this region. It  is convenient to use spherical  coordinates 
c = ( T ,  Y,  4) with origin in the transducer  rotation  center,  and 
scanning  plane in 4 = 0. The velocity is  decomposed  into 
spherical  components 2 = (L+.,  TU^ , r q , ) ,  where ZIT and v4 
are  angular  velocities in the lateral (in the scan plane)  and the 
transversal  direction,  respectively.  The  displacement  function 

cell fluctuation function n b ( ~ ,  t )  will then be stationary, both 
in space  and time. To make the integrand of (7) separable in 
( r ,  T, 4), some  further  assumptions  are  done: 

1) Only  regions  where S ( T  - noA) is  different  from  zero 
contribute to the  volume  integral.  The  function S ( T )  

is  the  convolution  between the transmitted  pulse,  and 
the receiver filter response,  which is limited to a few 
wavelengths. In this small  sample  volume, the spatial 
sensitivity  function B(E)  for the transducer  is  assumed 
to be constant in the radial direction. 

2) It  is assumed that the  transversal  variation of B can 
be separated in Y and 4. This  is  motivated  from  the 
Gaussian  shape of the  function B. 

3)  The  analysis is restricted  to  regions  where the ultrasonic 
beam  has a fixed or continuously  moving  angular po- 
sition, with a  constant  angular  rotation speed R. For 
phased array and linear  array  systems, R = 0. 

With these  assumptions, the spatial  sensitivity  function  is 
separable in the  lateral  and the transversal  direction,  and  takes 
on the form 

- C can then be written C = (u,mT, vrmT, "+m"), and  the red 

Bmo(T)  - OmT) Q ( @ )  (9) 

The  functions 9, CP, and S will  in general  depend on the 
sample  volume  depth nA, but the variation is slow,  and it 
can be neglected over the range  where the autocorrelation  is 
nonzero. With these  assumptions the integral in (7) can be 
separated in ( T ,  Y, 4) as follows: 

S ( T  + v,mT - (no + n)A)e2i"TmT 

. dT9(T - RmoT) 

. 9(T - R(mO + m)T + vrmT) 

S d4@(4)@(4 + %mT) (10) 

The  term r2 will  be almost  constant = ( ~ o A ) ~  within the 
sample volume. Each of the  three  integrals now has  the  form 
of a  convolution,  and can therefore be expressed in a more 
compact way (up  to  a  scaling  factor,  dependent  on noA). 

R(n,  m; no, mo) = se(v,mT - nA) ' 9 2 ( O m  + vyrnT). 
CP2(v4mT) . e2ikvrmT (1  1) 

The  subscript 2 for the functions S, 9, and CP is a notational 
convention  for the autocorrelation  integral  operator,  as defined 
in (8). In this  form,  the  magnitude of the  complex  autocorre- 
lation  function  is  factorized in three "transit time functions", 

defining the correlation  length in radial,  lateral,  and transversal 
direction.  The phase factor  accounts  for  the  Doppler  shift due 
to the radial velocity  component v, in the blood flow. Note 
that this autoconelation  model is invariant in space and time. 

In a  mechanical  scanning system with a circular  transducer, 
the functions 9 and @ are  equal,  and  may be found  as the 
square of the pressure  wave  transversal  beam  profile, All  of 
the three  functions S ,  9, and CP have a  symmetrical  shape 
around the maximum  value, and they are almost  monotonically 
decreasing.  The  autocorrelation of such functions has a  shape 
close to the Gaussian,  i.e., f(z) = exp(-x2). 

In practical  implementations, both the  transmitted pulse 
envelope  and the receiver filter impulse  response  are  often 
designed with rectangular  shapes.  This  receiver  filter was 
shown in [l31 to give  a nearly optimum  trade off between 
radial resolution, and SNR, provided that the impulse  response 
is equal to the pulse  length.  The pulse response  after  receiver 
filter s ( T ) ,  is then equal to f ~ ( f ) ,  where L is the pulse length, 
and fT is the triangular  function  given by 

The second moment of the  function f~ @ ~ T ( T / L )  equals 
g, giving the Gaussian  approximation e-3r'/(2L2). It is now 
possible  to  give  a  simple  description of these  functions, with a 
model  containing  two  parameters;  the  transmitted  pulse  length 
L,  and the beam  opening  angle 0. 

T 3 2  
s ~ ( T )  = f~ @ f~ (x) M e - 3 ,  L = pulse  length 

q2(v )  = 49(v) M e 2 0  , 0 = beam  opening  angle -_ 3 " 2  

(13) 

The  parameter 0 corresponds to the  -3.25 dB beam  opening 
angle, both for a  Gaussian beamprofile, and  for the far-field 
approximation field for a circular  plane disk transducer. It 
is convenient to define the transit time in radial,  lateral,  and 
transversal  direction TT, TT,  T+ as the time the scatterers use 
to travel a  distance L, and  angle 0, respectively.  The  time unit 
is T ,  the pulse  repetition  time. 

The  transducer  rotation  speed O is taken into account by 
subtracting  it  from  the  lateral  velocity  component. It is  also 
convenient to introduce the normalized Dopplerfrequency shift 
w d ,  which  is  the phase shift  between  two  adjacent  pulses  due 
to the radial  velocity  component v, , wd = 2kv,T. 

By combining the (1 l), (13), and (14), the  autocorrelation 
function  gets the form of a  2-D  Gaussian  probability  density 
function in (n ,m)  

R(n, m)  = R(O, O)p(n, m)e twdm 
,o(n. m)  = e-iQ(",m) 



Fig. 2. A plot of the magnitude of the complex 2-D autocorrelation  function 
R(n .  trr ) as a function  of temporal lag m ,  and radial lag n.  

2 n m  
0 1  0 2  

2 

Q ( 7 ~ , m )  = (E) + 2p-- + (E) (15) 

The  parameters “1, cr2. and p for the quadratic  form Q(n, m)  
are  given by 

L 

These  three  parameters  have the following  physical  interpre- 
tation: cr1 and 0 2  are  the  correlation  lengths in radial and 
temporal  direction,  whereas the crosscorrelation coefficient p 
shows  to what extent  the  same fluid elements  remain  inside 
the volume insonified by the ultrasonic  beam. If the  lateral 
velocity component  follows the beam  movement, the same 
blood  cells will be observed in several  range  cells; TT and 
T$ then become large compared  to TT, and p will be close  to 
unity. An  example  which  shows  a typical shape of lR(n,m)l 
is presented in Fig. 2. The flow direction  is  purely  radial,  and 
a  receiver  noise  component of -6 dB, relative  to the signal 
power  makes  a  discontinuity in n = 0 . m  = 0. 

v. SECOND-ORDER STATISTICS FOR 
THE AUTOCORRELAT~ON ESTIMATES 

The  estimates  of the autocorrelation  function  considered 
in this work  are a  weighted  mean of product  terms of  the 
signal x ( n >  m )  in  the neighborhood of  the  point (no, rno) with 
weighting  coefficients c(l. k )  

1 k  

X z(n0 + 1 + n ,  m 0  + k + m) (17) 

The  process z(,n, m )  is  assumed  to  be locally stationary, 
i.e., the true  autocorrelation  function is constant  in the 
region  where c(1. k )  # 0. To simplify  the  notation, no and 

are set to 0 in the following,  and  omitted  from the 
expressions.  The  correlation  estimate is unbiased,  provided 
that the  sum of the coefficients in  the averaging filter 
equals unity. In order to deduce all the  covariance  elements 
between the real and  imaginary parts in the complex 
matrix { R ( r ~ . 7 n ) } , ~ , ~ , ~ ,  both Cov(R*(?~~.m~).R(n~.m~)), 
and Cov(R(r~1 ,  r n l ) .  R(u2, 7722)) for  any  combination of 

( n l ,  m l ,  n2, m 2 )  are needed. In the subsequent part  of this 
paper the following  short-notation  for  the  covariance will be 
used: 

These  covariance  values  can be expressed  by  the  true 
autocorrelation  function, by applying the “factoring of mo- 
ment”--properties for  complex  Gaussian  processes  [14, p. 
6011. Details  can  be  found in the appendix. 

Higher  order  moments  can be deduced in a  similar  way. 
Note  that the complex  valued  autocorrelation  estimates do 
not  constitute  a  set of jointly  complex  Gaussian  variables, as 
defined  in [ 15, p. 771. From the first equation in (19) it follows 
that the variance of J R ( n .  m ) 1 ,  which is the sum of variance 
in  the real and the imaginar  part of R(n.,  7nj,  are  identical  for 
all  lags (n ,  m). 

kl  

In practical  implementations,  an  averaging filter with a 
rectangular  impulse  response is often  used, i.e., c ( n ,  m )  = 

temporal  direction.  The  funtion c2 in (19) then takes on the 
form of a  product of two  triangular  functions  [defined in (12)] 

-- ,h h, with length h’ in the radial  direction, and M in the 

If  the correlation  length of the  signal is short  compared  to 
the  averaging filter size,  the  function c2(l, k j  is nearly constant, 
and  equal  to c2(0,0) in  the  area  where R(1, k )  is nonzero. 
This is a 2-D version of the “strong filtering approximation” 
described  in [16], where the covariance  is  proprtional to the 
equivalent  noise  bandwidth (ENBW) of the averaging filter 

For the rectangular  averaging filter, the  equivalent  noise 
bandwidth  equals  the  inverse of  the number of nonzero filter 
coefficients, ENBW = h. 

The argument  (phase  angle) of  the autocorrelation  estimate 
4(n, m )  = arg(R(n, m ) ) ,  denoted Correlation angle  estima- 
tor, may  serve as a  mean  frequency  estimator.  Most  commonly 
used is the correlation  angle  estimator  with  lag n = 0: m = 1, 
but  algorithms  combining 4(0, m )  from  several lags m have 
been proposed, and their properties  have been studied by 
simulations [17]. When the fractional  variance of R(n, m )  is 
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small, the covariance  between the correlation angle  estimators 
with different lags has  an approximate expression given by the 
first and second order moments of {R(n ,  m ) } ,  see appendix. 

COVELT{4(711, 7r11).  $h(712> 7112)) 

This result is a straight forward generalization of the vari- 
ance expression in [ 1 ,  eq. A3]. 

VI. COVARIANCE EXPRESSIONS APPLIED 
TO THE PARAMETRIC SIGNAL MODEL 

The general covariance  expressions in the previous section 
will now be developed  further  for the parametric model 
presented in Section IV.  By inserting (15) in (19), it turns 
out that the  two covariance expressions  can be expressed by 
a common function denoted CS(n, m,). 

C * ( 7 ~ 1 , 7 1 2 >   m 1 , 7 1 ~ 2 )  

= S2P(7Ll - 712,7111 - ?'n2)e- i"d(m1-m2) 

x CS(7Ll - 712, 7121 - m 2 )  

~ ( n l :  712, r n l ,  r n 2 ) =  ~ ~ ~ ( 7 1 1 ,   n 1 l ) ~ ( , n 2 :   n ~ 2 ) e ~ ~ d ( ~ ~ l + ~ ~ ~ 2 )  

x C S ( 7 1 1  - 722?7r11 - m 2 )  

C S ( n , m )  

k l  

The approximate expression for the covariance of the cor- 
relation angle estimators,  (23) applied to the parametric model 
yield: 

c x ~ a r { 4 ( 7 1 1 .  1111). d)(712.7r12)} 

v ? x { ~ ( n 3  7 n ) }  z - ($(n.?rL)- '  - l)Cs(o.o): lnll > 0 (25) 

This result shows that  the minimum variance of ~ ( T L .  r n )  is 
obtained when j j ( 7 1 .  m )  attains its maximum value, i.e. when 
the autocorrelation magnitude  has its maximum. Depending 
on the radial velocity component, this maximum may occur 
at nonzero radial lag 71, see Fig.  2. The variance is also 
proportional to CS(0, O), which equals the fractional variance 
of the signal power estimate R(0,O). 

1 
2 

The latter form of CS(0, 0) is the strong filtering ap- 
proximation described in  the previous section. In Fig. 3 the 
fractional variance in its  exact  form, and the strong filtering 
approximation are  compared for different averaging filters. 
Parameter values in the model are selected to match the 
experimental data presented in  the next section; these are 
L = A,T, = TT = 8. The averaging filter  is rectangular, 
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Fig. 3. Fractional  variance of the autocorrelation  estimates as a function of 
lateral averaging, for two  different  values of radial averaging; ,V = 1 ,  and 
S = 3. Strong filtering approximation,  compared with the  exact  expression 
(25 ) .  

with a temporal averaging M varying from 1 to 512 points, 
and the radial averaging lengths N = 1 and N = 3. Note 
that radial averaging reduces the variance more rapidly than 
temporal averaging. The  strong filtering approximation  shows 
a large over-estimation of the estimator variance when the filter 
length 114' is less than 32, which is four times the temporal 
correlation length. 

VII. EXPERIMENTS AND DISCUSSION 

A .  Instrumentation  and  Signal Processing 
The ultrasound recordings were made with a mechanical 

color flow sector scanner (CFM700, Vingmed Sound,  Horten, 
Norway). Doppler quadrature  components  from 64 range gates 
with  12  bit resolution were collected in real-time and trans- 
ferred via a custom data grabber unit to an external computer. 
The stored Doppler signals were separately high-pass filtered 
for each range-gate to remove clutter echoes. Autocorrelation 
estimates  for zero and unity lags, R(O, 0) and R(0, l) ,  were 
calculated using rectangular averaging filters  both in the radial 
and temporal directions, and signal power P ,  center frequency 
W ,  and bandwidth b were calculated by [l61 

P = 10 log(R(0,O)) 
W = a rg (R(0 , l ) )  

b =  /T 1-  

Note that the variance of P and both are proportional 
to the variance parameter CS(0, 0), (26).  The signal power is 
used to determine  areas in the image where moving blood is 
present, whereas the bandwidth is used as a "disturbed flow" 
indicator. High bandwidth is  caused by high velocities, giving 
short transit time, or  large velocity gradients within the sample 
volume. Two different color  coding  schemes were used  to map 
these parameter estimates in a 2-D display. 

1) Power/frequency map: The  color intensity was  modu- 
lated with log-compressed signal power, whereas the 
center frequency determined the color  hue, in a con- 
tinuous rainbow-scale over the values 0 < W < 27~. 

2) Bandwidthlfrequency map: The  center frequency was 
mapped in a red-violet-blue color scale for low 
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Fig. 4. The problem of “dropouts” in a  color flow image  showing  mitral 
flow into  the  left  ventricle.  To  the left: No radial  averaging filter. To the  right: 
3 point  radial  averaging. 

bandwidth,  gradually  changing  to  uniformly  green as 
the  bandwidth  increased.  The  signal  power was  tested 
against  a  threshold  to  remove noise from the image. 

B .  Results and Discussion 

In this  subsection,  some  examples with 2-D  Doppler  data 
recorded  from the left ventricle of  the human  heart  are  shown, 
with emphasis on comparing  different  averaging filters for the 
autocorrelation  estimates  to the same  data. 

The initial  experiments with color flow imaging  showed  that 
the variance of  the signal power estimate degraded the image 
quality,  especially  when the SNR was  poor. The  effects were 
“dropouts”,  and  poor  border definition  of the flow regions. 
This is illustrated in Fig. 4, left panel,  which  shows mitral 
blood flow into the left  ventricle of  the human  heart in early 
diastole. A 16 point  temporal  averaging filter is used for the 
autocorrelation  estimates. In the  right  panel the same  data 
is used, but  with additional 3 point radial  averaging. The 
improved  performance with  the 3 point radial  averaging filter 
illustrates the theoretical  values  for the variance  reduction 
shown in Fig. 3. 

An important  clinical  application of color flow imaging  is  to 
detect the  position and  size of valvular  leakage in  the human 
heart.  Fig. 5 shows  color flow images  from  a patient  with an 
aortic  valve  leakage, with and without 3 point  radial  averaging 
filter. The  aortic  valve  regurgitant jet with  the  base  in  the 
lower left part  of  the image  creates  a  region of disturbance in 
the  blood  velocity field of  the left  ventricle.  The  bandwidth 
estimates  along the indicated  horizontal  line in the images 
are  shown as a green curve in the  lower part in each of  the 
images. The three  point radial  averaging filter (shown  to the 
right),  reduces the variance of  the bandwidth  estimate,  thus 
giving  a  more  sharp  outline of  the disturbed flow region. 

Fig. 6 shows  a  sequence of four  consecutive  images through 
the cardiac  cycle  from  the  same  patient.  Upper 4 images are 
without  radial  averaging, and lower 4 images  are with 3 point 
radial averaging. The first three images  show the filling of  the 
left  ventricle,  and the development of  the aortic  regurgitant jet 
flow. The last image  is in systole,  with  aortic outflow to the 

Fig. 5.  Aortic  insufficiency jet mixing  with  regular  mitral  inflow. The green 
curve  below  shows  the  bandwidth  estimate  along  a  horizontal  line  across  the 
jet  area. To the left: No radial  averaging filter. To the  right: 3 point  radial 
averaging. 

right,  and  a  small mitral valve insufficiency jet to the lower 
right.  Upper  sequence is with  and  without radial  averaging. 
Fig. 7 shows  a  summary of  the effect of different  averaging 
filter sizes, both  in  time and  range,  applied  to the same  data, 
where  one  gets an impression of  the trade off between spatial 
resolution,  and  smoothness of  the image. 

VIII. CONCLUSION 
The signal model for  a  general  nonstationary  blood-velocity 

field was  based on the  assumption of locally  invariant point 
scatterer  response  waveform.  This was justified by showing 
that only the main  lobe in  the ultrasonic beam contributes to 
the Doppler  signal.  The  autocorrelation  function was expressed 
as a  volume  integral of  the local scattering  cross  section 
with a  phase  factor given  by  the radial  displacement of 
the scatterers.  This  corresponds  to  a  result in [lo], slightly 
generalized.  For  stationary and rectilinear flow,  the magnitude 
of  the 2-D  complex  autocorrelation  function was shown  to 
have  a  Gaussian  form,  described by three velocity dependent 
transit-time  parameters.  Frequency  dependent  scattering  and 
attenuation  may  modify both  the bandwidth and  the center 
frequency of  the received  signal.  This  can be taken  into 
account by adjusting the mixing  frequency W O  and the sample 
volume length L in  the model. 
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Fig. 6. The  improvement  obtained  by  radial  averaging  shown on a  sequence 
of color  flow  images  with  a large  aortic  regurgitation and a  small mitral 
insufficiency  (rightmost  image).  Lower  sequence: No radial averaging  filter. 
Upper sequence: 3 point  radial averaging. 

.__ ~ ~ 

Fig. 7 .  Eight  different  averaging filters applied  to  the same data  as  in  Fig. 5 .  
Temporal  averaging are 4, 8, 16, and 32, increasing  from  left to right.  Radial 
averaging  is I point  (upper row) and 3 point  (lower row). 

, r . ~ _ l -  - - - ~ ~  ---- - 

The general  covariance  expressions in Section IV show  that 
the variance of  the autocorrelation  function rnagnirude estimate 
is constant  for all lags,  and  equal to the variance of  the signal 
power  estimate.  For the parametric  model the variance of  the 
real part,  imaginary  part, as well as the  phase angle of  the 
autocorrelation  estimate  for  any  lag  were  proportional  to the 
fractional  variance of  the signal  power  estimate.  Numerical 
calculations  for  the  fractional  variance using  the paramet- 
ric model,  show that the “strong filtering approximation” 
where  the  covariance  is  proportional  to the equivalent  noise 
bandwidth of  the averaging filter, is not accurate  for  typical 
averaging filters used  in color flow imaging. 

Improvements in the  mean frequency  estimator  are  possible 
to  achieve by using  correlation  estimates with nonzero  lag in 
the  radial  direction.  However, significant improvements  can 
only be obtained  for  high velocities. 

The  experimental part demonstrates the impact of  the av- 
eraging filter on the  image  quality in color flow  imaging. 
For the examples  shown, the radial  averaging  increases the 
quality, with little  loss in resolution. The theoretical results 
predict a  60%  reduction in variance of signal  power and  mean 
frequency  estimates, when radial  averaging is applied.  This 
was  not verified quantitatively with the  experimental  data; 
however, it  was clearly  demonstrated  that  radial  averaging 
is more efficient than temporal  averaging. Variance  and  bias 
of the bandwidth  estimator  has previously been  analyzed by 
ZmiC [ 181 and  Kristoffersen [ 161. Their  results  are  based on 
low  fractional  variance of  the autocorrelation  estimate.  Since 
this  assumption is seldom satisfied in color flow imaging, no 
attemt  is  done here to  generalize these results  to 2-D processes. 

APPENDIX 

A. General  Covariance  Expressions 
Covariance of  the correlation  function  estimates of real- 

valued  Gaussian  processes  is  treated in several  textbook, e.g., 
[ 191. It seems  likely that similar  expressions  for  complex,  zero 
mean  Gaussian  processes  exist in  the open  literature, but  the 
authors of this paper  have not been  able  to find adequate 
references. The formulas are developed  here, in a  similar  way 
as  for the real case. 

The correlation  between  estimates with two  different  sets of 
lags  can  be  expressed as a  sum of fourth-order  moments by 
applying the definition in (17) 

l l k l  l zk2  

Z*(El + m 1 1  h + m1)x*(k?r k 2 ) 4 l z  + 1221 kz + m2)) 

(AI) 

Assume  that y1, y2, y3. and y4 are joint  complex  Gaussian 
random  variables, the forth  order  moments  can  factorized  into 
second  order  moments,  see [14, pp.  6011 or [20]: 

(yI*yZy3*y4) = (Yl*yZ}(y3*y4) + (!/l*Y4)(Y3*y2) (A21 

Note  that this expression  contains  one  product  term  less 
than  the corresponding  formula  for real Gaussian  variables. 
This result is combined with (AI) to  express the covariance 
by  the true  autocorrelation  function R(76, m). 

(R*(n l ,ml )  R(n2, mz)) = R*(nl :ml)  R(n2,m2) 

11 kl /2k2 

X R*(El - E2 + 711 - 712, kl - k2 + 7111 - m2) (A31 

The last  term in this equation  is the covariance  between 
R*(nl ,   ml )  and R(n2,7122). The double  sum in (A3)  can  be 
rearranged,  giving the final form in (19) 
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= c Q ( l .  k) R(1, k )  
kl 

x R*(I + 71.1 - 71.2, k + m1 - m2) (A41 

The  expression for C o v ( R ( n l , m l ) , R ( n z ; m 2 ) )  can be 
deduced in a  similar  way. 

B .  Covariance of the Correlation  Phase  Angle  Estimates 

If z1 and z2 are  two  complex  random  variables with  low 
fractional  variances, then  the covariance  between the phase 
angles 41 = arg(z1) and 42 = arg(z2) is approximately 
equal to 

This  relation is applied with z1 = R(711,7rL1), and z2 = 
R ( n 2 . m n ) .  which  gives (23) .  
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