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Signal from one range
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Doppler signal from one range
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Doppler shift frequency [kHz]



Blood detection and
fv'%elr@city estimation fgom 2D signal
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Blood detection and
velocity estimation from 2D
signal

* Increased number of range samples M give better
performance but lower spatial resolution

> Best spatial resolution with M=1

* In this work optimum estimators for the case M=1 is

treated

» Extension to the case M > 1 is straight forward
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1D Signal Model

» Signal vector for each sample volume: [
T a0 /C utter
x=[x(D,..xN)]" g /
: £ 60
» Zero mean complex Gaussian process £ ¢ Blooc
(<))
* Three independent signal components: ? 40 /
- |
Signal = Clutter + White noise + Blood s 2
x=c+n+b
-0.6-0.4-02 0 0.20.4 0.6
 Signal correlation function: Blood velocity [m/s]

R (m) =(x(k) x(k+m)) = R (m)+5(m)+ R, (m)
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Probability density function
for the complex signal vector x

—x'C™! (v)x

— |
p(x‘v) o ﬂN‘C(v)‘ €

C(v)={R,(k—n)},,
Cv)=C, +1+C,(v)

v = radial velocity component of blood flow
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LLog likelihood function
and
Cramer - Rao lower bound

l(v‘x) = log p(x‘v) =—x'C'(v)x— ‘C(v)‘

7 —1
var,. = <62 z(v\x)>
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Maximum Likelihood estimator

t I(v|x)

/

VML Vv
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Cramer - Rao lower bound
Approximation

<@2 Z(V\x)> ~(x"C ()" )x)—[C)|

12mkT v

C(v)| =0; R,(m)=|R,(m)e
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Cramer - Rao lower bound
Approximation

< z(v\x)> —» c(m,n)b(m,n)
V m,n

:{c(m n) =C.+1+C,
B={bmn)),, =C i C-C)c
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Doppler spectrum [dB] .
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Frequency
Beam width
Pulse length
PRF

packet size

Signal level

2.5 MHz
3 mm
2 mm
S kHz

10 samples
20dB

Clutter level 80 dB
Blood velocity 0.2 -0.8

m/s

Angle blood flow 20

deg.




Numerical simulations
maximum likelihood estimator
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Maximum likelihood estimator
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Maximum likelihood estimator

properties
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—— Max. likelihood estimator
= Cramer-Rao bound
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Max. likelthood method
for blood velocity estimation

Matrix

 —— mult.
A(V)

—

X
& y=A(V) X

-|*2

—
1(v)

D
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Autocorrelation method
tor blood velocity estimation

Clutter Auto Phase
ey REJECHION |y COITEIALION | angle —
Filter Estimator &
scaling
X y=A X R(1) Y le(R
v~ angle(R(1))
=> y(n) y(n+1)

* Clutter Rejection filter formulated as a matrix multiplication

* Includes FIR filter, initialized IIR filter, and regression filter
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bp b, b, b, b, b, O 0
0O b b, b, b, b b FIR filter order M=5
_ Packet size N=10
B b b, by b b b Output samples: N-M= 5
b b, b, b, b, b, 0
0 0 b b, by b, by b

v + Improved clutter rejection

N

Increasing filter order<

- Increased estimator variance
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Clutter suppression by high pass
liltering

NTNU, Norway

Packet size N=10

Order M=6: 4 samples left after
initialization

Order M=8: 2 samples left after
initialization



Polynomial regression filter

by,b,,..,by_, Legendre polynomial base

> Subtraction of the signal
component contained in a P-
dimensional clutter space:

b,

Increasing polynomial order —>
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Ab3

Signal
space

Clutter space

Increasing cut off frequency



——— Before filtering | | | | —— Beforefiltering
~ FIR order6 1 1 || Polyreg order2
—— FIR order 8 3 3 || Polyregorder3

@rT—FIRﬁiterans oD . Polynom regression
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—+ Polyreg. filter
5 Max. Likelihood
-~ FIRfilter
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—% - Polyregfilter

—(- ML

= Cramer-Rao
. FIRfilter
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Conclusion Optimum velocity
estimation

* ML estimator is unbiased, but probably not minimum

variance

* Polynomial regression filter showed estimator variance
comparable to the ML estimator when above filter cut off

frequency

* Polynomial regression filter gave substantial bias for low

velocities

* FIR filter give no bias, but significant increase in variance

Hans Torp
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Optimum clutter filtering

1. Adaptive filters

2. Optimum detection of blood vessel in clutter noise



Irequency Responses
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Other quality measures for clutter filters
than the frequency response?



Signal vector for each sample volume:

x=[x(1), ... x(N)]"

Zero mean complex Gaussian process

Three independent signal components:

Signal = Clutter + White noise +
Blood=c+n+b

Signal correlation matrix:

R=R+0.2 +R,



Optimal Basis of Clutter Space

* Eigenvalue decomposition of the clutter correlation
matrix:

R.e = /¢,
N
Rc = Zﬂ’/ eie;_l

=1

» Use the eigenvectors ¢; as a basis for the clutter space
(Karhunen-Loeve transform)

» This basis provides maximum energy concentration



Energy

Adaptive Regression Filter

Eigenvalue spectrum of clutter + blood
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A rule for deciding between the two hypotheses:

1,: No blood is present
1,: Blood is present

The detector is characterized by ¥ =%

» Probability of false alarn/

P = P(choose H, | Hyis tru

* Probability of detecti
Py = P(choose H, | H,is true)

——

Coronary artery



The Neyman-Pearson lemma:

P is maximized under the constraint
Pr < a by a likelihood ratio test (LRT)

px|H1(x H,) 21
le HO(X HO) Ho

L(X)




For a Gaussian signal, the LRT can be simplified to:
2 O
I(x)=||AX] < n
0

where A=( I-(I+L)"1)Y2E'T, and E and L are the
solution of the generalized eigenvalue problem

R,E=R,, EL



Clutter filter Power calc.

>y ny
X— A |— HH2—>

<y Ho

The same structure as conventional
color flow systems, but signal dependent
filter matrix A



Detector Performance I

* The detection performance is summarized in a receiver
operating characteristic (ROC)

1 p——

Resulting PD4—7/
()
o
0
0 P, 1

Specified Pg



Detector Performance 11

* [(x) is a sum of exponentially distributed variables

* P, and P is equal to:

Py HT ﬂ

M :-[77 PiH, (I|H,)dl

Fr :jn P/|H0(l|Ho)dl

I(X)



Data Acquisition

* Digital RF data recorded Acquisition parameters
with GE Vingmed
Ultrasound System Five Center freq. 5.7 MHz
ultrasound scanner PRF S kHz

* Complex baseband

signals transferred to Temp. samples 9

Rad. samp. freT 2 MHz

external computer for
processing

Thyroid gland



The correlation matrix is estimated by spatial averaging
in a region with uniform motion:

R =1§1x-x'7'
C M,':1 i#N

Estimated signal parameters:

Mean probe movement: 1.0 cm/s
Clutter to white noise ratio: 52 dB
Blood signal:

Modeled as a single frequency signal

Blood signal to white noise ratio set to 6 dB



ROC:s for the Different Filters

Blood velocity = 10 cm/s 1Bloo_d velocity = 20 cm/s

0..PD'.1 0..PD._1
= Optimal detector == [IR proj. init. FIR min. phase

=== Adaptive reg. filter==== |IR step init. === FIR linear phas
= Pol. reg. filter



Image Improvement

Polynomial regression filter

Example of

image

improvement

Wlth adaptive Adaptive regressio.n filter
regression filter E

[ oy i



Polynomial regression filters and projection initialized IIR
filters have similar performance and are best among the
non-adaptive filters

The computational complexity of the projection initialized
IIR filter is equal to the regression filter

The adaptive regression filter has close to optimum
performance



Spatial and temporal averaging

Signal samples from M points in time/space
with identical statistical properties

x, =x,(1),...x,(N);k=1,...M

_xk 'C_lxk

p(xk):ﬂ%‘c‘e

x,'C x, = zanmxk(n)* Xy (m)

n,m=1

How to combine these for optimum detection and velocity estimation?



Spatial and temporal averaging

Joint probability function (uncorrelated signals)

M
_ I I 1 —x;,'C oy
p(xlﬂ“xM) i p ﬂN\C\ €
=]

Log probability function

M
-1 NM | ~|M
(X)) == x,'Cx, = 2™|C
k=1

M

NM | ~|M

==>"a,, > x,(n)*x,(m)—z""|C
n,m k=1



Spatial and temporal averaging

[(x,0%,) ==Y a, R (n,m)— 2™ |C["

7
The covariance estimates Rx (na m) — Z Xk (Vl) * Xk (m)
k=1

are sufficient statistics for the detection / estimation problem

This means that the optimum detector, as well as min. variance estimators
for signal power, mean frequency, and bandwidth,
are a function of the covariance estimates



Temporal averaging for mean
Irequency estimator

N
f?k(l) = Z X, (n)*. X, (n+1) k=1 : 4, uncorrelated signal packets
n=1

Example:

Effect of averaging R1 :

=
o
&
o
&
=
—

Variance of angle(R1)
reduced by factor 24!

Effect of averaging angle(R1):

Variance reduction factor=4




Spatial/temporal averaging
summary

» Efficient variance reduction of signal power, mean
frequency and bandwidth can be achieved by
averaging data from uncorrelated signal segments.

* Optimum variance reduction is achieved by averaging
the complex correlation estimates before calculating
the spectral parameters



Further reading/work

Textbooks

Jorgen Arendt Jensen:

Estimation of Blood Velocities Using Ultrasound, A Signal Processing
Approach,

Cambridge University Press, 1996. http://www.it.dtu.dk/~jaj/book.html

B.A.J. Angelsen:
Ultrasound Imaging, Waves, Signals, and Signal Processingo
http://www.ultrasoundbook.com/

Internet-site for this course:

http://www.1fbt.ntnu.no/~hanst/flowmeas02/index.html
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