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Go to lecture 1!Go to lecture 1!



Doppler signal from one range Doppler signal from one range 
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Blood detection and Blood detection and 
velocity estimation from 2D signal velocity estimation from 2D signal Pulse no
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Blood detection and Blood detection and 
velocity estimation from 2D velocity estimation from 2D 

signal signal 
•• Increased number of range samples M give better Increased number of range samples M give better 

performance but lower spatial resolutionperformance but lower spatial resolution

•• Best spatial resolution with M=1Best spatial resolution with M=1

•• In this work optimum estimators for the case M=1 is In this work optimum estimators for the case M=1 is 

treated treated 

•• Extension to the case M > 1 is straight forwardExtension to the case M > 1 is straight forward
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1D Signal Model1D Signal Model

•• Signal vector for each sample volume:Signal vector for each sample volume:
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x = [x(1),…,x(N)]T

•• Zero mean complexZero mean complex GaussianGaussian processprocess

•• Three independent signal components:Three independent signal components:

Signal = Clutter + White noise + Blood

x = c + n + b
•• Signal correlation function:Signal correlation function:
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Probability density function Probability density function 
for the complex signal vector x  for the complex signal vector x  
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v   =  radial velocity component of blood flow
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Log likelihood functionLog likelihood function
andand

Cramer Cramer -- RaoRao lower bound  lower bound  
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Maximum Likelihood estimatorMaximum Likelihood estimator
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Cramer Cramer -- RaoRao lower boundlower bound
Approximation  Approximation  
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Cramer Cramer -- RaoRao lower boundlower bound
Approximation  Approximation  
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Signal simulation modelSignal simulation model
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Frequency 2.5 MHz
Beam width 3 mm
Pulse length 2 mm
PRF 5 kHz
packet size 10 samples
Signal level 20 dB
Clutter level 80 dB
Blood velocity 0.2 -0.8 
m/s
Angle blood flow    20 
deg.
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Numerical simulations Numerical simulations 
maximum likelihood estimatormaximum likelihood estimator
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Maximum likelihood estimator Maximum likelihood estimator 
biasbias
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Maximum likelihood estimator Maximum likelihood estimator 
propertiesproperties
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Max. likelihood methodMax. likelihood method
for blood velocity estimationfor blood velocity estimation
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Autocorrelation methodAutocorrelation method
for blood velocity estimationfor blood velocity estimation
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• Clutter Rejection filter formulated as a matrix multiplication
• Includes FIR filter, initialized IIR filter, and regression filter
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FIR filterFIR filter
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A
FIR filter order M=5
Packet size N=10
Output samples: N-M= 5

+  Improved clutter rejection
Increasing filter order 

- Increased estimator variance 
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Clutter suppression by high pass Clutter suppression by high pass 
filteringfiltering
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Polynomial regression filterPolynomial regression filter
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Clutter suppression by high pass Clutter suppression by high pass 
filteringfiltering
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Blood velocity estimator biasBlood velocity estimator bias
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Blood velocity estimator Blood velocity estimator 
variancevariance
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Conclusion Optimum velocity Conclusion Optimum velocity 
estimationestimation

•• ML estimator is unbiased, but probably not minimum ML estimator is unbiased, but probably not minimum 
variancevariance

•• Polynomial regression filter showed estimator variance Polynomial regression filter showed estimator variance 
comparable to the ML estimator when above filter cut off comparable to the ML estimator when above filter cut off 
frequencyfrequency

•• Polynomial regression filter gave substantial bias for low Polynomial regression filter gave substantial bias for low 
velocitiesvelocities

•• FIR filter give no bias, but significant increase in varianceFIR filter give no bias, but significant increase in variance
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Optimum clutter filteringOptimum clutter filtering

1.1. Adaptive filtersAdaptive filters

2.2. Optimum detection of blood vessel in clutter noise Optimum detection of blood vessel in clutter noise 



Frequency ResponsesFrequency Responses
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Signal ModelSignal Model
•• Signal vector for each sample volume:Signal vector for each sample volume:

x = [ x(1), … ,x(N) ]T

•• Zero mean complexZero mean complex GaussianGaussian processprocess

•• Three independent signal components:Three independent signal components:

Signal = Clutter + White noise + 
Bloodx = c + n + b

•• Signal correlation matrix:Signal correlation matrix:

Rx= Rc+ σn
2I + Rb



Optimal Basis of Clutter SpaceOptimal Basis of Clutter Space

•• EigenvalueEigenvalue decomposition of the clutter correlation decomposition of the clutter correlation 
matrix:matrix:

Rcei = λi ei
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•• Use the eigenvectorsUse the eigenvectors eeii as a basis for the clutter space as a basis for the clutter space 
((KarhunenKarhunen--LoeveLoeve transform)transform)

•• This basis provides maximum energy concentrationThis basis provides maximum energy concentration



Adaptive Regression FilterAdaptive Regression Filter

Eigenvalue spectrum of clutter + blood

Clutter filter

λ1 λNλK

En
er

gy

Eigenvectors



Detection of BloodDetection of Blood

A rule for deciding between the two hypotheses:

Coronary artery

The detector is characterized by:
• Probability of false alarm

PF = P(choose H1 | H0 is true)
• Probability of detection

PD = P(choose H1 | H0 is true)

H0: No blood is present
H1: Blood is present



The Optimal Detector IThe Optimal Detector I

The Neyman-Pearson lemma:

PD is maximized under the constraint
PF ≤ α by a likelihood ratio test (LRT)
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The Optimal Detector IIThe Optimal Detector II

For a Gaussian signal, the LRT can be simplified to:

2)( Axx =l η><
H0
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where A=( I−(I+L)−1 )1/2 E*T , and E and L are the 
solution of the generalized eigenvalue problem

RbE=Rx|H0 
EL



The Optimal Detector IIIThe Optimal Detector III

A || ⋅ ||2x
Clutter filter Power calc.

> γ

< γ

H1

H0

The same structure as conventional
color flow systems, but signal dependent
filter matrix A



Detector Performance IDetector Performance I

•• The detection performance is summarized in a receiver The detection performance is summarized in a receiver 
operating characteristic (ROC)operating characteristic (ROC)
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Detector Performance IIDetector Performance II
•• ll((xx) is a sum of exponentially distributed variables) is a sum of exponentially distributed variables
•• PPDD and and PPFF is equal to:is equal to:
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Data AcquisitionData Acquisition

Acquisition parameters
Center freq.
PRF
Rad. samp. freq.
Temp. samples

5.7 MHz
5 kHz
2 MHz

9

•• Digital RF data recorded Digital RF data recorded 
with GEwith GE VingmedVingmed
Ultrasound System Five Ultrasound System Five 
ultrasound scannerultrasound scanner

•• ComplexComplex basebandbaseband
signals transferred to signals transferred to 
external computer for external computer for 
processingprocessing

Thyroid gland



Signal CharacteristicsSignal Characteristics
•• The correlation matrix is estimated by spatial averaging The correlation matrix is estimated by spatial averaging 

in a region with uniform motion:in a region with uniform motion:
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•• Estimated signal parameters:Estimated signal parameters:

•• Mean probe movement:Mean probe movement: 1.0 cm/s1.0 cm/s
•• Clutter to white noise ratio:Clutter to white noise ratio: 52 dB52 dB

•• Blood signal:Blood signal:
•• Modeled as a single frequency signalModeled as a single frequency signal
•• Blood signal to white noise ratio set to 6 dBBlood signal to white noise ratio set to 6 dB



ROCsROCs for the Different Filtersfor the Different Filters
Blood velocity = 10 cm/s Blood velocity = 20 cm/s
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Image ImprovementImage Improvement

Polynomial regression filter

Example of 
image 
improvement 
with adaptive 
regression filter

Adaptive regression filter



Conclusions Clutter filterConclusions Clutter filter

•• Polynomial regression filters and projection initialized IIR Polynomial regression filters and projection initialized IIR 
filters have similar performance and are best among the filters have similar performance and are best among the 
nonnon--adaptive filtersadaptive filters

•• The computational complexity of the projection initialized The computational complexity of the projection initialized 
IIR filter is equal to the regression filter IIR filter is equal to the regression filter 

•• The adaptive regression filter has close to optimum The adaptive regression filter has close to optimum 
performanceperformance



Spatial and temporal averagingSpatial and temporal averaging
Signal samples from M points in time/space 
with identical statistical properties
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How to combine these for optimum detection and velocity estimation?



Spatial and temporal averagingSpatial and temporal averaging

Joint probability function (uncorrelated signals)
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Spatial and temporal averagingSpatial and temporal averaging
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are sufficient statistics for the detection / estimation problem

This means that the optimum detector, as well as min. variance estimators
for signal power, mean frequency, and bandwidth, 
are a function of the covariance estimates



Temporal averaging for mean Temporal averaging for mean 
frequency estimatorfrequency estimator
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k=1 : 4, uncorrelated signal packets

Example:

Effect of averaging R1 :

Variance of angle(R1)
reduced by factor 24!

Effect of averaging angle(R1):

Variance reduction factor=4



Spatial/temporal averagingSpatial/temporal averaging
summarysummary

•• Efficient variance reduction of signal power, mean Efficient variance reduction of signal power, mean 
frequency and bandwidth can be achieved by frequency and bandwidth can be achieved by 
averaging data from uncorrelated signal segments.averaging data from uncorrelated signal segments.

•• Optimum variance reduction is achieved by averaging Optimum variance reduction is achieved by averaging 
the complex correlation estimates before calculating the complex correlation estimates before calculating 
the spectral parametersthe spectral parameters



Further reading/workFurther reading/work

Internet-site for this course:

http://www.ifbt.ntnu.no/~hanst/flowmeas02/index.html

Textbooks
Jørgen Arendt Jensen: 
Estimation of Blood Velocities Using Ultrasound, A Signal Processing 
Approach, 
Cambridge University Press, 1996. http://www.it.dtu.dk/~jaj/book.html

B.A.J. Angelsen: 
Ultrasound Imaging, Waves, Signals, and Signal Processing
http://www.ultrasoundbook.com/ 
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