IEEE Ultrasonic symposium 2002

Short Course 6: Flow Measurements

Hans Torp Department of Circulation and Medical Imaging NTNU, Norway

Internet-site for short course: <u>http://www.ifbt.ntnu.no/~hanst/flowmeas02/index.html</u>

Lecture 3: Color flow imaging

Color flow imaging

- Estimator for velocity and velocity spread power, mean frequeny, bandwidth
- Color mapping and visualization
- Clutter filtering
- Scanning strategies

2D Color flow imaging

1. Limited information content in the signal, i.e. short observation time, low signal-to-noise ratio, and low Nyquist velocity limit.

2. Insufficient signal processing/display. Full spectrum analysis in each point of the sector is difficult to visualize.

Signal power:

$$P = \int_{-\pi}^{\pi} d\omega G(\omega)$$

Mean frequency:

Bandwidth:

$$\omega_1 = \frac{1}{P} \int_{-\pi}^{\pi} d\omega \omega G(\omega)$$

$$B = \sqrt{\frac{1}{P} \int_{-\pi}^{\pi} d\omega (\omega - \omega_1)^2 G(\omega)}$$

Taylor expansion of exp-function

Autocorrelation method

$$R(1) \approx P e^{i\omega_1} \{ 1 - \frac{1}{2} B^2 \}$$

$$\hat{R}_{N} = \frac{1}{N} \sum_{k=1}^{N} z(k+1) z(k)^{*}$$

$$P = R(0)$$

$$\omega_1 \approx \arg\{R(1)\}$$

$$B \approx \sqrt{2} \cdot \sqrt{1 - \frac{R(1)}{R(0)}}$$

$$\hat{P} = \hat{R}_N(0)$$
$$\hat{\omega}_1 = \arg\{\hat{R}_N(1)\}$$
$$\hat{B} = \sqrt{2} \cdot \sqrt{1 - \frac{\hat{R}_N(1)}{\hat{R}_N(0)}}$$

Power, meanfreq., bandwidth derived from sample mean autocorrelation estimator

Autocorrelation method

Scatter diagram of the autocorrelation estimator with lag m=1 for three different signals. To the right, a narrow band signal with center frequency $\omega_1 = \pi/2$ to the left, a slightly more broadband signal with $\omega_1 = 3\pi/2$, and in the middle, high-pass filtered white noise.

Estimation error is minimum when correlation is maximum

Correlation magnitude

Matlab-demo: AcorrEst.m

Estimator properties

$$P_N = R_N(0) = \frac{1}{N} \sum_{k=1}^N |z(k)|^2$$

$$Var(P_N) \approx \frac{P^2}{BN}$$

$$\hat{R}_{N} = \frac{1}{N} \sum_{k=1}^{N} z(k+1) z(k)^{*}$$
$$\hat{\omega}_{1N} = angle(\hat{R}_{N}(1))$$

$$Var(\omega_{1N}) \approx \frac{B^2}{N}$$

Normalized Autocorrelation function

 $\rho(1) = R(1) / R(0)$

Color mapping types

Power Doppler (Angio) Brightnes ~ signal power

Color flow

Brightnes ~ signal power Hue ~ Velocity

Color flow "Variance map"

Hue & Brightnes ~ Velocity Green ~ signal bandwidth

B-flow

Doppler signal power added to B-mode image

Color scale for velocity and - spread

Color flow imaging Mitral valve blood flow

Normal mitral valve

Stenotic mitral valve

Autocorrelation method Sensitive to clutter noise

Phase angle of R(1) substantially reduced due to low frequency clutter signal Clutter filter stopband much more critical than for spectral Doppler

How to perform clutter filter in color flow imaging?

Beam k-1

Beam k

Approaches to clutter filtering in color flow imaging

- IIR-filter with initialization techniques
- Short FIR filters
- Regression filters

General Linear Filters

 A general linear filter is described by a matrix multiplication of the N - dimensional signal vector x In color flow imaging N=packet size (number of pulses per beam)

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

- The matrix rows are a set of (possibly) different FIRfilters for each time instant
- Definition of frequency response function:

$$\boldsymbol{H}_{o}(\boldsymbol{\omega}) = \frac{1}{N} \|\boldsymbol{A}\boldsymbol{e}_{\boldsymbol{\omega}}\|^{2} \quad \text{where} \quad \boldsymbol{e}_{\boldsymbol{\omega}} = \begin{bmatrix} 1 & e^{i\boldsymbol{\omega}} \cdots e^{i(N-1)\boldsymbol{\omega}} \end{bmatrix}^{T}$$

FIR Filters

Frequency responses, order = 5

- Discard the first *M* output samples, where *M* is equal to the filter order
- Improved amplitude response when nonlinear phase is allowed

IIR Filters

- Matrix formulation of IIR filter: $\mathbf{y} = \mathbf{C} \mathbf{v}(0) + \mathbf{D} \mathbf{x}$
 - **v**(0) is initial filter state
- Initialization techniques:
 - zero:
 - step:
 - projection:

 $\mathbf{v}(0) = \mathbf{0}$ $\mathbf{v}(0) = \mathbf{x}(0) \, \mathbf{v}_{step}(\infty)$ $\mathbf{v}(0) = - (\mathbf{C}^{T} \, \mathbf{C})^{-1} \, \mathbf{C}^{T} \, \mathbf{B} \, \mathbf{x}$

Highpass IIR Output Transient

IIR Zero and Step Initialization

- Very poor stop-band attenuation
- A more sophisticated initialization technique is needed

Chebyshev order 4, N=10

IIR Projection Initialization

• The signal component in the transient subspace is removed

$\mathbf{A} = (\mathbf{I} - \mathbf{P}_{\text{transient}}) \mathbf{B}$

• Sufficient stop-band width at the cost of increased transition width

Chebyshev order 4, N=10

Regression Filters

 Subtraction of the signal component contained in a *K*-dimensional clutter space:

 $\mathbf{y} = \left(\mathbf{I} - \sum_{i=1}^{K} \mathbf{b}_{i} \mathbf{b}_{i}^{H}\right) \mathbf{x}$

Fourier Regression Filters

N=10, clutter dim.=3

Polynomial Regression Filters

Frequency Responses

Other quality measures for clutter filters than the frequency response?

Regression filter bias

Magnitude and phase *frequency response* Polynomial regression filter *packet size* = 10, *polynom order* 3.

Severe bias in bandwidth and mean freq. estimator below cutoff frequency.

How to image low velocity flow

- Long observation time needed
- Obtained by incresed packet size or lower PRF
- Beam interleaving permits lower prf without loss in framerate

scanning direction **Color flow scanning strategies** time **B-mode scanning Electronic scanning Mechanical scanning**

+ No settling time clutter filter- low frame rate

Electronic scanning Packet acquisition - Settling time clutter filter +flexible PRF without loss in frame rate

continuous acquisition

- low PRF (=frame rate)

+ High frame rate

+ no settling time clutter filter

Color flow imaging with a mechanical probe

 $\mathbf{v} = \mathbf{W} * \mathbf{F} \mathbf{R}$

Virtual axial velocity: vr= v*cotan(φ)

Example:Image widthW = 5 cmFrame rateFR = 20 fr/secAngle with beam $\phi = 45 \text{ deg.}$ Sweep velocityv = 1 m/s

Virtual axial velocity: vr= 1 m/s

vr > max normal blood flow velocities!

Color flow imaging with a mechanical probe

 $\mathbf{v} = \mathbf{W} * \mathbf{F} \mathbf{R}$

-0.06

-0.04 -0.02

Clutter signal bandwidth: 2*N*FR

n.

Effective number of beams: N = W/b

Frame Rate: FR

Frequency components < fc removed | Clutter filter cutoff frequency: fc > N*FR

0.02

0.04

0.06

Minim	um detect	table Dopp	ler shift		
Clutter filter cutoff frequency: fc > N*FR (transit time effect mechanical scan)					
'rame rate	FR =1 Hz	$\mathbf{FR} = 10 \ \mathbf{Hz}$	FR=20 Hz		
Vidth (# beam	s)				
1=30	30 Hz	300 Hz	600 Hz		
N=70	70 Hz	700 Hz	1400 Hz		

Cardiac flow imaging: fo= 2 MHz, 15 mm aperture, beamwidth 3 mm 30 beams covers the left ventricle fc = 600 Hz ~ 0.21 m/sec. lower velocity limit

Color flow imaging with a mechanical probe

v = W * FR

Reflected wave does not hit the transducer

Max Dopplershift 600 Hz ~ 0.21 m/sec

Atlanta, GA april 1986

Vingmed, introduced *CFM* The first commercial colorflow imaging scanner with mechanical probe

> Horten, Norway september 2001

GE-Vingmed closed down production line for *CFM* after 15 years of continuous production

Minimum detectable Doppler shift

Clutter filter cutoff frequency: fc > N*FR

Frame rate	FR =1 Hz	$\mathbf{FR} = 10 \ \mathbf{Hz}$	FR=20 Hz
Width (# beams)			
N=30	30 Hz	300 Hz	600 Hz
N=70	70 Hz	700 Hz	1400 Hz

Periferal vessel imaging with fo= 10 MHzMechanical scanning:fc = 1400 Hz ~ 108 mm/sec.Electronic scanning:fc = 30 Hz ~ 2.3 mm/sec.Packet acquisition (P=10):Frame rate = 35 frames/secContinuous acquisition:Frame rate = 350 frames/sec

Combining tissue and flow Continuous sweep acquisition

