IEEE Ultrasonic symposium 2002

Short Course 6: Flow Measurements

Hans Torp Department of Circulation and Medical Imaging NTNU, Norway

Internet-site for short course: <u>http://www.ifbt.ntnu.no/~hanst/flowmeas02/index.html</u>

Lecture 2: PW and CW Doppler

Pulsed and continuous wave Doppler

- Dopplershift from moving scatterers
- Stocastic signal model
- Clutter filtering
- Spectrum analysis
- Two dimensional signal model
- Methods to resolve aliasing

Blood velocity calculated from measured Doppler-shift

$f_d = 2 f_0 v \cos(\theta) / c$

$v = c/2f_0/cos(\theta) f_d$

- fd: Dopplershift
- fo: Transmitted frequency
- v: blood velocity
- θ : beam angle
- c: speed of sound (1540 m/s)

Continuus Wave Doppler

Pulsed Wave Doppler

Matlab: pwdoppler.m

Signal from all scatterers within the ultrasound beam

Signal from a limited sample volume

Signal from a large number of red blood cells add up to a Gaussian random process

Definition of Complex Gaussian process

$$p(\mathbf{z}) = (2\pi)^{-n/2} |\mu|^{-1/2} e^{-\frac{1}{2}z^{\mathrm{T}}\mu^{-1}\mathbf{z}}$$

signal vector $z = z(1), z(2), \dots, z(N)$
Covariance matrix $\mu = \langle z^{\mathrm{T}} z \rangle = \{\langle z(k) * \cdot z(n) \rangle \}_{k,n}$
 $\langle - \rangle$ means expected value (ensemble average)
Note that: $\langle z(k) \cdot z(n) \rangle = 0$

Stationary Complex Gaussian process

Autocorrelation function $R(m) \equiv \langle z(n) * z(n+m) \rangle m = 0, \pm 1, \pm 2, \dots$

Power spectrum

$$G(\omega) \equiv \sum_{m} R(m) e^{-i\omega m} ; -\pi < \omega < \pi$$

Autocorrelation function = coeficients in Fourier series of G

$$R(m) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\omega G(\omega) e^{i\omega m}$$

Power spectrum estimate Statistical properties

Power spectrum estimate:

$$G_N(\omega) = \frac{1}{N} |Z_N(\omega)|^2$$

$$Z_N(\omega) = \sum_{m=-\infty}^{\infty} w_N(m) z(m) e^{-i\omega m}$$

Expected value:

$$< G_N(\omega) >= \frac{1}{2\pi} \int_{-\pi}^{\pi} d\lambda |W(\lambda)|^2 G(\omega - \lambda)$$

$$W(\omega) = \sum_{m} w_N(m) e^{-i\omega m}$$

Power spectrum estimate Statistical properties

Power spectrum estimate:

$$G_N(\omega) = \frac{1}{N} |Z_N(\omega)|^2$$

$$Z_N(\omega) = \sum_{m=-\infty}^{\infty} w_N(m) z(m) e^{-i\omega m}$$

$$\operatorname{cov}(G_{N}(\omega), G_{N}(\omega + \Delta)) = \left| \frac{1}{2\pi N} \int_{-\pi}^{\pi} d\lambda W(\lambda) W^{*}(\lambda - \Delta) G(\omega - \lambda - \Delta) \right|^{2}$$

Covariance:

$$=\begin{cases} < G_N(\omega) >^2 & \text{when } \Delta = 0\\ 0 & \text{when } |\Delta| > 1/N \end{cases}$$

Computer simulation of Complex Gaussian process

1.Complex Gaussian white noise Zn(0),...,Zn(N-1)2. Shape with requested power spectrum: $Z(k)=\sqrt{G(2\pi k/N)} Zn(k)$; k=0,...,N-1 3. Inverse FFT: z(n) = ifft(Z)

 $< |Z(w)|^{2} >= G(w)|Zn(w)|^{2} = G(w); \text{ for } w = 2\pi k/N$

Power spectrum for z(n): (smoothed version of G(w))

$$G_Z(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\lambda |W(\lambda)|^2 G(\omega - \lambda)$$

Autocorrelation function:

$$R_z(m) = Tri(m) \cdot R(m)$$

Computer simulation of Complex Gaussian process

 The power spectrum of the simulated signal is smoothed with a window given by the number of samples N

 The autocorrelation function of the simulated signal Rz(m)= 0 for m>|N|

Matlab: CsignalDemo.m

Properties of power spectrum estimate

- Fractional variance = 1 independent of the window form and size
- $G_N(\omega_1)$ and $G_N(\omega_2)$ are uncorrelated when $|\omega_1 \omega_2| > 1/N$
- Increasing window length N gives better frequency resolution, but no decrease in variance
- Smooth window functions give lower side lobe level, but wider main lobe than the rectangular window
- Decrease in variance can be obtained by averaging spectral estimates from different data segments.

Doppler spektrum

Clutter noise in spectral Doppler

Rectangular window

Hamming window

High pass filter

Matlab: Dopplerspectrum.m

Doppler spectrum analysis: Different velocities separated in frequency

Nyquist limit in Pulsed wave Doppler

Nyquist-limit

Doppler spectrum Subclavian Artery

Velocity waveform restored by stacking

Signal from moving scatterer

2D Spectrum Subclavian artery

Velocity matched spectrum algorithm

Pulse no

NTNU, Norway

Blood velocity spectrum Subclavian Artery

Conventional spectrum

Velocity matched spectrum

CW (Continuos Wave) Doppler

Doppler spectrum contains velocities from the entire beam

PW (pulsed Wave) Doppler

SNR considerations PW Doppler

Summary spectral Doppler

- Complex demodulation give direction information of blood flow
- Smooth window function removes sidelobes from cluttersignal
- **PW Doppler suffers from aliasing in many cardiac** applications
- Aliasing can be resolved by velocity matched spectrum, if laminar flow, and small angle between beam and velocity vector
- SNR increases by the square of pulse length in PW Doppler