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Kvantitative Doppler-m̊alinger fra farge-Doppler ved bruk av adaptiv
signalprosessering

Medisinsk ultralyd er et viktig verktøy i obstetrikk for å vurdere mors helse
og fosterets utvikling gjennom svangerskapet. Doppler-ultralyd brukes for å
estimere blodstrømshastigheter og i svangerskap kan Dopplerm̊alinger fra blant
annet navlesnoren avsløre risikosvangerskap. Ultralydskannere er relativt billige og
svangerskapsultralyd er et vanlig tilbud til gravide i industrialiserte land, mens det i
utviklingsland er mangel p̊a b̊ade ultralydskannere og kvalifiserte operatører.

Målet gjennom doktorgradsarbeidet har vært å utvikle Doppler-metoder som kan
effektivisere arbeidsflyt og gi kvantitative Dopplerm̊alinger automatisk, spesielt for
uerfarne operatører. Metodene skal være implementerbare ogs̊a p̊a billige, uvanserte
skannere som ofte er aktuelle for utviklingsland. Farge-Doppler brukes i dag som en
kvalitativ metode som visualiserer blodstrøm. I dette arbeidet har de kvantitative
mulighetene til farge-Doppler blitt undersøkt, spesielt med tanke p̊a nøyaktighet og
bilderate. N̊ar flere avbildningssekvenser brukes samtidig (duplex/triplex mode),
synker bilderaten drastisk, noe som kan motvirkes ved å avbilde et mindre omr̊ade
og bruke mindre data til hastighetsestimering. For å unng̊a triplex-sekvenser, ble det
dermed først undersøkt om adaptiv spektralestimering kunne brukes til å estimere
middelhastigheten til blodstrømmen slik som i farge-Doppler. Det ble vist at dette
kunne gjøres selv uten å m̊atte filtrere bort vevssignalet først, noe som ga mer
nøyaktige hastighetsestimat for de lavere blodstrømshastighetene som ellers ville blitt
ødelagt av vevsfilteret ved bruk av farge-Doppler.

For å effektivisere arbeidsflyt og unng̊a duplex/triplex-sekvenser, er det deretter
utviklet en metode som gir hastighetsspekter fra alle punkt i farge-Dopplerbildet ved
hjelp av adaptiv spektralestimering og romlig midling. I tillegg ble det utviklet
en metode for å estimere envelopen til hastighetsspektrene for å lettere finne
maksimumshastigheter og relevante Dopplerindekser.

Den siste metoden som er presentert i dette doktorgradsarbeidet prøver å minimere
spredning i hastighetsspekteret for å unng̊a overestimering av maksimumshastigheter.
Metoden gir hastighetsspekter av høy kvalitet basert p̊a f̊a datapunkt som er forenelig
med farge-Doppler. En ultralydskanner med en kombinasjon av metodene som er
presentert i denne avhandlingen, vil oppn̊a en forbedret farge-Doppler-metode med
mulighet for kvantitative blodstrømsm̊alinger. Metoden vil være enkel å ta i bruk og
kan redusere variasjoner i m̊alinger og mellom operatører.
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Abstract

Medical ultrasound is an essential tool used routinely in obstetrics for assessing
fetal and maternal health. In particular, Doppler ultrasound and estimation of
relevant Doppler indices are crucial for identifying high risk pregnancies. Technological
advancements have made ultrasound systems relatively cheap and available for the
general population in developed countries. Due to economic hardship in developing
countries, however, both ultrasound scanners equipped with Doppler capabilities and
qualified personnel in the field of obstetrics are lacking.

The work presented here is aimed at providing Doppler methods that can
facilitate efficient work flow and automated quantitative analysis, in particular for the
inexperienced user, and that can be implemented on low/mid-end ultrasound scanners.
Specifically, the quantitative abilities of color flow imaging (CFI) were investigated,
where the accuracy of blood velocity estimation and trade-off towards frame rate was
investigated. The time-sharing approach in duplex and triplex imaging modes, where
acquisition of data for each mode is interleaved, limits the amount of available data for
blood velocity quantification. This decreases the frame rate, robustness of the velocity
estimates and the region where the velocities are estimated. A method that employs
adaptive spectral estimation methods was proposed for mean velocity estimation in
CFI without prior clutter filtering. It was shown that the method could decrease the
bias of the estimates in the transition region of the clutter filters where low blood
velocity estimates are corrupted.

In order to avoid switching between the scanning modes during examination,
and to provide quantitative analysis of the blood flow anywhere on the color flow
image, a method was proposed where the velocity spectra are estimated using
adaptive spectral estimators by utilizing 2-D spatial averaging. In addition, a spectral
envelope estimation method was developed to estimate the maximum velocities and
provide Doppler index estimation. The methods were evaluated with string phantom
experiments and in vivo acquisitions; it was shown that robust estimates could be
achieved with limited number of available samples as in conventional CFI (8-16).

Finally, a method to decrease spectral broadening in quantitative analysis was
proposed to alleviate overestimation of maximum velocities. The method requires
fewer samples than previous methods to achieve high spectral resolution and can
potentially be used with conventionally acquired CFI data. A system that combines
all the proposed methods can provide improved mean velocity estimates and more
easy-to-use analysis with a potential to decrease intra/inter-observer variability.
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Chapter 1

Introduction

The introduction of medical ultrasound has changed the way diagnoses are made in
various fields in medicine. Today it is an essential tool used routinely in specialities
like cardiology, obstetrics and emergency medicine. The technology has gone through
a great evolution following advancements in hardware design and signal processing
techniques. The developments in sonar (sound navigation and ranging) and radar
(radio detection and ranging) led to the idea of using ultrasound on the human body
for treatment and diagnostic purposes [1]. The pulse-echo technique employed in radar
was later applied using ultrasound waves to examine the human body. In radar, pulsed
electromagnetic waves are transmitted through a transmitter and the reflected waves
from an object picked up by the receiver are used for estimation of the object’s location
and speed. A basic application of this technique in medical ultrasound is the A-mode
(amplitude mode) display where the amplitude of the scattered wave is displayed
versus depth. It was used on the human body in the late 1940s and early 1950s [2–5].
This paved the way to the generation of B-mode (brightness mode) ultrasound images
where the pulses are transmitted in different directions to cover a 2-D region and the
amplitude of each reflected wave is represented by the brightness of a dot in the image
for visualization of anatomical structures [6, 7].

As for the investigation of the moving targets in the human body, I. Edler and
C.H. Hertz, in Sweden in 1953, probed the human heart motions using a flaw detector
which was based on the pulse-echo technique [8, 9]. Shigeo Satomura, published his
method for inspection of cardiac functions by utilizing the Doppler effect; his device
was the first Doppler ultrasound device used for medical diagnostics [10,11]. The first
ultrasound application in the field of obstetrics and gynaecology was published by Ian
Donald, John McVicar and Tom Brown in 1958; they investigated abdominal masses
and published the first ultrasound images of the fetus [12]. The first ultrasonic Doppler
application in this field was the detection of the fetal heart movement published in
1964 [13].

Improvements in the electronics resulted in the development of real-time ultrasound
scanners and diagnostic use of ultrasound became widespread. In the 1980s, color
flow imaging (CFI) was introduced where the mean blood velocities estimated in
a 2-D region were mapped to colors and overlaid on B-mode images [14, 15]. The
method known as the autocorrelation method is used for estimation of mean blood
velocities in most commercial ultrasound imaging systems [16]. In CFI, several pulses
are transmitted in one direction with a fixed time interval called the pulse repetition
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1.1. The UMOJA Project

time (PRT), and the number of pulses transmitted in each direction is usually referred
to as the ensemble length or packet size and will be used interchangeably in this work.
The packet size is usually kept low (8-16 samples) in order to cover a large spatial region
at reasonable imaging frame rates. This trade-off sets a limit to the achievable color
flow image quality in terms of robustness and estimated velocity span; the estimates
within the packet have high variance and the low number of samples makes clutter
filtering challenging. The echoes from the stationary or near stationary tissue can be
20-80 dB stronger than the signal from blood and must be attenuated before velocity
estimation. Filters used for attenuation have a certain transition band between the
stop band and pass band region. It is desired to keep the transition region narrow
and have sufficient stop band attenuation in order to remove the clutter completely
while estimating the blood velocity without bias. However, generating such a filter
is not straight forward, resulting in an attenuation of the low blood velocities in the
transition band.

Since the introduction of CFI, many data acquisition and processing techniques
have been proposed to estimate the mean blood velocities [17–24]. Combination of
broad beams and parallel beamforming can be used to cover larger areas for each
transmit event than is possible with focused, line-by-line imaging. When used for
color flow imaging, these methods can increase the frame rates and the packet size
substantially. Methods such as ultrafast Doppler imaging that employs broad transmit
waves allow for estimation of the whole spectrum of blood flow velocities anywhere in
the image [17]. Conventionally, spectral estimation is done by transmitting additional
narrow bandwidth pulses with low PRT, and the velocity spectrum is provided at
one sample volume location. This mode is referred to as pulsed wave Doppler (PW-
Doppler), and is the main modality used for quantification of blood velocities in the
clinic. The advantages of parallel beamforming come with the cost of decreased
contrast and lateral resolution as well as increased data processing and acquisition
workload. Therefore, high quality real time ultrafast imaging applications are realized
on high-end and costly ultrasound scanners for the time being [25].

1.1 The UMOJA Project

Reducing maternal and child deaths is a global priority. The levels of maternal and
perinatal mortality are beyond acceptable, around 303 000 women [26] die and 2.6
million babies are stillborn [27] every year. Most of these deaths could be prevented, as
the health-care solutions to prevent or manage complications are well known. Women
living in rural areas are the least likely to receive the health care needed which causes
a higher maternal mortality rate. Most of all maternal and perinatal deaths occur in
developing countries [28].

Today, Doppler measurements are an integrated part of most ultrasound scanning
systems. Diagnostic ultrasound is the primarily used imaging method in pregnancy
and easily accessed by the general population in developed countries. However,
in rural and remote areas of developing countries diagnostic imaging is often
insufficient or completely lacking [29]. Moreover, the challenging financial situation
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Chapter 1. Introduction

causes investment in cheap, low quality equipment that does not include the
Doppler technology, which is, considered as advanced ultrasonography implemented
on sophisticated equipment [30]. Doppler technology, however, is essential for the
determination of high-risk pregnancies [31] such as hypertension in pregnancy, which
is one of the major factors responsible for maternal death [32].

In addition to lack of diagnostic imaging, the shortage of qualified health
professionals is a major factor regarding the high levels of maternal and child deaths
in low-income countries. The State of the Worlds Midwifery 2014 report of the United
Nations Population Fund (UNFPA) states that there is a need to train and deploy
more midwives, particularly in remote and rural areas of developing countries [28].

The work described in this thesis is a part of the UMOJA project which aims to
develop a low-cost and portable ultrasound imaging system that is easy to use for the
inexperienced user, and specifically designed for operation in challenging rural areas
of developing countries. Ultrasound scanners have become more portable and durable
over the years and are relatively cheap compared to other diagnostic imaging methods.
Therefore, they are more affordable and can be used in mobile clinics and as point-of-
care ultrasound. Several studies have shown that introducing diagnostic ultrasound
into clinics in rural areas reduces the length of stay and can change the treatment and
surgical plans [33–35] and also has potential to improve the rate of maternal and fetal
mortality [36].

1.2 Aims of study

Doppler imaging is highly useful as qualitative and quantitative analysis tool for
detection of abnormal blood flow and it is the primary imaging modality used in
obstetrics [37]. Currently, the user has to switch between the imaging modes to
maintain the quality of blood velocity estimation or to increase the frame rate.
This is especially challenging for the inexperienced user. The user is not updated
with the current sample volume location when the examination is done in only
PW-Doppler mode. On the other hand, quality of the CFI and the estimated
spectrogram is deteriorated when the different modes are displayed simultaneously.
However, practising diagnostic ultrasound can potentially be simplified if the advanced
signal processing techniques are applied to data acquired with conventional scanning
methods.

The aim of this study has been to develop and evaluate methods that can increase
the quality of mean velocity estimations in CFI and further extend the use of CFI into
more quantitative spectral-Doppler analysis. The objective is to provide improved
quantitative analysis by using conventional CFI scanning, i.e. restricted to few
temporal samples, to approach an automated method for extracting relevant Doppler
indices from velocity spectra. The overall aim is to help to increase the efficiency of
work flow and the quantitative abilities of ultrasound systems, with a particular focus
on the low/mid-end range systems, in order to enable the use of diagnostic ultrasound
for inexperienced users.

Conventionally, a time sharing approach is used for data acquisition and display
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1.3. Previous work

of two (duplex scanning) or three (triplex scanning) modes simultaneously, meaning
that data acquisition for each mode is interleaved. Focused transmissions with
different transmit and receive settings are employed for each type of acquisition. Each
transmission is further optimized for the information to be extracted. A trade-off here
is the data acquisition rate which affects the frame rate, the quality and the span of
velocity estimation as well as the size of the region of interest (ROI).

Data adaptive spectral estimators have been applied to medical ultrasound for
velocity spectrum estimation and have been shown to achieve high spectral resolution
and suppression of side lobes using fewer samples compared to conventional techniques.
In this work, we utilize these advantages to extract more information from the data
acquired with conventional CFI scanning schemes. The overall aims of this study can
be summarized as follows:

• Investigate whether modern data adaptive signal processing techniques can be
used to improve the mean velocity estimation in CFI

• Investigate whether data adaptive spectral estimators can be used to provide
useful spectral information from conventional color-Doppler acquisitions

• Investigate whether automatic maximum envelope extraction can be achieved
based on the spectral information from conventional CFI to extract quantitative
indices.

1.3 Previous work

Adaptive spectral estimators are utilized in this work for velocity spectrum estimation.
They have previously been used in radar and sonar applications and have been shown
to improve the spectral resolution and contrast compared to the conventional Welch
method. Allam and Greenleaf [38] showed that the estimation of direction-of-arrival
(DOA) in radar and velocity measurements using PW-Doppler in ultrasound has
similarities and later demonstrated that high resolution techniques can potentially be
used in Doppler ultrasound by using the minimum variance (MV) [39], also referred to
as power spectral Capon (PSC), and the multiple signal classification (MUSIC) [40]
estimators [41]. Received signals in DOA problem can be modelled as narrowband
signals, meaning that the echo signals from the targets can be represented by a single
frequency component. However, in PW-Doppler, the echo signal is wideband due to
factors such as the limited observation time, resulting in band of frequencies. Allam
and Greenleaf also discussed several wide-to-narrow-band conversion methods which
can be used prior to velocity spectrum estimation with narrowband estimators, such
as the Capon estimator.

More recently, Gran et al. [42] adapted the Capon and the amplitude and phase
estimation (APES) methods to spectral Doppler estimation in medical ultrasound
which were termed as blood PSC (BPSC) and blood APES (BAPES). The methods
were evaluated by utilizing slow time (refers to sampling in time from pulse to pulse)
and fast time (refers to sampling in depth for each pulse) averaging and through
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simulation and in vivo experiment. It was concluded that the adaptive spectral
estimators could outperform the Welch estimator for short observation windows. A
more detailed in vivo validation research was later done and confirmed the previous
observations [43].

Gudmundson et al. [44] introduced two iterative data adaptive spectral estimators,
blood iterative adaptive approach (BIAA) and blood sparse learning via iterative
minimization (BSLIM) into ultrasound blood velocity estimation. The methods
showed better performance than the conventional Welch method as well as the
more advanced BAPES and BPSC methods. In addition, the potential for spectral
estimation in more than one sample volume location and using sparse data without
restrictions on the sampling pattern were demonstrated.

The BIAA and the BAPES methods were further evaluated for their use in
multigate spectral Doppler analysis by Ricci [45]. The number of spatial averaging
locations along the fast time was limited to increase the spatial resolution. The
methods could produce high frequency resolution spectra compared to the Welch
method using fewer samples. It was concluded that the time resolution of the
spectrograms as well as the number of locations where spectral profiles are displayed
simultaneously could be increased. Also, the high clutter suppression capabilities of
the methods were confirmed through a flow phantom experiment by estimating spectra
without prior clutter filtering.

Ekroll et al. [46] used the spectral estimation methods BPSC, BAPES, MUSIC
and a projection-based version of the Capon estimator by utilizing only 2-D spatial
averaging (along the lateral and fast time dimensions), i.e., no slow time averaging.
It was shown that the high frequency resolution spectral estimates, especially
for low velocities, could be obtained using observation window lengths equal to
ensemble lengths used in conventional CFI. Moreover, superior clutter suppression
was demonstrated in vivo with vascular and cardiac imaging examples. The Capon
estimator was later evaluated in this setting for obtaining spectral estimates from the
spatial locations anywhere on the color flow image with plane wave acquisitions and
showed promising results [47].

The previous work and observations made led to the idea of utilizing the adaptive
spectral Doppler methods to improve the quanitative abilities of conventional CFI,
i.e., packet based data acquisition with focused transmissions, as described further in
the thesis.

1.4 Thesis outline

The thesis is organized as follows: Section 1.5 summarizes the contributions presented
in this thesis. A more detailed discussion of the results and the connection of the
separate chapters towards the overall aim are given in Section 1.6. This chapter
concludes with a list of publications and written and oral contributions to international
conferences. Chapter 2 gives an overview of the methods that can help the reader
to better understand the work and to make the thesis more self-contained. Finally,
chapters 3-6 present the technical papers that were the outcome of this work.
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1.5 Summary of Contributions

In this section the aims are elaborated in connection to contributions presented in this
thesis and the methods that are used to achieve these aims are briefly presented.

1.5.1 Improving estimation of mean velocities for CFI in time-
shared systems

Interleaved transmissions for B-mode imaging and Doppler modes employed in duplex
and triplex scanning schemes reduces the amount of data available for velocity
estimation. The size of the ROI and the ensemble length in CFI is limited to 8-
16 samples to achieve acceptable frame rates. Clutter filtering with such ensemble
lengths is a challenge in CFI. As a result, the employed filters typically have broad
transition regions where the low blood velocities are also attenuated. This causes
overestimation of the mean velocities or signal loss and dropouts in the low blood
velocity and transverse flow regions. It has previously been shown [43, 46] that data
adaptive spectral estimators are able to suppress clutter and associated side lobes
and provide high spectral resolution using observation window (OW) lengths equal to
typical ensemble lengths used in CFI.

In Chapter 3, the data adaptive spectral estimation methods Capon and blood
iterative adaptive approach (BIAA) were investigated for estimation of mean blood
velocities. Clutter filtering is performed by removing parts of the power spectral
density (PSD) considered as clutter and the mean velocity is estimated directly in the
frequency domain using the altered PSDs. The PSDs were estimated with different
OW lengths and the results were compared to polynomial regression filtering with
suitable filter orders. CFI datasets were simulated with different packet sizes and
signal to noise ratio (SNR) to obtain estimator statistics. Flow phantom, common
carotid artery (CCA) and jugular vein acquisitions were performed to evaluate the
proposed methods further.

It was found that the adaptive spectral estimation methods could reduce the bias
and variance of low blood velocity estimates. The Capon estimator could reduce
the bias substantially in the transition region compared to a conventional filter, and
improved velocity estimations were obtained from the regions close to the artery walls
where low blood velocities are present. Currently, filter cut-off velocities were chosen
manually by inspecting the estimated spectra and the clutter velocities can be highly
varying throughout the cardiac cycle, for instance in cardiac imaging. Therefore,
further work should include developing an adaptive algorithm that sets the cut-off
velocity automatically.

This work is described in the paper ”Adaptive Spectral Estimation Methods in Color
Flow Imaging”, published in IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control, and presented here in its final form. The candidate was the main
contributor to all aspects of the work, except for the data acquisition, for which, Dr.
Tonje Dobrowen Fredriksen and Lars Mølgaard Saxhaug are gratefully acknowledged.
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1.5.2 A method to estimate maximum velocities for quantita-
tive Doppler analysis

Color flow imaging displays the mean velocities for all spatial points in the ROI
combined with the anatomical information from B-mode. It is useful for detection
of abnormal flow and it can be used to navigate for PW-Doppler sample volume
placement. However, CFI is not used quantitatively due to factors such as
angle dependency, limited frame rate and lack of robustness. Diagnostic velocity
measurements and Doppler indices are obtained using the maximum velocity traces
from PW-Doppler. In PW-Doppler, narrow band ultrasound pulses are transmitted
and the time samples are extracted at the depth of interest. The dimensions of the
sample volume where the signal used for velocity spectrum estimation is sampled
depend on the characteristics of the transmit pulse. The scatterers are observed in the
sample volume for a limited amount of time. In addition, the angle between the flow
direction and pulse transmission can limit this time interval even further. This results
in a limited observation time and therefore a broadening of the estimated spectrum.
Delineation of spectrograms consisting of spectra with significant broadening can result
in overestimation of maximum velocities.

Several methods have been proposed to estimate the maximum velocity in presence
of spectral broadening. However, extraction of the spectral envelope is not a
straight forward step after maximum velocity estimation. Spectral envelopes that are
constructed solely on the estimated values may contain erroneous estimates. Therefore,
additional constraints have to be introduced to assess the accuracy of the estimated
maximum velocity.

In Chapter 4, a method is proposed which is a combination of two existing
maximum velocity estimation methods, the Signal Noise Slope Intersection (SNSI) [48]
and an altered version of the Geometric Method (GM) [49], to improve the estimation
of maximum velocities. After the maximum velocities are estimated with the proposed
method, the estimates were classified as valid or invalid and the spectral envelope
is constructed with the valid estimates and further used for calculation of Doppler
indices. Simulations were performed to assess the performance of the proposed method
with varying SNR. The proposed method was compared to several existing maximum
velocity estimation methods using simulated data sets, string phantom and in vivo
acquisitions.

It was shown that improvement was achieved using the combined approach. The
proposed method could yield maximum velocity estimations with low variance and
smooth spectral envelopes. Low sensitivity to SNR and low variance in the Doppler
index estimation suggested that the method could potentially be used for automatic
clinical index calculation.

This work is described in the paper ”Adaptive Spectral Envelope Estimation for
Doppler Ultrasound”, published in IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, and presented here in its final form. The candidate contributed
to the algorithm development, simulations of data sets and writing.
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1.5.3 Extending the use of CFI to quantitative Doppler
analysis

Restrictions on data amount imposed by the time-sharing approach in triplex scanning
mode often result in deterioration of time and/or frequency resolution of PW-Doppler
spectrogram. Therefore, once the sample volume is selected, it is recommended that
the scanner is set to only PW-Doppler mode to maintain a high quality. However, the
probe or the patient movement can easily result in change of sample volume location
and loss of Doppler signal.

In Chapter 5, the Capon spectral estimator was used to estimate the spectrograms
using CFI data sets. This approach can provide triplex display from a duplex
acquisition. The Capon estimated spectrograms were evaluated in terms of spectral
broadening by performing string phantom experiments, where the string velocity,
beam-to-flow angle and the OW length were altered to inspect the broadening effect
with different scenarios. In addition, the significance of this effect on the calculation
of Doppler indices was investigated. Further, in vivo acquisitions from the umbilical
artery, carotid artery and aorta were performed. Results from using the data adaptive
approach and conventional CFI acquisition are compared to spectrograms estimated
by a commercial scanner in only PW-Doppler mode.

The results showed that smooth maximum velocity envelopes could be achieved on
the spectra estimated using packet data by only utilizing 2-D spatial averaging. Similar
Doppler index values were achieved using the high quality PW-Doppler spectrograms
and the CFI Capon estimated spectra. Maximum velocities could be extracted without
significant performance degradation using the Capon estimator. The ROI had to be
restricted to obtain frame rates around 100 Hz, however, similar quantitative result
could be achieved by downsampling the envelope to 52 Hz for an umbilical artery
recording.

This work resulted in the paper ”Quantitative Doppler Analysis using Conventional
Color Flow Imaging Acquisitions”, submitted to IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control, and presented here in its current form. The
candidate was the main contributor to all aspects of the work, except for the data
acquisition, for which MD Eva Tegnander, Dr. Tonje Dobrowen Fredriksen, Lars
Mølgaard Saxhaug and Morten Smedsrud Wigen are gratefully acknowledged.

1.5.4 Decreasing OW length and spectral broadening

As mentioned in section 1.5.2, the spectral broadening due to limited observation time
of the scatterers, causes overestimation in maximum velocity measurements. In 1995,
a method called velocity matched spectrum analysis [50] was proposed to alleviate the
broadening problem by tracking the scatterers in space to increase the observation
time. However, the tracking was performed only in radial direction which limited the
achievable reduction in spectral broadening. Parallel beamforming made it possible
to further develop this method into a 2-D tracking method to further increase the
observation window and reduce the spectral broadening. The 2-D tracking Doppler
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method [51] requires OW lengths of around 30 time samples to achieve acceptable
frequency resolution. As the time samples are extracted by tracking the scatterers,
the tracking length increases with increased scatterer velocity. In the case of flow fields
with high acceleration or complex flow patterns, the stationary assumption will often
be violated for such tracking lengths.

In Chapter 6, an estimator was proposed that combined the 2-D tracking Doppler
and the power spectral Capon estimator to reduce the spectral broadening as well as
the time window that is needed to achieve this reduction. The proposed method was
compared to the 2-D tracking Doppler, the Capon and the Welch’s estimators using
in vivo acquisition from the CCA and flow phantom experiments. It was shown that
the proposed method could achieve a 66% decrease in spectral broadening compared
to the 2-D tracking Doppler method using OW length of 16 samples.

This work is described in the paper ”Data Adaptive 2-D Tracking Doppler”, published
in 2016 IEEE International Ultrasonics Symposium (IUS), and presented here in its
published form. The candidate was the main contributor to all aspects of the work,
except for the data acquisition, for which Dr. Tonje Dobrowen Fredriksen is gratefully
acknowledged.

1.6 Discussion

This work investigated the possibility of increasing the applicability of packet based
Doppler imaging, for improved quantitative analysis and efficient work flow, in
particular for inexperienced users. The focus has been to allow for operation on
low/mid-end ultrasound systems however the same advantages are valid for high-end
scanners. The proposed methods were evaluated through simulations and phantom
experiments and the clinical feasibility was investigated through in vivo recordings
with clinical ultrasound scanners.

Improving the estimation of mean velocities in color flow
imaging

One of the main objectives of this work was to improve the imaging possibilities
with conventional scanning schemes; thus, all proposed methods were evaluated using
conventional color flow imaging ensemble lengths. In Chapter 3, it was investigated
whether improved spectral resolution and side lobe suppression provided by adaptive
spectral estimators could expand the velocity span estimated without bias in CFI. The
Capon and the BIAA estimator could reduce the bias in the transition band of the
polynomial regression filters. However, a higher standard deviation was observed for
the BIAA method for short OW lengths and low SNR. The Capon estimator, however,
could reduce the bias and standard deviation for low ensemble lengths and low SNR,
e.g., packet size 8− 16 and 5 dB SNR, compared to the autocorrelation method with
a suitable order polynomial regression filter. The clutter isolation is affected by the
frequency resolution of the estimates. It was observed that very small packet sizes, e.g.
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6, did not provide sufficient resolution for clutter isolation, especially in case of high
clutter-to-blood-signal ratios. A broad range of velocities were corrupted which shows
that the method is not applicable in this setting. High clutter-to-blood-signal ratio is
also a problem for larger packet sizes, e.g. 12, due to increased side lobe levels, and
results in increased cut-off velocity. However, the severity is not to the same extent
and the method could be still applicable.

The short OW length resulting from the discontinuous acquisition hinders the
possibility of temporal averaging to reduce spectral variance. As the acquisition
schemes were packet based, employment of temporal averaging would reduce the
frequency resolution. In its formulation, the APES method has temporal averaging to
estimate the interference matrix which reduces the effective OW length. Therefore, the
APES method was not investigated in this work. For the other methods, however, the
temporal averaging was compensated by 2-D spatial averaging. The averaging region
size must be chosen carefully: to avoid an ill conditioned covariance matrix, the size
must not be too small; to adhere to stationary assumptions and to be applicable also
for smaller vessels, it must not be too large. The need for spatial averaging increases
with increased packet size in the proposed method in order to avoid ill-conditioned
matrices. Also therefore it is not desired to keep the OW long. However, it was
observed that, the performance improvement of the proposed method with the Capon
estimator is marginal above the conventionally used packet sizes, e.g., > 16. Therefore
the aforementioned trade-off did not affect the mean velocity estimation significantly
for its intended use.

A drawback of this method is that the cut-off of the filter was chosen manually.
However, this can be seen as a common problem with conventional filters as the filter
order is chosen manually as well. In addition, improvement with the Capon estimator
is seen in the presence of low blood velocities. The conventional and the proposed
methods provided similar results for large packet sizes and high SNR, e.g., packet size
16 and 20 dB SNR.

Spectral estimation using color flow imaging data

Chapter 5 presented a method that estimates velocity spectra using CFI data to avoid
additional data acquisition for PW-Doppler, and further provide future opportunities
for simultaneous display of multiple spectra. It was previously suggested that spectral
estimation with the Capon estimator in this setting could yield estimates with sufficient
quality [47]. This work investigated the effect of beam-to-flow angle, OW length and
the limitations brought by different data acquisition settings employed in CFI.

The estimator could decrease broadening and yield comparable results to the
conventional Welch’s method with longer OW length (64) for low velocities, e.g.,
20 cm/s. However, the gain is lost when the correlation length of the signal is
decreased, which was the case for high velocities and large beam-to-flow angles. In
this case, Welch’s method outperformed the Capon estimator (OW length 16), e.g.
for 60 cm/s and 60◦. In addition, Welch’s method provided spectrograms with better
contrast. What could be achieved with Welch’s method with short OW lengths was
also investigated. The need for prior clutter filtering reduces the effective OW length
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even further and the method provided maximum velocity estimates with significant
bias. This shows that the concept is only possible using more advanced spectral
estimators.

The short transmit pulses employed in CFI increases the bandwidth of the
pulse and results in increased spectral broadening when used for power spectrum
estimation. However, the in vivo results recorded from the uterine artery, aorta and
common carotid artery showed that the Capon estimator could yield spectra which
showed similar properties with the continuous PW-Doppler spectra estimated on the
commercial scanner. Comparable peak velocities could be achieved; however, the
estimations had higher variance. Results suggest that the Capon estimator can be used
for spectral estimation with conventional CFI scanning schemes without significant
performance loss. However, a research using different flow patterns is needed before a
generalization of the results can be made.

Advantages of providing the user with an improved triplex mode ultrasound where
quantitative analysis can be done on arbitrary spatial locations simultaneously are
potentially many. Providing spectrograms simultaneously can support more detailed
analysis. For instance, in the case of stenosis, velocity spectra from different regions,
e.g., pre-stenosis and mid-stenosis regions, can be compared. Another advantage is
that the user does not have to switch between modes which is cumbersome and can be
especially difficult for the inexperienced user. The analysis can be done retrospectively
once the required seconds of data are recorded. Moreover, the Doppler indices such
as resistivity or pulsatility index can be estimated automatically in all spatial points
and can be provided to the user using color coding, i.e., for a specific Doppler index,
the index values are color mapped and displayed on a B-mode image. This avoids
the index value’s dependence on the sample volume location and a spatially averaged
index value can be acquired in addition to time averaging. As the maximum velocities
are often used in diagnosis, maximum velocity or peak systolic velocity (PSV) maps
can also be obtained and displayed as color mapped images.

It is difficult to assess the influence of the clutter filter by solely investigating the
color flow image. Estimation of velocity spectra gives a visual feedback on the clutter
filtering effect as well. It is easier to spot the clutter leakage from the filter or removal
of the low velocity blood signals. Additionally, the spectrograms can more easily be
baseline shifted in order to avoid aliasing in the color flow image.

It is known, and also shown in this work, that the beam-to-flow angle affects
the spectral broadening and can cause severe overestimation of maximum velocities.
Therefore the user has to be careful when interpreting the results as the beam-to-flow
angles may be different for different locations in a 2-D color flow image, and a direct
comparison of the spectrograms may lead to inaccurate measurement. To get reliable
results, the user must ensure a beam-to-flow angle smaller than 60◦.

Spectral envelope extraction with CFI data

Quantitative analysis done with PW-Doppler usually requires delineation of spectro-
grams. Maximum velocity estimation as observed by the naked eye ignores the effect
of spectral broadening and can be affected by the dynamic range and gain settings
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on the scanner. Chapter 4 investigated the performance of a proposed algorithm that
aims to estimate the maximum velocities robustly and eliminate false detections to
provide smooth and reproducible spectral envelopes.

Combining the Signal Noise Slope Intersection (SNSI) and an altered version of
the Geometric Method (GM) produced lower variance envelopes than either of the
methods separately. This was due to the replacement of predefined values employed
in the SNSI method with the dynamically estimated values, similar to estimations
included in the GM, and further discarding the false and low quality detections.

First, in Chapter 4, the method was evaluated on the spectrograms generated
with the fast Fourier transform (FFT) algorithm with relatively long (64) OW length.
String phantom, simulation and in vivo results showed low sensitivity to SNR and
variance in the power spectrum. This was also supported by the results of the Doppler
index calculation. It shows that the algorithm can potentially be used for automated
measurement of clinical indices, e.g., pulsatility index.

In the following work presented in Chapter 5, the algorithm was used on the
spectrograms generated with the power spectral Capon estimator with short the OW
lengths, i.e., 8-16 samples as typically used in CFI. The algorithm could provide smooth
spectral envelopes with relatively low time resolution spectrograms. Even though the
main focus of the work was on how the Capon estimator performed with short OW
lengths in terms of broadening, it has also shown how the envelope estimator works
in more challenging scenarios.

One of the challenges of this approach is the lower frame rate of the CFI mode.
The frame rate directly determines the time resolution of the estimated spectrograms.
Depending on the depth and the dimensions of the ROI, the attainable frame rates
can be as low as 20 Hz in conventional CFI. The multi-line acquisition approach was
used in in vivo recordings in order to increase the frame rate in this work. The
acquisition started with a large image in order to choose specifically the main interest
region and later the ROI box was narrowed down. This was done to increase the
frame rate. Frame rates over 100 Hz could be obtained for depths around 12 cm.
Based on these data, it was investigated whether it was possible to decrease the frame
rate and maintain the quantitative analysis quality. It was seen that the frame rate
could be reduced to half (52 Hz) without affecting the qualitative results significantly
for normal umbilical artery flow, e.g., PSV and PI. However decreasing the frame
rate further resulted in more severe underestimation of peak velocities and the low
temporal resolution caused block-like artefacts in the spectrogram. These observations
are valid for a specific velocity profile and need further evaluation with different flow
profiles for generalization. Flow profiles with higher accelerations may cause a faster
deterioration in the analysis performance. An approach to increase the time resolution
of spectrograms and spectral envelope could be stitching bins from different heart
cycles. For instance, detected PSV and end diastolic velocity (EDV) can be used for
aligning the spectral bins and a combined spectrogram can be generated with multiple
heart cycles using with low time resolution spectrograms. However, this requires a
stable heart rate and fixed relative position of the probe and the patient.

12



Chapter 1. Introduction

Decreasing the spectral broadening using short OWs

With both conventional PW-Doppler and the adaptive spectral estimation methods,
the spectral broadening is inevitable, especially for large beam-to-flow angles and high
blood velocities. Both the velocity matched spectrum and the 2-D tracking Doppler
methods require relatively long (around 30 samples) OWs for improved frequency
resolution. The tracking Capon method proposed in Chapter 6 could decrease the
spectral broadening and the OW length needed for this reduction. This was achieved
by filtering the time samples with a narrow band, data adaptive filter with center
frequency around zero as opposed to summation of the time samples as done in 2-D
tracking Doppler. This approach has been used in the power spectral Capon with
filters with different center frequencies. However the improvement was seen mostly
for low velocities since the observation length of the scatterers is limited. Decreased
spectral broadening can facilitate better measurement by improving delineation of
maximum velocities.

Decreasing the number of time samples also decreases the tracking length in
space. Long OWs may violate the assumption of stationarity in space and time which
increases the spectral broadening. Reduced OW length can make this method feasible
with a conventional CFI acquisition where an MLA scheme is employed to cover a
sufficiently large area to perform tracking in 2-D. It was shown that a tracking length
of 0.8 cm was adequate to track scatterers up to 2 m/s when the PRF was 4 kHz.
This was approximately half the length needed for the 2-D tracking Doppler to achieve
similar results. This would be the needed lateral length when the beam-to-flow angle is
90◦. Even shorter lateral lengths can be used to track high velocities in case of smaller
beam-to-flow angles, reducing the required number of parallel acquisition lines. The
tracking length in time was 16 samples which is within the limits of conventional CFI
packet size.

Applicability of the proposed methods

In Chapter 3, the estimator proposed for mean velocity estimation requires estimation
of spectra for each pixel in the color flow image. Real-time implementation of
such a system is not feasible yet for a low-cost ultrasound scanner, especially for
large ROIs. The same applies for the simultaneous display of spectrograms from
different locations. The power spectral Capon estimator is more computationally
demanding than the conventional Welch and the autocorrelation methods. This is
due to the matrix inversion employed in the estimation. The BIAA is even more
computationally demanding as it is an iterative algorithm requiring several matrix
inversions for each output estimate. Offline post-processing may be a short-term
solution, with retrospective analysis of the Doppler data providing a familiar work
flow for the sonographer. The user can be provided with the conventionally generated
color flow image for data acquisition and the user can record the required duration
of data for analysis. A system where the methods proposed in chapters 3, 4 and 5
are used together for qualitative and quantitative analysis would require estimation
of spectrograms only once at each location. The estimated spectra can be used
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for mean velocity estimation, spectral estimation and display of maximum velocity
and automatic Doppler index value maps. To achieve sufficient frame rates, all the
proposed methods in this work can utilize broad beams and multi-line acquisition.
Hardware and processing power required for beamforming all channels simultaneously
is now becoming standard on high-end systems, but not yet in low-cost systems. The
beamforming demands can be alleviated by using limited number of parallel receive
lines.

1.7 Concluding remarks and future work

This work aimed at providing methods to increase the quality and quantitative abilities
of conventional CFI. This thesis work has contributed to the research in adaptive
spectral estimators in medical ultrasound by providing more insight into how data
adaptive spectral estimators (Capon, BIAA) would work with short OW lengths for
qualitative and quantitative Doppler analysis.

It was shown that the power spectral Capon estimator could improve the estimation
of low blood velocities in CFI. In addition, the estimator could provide spectral
estimates with sufficient frequency resolution and side lobe suppression using packet
based data acquisitions. The estimates were used for quantitative assessment of blood
flow and it was shown that useful quantitative parameters, such as PSV and EDVs,
could be extracted.

The proposed methods are computationally more demanding than the conventional
estimation methods. However, increasing processing power of the processing units can
make the real time implementation of these methods feasible on low-cost scanners in
the future. They could potentially provide a more efficient work flow and be used for
automation of the measurements, and to overcome the intra/inter-observer variability
of the measurements, especially for inexperienced users.

The proposed mean velocity estimation method was only evaluated using
continuous plane wave acquisitions in order to use the same acquisitions with different
OW lengths. The method should be assessed further with clinically acquired CFI
data to investigate the impact of CFI transmit settings in mean velocity estimation.
Maximum velocity estimation using CFI data needs further evaluation using different
types of flow conditions. Eventually, a system where the proposed quantitative and
qualitative analysis methods are implemented should be tested clinically, and also then
with inexperienced users and students who are being introduced to medical ultrasound.
Further research should be made in order to investigate the pros and cons of such a
system and whether it can affect the diagnostic ultrasound learning curve positively.

A maximum velocity and spectral envelope estimation method was proposed and
was shown to work with relatively low time resolution spectrograms and with different
spectral estimation methods. It had low sensitivity to SNR and variance in the Doppler
index calculation was low. The results suggest that it can potentially be used in a
clinical setting for automatic envelope extraction and index calculation.

The tracking Capon method was able to alleviate the spectral broadening in PW-
Doppler systems and could improve frequency resolution and decrease the OW length.
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This potentially increases the applicability of tracking-based methods, such as in fields
with complex flow patterns. The ultimate goal of the work is to implement the method
using CFI data recorded with a limited number of acquisition lines. Therefore, a
feasibility study should be performed with clinically recorded CFI data with different
applications, including flow fields with high velocities.

Even though it is suggested here that the methods can help to provide automatic
measurements, further steps have to be taken for this to be realized. The cut-off
velocity of the proposed threshold filter used with the Capon estimator must be set
adaptive to the clutter characteristics for full automation. An automatic baseline shift
method must to be employed in the spectral envelope estimation method to avoid
aliasing in the spectrograms. Finally, further work should include a method that can
estimate the beam-to-flow angle automatically for the tracking Capon method.

1.8 Publication list

In addition to published and unpublished manuscripts included in this thesis, written
and oral contributions have been made to international conferences. Below, a list of
the material to which the candidate has been a contributor to is presented.

Papers included in the thesis

1. Yücel Karabiyik, Ingvild Kinn Ekroll, Sturla H. Eik-Nes, Jørgen Avdal,
and Lasse Løvstakken. ”Adaptive Spectral Estimation Methods in Color Flow
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Chapter 2

Background

This chapter provides the background material that consists of brief presentation of
the methods that have been used throughout this work or methods that will give the
foundation for better understanding this work. Please refer to [1–6] and the references
given in each section for more thorough description of the methods. In addition, a
small discussion on importance of CFI and PW-Doppler in diagnosis is given at the
end of this chapter.

2.1 Medical ultrasound imaging

Sound waves are mechanical waves that are transmitted through pressure changes in a
medium. The compressibility and density differences between different mediums cause
reflection or scattering when the wave travels. Transducers with piezoelectric elements
convert the applied electrical signals into ultrasound waves for transmission and the
echoes received by the transducer are converted to electrical signals by expansion and
contraction of the elements. The time difference between the transmission of a wave
and receiving the backscattered echo can be used for determination of the distances of
interfaces between different mediums from the transducer using the following relation

z =
ct

2
, (2.1)

where t is the time difference and c is the speed of sound and assumed to be constant.
This technique is referred to as echo ranging or pulse-echo technique.

Today, most commercial ultrasound scanners employ array of transducers for
transmission of ultrasound waves [4]. This is done to achieve focusing and steering
of ultrasound waves by creating time delays between each element and applying
different weighting. The sound waves are attenuated by the medium depending on
the frequency of the wave and the medium properties. High frequency ultrasound
waves are attenuated more and therefore the depth of penetration is limited. Focusing
increases the intensity of the ultrasound wave at the focus and deeper structures can
be imaged. The steering of the waves to different directions increases the field of view
(FOV) and objects outside the transducer aperture extents can be imaged [7].
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2.2. Data acquisition

2.2 Data acquisition

In conventional ultrasound scanners, the image generation is done by transmitting
focused ultrasound waves and generating one line of the image per transmit. This
approach has advantages such as high signal-to-noise ratio (SNR) and good resolution,
however, the attainable frame rates is limited by the number of lines needed to form the
image and the propagation velocity of the ultrasound wave. Alternative approaches
have been proposed to increase the frame rate at the expense of SNR and resolution loss
such as synthetic aperture [8,9], diverging wave [10,11] and plane wave imaging [12–14].
Here, the focused transmissions, multi line acquisition (MLA) and plane wave imaging
schemes are presented briefly as they are utilized in this work.

2.2.1 Line-by-line acquisition

In this approach, focused transmissions are used for generation of each line in the
image. The transmit and receive lines are aligned to increase the SNR and resolution.
Focusing of the beam is usually obtained by applying different delay times for each
element of the transducer, however it may also be obtained by placing the elements in
curve or using an acoustic lens [15]. Depending on the application and the transducer
type, the beam can be steered to different directions or a group of transducer elements
(sub-aperture) can be used to construct the image line-by-line.

The transmit beam characteristics are dependent on the transmit aperture size, the
transmit frequency, the pulse length, the focusing depth and the medium properties.
The axial resolution is proportional to the pulse length where pulse length is given by

Lp = Ncyclesλ, (2.2)

where Ncycles is the number of cycles that the transmit signal contains and λ is the
wavelength. The lateral resolution is determined by the beam width which defined as

Df = Fλ/D = F#λ. (2.3)

Df is the effective boundaries of the ultrasound beam at the focus, which is the distance
from the beam axis to a -3 dB drop in pressure amplitude, F is the focus distance
from the transducer, D is the size of the aperture used and F# is the ratio of the focus
depth to aperture size and referred to as F-number. When both transmit and receive
focusing is applied, the two-way F# is given by

F#txrx = (1/F#tx + 1/F#rx)−1, (2.4)

where F#tx and F#rx are the F-numbers on transmit and receive respectively.

2.2.2 Parallel beamforming

Parallel beamforming approaches employ broader transmit beams than that are used in
focused imaging. Several image lines can be generated per transmit due to the fact that
a larger region is insonified. Multi line acquisition (MLA) approach usually employs
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slightly defocused transmits and several receive lines are processed in parallel [13].
Currently, most commercial scanners provide 4 to 16 MLA with hardware beamforming
while some research platforms provide more channels to be processed in parallel
with software implementation. As the number of transmit beams is reduced in this
approach, the frame rate and/or FOV can be increased. This is particularly needed
for 3-D imaging as substantially more transmits are needed to acquire volumetric
data [16].

In plane wave imaging, an unfocused beam is transmitted (F → ∞) insonifying the
whole ROI and all receive lines are generated in parallel [17]. As one image is generated
for each transmit, the frame rates in kHz range can be obtained. The methods that
are based on this approach are often referred to as ultrasfast ultrasound imaging.
Both MLA and plane wave imaging methods come with the disadvantage of reduced
resolution and SNR. It is possible to increase both by having overlapped transmissions
and do coherent compounding [18] or using synthetic transmit beams [19]. Even
though compounding increases the number of transmits for each image generation, the
frame rate can still be substantially higher than line-by-line acquisition with acceptable
image quality.

In addition to disadvantages stated above, the MLA method can introduce artefacts
such as block-like effects [20] and bias when used for velocity estimation [21] and
compounding of plane wave images also acts like low pass filtering and creates bias in
velocity estimation [22].

Figure 2.1 shows an example of three imaging schemes where different number of
receive lines generated for each transmit.

    Transducer

. . .

Transducer

      Plane wave Line-by-line

. . .

Transducer

. . . . . .

         MLA

Figure 2.1: An example of receive lines generated with line-by-line imaging, MLA and
plane wave imaging schemes. More receive lines can be generated for each transmit
using parallel receive beamforming.
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2.3 Color flow imaging

Medical ultrasound is one of the imaging modalities that is used widely for blood flow
imaging. The mean blood velocities can be displayed in 2-D or 3-D along with the
anatomy of the region being displayed as well as the spectrum of blood velocities in a
spatial location in the ROI. The mean velocity inspection is usually done qualitatively
for inspection of abnormal flow due to pathology, e.g., jet flow pattern caused by heart
valve leakage.

Color flow imaging (CFI) displays mean velocities in the ROI combined with the
anatomical information. Conventionally, packet based acquisitions are done for color
flow image generation [23]. A number of consecutive pulses are transmitted for each
line in the image with a given pulse repetition frequency (PRF). The time samples
are extracted by sampling the returned echoes at spatial points within the ROI. Fig.
2.2 shows an example of data acquisition for CFI. The columns represent the transmit
beams (b) which are sampled at different depths (r). Several emissions are performed
for each beam location (along n) and the number of transmits is referred to as packet
size.

b 

n 

r 

Figure 2.2: An example CFI data set. Each column represents a transmit beam (b)
which are sampled at different depths (r). Several beams are transmitted for the same
location (along n).

2.3.1 The autocorrelation estimator

Mean velocities are conventionally estimated by using the autocorrelation estimator
[24]. The method estimates the mean velocity from the phase shifts between
consecutive samples, i.e., lag 1. Let xr,b(n) denote time sample at location b in
the lateral direction and r in the radial direction and emission n, after complex
demodulation. The autocorrelation estimator with averaging in lateral and axial
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dimensions is given by

R̂(1) =
1

RB(N − 1)

R∑
r=1

B∑
b=1

N−1∑
n=1

xr,b(n)x∗r,b(n+ 1), (2.5)

where (.)∗ denotes the complex conjugate, R and B are the number of spatial points
utilized for spatial averaging in radial and lateral directions respectively, and N is the
packet size or ensemble length. These terms are used interchangeably in this work.
The mean velocity is then found by

v̄ =
∠R̂(1)PRFc

4πf0
. (2.6)

where f0 is the transmit center frequency. Fig. 2.3 shows a color flow image from an
obstetric acquisition. Anatomical structures such as uterine wall, placenta and fetal
abdomen and extremities can be seen from the B-mode image while the mean blood
velocity information within the umbilical artery is displayed using colors. The mean
velocity estimates are done within the ROI where the boundaries are shown with the
green curves. The colorbar in the top left corner shows the relation between the colors
and velocity information.

Figure 2.3: An example color flow image where anatomical structures can be seen
in the B-mode image and the mean velocities are color mapped and overlaid on the
B-mode image.

2.4 Spectral Doppler

Spectral Doppler displays the spectrum of velocities available in the location of interest.
For this, a point in space is observed for a certain time interval to extract quantitative

27



2.4. Spectral Doppler

information. In this section only PW-Doppler will be presented as it was utilized in
this work for spectral estimation. Conventionally in PW-Doppler, focused pulses are
transmitted in one direction with a certain PRF and the received echoes are sampled
at the location of interest to extract time samples. The pulse length is relatively long
to increase the sample volume size in order to observe scatterers in a larger region
and increase the observation time and the SNR. The pulse length is around 10 cycles
although it can be up to 40, while this is around 3 cycles for CFI [25]. The frequency
resolution of the estimates depends heavily on the observation time. However, the
observation time is limited by the non-stationary nature of the flow dynamics. The
blood velocity is assumed to be stationary through the observation window (OW)
length. This time interval is usually around 10 ms for arterial circulation while it
can be around 5 ms for fetus imaging due to higher heart rates [26], however OW
lengths less than 2 ms might be required to resolve details in the flow structure [27].
Therefore, short time frequency analysis is done on the extracted data and estimated
frequency spectra are stacked together and displayed as 2-D sonograms with velocity
on the vertical axis and time on the horizontal axis. These plots are also referred to
as spectrograms.

The spectrograms are usually estimated using the Welch estimator [28]. It is a
discrete Fourier transform (DFT) based method that can be implemented efficiently
using the fast Fourier transform (FFT). The observation window is divided into sub-
segments for temporal averaging to reduce the variance and each sub-segment is
multiplied with a windowing/apodization function to reduce the side lobes. However,
the observation window length required for robust and high frequency resolution
estimates is relatively long, i.e., 64-128 time samples every 5 to 10 ms [29]. Therefore,
the quality may degrade when used in duplex or triplex scanning modes due to time
sharing. In addition, rapid changes in the flow may be obscured due to long observation
windows, in other words, low time resolution. The assumption that the data is periodic
outside the window is a limitation of DFT based methods as this assumption is not
realistic [29, 30]. Therefore, estimating the spectra based on finite OW length results
in spectral leakage and smoothing of the spectrum.

The fact that the spectral estimation is done on a windowed part of the signal is
not the only contributor to the broadening of the spectrum in PW-Doppler. The
ultrasound beam has limited sample volume dimensions depending on the pulse
transmit parameters. A single scatterer passing through the sample volume can result
in a spectrum containing band of velocities due to intrinsic spectral broadening. The
broadening in the spectrum may be due to [31,32]

• inhomogeneity of the ultrasound field resulting in amplitude fluctuations in the
returned signal

• changes in the insonation angle throughout the sample volume

• change of scatterer velocities within the observation time or the velocity gradients
within the sample volume

• finite duration of the scatterer observation time due to limited sample volume
dimensions (transit time effect)
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Advanced spectral estimation techniques

There exist many methods for spectral estimation which can provide improved spectra
using fewer time samples than needed for Welch’s method. A set of estimators
which model the acquired data and estimate a set of parameters were shown to
provide improved frequency resolution spectra using fewer time samples. The methods
such as autoregressive (AR), moving average (MA), autoregressive moving average
(ARMA) fall into this category and they are referred to as parametric spectral
estimators [33–36]. The modelling approach eliminates the need for window functions
and the assumption that the autocorrelation sequence is zero outside the window and
these estimators have better statistical stability for short segments of signal. The
disadvantages of these methods are that they are computationally more expensive and
need a priori information to model the data.

Another approach to spectral estimation is generating filters for estimation of power
for each frequency. These methods are referred to as filter bank methods. As the
name implies, the methods are referred to as the data adaptive spectral estimation
methods when the filters are data dependent. It is assumed that the power of the
signal is constant over the passband of the filter and that the filter has gain one in the
passband region and zero in the stop band region [5]. As the data is windowed with
a finite length window, the generated filter orders are limited by the window length.
Filters with sharp transition region have long impulse responses and as a result cannot
be attained with short OW lengths. However, data adaptive methods design filters on
different criteria to suppress the effect of interfering high power frequency components
on the frequency of interest, i.e., passband region, and decrease the spectral leakage.

The velocity matched spectrum analysis method was proposed alleviate the transit
time effect by tracking the scatterers [37]. The method can provide spectra with
improved frequency resolution and lower side lobe levels and suppresses the velocity
ambiguity in PW-Doppler. Focused transmissions are used in this method for
data acquisition. Therefore, the tracking region is bounded by the transmit beam
dimensions and the improvement is achieved for small beam-to-flow angles where the
scatterers are tracked along the beam direction. In order to overcome this limitation,
the extension of this method was proposed where the scatterers are observed in a 2-D
region [38]. A plane wave acquisition scheme was used to evaluate the method and 4
fold reduction in spectral broadening was achieved for 0.82 m/s velocity compared to
the Welch method. The tracking methods work well with flow fields where the flow
is stationary in space and time within the observation region and time as well as in
absence of out-of-plane movement. These assumptions are difficult to meet, especially
when the tracking lengths are long.

Data adaptive filter-bank spectral estimators

This set of estimators generate narrow band, band pass filters for each frequency
component to be estimated. The idea is to estimate the power spectrum using
finite impulse response (FIR) filters that are designed specifically for the data to be
filtered in order to generate high resolution spectra [6]. These methods are initially
implemented for radar and later applied to medical ultrasound. The power spectral
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Capon, the amplitude and phase estimation (APES) method and the blood iterative
adaptive approach (BIAA) have been applied to spectral estimation in PW-Doppler
successfully and were shown to outperform the Welch method [39–41]. These methods
employ general linear estimators for each frequency estimate. The signal xr,b(n) can
be modelled as sum of signals within a grid of velocities as [39,42]

xr,b(n) =

K∑
k=1

αr,b(k)e−j2πfkn + er,b(n), (2.7)

where fk is the normalized frequency with respect to PRF, αr,b(k) is the complex
amplitude of the signal at frequency fk and er,b(n) is zero mean complex white
Gaussian noise with variance σ2. The FIR filter, h, generated for spectral estimation
can be given as

h = [h1h2 · · ·hN ]T . (2.8)

The filter output for frequency fk can be written as

α̂r,b(fk) = hH
fk

xr,b, (2.9)

where hfk filter designed for estimation for frequency fk and α̂r,b is the amplitude
estimate, xr,b is the ensemble with length N which can be expressed as xr,b =
[xr,b(1) xr,b(2) · · · xr,b(N)]T and (.)H represents the Hermitian transpose. The filters
are designed to pass the frequency of interest undistorted which can be stated as

hH
fk

afk = 1 (2.10)

where afk = [1 ei2πfk · · · ei2πfk(N−1)]T is the Fourier vector. In addition, the Capon
estimator minimizes the output power while the APES and the BIAA estimators
minimize the power of the frequency components other than the frequency of interest.
These formulations lead to a constrained minimization problem which can be stated
as

min
hfk

hH
fk

Rhfk s.t. hH
fk

afk = 1 (2.11)

where R is the data covariance matrix for the Capon and the BIAA estimators whereas
it is the covariance matrix of interfering signals and the thermal noise for the APES
estimator. This minimization problem can be solved analytically by using Lagrange
multipliers approach [43]. Let OF (hfk , γ) represent the objective function

OF (hfk , γ) = hH
fk

Rhfk − γ(hH
fk

afk − 1), (2.12)

where γ is the Lagrange multiplier. The minimization of the objective function can
be obtained by setting the gradient of OF (hfk , γ) with respect to hH

fk
to zero

∇hH
fk

OF (hfk , γ) = Rhfk − γafk = 0. (2.13)
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Therefore,

hfk = γR−1afk (2.14)

Later, the derivative of OF (hfk , γ) with respect to γ is set to zero in order to find the
value of the Lagrange multiplier

∂OF (hfk , γ)

∂γ
= 1− hH

fk
afk (2.15)

Substituting (2.14) into (2.15) and solving for γ yields:

γ =
1

aH
fk

R−1afk
(2.16)

Finally, substituting (2.16) into (2.14) gives:

hfk =
R−1afk

aH
fk

R−1afk
(2.17)

The covariance matrix, R is estimated differently for each method. The following
sections present the construction of covariance matrices and the estimation approaches
for the previously mentioned three adaptive spectral estimators.

2.4.1 Power spectral Capon

The Capon estimator designs adaptive filters based on the criteria that the filter
minimizes the output power and passes the frequency of interest undistorted which is
represented by (2.10) [5, 44,45]. The filter output power can be shown as

E[hH
fk

x∗
r,bx

T
r,bhfk ] = hH

fk
RCaponhfk , (2.18)

This minimization problem leads to the solution given by (2.17). RCapon is the sample
covariance matrix and estimated as

R̂Capon = R̂x =
1

RB

R∑
r=1

B∑
b=1

xr,bx
H
r,b. (2.19)

In order to increase the robustness of the estimation and avoid ill conditioned
covariance matrices, the temporal or/and spatial averaging can be used for estimation
of the covariance matrix. The time averaging can be achieved by subdividing the
OW into several ensembles and the spatial averaging can be achieved by extraction of
data from the neighbouring spatial points. The spatial points can be chosen along the
beam for the focused data acquisition while a 2-D region can be used for averaging
when parallel beamforming techniques are employed. Only 2-D averaging is utilized
in (2.19) and also in this work. This is done in order to estimate the spectra on full
ensemble length and keep the frequency resolution high. Finally, the estimator can be
found by substituting (2.17) into (2.18)
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P̂Capon(fk) =
1

aH
fk

R̂
−1

Caponafk

. (2.20)

2.4.2 The APES power spectral estimator

The APES power spectral estimator suppresses the interference from frequency
components other than the frequency of interest and the thermal noise [39, 46]. This
can be also formulated as the signal filtered in a way such that the filtered signal
resembles a sinusoid as closely as possible in a least squares sense. The minimization
problem is given by

min
hfk

hH
fk

Qhfk (2.21)

where Q is referred to as the noise and interference covariance matrix. The solution
to this minimization problem with the constraint in (2.10) is given by (2.17). In this
approach, the ensemble is subdivided into smaller segments for time averaging in order
to enhance the signal of interest and average out the interferences. The covariance
matrix can be estimated as

Q̂ = R̂x −
R∑
r=1

B∑
b=1

gr,b(fk)gH
r,b(fk) (2.22)

where

gr,b(fk) =
1

L

L∑
l=1

x̃r,b(l)e
−ifk(l−1). (2.23)

The number of sub-segments is L and x̃r,b represent a sub-segment

x̃r,b(l) = [xr,b(l) xr,b(l + 1) · · · xr,b(l +M − 1)]T , (2.24)

where M is the sub-segment length and filter order. If sub-segment length is N , i.e.,
M = N , then the OW length must be N + L − 1. If OW length is limited which
is often the case in this work, the sub-segment length must be shorter than N and
N = L+M −1. In such case, the frequency resolution of the estimates degrades. The
filter coefficients are given following (2.17) as

hfk =
Q−1afk

aH
fk
Q−1afk

(2.25)

Finally the estimator can be given by

P̂APES(fk) =
1

RB

R∑
r=1

B∑
b=1

|hfkgr,b(fk)|2 . (2.26)
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2.4.3 Blood iterative adaptive approach

The BIAA method [40, 47] has similarities with both the Capon and the APES
estimators. The problem formulation is similar to that of Capon where the filter
minimizes the output from all frequencies except for the frequency of interest which
is passed undistorted. Let the covariance matrix Qfk

represent the interference
covariance matrix, i.e., interference from frequency components other than fk. It
can be defined as

Qfk
= RBIAA − |α(fk)|2 afkaH

fk
(2.27)

The minimization problem given here can be represented by (2.10) and (2.21) as
given in the APES section. However, the definition of both the interference and the
covariance matrices are different than the APES method. The covariance matrix is
expressed as

RBIAA =

K∑
k=1

|α(fk)|2 afkaH
fk

+ σ̂2I, (2.28)

where I is the N ×N identity matrix and σ̂2 is the variance for each sample and can
be estimated as

σ̂2 =

∣∣∣∣ vH
nR−1

BIAAx

vH
nR−1

BIAAvn

∣∣∣∣, (2.29)

where vn is the nth column of I. Spatial averaging can be used to estimate the
covariance matrix in order to increase the robustness of the estimates. Therefore one
can form the covariance matrix and the variance as follows

R̂BIAA =
1

RB

R∑
r=1

B∑
b=1

R̂
r,b

BIAA and σ̂2 =
1

RBN

R∑
r=1

B∑
b=1

N∑
n=1

σ̂2
r,b,n, (2.30)

where R̂
r,b

BIAA is the covariance matrix estimate at location (r, b). As the filter passes
the frequency of interest undistorted, it can be seen from (2.27) that the minimization
of the interference covariance matrix is equal to minimization of the covariance matrix
RBIAA and it has the solution given in (2.17). Finally the estimator is given by

α̂r,b(fk) = hH
fk

xr,b =
aH
fk

R̂
−1

BIAAxr,b

aH
fk

R̂
−1

BIAAafk

(2.31)

As can be seen, the covariance matrix and the amplitude estimates are interdependent
which makes the BIAA an iterative algorithm. Initialization of the algorithm can be
done by setting the amplitude estimates as the Fourier transform of the data for each
frequency and the variance can be set to a small number, e.g, 10−9 [40]. The iterations
continue until a termination criterion is met. Finally the power estimate is
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P̂BIAA(fk) =
1

RB

R∑
r=1

B∑
b=1

| α̂r,b(fk) |2 . (2.32)

2.5 Clutter filtering

The echoes from stationary or slowly moving tissue are received due to the placement
of the sample volume, sidelobes of the beam and reverberation [48], and the strength
varies with the location of the sample volume. The echo from the tissue is typically
40-80 dB higher than the echo from the blood. This can corrupt the mean velocity
and power estimation in CFI or create leakage and obscure the blood velocities in
PW-Doppler. However, blood velocities have higher velocities than that of tissue for
most applications in ultrasound. Therefore, the clutter signal can be filtered out by
using a temporal high pass filter. Depending on the length of the signal to be filtered
and the application, different types of filter can be chosen.

2.5.1 Infinite impulse response filters

The output of infinite impulse response (IIR) filters depend on the present and past
input samples as well as the past output samples. The filter can be defined by the
difference equation

y(n) = −
I∑
i=1

aiy(n− i) +

I∑
i=0

bix(n− i). (2.33)

where ai and bi are the filter coefficients, x(n) and y(n) are input and output
samples respectively, and I is the filter order. As the filter is recursive, the transient
response affect its performance and may generate spurious frequency components [49].
Therefore, the transient response must be minimized. This is especially the case for
CFI as the packet size is limited. The transient response depends on the filter type
used as well as the initialization technique. Several methods have been proposed for
minimizing the transient response [50,51].

2.5.2 Finite impulse response filters

The FIR filters are time invariant filters that have finite duration impulse responses
[52]. The filter can be described by convolution sum between the impulse response
and input signal as

y(n) =

I∑
i=0

h(i)x(n− i), (2.34)

where h is the impulse response with length I. The output of the FIR filter does not
depend on previous output samples, i.e., no feedback required. The filter must be
initialized before the output samples are valid. This reduces the number of samples
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that can be used for velocity estimation and may cause higher variance in case of CFI
and reduced frequency resolution when used before spectral estimation. In addition,
the filter have a transition band which may attenuate low blood velocities.

2.5.3 Polynomial regression filters

In this method, the slowly varying clutter is approximated by set of polynomials which
are determined by least squares fit and later subtracted from the signal. The Legendre
polynomials have previously been used for this purpose [52, 53]. An efficient matrix
implementation of this filter can be found in Section 3.2.3. This set of filters do not
require initialization which leaves more time samples for velocity estimation. These
filters generally have narrower transition regions compared to FIR and IIR filters with
the same order. However, the IIR filters can achieve similar performance depending
on the chosen initialization method [52].

2.5.4 Adaptive clutter filtering

The filters listed above do not take the characteristics of the clutter to be filtered into
account. These filters have cut-off velocities that depend on the chosen filter order
and filter type. Filters that are dependent on the signal characteristics are referred to
as adaptive filters.

Several clutter filters have been proposed that are adapted to the tissue motion
[54,55]. Thomas et al. [56], proposed an adaptive filter that estimates the Doppler shift
of the clutter and shifts the signal to zero frequency by complex multiplication. After
this, the clutter is removed by using DC removal. In other words, the mean of the signal
is subtracted from the signal after multiplication. The advantage of this method is that
a narrow band filter can be created without decreasing the number of samples for blood
velocity estimation. Another type of adaptive filter which is similar to polynomial
regression filters is eigenvector regression filter. In polynomial regression filtering, the
cut-off frequency is adjusted by changing the filter order while in eigenvector regression
filtering, the filter order defines the number of largest eigenvectors representing clutter
to be removed from the signal. A more elaborate description and comparison of these
filters can be found in [57].

2.6 Diagnostic value of CFI and PW-Doppler

Computed tomography, magnetic resonance imaging and ultrasound are used for flow
detection in medical imaging. Even though all methods have their advantages and
limitations, the ultrasound Doppler imaging is used widely for diagnosis for being
cost-effective, portable and real-time. Doppler ultrasound can be used for applications
such as evaluation of cardiac systolic and diastolic function, diagnosis of stenosis in
arteries, detections of regions with abnormal flow or assessment of fetus growth in
obstetrics.

In general, PW-Doppler is used for estimation of maximum velocities, such as
PSV and EDV, through delineation of spectrograms. These parameters can be used
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for determination of degree of stenosis [58], estimation of resistivity and pulsatility
indices [59], cardiac output and pressure gradients [60]. As mentioned previously, PW-
Doppler has the limitation of intrinsic broadening which can result in overestimation
of maximum velocities. In addition, the method is angle dependent. The beam-
to-flow angle has to be determined in order to calculate the true velocity. Large
beam-to-flow angles causes higher degree of broadening making it difficult to delineate
the spectrogram. An example of this can be seen in Fig. 2.4. The estimated
spectrograms with small (left panel) and large (right panel) beam-to-flow angle from
the same CCA. Increased spectral broadening obscures the maximum velocity and
causes overestimation, especially for high velocities. Therefore, it is a common practice
obtain spectrograms with beam-to-flow angles smaller than 60◦ to minimize spectral
broadening. However, inter-/intra-observer variability can still result in significant
bias.

Figure 2.4: The effect of beam-to-flow angle on PW-Doppler. The spectrogram on the
left is generated with a small beam-to-flow angle while the right one is estimated with
the data recorded with a large beam-to-flow angle. Large beam-to-flow angles result
in increased spectral broadening and potentially overestimation of maximum blood
velocities.

On the other hand, CFI is a semi-quantitative tool that is useful for demonstration
of turbulence, acceleration and backward flow [61]. It gives an overall flow dynamics
in the ROI and it is used for detection of regions with blood flow. This is highly
useful for sample volume placement in PW-Doppler. However, conventional CFI
method also has the limitation of angle dependency as the velocity component along
the beam is estimated. It is is heavily affected by the clutter filtering and can
result in overestimation or underestimation of velocities [62]. More recent mean
velocity estimation approaches, such as vector Doppler [63], have been proposed for
quantitative analysis [64]. The vector Doppler approach can visualize 2-D velocity
vectors and display estimated true velocity without manual angle correction. The
method was applied to stenosis screening in carotid artery recently and it was reported
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that the method can be of great value in determination of risk and diagnosis of stenosis.
However, similar to the conventional CFI, estimates are affected by the clutter filtering
and it is difficult to evaluate the extend of this effect visually. Therefore, a system
which can provide both the spectral estimations and the mean velocities estimated
from these spectra can be of use to assess the clutter filter distortions and provide
more quantitative analysis. In other words, PW-Doppler and CFI should be seen as
complimentary to each other rather than substitute.
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Clutter rejection for color flow imaging (CFI) remains a challenge due to either
limited amount of temporal samples available or non-stationary tissue clutter.
This is particularly the case for interleaved CFI and B-mode acquisitions.
Low velocity blood signal is attenuated along with the clutter due to the
long transition band of the available clutter filters, causing regions of biased
mean velocity estimates or signal dropouts. This work investigates how
adaptive spectral estimation methods, the Capon and BIAA, can be used
to estimate the mean velocity in CFI without prior clutter filtering. The
approach is based on confining the clutter signal in a narrow spectral region
around the zero Doppler frequency while keeping the spectral side lobes
below the blood signal level, allowing for the clutter signal to be removed by
thresholding in the frequency domain. The proposed methods are evaluated
using computer simulations, flow phantom experiments and in-vivo recordings
from the common carotid and jugular vein of healthy volunteers. Capon
and BIAA methods could estimate low blood velocities which are normally
attenuated by polynomial regression filters, and may potentially give better
estimation of mean velocities for CFI at a higher computational cost. The
Capon method decreased the bias by 81% in the transition band of the used
polynomial regression filter for small packet size (N=8) and low SNR (5
dB). Flow phantom and in-vivo results demonstrate that the Capon method
can provide color flow images and flow profiles with lower variance and bias
especially in the regions close to the artery walls.

3.1 Introduction

Color flow imaging (CFI) is used for displaying the mean blood velocity in a spatial
region and is highly useful for detection of regions of abnormal blood flow. In a focused
imaging setup, CFI and B-mode acquisitions are typically interleaved, only allowing a
small number (8-16) of Doppler pulses to be fired in a given beam direction. A fixed
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pulse repetition frequency (PRF) is used and after sampling the signal at all depths of
interest, the mean Doppler frequency is commonly estimated using the autocorrelation
technique [1].

The sampled data contain echoes from moving blood and stationary or near
stationary tissue clutter which can be 40-60 dB stronger than the signal from
blood. Therefore, the clutter signal must be attenuated prior to mean blood velocity
estimation to minimize mean velocity bias, and avoid false detection (flashing artifacts)
of blood in tissue regions of the image. Clutter rejection filtering for CFI applications
is a major challenge due to the limited number of samples available for processing
and velocity estimation. Several types of filters have been investigated. Finite
impulse response (FIR) filters have wider transition bands and need more samples for
initialization than infinite impulse response (IIR) and polynomial regression filters [2].
Polynomial regression and IIR filters can have similar frequency responses when an
appropriate initialization technique is chosen for the IIR filter [2]. Regardless, the
gradual filter transition region leads to attenuation and overestimation of low blood
velocities or signal dropouts.

In this work, a frequency domain approach to clutter filtering and mean velocity
estimation is proposed. Provided that the clutter signal is confined in a limited region
in the Doppler power spectrum and does not interfere with the blood signal, clutter
rejection can be done using a frequency threshold, and mean velocity estimation can
further be done using the frequency domain autocorrelation method [3]. Improvement
over the traditional time-domain clutter filter is achieved when the clutter can be
confined sufficiently in the stop band region, reducing transition region effects of the
traditional clutter filter.

The ability to confine the clutter signal within the stop band is determined by
the frequency resolution and side lobe levels of the power spectrum estimator. Using
the Welch [4] approach as in conventional PW-Doppler will not work well due to
the relatively poor frequency resolution and high side lobe levels, and especially
when restricted to using very few temporal samples as in CFI. However, several
power spectral density (PSD) estimators have been shown to provide such desired
characteristics in different settings. Parametric estimation methods [5–8] have been
shown to provide superior resolution but are computationally complex and need correct
determination of model parameters. Data adaptive filter-bank methods originally
developed for radar applications have been adapted and applied for ultrasound
imaging. For instance, the Capon minimum variance [5,9] and the amplitude and phase
estimation (APES) [10,11] methods have been shown to produce improved frequency
resolution and reduce spectral leakage compared to Welch’s method [12]. An iterative
adaptive approach (IAA) [13] was shown to improve power spectrum estimation further
for ultrasound PW-Doppler signals, which termed blood IAA (BIAA) [14].

In this work we investigate whether the classical Capon and more recent BIAA
approach can provide sufficient spectral resolution and side lobe suppression to confine
and remove tissue clutter signal and associated side lobes, as well as their use in
subsequent mean velocity estimation in CFI. The methods have shown promise for
improving the frequency resolution in PW-Doppler [10, 14], and we recently observed
that the high spectral resolution and side lobe suppression of the Capon approach
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could make traditional clutter filtering superfluous in PW-Doppler when the tissue
clutter was sufficiently narrow band [15].

The main motivation of this work is to improve the detection and estimation of
low flow velocities, which is important for imaging small peripheral vessels, e.g. tumor
vessels [16], but also for the estimation of vascular wall shear stress [17], or for accurate
estimation of volume flow in general.

The paper is organized as follows. In Section 4.3 the PSD estimators and
polynomial regression filters are presented. The mean velocity estimation methods
and the signal model used in the simulations are explained. Section 4.4 presents the
simulation, in-vivo and flow phantom experiment results. The improvements and the
disadvantages of the methods are discussed in Section 4.5. Finally, concluding remarks
are given in Section 3.5.

3.2 Methods

The CFI data set consists of time series acquired at several radial and lateral spatial
points. Following the data model presented in [10] and its interpretation in [18],
the data model is extended to represent a signal from a 2-D spatial region. After
demodulation, the signal from depth r in radial, beam b in lateral direction and
emission n can be modeled as the sum of contributions from each frequency as

xr,b(n) =

K∑
k=1

αr,b(k)e−j2πfkn + er,b(n), (3.1)

where fk is the normalized frequency with respect to PRF, αr,b(k) is the complex
amplitude of the signal at frequency fk and er,b(n) is zero mean complex white
Gaussian noise with variance σ2.

3.2.1 PSD Estimators

The Welch’s Method

An ensemble that is acquired at depth r, beam b and with N temporal samples
where N is commonly referred to as packet size, can be expressed as xr,b =
[xr,b(1) xr,b(2) · · · xr,b(N)]T . The ensemble is subdivided into smaller segments for
temporal averaging to decrease the variance. Let l denote the index for the sub-
segments x̃r,b

x̃r,b(l) = [xr,b(l) xr,b(l + 1) · · · xr,b(l +M − 1)]T , (3.2)

where M is the length of the sub-segment.

Including the spatial averaging in radial and lateral directions, the Welch PSD
estimator is expressed as
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P̂Welch(fk) =

1

RBL

R∑
r=1

B∑
b=1

L∑
l=1

∣∣∣∣∣
M−1∑
m=0

w(m)xr,b(l +m)e−i2πfkm

∣∣∣∣∣
2

, (3.3)

where w is a window function, L is the number of sub-segments and M = N−L+1.
The Welch estimate is equivalent to the following when the window function is chosen
as a rectangular window

P̂Welch(fk) =
1

RBL

R∑
r=1

B∑
b=1

L∑
l=1

∣∣aH
fk

x̃r,b(l)
∣∣2

=
1

RBL

R∑
r=1

B∑
b=1

L∑
l=1

aH
fk

x̃r,b(l)x̃
H
r,b(l)afk

= aH
fk

R̂Welchafk ,

(3.4)

where (.)H represents the Hermitian transpose, afk = [1 ei2πfk · · · ei2πfk(M−1)]T is

the Fourier vector and the covariance matrix R̂Welch is

R̂Welch =
1

RBL

R∑
r=1

B∑
b=1

L∑
l=1

x̃r,b(l)x̃
H
r,b(l). (3.5)

Subdividing the ensemble for temporal averaging decreases the variance of the
PSD estimation in exchange for decreased spectral resolution. The PSD estimation is
modified by multiplying each sub-segment with a window function to reduce spectral
side lobes. A Hamming windows is commonly used for this purpose.

Power Spectral Capon

The Capon estimator is a data adaptive spectral estimation method which can be
interpreted as a filter bank approach where the power of each frequency in the spectrum
is estimated by filtering the data with an optimized filter, hfk , designed to pass the
frequency of interest, fk, undistorted while minimizing the output power of the filter.
The filter output power can be written as [5]

E[hH
fk

x∗
r,bx

T
r,bhfk ] = hH

fk
RCaponhfk , (3.6)

where (.)∗ denotes the complex conjugate and RCapon is the data covariance matrix
and can be estimated as

R̂Capon =
1

RB

R∑
r=1

B∑
b=1

xr,bx
H
r,b. (3.7)
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Minimization of (3.6) is done subject to hH
fk

afk = 1, where afk represents the Fourier
vector with length N . This can be shown to give [5]

hfk =
R̂

−1

Caponafk

aH
fk

R̂
−1

Caponafk

. (3.8)

Thus, the filter output power in (3.6) is found as

P̂Capon(fk) =
1

aH
fk

R̂
−1

Caponafk

. (3.9)

BIAA

Similar to the Capon method, estimation of each spectral component is done by a
general linear estimator [14]

α̂r,b(fk) = hH
fk

xr,b. (3.10)

Filter coefficients hfk are designed to minimize the output amplitudes of frequencies
other than the frequency of interest fk and passing the component with fk undistorted.
Same as the Capon estimator, the minimizer is found as

hfk =
R−1
BIAAafk

aH
fk

R−1
BIAAafk

. (3.11)

An estimate of the data covariance matrix RBIAA is defined as

R̂BIAA =

1

RB

R∑
r=1

B∑
b=1

R̂
r,b

BIAA =
1

RB
A

[
R∑
r=1

B∑
b=1

Pr,b

]
AH + σ̂2I. (3.12)

Pr,b is a diagonal matrix that has | α̂r,b(1) |2 · · · | α̂r,b(K) |2 as its diagonal elements,
A = [af1 · · · afK ] and I is the N ×N identity matrix. An estimate of the amplitude
at fk can be found by inserting (3.11) into (3.10)

α̂r,b(fk) = hH
fk

xr,b =
aH
fk

R̂
−1

BIAAxr,b

aH
fk

R̂
−1

BIAAafk

. (3.13)

Variance at each range, beam and emission can be estimated with

σ̂2
r,b,n =

∣∣∣∣vH
nR−1

BIAAxr,b

vH
nR−1

BIAAvn

∣∣∣∣, (3.14)

where vn is the nth column of I and the noise variance can be calculated as
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σ̂2 =
1

RBN

R∑
r=1

B∑
b=1

N∑
n=1

σ̂2
r,b,n. (3.15)

BIAA is an iterative algorithm as RBIAA and αfk are interdependent. The

initialization of the algorithm can be done by choosing α̂r,b(fk) =
aH
fk

xr,b

N and
σ̂2
BIAA = 10−9 as the initial estimates of the amplitudes at different frequencies and

the noise variance respectively [14]. RBIAA is found by using the initial estimates and
then used for estimation of new α̂r,b(fk) and σ̂2. Iterations continue until a termination
criterion is met. Finally, the power spectrum is found as

P̂BIAA(fk) =| α̂r,b(fk) |2 . (3.16)

The algorithm is terminated when the mean difference of the estimates between
two consecutive iterations is less than 1%. This is the same termination condition
used in [18].

Comparison of PSD estimators

Fig. 3.1 shows an example of the side lobe levels and resolution of the described PSD
estimation methods. Fig. 3.1(a) shows the estimated PSDs of a signal which includes
a single frequency component at zero frequency in complex white Gaussian noise. The
signal in Fig. 3.1(b) consists of a band of frequencies in complex white Gaussian noise
that have zero mean and 0.01 × PRF bandwidth, which is more representative of
ultrasound imaging scenario. The ensemble length N = 12 and the SNR is 10 dB. The
window function used for Welch’s method is a Hamming window and L = 1.

3.2.2 Mean Velocity Estimators

Autocorrelation method

The complex correlation function with lag one in the temporal direction is used to
estimate the mean velocity [1].

R̂(1) =
1

RB(N − 1)

R∑
r=1

B∑
b=1

N−1∑
n=1

xr,b(n)x∗r,b(n+ 1). (3.17)

The mean velocity is then found by

v̄ =
∠R̂(1)PRFc

4πf0
, (3.18)

where f0 is the transmit center frequency and c is the speed of sound in blood.
The autocorrelation estimator is unbiased under certain conditions such as absence
of frequency dependent attenuation [19].
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Figure 3.1: PSDs of signals including (a) a single frequency at zero frequency in
complex white Gaussian noise (b) band of frequencies with zero mean and 0.01 ×
PRF bandwidth in complex white Gaussian noise estimated with the Welch’s method,
Capon and BIAA. N = 12
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Mean velocity estimation using estimated PSDs

The autocorrelation function with lag one is used for estimation of mean velocities.
As the autocorrelation function and the power spectrum are Fourier pairs through the
Wiener-Khinchin relation, the autocorrelation function with lag one can be expressed
as [3]

R̂(1) =
1

2π

∫ π

−π
P̂(ω)eiωdω, (3.19)

where ω is the normalized angular frequency and P̂ is the PSD estimated with a
spectral estimator. R(1) is estimated from the PSD after removal of the clutter
components, and the mean velocity is found using equation (3.18).

3.2.3 Clutter Filtering

Polynomial regression filters with suitable orders are used for filtering the data used for
the autocorrelation method. The clutter is estimated by calculating the least square
fitting of the input signal to a set of polynomials, and subtracted from the input signal.
The filter can be represented as [2]

H = I−
Z∑
z=0

czc
H
z , (3.20)

where H is the filter matrix and cz is a set of basis vectors, such as the Legendre
polynomials [2, 20], spanning the Z dimensional clutter space. The filter output will
have the form y = Hxr,b. The order of a polynomial regression filter is defined as
Z. The filter orders were chosen manually to give sufficient clutter attenuation for
varying packet sizes.

Clutter removal of the data used for estimation of mean velocities using the BIAA
and the Capon methods is performed by removing the power spectrum components in
a region defined by the frequency ft

P̂m(fk) =

{
0, −ft ≤ fk ≤ ft
P̂(fk), otherwise

,

where P̂m is the modified PSD after clutter removal. Even though this can be seen as
an ideal high-pass filter i.e., it has no transition region and eliminates the frequencies
below a certain frequency while passing the higher frequencies undistorted, it may
introduce errors due the limitations of the PSD estimators such as resolution, bias [21]
and high side lobe levels due to strong clutter signal. This filter will be referred to
as threshold filter and ft will be referred to as the cut-off frequency of the threshold
filter. The variable ft is set empirically by visually investigating the PSD spectra. It
is chosen as the minimum frequency component in the power spectrum which does not
include the clutter signal.

52



Chapter 3. Adaptive Spectral Estimation Methods in Color Flow Imaging

Table 3.1: Signal model

Parameter

Blood signal mean frequency, fk 0 to 0.5× PRF

Clutter signal mean frequency 0.005× PRF

Blood signal RMS bandwidth 0.1fk

Clutter signal RMS bandwidth 0.0055× PRF

Blood signal SNR [dB] 5 & 20

Clutter signal SNR [dB] 40

3.2.4 Signal Model and Simulation Setup

Simulated data sets used for evaluation of the methods were generated with a signal
model similar to the model presented in [2]. The Doppler spectrum is a sum of
three independent components: blood, clutter and noise signals. The simulated blood
and clutter signal power spectra are modelled with Gaussian shapes that have mean
frequencies and bandwidths given in Table 4.1. The blood signal was generated by
calculating the Fourier transform of complex white Gaussian noise of length 512×N
and multiplying it with the power spectrum of the blood signal. The clutter signal
was generated following the same steps and added to the blood signal. The resulting
signal was transformed to the time domain and complex white Gaussian noise was
added yielding a defined SNR. N samples were extracted from this generated time
signal to form one ensemble. Fig. 3.2 shows one of the simulated Doppler spectra.
The same approach was repeated 262 144 times for each blood velocity. The ensembles
were later merged into groups of size 32 ensembles to mimic spatial averaging giving
8192 mean velocity estimations for each mean frequency. The bandwidth of the blood
signal changes with the mean velocity of the blood to simulate the transit time effect.
Simulations were performed for 64 mean frequencies spaced regularly between 0 and
0.5 normalized velocity with respect to PRF. This was repeated for packet sizes 8, 16
and 32 and for blood SNR values 5 and 20 dB.

3.2.5 Data Acquisition and Processing

The methods were further evaluated using in-vivo acquisitions from carotid artery,
jugular vein and flow phantom experiment. The data were acquired using plane wave
acquisitions to be able to generate results for small and large packet sizes. Table 6.1
summarizes the acquisition parameters for both in-vivo and flow phantom recordings.
The flow phantom and carotid artery acquisitions were performed using a SonixMDP
ultrasound system (Ultrasonix, Richmond, BC, Canada) with a 5 MHz linear probe.
The acquisition scheme used was a plane wave transmission steered straight down at
4 kHz PRF.

A flow phantom (Model 524 Peripheral Vascular Doppler Flow Phantom, ATS
laboratories, Bridgeport, CT, USA) consisting of a tissue mimicking material
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Figure 3.2: An example of simulated theoretical Doppler spectrum and the regression
filter frequency responses along with the corresponding threshold filter cut-off
frequencies (ft) used in the simulations. The frequency responses and the threshold
filter cut-offs for the same packet size are plotted in same color. The blood signal SNR
and the clutter signal SNR are 5 and 40 dB respectively.

Table 3.2: Acquisition setup and processing

Parameter flow phantom carotid artery jugular vein

Center frequency [MHz] 5 5 6.25

Pulse periods 2.5 2.5 2.5

PRF [kHz] 4 4 6

F-number 1.4 1.4 1.4

Packet size, N 8 12 12

Number of frequency points, K 256 256 256

Regression filter order 1 2 2

Threshold filter cut-off [cm/s] 3.9 4.3 5.3

surrounding a 6 mm inner diameter straight tube which simulates a vessel was used for
the recording. The PhysioPulse 100 flow system (Shelley Medical Image Technologies,
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London, ON, Canada), pumping blood mimicking fluid, was connected to the flow
phantom to form a flow loop. The system was set to give 1 Hz sinusoidal flow.

A Verasonics ultrasound system (Verasonics Inc., Redmond, WA, USA) used for a
combined jugular vein and carotid artery data acquisition. L11-4V linear probe with
a plane wave acquisition scheme is used for the recording. The system was set to
generate straight down steered plane waves at 6 kHz PRF.

The in-vivo data sets were acquired on the common carotid artery of a healthy 28
years old female volunteer and jugular vein and common carotid artery of a healthy 30
years old male volunteer. The jugular vein recording was performed in Trendelenburg
position in order to get decreased velocity flow in the vein.

The PSD estimations were done on 256 frequency points. Spatial averaging region
for each mean velocity estimation was chosen to be 8 × 8 lateral and radial spatial
samples (R = 8, B = 8). This corresponds to 0.5mm × 1.2mm, 0.9mm × 0.9mm
and 1.3mm× 1.2mm spatial region for carotid artery, jugular vein and flow phantom
recordings respectively. R = 8, B = 8 was chosen to ensure well conditioned covariance
matrices and low variance for the velocity estimates for all recordings.

3.3 Results

Performance analysis was done for the three methods using computer simulations
for different packet size and blood SNR scenarios. The flow phantom and in-vivo
acquisitions were used for comparison of the Capon, BIAA and the autocorrelation
methods for relatively small packet sizes. The simulation results along with the factors
that affect the estimation quality in the proposed methods are given in this section.

3.3.1 Simulations

The simulations were performed for 8, 16 and 32 ensemble lengths and 5 and 20 dB
blood SNRs while the clutter signal SNR is 40 dB for all cases. The SNR is defined
as the total signal power to total noise power ratio for both clutter and blood signals.
Simulated data sets were generated with the presented signal model and the mean
velocity estimations were performed as described in section 3.2.2.

The polynomial regression filter frequency response is dependent on the filter order
and the ensemble length. Therefore, the filter order is changed with the ensemble
length to keep the stop band approximately the same. Fig. 3.2 shows the polynomial
regression filter frequency responses and threshold filter cut-off frequencies used for
each ensemble length. The threshold filter cut-off frequencies depend on the resolution
of the spectral estimators for different ensemble lengths. For ensemble lengths of 8,
16 and 32, the ft intersects the corresponding filter frequency responses at -9, -14 and
-13 dB attenuation respectively.

The BIAA algorithm was terminated after 8 iterations on average and the
maximum number of iterations required was 13.

Fig. 3.3 shows the bias and the standard deviation as a function of mean blood
frequency normalized with respect to PRF when N = 8 and the blood SNR 5 dB. Mean
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velocity estimation using the BIAA spectrum has the largest standard deviation among
the three mean velocity estimation methods. The Capon and the autocorrelation
methods have similar performance for high velocities. However, the autocorrelation
method has larger positive bias for lower velocities due to the signal loss in the stop
and the transition band of the polynomial regression filter.

The vertical dashed lines show the cut-off frequencies used for the adaptive spectral
estimation methods. Also, the regression filter frequency responses are added to the
figures to indicate the transition and the passband region of these filters for better
interpretation of the results. The shaded areas in the figures indicate the region
between the threshold filter cut-off and -3 dB cut-off frequency of the regression filter.
In this region, there is a clear reduction in bias by utilizing Capon or BIAA mean
velocity estimation methods compared to the autocorrelation method. In the same
region, the standard deviation is low and similar for the Capon and autocorrelation
method, whereas it is substantially larger for the BIAA method.

Fig. 3.4 shows the simulation results for N = 8 and 20 dB blood SNR. All
methods have lower bias and standard deviation compared to the 5 dB SNR case. In
addition, the difference in bias between the adaptive spectral estimation methods and
the autocorrelation method decreases when the SNR is increased. Standard deviation
of BIAA method improves considerably while it still has the largest standard deviation
compared to other methods. As in the 5 dB case, the difference in bias between the
adaptive spectral estimation and the autocorrelation methods is highest for velocities
in the transition region of the polynomial regression filter.

Fig. 3.5 shows the bias and standard deviation for N = 16 and blood SNR
5 dB. The region where there is difference in bias between the methods decreases
with increasing packet size as the transition region of the polynomial regression filters
become narrower. Also ft can be set to a lower value. This is due to the improved
resolution of spectral estimation methods with increasing ensemble length. Compared
to N = 8 and SNR 5 dB, it can be seen that the standard deviation of the methods
decreases with the increased ensemble length.

Increasing the blood signal SNR while keeping N = 16 improves the estimates
further. As can be seen in Fig. 3.6, the methods have similar standard deviation and
bias for low and high velocities.

Tables 5.3 and 3.4 summarize the simulation results for the 4 kHz PRF, 5 MHz
center frequency and c = 1540m/s imaging scenario. The mean absolute standard
deviation and the mean absolute bias are calculated between the threshold filter cut-
off frequency and -3 dB cut-off frequency of the regression filter which corresponds to
the shaded area in the figures 3.3 - 3.6. As can be seen from the tables, all methods
have similar performance for high blood SNR and ensemble lengths.

Fig. 3.7 and Fig. 3.8 provide insight into two factors that limit the ability of
spectral estimation methods to separate clutter and blood signals. Fig. 3.7 depicts
the PSDs estimated with the Capon estimator where N = 8 and N = 16. The spectral
resolution of the Capon estimator deteriorates when the packet size is decreased from
16 to 8 samples. The increased spectral width of the clutter and blood signals at 8
samples makes separation of the clutter difficult, and different threshold values (ft)
are required to avoid bias in mean velocity estimates.
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Figure 3.3: a) Bias and b) standard deviation of the methods for packet size N = 8
and 5 dB blood SNR. The shaded area corresponds to the spectral region between the
threshold filter cut-off and -3 dB cut-off frequency of the regression filter.
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Figure 3.4: a) Bias and b) standard deviation of the methods for packet size N = 8
and 20 dB blood SNR. The shaded area corresponds to the spectral region between
the threshold filter cut-off and -3 dB cut-off frequency of the regression filter.
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Figure 3.5: a) Bias and b) standard deviation of the methods for packet size N = 16
and 5 dB blood SNR. The shaded area corresponds to the spectral region between the
threshold filter cut-off and -3 dB cut-off frequency of the regression filter.
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Figure 3.6: a) Bias and b) standard deviation of the methods for packet size N = 16
and 20 dB blood SNR. The shaded area corresponds to the spectral region between
the threshold filter cut-off and -3 dB cut-off frequency of the regression filter.
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Table 3.3: Mean absolute bias [cm/s]

aaaaaaaaaaa
SNR

Ensemble
length 8 16 32

5 dB A: 8.1 A: 3.8 A: 0.9

B: 1.6 B: 0.3 B: 0.1
C: 1.5 C: 0.2 C: 0.1

20 dB A: 3.8 A: 1.2 A: 0.4

B: 0.4 B: 0.14 B: 0.07
C: 0.3 C: 0.11 C: 0.06

Table 3.4: Mean absolute standard deviation [cm/s]

aaaaaaaaaaa
SNR

Ensemble
length 8 16 32

5 dB A: 1.1 A: 0.9 A: 0.3

B: 7.6 B: 4.2 B: 2.4
C: 0.5 C: 0.3 C: 1.5

20 dB A: 0.09 A: 0.07 A: 0.04

B: 0.1 B: 0.05 B: 0.23
C: 0.1 C: 0.08 C: 0.17

A: Autocorrelation, B: BIAA, C: Capon

Fig. 3.8 shows three Capon PSDs estimated where N = 12. The blood and clutter
signal parameters are the same as in Fig. 3.7 except that the clutter SNR is varying
between 20 and 60 dB. A similar effect to that of the packet size can be seen here.
The separation of the clutter and the blood signal deteriorates with increasing clutter-
to-blood power ratio due to the increased side lobe levels. This narrows the velocity
span where the blood signal velocity can be estimated without clutter bias.

3.3.2 In-vivo

The common carotid artery and the combined jugular vein and carotid artery
acquisitions were used for further evaluation of the methods. Fig. 3.9 shows color flow
images and spectra generated using N = 12 and polynomial regression filter order 2
for the autocorrelation method. The threshold filter cut-off was set to 5.3 cm/s and
intersects the frequency response of the regression filter at -10 dB attenuation.

In figures 3.9,3.11 and 3.13, periodograms are estimated with Capon and BIAA
estimators from sample volumes shown as rectangles in the corresponding color flow
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Figure 3.7: Capon PSD estimates with packet size 8 and 16. The signal consists of
5 dB SNR blood signal at 0.15× PRF center frequency and 0.01× PRF bandwidth
and 30 dB SNR clutter signal at zero center frequency and 0.01×PRF bandwidth in
complex white Gaussian noise.
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Figure 3.8: PSD estimates with the Capon estimator with N = 12. The signal consists
of 5 dB SNR blood signal at 0.15×PRF center frequency and 0.01×PRF bandwidth
and clutter signal at zero center frequency, 0.01× PRF bandwidth and varying SNR
between 20 - 60 dB in complex white Gaussian noise.

images. The sample volumes have the same dimensions as the averaging area used for
the corresponding velocity profile estimation and color flow image generation. Vertical
lines on the periodograms indicate the time instants at which the color flow images
are generated.

The filter used for the autocorrelation method removes low velocity blood signals
close to the walls of the vein causing signal dropouts. The Capon and the
autocorrelation methods yield similar mean velocity estimates with similar variance
for the carotid artery. The BIAA method has higher variance in both carotid artery
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Figure 3.9: Example periodograms estimated with Capon from jugular vein (a) and
carotid artery (c) and BIAA from jugular vein (b) and carotid artery (d). The dynamic
range used is 50 dB. Color flow images are generated from the vein and artery using
the autocorrelation method with polynomial regression filter (e) and proposed Capon
(f) and BIAA (g) methods. The vertical lines in periodograms show the time instant
where the color flow images are generated and the rectangles in color flow images
corresponds to the sample volumes where the PSDs in periodograms are estimated
from. N = 12.

and jugular vein compared to other methods. The variance is higher in the jugular
vein due to presence of lower velocities.

Fig. 3.10 shows the flow profiles estimated with the three methods using the
common carotid artery acquisition. In total, 109 velocity profiles were estimated along
the artery where each of them had 62 points. The ensemble length was N = 12 and the
regression filter order was 2. The threshold filter cut-off intersects the filter frequency
response where the filter had -11 dB attenuation. In addition, an autocorrelation
estimate with 32 packet size included in the estimations as a reference. The regression
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filter order used for the reference velocity profile estimation was 5. The peak systolic
velocity in the center of the artery was found to be around 35 cm/s without angle
correction.

Fig. 3.10 shows that the autocorrelation method yields higher while BIAA yields
lower velocity estimates around the center of the artery and close to the artery walls
when compared to the reference velocity profile. The Capon method yields similar
velocity estimates to the reference velocity profile. The difference is approximately 1
cm/s for the blood velocities in the center.

Similar to Fig. 3.9, Fig. 3.11 shows the color flow images generated using the
autocorrelation, Capon and BIAA methods and the Capon and BIAA periodogram
estimates. The packet size and the filters are the same as used in in-vivo velocity
profile estimation. The color flow images show a part of the artery where the flow
profiles are estimated. It can be seen that the autocorrelation method gives estimates
with higher variance for the lower velocities around the artery walls compared to the
Capon method. BIAA method has largest variance especially for low velocities and
shows signal dropouts.

3.3.3 Flow phantom

Velocity profiles across the straight tube were estimated using the autocorrelation and
the Capon methods. The packet size is 8 and polynomial regression filter order 1
is used. The filter frequency response and ft intersects where the filter has -11 dB
attenuation. In addition, an autocorrelation estimate with ensemble length 32 and
filter order 3 is included as a reference.

Fig. 3.12 shows the mean and the standard deviation of the estimated flow profiles.
86 flow profiles were estimated along the phantom tube. There are 32 points in
each velocity profile where each of them are estimated using 1.3mm × 1.2mm spatial
averaging region in radial and lateral directions respectively. The methods give similar
estimates for high velocities which are present in the middle of the tube. For lower
velocities, the autocorrelation method with ensemble length 8 has larger standard
deviation than the Capon method and the mean velocity difference to the reference
velocity profile is smaller for the Capon method. The difference between the Capon
and the autocorrelation method mean velocity estimates is around 4 cm/s around the
tube walls. The Capon method gives similar estimates to the reference for low and
high blood velocities.

Fig. 3.13(b) and 3.13(c) show the color flow images that are generated with the
autocorrelation and the Capon method respectively. The same clutter filter parameters
as used for the velocity profile estimation are used. As in Fig. 3.12, the methods give
similar estimates in the center of the tube, whereas the Capon method improves the
display of the lower velocities closer to the tube walls.
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Figure 3.10: Estimated in-vivo velocity profiles using the autocorrelation method with
packet sizes 12 and 32 and the Capon and BIAA methods with packet size 12.

3.4 Discussion

Two data adaptive spectral estimation methods, the BIAA and Capon, has been
evaluated for improving the estimation of low blood velocities in CFI. While the
adaptive spectral estimators have previously been examined for their use in PW-
Doppler, their potential use for clutter rejection and mean velocity estimation in CFI
was investigated in this work. In particular, the performance of the methods were
evaluated using very short ensemble sizes used in conventional CFI, replacing temporal
with spatial information to achieve required correlation matrix estimates. The
methods were compared to the conventional autocorrelation method with polynomial
regression filtering, using simulated data sets with different packet sizes and SNRs, as
well as flow phantom and in-vivo acquisitions.

Results showed that the Capon method can isolate the clutter sufficiently even
for very small packet sizes (N = 8) and the Capon and BIAA methods can provide
improved mean velocity estimates over the autocorrelation method for lower velocities
in terms of bias. All methods provide comparable estimates for large packet sizes and
high SNR, e.g. N = 16, 20 dB SNR.

It was further demonstrated with in-vivo and flow phantom acquisitions that the
Capon adaptive spectral estimator may improve estimation of low blood velocities close
to the artery walls. It was shown that the bias is similar to that of autocorrelation
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Figure 3.11: Example of periodograms estimated with the Capon (a) and the BIAA
(b) estimators and displayed with 40 dB dynamic range. The autocorrelation (c), the
Capon (d) and the BIAA (e) color flow images generated using in-vivo data. The
vertical lines in (a) and (b) show the time instant where the color flow images are
generated. The rectangles in the color flow images correspond to the sample volume
where the PSDs in (a) and (b) are estimated from. N = 12.

method with 32 packet size. This can be useful for the applications where the low
velocities are of importance, e.g. volume flow and shear stress estimation. The color
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flow images generated with the Capon method display flow profiles with lower variance
and bias compared to the autocorrelation method along the direction of the flow and
across the tube and the artery.

Simulation results showed that BIAA and Capon estimators introduced similar
bias for the velocities higher than the threshold filter cut-offs for different packet
size and SNR scenarios. BIAA has been shown to give improved estimates of the
power spectrum in terms of frequency resolution and side lobes [14], [18] and can
achieve significantly lower side lobe level than the Capon method for single frequency
estimates as shown in Fig. 3.1. However, the simulation results show that the BIAA
suffers from high standard deviation for small packet sizes and low SNR when signals
are not narrow band. However, it performs equally good for relatively larger packet
sizes and blood SNR, e.g., N = 16, 20 dB SNR.

Blood and clutter bandwidth, velocity, SNR and the clutter-to-blood-signal power
ratio are important factors that determine the improvement of adaptive spectral
estimation methods over the conventional autocorrelation method. The adaptive
methods outperform the conventional method when the blood signal is in the transition
band of the polynomial regression filters. Suppression of clutter signals with high
velocities and large bandwidth requires higher filter orders which alters the width
of the transition band [22]. In addition, the polynomial regression filter introduces
additional bias due to its non-zero phase response [20]. However, this effect accounts
for relatively small part of the bias estimates given here. The performance of the
adaptive spectral estimation methods on the other hand depends on the ability to
separate the clutter and blood spectral content, and the sufficient suppression of clutter
spectral side lobes below the blood spectral SNR. High clutter-to-blood-signal ratio
deteriorates the clutter isolation as shown in Fig. 3.8 and can introduce negative bias
to the estimates.

The clutter isolation is also affected by the packet size. Small packet size results in
decreased frequency resolution and potentially biased estimates. The effect becomes
more apparent for high clutter-to-blood-signal ratios. Too small packet sizes, e.g.
smaller than 6, results in a situation where blood velocities can be estimated accurately
only in a narrow velocity span. This shows that these methods are not suitable for
CFI with very small packet sizes.

The methods were evaluated using plane wave acquisitions where the whole region
of interest can be imaged with single transmission. The motivation for this was
to be able to generate results for both low and high packet sizes from the same
data. For a high-end system capable of software beamforming, one could also utilize
plane wave acquisition which allows for high frame rates. Therefore, longer ensemble
lengths can be attained without losing the temporal resolution [23]. However, these
methods are limited to depths where desirable SNR can be obtained with plane waves
and transducer geometry and setup allows for plane wave generation [15]. The low
SNR problem can be alleviated using coherent compounding although this introduces
additional bias to velocity estimates [24]. Alternatively, using slightly broader but
focused transmit beams and 2-4 parallel receive beams [25] could also be used to
achieve spatial averaging while keeping the SNR sufficient [15].

The data adaptive spectral estimation methods may require a larger spatial
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Figure 3.12: Estimated flow phantom velocity profiles using the autocorrelation
method with 8 and 32 and the Capon method with 8 packet size.

averaging region than used for the autocorrelation method to give robust estimates
depending on the packet size. Temporal averaging is not used in this work in order
to keep the frequency resolution sufficient as small packet sizes in duplex acquisitions
are of interest. This results in increased dependency on spatial averaging and reduces
the resolution of the color flow images. Therefore, there is a trade-off between the
spatial resolution of the images and the robustness of the mean velocity estimates.
Using a small averaging region gives estimates with higher standard deviation. It
has been observed that using number of spatial points equal to the packet size yields
estimates with higher standard deviation compared to the autocorrelation method
when spatial points are uncorrelated. The methods will require a larger averaging
region to give robust estimates when there is correlation between the spatial points.
Diagonal loading can be used for increasing the robustness of the Capon estimates [15]
for small averaging regions. However, this reduces the frequency resolution, and the
gain in estimator performance may be lost.

Another disadvantage of the adaptive methods is that they are much more
computationally demanding. An overview of the computational complexity of the
Capon and the BIAA spectral estimators is given in [10] and [26] respectively. The
main factor that makes the methods computationally expensive is the matrix inversion
operation. Therefore, the BIAA is more computationally expensive due to multiple
iterations. Although efficient algorithms have been suggested for BIAA estimator
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Figure 3.13: (a) An example of periodogram estimated with the Capon estimator and
displayed with 40 dB dynamic range. The autocorrelation (b) and the Capon (c) color
flow images generated using flow phantom data. The vertical line in (a) shows the time
instant where the color flow images are generated and the rectangle in (c) corresponds
to the sample volume where the PSDs in (a) are estimated from. N = 8.

in [26] and [27], the complexity is still not comparable to the autocorrelation method.
In case the difference in performance is marginal, the autocorrelation estimator is
preferred due to its simpler implementation and increased robustness for low SNR.

The cut-off frequencies of the threshold filter was chosen manually to minimize the
clutter bias on the velocity estimates. An adaptive filtering scheme can be developed
to set the cut-off frequency based on defined criteria to improve the velocity estimates
and standardization of the filtering process to make it user independent.

The adaptive spectral estimation methods enable mean velocity estimation with
small packet sizes as a result of their improved side lobe levels and frequency resolution.
Another way of looking at this is that the PSDs can be estimated using color-Doppler
data. This can be utilized to display the Doppler power spectrum anywhere on the
color flow image to aid improvement of imaging workflow and ease of use. Another
advantage of having the spectral content available would be to provide maximum

69



3.5. Conclusions

velocity maps in addition to mean velocity by extracting the maximum velocities from
the estimated spectra [28]. Maximum velocities are used for diagnosis of diseases such
as carotid artery stenosis [29] and estimation of Doppler indices such as pulsatility
index [30].

3.5 Conclusions

The estimation of low blood velocities corrupted by clutter filters can be improved by
using data adaptive spectral estimation methods for mean velocity estimation. It is
shown that by utilizing these spectral estimators it is possible to achieve lower bias
and standard deviation for velocity estimates in a region between the threshold filter
cut-off and the passband of conventional clutter filters which can amount to 81% lower
bias for 5 dB blood SNR and 8 packet size.

The Capon method improves the estimation of low blood velocities even for small
packet sizes. Therefore, the Capon estimator can be considered as a candidate for
improving low velocity estimation in interleaved B-mode and CFI acquisitions.
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Estimation for Doppler Ultrasound
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Estimation of accurate maximum velocities and spectral envelope in
ultrasound Doppler blood flow spectrograms are both essential for clinical
diagnostic purposes. However, obtaining accurate maximum velocity is not
straightforward due to intrinsic spectral broadening and variance in the power
spectrum estimate. The method proposed in this work for maximum velocity
point detection has been developed by modifying an existing method — Signal
Noise Slope Intersection (SNSI), incorporating in it steps from an altered
version of another method called Geometric Method (GM). Adaptive noise
estimation from the spectrogram ensures that a smooth spectral envelope
is obtained post detection of these maximum velocity points. The method
has been tested on simulated Doppler signal with scatterers possessing a
parabolic flow velocity profile constant in time, steady and pulsatile string
phantom recordings as well as in vivo recordings from uterine, umbilical,
carotid and subclavian arteries. Results from simulation experiments indicate
a bias of less than 2.5% in maximum velocities when estimated for a range
of peak velocities, Doppler angles and SNR levels. Standard deviation in the
envelope is low — less than 2% in case of experiments done by varying the
peak velocity and Doppler angle for steady phantom and simulated flow; and
also less than 2% in case of experiments done by varying SNR but keeping
constant flow conditions for in vivo and simulated flow. Low variability in
the envelope makes the prospect of using the envelope for automated blood
flow measurements possible and is illustrated for the case of Pulsatility Index
estimation in uterine and umbilical arteries.

4.1 Introduction

Blood flow assessment in relevant vessels using an ultrasound Doppler spectrogram
is important in the diagnosis of various pathological conditions. Maximum velocity
measurement representing the velocity of blood cells travelling with the highest velocity
in the vessel is one of the most clinically significant measurements obtained from a
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Doppler spectrogram. Maximum velocity as a function of time, often referred to as the
maximum velocity envelope or spectral envelope is also used in a number of diagnostic
applications.

In the case of carotid stenosis, peak systolic velocities (PSVs) observed using
Doppler spectrogram are used to quantify the degree (percentage) of stenosis [1] and
further for determining and using optimal PSV thresholds to establish the need for
carotid endarterectomy [2]. Blood Flow volume assessment based on the calculation
of time averaged maximum velocity and the vessel cross sectional area is essential in
cerebral blood flow assessment [3], arteriovenous fistula inspection during hemodialysis
[4], in techniques such as anaesthesia [5] and fetal outcome assessment [6].

In maternal-fetal examination, Doppler investigation of the uterine and umbilical
arteries gives information on the perfusion of the utero-placental and feto-placental
circulations. In case of pre-eclampsia and intra uterine growth restriction (IUGR),
there is an increased resistance within the placenta, affecting the quality as well as
the quantity of the blood perfusion through the organ. The calculation of Doppler
indices which quantify the blood velocity in uterine/ umbilical arteries makes use of
points on the spectral envelope [7]. Pulsatility Index (PI), alone or combined with
early diastolic notching, has been found to be the most predictive uterine artery
Doppler index in predicting pre-eclampsia and IUGR [8]. Along with peak systolic
and end diastolic velocities, it takes into account the volume of blood flow during the
cardiac cycle. With increasing use of ultrasound in low resource settings with lack of
adequately trained users, an automated/semi-automated estimation of Doppler indices
is becoming requisite.

In the most ideal case, a single blood velocity at any instance in time should give
rise to a single Doppler frequency shift at that instance in the Doppler spectrogram as
according to the Doppler equation. However, in practice, a single velocity may give rise
to a range of frequencies resulting in a phenomenon called intrinsic spectral broadening
[9]. Intrinsic spectral broadening has been physically interpreted as occurring due to
a combination of transit time broadening [10] and geometrical broadening [11, 12].
The two phenomena were thought to be equivalent for a long time [13] but were later
shown to be different by Guidi et al. [14], who came to the conclusion that the two
phenomena at the focus are equivalent.

A number of methods have been proposed to estimate the single maximum
frequency that, according to the classic Doppler equation, would correspond to
maximum velocity in the absence of intrinsic spectral broadening. The earliest
methods were heuristic threshold crossing methods which identified maximum
frequency as a particular percentage of the spectral power / integrated spectral power
at the tail end of the corresponding power spectrum / integrated power spectrum.
These include the percentile method, D’Alessio’s threshold crossing method, modified
threshold crossing method and the hybrid method [15,16]. However, as the threshold
in these methods depends on the noise at the tail end of the spectrum, these are very
sensitive to SNR [15–17].

The later methods, Geometric method (GM) [17], Modified Geometric Method
(MGM) [18] and Signal Noise Slope Intersection (SNSI) [19] method have been shown
to give better results [17, 19–21]. However, GM can perform well only when the
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maximum analyzed frequency is optimally chosen and the IPS curve retains its typical
characteristic shape while MGM is affected by the SNR and is more prone to maximum
frequency overestimation in case of narrow band signals. Also, SNSI makes use
of certain pre-defined parameters which are data dependent. These methods are
discussed in detail in Section 4.2.

A recent method proposed by Vilkomerson et al. [22] and its extension by Ricci et
al. [23,24] are based on modelling the Doppler power spectrum based on flow velocity
profile and from that model, determining a relation for power spectral value at the
maximum frequency point. Further, based on simulations and in vitro experiments, it
is shown that the power value at which maximum frequency point occurs is a particular
fraction of the peak spectral power in the spectrum. The Vilkomerson method is shown
to give good results for the kind of model it is formulated from — uniformly insonated
parabolic flow velocity profile. However, the extension by Ricci et al., for non-parabolic
velocity profile and non-uniform insonation requires the use of a large sample volume
and a wide beam profile achieved by non-focused beamforming. Velocity components
with directions and amplitudes other than those of main blood flow can be easily
included in the sample volume. These may contribute to the Doppler spectra and
interfere with measurements [23].

The methods discussed above focus only on obtaining maximum velocity at a time
point and do not touch the aspect of spectral envelope estimation. In addition, most
of the methods have been tested on steady flow power spectra averaged over large
ensemble lengths [19, 20, 22], or take the average of maximum velocities occurring at
the same cardiac event over a number of cardiac cycles [23]. This is because they can
be easily affected by the variance in the power spectrum.

Envelope extraction techniques have mainly focused on using image processing
methods [25–27]. These techniques overcome the inter- and intraobserver variation and
yield faster and reproducible results. However, they do not take intrinsic broadening
into account and have been evaluated visually or by comparison to manual tracing of
the Doppler spectrogram.

In this work, we present a technique for maximum velocity and spectral envelope
estimation which is tested on simulated, string phantom and in vivo flow spectrograms.
To evaluate the method, its performance is compared against existing methods, it
is tested for its accuracy and precision in estimating maximum velocity by varying
the peak velocity, Doppler angle and SNR level as well as the accuracy with which
the obtained spectral envelope can be used to estimate Pulsatility Index in obstetric
diagnostics.

The paper is organised as follows. In Section 4.2, a description of the algorithm
for maximum velocity detection, envelope estimation and Pulsatility Index calculation
is given. In Section 4.3, the signal model used in parabolic flow profile simulations is
discussed along with in vivo and phantom data acquisition and processing. Section
4.4 delineates the results obtained from validation tests. The results, advantages and
limitations of the method are discussed in Section 4.5. Finally, concluding remarks
are given in Section 4.6.
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4.2 Algorithm Description

4.2.1 Maximum Velocity Point Detection

The algorithm proposed for maximum velocity point detection is based on SNSI,
modifying it based on an idea obtained from GM. This was done to overcome the
limitations of SNSI. Both GM and SNSI compute maximum velocity based on the
identification of maximum frequency. Maximum frequency, fmax is defined as the
frequency that directly corresponds to the maximum velocity through the classic
Doppler equation below, without needing any correction factors, and will be used
in the same sense in this text.

vmax = fmaxc/2f0cos(θ), (4.1)

where f0 is the center frequency of the transmitted ultrasound pulse, and c and θ
represent the sound velocity and beam-to-flow angle respectively.

Geometric Method (GM): With this method, fmax is estimated as a point on
the Integrated Power Spectrum (IPS) whose normal distance to a reference line is
maximum. This reference line is a line joining two points on the IPS: the first
corresponds to the frequency associated with peak spectral power and the second
corresponds to the ‘maximum analyzed frequency (fH)’. GM can be implemented
when the maximum frequency point is not too close to the finishing end of the power
spectrum (fH) and the IPS is relatively flat at higher frequencies close to the end of
the spectrum. To obtain accurate results, the IPS should be close to its characteristic
shape [17].

In case of Modified Geometric Method (MGM), the reference line chosen is the
line joining the first and the last points in the IPS, that is the points corresponding
to frequencies 0 Hz and fH respectively. This was done to get past the problem of
marked fluctuations caused by noise spikes and variance of the spectral estimator in the
location of frequency point that corresponds to peak spectral power. Results indicate
that MGM is influenced by the level of SNR and spectral broadening and leads to
overestimation of fmax in case of narrow band signals.

Signal Noise Slope Intersection (SNSI): With this method, IPS is divided into three
regions: the signal region, the knee region and the noise region (Fig. 4.1). The slope
of the points in the knee region is then modelled with two best fit lines: one in the
signal region with a slope of mS and one in the noise region with a slope of mN .

m(x) = mSx+mN (1− x), (4.2)

where x is the fractional signal contribution to the slope and (1−x) is the fractional
noise contribution.

mS is calculated as the slope of a linear least squares fit line between data points in
the IPS corresponding to frequencies in the strong signal range. Strong signal is defined
as the full-width at 70% of the signal peak in the power spectrum. fS corresponds to
the frequency point at the end of signal region. mN is calculated as the slope of line
joining the point on the IPS corresponding to maximum analyzed frequency point, fH
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Figure 4.1: Location of end of signal region, knee center and noise start point in SNSI
method.

and the start of noise region. Fig. 4.1 shows the location of the start of noise region,
which is found as the point on IPS corresponding to frequency fS +D/4, where D is
the distance between fS and fH .

The value of x varies from 1 at the start of the knee region, on the signal side
to 0 at the end of the knee region. In case of no intrinsic spectral broadening, fmax
will occur at x = 0. However, when intrinsic spectral broadening is present, the
spectrum extends beyond the true fmax. In SNSI, the point on IPS corresponding to
the maximum frequency has been heuristically found to be the point where x = 0.1.
This value is based on qualitative observations tested up to a Doppler angle of 60
degrees [19,20].

SNSI has been shown to work well for a broad range of SNRs [19, 20]. However,
this method uses a fixed fraction of the distance between fS and fH to determine the
beginning of noise region. This may lead to inaccurate estimation of fmax where this
assumption does not hold.

A more accurate way to locate the noise start point in IPS would be to identify the
knee center (mid-point of the end of signal region and beginning of noise region) first
based on GM, and make its location free from any pre-defined values. The method
proposed in this work combines steps from altered GM and SNSI. The order in which
the algorithm runs and locates fmax is depicted in Fig. 4.2 and enlisted in the steps
below [28].

Proposed Method :

Once the spectrogram has been corrected for any aliasing by baseline shifting
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manually, the direction of flow is identified by calculating the mean frequency at that
time point. IPS at that time point is then obtained by integrating the power spectrum
values from 0 Hz to the maximum analyzed frequency, fH , in the direction of flow.

1. The end of signal region (fS) is identified as in SNSI method. This is the point
corresponding to highest frequency value which falls in the strong signal range.

2. The knee center is identified based on an altered version of GM. It is located as
the point on IPS which lies at maximum normal distance from the reference line
joining points on IPS corresponding to fS and fH .

The reference line used in this case is different from that used in GM or MGM.
The requirement was the location of the center of the knee region (the transition
region between signal and noise) and not the knee of the IPS, as in the earlier
methods, which they ascribe as the fmax. Moreover, the location of the first point
of the reference line being the point on IPS corresponding to fS is advantageous
in two ways — one, it is devoid of the fluctuations of the point corresponding
to peak spectral power (which happens in case of GM) and two, it is not much
influenced by the fact that higher noise contribution to the IPS in case of narrow
band signals would lead to overestimation of the point being located (as happens
in case of MGM).

3. As the frequency at knee center is equidistant from the frequencies corresponding
to end of signal region and the start of noise region, the latter can be located
once the former two points are identified.

4. The slope of signal region (mS) and the slope of noise region (mN ) are computed
as in the SNSI method and the SNSI equation (4.2) is used with x = 0.1 to
estimate the slope of IPS at maximum frequency point. Finally, the algorithm
looks for the point in the knee region at which the slope value is closest to the
estimated slope value. The frequency corresponding to this point is fmax.
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5. From the estimated fmax, maximum velocity (vmax) is computed using equation
(4.1).

Note that the value of x corresponding to fmax in the knee region was kept 0.1,
as empirically found for SNSI based maximum velocity estimation in case of clinically
relevant Doppler angles [19,20].

(a) (b) (c) (d)

Figure 4.3: Maximum velocity points detected for a carotid artery spectrogram
(displayed here with dynamic range set to 40 dB), (a) before introducing 1/3rd

condition, (b) after introducing 1/3rd condition on (a), (c) after introducing power
thresholding on (b), (d) after interpolation and smoothing on (c).

4.2.2 Maximum Velocity Envelope Estimation

In order to obtain a correct estimate of the spectral envelope, the maximum velocity
identified at each time point should be accurate. After the fmax points are detected,
the spectral envelope is estimated using the following steps.

Making fmax detections rigorous

In case of SNSI, the location of knee center frequency point is fixed at fS +D/8 with
the knee region extending from fS to fS+D/4. Since the proposed method uses altered
GM for locating the knee center, there are no restrictions on the location of knee center
frequency point based on distance from fS . In such a case, if there is some signal loss
resulting in a distorted IPS curve, an erroneous knee center may be identified by GM
as implemented in this work, leading to inaccurate fmax detection as shown in Fig.
4.3(a). With fS to fS + D/4 in mind as the typical extension of the knee region as
according to SNSI, the range was slackened with fS fixed until fS +D/3 worked out
as the optimal distance to restrict the location of knee center with. The location of
knee center beyond this range seemed improbable and the condition helped to avoid
many erroneous detections. Fig. 4.3(b) shows the spectral envelope after exclusion
of spectral bins from the maximum velocity estimation for which the location of knee
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center does not satisfy the above criteria. Hereafter, this criteria of exclusion will
be referred to as the ‘1/3rd condition’ and the maximum frequency points contained
in the envelope after application of this exclusion criteria as the 1st estimate of the
envelope.

Power Threshold Requirement and Automated Estimation

Erroneous detections of fmax can be reduced further by validation of the signal quality
at each point in time. This is assessed by comparing the mean spectral power with
a given threshold, and excluding estimates at times with poor signal quality. As the
noise level may vary for different signal acquisitions, the threshold should be adaptive
to the noise in that spectrogram.

To obtain this threshold value, the power values in the frequency bins of the
spectrogram present above the maximum frequency points in the 1st estimate of the
envelope for the first 1s or 2s of the spectrogram are taken depending on the duration
of the recording. These bins are expected to lie in the noise region. Threshold
is then chosen as the 90th percentile of noise power spectral density distribution.
The percentile was experimentally determined after application of different percentile
values to spectrograms with different SNR levels.

This threshold value can then be applied to the part from which it is obtained
as well as the rest of the spectrogram to exclude those time points from envelope
estimation at which the mean power spectral value is less than the threshold. Fig.
4.3(c) shows the estimated fmax points after power thresholding. If no fmax points are
detected for a continuous period of 0.1 s or more, the fmax values for these periods are
set to zero. Finally, the good set of detected fmax points are interpolated to obtain the
spectral envelope. It is then smoothed further using a moving average filter of length
five equivalent to temporal averaging of 7.5 ms. Fig. 4.3(d) shows the estimated
envelope after interpolation and smoothing.

4.2.3 Algorithm for Pulsatility Index Estimation

Once the spectral envelope is obtained, automated Doppler Index measurements are
possible. An algorithm was developed for estimating PI for the umbilical and uterine
artery flow. PI measurements are relevant to quantify the impedance to blood flow in
placenta. It is assumed that the direction of flow is constant, that the sign of maximum
velocity values does not vary throughout the cardiac cycle. This is a valid assumption
for umbilical and uterine flow in which the flow direction is constant. The severe case
of absence or reversal of diastolic flow is an extreme condition and itself reflective of
abnormal placental development [7].

The direction of flow is assessed by checking for the sign of maximum velocity
values in the envelope. The magnitude of maximum velocity values in the envelope
is used for further calculations in the algorithm for PI estimation. The maximum
value and the minimum value from the envelope over entire chosen time range are
obtained and the average of the two values set as the threshold for locating peak
systolic velocities (PSV ). The peaks should lie above this value. Also, the minimum
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time period between the peaks to be detected is set as 0.5 s in case of uterine flow and
0.25 s in case of umbilical flow, keeping in mind the duration of one flow cycle in each
of the arteries, with sufficient margin not to miss any PSV point.

The envelope is then inverted about itself and the minima now located by finding
maxima in the inverted envelope in the same way as for detecting systolic peaks. The
minimum time period between these maxima is however set as 0.03s as more than one
minima can occur during diastolic flow. Once the time points at which the minima
occur are identified, the velocity values at these points can be estimated using the
original envelope. The diastolic end velocities (EDV ) are then chosen by keeping
only the minima which have occurred just before the occurrence of systolic peaks of
corresponding successive cycles.

The time averaged velocity (TAV ) for a cycle can then be estimated by taking
the cumulative sum of the envelope values from the EDV of the previous cycle to
the EDV of that cycle and dividing by the time duration between their occurrence.
Finally, PI for each cycle is calculated as

PI = PSV − EDV/TAV. (4.3)

4.3 Evaluation Methods

4.3.1 Signal Model for Simulations

To compare the fmax points detected by the algorithm with true maximum frequency
as well as test the robustness of the envelope to a wide range of SNRs, a signal model
that simulates parabolic flow in blood vessels is introduced.

In parabolic flow distribution, the variation of velocity in a vessel, v as a function
of distance r measured from the axis will be as follows

v(r) = vmax(1− (r/R)2), (4.4)

where vmax is the velocity of the blood cells moving along the axis and R is the radius
of the vessel. To obtain r as a function of v, the above equation can be written as

r(v) = R
√

1− v/vmax. (4.5)

Considering uniform distribution of blood cells in the vessel, the probability pr
that a blood cell is present at a distance r from the axis is

pr(r) = 2πrdr. (4.6)

The probability pv that a blood cell possesses velocity v can then be obtained using
Jacobian transformation,

pv(v) = pr(r)

∣∣∣∣∂r∂v
∣∣∣∣. (4.7)

Differentiating equation (4.5) and substituting in equation (4.7), we obtain

pv(v) = R2/vmax. (4.8)

83



4.3. Evaluation Methods

As the probability density function of velocity is constant for a particular vessel, it
can be inferred that, the number of blood cells that are moving with a certain velocity
is the same for each velocity when the flow profile is parabolic.

In the model, a focused beam with beamwidth greater than the vessel diameter is
assumed to insonate the vessel and the sample volume to enclose the vessel width. As
transit time and geometrical broadening at the focus are equivalent [14], broadening
occurring as a result of the former phenomenon is introduced.

The signal from each scatterer will be non zero only for a short interval of time,
called transit time (TT ), when it is passing through the ultrasound beam. The signal
received would be a sinusoidal signal of Doppler shift frequency (fd), modulated by the
beam profile, a sinc squared function (sinc2(t/TT ) where t represents time) resulting
from pulsed wave focused transmission and use of rectangular apodization at both the
transmit and receive apertures of the transducer. This will give a triangular function
in frequency domain with center frequency fd and bandwidth equal to 2/TT [29, 30].
Transit time, TT = fnumλ/vsin(θ) where θ is the beam to flow angle, fnum= focal
depth/aperture and λ is the wavelength of the transmitted ultrasound beam. Thus,

Bandwidth(v) = 2v sin(θ)/fnumλ. (4.9)

In parabolic flow, as the probability density function for the velocities (Doppler
frequency shifts) observed is a constant, the area under the triangular function
obtained at each velocity would be a constant. With the bandwidth and area, these
triangular functions can be completely determined. The sum of these triangular
functions at each Doppler frequency shift gives the simulated blood flow power
spectrum [31]. Lower frequencies are excluded from the model as infinitely large
spectral power values will be obtained from the computation for these frequencies.
Tissue clutter with a normalized frequency bandwidth of 0.05 was introduced at
low frequencies with power value 40 dB higher than the blood flow signal power.
Simulations were done for two different peak velocities, each at two different Doppler
angles. The parameters that were used for the simulations are listed in Table 4.1.

Table 4.1: Simulation parameters

Parameter

Blood flow maximum velocity, vmax [cm/s] 60, 100

Radius of the vessel,R [mm] 1

Center frequency,f0 [MHz] 5

PRF [kHz] 10.62

F-number, fnum 4

Beam to flow angle, θ [degrees] 27, 58

Speed of sound, c [m/s] 1540

Thermal noise is completely white in modern ultrasound scanners with digital
signal processing. This is because the correlation length of the signal is much shorter
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Figure 4.4: Power spectrum for parabolic flow velocity profile with spectral SNR 15
dB — expected (blue), time averaged over 1s time interval / 660 spectra (red).

than the pulse repetition time (Doppler signal received is in megahertz range but
is sampled in kilohertz range (pulse repetition frequency)). To obtain spectrograms
of desired SNR, that were required to be used in experiments to test the envelope
robustness to SNR (Section 4.4.2), a constant noise floor was added to the power
spectra. The Doppler signal from a large number of blood cells would add up to a
Gaussian random process. The square root of power spectrum was then multiplied with
the Fourier transform of a Gaussian complex random signal to achieve the required
power spectrum. Inverse Fourier transform of this signal, yields the required Doppler
signal. The linearity of the Fourier transform ensures that the simulated Doppler signal
will be a complex Gaussian signal. Fig. 4.4 shows the expected and time averaged
power spectrum averaged over 1s / using 660 spectra for SNR of 15 dB. Finite window
size used in the spectral analyzer introduces further broadening.

4.3.2 Data Acquisition and Processing

Beam-formed IQ data were acquired from umbilical, uterine, carotid and subclavian
arteries using Vivid E9 (GE Vingmed Ultrasound, Horten, Norway) in PW-Doppler
mode. Umbilical and uterine recordings were obtained from two pregnant volunteers
at gestational age of 29 and 39 weeks. Common carotid, external carotid, internal
carotid and subclavian recordings were acquired from a healthy volunteer.

For all phantom flow acquisitions, Doppler string phantom Mark 4 (JJ&A
Instruments, Duvall, WA, USA) was used with plain tap water as the fluid in the tank.
Beam-formed IQ data was acquired using GE Vivid E9. Four acquisitions were made
for steady velocity at two values — 60 cm/s and 100 cm/s, each at a Doppler angle
of 27◦ and 58◦. Two acquisitions were made for pulsatile string velocity mimicking
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physiological flow in Ductus Arteriosus with peak systolic velocity of 100 cm/s at
Doppler angles of 27◦ and 58◦. The Doppler angles chosen here were in accordance
with the clinical guidelines which recommend a Doppler angle of 60◦ or less.

The IQ data acquired was clutter filtered and the spectrogram obtained by using
256 point FFT on a 64 point Hamming windowed signal with 75% overlap. The
phantom recordings were clutter filtered to keep the conditions the same as for the
in vivo case. The spectrograms were averaged in time using an averaging filter of
window size 8 for the string phantom acquisitions, resulting in a temporal averaging
of 12 ms. Spectrograms for in vivo acquisitions were averaged using a window size of
4 or 8 depending upon the resulting averaging in time, which it was ensured remains
less than 24 ms.

To test for robustness of envelope estimation to SNR variability in case of in
vivo and phantom data, the desired noise power was obtained by multiplying mean
spectral power in the spectrogram with the required relative noise level. Noise was
then generated by multiplying the square root of power with a normally distributed
complex random signal and added to the acquired Doppler signal.

To enable a direct comparison between phantom and simulation results, the
Doppler angles chosen while simulating data were the same as for the phantom
acquisitions — 27◦ and 58◦ (Table 4.1). In case of flow simulations, clutter filter
was applied and spectrogram obtained in the same way, using 256 point FFT on a 64
point Hamming windowed signal with 75% overlap. Spectrogram averaging in time
was then done using an averaging filter of window size 8, resulting in a temporal
averaging of 12 ms.

Time(s) Time(s)

(a) (b) (c)

Figure 4.5: A comparison of the spectral envelope estimated using proposed algorithm
(c) with that obtained by GM (a) and SNSI (b), on a uterine artery spectrogram
(displayed here with dynamic range set to 40 dB).
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4.4 Results

The proposed algorithm was tested on 7 carotid, 4 uterine, 4 umbilical and 2
subclavian artery in vivo recordings as well as 4 steady and 2 pulsatile flow phantom
recordings. Also, flow simulations were performed and the algorithm tested on them.
In this section, results obtained from tests done to evaluate the accuracy of envelope
estimation and its robustness to SNR are presented.

4.4.1 Comparison with Existing Methods

Geometric Method and Signal Noise Slope Intersection — using in vivo
data

Fig. 4.5 shows the spectral envelope points obtained by GM and SNSI against
those obtained by the proposed method for a uterine artery spectrogram with SNR
approximated to 6.3 dB using the equation below.

SNR = 10 log10

< PS > − < PN >

< PN >
, (4.10)

where < PS > is the mean power contained in the entire spectrogram and < PN >,
mean power contained in a region containing only noise. A region containing only
noise was identified while estimating the spectral envelope using proposed method.
This step has been discussed in section 4.2.2.

Reduction in false fmax detections and variance in the the envelope is visible when
the proposed method is used.

Signal Noise Slope Intersection — using string phantom data

Fig. 4.6(a) and Fig. 4.6(b) illustrate the envelope obtained for steady phantom flow
using SNSI and the proposed method respectively. Fig. 4.6(c) and 4.6(d) show the
envelope results using the two methods for pulsatile phantom flow. Noise has been
added to the acquired flow spectra. The SNR estimated using equation (4.10) was
1.9 dB for the illustrated steady flow and 3.7 dB for the illustrated pulsatile flow
spectrograms.

Method by Vilkomerson et al. — using simulations

The method proposed by Vilkomerson et al. [22] for obtaining accurate peak velocity
has been derived for a model with parabolic flow profile and uniform insonation. The
resulting power spectrum features a plateau similar to that obtained by the model
used in this work (discussed in Section 4.3.1).

In this section, we make an analysis of our results for parabolic flow simulation
against the results obtained using the method proposed by Vilkomerson et al.,
suggested particularly for plateaued power spectra. However, the simulations done
here assume a focused-beam insonation instead of uniform insonation of the vessel as
assumed by the Vilkomerson method.
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Time(s)
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Figure 4.6: Spectral envelope on steady phantom flow using SNSI (a) and proposed
method (b), spectral envelope on pulsatile phantom flow using SNSI (c) and proposed
method (d). (All spectrograms have been displayed in this figure with dynamic range
set to 40.)

According to Vilkomerson et al., the maximum frequency point occurs at spectral
power STM , which is equal to 0.5 times the spectral power at the beginning of the
plateau, STP . STP is estimated using an iterative method. An initial power threshold
Th0 is chosen to be above the noise level. The spectrum is scanned from high to low
frequencies until initial frequency point f0 is located where bin power exceeds Th0.
Thereafter, the frequency points fi and the thresholds Thi are recursively determined
as

fi = (1− α)fi−1, (4.11)

Thi =
1

fi−1 − fi

∫ fi−1

fi

S(x) dx, (4.12)

where Thi is the average spectral density between the frequency points fi−1 and fi, α
is a parameter which affects the dimension of the averaging region, and i is the step
index. The procedure quickly converges to the plateau level, and stops when fi = fi−1.

88



Chapter 4. Adaptive Spectral Envelope Estimation for Doppler Ultrasound

When implementing this algorithm to our simulations, we take α= 0.05 and Th0

is decided based on SNR of the simulated flow. The maximum value of This is
chosen as STP if Thi values are monotonically increasing. However, if noise may cause
fluctuations in the calculated This, the Thi value just after the slope in power spectrum
is chosen as STP . Also, we do not make an interpolation in the power spectrum
values to obtain the maximum frequency point beyond the frequency resolution in the
spectrogram.

The proposed method and the method by Vilkomerson et al. were implemented
on steady flow simulated with peak velocity 60 cm/s and Doppler angle 27◦ for the
cases of spectral SNR 30 dB and 12 dB. The percentage bias and standard deviation
of maximum frequencies normalized with respect to pulse repetition frequency (PRF)
were estimated for 660 time points / 1s time interval. For the case of spectral SNR
equal to 30 dB, bias in fmax point estimation was found to be 1.21% and -0.90%,
and standard deviation over envelope was found to be 0.54% and 1.65%, by the
proposed and the Vilkomerson methods respectively. For the case of spectral SNR
equal to 12 dB, bias in fmax point estimation was found to be 1.14% and -1.10%,
and standard deviation over envelope was found to be 1.14% and 2.02%, by the
proposed and Vilkomerson methods respectively. The envelope over spectrogram and
the corresponding bias and standard deviation on time averaged power spectrum are
depicted in Fig. 4.7 and Fig. 4.8.

4.4.2 Testing for Robustness to Varying SNR

To test the robustness of envelope estimation to varying noise level in the spectrogram,
experiments were done by adding noise to simulated and in vivo data.

Simulated Flow with Varying SNR: Spectral noise was added to the simulated
flow spectra yielding signals with spectral SNR (level of signal power amplitude to
noise power amplitude) ranging from 30 dB to 10 dB. Actual SNR for each case
was calculated as the ratio of total power contained in the signal and noise over the
entire frequency range. Table 4.2 shows the percentage values of bias and standard
deviation of maximum frequencies, normalized with respect to PRF, calculated for
660 time points / 1s time interval for each SNR case. The error in fmax estimation at
time point i (Ei), bias and standard deviation (σ) are estimated as

Ei =
(fmax)i − ((fmax)true)i

PRF
, (4.13)

Bias =
1

N

i=N∑
i=1

Ei, (4.14)

σ =

√√√√ 1

N − 1

i=N∑
i=1

∣∣∣∣∣Ei − 1

N

i=N∑
i=1

Ei

∣∣∣∣∣
2

, (4.15)

where (fmax)i is the maximum frequency at any time point i, ((fmax)true)i is the true
maximum frequency at that time point (equal to a constant value (fmax)true at all
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Figure 4.7: (a) Comparison of spectral envelope over simulated flow (SNR=30 dB)
spectrogram (displayed here with 40 dB dynamic range) using the proposed method
with method by Vilkomerson et al., (b) illustration of bias in fmax point estimation
and standard deviation in the envelope by the proposed and Vilkomerson methods on
time averaged power spectrum.

time points for steady simulated flow) and N is the number of time points considered.

Noise addition to in vivo data: Blood flow spectrogram with 1422 time points
from a uterine artery recording lasting 3.98 s was obtained. The SNR of the recording
was calculated approximately as 14 dB using equation (4.10).

Increasing level of noise was added to the spectrogram, using a desired level relative
to the mean power contained in the spectrogram. As the recording would have some
inherent noise, the resulting SNR value (in dB) was then estimated using equation
(4.10). The percentage bias and standard deviation of estimated normalized maximum
velocities was calculated for each case as shown in Table 4.3, the true normalized
maximum velocity at each time point being considered as obtained in the case without
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Figure 4.8: (a) Comparison of spectral envelope over simulated flow (SNR=12 dB)
spectrogram (displayed here with 40 dB dynamic range) using the proposed method
with method by Vilkomerson et al., (b) illustration of bias in fmax point estimation
and standard deviation in the envelope by the proposed and Vilkomerson methods on
time averaged power spectrum.

any additional noise in the spectrogram. The normalization of velocities was done
with respect to twice the Nyquist velocity. The error, bias and standard deviation are
estimated according to (4.13), (4.14), (4.15) respectively.

Visual analysis for a poor SNR signal: The spectral envelope obtained using
proposed method on a subclavian artery spectrogram whose SNR was approximated
using equation (4.10) to 5.4 dB was compared with its corresponding autotrace on the
commercial scanner with trace sensitivity set to maximum. Fig. 4.9 illustrates the
example.
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Table 4.2: Envelope estimation for varying SNR in simulated flow

Spectral
SNR
[dB]

SNR
[dB]

Bias of
normalized
maximum
frequencies

(%)

Standard
Deviation of
normalized
maximum
frequencies

(%)

30 22.6 1.21 0.54

20 12.6 0.98 0.96

15 7.6 0.89 0.97

12 4.6 1.14 1.14

10 2.6 1.59 2.00

Table 4.3: Envelope estimation for varying SNR in in vivo data

Approxi-
mate

resulting
SNR
[dB]

Bias of
normalized
maximum

velocities(%)

Standard
deviation of
normalized
maximum

velocities(%)

13.3 -0.008 0.15

10.3 -0.007 0.33

6.6 0.028 0.60

1.9 0.226 1.62

-0.7 0.909 2.84

4.4.3 Varying Doppler angle and peak velocity

Maximum velocity envelope estimation for several cases of peak velocity and beam to
flow angle was done for phantom and simulated flow. Table 4.4 shows the different
cases and the corresponding bias and standard deviation in estimation of maximum
velocities normalized with respect to twice the Nyquist velocity. The measures of error
have been obtained for each case of steady thread phantom flow using a spectrogram
of time duration 6 s discretized over 3979 time points and for simulated flow using a
spectrogram of 1s discretized over 660 time points. Note that in case of pulsatile flow,
peak velocity is the peak systolic velocity and the bias and standard deviation shown
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(a) (b)

Time(s)

Figure 4.9: Comparison of maximum velocity (a) autotrace on a commercial scanner
with trace sensitivity set to maximum and (b) envelope obtained using algorithm on
subclavian artery spectrogram (spectrogram (b) is displayed with dynamic range set
to 38 dB).

for each of the two cases of pulsatile phantom flow is for 16 peak systolic points.

4.4.4 Estimation of Clinical Indices based on Spectral Enve-
lope

Using the algorithm discussed in section 4.2.3, PI can be calculated based on the
spectral envelope after identification of peak systolic and end diastolic velocities. The
envelope on a uterine artery spectrogram and the identified peak systolic and end
diastolic velocities for three cardiac cycles are shown in Fig. 4.10.

The accuracy of PI estimation depends highly on the estimated envelope and thus
the robustness of the envelope to varying SNR is important. The variation in PI
estimation based on the proposed method with SNR is shown in Table 4.5.

Fig. 4.11 is a scatter plot showing variation of PI estimated using spectral envelope
obtained by the proposed method with that obtained using the commercial scanner.
The plot compares a total of 37 PI measurements (obtained from 18 uterine and
19 umbilical artery cardiac cycles — from 5 PW Doppler recordings acquired from
two pregnant volunteers). The line shown is the line of identity. Considering the
PIs obtained from the commercial scanner as reference, the mean absolute error and
standard deviation as calculated for all data points is 0.046 and 0.062 respectively.
The mean PI value (averaged over three consecutive cycles) for uterine artery in case
of Patient 1 (at 29 weeks of gestation), was found to be 1.20 from the scanner and
1.20 using the proposed algorithm. For Patient 2 (at 39 weeks of gestation), mean
uterine PI from scanner was 2.06 and PI from algorithm was 2.04. PI reference ranges
from clinical perspective of assessing placenta associated diseases have been discussed
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Table 4.4: Envelope estimation for varying peak velocity and Doppler angle

Flow
type

Peak
velo-
city

(cm/s)

Dop-
pler

angle
(◦)

Bias of
normali-

zed
maximum
velocities

(%)

Standard
Deviation
of norma-

lized
maximum
velocities

(%)

Phantom flow

Ste-
ady

60 27 3.47 0.88

Ste-
ady

60 58 12.35 1.36

Ste-
ady

100 27 5.20 1.37

Ste-
ady

100 58 19.09 1.85

Pulsa-
tile

100 27 3.26 2.89

Pulsa-
tile

100 58 18.16 2.35

Simulated flow

Ste-
ady

60 27 0.98 0.96

Ste-
ady

60 58 1.89 0.84

Ste-
ady

100 27 1.71 0.81

Ste-
ady

100 58 2.26 1.78

in [32]. The 95th centile value (upper limit for patients considered normal) at 29 weeks
of gestation is 1.13 and at 39 weeks of gestation is 0.91. The estimated and reference
PI values are found to fall in the same reference range (greater than 95th centile) for
both the patients.
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Table 4.5: PI variation with varying SNR, Reference PI =1.20

Approximate
resulting SNR [dB]

Estimated PI

14.0 1.20

12.1 1.21

10.3 1.22

6.6 1.24

3.0 1.23

Time(s)

Figure 4.10: Spectral envelope on a uterine artery spectrogram (displayed here with
dynamic range set to 40 dB) with identified peak systolic and end diastolic velocity
points for three cardiac cycles.

4.5 Discussion

4.5.1 Method Establishment

The existing methods — GM and SNSI have been tested on simulated and steady
phantom flow in earlier works [17,19,20]. When implemented on in vivo spectrograms
susceptible to signal loss and greater variance in the power spectrum estimate, these
methods tend to result in erroneous maximum velocity estimations (Fig. 4.5). The
proposed method for fmax estimation is designed with its main basis as SNSI, a method
which follows a heuristic approach designed for clinically relevant acquisition settings.
However, in the proposed method, SNSI has been modified in several ways to overcome
its limitations.

We extend the use of SNSI to short time averaged pulsatile flow, which is
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Figure 4.11: Scatter plot showing correlation between PI estimated using proposed
method and that obtained from commercial scanner.

the requirement on the clinical side, although in earlier works, the technique was
implemented on steady flow with power spectra averaged over long ensemble lengths.
Pre-defined location of the knee center and consequently noise start point, as fraction
of the distance between maximum analyzed frequency and end of signal region, lead to
failure of the method for several cases in our data (Fig. 4.5(b)). These locations would
probably have held true in case of constant flow phantom data on which the method
was tested by its authors [19,20]. Fig. 4.6. also supports this fact. Observation of IPS
for these cases revealed that the knee center identified this way did not correspond to
the actual knee center. The use of altered GM for location of knee center turned out
to be promising as it helps to locate the center of the transition region between signal
and noise more accurately.

To obtain accurate results, SNSI requires the use of ensemble averaged PS while
GM requires an optimal fH which is not too close to fmax. In other words, the use of
both methods requires a good IPS representative of its characteristic shape. This is a
requirement that holds for the proposed fmax point detection technique. For pulsatile
flow with moderate or low SNR, this can never really be achieved at each time point.
The limitation of not being a ‘good IPS’ is thus used to our advantage by eliminating
the time points at which these occur for fmax detection. The envelope is obtained by
interpolating and smoothing the good set of fmax points.

4.5.2 Reliability of Maximum Velocity Estimation

There are numerous possible sources of error in estimating the maximum velocity, and
these combine to form a maximum velocity error. The primary factors that contribute
to these have been summarised in Christopher et al. [33]. Errors arise from the assumed
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value of the variables used in the Doppler equation (4.1) while estimating maximum
velocity from maximum frequency. Moreover, if the maximum frequency used is that
as observed by the naked eye or based on threshold crossing methods (summarised
in Section 4.1), the effect of intrinsic spectral broadening gets ignored. The degree
of spectral broadening and the associated error varies based on the data acquisition
settings like sample volume length, sample volume shape and aperture size.

The choice of SNSI as a basis for fmax detections for the spectral envelope
estimation technique described in this work was based on the fact that results obtained
using SNSI have been shown to have little intratransducer and intra/intermachine
variability. The results were also found to be sufficiently robust to changes in focal
depth and beam-steering. Though it was shown that overestimation errors occurred,
increasing with an increase in the Doppler angle, these errors were significantly less
at clinically relevant Doppler angles in comparison to errors without the use of SNSI
correction [20,34,35].

Using the proposed method, the bias of normalized maximum velocities in the case
of simulations for different peak velocities and Doppler angles was found to be less
than 2.5% (Table 4.4). In the case of phantom experiments, for a smaller Doppler
angle (27◦) bias of up to 5% was seen while for a larger Doppler angle (58◦), bias
of 12-19% was observed. The main cause for greater bias in the case of phantom
flow as compared to simulated flow seemed to be vibrations of the phantom string
happening in a direction transverse to the desired mimicked fluid flow due to the
motor driving the string motion. This also helps to understand the significant increase
in bias at the higher angle in which case contribution to the signal received by the
transducer from these transverse vibrations would be higher than at a smaller Doppler
angle. In addition, slight misalignment of the angle correction cursor at greater angles
may also have contributed to the large velocity estimation errors. For both phantom
and simulation results, greater bias at a higher Doppler angle and maximum velocity
indicates that with an increase in spectral broadening, the accuracy of maximum
velocity estimation is reduced. This is probably because of greater spectral broadening
resulting in a larger knee region in the IPS. The detected fmax in such a situation has
higher probability to be located farther away from true fmax. Standard deviation
in fmax estimation is considerably low — less than 2% for steady string phantom
and simulated flow and less than 3% for pulsatile string phantom, indicating high
precision in fmax estimation. Slightly higher standard deviation in case of string
phantom velocity when compared to simulated flow, despite similar conditions, can be
attributed to vibrations in the case of the string phantom and frequent spikes in the
spectrogram due to bubbles.

Parabolic blood flow simulations also enabled comparison of the errors in maximum
velocity estimation using the developed technique with the model based method
developed by Vilkomerson et al.. fmax detection technique by Vilkomerson et al. is
specifically meant for plateaued power spectra derived for a model based on continuous
laminar flow with parabolic velocity distribution, fully insonated by a probe. The
method is not designed to be used as such for in vivo flow. It is seen that while
the proposed method overestimates the maximum velocity, the Vilkomerson method
tends to underestimate it. Also, for the cases of spectral SNR 30 dB and 12 dB,
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while the magnitude of bias observed in fmax estimation using the proposed method
is very slightly higher than the Vilkomerson method, the standard deviation of the
fmax points in the envelope is much lower. Overall, the values of percentage bias
estimated for the two methods, for both SNR cases, are small relative to other sources
of error in maximum velocity estimation. The true maximum velocity is found to lie
at -3 dB and thus the plateaued power spectrum model assumed seems consistent with
the findings of the model described by Vilkomerson et al. However, the location of the
point detected as fmax in the Vilkomerson method in Fig. 4.7(b) and 4.8(b), seems to
be around -2 dB and not around the expected -3 dB as the figures represent average
of fmax points for each power spectral line in the spectrogram on the time averaged
power spectrum of the spectrogram and not the fmax estimate for the averaged power
spectrum.

4.5.3 Robustness to SNR

The bias being low and steady (0.9-1.6%) over an SNR range of 22.6 dB to 2.6 dB,
in the case of steady flow simulated for a velocity of 60 cm/s and Doppler angle of
27◦, indicates that the maximum velocities estimated in the envelope have very low
sensitivity to SNR (Table 4.2).

Also, fairly low standard deviation is found in the observed maximum velocities.
Less than 2% standard deviation in normalized maximum velocities is observed down
to 2.6 dB SNR in simulated flow and 1.9 dB approximate SNR in in vivo flow. Envelope
estimated for in vivo data seems to show better performance as compared to envelope
for simulated data at the same SNR level, probably because the bandwidth for in vivo
data is lower resulting in a higher spectral SNR.

4.5.4 Blood flow measurements based on envelope

Low variability in the observed envelope with variable SNR is promising from the
point of view of automated Doppler indices estimation. Results in Table 4.5, showing
consistency of PI estimation for varying SNR strongly support this fact. It is difficult
to know the true maximum velocity of blood flow in vivo. However, considering that
the broadening suffered by the maximum velocity at a time point in the Doppler
spectrogram is proportional to the velocity value at that time point and the other
parameters remain constant over the analysed part of spectrogram as can be deduced
from equation (4.9), it can be said that the Doppler indices like PI, being a ratio of
maximum velocities are independent of spectral broadening. Here, we are neglecting
the effect of spectral broadening due to finite window size used while taking Fourier
transform of the acquired Doppler signal as it produces very little effect compared
to transit time broadening. Also, it can be fairly safely assumed, that the maximum
velocities observed from a commercial scanner, suffer a broadening proportional to
the true maximum velocities at corresponding points, yielding a PI independent of
spectral broadening.

Fig. 4.11 indicates a very good agreement between PI estimated using spectral
envelope obtained by the proposed method with that obtained using the commercial
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scanner. The mean absolute error of estimated PI values when compared to the
reference PI values is small, equal to 0.046. Also, the estimated and reference values
are found to fall in the same clinical reference range of uterine artery PI for the case of
two volunteer patients, even though Patient 1 is a case close to the deciding borderline.

4.6 Conclusion

In this work we presented a method for spectral envelope estimation which is fully
automatic and independent of gain settings. The fmax detection technique for this
method is developed by modifying an existing experimental approach (SNSI). In
addition, the use of a threshold estimated based on noise level in the spectrogram
ensures exclusion of erroneous fmax detections that may occur for certain power
spectral estimates.

Experiments to test the performance of the envelope estimator were done for several
cases of Doppler angles, peak velocities and SNR levels. Low errors in maximum
velocity estimation are observed for simulated flow. Standard deviation in the envelope
formed of the maximum velocity estimates is significantly low for simulated, phantom
as well as in vivo flow. These results point towards robust envelope estimation with
low sensitivity to SNR and variance in the power spectrum.

Consistency in PI estimation for different SNR levels and good agreement of
PI values with their reference values from the commercial scanner suggest that the
envelope can be used in automated measurement of clinical indices. While making
diagnosis possible by users less exposed to ultrasound technology, the spectral envelope
as well as automated measurements will be useful in reducing inter/intra observer,
inter/intra machine variability.
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Interleaved acquisitions used in conventional triplex mode results in a trade-
off between the frame rate and the quality of velocity estimates. On the
other hand, work-flow becomes inefficient when the user has to switch
between different modes, and measurement variability is increased. This work
investigates the use of power spectral Capon estimator in quantitative Doppler
analysis using data acquired with conventional color flow imaging (CFI)
schemes. To preserve the number of samples used for velocity estimation,
only spatial averaging was utilized, and clutter rejection was performed after
spectral estimation. The resulting velocity spectra were evaluated in terms
of spectral broadening using an adaptive maximum velocity estimator. The
spectral envelopes were also used for Doppler index calculations using in
vivo and string phantom acquisitions. In vivo results demonstrated that the
Capon estimator can provide spectral estimates with sufficient quality for
quantitative analysis using packet based CFI acquisitions. The calculated
Doppler indices were similar to the values calculated using spectrograms
estimated on a commercial ultrasound scanner.

5.1 Introduction

Blood velocity measurements using ultrasound are normally dependent on anatomical
B-mode images for navigation, color flow imaging (CFI) for detecting abnormal blood
flows, and spectral-Doppler, i.e., pulsed wave (PW)-/continuous wave (CW)-Doppler,
for quantitative measurements. While these sources of image data are available
near simultaneously using interleaved acquisition schemes on clinical scanners, so-
called duplex/triplex modes, the trade-off in image quality and/or spectral quality
can be quite severe. Therefore, the recommendation is that spectral-Doppler is done
individually for most blood velocity measurements. This implies that the placement of
the Doppler sample volume is positioned based on image data that is not necessarily
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current, that spectral velocity information is only available at one location at a time,
and the current workflow often involves switching back and forth between modalities.

Conventional CFI scanning schemes employ focused transmits scanned over a
region of interest (ROI) using a given pulse repetition frequency (PRF) to acquire slow-
time Doppler ensembles. Mean velocities in this region are estimated for each pixel and
displayed using color coding. For several reasons, it would be beneficial to extract the
quantitative information directly from 2-D CFI. First, this would have the potential to
simplify the work flow, and second new information could be obtained simultaneously
by analyzing spectral traces from several positions. However, quantitative analysis
based on conventional CFI is currently hampered by several factors. First, the frame
rate is often too low to follow rapid changes in blood flow. Secondly, the mean velocity
estimator may be biased due to sub-optimal clutter filtering and have a high variance.
Third, it is usually not the mean, but the maximum velocity trace that is used
clinically, and conventional CFI ensembles are too small to perform standard spectral
analysis. While spectral information currently can be extracted from CFI data sets,
the limited number of pulses available with conventional acquisition schemes leads to a
very poor frequency resolution. Fast imaging based on broad emissions and synthetic
transmit aperture techniques have been used to bypass these limitations [1–3], are
suitable for high-end systems with substantial memory and processing capabilities [4],
and may also suffer from reduced penetration in clinical use due to decreased acoustic
intensities.

To be able to estimate velocity waveforms with sufficient quality for quantitative
Doppler analysis, the spectral estimator should yield power spectral densities (PSDs)
with sufficient side lobe suppression and minimum spectral broadening; moreover,
the temporal resolution of the Doppler waveform should be high enough to follow
accelerations during the cardiac cycle. Conventionally, Welch’s method [5] is used
for estimating the velocity waveforms in commercial scanners. This method requires
long observation windows (OWs), e.g., 64-128 time samples, for estimation of PSDs to
achieve low side lobe levels and high frequency resolution. One way to acquire PW-
Doppler data is to interleave B-mode, CFI and PW-Doppler acquisitions. A uniform
sampling scheme sets an upper limit on the maximum PRF, therefore on the maximum
measurable velocity. Alternatively, interrupting PW-Doppler data acquisition with B-
mode and CFI acquisitions leaves gaps in the spectrogram. Several methods have been
proposed to reconstruct these gaps in order to regenerate continuous spectrograms [6,7]
or methods that can generate spectrograms using randomly or periodically sampled
sparse data sets [8–11]. The performance of these methods depends heavily on
the amount of the available data, and therefore these methods are mainly suitable
for duplex imaging where only B-mode and PW-Doppler acquisitions are made.
Additionally, they allow for only one or a limited number of spatial locations where
velocity spectra can be analyzed simultaneously with sufficient quality.

Data adaptive spectral estimators have been used in medical ultrasound and
demonstrated to produce high quality PSDs using shorter OWs than used for the
traditional Welch’s method. Filter bank methods [11–14], such as Capon and
APES, have been shown to produce Doppler spectra with lower side lobe levels and
increased frequency resolution using observation window sizes comparable to data
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lengths used in CFI for mean velocity estimation, e.g., 8-16 [15]. Recently, a method
that combines the Capon spectral estimator and plane wave imaging was used for
retrospective qualitative Doppler analysis using short window sizes and interleaved
B-mode acquisitions and showed promising results [1].

This work aims to improve the quantitative abilities of duplex CFI. Data acquired
for color Doppler image generation are used for estimation of velocity waveforms. 2-
D spatial averaging is utilized for covariance matrix estimation and the PSDs are
estimated with the power spectral Capon estimator. Further, a recent adaptive
maximum velocity envelope estimator [16] is employed for maximum velocity and
Doppler index calculation to evaluate the performance of the proposed method. The
adaptive spectral estimation methods have been shown to improve frequency resolution
and contrast in spectral Doppler [11, 14, 17]. In this work, performance of the power
spectral Capon method is evaluated in terms of spectral broadening with ensemble
lengths used in conventional CFI.

The paper is organized as follows. In Section 5.2, the PSD estimators, the
maximum velocity envelope estimator and the data acquisition setup are presented. In
Section 5.3 in vivo and string phantom results are presented and discussed in Section
5.4. Concluding remarks are given in section 5.5.

5.2 Methods

The acquisition, beamforming and post-processing methods in this work are all chosen
to address the aforementioned CFI limitations, while retaining the possibility for
implementation also on a conventional low- to mid-end ultrasound system. For an in-
depth analysis, both plane wave imaging and conventional CFI scanning schemes were
used for acquisition of data sets. A 2-D averaging region is used for each estimation.

Let xr,b(n) represent a sample in CFI or plane wave data set at depth r in radial,
beam b in lateral direction and emission n after demodulation. It consists of echoes
from stationary or slowly moving tissue which is regarded as clutter, signal from blood
and zero mean white Gaussian noise. An ensemble acquired at this location that has
N temporal samples, can be expressed as xr,b = [xr,b(1) xr,b(2) · · · xr,b(N)]T . N is
usually referred to as ensemble length or packet size (PS) in CFI.

5.2.1 PSD Estimators

The ensemble can be subdivided into smaller segments for temporal averaging to
decrease the variance. Let l denote the index for the sub-segments x̃r,b

x̃r,b(l) = [xr,b(l) xr,b(l + 1) · · · xr,b(l +M − 1)]T , (5.1)

where M is the length of the sub-segment.

Including the spatial averaging in radial and lateral directions, the Welch PSD
estimator is expressed as
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P̂Welch(fk) =

1

RBL

R∑
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m=0

w(m)xr,b(l +m)e−i2πfkm

∣∣∣∣∣
2

, (5.2)

where w(m) is a tapering window, fk is the normalized frequency with respect to PRF,
L is the number of sub-segments and M = N−L+1. In this work, a Hamming window
is chosen as the tapering window and L = 1, i.e. no subdivision of the ensemble.

The Capon estimator is a filter bank method that generates a unique filter for
each frequency estimate. The filter minimizes the power output while keeping the
power estimate of the frequency of interest undistorted. As CFI data sets are used for
estimation, the estimator is evaluated using only 2-D spatial averaging without any
temporal averaging. The estimator can be given as [12]

P̂Capon(fk) =
1

aH
fk

R̂
−1

Caponafk

, (5.3)

where afk = [1 ei2πfk · · · ei2πfk(N−1)]T is the Fourier vector and the covariance matrix

R̂Capon is

R̂Capon =
1

RB

R∑
r=1

B∑
b=1

xr,bx
H
r,b. (5.4)

Fig. 5.1 shows two spectrograms generated using data acquired from the common
carotid artery (CCA) when N = 16. A 2-D averaging kernel with dimensions of
0.5mm × 1.2mm used for spatial averaging. The Capon method (Fig. 5.1(b)) can
isolate the clutter while the Welch method (Fig. 5.1(a)) has high side lobe levels and
the clutter affects the low velocity estimations.

5.2.2 Maximum Velocity Envelope Estimation

A recent method [16] proposed for maximum velocity and spectral envelope estimation
is used for maximum velocity estimation. The method is a combination of two existing
maximum velocity estimation methods, an altered version of the Geometric Method
(GM) [18] and the Signal Noise Slope Intersection (SNSI) [19], and employs further
steps for exclusion of low quality estimates to achieve low variance maximum velocity
envelopes.

The method requires spectrograms without clutter, which are also non-aliased or
baseline shifted. In this work, baseline shifts were done manually by inspecting the
spectrograms. For each bin in the spectrogram, the spectral values are integrated
from zero frequency to the maximum analyzed frequency, generating an integrated
power spectrum (IPS). A characteristic IPS has three distinct regions: signal, noise
and knee (the transition region between signal and noise) regions. After the regions
are detected, the algorithm fits lines to the curves in the signal and noise regions and
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Figure 5.1: Spectrograms estimated with the Welch estimator (a) and the Capon
estimator (b) when the ensemble length is short (N = 16). The spectrograms are
displayed with 40 dB dynamic range.

finds the slope of the fitted lines. Next, the maximum frequency point fdmax
is found

by finding the point in the knee region which has the slope closest to the slope m,
defined as

m(x) = msx+mn(1− x), (5.5)

where ms and mn are the slopes of the lines fitted to the curves of signal and noise
regions respectively, while x is chosen as 0.1. This value was found empirically by
qualitative assessments for beam-to-flow angles up to 60◦ [19, 20].

The low quality estimates are excluded based on power thresholding and the
location of the knee center where a maximum limit is introduced on its location.
The excluded estimations are later interpolated. In the original algorithm, linear
interpolation is used for this purpose while in this work, the time resolution of the
spectrograms is a limitation. Therefore, spline interpolation is employed instead to
improve the reconstruction of the true spectral trace. Finally the maximum velocity,
vmax, is found by

vmax = fdmax
PRFc/2f0 cos θ, (5.6)

where f0 is the center frequency and θ is the beam-to-flow angle.
The method has previously been evaluated on spectrograms generated using

Welch’s method. In this work, the method was applied to Capon spectograms
generated from low packet sizes and with a relatively low time resolution.
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The maximum velocity envelopes were further used for PI calculation. PI is for
instance known to be an effective indicator for the prediction of pre-eclampsia [21] in
pregnancy and calculated as

PI = (PSV − EDV )/TAV, (5.7)

where the time averaged velocity (TAV) is calculated between the detected peak
systolic velocity (PSV) and end diastolic velocity (EDV) for each cycle.

5.2.3 Data Acquisition and Processing

String phantom acquisitions

The quantitative assessments were done on string phantom data sets recorded using a
Doppler string phantom, Mark 4 (JJ&A Instruments, Duvall, WA, USA). This system
provided both constant velocity movement as well as physiological waveforms, such as
umbilical artery flow. A rubber 1.6 mm diameter o-ring cord was used as the string.
Stationary and umbilical artery waveforms were chosen for performance evaluation.
The angular positioner of an Acoustic Intensity Measurement System AIMS III (Onda,
Sunnyvale, California, USA) was employed to accurately set the beam-to-flow angle
in the investigation. The probe was placed above the string and aligned to minimize
out of plane motion by manually inspecting the acquired B-mode images. Later, the
probe moved in azimuth and radial plane while keeping the elevation position fixed
in order to record data with different beam-to-flow angles and velocities. Table 5.1
summarizes the setup and acquisition parameters of the string phantom recordings.

String phantom data were recorded using a Verasonics ultrasound system
(Verasonics Inc., Redmond, WA, USA) with a L11-4V linear probe. A plane wave
acquisition scheme was here used in order to be able to generate spectrograms using
arbitrary packet sizes and compare the Welch and Capon power spectral estimators
based on the data from the same recording. A continuous scanning scheme was used
with 10 and 6 kHz PRFs for stationary flow and umbilical artery flow waveforms
respectively.

In order to investigate spectral broadening with different scenarios, the string was
moved with a constant velocity, mimicking flow conditions of velocities 20, 60 and
100 cm/s. For each velocity, the recordings were done with 30◦, 45◦, 60◦ and 75◦

beam-to-flow angles. For each angle and velocity 1 second of data was recorded.
Continuous plane wave acquisitions were divided into packets with sizes 8, 12 and
16 for the Capon PSD estimations. The data with 16 packet size were further used
with the Welch estimator to demonstrate what could be achieved with a conventional
estimator (L = 1 and no time overlap). The packet data were filtered with a 6th order
FIR filter to be used with the Welch estimator to avoid the clutter effect shown in Fig.
5.1. This resulted in effective OW length 11 after filter initialization. Reference Welch
PSD estimations were done with 64 OW length and 75% overlap resulting in 1872
maximum velocity estimations for each beam-to-flow angle and velocity. The number
of estimations done for packet based estimations were PRF/PS. The dimensions of the
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2-D spatial averaging region, 0.7mm×1mm in lateral and radial directions respectively,
was the same for all methods.

The umbilical artery waveform recordings were processed in the same manner. The
estimated spectrograms were used for PI estimation and the effect of broadening on
PI calculations was investigated.

As the transmit pulse parameters are different for actual CFI and PW-Doppler
recordings, the recorded data were also filtered with narrow and wide bandwidth
filters during IQ demodulation to mimic using long and short pulse lengths for PW
and CFI recordings respectively. See Table 5.1 for the signal bandwidths ratio where
the bandwidth is defined as the full width at -30 dB in the power spectrum.

Table 5.1: String phantom acquisition setup

Parameter stationary umbilical

Center frequency [MHz] 6 6

Pulse periods 2.5 2.5

PRF [kHz] 10 6

F-number 1.4 1.4

CFI/PW-Doppler bandwidth ratio 2.23 2.23

In vivo acquisitions

In vivo acquisitions from healthy volunteers were performed to evaluate the method
using conventional CFI recordings. Recordings from umbilical artery at gestational
age 32 weeks, common carotid artery recording from 30 year old male and aortic flow
from a 28 year old male volunteer were acquired.

In vivo recordings were done using Vivid E95 (GE Vingmed Ultrasound, Horten,
Norway) clinical scanner and CFI scanning schemes with different packet sizes and
frame rates. ROIs were chosen that would make it possible to acquire a 2-D region with
dimensions sufficient for interpretation of the anatomy, while providing sufficient frame
rate for the investigation of the performance for high and low frame rates using different
frame downsampling factors. In this setting, frame rate of the color Doppler image
corresponds to the time resolution of the velocity waveform. Table 5.2 summarizes the
imaging setup and post-processing parameters. The 2-D averaging regions used for
the Capon spectral estimations were 3mm× 0.6mm, 5.5mm× 3.1mm and 2.25mm×
1.12mm in lateral and radial directions for the CCA, aortic flow and the umbilical
artery recordings respectively. After the CFI data acquisition, a PW-Doppler reference
spectrogram was recorded while keeping the probe approximately in the same position.
The spectrograms estimated with the Capon estimator were compared to spectrograms
estimated on the scanner in terms of broadening. The reference scanner spectrograms
were generated in PW-Doppler only mode in order to achieve high quality. In addition,
the calculated PI values were compared for the umbilical artery case.
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Table 5.2: Acquisition setup and processing parameters

Parameter umbilical carotid cardiac

CFI

Center frequency [MHz] 3.125 5 2.2

Pulse periods (cycles) 2.5 4 3

PRF [kHz] 5 5 5

Packet size 14 10 12

Frame rate 104 94 97

Cut-off velocity [cm/s] 8 15 30

Probe type C1-6-D 11L-D M4Sc-D

PW

Center frequency [MHz] 2.5 5.9 2

Pulse periods (cycles) 12 6.5 12

PRF [kHz] 2.8 5.3 5.8

F-number 5 5 5.5

Frame rate 479 531 485

Clutter filtering

Ideally, the clutter filter should have a short transition region and high stop band
attenuation which are difficult to achieve with the short ensemble lengths used in
CFI. Adaptive spectral estimation methods are shown to have low side lobe levels
and can confine the clutter signal in a narrow region around zero frequency [17].
Recently this was utilized for clutter removal in CFI [22]. Clutter filtering for Capon
spectrograms in this work was performed after spectral estimation as proposed in [22],
by setting spectral estimates between defined cut-off frequencies to zero. The cut-off
frequencies were chosen manually by visually inspecting the spectrograms (Table 5.2).
Due to insufficient spectral resolution and higher side lobe levels, this approach is
not applicable for the Welch method with small packet sizes. Finite impulse response
(FIR) filters were used for the data used for the Welch spectral estimation methods.

5.3 Results

The performance of the Capon estimator was evaluated in terms of spectral broadening
with different beam-to-flow angles and packet sizes using data recorded from the
string phantom, umbilical artery, CCA and aorta. The results were compared to
the conventional Welch method with long OW length or the reference spectrogram
estimated on the commercial scanner. Later, the effect of broadening on the
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quantitative PI calculation was investigated using in vivo and string phantom
recordings.

5.3.1 String phantom results

Constant velocity waveform

Table 5.3 shows maximum velocity estimates (in cm) for different beam-to-flow angles
and velocities. The bias is calculated using the data from the same recordings; however,
the data were filtered differently to mimic different settings for CFI and PW-Doppler
recordings. Bias in maximum velocity estimation increases with increasing beam-to-
flow angle and velocity for all methods. Increased angle and velocity limit the time
that the scatterers are observed in the sample volume, which in turn increases the
broadening. Comparing the Capon method with packet size 16 to Welch’s with the
same packet size, it can be seen that the Capon method can decrease the spectral
broadening significantly, especially for low velocities. Increasing the packet size from
8 to 12 decreases the standard deviation and bias of the maximum velocity estimates
for the Capon method. Increasing the packet size further improves the estimates only
marginally. Welch’s method with packet 64 size performs better for all beam-to-flow
angles and velocities except for 75◦ and 20 cm/s case where Capon method with
packet size 16 performed slightly better. Absolute bias increases more for the Capon
estimator than the Welch estimator (with 64 OW length) as velocity increases.
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Table 5.3: String phantom stationary flow pattern results

20 cm/s 60 cm/s 100 cm/s

30◦

Welch Capon Welch Capon Welch Capon
PS 64 16 8 12 16 PS 64 16 8 12 16 PS 64 16 8 12 16
M 23.4 37.1 26.6 25.7 25.2 M 65.4 77.2 73.6 73.1 73.2 M 107.9 119.1 122.9 122.8 122.5
S 0.6 0.8 1.8 1.3 0.9 S 1.1 0.9 2.3 1.8 1.9 S 2.4 1.5 4 3.7 4.1

45◦

Welch Capon Welch Capon Welch Capon
PS 64 16 8 12 16 PS 64 16 8 12 16 PS 64 16 8 12 16
M 24.3 40.9 25.9 25.9 25.9 M 67.7 82.1 75.4 76.1 76.7 M 111.4 123.9 125.5 125.9 125.4
S 0.6 0.6 1.2 1 0.9 S 1.2 1.15 2 1.8 1.7 S 2 1.8 4 3.4 3.6

60◦

Welch Capon Welch Capon Welch Capon
PS 64 16 8 12 16 PS 64 16 8 12 16 PS 64 16 8 12 16
M 26.2 49.8 28.3 27.9 27.9 M 71.8 91.7 81 81.3 82 M 114.4 142.6 126.6 127.2 126.8
S 0.9 0.9 1.4 1 1.1 S 1.8 1.4 2.6 2.1 2 S 2.9 2.4 3.8 3.9 3.9

75◦

Welch Capon Welch Capon Welch Capon
PS 64 16 8 12 16 PS 64 16 8 12 16 PS 64 16 8 12 16
M 34.9 82.6 37.7 34.6 33.9 M 79.2 120.8 95.9 94 94.4 M 129.4 163.8 155.4 154.6 157.2
S 4.9 15 3.2 2.3 2.1 S 3.1 3.3 5.7 3.8 3.9 S 7.8 5.3 7.8 6.1 5.8

PS: Packet size, M: Mean, S: Standard deviation
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Fig. 5.2 shows spectrograms generated using data recorded with 60 ◦ beam-to-flow
angle and 60 cm/s velocity with OW lengths 16 and 64 for Welch’s method and 8 and 16
for the Capon method. Welch’s method with 64 provides the envelope estimation with
lowest bias and has better dynamic range than the other estimations. Welch’s method
with 16 packet size yields spectrogram with considerably higher broadening. Even
though the envelope estimations done on Capon spectrograms yield similar values, 16
packet size provides better contrast than the 8 case. This is also shown in Fig 5.2(e)
where the spectra estimated at the same time instance are plotted together. Note
that the Capon-based results in Table III and Fig. 2 are based on wideband filtering,
whereas the reference (Welch 64) used a narrow bandwidth.

Fig. 5.3 shows the maximum velocity estimation results for the Capon with wide
and narrow bandwidth filtered data. The OW lengths are 64 and 16 for the Welch and
the Capon methods respectively. The maximum velocities based on the Capon spectra
are more similar to the reference method when a narrowband filter is applied. For low
velocities, e.g., 20 cm/s, the methods yield similar results. However, the increase in
bias with increasing velocity is higher for the Capon based estimates than the Welch
based estimates.

Umbilical artery waveform

Umbilical artery waveform recordings were done to evaluate the effect of broadening on
Doppler index estimations. Similar to the stationary waveform recordings, umbilical
artery waveform recordings were done with beam-to-flow angles 30◦, 45◦, 60◦ and 75◦.
Table 5.4 shows the estimated PI values for different beam-to-flow angles and packet
sizes. Since the bias increases for increasing beam-to-flow angles, especially for high
velocities, PI values increases with increased beam-to-flow angle except for Welch’s
method with packet size 16. This is due to the increased mean velocity which is the
denominator in the PI formula. Standard deviation also increases with increasing
beam-to-flow angle although the increase is not significant.

Fig. 5.4 shows the resulting spectrograms from the umbilical waveform recorded
with 60◦ beam-to-flow angle. The center of the red circles show the detected peak
systolic and end diastolic velocities. Similar to Fig. 5.2, the reference method (Welch
64) provides the best contrast and spectral resolution. Welch 64 and Capon with
packet sizes 16 and 8 give similar PSV and EDV values while Welch with packet size
16 yielded considerably higher maximum velocity results throughout each cycle. As
expected from the stationary flow experiment, the Capon method had higher bias for
peak systolic velocities compared to Welch 64 OW length.

5.3.2 In vivo results

Fig. 5.5 shows a comparison between a conventional PW-Doppler recording and a CFI
recording from the CCA. Fig. 5.5(a) shows B-mode image of the artery. The yellow
parallel lines in the image show the sample volume used for the generation of the
spectrogram shown in Fig. 5.5(c) while the green line shows the chosen flow direction.
The beam-to-flow angle used for velocity correction was 77 ◦. Fig. 5.5(b) shows color
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Figure 5.2: The spectrograms estimated with (a) Welch with packet size 16, (b) Welch
with packet size 64, (c) Capon with packet size 8 and (d) Capon with packet size 16
and the corresponding estimated envelope plotted on top. The string velocity is 60
cm/s and the beam-to-flow angle is 60◦. The dynamic range used for the display is 50
dB. The spectra shown in (e) correspond to the spectra estimated at the time point
indicated with the vertical red lines for all estimations.
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Figure 5.3: The estimated maximum velocities for different velocities when the beam-
to-flow angle is 45◦ and the OW lengths are 16 for the Capon and 64 for the Welch
estimator. The red and blue curves are estimated using the narrowband filtered data
where the black on is estimated on the widerband filtered data. CF: Color flow

Table 5.4: String phantom umbilical artery flow pattern PI estimation results

Welch Capon
PS 64 16 8 12 16

30◦
M 0.85 0.66 0.92 0.90 0.90
S 0.03 0.02 0.03 0.03 0.03

45◦
M 0.85 0.63 0.92 0.90 0.89
S 0.03 0.02 0.02 0.03 0.03

60◦
M 0.88 0.56 0.94 0.91 0.90
S 0.03 0.02 0.03 0.03 0.04

75◦
M 0.89 0.45 0.99 0.95 0.94
S 0.04 0.02 0.05 0.05 0.05

PS: Packet size, M: Mean, S: Standard deviation

flow image generated offline from the recorded CFI data using the autocorrelation
method [23] and the green box in the image show the sample volume used for generation
of the spectrogram shown in Fig. 5.5 (c). Capon spectra were generated using OW
length 10 samples. The time resolution of the spectrograms are 10.6 ms and 1.9 ms
which corresponds to 97 and 531 bins/second for the CFI generated and the PW-
Doppler generated spectrograms respectively. The mean PSV was found to be 105
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Figure 5.4: String phantom umbilical artery waveform results displayed along with the
estimated envelopes and PSV and EDV estimations. Spectrograms estimated with a)
FFT with packet size 16, b) FFT with packet size 64, (c) Capon with packet size 8
and (d) Capon with packet size 16 and the corresponding estimated envelope plotted
on top. Beam-to-flow angle 60◦ and the dynamic range used for the display is 50 dB.

cm/s for the CFI generated spectrogram while it was 112.4 cm/s for the PW-Doppler.
The standard deviations were 3.6 cm/s and 5.7 cm/s for the CFI estimates and PW-
Doppler estimates respectively.

Fig. 5.6 shows the results of umbilical artery recordings. Fig. 5.6(a) and Fig. 5.6(c)
show the color flow image and the spectrogram generated on the scanner respectively.
Fig. 5.6(b) shows the color flow image generated using the CFI data set and the Fig.
5.6(d) shows the Capon spectrogram. The packet size was 14. The mean PSV were
found to be 46.4 cm/s and 44.5 cm/s while the EDV were 15.2 cm/s and 12.5 cm/s for
the Capon spectra and the reference spectra respectively. The estimated mean PI was
1.11 for the Capon estimator and 1.22 for the reference spectrogram while the mean
PI at gestational age 32 weeks is 0.98 [24].

Fig. 5.7 shows the aortic flow comparison. Similar to Fig. 5.6, the top left figure
shows the color flow image recorded on the scanner and the offline generated image
next to it. Fig. 5.7(c) shows the spectrogram generated on the scanner while Fig.
5.7(d) shows the Capon estimation using the CFI data set. The sample volume depth
is around 11 cm. The recordings have high velocity clutter due to the movement of
the aortic valve. The spectral envelope estimator assumes that the clutter is filtered
sufficiently which would be removal of velocities up to 30 cm/s. In order not to obscure
low velocities, the spectrograms were estimated using low cut-off filters while the power

118



Chapter 5. Quantitative Doppler Analysis using Conventional Color Flow Imaging
Acquisitions

of velocities between 0-30 cm/s were set to zero in the calculation of each IPS.
The mean peak systolic velocities were found to be 111.7 cm/s and 114.8 cm/s and

the standard deviations of the PSVs were 2.1 cm/s and 9.8 cm/s using the reference
spectrogram and the offline generated spectrogram respectively. The PSV found in
the second heart cycle shown in Fig. 5.7(c) is not included in the calculation as the
envelope estimator clearly fails in this case.

In order to investigate the effect of frame rate on the PSV, EDV and PI estimation,
the umbilical artery recording spectrogram was downsampled by factors 2 and 4
yielding spectrograms with frame rates 52 Hz and 26 Hz, shown in Fig. 5.8(b) and
5.8(c) respectively. Fig. 5.8(a) shows the original sampling rate spectrogram. The
envelopes found using the downsampled spectrograms were upsampled to the original
frame rate 104 after exclusion of the low quality estimates and interpolated. Table
5.5 shows the mean PSV, EDV and the calculated PI results for each frame rate. The
results show that downsampling of the spectrogram caused a decrease in the estimated
PSV end EDVs while no significant effect was observed on the PI calculation.

Table 5.5: Time resolution effect on qualitative parameter estimation

FR [FPS] 104 52 26

PSV
M [cm/s] 46.4 45 42.6
S [cm/s] 3 3 2.4

EDV
M [cm/s] 15.2 14.7 13.3
S [cm/s] 0.8 0.8 0.8

PI
M 1.1 1.1 1.1
S 0.06 0.04 0.08

FR: Frame rate, M: Mean, S: Standard deviation

5.4 Discussion

An adaptive spectral estimation method, the power spectral Capon has been
investigated in terms of quantitative use for ensemble lengths used in conventional
CFI, e.g., 8-16. Quantitative Doppler analysis was made with CFI data acquired
using commercial scanners and compared to conventional PW-Doppler spectrograms.
The method has been investigated in these setting for its performance in mean velocity
estimation [22] and has also previously been evaluated in terms of frequency resolution
with short and long OW lengths [14,15,17]. It was seen from the in vivo results that the
conventional PW-Doppler spectrograms and the Capon spectrograms yielded similar
maximum velocity estimations for high and low velocities. PI estimations done on
in vivo umbilical artery recordings were comparable and both fell into the normal PI
value range (mean± 2× standard deviation) for 32 weeks gestational age [24].

Additionally, string phantom experiments were done to quantify spectral broade-
ning for different beam-to-flow angles and velocities. The Capon estimator with OW
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length 16 yields similar results to Welch’s method with 64 samples for low velocities
when same data sets are used for comparison. For high velocities, the Welch’s method
with long OW outperformed Capon estimator. This effect was not seen to the same
extent in the in vivo recordings. This may be because the sample volume was not
placed exactly at the same location, the time resolution was not high enough to detect
the real maxima in the spectrograms, or the effect of using a shorter pulse was less
than expected.

It has been previously shown that the Capon method has improved frequency
resolution, especially for low velocities. It has also been shown that the Capon method
with OW length 16 has approximately the same spectral resolution as 64 samples
[15], which was also observed in this work, e.g., Fig. 5.3 for 20 cm/s. However, the
advantage of the Capon, which is a narrow band spectral estimator, is lost when the
correlation length of the signal is reduced. This effect is more apparent in high velocity
and large beam-to-flow angle situations. Table 5.3 shows the effect of beam to flow
angle. In practice, less than 60 ◦ beam-to-flow angle is used for measurements as a
rule of thumb and can be said that this holds true for the Capon estimator as well. In
addition, it was shown that the Welch’s estimator cannot be used with this concept due
to limitations of the estimator. Spectral broadening of the Welch’s method with OW
length 16 was significantly higher for all beam-to-flow angles and velocities. Therefore,
the Doppler index estimations clinically were not valuable (Table 5.5).

It was seen that the improvement in dynamic range is marginal when the Capon
estimator is used. The Welch method with OW 64 length produced spectrograms with
better contrast for all cases. The effect of having lower sidelobe levels for the Welch’s
method was, however, not significant for maximum velocity estimation in this work.

Providing simultaneous B-mode, CFI and spectral information can be achieved
by using broad-wave imaging and software beamforming, such as plane or diverging
wave imaging, or synthetic transmit aperture imaging. However, in order to achieve a
sufficient (high) PRF for the Doppler imaging, the gain from coherent compounding
or synthetic transmit aperture is limited, leading to poorer quality B-mode images.
Further, these techniques are based on the assumption of stationary imaging objects,
and it has been shown that the motion of blood can lead to underestimation in
Doppler imaging [25]. In addition, the acquisition and processing of such techniques
brings extra processing power and hardware requirement which makes it possible to
implement only on high-end ultrasound scanners.

A major disadvantage of the proposed method is that the time resolution of the
spectrogram is dependent on the CFI frame rate. In this work the ROI was restricted
to achieve high frame rates. The frame rate needed to display the accelerations in
the spectrogram is dependent on the application. Waveforms with high accelerations
will need higher time resolutions. It was seen that around 50 FPS was adequate to
capture the details of the waveforms that were investigated and provided sufficient time
resolution for the given scenario. However, this is not necessarily the case for abnormal
cases with higher accelerations, e.g., in presence of intrauterine growth restriction in
obstetrics [26]. Decreasing the frame rate down to 26 resulted in decreasing PSV
estimates and the spectrogram had a low visual quality. However, EDVs could be
retrieved through spline interpolation, i.e., estimated mean EDV approached the
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reference mean EDV. The low resolution can be alleviated by combining spectral
bins or maximum velocity estimates from several heart cycles into one representative
cycle. This can be done, for instance, by aligning data based on the detected PSVs
and EDVs. However this requires a steady heart rate and sample volume location.

It was observed that the standard deviation of the estimated maximum velocities
were higher for the Capon estimator. However, the difference was marginal and
smooth maximum velocity envelopes could be achieved for all methods. A limitation
of the maximum envelope estimator is that the clutter has to be removed completely.
Residuals from the clutter can alter the standard shape of the IPS and cause false
detection.

In PW Doppler, long pulses are used to increase SNR and decrease spectral
broadening, and the beam-to-flow angle is adjusted to minimize broadening effects.
In CFI, however, short pulses are used in order to increase spatial resolution. The
transmissions can be steered to adjust beam-to-flow angle although this does not
guarantee to have and optimal beam-to-flow angle for all parts of the image. Therefore,
the quantitative analysis done in all spatial points in the ROI may not have the same
reliability.

The proposed method for estimation of the PSDs combined with the method
proposed in [22] for mean velocity estimation can provide a complete system for
triplex mode. The mean velocities can be calculated on the estimated PSDs and
quantitative analysis can be done anywhere on the color flow image without switching
between different modalities. Additionally, Doppler indices can be calculated using
the maximum envelope estimator. This, for example, can be used to provide color
coded index maps in addition to the color flow image. This allows the physician to get
Doppler indices and velocity waveforms simultaneously from all spatial points in the
color flow image. However, this requires a robust automatic baseline shift algorithm
and the user has to ensure that the optimal beam-to-flow angle is achieved or automatic
quality assessment criteria have to be introduced.

5.5 Conclusions

Quantitative spectral analysis of blood velocities was extracted and evaluated for
conventional CFI with limited ensemble sizes (8-16), using the data adaptive Capon
spectral estimator. Results showed that clutter and associated sidelobes were
sufficiently suppressed, providing comparable accuracy to PW-Doppler for relevant
flow phantom and in vivo data. While encouraging, results are dependent on the CFI
frame rate and the beam-to-flow angle, and further in vivo evaluation is warranted.
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Figure 5.5: Comparison of conventional PW recording with the spectrogram generated
with the Capon estimator using the recorded CFI data from the CCA. The B-mode
image (a) and the estimated spectrogram (c) are as displayed on the scanner while
the CFI (a) and the Capon spectrogram (d) are generated offline using the recorded
B-mode and CFI data. The beam-to-flow angle is 77◦ and the OW length used for
Capon is 10. The spectrograms are displayed with 40 dB dynamic range.
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Figure 5.6: Comparison of conventional PW recording with the spectrogram generated
with the Capon estimator using the recorded CFI data from the umbilical artery.
The B-mode image (a) and the estimated spectrogram (c) are as displayed on the
scanner while the CFI (a) and the Capon spectrogram (d) are generated offline using
the recorded B-mode and CFI data. The OW length used for Capon is 14. The
spectrograms are displayed with 40 dB dynamic range.
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[24] S. Gudmundsson and K. Maršál, “Umbilical artery and uteroplacental blood flow
velocity waveforms in normal pregnancya cross-sectional study,” Acta obstetricia
et gynecologica Scandinavica, vol. 67, no. 4, pp. 347–354, 1988.

[25] I. K. Ekroll, M. M. Voormolen, O. K.-V. Standal, J. M. Rau, and L. Lovstakken,
“Coherent compounding in Doppler imaging,” IEEE transactions on ultrasonics,
ferroelectrics, and frequency control, vol. 62, no. 9, pp. 1634–1643, 2015.

[26] E. Berkley, S. P. Chauhan, A. Abuhamad, S. for Maternal-Fetal Medicine
Publications Committee, et al., “Doppler assessment of the fetus with intrauterine
growth restriction,” American journal of obstetrics and gynecology, vol. 206, no. 4,
pp. 300–308, 2012.

129



References

130



Chapter 6

Data Adaptive 2-D Tracking
Doppler
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Spectral broadening in pulsed wave Doppler caused by the transit time effect
deteriorates the frequency resolution and may cause overestimation when
tracing the maximum velocities in high velocity blood flow regions. Data
adaptive spectral estimators have been shown to provide improved frequency
resolution, especially for small window sizes, but offer little or no improvement
when the transit time effect dominates. A method, presented as 2-D tracking
Doppler where the scatterers are tracked in space was shown to reduce transit
time effect. However, the method requires long tracking lengths to provide
sufficient improvement. In this work, a method is presented that combines
the Capon data adaptive spectral estimation method and the 2-D tracking
Doppler to increase the frequency resolution for both high and low velocities.
The broadening could be decreased by 66% compared to 2-D tracking Doppler
using 16 time samples.

6.1 Introduction

Pulsed wave Doppler is an effective method used in various fields in medicine such as
cardiology and obstetrics to estimate the spectrum of blood velocities. Conventionally,
ultrasonic pulses are fired along a direction and echoes are sampled at a fixed location
of interest to estimate and display the spectrum of velocities present in the region.
Depending on the ultrasound pulse transmit parameters and the beam-to-flow angle,
the scatterers are observed for a limited amount of time. Decreased observation time
results in broadening of the velocity spectrum, especially in the presence of high
velocities. This effect is called transit time effect and causes deterioration of velocity
resolution and overestimation of velocities.

A method presented as velocity matched spectrum [1] has been shown to reduce
transit time spectral broadening by tracking the scatterers in space to increase
observation time. However, this method provides improvement for a limited range of
beam-to-flow angles as the tracking is done only in the beam direction. Extension of
this method to 2-D, called 2-D tracking Doppler [2], resolves this problem by tracking
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the scatterers in a wider region in 2-D made possible by parallel receive beamforming.
A limitation of these methods is that they require relatively long observation windows
(OWs) to achieve good frequency resolution. As the scatterers are tracked in space,
long OWs may violate the assumption of stationary flow in space and time. This is a
potential problem in case of complex flow fields with rapid acceleration.

Adaptive spectral estimation methods [3], [4] have been adapted to ultrasound
Doppler blood flow imaging and have been shown to produce velocity spectra with
increased frequency resolution and contrast using significantly fewer time samples
than used for Welch’s method [5] which is conventionally used for velocity spectrum
estimation. However, these methods use signals sampled at a fixed location for spectral
estimation and as a result suffer from spectral broadening for high velocities due to
transit time effect.

In this work, a method is proposed to achieve high spectral resolution for high
and low velocities using a limited number of time samples. The tracking Capon is
combination of 2-D tracking Doppler and an adaptive spectral estimation method,
power spectral Capon [3] where time samples are extracted tracking the blood
scatterers and subsequently used in the Capon estimator to get the velocity spectrum.

6.2 Methods

Extraction of time samples in the direction of the flow is done in a similar manner to
the method 2-D tracking Doppler. Signal after demodulation and low pass filtering is
represented by u(x, z, k) where x and z are lateral and radial coordinates respectively
and k represents time index. Data are interpolated along a line with an angle given
by the user using 2-D spline interpolation.

For the defined beam-to-flow angle θ, an interpolated sample can be written as

uθ(r, k) = u(r sin θ + x0, r cos θ + z0, k), (6.1)

where r is the distance from the line center [x0, z0] to the interpolated point.
Interpolation is done for all velocities of interest. Data sampled for velocity v can
be represented as vector uθ,v with elements

uθ,v(kvT, k0 + k), k = −(K − 1)/2, · · · , (K − 1)/2, (6.2)

where T is pulse repetition time, K is the number of samples used for spectral
estimation and k0 is the center point in time. A 2-D averaging region is used for
estimation of the covariance matrix for spectral power estimation. A set of spatial
points moving with defined velocity and angle generates parallel lines. Denoting the
direction of flow towards the probe as positive, a sample from line n after phase
correction can be written as

uθ,v,n(r, k) = u(r sin θ + x0,n, r cos θ + z0,n, k)e−iωdk∆t, (6.3)
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where ωd is the angular demodulation frequency and

∆t =
2vT cos θ

c
. (6.4)

Consequently, the data vector consisting of samples interpolated along line n for
velocity v can be represented as

uθ,v,n(kvT, k0 + k), k = −(K − 1)/2, · · · , (K − 1)/2. (6.5)

The covariance matrix estimated using the extracted signals can be written as

R̂v =
1

N

N∑
n=1

uθ,v,nuH
θ,v,n. (6.6)

The estimated power for velocity v is later found by using spectral Capon estimator

P̂(v) =
1

aH
f R̂

−1

v af
. (6.7)

where af = [1 ei2πf · · · ei2πf(K−1)]T is the Fourier vector and f is the normalized
frequency. Interpolated time samples should match in phase when the sampling
velocity matches the velocity of the scatterer. Therefore, only the zero frequency
(f = 0) is investigated for each velocity. Finally, the proposed estimator can be given
as

P̂(v) =
1∑K

i=1

∑K
j=1Rij

, (6.8)

where Rij represents the element of R̂
−1

v in row i and column j. Fig. 6.1 shows the
concept of sampling done for power spectrum density (PSD) estimation. The averaging
region is a grid of points moving in space and time with a defined angle. The resulting
tracking lines have a spatial extent proportional to the velocity of interest and the
length of the OW. Therefore, the number of averaging lines is equal to the number of
spatial points used for averaging.

6.3 Experiments

Evaluation of the method was done using data acquired from a flow phantom
experiment and in vivo recording from common carotid artery of a healthy volunteer.
SonixMDP ultrasound system (Ultrasonix, Richmond, BC, Canada) with a 5 MHz
linear probe was used for recordings. Plane wave transmission steered straight down
at 4 kHz pulse repetition frequency (PRF) was used for both phantom and in vivo
experiments.

The flow phantom (Model 524 Peripheral Vascular Doppler Flow Phantom,
ATS laboratories, Bridgeport, CT, USA) consisted of a tissue mimicking material
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Figure 6.1: The concept of extracting samples for each velocity of interest. A 2-D
averaging region moves in space with a defined angle and velocity forming parallel
lines.

surrounding a straight tube was used for the recording. The PhysioPulse 100 flow
system (Shelley Medical Image Technologies, London, ON, Canada), pumping blood
mimicking fluid, was connected to the flow phantom to form a flow loop. The system
was set to give 1 Hz sinusoidal flow.

The recordings were done with 70 ◦ and 62 ◦ beam-to-flow angles for in vivo and
flow phantom recordings respectively.

Table 6.1 summarizes the acquisition parameters. Acquired data were clutter
filtered using an FIR filter that has cutoff at 210 Hz. Welch and Capon PSD
estimations were done on 512 frequency points and 512 spectral power estimations
were done for the tracking methods for velocities between ± 2 m/s and ± 1.15 m/s
for in vivo and flow phantom results respectively.

Table 6.1: Acquisition setup

Parameter flow phantom & carotid artery

Center frequency [MHz] 5

Pulse periods 2.5

PRF [kHz] 4

F-number 1.4

134



Chapter 6. Data Adaptive 2-D Tracking Doppler

Tracking Capon

0 0.5 1
Ve

lo
ci

ty
 [m

/s
]

-1

-0.5

0

0.5

1
2-D Tracking

0 0.5 1

-1

-0.5

0

0.5

1

Capon

Time [s]
0 0.5 1

Ve
lo

ci
ty

 [m
/s

]

-1

-0.5

0

0.5

1
Welch

Time [s]
0 0.5 1

-1

-0.5

0

0.5

1

Figure 6.2: Spectrograms that are generated with tracking Capon, 2-D tracking,
Capon and Welch’s method using flow phantom recording. The beam-to-flow angle is
62 ◦. The dynamic range used for display is 40 dB.

6.4 Results

Fig. 6.2 shows spectrograms generated using the flow phantom recording where the
proposed method is compared to the 2-D tracking Doppler, power spectral Capon and
Welch’s method. A 2-D averaging region corresponding to 1.5 mm x 1.5 mm and 10
ms temporal averaging is used for PSD estimations. OW length for all methods were
chosen to be 16. This results in a maximal tracking length of 0.8 cm, corresponding to
the highest investigated velocity of 2 m/s. The proposed method yields spectrograms
with reduced spectral broadening for low and high velocities compared to other
methods.

Fig. 6.3 shows spectra corresponding to the vertical lines in the spectrograms in
Fig. 6.2 where the mean velocity is approximately 0.85 m/s. The spectral width at
-3 dB were found to be approximately 5 cm/s, 15 cm/s, 26 cm/s and 32 cm/s for this
mean velocity for the proposed method, 2-D tracking, Capon and Welch’s approach
respectively.

Spectrograms generated using the in vivo carotid recording are shown in Fig. 6.4.
Except for the averaging region, the imaging and processing parameters were equal to
those used for the flow phantom recordings. The 2-D averaging region has dimensions
of 1.4 mm x 0.6 mm in lateral and radial directions respectively. There is a clear
improvement in spectral broadening for the proposed method, especially for high
velocities, e.g., peak systolic velocity. Upper panel in Fig. 6.5 shows the spectra
correspond to the red vertical lines in Fig. 6.4 while the lower panel corresponds to
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Figure 6.3: Doppler power spectra corresponding to the time instances marked with
red lines in Fig. 6.2.
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Figure 6.4: Spectrograms that are generated with tracking Capon, 2-D tracking,
Capon and Welch’s method using in vivo recording. The beam-to-flow angle is 70 ◦.
The dynamic range used for display is 40 dB.
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Figure 6.5: The upper and lower panels show velocity spectra corresponding to the
time instances marked in Fig. 6.4 with red and green lines respectively.

the green lines. The mean velocity for the time instants are approximately 0.2 m/s
and 1 m/s for red and green lines respectively. The proposed method provides the
best spectral resolution for low and high velocities. In addition, the aliased part of the
tracking Capon and 2-D tracking spectra has lower power compared to other methods.

6.5 Discussion

The results show that for a limited number of Doppler samples, the proposed data
adaptive method can reduce spectral broadening further than what can be achieved
with regular 2-D tracking Doppler. Both methods are based on tracking the movement
of the scatterers to increase the transit time. Power spectral Capon, however, generates
a data dependent filter which minimizes the output power while preserving the power
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of frequency of interest. This adaptive property is utilized in the proposed method,
instead of summing the interpolated samples as done in regular 2-D tracking Doppler,
the samples are filtered with a data dependent filter with center frequency around zero.
This results in a suppression of interfering velocity components and decreases spectral
broadening. Improved resolution can make delineating the true maximum velocity
easier which is crucial for applications as Doppler index calculation in obstetrics.

The use of data adaptive methods such as power spectral Capon can by itself
decrease spectral broadening for low velocities and short OW sizes as shown in Fig.
6.5. However, for high velocities, increased spectral broadening is inevitable when the
spectral broadening due to transit time effect dominates as shown in Fig. 6.3.

The proposed method reduces the number of samples needed to generate high
frequency resolution PSDs. Tracking lengths required for 2-D tracking Doppler can be
too long to satisfy the stationary flow assumption in space and time. This introduces
additional broadening and the improvement achieved by the method may be lost. It
was observed that the proposed method can decrease the tracking length to half while
preserving the frequency resolution achieved by 2-D tracking Doppler.

As the signal extraction is based on the same approach, 2-D tracking and the
proposed method has similar advantages and challenges. Out of plane motion of the
scatterers or incorrect flow angle estimation results in broadening of the main lobe.
However, if the extracted samples are in phase, the methods can yield PSDs with high
SNR and frequency resolution as shown in Fig. 6.3.

It was observed that the aliased part of the spectrum can have lower power for
the proposed method. This helps to distinguish between the true and aliased velocity
components.

A disadvantage of tracking Capon is that it requires relatively larger averaging
region to generate robust estimates. This may increase spectral broadening in case
the velocity profile is not constant in the averaging region.

6.6 Conclusion

A method that improves the frequency resolution for high velocities using short OW
sizes is presented. Increased transit time is made possible by tracking scatterers in
2-D space, combined with the high resolution spectral estimation properties of the
Capon estimator, the proposed method could yield PSDs that have considerably higher
frequency resolution, especially for high velocities. A 66% of reduction in spectral
broadening was achieved compared to 2-D tracking Doppler for 0.85 m/s mean velocity
and with 62 ◦ beam-to-flow angle. Being able to produce high resolution PSDs with
short OW size can potentially extend the use of 2-D tracking concept to complex flow
fields with rapid accelerations.
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