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Undertrykkelse av reverberasjonsstøy med to-frekvent medisinsk ultralyd

Ultralyd er en velkjent og velbrukt metode for avbildning i medisin. Det er mange
grunner til dette. Ultralydutstyr er billig å kjøpe og bruke, det går raskt å samle inn
bilder og billedraten er høy. Det er veldig sikkert for pasient og lege, og utstyret
som trengs tar relativt lite plass. Men, ultralyd er ikke like enkelt å bruke på alle
typer pasienter. I noen tilfeller vil multiple refleksjoner av lydbølgen skape støy i
bildet. Dette, enten diffuse eller markante støyet, kan gjøre det vanskelig å stille
en diagnose basert på bildene.

I arbeidet som er presentert i denne avhandlingen har målet vært å redusere
denne støyen slik at bildet får bedre kontrastforhold og det blir lettere å bruke
bildene til å stille en diagnose. For å gjøre dette har kandidaten sett på to-frekvent
ultralyd hvor det i tillegg til den konvensjonelle høyfrekvente ultralydbølgen (HF)
sendes en lavfrekvent bølge (LF). Frekvensforholdet mellom HF og LF er en fak-
tor 10, og HF bølgen er enten på toppen eller bunnen av LF bølgen. Den lavfrek-
vente bølgen endrer så bølgehastigheten i mediet som observert av bildepulsen
(HF). Denne endringen er avhengig av posisjonen til HF på LF. Hovedpoenget er
at måten LF bølgen påvirker HF bølgen på er forskjellig for det “ekte” signalet
og støysignalet. Ved å estimere tidsforsinkelsen som kommer ut av endret bøl-
gehastighet er målet å separere det ekte signalet fra støysignalet og undertrykke
støyen. Denne metoden kalles forsinkelse korrigert subtraksjon (delay corrected
subtraction, DCS) og hele prosesseringen kalles også for SURF avbildning.

Den første artikkelen i avhandlingen beskriver de underliggende fenomenene
som gir støy i ulineær bølgeforplantning når både en HF og en LF bølge benyttes.
Artikkelen diskuterer også hva som vil være beste tilfellet for støyundertrykkelse,
mulige hindringer og kvantisering av disse. Den andre artikkelen ser på hvordan
tidsforsinkelsen til støysignalet kan estimeres. Den nye estimeringsmetoden som
er presentert her viser å gi en bedre undertrykkelse av støyen enn fra tidligere met-
oder. Også inkludert i avhandlingen er en diskusjon på hvordan tidsforsinkelsen
til det ekte signalet kan estimeres, samt hvordan en kan bruke SURF for å avbilde
ulineære spredere.
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Abstract

Ultrasound for medical imaging is in widespread use. The reasons for this are
many and include the possibility of lightweight instruments, low cost, fast ac-
quisition times, high safety and ease of use to both the operator and the patient.
However, ultrasound is not as easy to use on all patients. In some cases multiple
scattering of the ultrasound wave can result in reverberation noise in the image.
This noise can be diffuse or a direct replica of another structure in the tissue. The
common factor is that the noise makes images more difficult to use for diagnosing
the patient.

In this work the main goal has been to understand and counter this multiple
scattering, or reverberation, noise in order to make clearer images with better con-
trast ratio than in conventional ultrasound imaging. Here, dual band imaging (DBI)
was utilized, where, in addition to a conventional high frequency imaging pulse
(HF), a low frequency manipulation pulse (LF) has been added to the transmitted
wave. To do this the candidate has utilized dual band imaging (DBI), where, in
addition to a conventional high frequency imaging pulse (HF), a low frequency
manipulation pulse (LF) has been added to the transmitted wave. The pulses are
separated by a factor 10 in frequency and the HF imaging pulse is positioned on
either a crest or a trough of the LF wave. This positioning alters the observed
propagation delay of the HF and creates nonlinear propagation delays between the
different acquired signals. The main idea is that this nonlinear propagation delay is
different for the first order (true) signal and the reverberation noise. By estimating
the nonlinear propagation delays the aim is to suppress the reverberations trough
a method called delay corrected subtraction (DCS). The combination of DBI and
DCS processing is commonly referred to as SURF processing.

The first paper included in this thesis discusses the underlying physics of
the problem and analyses the best case scenario possible for SURF processing.
Various obstacles for reverberation suppression are presented and quantized. The
second paper presents a method to adaptively estimate the nonlinear propagation
delay of the reverberation components which shows to give better suppression of
the reverberation noise compared to earlier methods. Also included in this thesis
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is a discussion on estimation of the first order delay and an initial study of using
SURF processing for detection of nonlinear scatterers.
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Abbreviations and variables

Abbreviations
DBI Dual Band Imaging.
DCS Delay Corrected Subtraction.
HF High Frequency (pulse).
LF Low Frequency (wave).
ND Noise Distortion (reverberations), L(ω).
NPD Nonlinear Propagation Delay.
NSD Nonlinear Self Distortion.
TGC Time Gain Compensation.
THI Tissue Harmonic Imaging.
PFD Pulse Form Distortion, V (ω).
PI Pulse Inversion.
SRR Signal to Reverberation noise Ratio.

Variables
Nonlinear propagation delays (NPDs, τ ) are listed in another table.

βn Nonlinearity parameter of medium.
κ Compressibility of medium.
L(ω) Reverberation filter.∗

L̃(ω) Noise Distortion (reverberations).∗

N(ω), n(t) Reverberation signal.∗

ν Gradient of linear NPD, τx(z) = νz.
p LF-wave configuration (polarity).
V (ω) First order signal filter.∗

Ṽ (ω) Pulse Form Distortion.∗

X(ω), x(t) First order signal.∗

Y (ω), y(t) Total signal.∗
∗Additional Subscripts exist. See other table.
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Abbreviations and variables

NPDs, τ
Delays are defined between a non-zero polarity signal and the zero-polarity signal.
Delays are between corresponding components of the two signals. Superscripts
are Y and subscripts are Z, such that the final notation is τYZ . Additional subscripts
are listed in the table below this.

Z Y Description
n Reverberation (component) delay.
n e〈〉 Mean phasor reverberation delay. Equation (2.65)
n 〈〉 Arithmetic mean reverberation delay. Equation (2.66)
n h Fixed-relation reverberation delay. Equation (B.10)
n hv Half value reverberation delay. Equation (2.67)
n RR Adaptive reverberation delay. Equation (B.16)
x First order (component) delay.
y Total signal delay.

Subscripts
+ Positive polarity of the LF pulse, p = 1.
− Negative polarity of the LF pulse, p = −1.
i The variable/filter is constant within an interval, i.
p Polarity of the LF pulse.

Word usage
Unless explicitly stated the word “noise” is used for reverberation noise. The total
received signal consists of two components (or sometimes referred to as signals),
the first order and reverberation component. Unless explicitly stated the word
“signal” is reserved for the total signal. The dual band imaging method utilizes
multiple transmits of combinations of high frequency (HF) and low frequency (LF)
pulses. A combination of one HF and one LF transmitted simultaneously is called
a pulse complex. The structure of the LF pulse is referred to as the “polarity”.
The polarity is defined as a number and generally takes any real value. In this
work the polarity is limited to three values, +1, 0, or −1. These three polarities
are referred to as the “plus”, “zero”, and “minus” polarity. Using this, a “zero
polarity signal” is the combined received first order and reverberation signals of
a transmitted pulse complex where the LF polarity is zero. A zero polarity LF is
defined to be equivalent to no LF. A “zero polarity signal” therefore corresponds
to a received total signal from transmit of only the HF pulse. Note that in paper A
the LF component is referred to as a “wave” instead of a pulse.

The reverberation component of the total signal consists of many pairs. A
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reverberation pair consists of a CIa and a CIb (defined later) component.
Nonlinear propagation delays, or often simply “delays”, define the delay of a

signal component to it’s corresponding component in the zero-polarity-signal. The
terms “first order delay”, “reverberation/noise delay”, and “total delay” are used
to refer to the delays of the first order, reverberation, and total signal components
respectively.
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Introduction

I expect that everyone doing a PhD at one point or another has had to explain to
friends and family what it is they “do”. I also expect that more often than not it
was difficult to explain in a non-technical manner what the core idea of their PhD
was. The solution might not be to hand out a copy of a recent paper, but rather to
give a softer introduction to the work. Such a softer introduction is the goal of this
chapter, where, in addition to explaining core ultrasound concepts, the extension
towards dual band imaging is made. An overview of the included articles and
additional chapters is given, and the main results are discussed.

1.1 Conventional medical ultrasound
Ultrasound is sound waves with frequencies above the upper limit of human hear-
ing at 20 kHz. Ultrasound imaging is the process of emitting such sound waves
and utilizing the received signals to generate an image of the scattering medium
based on certain assumptions of the underlying physics. Typically the transmit and
receive system is located at the same position, and in most conventional systems
the same system is used for both transmit and receive. This system is referred
to as the transducer. The three main assumptions used to create an image of the
received sound is:

(1) the emitted sound field is only scattered once before it returns to the transducer,
(2) the speed of sound, c0, is constant, and
(3) the sound waves only travel straight ahead from the transducer hitting scatter-

ers on a straight line.

Under these assumptions the transmission of one sound pulse can be used to de-
termine the distance to a set of scatterers from the transducer. But first, what is
a scatterer? A scatterer, or reflector, is not a physical entity but rather a change
in the material where the sound wave propagates. The interface determined by
this change is called a scatterer. For sound waves a change in the density or com-
pressibility of the medium causes a fraction of the incoming wave to be reflected
back. The amount of energy reflected is determined by this relative change. By
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Chapter 1 – Introduction

transmitting an ultrasound pulse into a heterogeneous medium, the medium will
reflect back pulses at each interface where the density changes. Knowing the mean
propagation velocity, c0, of the medium and keeping in line with assumptions (1)
and (2), one can calculate the depth of the interfaces through

z =
c0t

2
, (1.1)

where t is the time between transmit of the pulse and the receive of a reflected
pulse. The intensity of the received pulse gives information about the relative
change in the density of the medium, referred to as the strength of a scatterer. The
result is what is called an M-mode image. Which, following assumption (3) is a
one dimensional image of the structure on a straight line from the transducer. To
generate a full 2D image the transducer (or start pulse) can be moved mechanically
(or electronically) to sweep over an area and the line images from each position
can be combined. It is also possible to sweep in two dimensions to generate a 3D
image.

The direct use of the received signal strength as a measure of scatterer strength
is not completely accurate. As a wave propagates some of the energy is absorbed
and lost due to non-adiabatic contraction and expansion of the medium.[1] Dif-
fraction of the sound field also causes energy to travel out to the sides and not just
straight forward. The spread of the wave in addition to absorption in the medium
leads to an attenuation of the wave with depth. In biological soft tissue the absorp-
tion is in the order of 0.5 dB/MHz per centimeter of propagation.[1, p. 1.24] Note
the frequency dependence of the resulting attenuation. Higher frequency waves
are attenuated more than lower frequency waves. A fourth assumption of no atten-
uation is not included above as the attenuation can be compensated for by a priori
knowledge of the mean attenuation of the medium at hand. This depth variable
attenuation correction is referred to as Time Gain Compensation (TGC).

Higher attenuation for higher frequencies seems to favor the lower frequencies.
But as the name of the technology indicates, ultrasound is the use of relatively
high frequencies. So why use high frequencies? A useful analogy is to think of the
transmitted pulse as the “brush” used to paint the image of the structure one want
to study. By having a smaller brush, corresponding to transmission of a higher fre-
quency and shorter pulse, one can paint a finer image. There is therefore a trade-off
between imaging depth and imaging resolution. Frequencies used in medical ultra-
sound typically vary from 1 to 15 MHz, depending on the needed imaging depth.
To image deep organs and the hearth in adults typical frequencies are between 2.5
and 5 MHz. Imaging of e.g. the common carotid artery (in the neck) needs lower
penetration and a higher frequency can be used. Typically around 8 MHz. It is also
possible with imaging directly inside blood vessels, or otherwise during operation.
Here, frequencies up to 40 MHz has been used.[1, p. 1.6]
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Conventional medical ultrasound

1.1.1 Breakdown of the general assumptions

There is a reason for why the three assumptions in the previous section are called
just that, and not physical laws. They are wrong. Material dependent propagation
velocity leads to a breakdown of assumption (2) and when the propagation velocity
varies laterally over the wave field the result is a distortion of the received pulse.
This effect is called aberration. Change in the propagation velocity with depth
results in a stretching of the resulting image compared to the real medium. The
width of the wave field, or ultrasound beam, as well as the presence of side lobes
creates received pulses from scatterers on the sides of the direction the pulse was
sent out. This breaks assumption (3).

The main goal of the work in this thesis is to combat the destructive effects
resulting from the breakdown of assumption (1). As described above, changes in
the density of the medium will split an incoming pulse into one forward- and one
backward propagating pulse. Thus, a reflected pulse will work as an incoming one
on another interface and be split again. For soft tissue interfaces the change in
density is relatively small and only a small fraction of the pulse is reflected. Thus,
pulses only reflected once before their return to the transducer, denoted the first or-
der component (or first order signal), has an overall higher amplitude than signals
created by multiple scatterings in the medium. The signal generated by multiple
reflections of the pulse is called the reverberation component (or reverberation sig-
nal). The amplitude and time of arrival of the reverberation component cannot be
directly related to structures in the medium through Eq. (1.1), and this component
of the received signal is therefore referred to as noise. The extra propagation path
caused by the change in propagation direction causes the signal to arrive back to
the transducer at a later time than the first order component originating from the
same set of scatterers. In low echogenic areas, meaning that the change in density
is low, the first order component will be low. However, as the reverberation com-
ponent is created by scatterers at shallower depths this signal component can give
signal in this low echogenic area and the reverberation noise can be dominant.

1.1.2 Nonlinear effects and nonlinear imaging methods

Linear models are seen throughout physics. Linearization of the underlying phys-
ics typically leads to a simpler mathematical solution and can, within a certain
range of the given variables, yield accurate results. However, linearization is of-
ten just a useful tool rather than an accurate representation of the real phenomena.
This is also the case in wave physics. A nonlinear relation between an applied
pressure and the resulting displacement of the medium yields a pressure, and ma-
terial, dependent propagation speed. It can be shown through derivation of the
wave equation[2] that a more precise second order propagation speed can be given
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Chapter 1 – Introduction

as

c1 =
c0

1− βnκp
≈ c0(1 + βnκp). (1.2)

Here, κ is the compressibility of the medium and βn is the nonlinearity para-
meter which relates the adiabatic volume compression, δV of a small volume ∆V
through δV/∆V = (1− βnκp)κp. (See also paper A.)

The pressure dependent propagation speed makes the crests propagate faster
than the troughs of a wave. The result is generation of higher order frequency
components, harmonics, and a distortion of the pulse. Loss of energy from the
main frequency band of the pulse due to this nonlinear propagation is called non-
linear attenuation. Note also that as the attenuation increases with frequency, the
generation of harmonics results in overall less wave energy and more dissipation
in the medium.

Another source for nonlinearity in the received signal is nonlinear scatterers.
Microbubbles is a prime example of a nonlinear scatterer.[3] As the detection of
microbubbles can be advantageous in medicine, ultrasound imaging modalities
have been developed to image such nonlinear scatterers. A main example is Tissue
Harmonic Imaging (THI). In THI the received signal is filtered around the second
harmonic component. The result is an image of the nonlinear propagation and
scattering effects of the medium.[4] Another well known method is Pulse Inversion
(PI).[5, 6] In PI two pulses are transmitted where one is the inverse of the other.
By summing the received signals the even harmonic components add up and all
other cancel out.

A key point ties nonlinear propagation to reverberations, the drop in amplitude
after scattering. Often referred to as the Born approximation this assumption is
used to exclude reverberations from the theory (assumption (3)). Taking the model
up to the second order, both in regards to multiple scatterings of the wave and
second order propagation, the Born approximation can be used to tie the nonlin-
earity of a wave to the position of the first scattering event. After the first scattering
the amplitude of the returning wave drops so much that nonlinear effects of further
propagation can be neglected. The nonlinear properties of the wave then contains
information of the depth of the first scattering event. This can be used to suppress
the reverberation component of the total signal.

As the first order component is the part of the signal at a given depth that has
the longest propagation before the first scattering, this signal component will have
the highest influence of nonlinear propagation and will be favored by THI. THI
is thus a method not only for imaging of nonlinear scatterers but also a method
for suppressing reverberation noise.[7] However, as shall be evident in Sec. 1.3
this only works for one part of the reverberation noise. To suppress more of the
reverberation noise Dual Band Imaging (DBI) is needed.[8, paper D]
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−2 −1 0 1 2
−0.5

0

0.5

1

time [µs]

p
re
ss
u
re

[M
P
a
]

 

 

HF+LF
LF

Figure 1.1: Dual band transmit pulse. The high frequency (HF, 8 MHz) and low frequency
(LF, 0.78 MHz) pulses both have a pulse length of 2.5 oscillations and max amplitude of
0.5 MPa. This positioning of the HF on the LF is called plus polarity.

1.2 Dual band imaging
Dual band imaging (DBI) as described in this work is developed at the Depart-
ment of Circulation and Medical Imaging at the Norwegian University of Science
and Technology under Bjørn Angelsen and also goes under the name of SURF
imaging.[2, 9–14] The main idea is to transmit a modifying low frequency (LF)
wave alongside a conventional high frequency (HF) imaging pulse. The LF wave
is used to modify the nonlinearity of the medium as observed by the imaging pulse.
A method similar to pulse inversion can be used to extract information created by
the nonlinear propagation. But instead of inverting the whole pulse complex only
the LF pulse is flipped. This change in the polarity of the LF pulse is kept track of
by a variable, p. Positioning the HF pulse on a crest of the LF is denoted a positive,
or plus, polarity transmit (p = 1) and positioning the HF on the trough of the LF is
denoted as a negative, or minus, polarity transmit (p = −1). The received signals
are referred to as the positive (polarity) and negative (polarity) signals respectively.
Transmitting only the HF imaging pulse is referred to as a zero polarity transmit
(p = 0). An example of a transmit pulse with positive polarity is shown in Fig. 1.1.

Going back to Eq. (1.2), we see that an increase in the pressure creates a higher
propagation speed. The presence of a positive polarity LF pulse thus increases
the propagation velocity of the HF. The result is a nonlinear propagation delay
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Chapter 1 – Introduction

(NPD) between a zero polarity signal and a positive, or negative, polarity signal.
The NPD increases with depth as long as the LF pulse is present. Following the
Born approximation, the amplitude of both the HF and the LF will drop at the
first scattering event. The NPD thus contains information about the depth of the
first scattering event, whereas the time of flight only tells us the total propagation
path. Multiple scatterings will cause pulses to reach the transducer at a later time
than corresponding first order components of the same set of scatterers. However,
the NPD would be the same for the reverberation components and corresponding
first order scatterers. By extracting the NPD of a received plus or minus polarity
signal compared to a zero polarity signal it is therefore possible to distinguish first
order from reverberation components. It is shown below how signals of different
polarities can be delayed and subtracted to suppress the reverberation components.

1.3 Reverberation noise and reverberation suppression
Reverberations are generally lower in magnitude than first order components from
the same set of scatterers. With this in mind it makes sense to only study the
strongest kind of reverberations, as it is these that will have the most damaging
effect on the final image. As scattering of planar interfaces are generally stronger
than scattering of a point particle, since a larger reflector reflects more energy,
special interest is given to reverberations of planes in this thesis. A further spe-
cialization is on planes which are parallel to the transducer and body wall. This
can for example be planar scatterers due to fatty layers or arteries. Of special in-
terest was study of plaque in the common carotid artery where the blood vessel
and fatty layers create such planes. As each planar reflector reverses the direction
of the wave, reverberations will be combinations of an odd number of scatterers;
which would be required for the reverberations to return to the transducer. Scatter-
ing of one single plane would, of course, correspond to the first order component.
Three or more planes would correspond to reverberations. As the amplitude of the
pulse drops with each scattering the work here is on combinations of only three
scatterers.

1.3.1 Classification of reverberations

A special case is made for the scenario when the transducer is one of the scattering
planes. This is not only due to the simpler mathematics this assumption poses, but
also due to the fact that the transducer-body interface generally acts as a strong
reflector. In this thesis this scenario is said to generate Class I reverberation noise.
Reverberations where the second scatterer is not on the transducer-body interface
is called Class II. A third class, Class III, is used when all three scatterers are deep
in the tissue. Class III scattering is not treated explicitly here, but is mentioned as
it appears in the referenced literature.
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z1 z1

z3 z3

z1 + z3

z2

z1 − z2 + z3

F CIa CIb CIIa CIIb

Figure 1.2: Classification scheme for third order reverberations. The prefix “C” to the
reverberation components is short for “Class” and is meant to make the notation more
distinguishable from other text. “F” is the first order signal.

Table 1.1: Reverberation classification scheme comparison to other literature. Note how
the meaning of Greek and alpha numbering is switched between this work and the work
by Høilund-Kaupang.

Brende Høilund-Kaupang Näsholm
Ia Ia II
Ib IIa III
IIa Ib -
IIb IIb -
III III I

Høilund-Kaupang et al. demonstrated that reverberation noise from a given set
of scatters always act in pairs. This is illustrated by considering three scatterers,
one at z1, one at a shallower depth (often the transducer surface) at z2, and the
deepest at z3 (see Fig. 1.2 for an illustration). The emitted pulse can take two
possible paths. One, denoted “a”, when it is reflected off the shallow scatterer first,
z1 → z2 → z3, and another, “b”, when it is reflected off the deepest scatterer first,
z3 → z2 → z1. Both these propagation paths give reverberation noise at a depth,
z, given by z = z1 − z2 + z3. For a comparison to reverberation classification
schemes of other authors see Table 1.1. As mentioned above, this thesis focuses
mainly on Class I reverberations as this is believed to be the strongest. A note on
Class II reverberation is included in Sec. 2.14.

The different reverberation classes are often referred to through abbreviations,
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ie. CIa referring to Class I type “a”. Often also written out as Class Ia. A capital
“C” is used to make the notation stand out from other text.

1.3.2 Nonlinear propagation delay of reverberations

As discussed above, the NPD of a signal is dependent on the propagation path
up to the first scattering of the pulse. This makes Class a and b reverberation
components have different NPDs. The NPD of the combined pulse is referred to
as the reverberation NPD, or simply “reverberation delay”, and is denoted τn. An
additional subscript is often used to indicate the polarity of the LF wave used in
the transmit.

The signal received at a given time (corresponding to a depth through Eq. (1.1))
is generally a combination of a first order component and a reverberation compon-
ent. The first order component will always have a higher NPD than the com-
bined reverberation component since the first order component has the maximum
propagation path before scattering. This is illustrated in Fig. 1.3 which shows the
time versus depth plot of a first order component and reverberations of Class Ia and
Ib which arrive at the same time under a zero polarity transmit (or conventional ul-
trasound imaging). By altering the propagation speed up to the first scattering
through the addition of a LF pulse in transmit, the received components are separ-
ated in time. This separation is greatly exaggerated here in order to make a clear
figure. In reality the induced propagation delay is below 40 ns which is well below
a typical HF pulse period of 1/(8 MHz) = 125 ns.

How the different signal components overlap is illustrated in Fig. 1.4. Here the
pulses are illustrated by their envelope rather than as rf-signals for a clearer figure.
Notice how Class a of the minus polarity signal comes before Class b, and the op-
posite for the plus polarity. Longer propagation before reflection makes the Class b
component more influenced by the nonlinearity of the medium than Class a. Non-
linear attenuation also makes Class b lower in amplitude compared to Class a. The
difference between Class a and b, and their different relative arrival time for dif-
ferent polarities, makes the interference of the reverberation components different
between the plus and minus polarity signals.

In the example of Fig. 1.4 the first order component at the given depth is larger
than the reverberation component. Here, when estimating the total NPD between
e.g. the total plus and minus signals, the resulting NPD will be closer to the NPD of
the first order component than of the combined reverberation components. If there
at a given depth was no reverberation noise, the total NPD between a plus and
zero polarity signal would be equal to the first order NPD as the signal would only
consist of the first order component. In the same way, the NPD of the total signal
would be equal to the reverberation NPD if the total signal was fully consisting of
reverberation noise.
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Figure 1.3: Arrival time map of different signal components without (a) and with (b)
modifying LF pulse. The first order component path from (a) is shown as a dotted line in
(b).
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Figure 1.4: Behaviour of classes under DBI.
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Figure 1.5: Nonlinear propagation delays (NPDs) of the total signal, τy, the first order
component, τx, and the reverberation components, τn. The example is the medium of
case VI from paper B, with a synthetic linear first order delay applied to simulated pulses
used to create the rf-signal. The plot shows the average of 300 runs of the simulations
where weak background scatterers varied randomly. Strong scatterers are introduced at
7, 15 and 25 mm. And a low echogene section is introduced between 15 and 25 mm
where the scattering strength is 20 % compared to the rest of the image. The spike in
the reverberation NPD in the beginning is caused by a breakdown of the delay estimation
algorithm as the reverberation component is close to zero here.

Figure 1.5 shows how the NPD of the total signal, τy, relates to the NPD of the
first order component, τx, and the reverberation component, τn. The example here
is of the NPD between a plus polarity and zero polarity signal which is defined
to yield a negative delay. Observe that the delay of the total signal is close to the
first order NPD up to around 15 mm. This would mean that the total signal here is
dominated by first order scattering. Between 15 and 25 mm the NPD of the total
signal is close to the reverberation NPD which indicates that the signal here is
dominated by reverberation noise. After 25 mm there seems to be a combination
of first order and reverberation components. The ripples in the delay curves in
Fig. 1.5 are due to the presence of strong signals, first order or reverberations, at
the given depths.
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1.3.3 Reverberation suppression
The difference in NPD between first order and reverberation components of the
total signal can be utilized to suppress the reverberation noise. The idea is to
align the total reverberation components of the plus and minus polarity signals by
applying an appropriate reverberation delay and then subtract the signals. The res-
ulting signal is a subtraction of two shifted, but otherwise equal, first order signal
components. The gain in the signal introduced by this shifted subtraction can be
calculated and corrected for. The result is an estimation of the first order com-
ponent in a noisy total signal. This method is called Delay Corrected Subtraction
(DCS) and was introduced by Näsholm et al.[14] The combination of using DCS
with DBI is commonly referred to as SURF processing.

Bibliography
[1] Bjørn A. J. Angelsen. Ultrasound imaging : waves, signals, and signal pro-

cessing, volume I. Emantec, 2000.

[2] Rune Hansen, Svein-Eirik Måsøy, Tonni F. Johansen, and Bjørn A. J. An-
gelsen. Utilizing dual frequency band transmit pulse complexes in medical
ultrasound imaging. J. Acoust. Soc. Am., 127(1):579–587, January 2010.

[3] D. L. Miller. Ultrasonic detection of resonant cavitation bubbles in a flow
tube by their second-harmonic emissions. IEEE Ultrasonics Symposium,
pages 217–224, September 1981.

[4] Michalakis A. Averkiou, David N. Roundhill, and Jeffrey E. Powers. A new
imaging technique based on the nonlinear properties of tissues. ULTRASON,
pages 1561–1566, 1997.

[5] D. H. Simpson, Chien Ting Chin, and P. N. Burns. Pulse inversion dop-
pler: a new method for detecting nonlinear echoes from microbubble contrast
agents. IEEE Trans. Ultrason., Ferroelect., Freq. Control, 46(2):372–382,
March 1999.

[6] P. Jiang, Z. Mao, and J. Lazenby. A new tissue harmonic imaging scheme
with better fundamental frequency cancellation and higher signal-to-noise
ratio. Proc IEEE Ultrason Symp, 2:1589–1594, 1998.

[7] Michalakis A. Averkiou. Tissue harmonic imaging. ULTRASON, pages
1563–1572, 2000.

[8] Jochen Matthias Rau. Dual frequency band ultrasound for suppression of
multiple scattering. PhD thesis, NTNU, 2013.

14



Bibliography

[9] Rune Hansen and Bjørn. A. J. Angelsen. SURF imaging for contrast agent
detection. IEEE Trans. Ultrason., Ferroelect., Freq. Control, 56(2):280–290,
February 2009.

[10] Svein-Eirik Måsøy, Øvind Standal, Sven Peter Näsholm, Tonni F. Johansen,
Bjørn Angelsen, and Rune Hansen. SURF imaging: In vivo demonstration
of an ultrasound contrast agent detection technique. IEEE Trans. Ultrason.,
Ferroelect., Freq. Control, 55(5):1112–1121, May 2008.

[11] Rune Hansen, Svein-Erik Måsøy, Tor Andreas Tangen, and Bjørn A. J. An-
gelsen. Nonlinear propagation delay and pulse distortion resulting from dual
frequency band transmit pulse complexes. J. Acoust. Soc. Am., 129(2):1117–
1127, February 2011.

[12] Sven Peter Näsholm, Rune Hansen, and Bjørn A. J. Angelsen. Post-
processing enhancement of reverberation-noise suppression in dual fre-
quency surf imaging. IEEE Trans. Ultrason., Ferroelect., Freq. Control,
58(2):338–348, February 2011.

[13] Jochen Matthias Rau, Svein-Erik Måsøy, Rune Hansen, Bjørn Angelsen, and
Thor Andreas Tangen. Methods for reverberation suppression utilizing dual
frequency band imaging. J. Acoust. Soc. Am., 134(3):2313–2325, 2013.

[14] Sven Peter Näsholm, Rune Hansen, Svein-Eirik Måsøy, Tonni F. Johansen,
and Bjørn A. J. Angelsen. Transmit beams adapted to reverberation noise
suppression using dual-frequency surf imaging. IEEE Trans. Ultrason., Fer-
roelect., Freq. Control, 56(10):2124–2133, October 2009.

15



16



Chapter 2

Extended theory and results

2.1 Overview of work submitted for publication
This thesis includes two papers submitted for peer review enclosed in part II of
this document. The theory laid out in this chapter is not otherwise published.
This format, with a rather extensive unpublished theory section, was chosen as the
theory in this chapter closely follows the submitted papers, and thus serves more
as of a companion to the published work rather than one, or a set of, standalone
publications.

This chapter begins with a summary of the work submitted for journal public-
ation and then extends upon this work with additional theories and numerical ex-
periments. After reading the introductory parts on the submitted papers the writer
suggest reading part II of this thesis before continuing in this chapter. However,
the train of thought is not broken by reading this thesis cover to cover.

The first paper in the thesis, paper A, was originally written last of the two.
The order is changed in the thesis as paper A can be seen as more general than
paper B and is thus more well suited as an introduction to the rest of the work
presented here.

Paper A: Limiting factors in reverberation suppression through delay correc-
ted subtraction methods in dual band ultrasound imaging

This paper explores the theoretical limit of delay corrected subtraction based re-
verberation suppression under dual band imaging. The paper explains the behavior
of reverberation noise in dual band imaging through general theory of nonlinear
propagation. This theory is used as basis for the discussion of how various aspects
of nonlinear propagation, such as the presence of nonlinear propagation delays and
pulse form distortions affect the possible suppression of the reverberation compon-
ents. Other effects include: heterogeneity of nonlinearity in the medium, nonlinear
self distortion, differences in nonlinear propagation delay between transmits of dif-
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ferent polarities of the low frequency pulse, statistics of reverberation pairs, errors
in delay estimations, and the length of the high frequency pulse. The paper con-
cludes that the shape of the first order nonlinear propagation delay, as an effect of
heterogeneity of the nonlinearity of the medium, seems to have the biggest effect
on the theoretical maximum reverberation suppression under the delay corrected
subtraction method.

Pulse simulation tool and text on Abersim attributed to Johannes Kvam. Theory
development, simulation setup, analysis, discussion, conclusions, and text editing
done by the candidate. Background theory attributed to Bjørn Angelsen.

This work is submitted to IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control. It is awaiting the second stage of review.

Paper B: Adaptive reverberation noise delay estimation for reverberation
suppression in dual band ultrasound imaging

Here, a method to estimate the nonlinear propagation delay of the reverberation
components based on the statistics of the signal is introduced. The paper re-
introduces the theory and definitions behind reverberations and nonlinear propaga-
tion and, with this as basis, presents a simulation scheme to generate a complete
rf-signal with Class I reverberations. The background theory is also utilized in
the derivation of an adaptive estimation algorithm for the nonlinear propagation
delay of the combined reverberation components. A key element in the paper is
the importance of how different scatterer combinations can generate different re-
verberation components. The adaptive delay estimation algorithm aims to extract
information from the received total signal and use this as a basis for estimating
how the reverberation noise is realized in the medium. Five different test scen-
arios are introduced and delay corrected subtraction suppression of the reverber-
ation components are tested based on the presented delay estimation algorithm.
The proposed delay estimation algorithm showed improved increase in the Signal
to Reverberation noise Ratio (SRR) after delay corrected subtraction suppression
compared to earlier methods. The proposed reverberation delay estimation method
proved especially better in the situation where the nonlinearity of the medium was
emulated to vary with depth.

Pulse simulation tool attributed to Johannes Kvam. Theory development, simula-
tion setup, analysis, discussion, conclusions, and text editing done by the candid-
ate. Background theory attributed to Bjørn Angelsen.

This paper was published by the Journal of the Acoustical Society of America, 25.
November 2015. http://dx.doi.org/10.1121/1.4935555
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Overview of extended theory

2.2 Overview of extended theory
First order delay estimation

When paper B is concerned with estimating the NPD of the reverberation com-
ponents, this work illustrates how the NPD of the first order component can be
estimated. The first order delay is important for the estimation of the reverbera-
tion delay but has been assumed to be known otherwise in the thesis. The method
discussed here is the same as that mentioned by Rau[1]. In addition to a gen-
eral presentation various problems with this estimation scheme is presented and
possible solutions are presented.

This work is included in Sec. 2.5.

Extensions on reverberation delay estimation

Assumptions are done in paper B which are not fully backed by simulations and
mathematical derivation in the paper. Such backing is given here (Secs. 2.7 to 2.9).
In addition, additional reverberation delay estimation schemes are presented. Some
simpler than the one presented in paper B (Sec. 2.11), and one iterative scheme
which increases the complexity of noise suppression algorithm (Sec. 2.13)

This work is included in Secs. 2.7 to 2.9, 2.11 and 2.13.

Discussion on pulse shape and pulse simulations

Paper B and A use symmetrical Gaussian pulses as basis. This was chosen to ease
reproduceability of the results. Here, simulations with more realistic pulses are
examined and compared to the results from the papers. A discussion around the
change in the signal generation algorithm based on simulated pulses from paper A
to paper B is also discussed.

This work is included in Secs. 2.10 and 2.12.

Other kinds of reverberation noise

This part is about Class II reverberations. This type of reverberations is excluded
from the discussion in other parts of the thesis as it is assumed to be much weaker
than Class I. A brief discussion of the behavior of this type of reverberation is,
however, included for completeness. The expected mean Class II reverberation
delay is derived, and the adaptive reverberation delay estimation from paper B is
extended to also include this type of reverberation noise.

This work is included in Sec. 2.14.

Estimation of nonlinear scatterers

Nonlinear scatterers are scatterers that depend on the polarity of the LF pulse. It
has been shown that microbubbles exhibit this property.[2] This section discusses
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initial simulations on a proposed estimation scheme for detection of nonlinear scat-
terers as well as suppression of reverberation noise. The proposed method high-
lights nonlinear scatterers over linear scattering, but fails in suppressing reverber-
ations adequately.

This work is included in Sec. 2.15.

2.3 Signal model
In the previous chapter the signals and delays were discussed with plain words
rather than with mathematical formulas. Here, a more thorough discussion is given
and it is therefore beneficial with a more mathematical description.

For now, the discussion is limited to first order linear scattering and reverber-
ations. A total signal for a conventional imaging pulse with no modifying low
frequency (LF) wave is written

y0(t) = x0(t) + n0(t). (2.1a)

Here, x0(t) is the first order component and n0(t) is the reverberation component.
The subscript 0 indicates no LF, or a “zero-polarity” LF wave. When an LF wave
is added this subscript is changed to +/- depending on the polarity of the LF wave,

y+(t) = x+(t) + n+(t), or (2.1b)

y−(t) = x−(t) + n−(t). (2.1c)

To generalize, the parameter p is used for the polarity of the LF wave. In this work
p can take the values, +1, 0, and −1. This enables the notation of Eq. (2.1) as

yp(t) = xp(t) + np(t). (2.2)

In the previous chapter a delay difference between the xp and np components
was introduced. The introduction of the LF wave also introduces other nonlinear
propagation effects. The total effect of the LF wave is contained in the filter Vp(ω)
for the first order components and Lp(ω) for the reverberation components. In
Fourier space this gives

Xip(ω) = Vip(ω)Xi0(ω), and (2.3)

Nip(ω) = Lip(ω)Ni0(ω). (2.4)

The subscript i denotes an interval in time. The modification filters are divided
into two parts. The first is the linear phase of the filters which give a delay in
the time domain. The other part is the pulse form distortion (PFD) for the first
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order components and noise distortion (ND) for the reverberation components. In
mathematical form

Vip(ω) = Ṽip(ω)e−iωτxip , and (PFD, 2.5a)

Lip(ω) = L̃ip(ω)e−iωτnip . (ND, 2.5b)

In this form the delays are assumed constant in the interval i. Neglecting the PFD
and ND, Vip = Lip = 1, gives a pure delay and Eq. (2.2) can be written

yp(t) = x0(t− τx(t)) + n0(t− τn(t)). (2.6)

The delays are now allowed to vary freely.

2.4 Delay corrected subtraction
As discussed in the previous chapter (Sec. 1.3.3), delay corrected subtraction works
by aligning the reverberation components of two signals and subtracting. The dif-
ference in propagation delay between first order and reverberation components
then makes sure that the first order signal can be retained by applying an appropri-
ate gain correction.

Write Eq. (2.2) in Fourier space for the plus and minus polarity LF(
Y+
Y−

)
=

(
V+ L+

V− L−

)
·
(
X
N

)
. (2.7)

The interval subscript i, as well as the frequency has been omitted for a simpler
notation. Solving Eq. (2.7) for the signal X yields

X =
Y+L

−1
+ − Y−L−1−

V+L
−1
+ − V−L−1−

. (2.8)

Utilizing Eq. (2.5) and assuming no PFD or ND simplifies to

X =
Y+eiωτn+ − Y−eiωτn−

e−iω(τx+−τn+) − e−iω(τx−−τn−)
. (2.9)

Note that in order to suppress the reverberation noise only the delays of the re-
verberation components (reverberation delays) are needed. The delays of the first
order signal components, or first order delays for short, only appear in the gain
factor used to lift the signal amplitude of the estimated first order signal. One
could therefore argue that the reverberation delay is the most important. However,
the first order delay is important for estimating the reverberation delay. A good
estimate for the first order delay is therefore also important for the DCS method.
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2.5 Estimating the first order delay
The first order delay is used in all current estimation methods of the reverberation
delay. As the reverberation delay is the core input of the DCS method utilized to
suppress reverberation noise, a proper estimation scheme for the first order delay
is needed.

Estimation of the first order delay has not been included in the two papers
included in this thesis. Assumptions have been made, as in earlier work, that
this delay is known. The aim of this section is to explain the first order delay
as presented by Rau[1] and highlight positives and negatives of this estimation
method. Effects of electronic noise and saturation of the received signals are also
considered in the estimation scheme. But first, an introduction to estimating the
total delay, τy, which is used as basis for the first order delay estimation.

2.5.1 Delay estimation
There are multiple methods available to estimate the delay between two similar
signals. The one explained here is the one developed by Standal et al. [5] as this
method was developed by the group previously working on the same problems as
the author and aimed to estimate delays of the same kind of signal as is of interest
here.

The following procedure differs from the description published by Standal
et al. [5] in that it concerns continuous signals and not sampled signals. The
minimum square error approach presented in the paper by Standal et al. is not
included here as this was not implemented in the code used in this work.

Consider two analytical signals y0(t) and yp(t) separated by a delay, τ , such
that yp(t) = y0(t− τ),

yp(t) = a(t− τ)eiωc·(t−τ)+iφ(t−τ), (2.10a)

y0(t) = a(t)eiωct+iφ(t). (2.10b)

The center frequency is represented by ωc, a general phase as φ(t), and the amp-
litude as a(t). The interest lies in the phase difference between these signals. More
precisely, in the delay τ . Compute the phase difference between the two signals,

∠
{
y0(t)y

∗
p(t)

}
= ωct+ φ(t)− ωc · (t− τ)− φ(t− τ),

= ωcτ + φ(t)− φ(t− τ),

=
(
ωc + φ̇(t− τ/2)

)
τ. (2.11)

Observe that the phase difference is proportional to the delay, τ . The change in
phase over an interval [t − δt, t + δt] for one of the signals along with Eq. (2.11)
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can be used to extract the delay between the two signals. Compute the change in
phase for the y0(t) signal,

∠ {y0(t+ δt)y
∗
0(t− δt)} = ωc · (t+ δt) + φ(t+ δt)

− ωc · (t− δt)− φ(t− δt),
= 2ωcδt + φ(t+ δt)− φ(t− δt),

=
(
ωc + φ̇(t)

)
2δt, (2.12)

and for yp(t),

∠
{
yp(t+ δt)y

∗
p(t− δt)

}
= ωc · (t+ δt − τ) + φ(t+ δt − τ)

− ωc · (t− δt − τ)− φ(t− δt − τ),

= 2ωcδt + φ(t+ δt − τ)− φ(t− δt − τ),

=
(
ωc + φ̇(t− τ)

)
2δt. (2.13)

Averaged, the change in phase for y0(t) and yp(t) can be used to estimate the
proportionality factor to τ in Eq. (2.11),

1

4δt

((
ωc + φ̇(t)

)
2δt +

(
ωc + φ̇(t− τ)

)
2δt

)
≈
(
ωc + φ̇(t− τ/2)

)
, (2.14)

or simplified,

1

2

(
φ̇(t) + φ̇(t− τ)

)
≈ φ̇(t− τ/2). (2.15)

Which seems like a reasonable assumption. A method to estimate the delay, τ ,
could then be

τ ≈
4δt∠

{
y0(t)y

∗
p(t)

}
∠ {y0(t+ δt)y∗0(t− δt)}+ ∠

{
yp(t+ δt)y∗p(t− δt)

} . (2.16)

In the computer code used in this work the step size is δt = 1 sample, and the
nominator and denominator of Eq. (2.16) are lowpass filtered separately to reduce
rapid fluctuations due to electronic noise in the signals.

2.5.2 Shortest path method
First it should be noted that no extensive research of the estimation of the first order
NPD was found in current literature or was conducted by the author. Presented here
are arguments for why the shortest path method is a reasonable estimation scheme.

As briefly mentioned by Rau[1] a robust estimation scheme of the first order
NPD, τx, is found by calculating the shortest path above (for a positive delay,
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negative polarity) or below (for a negative delay, plus polarity) the total NPD curve,
τy. This method yields a first order NPD curve with a decreasing absolute value of
the derivative with depth. However, as shown in paper A, the derivative of the first
order NPD along the propagation path, s, follows

dτx(z)

ds
= βn(z)κ(z)pLF(z). (2.17)

As there are no inherent restrictions on the material, and as such on the parameters
βn(z) and κ(z), it seems that one is erroneous in assuming a reduction of the
gradient with depth. Note also that the LF pressure increases up to the diffraction
focus.[3] Why is this assumption on the gradient then done?

The main argument lies in the monotonic increase in the value of the first order
NPD. The derivative (Eq. (2.17)) has the same sign throughout the propagation
when assuming that the HF pulse stays in the same peak of the LF as when it
was transmitted (see Fig. 1.1). Ie. a HF pulse initially experiencing a positive LF
pressure at transmit does not at some depth move to a negative LF pressure. This
increase with depth is true for both the first order NPD and the reverberation NPD.

Consider a strong first order signal at some given depth. The total NPD, τy,
at this depth is close to the first order NPD, τx. The question is then to find the
further development of the first order NPD curve from this point. The delays are
increasing in value with depth so one can limit oneself to considering peaks of
higher value than the one used as a starting point. It might be alluring to chose the
next higher-value peak as the continuation of the τx line. However, considering
that as all NPDs increase in value with depth, this new peak, as it is found at a
higher depth, could just as well be a delay of a total signal composed of a relatively
equal strength first order and reverberation signals. Remember that the total NPD
of a signal τy takes values between the first order and reverberation delays at a
given depth (see Fig. 1.5). The question is then if one should select this new peak,
or rather find an even higher peak further down giving a higher gradient of τx.
The choice with the shortest path estimation scheme is to always find the highest
possible gradient following the peaks in the total NPD. The idea is that this would
give a result less dependent on small variations in the first order to reverberation
signal ratio. The result is also a smoother development of the first order NPD. One
might argue that the first order NPD might not be smooth, as the material might
vary rapidly along the propagation path. The counter argument here is that this
large variation is hard to estimate when the estimation scheme is dependent on the
SRR (Signal to Reverberation Noise Ratio) which is unknown.

2.5.3 Saturation and electronic noise
At high depths electronic noise can result in signals of different polarities differing
so much it is not possible to find a suitable delay between them. As discussed in
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Figure 2.1: Clipping of the received signal due to presence of strong LF components.
Thick lines represent the limits for what can be represented in a 16 bit integer which is
the data type used in the scanner. Signal is at a lateral position of 19.8 mm of the same
medium as shown Fig. 2.2. The signal is generated with transmit of a HF pulse on the peak
of a LF wave (positive polarity).

paper B, this estimated nonlinear propagation delay (τy) is used to estimate the
NPD of the first order component of the signal (τx) and in turn the NPD of the
reverberation component (τn) which is used in the Delay Corrected Subtraction
(DCS) algorithm to suppress the noise. Without knowing which parts of the total
NPD is noisy or well estimated it is hard to give a proper estimation of the other
delays and a good suppression of the noise.

Another destructive effect is saturation, or clipping, of the received signal. This
can typically happen if large LF components are received by the transducer. As
opposed to electronic noise this is something that can happen at shallow depths. If
generation of the LF pulse is fine tuned in the hardware to give a short frequency
response, the result is a longer LF pulse, or a longer ringing down of the LF. If this
ringing has not stopped when the HF piezo elements are switched from transmit
to receive, this ringing is picked up in the circuit. The result is saturation in the
received signal. See Fig. 2.1 which shows the rf-signal from a scanline in an in
vivo scan with corresponding B-mode image in Fig. 2.2. To combat saturation
due to strong LF components the author would suggest adding a high-pass filter
somewhere early in the receive electronics as also suggested by Rau[1]. Note,
however, that this clipping effect can not only occur at the beginning of the signal
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Figure 2.2: Regular B mode image. Envelope detected and log compressed. Based on
transmit of a pure HF pulse (zero polarity). (Some of the dynamic range is lost in the
printed version.)

but might also be present with a strong LF reflector in the medium. See again
Fig. 2.1.

As mentioned above the first order NPD is found by taking the shortest path
around the total NPD starting at τy(0) = 0 and ending at τy(zmax) = some value.
A large error in τy at any point in the curve will therefore damage the total estima-
tion of the first order NPD. This effect is demonstrated in Fig. 2.3, where clipping
of the rf-signal (Fig. 2.1) makes delay estimation difficult (Fig. 2.4) and results
in poor performance of the reverberation suppression through DCS. To combat an
erroneous estimation of the first order NPD due to electronic noise, or signal sat-
uration, at high depths one can introduce a hard limit for the maximum depth one
wants to estimate the nonlinear propagation delay of the total signal, τy. To com-
bat saturation of the signal at shallow depths one could likewise introduce a lower
hard limit for the total NPD used in the first order NPD estimation. This would in
the case of Fig. 2.3 give a more correct first order NPD as seen in Fig. 2.4.

Two new parameters have been introduced. Hard limits in the minimum and
maximum depths used when estimation propagation delays. How should these be
determined? One solution is to have these adjustable in the imaging software on
the scanner. Assuming that the error in the total NPD estimation at the start of the
signal is due to ringing down of the LF elements and that this effect is known a
priori, one only needs to further consider modification of the maximum allowed
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Figure 2.3: Failure of the first order delay estimation leading to poor processing of the B-
mode image of Fig. 2.2. Errors in estimation of the first order NPD results in a breakdown
of the reverberation NPD estimation and the DCS algorithm. Correction is done with
delays corresponding to the thick dotted line of Fig. 2.4.

depth to use in the first order NPD estimation. If there are large errors in the estim-
ation of the NPDs due to electronic noise the reverberation suppression algorithm
will fail for the scanlines where this is the case. As the electronic noise can be
seen as random, there will be high variance between scanlines. This will, in turn,
result in very different estimations of the NPDs for different scanlines. Looking at
the B-mode image the result is vertical lines in the image. See Fig. 2.5. Presence
of such vertical lines would indicate that a lower value for the maximum depth
allowed in NPD estimation should be used. If a too high value for the maximum
allowed depth is used the estimation of the first order NPD will lose useful in-
formation. Depending on the implementation of the first order NPD estimation
beyond the hard maximum limit this would lead to an erroneous estimation of the
reverberation NPD. The result is poor reverberation suppression after DCS. As the
true areas with high reverberation noise is not known a priori this error could be
harder to notice. For reference (and completeness) see Fig. 2.6 where DCS pro-
cessing is done on the same image as from Fig. 2.2 (with addition of two dual
band transmits). The diffuse structure at around 35 mm depth an lateral position of
around 20 mm is an artifact caused by the clipping of received rf-signal when a co-
propagating LF pulse was transmitted. Delay estimation is done for each non-zero
polarity transmit independently relative to the zero-polarity transmit.
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Figure 2.4: Estimation of the first order delay, τx. Medium is the same as displayed in
Fig. 2.2, and calculations are done at a lateral position of 19.8 mm on a laterally smoothed
version of the total NPD, τy. Different limits have been introduced on what parts of the
total NPD (τy) to use in estimating the first order NPD (τx).
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Figure 2.5: Failure of the first order delay estimation leading to poor processing of the
B-mode image of Fig. 2.2. Errors in estimation of the total NPD at high depths leads to
erroneous first order NPD and a breakdown of the reverberation NPD estimation and the
DCS algorithm. Correction is done with delays corresponding to the thin line of Fig. 2.4.
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Figure 2.6: B mode image created with DCS processing of two DBI pulses and one regular
pulse (Fig. 2.2). (Some of the dynamic range is lost in the printed version.)
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2.5.4 Automatic adjustment of estimation regions

Manual adjustment of two (or one) extra parameters seems tedious and not user
friendly. In a polished software package this adjustment should be automatic. One
way to achieve this is by looking at the correlation between the signals of differ-
ent polarities. When the correlation drops below a set correlation limit (CL) the
signals differ so wildly that it can be assumed that electronic noise or saturation
represents the strongest component of the signal. The depths where the correlation
is below the set limit can then be excluded from the estimation of the first order
NPD and in turn the reverberation NPD. One can either determine a hard minimum
and maximum depth allowed, or simply remove areas with low correlation from
the NPD estimation. The latter method would allow for low correlation areas at
intermediate depths not destroying delay estimation if the correlation improves at
higher depths. Note that by looking at the correlation between signals of different
transmits there can be different depths allowed for different scanlines.

The correlation between two signals y1 and y2 within an interval i is calculated
through

Ci(y1, y2) =
〈y1 · y2〉i√
〈y1〉2i · 〈y2〉

2
i

. (2.18)

The received signals from transmits of different polarities can be divided up in
intervals in depth and a correlation map can be generated to determine areas with
destructive effects such as saturation and/or electronic noise. See Fig. 2.7 for an
example of a correlation calculation of an in vivo image, based on a plus polarity
and zero polarity transmit. The image is based on the same data as the other figures
in this section. Note the appearance of the clipping effects at the start and for the
structure at 35 mm depth around a lateral position of 20 mm. Note also that the
correlation seems to drop with depth. This can be due to increasing electronic
noise and increasing pulse form distortion differences. The example used here had
little dominant electronic noise as the signal strength was high even at high depths
which is visible in Fig. 2.2.

For an already resource heavy imaging modality, the extra computations of
correlations to set the limits for delay estimations is not ideal. A solution could be
to only do the calculation for certain scanlines and make a max depth limit based
on these. Note also that it might not be necessary to calculate the correlations at
all depths. For instance one could pre-program a hard limit for the minimum depth
allowed and only calculate the correlation between signals at depths over a certain
limit, where electronic noise is to be expected.
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Figure 2.7: Correlation between a received plus polarity signal and zero polarity signal.
The result can be used to estimate valid areas for delay estimation. The medium is shown
as a regular B mode image in Fig. 2.2.

2.6 Reverberation delay estimation

As discussed in the introduction chapter the nonlinear propagation delay of any
signal component is dependent on the path up to the first scattering event where
the amplitude is assumed to drop so much that any further nonlinear effects can be
neglected.

Scatterers at depths z1 and z3 gives reverberation noise at z = z1+z3 according
to Sec. 1.3.1. The reverberation component with scattering at z1 first (Class a) gets
a propagation delay as would a first order signal with scattering at z1. This delay is
denoted τx(z1). The other component (Class b) get a delay τx(z3). The observant
reader will observe a potential problem. In Sec. 2.3 the reverberation delay was
given by a single value for each time, τn(t). However, the delay is low, 20 ns
(see paper B), compared to the HF pulse period of 1/8 MHz = 125 ns. The delay
of the reverberation components can therefore be considered as an average delay.
To calculate this average delay the signals can be assumed to be single band and
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infinite length giving (removing the RF oscillations)

np(t)e
−iωt = e−iωτx(z1) + e−iωτx(z3), (2.19)

= e−iω
τx(z1)+τx(z3)

2

·
(

e−iω
τx(z1)−τx(z3)

2 + e+iω
τx(z1)−τx(z3)

2

)
,

(2.20)

= e−iω
τx(z1)+τx(z3)

2 2i sin

(
ω
τx(z1)− τx(z3)

2

)
. (2.21)

The last term is just an amplitude so the end delay of the total pulse is (perhaps
unsurprisingly) the arithmetic average of the delay of the two components.

2.6.1 Simple estimator
With a linear shape of the first order nonlinear propagation delay, τx(z) = νz the
reverberation delay becomes equal to the first order propagation delay at half depth

τn(z) =
τx(z1) + τx(z3)

2
, (2.22a)

= ν(z1 + z3)/2, (2.22b)

= νz/2, (2.22c)

= τx(z/2). (2.22d)

The last result defines the simple fixed-relation estimator,

τhn (z) , τx(z/2). (2.23)

2.6.2 Adaptive estimator
The simple fixed-relation reverberation delay estimator of Eq. (2.23) includes a set
of assumptions: 1) The first order delay is linear; and 2) Class a and b reverberation
components have equal strength. Breakdown of any of these two assumptions
would lead to a scatterer dependent reverberation delay. In other words it would be
necessary to write τn(z)→ τn(z; z1). This is the main result presented in paper B.
In this paper a solution is given by development of a signal adaptive reverberation
delay estimation. A short summary is presented in this section.

When the imaging pulse (HF) propagates nonlinearly, energy is moved from
the base band up to higher harmonic bands. This is utilized in for example tissue
harmonic imaging (THI), but here, this energy is lost as the received pulse is sub-
jected to a bandpass filter around the transmitted frequency. The loss of energy
due to nonlinear propagation is here called nonlinear attenuation. After the pulse
is scattered, the amplitude is assumed to drop so much that further nonlinear atten-
uation loss can be neglected. Let αz1 be the nonlinear attenuation of the imaging
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pulse at depth z1, where z1 is the depth of the first scattering event. Note that this
gives a pulse amplitude difference between Class a and b reverberations. Check
Fig. B.8 to see how a value for α was found in paper B.

Let R(z) be the estimated scatterer strength at depth z. This estimate is based
on the envelope of the received signal and is used to adapt the reverberation delay
to the estimated position, and origin, of the scatterers in the medium. It would
be beneficial to steer the estimated reverberation delay towards the delay of the
strongest reverberations as these are the most damaging to the resulting image. A
parameter, γ is therefore introduced as an exponent to R(z) making the strongest
reflections stand out more. The estimated scatterer strength used in the adaptive
reverberation delay estimation is thus Rγ(z) for a depth z. See Sec. B.8.4 in paper
B for a more in depth discussion around the choice of γ.

Introducing the modifications presented by nonlinear attenuation and the spe-
cificity towards strong scatterers to the estimated reverberation signal from a set of
scatterers, Eq. (2.19), yields

τn(z1, z3) =
−1

ω
∠
{
Rγ(z1)R

γ(z3)α
z1e−iωτx(z1) (2.24)

+ Rγ(z3)R
γ(z1)α

z3e−iωτx(z3)
}
, (2.25)

where the phase has been extracted and divided by the frequency to give the delay
of the signal. Note how both Class a (z1) and b (z3) interact with the same scat-
terers in the medium and get the same total scattering strength. The difference
between Class a and b comes from the difference in nonlinear attenuation, αz . The
scatterer strength comes into play when more than one pair of scatterers contribute
to reverberation noise at a given depth. An integration of all possible scatterers is
made in paper B which results in the integral (similar to Eq. (B.16))

τRR
np (z;α, ωc, γ)c ,

−1

ωc
∠
∫ z

0
dz1 R

γ(z1)R
γ(z − z1)αz1e−iωcτxp(z1). (2.26)

Here the integration is done not over Class a and b pairs but over individual re-
verberation components. The frequency ωc is the center frequency of the imaging
pulse which is assumed to be constant.

2.7 Effect of center frequency tracking
With a nonzero width of the imaging frequency band and an attenuation that in-
creases with frequency the center frequency of the imaging band will drop with
propagation length.[4, p. 86] This is accounted for in the estimation of the total
NPD, τy as described by Standal et al. [5] (see Sec. 2.5.1), but it is not accounted
for in the reverberation delay estimation, τn, presented in paper B (and above in
Eq. (2.26)) where a single constant center frequency is used throughout the signal.
In this section the error of this assumption is evaluated.
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2.7.1 Estimation of center frequency shift with depth
Firstly, how large is the drop in center frequency? A derivation loosely following
that of Szabo[4, p. 87] is presented here. Assume a Gaussian band centered at ωc

and an attenuation as exp {−ηzωγ}. The energy band then has the form

|U(ω − ωc, z)|2 =
∣∣U0(ω − ωc)e

−ηzωγ ∣∣2 (2.27)

= e−2ξ(ω−ωc)
2−2ηzωγ . (2.28)

The parameter γ defines the dependence of frequency on the attenuation and, ac-
cording to F. A. Duck, lies in the range of 1.0 to 1.5 for most soft tissue and
biological fluids.[6, p. 112] From here and forward γ = 1 is assumed to ease the
calculations. The bandwidth is defined by ξ and η is the attenuation coefficient.
Allowing the attenuation do be depth dependent results in a z dependence of the
attenuation coefficient, η → η(z). However, this dependence is omitted further
on.

By finding the derivative of the energy band and setting it to zero the frequency
corresponding to the peak energy can be found.

∂ |U(ω − ωc, z)|2

∂ω

∣∣∣∣∣
ω=ωpeak

= 0, (2.29)

⇓
−4ξ(ωpeak − ωc)− 2ηz = 0, (2.30)

⇓

ωpeak = ωc −
ηz

2ξ
. (2.31)

For the simulations in paper B the envelope of the pulses is defined as

u(t) = e
− 2t2

Tp . (2.32)

Taking the Fourier transform of u(t) an expression for ξ can be found.

F {u(t)} =

√
π

2
Tpe−

ω2T2
p

16 , (2.33)

Which, comparing to Eq. (2.28), gives ξ =
(
Tp
4

)2
, inserting this into the expres-

sion for the peak frequency (Eq. (2.31)) and rewriting to Hz yields

fpeak = fc − 4
ηz

πT 2
p

. (2.34)
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The attenuation is generally given in units of dB/cmMHz. Represent this number
by β such that

20 log10 (exp (−ηzω)) = −β. (2.35)

Letting z = 1 cm, and ω = 2π106 gives

−η · 10−2 · 2π106 = − β

20
ln (10), (2.36)

and further

η =
β

4π
· 10−5 ln (10). (2.37)

Setting β = 0.5 dB/cmMHz gives η = 9.1617 · 10−7. Inserting this and a pulse
with 1.5 oscillations at 8 MHz, or Tp = 1.5/(8 · 106), yields a drop of

∆f = −4
ηz

πT 2
p

= −0.03318 MHz/mm. (2.38)

Propagation to 20 mm and back to the transducer gives a drop of 40 · 0.03318 ≈
1.33 MHz. And twice that, 2.65 MHz, for imaging at a depth of 40 mm. Increasing
the length of the pulse reduces the shift in frequency. For comparison the shift
when transmitting a pulse of pulse length of 2.5 oscillations leads to a modification
of this result by a factor (1.5/2.5)2 = 0.36.

2.7.2 Effect of erroneous center frequency in delay estimation
The center frequency of the signal changes with propagation depth, and the rever-
beration delay estimation uses the center frequency as input. But, does the change
of the center frequency with depth significantly alter the reverberation delay es-
timation?

Introducing a depth dependent center frequency in the adaptive reverberation
delay estimation, τRR

n , from paper B yields

τRR
np (z) =

−1

ωpeak(z)
∠
∫ z

0
dz1 R

γ(z1)α
z1eiωpeak(z)τxp(z1)Rγ(z − z1). (2.39)

The effect of this complication of the equation is readily checked by calculating
the delay, τRR

np , using different, constant, center frequencies. In addition to a center
frequency of 8 MHz as used in paper B, center frequencies of 5, 6 and 7 MHz are
also computed. The relative change, calculated as

τRR
np (z; X MHz)− τRR

np (z; 8 MHz)

τRR
np (z; 8 MHz)

, (2.40)

is plotted in Fig. 2.8. The result is a relative change in the order of 0.1 %. It is
therefore possible to say with confidence that a depth depended center frequency
does not change the estimated reverberation delay significantly.
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Figure 2.8: The effect of changing the center frequency used in the estimation of the
reverberation delay using the adaptive method Eq. (B.16).

2.7.3 Effect on gain factor in correction
The gain factor in the DCS method is frequency dependent. Altering this gain does
not change the SRR as this gain is equal for both the signal and the reverberation
noise. However, an error in this gain would result in an uneven signal strength
with depth in the image. Here, this effect is evaluated by calculating the gain
under different center frequencies.

From paper B the gain factor is calculated as

G =
∣∣∣eiωc(τx+−τn+) − eiωc(τx−−τn−)

∣∣∣ , (2.41)

where the time (depth) dependence of the delays have been omitted. To get a clear
and simple estimation assume now that the sign of the delays are flipped when
flipping the sign of the polarity of the LF pulse. As makes sense from Eq. (B.16),

τx+ = −τx− and (2.42a)

τn+ = −τn−. (2.42b)

This yields

G = 2 cos

(
ωc
τx+ − τn+

2

)
. (2.43)

36



Time shift invariance

0 10 20 30 40
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

G
a
in

e
rr
o
r
[d
B
]

depth [mm]

Figure 2.9: Error in DCS gain with constant compared to varying center frequency with
depth.

Assume that the first order delay and reverberation delay are linear, τx+ = νz and
τn+ = νz/2, and define δω = 2π∆f(z)/z. The error in gain with depth can then
be estimated as

20 log10

(
cos (ωcνz/4)

cos ((ωc + δωz)νz/4)

)
(2.44)

The result is shown in Fig. 2.9 assuming ν = 1 ns/mm and ∆f/z = −0.03318
MHz/mm as in Sec. 2.7.1 and shows a depth varying frequency gain error of
0.03 dB at 40 mm. The added complexity of adding a center frequency shift in
the gain correction of the DCS method does therefore not seem necessary as the
error in the gain is extremely low.

2.7.4 Conclusion
The effect of tracking the center frequency with the processing in paper B is neg-
ligible. The effect on the reverberation delay estimation is in the order or 0.1 %
and the effect on the depth varying gain factor in the delay corrected subtraction
correction is below 0.04 dB.

2.8 Time shift invariance
The zero polarity signal is defined as the reference signal from which all nonlinear
propagation delays are based. In this section the mathematics are laid out for the
case when the reference signal is given an arbitrary time varying delay. It might
already be clear to the reader that such a time shift of the defined reference should
have no apparent effect on the result after DCS suppression as the only concern
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for DCS is the time difference between signal components. One would, however,
expect a time shift of the estimated first order signal in the end.

The time shift can be made general by first assuming a different error on the
NPD of all signal components. Written out the transformation is defined,

τ̂x+(t) = τx+(t) + εx+(t), and (2.45a)

τ̂x−(t) = τx−(t) + εx−(t), (2.45b)

and for the reverberation delays

τ̂n+(t) = τn+(t) + εn+(t), and (2.46a)

τ̂n−(t) = τn−(t) + εn−(t). (2.46b)

For a simpler notation the time dependence of the delays and errors in delays are
not explicitly written out further on. As before, no PFD or speckle variations is
assumed and the only difference between the first order and reverberation com-
ponents between different polarities is a delay in time,

y+(t) = x0(t− τx+) + n0(t− τn+) and (2.47a)

y−(t) = x0(t− τx−) + n0(t− τn−). (2.47b)

The DCS correction can be done with erroneous delays which gives

x̂0(t) = y+(t+ τ̂n+)− y−(t+ τ̂n−),

= x0(t− τx+ + τ̂n+)− x0(t− τx− + τ̂n−)

+ n0(t− τn+ + τ̂n+)− n0(t− τn− + τ̂n−).

And by inserting Eqs. (2.45a) and (2.45b) in the reverberation noise components,

x̂0(t) = x0(t− τx+ + τ̂n+)− x0(t− τx− + τ̂n−)

+ n0(t+ εn+)− n0(t+ εn−),
(2.48)

it is observed that under the condition

εn+(t) = εn−(t), (2.49)

the reverberation noise is canceled. An equal time shift of the estimated reverber-
ation NPDs thus has no effect on the reverberation suppression. This would be
expected as the DCS method is only concerned with the relative delay between the
signals.
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The first order component can be estimated through Eq. (2.48) by first convert-
ing to the Fourier domain and assuming that Eq. (2.49) holds. The procedure is
equal to that in paper B and yields

X̂i0(ω) = Yi+(ω)e−iωτ̂n+(t) − Yi−(ω)eiωτ̂n−(t) (2.50)

= Xi0(ω)
(

eiω(τx+(t)−τ̂n+(t)) − eiω(τx−(t)−τ̂n−(t))
)
. (2.51)

The result is a gain to the first order signal. Correcting for this with an errourous
first order delay estimation yields

X̂i0(ω) = Xi0(ω)
eiω(τx+−τ̂n+) − eiω(τx−−τ̂n−)

eiω(τ̂x+−τ̂n+) − eiω(τ̂x−−τ̂n−)
(2.52)

= Xi0(ω)
eiω(τx+−τ̂n+) − eiω(τx−−τ̂n−)

eiωεx+eiω(τx+−τ̂n+) − eiωεx−eiω(τx−−τ̂n−)
. (2.53)

Assuming equal errors for the first order NPDs,

εx+(t) = εx−(t), (2.54)

enables a major simplification of Eq. (2.53),

X̂i0(ω) = Xi0(ω)e−iωεx+ . (2.55)

The result is a time shift when converted to the time domain,

x̂0(t) = x0(t− εx+(t)). (2.56)

As the correction algorithm is designed to find the first order signal with zero delay,
shifting the defined zero point with εx+ also shifts the result of the algorithm with
the same amount. In other words it is possible to define the zero delay signal
however wanted and the result of the DCS correction will be an estimated first
order signal positioned at this zero point. However, the result presented here is
even less strict as it doesn’t require any dependence between εx+, εx− and εn+, εn−
as would be the case with a coordinate substitution in time.

2.8.1 Direct plus-minus delay estimation
It has been shown that one can define a shift in the definition of the NPDs without
affecting the reverberation suppression. This makes it possible to handle one of the
non-zero polarity signals as the reference signal used when computing the nonlin-
ear propagation delays. One question which quickly arises is if the reverberation
delay can be estimated the same was as before under this coordinate substitution
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in time. The problem can be formulated mathematically through the definitions
above. Let

εx+ = εx− = −τx−, and (2.57a)

εn+ = εn− = −τn−. (2.57b)

This holds the assumptions of Eqs. (2.49) and (2.54) giving the result in Eq. (2.56).
Written out the new NPDs become

τx+ → τx+ − τx−, (2.58a)

τx− → 0, (2.58b)

τn+ → τn+ − τn−, and (2.58c)

τn− → 0. (2.58d)

It is straightforward to show that the direct-relation reverberation delay es-
timator τhn (z) = τx(z/2) holds under this time shift. If τx(z/2) = τn(z) holds
for both the plus and minus polarity then it should also hold for the sum of the
delays, τx+(z/2) + τx−(z/2) = τn+(z) + τn−(z). When this simple estimator
is used it is thus possible to do the delay estimation directly between the plus
and minus signals without going through the zero polarity signal. The small time
shift in the resulting estimated first order signal can be ignored or corrected for by
(τx+(z) + τx−(z)) /2.

A direct delay estimation between the plus and minus polarity signals is not as
straight forward when the adaptive reverberation delay estimator, τRR

n , is utilized.
For a simpler discussion assume that the magnitude of the delays are equal between
polarities, |τx+| = |τx−| and |τn+| = |τn−|. Following the transformation in
Eq. (2.58a) the result is a doubling of the first order delay

τx+ → 2τx+. (2.59)

Following the definition of τRR
n in paper B this represents a doubling of the center

frequency used in the estimation,

τRR
n+ (z;ωc, 2τx+) =

−1

ωc
∠
∫ z

0
dz1 R

γ(z1)α
z1e−iωc2τx+(z1)Rγ(z − z1), (2.60)

or,

τRR
n+ (z; 2ωc, τx+) =

−1

2ωc
∠
∫ z

0
dz1 R

γ(z1)α
z1e−i2ωcτx+(z1)Rγ(z − z1). (2.61)

This shows that

2τRR
n+ (z; 2ωc, τx+) = τRR

n+ (z;ωc, 2τx+). (2.62)
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However, here we are interested to see if

τRR
n+ (z;ωc, 2τx+)

?
= 2τRR

n+ (z;ωc, τx+). (2.63)

Which would make Eq. (2.57) and the result from the previous section hold. Using
Eq. (2.62) this is equivalent to prove that

τRR
n+ (z, 2ωc, τx+)

?
= τRR

n+ (z, ωc, τx+). (2.64)

Equation (2.64) implies a frequency invariance of the reverberation delay estima-
tion. This was already tested above in Sec. 2.7. The result was that there indeed
was a center-frequency dependence. It was shown to be small, but it still disproves
Eq. (2.64) and by extension Eq. (2.63). The conclusion is that it is not mathematic-
ally sound to estimate the reverberation delay directly based on only the non-zero
polarity signals through the adaptive estimator presented in paper B. For a prac-
tical application however, it seems reasonable as the center frequency dependence
is so low.

2.9 Is a polarity specific nonlinear attenuation parameter
needed in the reverberation delay estimation?

In paper B it was mentioned that the plus, minus and zero polarity pulses exhibited
different nonlinear attenuation. However, in the estimation of the reverberation
NPD, the same parameter for nonlinear attenuation was used for both the plus and
minus polarity signals. A discussion follows here for why this simplification is
justifiable.

The most direct approach to see if a better suppression would have been pos-
sible by finding an optimal nonlinearity parameter for the reverberation NPD es-
timation for both the plus and minus polarity signals, is to do a numerical study
and look at the results. DCS processing was carried out with 46 different values
for the nonlinearity parameter, α, in the τRR

n estimation. All 46 · 46 permutations
where then DCS processed 300 times on sets of random scatterers corresponding
to "case I" from paper B. The SRR gain was evaluated and averaged between 5
and 39 mm and is plotted in Fig. 2.10. The plot shows that there are relatively
no gain to be found in tailoring the nonlinearity parameter to each polarity. The
simplification in paper B seems reasonable.

The effect of the nonlinearity parameter, α in the reverberation NPD estima-
tion can shed some light on why just one parameter is needed. A higher value for
α would put more weight on the NPD of the Class Ia reverberation component.
As this component has a lover NPD than Class Ib the result is a lowering of the
estimated reverberation NPD. Thus, by having an undershoot of the parameter on
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Figure 2.10: Signal to Reverberation noise Ratio (SRR) improvement for the case I me-
dium from paper B with varying values for the nonlinear attenuation parameter α in the
reverberation delay estimation τRR

n . 46 values for α is used for the plus, α+, and minus,
α−, polarity signals. The corrections for each parameter set is run on 300 sets of random
scatterers totaling to 634’800 scan lines. The black line through the plot shows where
α+ = α−. The values on the axes show dB drop at 40 mm (20 log10(α40 mm)).
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both the plus and minus polarity delay estimation would result in an erroneous es-
timated separation between the reverberation components. As discussed earlier the
main idea behind the delay corrected subtraction method to suppress reverberation
is to align the reverberation components of different signal on top of each other
and then subtract. However, with an overshoot on one polarity and an undershoot
on the other the relative shift between the reverberation components can still be
zero. The end result is a time shift, which discussed in Sec. 2.8 has no impact on
the reverberation suppression.

As an undershoot, or overshoot, on the nonlinearity parameters used in both
polarities is damaging, but the suppression is not destroyed by an overshoot on
one polarity and a corresponding undershoot on the other, it is possible to find a
common suitable nonlinearity parameter, α. However, the effect of α is determ-
ined by the shape of the first order NPD and this nonlinear dependence leaves the
author uncertain if the argument used here also holds mathematically looking at
the definition of τRR

n . Figure 2.10 does indeed show small variations, and it seems
that a better combination of nonlinearity parameters are found with α− at around
2 dB at 40 mm and α+ at around 3.5 dB at 40 mm. However, this effect seems
very small and the author does not believe this should be a main area of focus for
future study.

2.10 Simulations with realistic pulses and true NPD
The simulations in paper B were done with Gaussian pulses. This choice was made
so that the simulations would be easier to reproduce by other researchers. It also
introduced less parameters in the setup as true ultrasound pulses would be depend-
ent on the hardware used to generate the pulses. However, to study if the results in
the paper would hold up with more realistic pulses some of the simulations were
re-done. Pulses generated in Xtrans[7] were provided by Ola Finneng Myhre and
were based after the “Vora-2” probe used in other DBI experiments within the re-
search group (see Fig. 2.11). The generated pulses exhibit more ringing than the
Gaussian pulses. This is countered by using 1.5 oscillations instead of 2.5 as used
for the Gaussian pulses. Otherwise the maximum amplitudes of the Xtrans HF and
LF pulses are normalized to 0.5 MPa to correspond to the Gaussian pulses used in
paper B.

With the point of this section being to see if the results from paper B holds
up when moving towards a real world scenario the reverberation suppression was
also tested with the real NPDs from the pulse simulations. Figure 2.12 shows the
SRR increase in a medium corresponding to “case I” and “case II” from paper B
where the scatterer strengths are following a Gaussian distribution with a Poisson
distributed distance between them. Figure 2.12(b) corresponds to “case I” where
the first order NPD is synthetically set to being linear and Fig. 2.12(c) corresponds
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Figure 2.11: HF and LF pulses generated in Xtrans based on the Vora-2 probe design.
The LF wave is the plus polarity.

Table 2.1: Correspondence between figures in Sec. 2.10 and tissue cases in paper B

Figure in Sec. 2.10 Case from paper B Figure in paper B
2.12(a) - -
2.12(b) I B.3
2.12(c) II B.4
2.13(a) - -
2.13(b) III B.5
2.13(c) IV B.6

to “case II” where the first order NPD is piecewise linear with a 50 % reduction
in the gradient between 15 and 25 mm. Figure 2.12(a) shows the result with the
same scatterers but with a first order NPD determined by the simulation of the
pulses. Figure 2.13 shows the same set of graphs for a medium where the scatterer
strength is reduced between 15 and 25 mm corresponding to case III and IV in
paper B. Table 2.1 gives an overview of how the subfigures in Figs. 2.12 and 2.13
correspond to figures in paper B.

The discussion around the SRR result of the different tissue cases will not be
repeated here, but what is noted is that the results with the Xtrans based pulse
exhibit the same trends as the results from the Gaussian pulses. The author is
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(b) Linear delay (Case I).
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(c) Piecewise linear delay (Case II).

Figure 2.12: Signal to reverberation noise ratio increase after SURF processing on signals
with Xtrans generated pulses. Uniform mean scattering strength throughout plots.
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(b) Linear delay (Case III).
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(c) Piecewise linear delay (Case IV).

Figure 2.13: Signal to reverberation noise ratio increase after SURF processing on signals
with Xtrans generated pulses. Mean Gaussian scattering strength reduced to 20 % between
15 and 25 mm.

46



Alternative reverberation delay estimates

therefore confident that the results from paper B can be readily extended to hold
for more realistic pulse shapes as well.

The simulations where the real simulated NPD is used instead of a synthetic-
ally applied one seems to support the claim in paper B that the shape of the first
order NPD plays a large role in the possible SRR increase. The first order NPD of
the Xtrans pulses, as shown in Fig. 2.14, is not optimized for a linear development
of the first order NPD. The effect of this first order NPD shape is seen by compar-
ing Figs. 2.12(a) and 2.12(b) (and Figs. 2.13(a) and 2.13(b)). The drop in SRR due
to the irregular first order NPD is between 2 and 5 dB for the entire plot.

2.11 Alternative reverberation delay estimates
2.11.1 Mean based estimators

The adaptive delay estimate τRR
n integrates all possible reverberation components

to give a mean value at a given depth. First order delays used as input is weighted
with the assumed strength of each component, R̂(z1)R̂(z − z1), where R̂(z) is
the scatterer strength at depth z. A first step simplification of this estimator could
be to assume uniform scatterer strength throughout the medium resulting in a un-
weighted mean first order delay as the estimated reverberation delay.

Phaser mean

The phaser mean, τ e〈〉np is derived by simply removing the scatterer weights in the
adaptive estimator τRR

np . It still treats the sum of reverberation component delays
as complex phases and is as such still frequency dependent. But only slightly, as
discussed in Sec. 2.7.2. The estimator is defined as

τ e〈〉np (z) ,
−1

ωc
∠
∫ z

0
dz1 e−iωcτxp(z1). (2.65)

Arithmetic mean

Realizing that the center frequency plays little to no role in the estimation of
the reverberation delay (see Sec. 2.7.2) a further simplification from Eq. (2.65)
is achieved by simply taking the arithmetic mean of the first order delays up to the
imaging depth z,

τ 〈〉np(z) ,
1

z

∫ z

0
dz1 τxp(z1) (2.66)

2.11.2 Half value estimator

Following the same assumptions as for the fixed-relation simple estimator τhn (z) =
τx(x), namely a linear first order delay development and equal strengths of Class a
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Figure 2.14: First order NPD comparison between the real delay based on simulation of
Xtrans pulses and the synthetic delays used in paper B.
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and b scattering one could as easily arrive at

τhvnp (z) , τx(z)/2. (2.67)

With τxp(z) = νz, the result is the same for

τhvnp (z) = τxp(z)/2 = ν/2 and (2.68)

τhnp(z) = τxp(z/2) = ν/2. (2.69)

2.11.3 Bias as quality measure
As is shown in paper B the position of the scatterers in the medium changes the
mean reverberation delay. For the comparison of different reverberation delay es-
timators uniformly distributed scatterers are therefore assumed. The phaser mean,
τ
e〈〉
np (z), is used as a guide as to where the “proper” delay might lie. However,

note that in some scatterer realizations, any of the other estimated might give a
more correct answer than this guide. The aim here is not to find the best gain for a
given scatterer realization, but rather the bias introduced by each of the estimation
schemes. A uniform distribution of scatterers is defined to represent zero bias.

Assuming a fully linear first order delay, τx(z) = νz, leads to all reverberation
delays estimators being equal. Examples with change in the gradient of the first
order propagation delay will therefore be discussed.

2.11.4 Special case of convex or concave τx

Here the special case of convex or concave propagation delays are discussed. As
the sign on the propagation delay depends on the polarity of the LF pulse and thus
makes a convex propagation delay for a positive polarity a concave propagation
delay for a negative polarity, let the definition of a “concave propagation delay” be
based on a positive polarity LF pulse giving a negative value for the propagation
delay, sgn(τx+) = −sgn(τx−) = −1.

A function, τx(z), is defined as midway concave at the interval C if it follows

τx

(
z1 + z2

2

)
≥ τx(z1) + τx(z2)

2
, (2.70)

for a given set of coordinates [z1, z2] ∈ C. This is a weaker constraint than on true
concave function. Defining z1 = 0 is a further weakening of the criterion, which
yields

τx

(z
2

)
≥ τx(z)

2
. (2.71)

This again can readily be rewritten to

τhnp(z) ≥ τhvnp (z). (2.72)
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A first order delay curve concave on the interval [0, z] therefore leads to a higher
reverberation delay estimate value from τhnp compared to τhvnp . And vice versa for
a convex first order delay development with depth. Further assuming a concave
τx(z) it can be shown that

τx(z/2) ≥ 1

z

∫ z

0
τx(z1) dz1 ≥ τx(z)/2 or

τhnp(z) ≥ τ 〈〉np(z) ≥ τhvnp (z),

(2.73)

holds.

Proof of Eq. (2.73)

Start by proving the left side of Eq. (2.73) by rewriting to

z

2
τx(z/2)−

∫ z/2

0
τx(z1) dz1 ≥

∫ z

z/2
τx(z1) dz1 −

z

2
τx(z/2). (2.74)

Which can be contracted to∫ z/2

0
dz1

∫ z/2

z1

dξ τ ′x(ξ) ≥
∫ z

z/2
dz1

∫ z1

z/2
dξ τ ′x(ξ). (2.75)

The integration regions are of equal size but the left side is over lower values of z1
than the right. As τ ′x(z1) is higher at lower z1 when τx is concave the inequality
holds. For the right side of Eq. (2.73) use that τx(0) = 0 and write∫ z/2

0
τx(z1) dz1 −

z

2
τx(0) ≥ z

2
τx(z)−

∫ z

z/2
τx(z1) dz1. (2.76)

In a similar fashion as Eq. (2.75) contract this to∫ z/2

0
dz1

∫ z1

0
dξ τ ′x(ξ) ≥

∫ z

z/2
dz1

∫ z

z1

dξ τ ′x(ξ). (2.77)

The integrals again span the same length but over different values of z1. The left
side of the inequality integrates over lower values of z1 where τ ′x(z) is higher than
at higher given that τx(z) is concave. This proves the inequality Eq. (2.73). By
changing the signs of the inequalities the same is proved for a convex function.

Discussion

As the final reverberation delay depends on the set of scatterers used, and other
factors such as nonlinear attenuation, it is not possible to say a priori which of the
estimates τhnp, τ

〈〉
np, or τhvnp produce the most correct reverberation delay.
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Figure 2.15: Comparison of different estimators for the reverberation delay τn. The effect
of a blood vessel in surrounding fatty tissue is modeled by lowering the gradient of the
propagation delay by 50 % between 10 and 20 mm. Note how τ

〈〉
np(z) and τ e〈〉np (z) are

almost indistinguishable.

However, looking at the statistics of many ultrasound images a trend is found.
Assuming equal probability for scatterers at any depth the mean based estimators
will be more correct on average as their bias is zero. Following Eq. (2.73) τhnp(z)
then leads to an overestimate while τhvnp (z) leads to an underestimate. Including
nonlinear attenuation will lower the reverberation delay magnitude as scattering at
shallow depths are weighted more. However, to be able to say something general
about this case concerning the under or over estimate of the τhnp and τhvnp estimators
a more in depth mathematical study is required.

How typical are concave or convex first order delays? In paper B a first order
propagation delay piecewise linear with a reduction of the delay gradient of 50 %
in a set interval is studied. This is to emulate the change in propagation delay
when a blood vessel is present in the medium. Looking at the absolute value of the
propagation delay (τx− or |τx+|), τx is convex up to the end of the blood vessel.
Figure 2.15 shows a similar example where the blood vessel is moved from what
is used in paper B. The first order delay, τx−(z), is convex up to the end of the
blood vessel inserted between 10 and 20 mm. Up to this point it is also shown that
Eq. (2.73) holds as τhnp > τ

〈〉
np > τhvnp . This relation further holds down to 30 mm.

The graph is no longer strict convex but a visual observation aids in the proof of
Eq. (2.73). At 30 mm the mean gradient between 0 and z/2 = 15 mm and between
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z/2 and z = 30 mm is equal as a line from (0, 0) to (30, τx(30) passes through the
point (15, τx(15). Beyond this point the inequalities of Eq. (2.73) are switched, as
is also observed in Fig. 2.15

Some methods for estimating the first order delay may automatically lead to
a convex τx. An example is the estimation outlined in Sec. 2.5, and by Rau.[1]
Shortly repeated here, the method in question finds the shortest path above the
estimated total delay, τy(z), from the point τx(0) = 0 to the max imaging depth
τy(zmax) = some value. It should be evident upon inspection that this results in
a convex function. For this estimation Eq. (2.73) will therefore always hold. As
the actual first order delay is not known one should thread lightly when making
generalizations on which estimator will work best in any setting. However, what
can be said is that using this estimation scheme for the first order propagation delay
will always lead to τhnp ≥ τ

〈〉
np ≥ τhvnp .

2.11.5 Difference between phaser means τ 〈〉np and τ
e〈〉
np

As is seen from Fig. 2.15 the difference between the running mean of the first order
delay with (τ e〈〉np ) or without (τ 〈〉np) a complex phase in the calculation is very small.
Just how small can be seen in Fig. 2.16 where τ 〈〉np− τ e〈〉np is plotted. The plot shows
a difference at most 0.1 ns for the case discussed in the previous section.

The effect of a 0.1 ns error can be extracted from Fig. A.4 in paper A. It shows
that the effect of an increased error in the estimated delay is lower for higher errors.
In other words, an addition of a 0.1 ns error in the reverberation delay estimation
is only significant when the initial value is close to correct. With an error of 0.5 ns
on the estimated delay, an addition of another 0.1 ns only reduces the increased
SRR by 2 dB.

2.12 Pulse simulations and difference between the model
in paper A and B

2.12.1 Setting up the pulse simulations
To create the full rf-signal for the processing in paper A and B one first need to
simulate the required pulses. To generate the first order signal the pulses needs
to be propagated nonlinearly out to the first scatterer and then linearly back to
the transducer. Since all the scatterers are assumed to be planes, which does not
modify the shape of the pulse, some shortcuts are possible. First, a start pulse is
simulated out to the maximum depth of 40 mm where the simulations are stored
for every mm. This leads to 40 pulses. Each of the stored pulses is then simulated
linearly back to the transducer and saved to disc (or RAM). This procedure cor-
responds to step (1) and (2) of Fig. 2.17. The pulses are beamformed to generate
pulses used for generation of the first order rf-signal.
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Figure 2.16: Deviation of τ 〈〉np compared to τ e〈〉np in ns.

The reverberation pulses are not only dependent on the total propagation path
but also of the position of the first scattering event. To generate these pulses, the
non-beamformed first order pulses can be utilized in order to save simulation time.
A first order pulse is the same as the first propagation path of either Class Ia or
Class Ib reverberation where the pulse is first propagated out to a scatterer and then
returned to the transducer before it propagates another time out into the medium.
The first order signal pulses are propagated in steps of 2 mm and then immediately
beamformed and stored to disc (or RAM) until the total propagation path is twice
the needed maximum imaging depth (here 80 mm). This corresponds to step (3) in
Fig. 2.17. This procedure is the repeated for each z1 until a complete set of pulses
are generated (crosses in Fig. 2.17). As the second scatterer does not change the
pulse in any way there is no distinction of whether the pulse is propagated towards
or away from the transducer. The only important factor is the position of the first
scatterer and the total propagation path.

2.12.2 Difference between simulation model in paper A and paper B
There is a slight difference between the algorithms to generate rf signals from
pulses in paper A and B. Since paper B was written first the algorithm here is
the original while the algorithm in paper A is an extension. The change lies in
how the NPDs are handled. In paper B the NPDs are contained in the pulses. By
convolving a time-shifted pulse with a set of scatterers an rf-signal is obtained
with the same time-shift as in the pulse used. In paper A, however, the time-shift
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z1

Total propagation 2z

40 mm

80 mm0 mm

Pulse at first scattering
First order pulse

Reverberation pulse
Simulation step

(1)

(2)

(3)

Figure 2.17: Simulation scheme. (1) Nonlinear simulation of pulses up to the first scat-
terer at z1. (2) Linear simulation from first scatterer back to transducer. First order signal
pulses are stored. (3) First order pulses are propagated further linearly to generate rever-
beration pulses. Last step is beamforming of first order and reverberation pulses based on
total propagation length 2z. Only pulses for each 4 mm is shown to make the figure less
cluttered.
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(NPD) is removed from the pulse. It is upsampled between pulses to match the
sampling frequency of the scatterers and then applied to the scattering vector. The
un-shifted pulses are then convolved with a set of time-shifted scatterers to obtain
a time-shifted rf-signal. In both algorithms rf-signals from different set of pulses,
representing different depths, are meshed together to create a full rf-signal over the
whole depth-range of interest.

For one pulse and one constant delay there are no difference between the al-
gorithms of paper A and B (y is the rf-signal, R is the set of scatterers, u is the
pulse, and τ is the delay in time),

y(t+ τ) =

∫ ∞
−∞

R(ξ + τ)u(t− ξ) dξ, (2.78a, paper A)

=

∫ ∞
−∞

R(ξ)u(t+ τ − ξ) dξ. (2.78b, paper B)

Where the equations are made equal by the redefinition ξ → ξ + τ .
In reality a pulse does not change only at each mm propagated. It changes

continuously. The idea behind the change in the model from paper B to A was to
extract one feature of the pulses, the NPD, upsample it to be continuous and then
apply it directly on the scatterers to make this feature of the nonlinear propagation
evolve continuously with depth. Ideally, upsampling could be done between the
full pulses to give exact pulses at each specific depth, not just each whole mm.
However, this would demand a lot of computer resources.

2.13 Combating ghost corrections through an iterative scheme
As discussed in paper B the adaptive reverberation delay estimation method, τRR

n ,
uses a noisy signal as basis and the result can be a specific estimated reverberation
delay at a certain depth to correct for a strong reverberation noise not actually
present in the observed signal. It is postulated in the same paper that an iterative
scheme can be applied to combat this weakness in the estimation scheme.

Iteration is done by doing a new reverberation delay estimation after DCS cor-
rection, and using the estimated first order signal for R in the equation for τRR

n .
Call this “second iteration” delay τRR

n,2 . To summarize, the first and second itera-
tions give delays from the equations

τRR
n (z) =

−1

ωc
∠
∫ z

0
dz1 env {y(z1)}γ env {y(z − z1)}γ αz1e−iωcτx(z1), (2.79)

τRR
n,2 (z) =

−1

ωc
∠
∫ z

0
dz1 env {x̂(z1)}γ env {x̂(z − z1}γ αz1e−iωcτx(z1). (2.80)

To ease notation the signals have been indexed with depth following z = c0t/2.
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Figure 2.18: Zoomed in version of Fig. B.7 from paper B, where in addition a correction
has been done with an iterative method τRR
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Figure 2.19: Reverberation delays used in correction from Fig. 2.18. Additionally the
adaptive reverberation delay based on the true first order signal is shown, written as τRR
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All delays in the plot are about equal up to this depth, with a linear development with
depth.
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Figure 2.18 shows the SRR improvement using τRR
n,2 compared to the correc-

tions in Fig. B.7 in paper B. The iterative method shows to combat the ghost cor-
rection at 37 mm as expected. A rather unexpected result is a worse SRR improve-
ment around 25 mm right after the synthetic blood vessel (15 mm to 25 mm). This
reduction in SRR increase compared to the first iteration can also be inferred by
looking at a plot of the estimated reverberation delays, see Fig. 2.19. Here, there
is a discrepancy between the true reverberation delay τyn and the second iteration
estimation τRR

n,2 around 25 mm. The first iteration and reverberation delay based
on the true first order signal, τRR

n,∞, shows to follow the true delay well at this depth
(and rather, all other depths). Simulated, but not plotted here, is the next iteration
of the reverberation delay estimation. It shows that this next iteration also fails
to get a correct reverberation delay estimation at 25 mm. Without doing further
simulations the author is inclined to assume that even further iteration steps do
not remedy this issue. The result raises questions of the usefulness of an iterat-
ive scheme. The effects of ghost corrections are reduced, but the introduction of
new, not fully understood, errors could potentially result in a end signal with more
reverberation noise after iterations than after one pass of the algorithm.

2.14 Properties of Class II scattering
Class II reverberations were introduced in Sec. 1.3 and consists of sets of three
scatterers where none are the transducer-body interface. As with Class I rever-
berations, Class II is also divided into a type “a” and “b” (see Fig. 1.2 from the
introduction for a refresher). Class II reverberations were assumed to be low com-
pared to Class I as the transducer-body interface is believed to be a strong scatterer
such that noise with this interface as a second scatterer would dominate in the im-
age. However, in this section the Class II reverberations are given some thought
and the NPD of this class is worked out in the simplest case of a linear first order
NPD and uniform scatterers.

2.14.1 Scatterer combinations
An estimate for the reverberation strength, independent of the pulse, can be created
by summing over all possible reverberation combinations. For the Class I noise a
corresponding formula was worked out in paper B,

RR(z) = Rtransducer

∫ z

0
R(z1)R(z − z1) dz1. (2.81)

For Class II reverberations the formula becomes more complicated. Given first
scattering at z1 and second scattering at z2 < z1 the third scatterer needs to be
positioned at z3 = z − z1 + z2 given resulting noise at a depth z. The resulting
formula for the reverberation strength now closely resembles that of Eq. (2.81)
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save for an extra integral over all possible z2 depths,

RRR(z) =

∫ z

0
dz2 R(z2)

∫ z

z2

R(z1)R(z − z1 + z2) dz1. (2.82)

Note how the lower limit for z1 is z2. The second scatterer always needs to be
lower than the first scatterer. This is also true for the third scatterer, z2 < z3. By
defining z3 = z − z1 + z2 this is always satisfied when z1 > z2. The lowest z3 is
when z1 is at its maximum z1 = z. This reduces to z3 = z2.

The most evident result from Eq. (2.82) is that there are many more possible
combinations of scatterers that generate Class II reverberation noise than Class I
noise. It is also noted that the complexity of calculating the assumed reverberation
strength from a set of scatterers R(z) is higher for Class II as the positions of the
three scatterers can vary more for reverberations combining to noise at a given
depth z.

2.14.2 Estimating the Class II delay
Equation (2.82) can lead to an estimated reverberation delay for the Class II noise.
Inserting a phaser in Eq. (2.82) and proceeding as with the τRR

n estimation from
paper B yields

τRR
n,II =

−1

ωc
∠

{∫ z

0
dz2 R

γ(z2)

·
∫ z

z2

dz1 R
γ(z1)α

z1Rγ(z − z1 + z2)e
−iωcτx(z1)

}
.

(2.83)

This might be a fine result, but it is not very informative. To make sense of the
equation and to get a feel for the result some simplifications and assumptions can
be made. Let γ = 1, α = 1, and assume that the first order NPD is linear,
τx(z) = νz. A coordinate substitution is also used,

z̃1 = z1 − z2, (2.84a)

z̃3 = z3 − z2, (2.84b)

z̃ = z − z2. (2.84c)

The definition

R̃(z) = R(z + z2), (2.85)
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makes it possible to rewrite Eq. (2.83) to

τRR
n,II =

−1

ωc
∠

{∫ z

0
dz2R(z2)

∫ z̃

0
dz̃1R(z1 − z2 + z2)

·R ((z − z2)− (z1 − z2) + z2) e−iωcν((z1−z2)+z2)
}
,

(2.86)

=
−1

ωc
∠

{∫ z

0
dz2R(z2)e

−iωcνz2

·
∫ z̃

0
dz̃1R̃(z̃1)R̃(z̃ − z̃1)e−iωcνz̃1︸ ︷︷ ︸

C̃I

}
.

(2.87)

The last integral is equal to the case of Class I save for the coordinate substitution.
Call this integral C̃I . The phase component of the integral can be extracted by
rewriting to

C̃I(z̃) =

∫ z̃/2

0
dz̃1 R̃(z̃1)R(z̃ − z̃1)

(
eiωcνz̃1 + eiωcν(z̃−z̃1)

)
(2.88)

= eiωcz/2

∫ z̃/2

0
dz̃1 R̃(z̃1)R̃(z̃ − z̃1)2 cos

(
ωcν

2z̃1 − z̃
2

)
(2.89)

= eiωcz̃/2|C̃I(z̃)| (2.90)

Inserting this result in Eq. (2.87) yields

τRR
n,II =

−1

ωc
∠

{∫ z

0
dz2 R(z2)|C̃I(z̃)|e−iωcν

(
z−z2

2
+z2

)}
(2.91)

=
−1

ωc
∠

{
e−iωcν

z
2

∫ z

0
dz2 R(z2)|C̃I(z̃)|e−iωcν

z2
2

}
(2.92)

If now it is assumed that the scatterer distribution is uniform, the integral can be
solved by simply letting R(z) = 1. Then ignoring the modulus of the integral a
naive estimation of the Class II reverberation delay can be made, τRR

n,II → τ
e〈〉
n,II.
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Write,

τ
e〈〉
n,II =

−1

ωc
∠

{
e−iωcν

z
2

∫ z

0
dz2 e−iωcν

z2
2

}
(2.93)

=
−1

ωc
∠

{
e−iωcν

z
2

2i

ωcν

[
e−iωcν

z2
2

]z
0

}
(2.94)

=
−1

ωc
∠

{
e−iωcν

z
2

2i

ωcν
e−iωcν

z
4

(
e−iωcν

z
4 − e+iωcν

z
4

)}
(2.95)

=
−1

ωc
∠

{
−4

ωcν
sin
(
ωcν

z

4

)
eiωcν

z
4 e−iωcν

z
2

}
(2.96)

= ν
3z

4
= τx

(
3z

4

)
. (2.97)

Note how the estimated delay lies between the first order delay τx(z) and the
simple τhn (z) = τx(z/2) estimate. This could be arrived at simply by noting how
increasing z2 from 0 to z moves the mean delay from Class a and b from τx(z/2)
to τx(z). With uniform weighting this leads to the result (τx(z/2) + τx(z)) /2 =
τx(3z/4) in the case of a linear first order delay.

2.14.3 Why Class II can be difficult to suppress
As noted from Sec. 2.14.2 the Class II noise has a NPD closer to the first order
NPD than Class I noise. This smaller delay variation in effect makes it closer
to the first order signal and thus harder to suppress through DCS. This problem
persists with Class III reverberation briefly mentioned in the introduction of this
thesis. Here all three scatterers are close to the imaging depth and the NPD of the
reverberation signal is very close to the NPD of the first order signal.

Another aspect is the appearance of the speckle when changing polarity of the
transmitted pulse complex. When CIa6=CIb it was seen from Fig. 1.4 in Sec. 1.3
that an inversion of the NPDs caused the Class Ia and Ib reverberation compon-
ents to switch sides in the resulting reverberation noise. The result was speckle
variations in the reverberation noise between the plus and minus polarity signals.
When Class Ia and Ib are equal this switching of which comes first plays no role.
A similar effect may, however, occur even if Class a and b reverberations are equal
when Class II noise is introduced. Class II noise is closer in delay to the first order
signal than Class I. Flipping of the polarity of the transmitted pulse complex and
reversing the sign of the NPDs therefore also results in a switch in which of the
Class I and Class II noise comes first back to the transducer. This speckle differ-
ence in the reverberation noise between the two received signals can therefore be
damaging for DCS based reverberation suppression even with equal Class a and b
reverberations.
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(a) No SURF processing.
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(b) SURF processed B-mode image. Reverberation noise remaining after pro-
cessing highlighted by a red circle. Parameters: γ = 1, α = 3.75 dB at 40 mm.

Figure 2.20: B-mode images. Without (a) and with (b) reverberation suppression.
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2.14.4 Class II reverberations in vivo?
Figure 2.20 shows the result of SURF processing on a B-mode image of the bi-
furcation of the common carotid artery in a volunteer. A red circle in Fig. 2.20(b)
shows an area with sub-optimal reverberation suppression as one would expect
from the rest of the image that this area should be a part of the artery and thus
result in a lower signal strength. As there are many layered structures above the
highlighted area, one hypothesis is that this diffuse remaining noise is due to the
presence of Class II reverberations. To study this hypothesis further one might
look at the NPDs in this region. Class II reverberations are, as mentioned in the
previous section, said to have a higher reverberation delay than Class I. Figure 2.21
shows the NPDs at 16.5 mm laterally, which is in the middle of the marked area
from Fig. 2.20(b). Comparing to the blood vessel above, at around 15 to 20 mm
depth, one could argue that the total NPD, τy, seems to vary more slowly between
the first order NPD and the reverberation NPD when moving into the blood vessel.
However, it seems difficult to draw any real conclusion from the plot as the total
NPD has a negative spike around 25 mm where the value of τy is lower than the
reverberation NPD τn. The opposite effect of what Class II reverberations would
result in.

The “take home” message from the study of Figs. 2.20 and 2.21 can be that
detection of Class II noise is difficult in vivo. Poor reverberation suppression could
be due to numerous factors. A too high or too low estimation of the reverberation
NPD, or large variance of the reverberation NPD all contribute to poor suppression.
It is also possible that what one believe to be reverberation noise is in fact first
order signals. To better understand Class II reverberation the author would suggest
studies in ultrasound phantoms or by more complex computer simulations than the
ones used here.
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Figure 2.21: Nonlinear propagation delay at the lateral position of 16.5 mm from the im-
age in Fig. 2.20. Vertical lines mark out the start and end depth of the circle in Fig. 2.20(b).
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2.15 Estimation of nonlinear scatterers
The presence of nonlinear scatterer components in a received ultrasound signal is
mentioned in both paper A and B but are not given further thought. Work has been
done earlier by Svein-Erik Måsøy, Rune Hansen et al. where DBI was used to
highlight microbubbles in vivo.[8] The idea was that the LF wave altered the size
of the microbubble as observed by the HF pulse and resulted in different images
for different polarities of the LF wave. By comparing these two images a contrast-
enhanced image could be formed.

In this section a three pulse-complex transmit to both suppress reverberations
and enhance ultrasound contrast agents at the same time is presented. The math-
ematical signal model extension is based on Eq. (B.4) from paper B and written

Yp(ω) = Vp(ω) (Xl0(ω) + pXn(ω)) + Lp(ω)N0(ω). (2.98)

Here the index, i, denoting an interval has been dropped and the first order signal
has been substituted for two components, one representing linear scattering (Xl0)
and one representing nonlinear scattering (pXn),

X0(ω) = Xl0(ω) + pXn(ω). (2.99)

Written out for three polarities the equation transforms to

Y+(ω) = V+(ω) (Xl0(ω) +Xn(ω)) + L+(ω)N0(ω), (2.100a)

Y0(ω) = Xl0(ω) +N0(ω), (2.100b)

Y−(ω) = V−(ω) (Xl0(ω)−Xn(ω)) + L−(ω)N0(ω). (2.100c)

The equations can be written in matrix form asY+Y0
Y−

 =

V+ V+ L+

1 0 1
V− −V− L−

 ·
Xl0

Xn

N0

 , (2.101)

where the frequency dependence has been omitted in the notation. The equation
can be solved for any of the signal components. Here the interest lies in the non-
linear scattering component, Xn, and the solution is

X̂n =
(V− − L−)Y+ + (V+L− − L+V−)Y0 − (V+ − L+)V−

2V+V− − V+L− − L+V−
. (2.102)

A time varying signal is found by taking the inverse Fourier transform, x̂n. In a
similar way an equation for the linear component can be derived,

X̂l =
−V−Y+ + (V+L− − L+V−)Y0 + V+V−

2V+V− − V+L− − L+V−
. (2.103)

And the time dependent variant is written, x̂l. The conventional estimation of the
first order signal is further written x̂0.
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Table 2.2: Scatterer positions and relative strength in estimated signal components (x̂).
Values taken from Fig. 2.22.

First order R x̂n [dB] x̂l [dB] x̂0 [dB] Type
5 0.10 -23 -10 -0.2 Linear
12 0.05 -5 -16 -2 Nonlinear
15 0.10 -14 0 0 Linear
22 0.05 0 -14 -7 Nonlinear

Table 2.3: Reverberation positions and relative strength in estimated signal components
(x̂). Values taken from Fig. 2.22.

Depth [mm] {z1, z3} x̂n [dB] x̂l [dB] x̂0 [dB] Type
10 5,5 -37 -29 -26 Linear
17 5,12 -28 -15 -18 Combination
20 5,15 -15 -16 -25 Linear
24 12,12 -29 -21 -25 Nonlinear
27 12,15 -10 -14 -26 Combination
30 15,15 -24 -21 -27 Linear
34 12,22 -30 -35 -48 Nonlinear
37 15,22 -21 -19 -27 Combination

2.15.1 Simulation setup and results

To test the effectiveness of Sec. 2.15 a simulation was done with scatterers similar
to those of Case I from paper B. A total of 128 simulation runs were conducted in
the same manner as in paper A where the pulses were simulated with nonlinearity
given by βnκ = 2 · 10−9, and HF and LF amplitudes of 0.5 MPa. Strong linear
scatterers were introduced at depths of 5 and 15 mm, and strong nonlinear scat-
terers were introduced at 12 and 22 mm. The reflection coefficients of the linear
scatterers were 0.1 and 0.05 for the nonlinear. For the nonlinear scatterer strength
note how a different sign between the plus and minus polarity would result in a
scatterer strength difference equal to that of the linear scatterers. The mean back-
ground scatterer strength was 0.03. A low echogene area was inserted between 30
and 35 mm where the background scatterers were reduced to 1 %. See Table 2.2
for an overview of the scatterers and Table 2.3 for an overview of the resulting
reverberations.

The first and main hypothesis to test is whether the nonlinear scatterer estim-
ation of Sec. 2.15, highlights the signals from nonlinear scatterers more than the
signals from the linear scatterers. The secondary hypothesis is whether the x̂n
estimation also suppresses the reverberation noise in the same way as the con-
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Figure 2.22: Relative mean signal strength for estimators of first order signal (x̂0), linear
first order signal (x̂l), and nonlinear first order signal (x̂n). Estimation of nonlinear scat-
terers is relatively stronger at 12 and 22 mm where nonlinear scatterers are present than at
locations 5 and 15 mm where linear scatterers are present.

ventional estimation of x̂0. A third hypothesis is whether the estimation of linear
signal components suppresses the nonlinear scatterers and highlights the first order
linear signal.

Figure 2.22 shows the mean envelope of all 128 runs for the three estimators:
x̂n, x̂l, and x̂0. The data is plotted in dB and is normalized to the maximum
value for each estimator. Values at the interesting areas with strong scatterers or
strong reverberations are marked. The same values are also plotted in Tables 2.2
and 2.3 for the first order and reverberation positions respectively. The figure (and
Table 2.2) shows that the nonlinear scatterers are the strongest components in the
x̂n signal. The highest point is the nonlinear scatterer at 22 mm while the one at
12 mm is 5 dB lower. The next component is the linear scatterer at 15 mm which is
9 dB further down. The result supports the first hypothesis, and the x̂n estimation
does indeed seem to favor the nonlinear components of the signal.

The reverberation noise in the low echogene region from 30 to 35 mm is
highest for the nonlinear signal estimator. The second hypothesis can therefore
not be confirmed by this result. Better reverberation suppression is achieved by
the conventional x̂0 estimator which give a reverberation strength in the same re-
gion at almost 20 dB lower. The third and last hypothesis is studied in the same
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way as the first hypothesis. The strongest components of the linear signal x̂l is the
scattering of the linear scatters. The scatterer at 15 mm is strongest followed by
the linear scatterer at 5 mm with 10 dB lower signal strength.

As an additional note, the conventional estimator x̂0 yields around the same
signal strength for both the linear and nonlinear strong first order scatterings.

2.15.2 Reverberation suppression
It is difficult to draw any general conclusion from the reverberation peaks in Table 2.3.
The conventional method is better on 6 of the reverberations peaks, the nonlinear
scatterer estimator best in 3 cases, and the linear estimation in none. Although
the conventional estimator shows better suppression in the low echogene area the
results for the strong peaks vary too much for the present author to dare a conclu-
sion. One interesting point, however, can be made from the theory of the rever-
beration suppression. According to paper B it is better to use signals of opposite
polarity in reverberation suppression as these have the more similar speckle in the
reverberations compared to correction with the zero-polarity signal and a non-zero
polarity signal (Sec. B.3). Then with the nonlinear signal estimation also utilizing
the zero-polarity signal the reverberation contribution from this signal will be hard
to suppress. This can be an explanation for the elevated reverberation noise floor
in the low echogene area from 30 to 35 mm. One would, however, also expect bet-
ter suppression of the strong reverberation peaks compared to the nonlinear signal
estimator at all depths which is not the case.

2.15.3 Conclusion
The estimation scheme for nonlinear scatterers does favor signals from nonlinear
scatterers in a simulated medium. Reverberation suppression is lower than the
conventional method and the author therefore proposes that future work should be
done on creating a better estimation scheme. Theoretical reverberation models as
presented in paper B give a theoretical backing for the breakdown of the rever-
beration suppression. The author further proposes study with varying nonlinear
scatterer strengths to evaluate the sensitivity of the estimation scheme. It is, how-
ever, the author’s opinion that these initial findings are promising for nonlinear
scattering estimation from dual band signals.
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Chapter 3

Conclusion

3.1 Summary of the work
The work in this thesis builds upon earlier work within the SURF research group.
Especially the work by, Jochen Rau, Sven Peter Näsholm, Rune Hansen, Halvard
Høilund-Kaupang, and Bjørn Angelsen. Special focus is on the work by Rau[1]
which most recently got his PhD from the work within the same general topic as
this thesis. The goal in this thesis was to gain a deeper understanding of the be-
havior of reverberation noise and utilize this knowledge to improve reverberation
suppression under dual band imaging. A continuation of the theory is included in
paper A while extensions on reverberation suppression through improved estima-
tion is included in paper B. The signal model was also extended to take nonlinear
scatterers into account, as first proposed by Hansen et al. [2]

The work on the theory behind reverberation in DBI showed that the statistics
of the contributing scatterers in a reverberation pulse is important for the possible
suppression. Where many scatterers combine to give reverberations at the same
depth the variance in the different components makes it difficult to correct for the
sum of them. Call this speckle differences. Various factors were determined to
affect this result. The presence of nonlinear attenuation for instance, was found
to give a scatterer dependent reverberation delay. A larger effect is the tissue de-
pendent gradient of the first order NPD as determined by changing nonlinearity
parameters with depth. To combat these effects an adaptive reverberation NPD
estimation technique was developed.

3.2 Concluding remarks
The main results of this thesis are the extended theory around reverberation noise
in dual band imaging as well as a new estimator for the nonlinear propagation
delay of the reverberation noise. This work is included in two papers with ad-
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ditional discussions moved to an additional chapter. A chapter with discussions
around estimation of the first order NPD is also included and contains a method to
keep the estimation robust without requiring user input. The signal model was ex-
tended to include nonlinear scatterers and an estimation scheme was developed to
extract the nonlinear signal components while trying to at the same time suppress
reverberation noise.

3.3 Overview of publications
The listed papers are part of this thesis. The presentations and posters represent
work done while writing the thesis, but are not submitted as being part of the thesis.
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sound imaging”, undergoing second stage of review by IEEE Transactions
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2. Ole Martin Brende and Bjørn Angelsen, “Adaptive reverberation noise
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ging”, published by the Journal of the Acoustical Society of America, 25.
November 2015. http://dx.doi.org/10.1121/1.4935555

Presentations
1. Bjørn Angelsen and Ole Martin Brende, “SURF Ultrasound Imaging: A
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June, 2013.
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The paper presents a study of suppression of third order planar reverberations.
The underlying method is delay corrected subtraction of two signals generated with
transmit of a dual band pulse-complex. The lower frequency wave is changed between
transmissions of multiple pulse-complexes. This has a different effect on the first
order- and reverberation components of the total signal, and leads to the possible
extraction of the first order signal. Damaging effects to the reverberation suppres-
sion studied here include: nonlinear self-distortion; distortion of the reverberation
components by the low-frequency wave; the statistics of the scatterers; heterogeneity
of the medium with depth; and error in the delay used for delay corrected subtrac-
tion. The main result of the theoretical and simulations based study is that increased
material heterogeneity creating larger statistical variance of the reverberation noise
is the most damaging effect to the presented reverberation suppression scheme. The
next limiting factor is the distortion of the high-frequency imaging pulse created by
the low-frequency wave. This effect is reduced by reducing the frequency of the low-
frequency wave compared the pulse length of the high-frequency pulse.
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Nomenclature

βn Nonlinearity parameter.
DBI Dual Band Imaging.
DCS Delay Corrected Subtraction.
HF High Frequency (pulse).
κ Compressibility.
Lip(ω)∗ Reverberation filter.
LF Low Frequency (wave).
Nip(ω)∗, nip(t)∗ Reverberation signal.
ND, L̃ip(ω)∗ Noise Distortion (reverberations).
NPD Nonlinear Propagation Delay.
NSD Nonlinear Self Distortion.
p LF-wave configuration (polarity).
PFD, Ṽip(ω)∗ Pulse Form Distortion.
SRR Signal to Rev. noise Ratio.
τnp
∗, τxp∗ Rev. and first order NPD.

Vip(ω)∗ First order filter.
Xip(ω)∗, xip(t)∗ First order signal.
Yip(ω)∗, yip(t)∗ Total signal.

∗p indicating the polarity of the LF wave and i indicating an interval.
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Introduction

A.1 Introduction

ANY received ultrasound signal can be divided into three parts: 1) linear first
order scattering; 2) nonlinear first order scattering, eg. from microbubbles;

and 3) multiple scattering, or reverberation-, noise. The linear first order part of
the signal can be directly related to structural features of the medium under study.
The reverberations are considered noise as their relation to the tissue is more com-
plex and not converted correctly to anatomical structures through the time of flight
estimation of depth, z, used by the scanner, z = c0t/2, where t is time of flight,
and c0 is the speed of sound. The goal should therefore be to extract the first order
signal and suppress the reverberation noise. The nonlinear first order scattering
signal component is not considered in this paper.

In dual band imaging (DBI) the conventional high-frequency imaging pulse
(HF) is modified through nonlinear propagation effects by a co-propagating low-
frequency wave (LF). The LF wave is called as such, and not as a pulse, as it has
a longer temporal duration than the imaging pulse. The HF and LF combination
is called a pulse-complex. By comparing different received imaging pulses trans-
mitted with different underlaying LF manipulation waves it has been observed that
the reverberation noise behaves differently than the first order signal (which will
become evident in this paper). This information is used to extract the first order
signal. This procedure, with reverberation processing under dual band transmits,
is commonly called SURF (Second order UltRasound Field) imaging[1, 2]. In this
paper the limitations of SURF imaging is discussed when a method called delay
corrected subtraction (DCS) is utilized to remove the reverberation noise. Focus is
on how nonlinear propagation of the pulses and varying tissue properties is dam-
aging to the reverberation suppression scheme.

Reverberation noise is here limited to maximum three scattering events. As
the pulse amplitude drops significantly after each scattering this turns the focus
of this study to the most dominant reverberation noise. The authors’ research has
been most geared toward the carotid artery where the tissue is most dominantly
layered orthogonal to the beam direction. This has prompted the study of how
reverberations of such layers damage the contrast resolution in the image. This
thus ignores second order reverberations as scattering of orthogonal planes create
a complete reversal of the beam direction which means that second order reverber-
ations does not return to the transducer. Further, the scattering off of the transducer
surface is considered significantly stronger than inter-media scattering, which lim-
its the study to reverberations where the second scatterer is the transducer-body
interface.

There are other methods than those utilizing DBI that aim to reduce reverbera-
tion noise. Maybe the most widespread is the use of harmonic imaging. Harmonic
imaging was first utilized to view the nonlinear first order scattering from micro-
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bubbles. [3] However, in the 1990’s it was noticed that the imaging modality also
gave enhanced images when microbubbles were not present. [4] By looking at the
second harmonics, rather than an image created from the frequency band centered
around the transmit frequency, one now had an image of the nonlinear forward
propagation of the wave. [5] It was discovered that the received harmonics were
generated by the tissue and not transmitted by the transducer and the modality
was thus called tissue harmonic imaging. An effect of this imaging modality was
reduced reverberation noise. [6]

The paper is structured as follows. First, a general introduction to nonlinear
propagation and how this affects the first order signal as well as the reverberation
noise. Then, the method of delay corrected subtraction (DCS) for reverberation
suppression, which hinges on the presented theory, is laid out. A section follows
with theoretical discussion of how the presented theory is damaging to the rever-
beration suppression under DCS. This is the main matter of this paper. Further,
nonlinear pulse simulations are carried out to corroborate the theoretical discus-
sion. This is facilitated by creating an idealized simulation framework where the
different nonlinear effects can be isolated and studied. Results of the simulations
and theoretical work are then discussed in lieu of the model.

A.2 Initial theory
A.2.1 Nonlinear media and dual band imaging
Nonlinear propagation occurs when there is a nonlinear relation between an ap-
plied pressure and the volume compression of a small volume. [7, eq. (4)] Allow-
ing up to second order modification of this relation results in the following formula
for the modified propagation speed

c1 =
c0√

1− 2βnκpLF
≈ c0

1− βnκpLF
, (A.1)

where c0 is the non-modified linear propagation velocity, pLF is the pressure of the
pulse, κ is the material compressibility, and βn is the nonlinearity parameter.1[7],
[8, p. 12.21] The result is that the peaks of a pulse travel faster than the troughs.
The waveform is distorted as harmonic components are generated. This is called
nonlinear self-distortion (NSD). The loss of the energy in the harmonic bands when
the received pulse is bandpass filtered is called nonlinear attenuation. For the dis-
cussion in this paper this understanding of nonlinear propagation is sufficient. For
a more thorough introduction the authors can recommend other literature. See for
instance [1, 8] or [7].

1In other literature often written out as βn = 1 + B/2A. Where A and B are the first- and
second-order term of the Taylor expansion of the pressure as a function of density.

78



Initial theory

In DBI a low-frequency (LF) wave is used to modify the propagation of a
high-frequency (HF) pulse. By placing the HF pulse on the top of the LF wave the
increased pressure across the HF pulse introduces an increased propagation speed.
The opposite is the case when the polarity of the LF wave is switched (it is inver-
ted). The effect of the LF wave can be broken down into two parts. The first is the
nonlinear propagation delay (NPD) introduced by the higher propagation speed.
The second is an additional pulse form distortion (PFD) of the HF pulse caused
by variations of the LF wave across the HF pulse, and the increased nonlinear
self-distortion (NSD) due to increased overall pressure.

A.2.2 Nonlinear propagation delay
The nonlinear propagation delay (NPD) can be calculated from the increased propaga-
tion speed up to a depth z. At z the pulse-complex is scattered and the reduced
amplitude of the LF wave means that nonlinear propagation effects can be neg-
lected on the propagation back to the transducer. The NPD becomes

τxp(z) =

∫ z

0

ds

c1
−
∫ z

0

ds

c0
, (A.2)

≈ −
∫ z

0

ds

c0
βn(s)κ(s) (p · pref(s)) . (A.3)

The subscript “x” indicates that this is the delay on the first order scattered signal
as “X” later is used to denote the first order signal. The amplitude of the LF wave
is defined through a reference pressure, pref , and a unitless amplitude and polarity
parameter p, such that pLF = p · pref . The parameter p is henceforth referred to as
the polarity of the pulse-complex (HF and LF combined), as it in this paper only
takes the values, p ∈ {+1, 0,−1}.

This delay is referred to as the first order NPD, or the first order delay, and it
has some interesting properties. Note that as long as the reference pressure does
not change sign the sign of the integrand is also unchanged and the NPD is mono-
tonically increasing or decreasing with depth. The shape of the NPD with depth
becomes important later in the paper. A linear gradient of the first order NPD,
referred to later as linear NPD, means that the value of the integrand is constant
throughout the area of interest. In general, by varying the material parameters βn
or κ, the shape of the NPD becomes nonlinear with depth. In other words when the
tissue is composed of different materials the gradient of the NPD varies. In Sec-
tion A.3.4 it is discussed why this change in gradient is destructive to reverberation
suppression through DCS. Note that the word nonlinear in nonlinear propagation
delay refers to the nonlinear propagation, and not to the shape of the delay when
plotted against depth (or time).

The propagation delay is only due to the amplitude of the manipulating LF
wave at the center of the HF pulse. After the first scattering event, the drop in the
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0 t

z

z1

z3

z1 + z3

CIb

CIa

X X (p = 0)

τxp(z1 + z3)

Figure A.1: Third order reverberation classification scheme with the transducer as a
second reflector. Thinner lines have more nonlinear propagation. Dotted line is refer-
ence first order signal where there is no LF wave. First order propagation is marked by an
X. Modifying LF wave gives a higher propagation velocity up to the first scattering event,
highly exaggerated here.

LF amplitude will make the wave propagate with the non-modified propagation
speed c0. By looking at the accumulated time delay (NPD) between the received
signals with and without a modifying LF wave, it is therefore possible, when know-
ing the nonlinearity parameters of the medium, to know how long the dual band
pulse propagated before it was scattered first. In other words, when c0, c1 and τxp
is known one can solve (A.2) for z. For the first order signal (without transmission
of an LF wave) this information is also given by the time of flight of the pulse,
t(z) = 2z/c0.

Reverberation noise is generated by multiple scattering of the transmitted pulse.
The time of flight of this noise is determined by the total propagation path, while
the NPD is determined by the depth of the first scatterer. For the reverberation
component of the total signal there is therefore a discrepancy between the time
of flight and the NPD. This can be used to isolate the reverberation component
from the total signal through delay corrected subtraction. The reverberation com-
ponents are delayed with the estimated NPD of the reverberation components and
then subtracted away. This is explained in detail in Section A.2.5.
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A.2.3 Nonlinear distortion effects
The pulse form distortion (PFD) of the received signal does not seem to follow a
simple mathematical expression as is the case with the NPD. However, it can be
related to the change in the HF pulse with a co-propagating LF wave compared
to a pure HF transmit with no co-propagating LF wave. With the bandwidth of
the HF sufficiently high and the separation in frequency between the HF and LF
large enough, the sum and difference spectra of the HF and LF generated due to
nonlinear propagation will overlap. This makes it possible to model the effect of
the modifying LF wave by a filter. Let Xip(ω) be the Fourier transform of an
interval, with a certain length given the label i, of the received first order linear
signal with the LF configuration determined by the parameter p. The relation to
the frequency spectrum of a pure HF transmit (p = 0) of the same area is given
through the filter Vip(ω) with ω as the temporal angular frequency,

Xip(ω) = Vip(ω)Xi0(ω). (A.4)

This filter also contains the NPD. Extracting this delay and the remainder is the
PFD,

Vip(ω) = e−iωτxip Ṽip(ω). (A.5)

Here the NPD (τxip) is assumed constant in the interval i.

A.2.4 Reverberation model
In a similar way to first order scattering, a modifying LF wave also introduces
changes to the reverberation signal. A main difference between first order and
reverberation signals is that there can be many different components of the re-
verberation signal giving signal at a certain perceived depth. To better be able to
discuss reverberation noise a classification scheme for the possible reverberation
components needs to be introduced.

As mentioned in the introduction, this paper handles third order reverberations
where the scatterers are planes and the transducer is the second scatterer. It has
been shown that scatterers of this type (or any third order reverberation) always
appear in pairs. [9, Paper D],[10, Paper D] Here, the two components of such
a reverberation pair is denoted Class Ia and Ib. The “I” indicates that the second
scatterer is the transducer while the “a” and “b” distinguishes between two possible
propagation paths. Considering a scatterer at z1 and one at z3, two possible third
order reverberation propagation paths are possible (see Fig. A.1): 1) propagation
to z1, back to the transducer, out to z3, and back to the transducer again. This is
Class Ia (or CIa); and 2) the opposite direction, Class Ib (or CIb).
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Considering transmit of only a HF pulse the time of flight of the reverberation
pairs need to follow

2(z1 + z3)

c0
=

2z

c0
, or (A.6)

z1 + z3 = z, (A.7)

to give reverberation noise at z as interpreted by the ultrasound imaging software.
The same equation is modified when introducing an altered propagation speed up
to the first scatterer. Class Ia and Ib reverberations now give rise to noise at slightly
different depths

z1
c1

+
z1 + 2z3

c0
= τx(z1) +

2z

c0
, CIa, (A.8)

z3
c1

+
2z1 + z3

c0
= τx(z3) +

2z

c0
, CIb. (A.9)

Note that the pulse length is not taken into consideration in this mathematical de-
scription. As the pulse has a non-zero length the signal at a specific depth z will
consists of contributions of an interval of scatterers contributing such that the res-
ulting pulse overlaps with z. This effect is studied later in this paper, but is not
important for the current discussion. The message here is that the NPD of a rever-
beration signal depends on the position of the first scattering event.

Assuming a fatty tissue
(
βnκ ≈ 3 · 10−9 Pa−1

)
[11], c0 = 1440 m/s and

pLF = 0.5 MPa in (A.3) yields a linear first order NPD (τx) of 1.04 ns/mm.
Comparatively the temporal period of the HF oscillations is THF = 1/(8 MHz) =
125 ns. For imaging up to 40 mm the NPD is then below one third of a HF pulse
oscillation. This relatively low value, coupled with a HF pulse length of 2.5 oscil-
lations used here, allows for the consideration of the NPD as an intrinsic property
of the reverberation noise at a given depth. The average reverberation delay of
Class Ia and Ib, (τx(z1) + τx(z3)) /2, can be viewed as a property of the combined
reverberation noise from that pair at z. When many reverberation pairs contribute
to noise at a certain depth the total reverberation delay at that depth is a weighted
average of the delays of all the pairs. Call this average reverberation delay τn(z).

In the same way as with the first order component, where the change in the
pulse shape due to a modifying LF wave was modeled through a filter containing
the PFD and the first order NPD, a filter containing the Noise Distortion (ND) and
reverberation NPD can be used to model the change in the reverberation compon-
ent, Ni0(ω), of the total signal.

Nip(ω) = Lip(ω)Ni0(ω), where (A.10)

Lip(ω) = e−iωτnipL̃ip(ω). (A.11)
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and where L̃ip(ω) represents the ND.
The reverberation model can be combined with the model for the first order

signal to give a total signal model for DBI. Still working in Fourier space on small
intervals, the total signal Yi0(ω) is the sum of the first order and reverberation
components at the same interval,

Yi0(ω) = Xi0(ω) +Ni0(ω). (A.12)

Equations (A.4) and (A.10) can be utilized to give the corresponding total signal
with a modifying LF wave present in the propagation,

Yip(ω) = Vip(ω)Xi0(ω) + Lip(ω)Ni0(ω). (A.13)

A.2.5 Reverberation suppression with DCS
In this section the delay corrected subtraction (DCS) method for reverberation sup-
pression is explained. As input the method takes two received signals transmitted
with a different configuration of the LF wave. Here, waves of opposite polarities
are used, p = +1 referred to as the positive polarity, and p = −1 referred to as the
negative polarity. Equation (A.13) is transformed into a set of equations,(

Yi+
Yi−

)
=

(
Vi+ Li+
Vi− Li−

)(
Xi0

Ni0

)
. (A.14)

The equation can be solved for the first order component, Xi0,

Xi0 =
Yi+L

−1
i+ − Y−L

−1
i−

Vi+L
−1
i+ − Vi−L

−1
i−
. (A.15)

The complex pulse distortions (PFD and ND) are not known and are difficult to
estimate. However, other publications have shown that the NPD of the first order
and reverberation components can be estimated. [12, 13] Assuming no PFD or
ND (Ṽip = L̃ip = 1) yields an estimate for the first order signal (using (A.5)
and (A.11)),

X̂i0 =
Yi+ exp (iωτ̂ni+)− Yi− exp (iωτ̂ni−)

exp (iω(τ̂ni+ − τ̂xi+))− exp (iω(τ̂ni− − τ̂xi−))
. (A.16)

The result can be transformed to the time domain by assuming a single frequency
pulse at ωc and ignoring the phase change introduced by the gain factor in the
denominator,

x̂0 =
y+(t+ τ̂n+)− y−(t+ τ̂n−)

2 sin
{
ωc

(
(τ̂n+ − τ̂x+)− (τ̂n− − τ̂x−)

)
/2
} . (A.17)
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(a) n+(t) and n−(t)

t− tz

tz = 2z/c0

τx+(z1)τx+(z3) τx−(z1) τx−(z3)

CIa+
CIb+

CIa−
CIb−

τn+(z) τn−(z)

(b) n+ (t− τn+(z))− n− (t− τn−(z))

t− tz

tz = 2z/c0

CIa+
CIb+

CIa−
CIb−

Figure A.2: Delay corrected subtraction (DCS) reverberation suppression method. (a)
The reverberation noise for two pulse-complex transmits: a positive low-frequency peak
(black) and negative low-frequency peak (white). (b) Alignment in time and subtraction
of the reverberation components. The Class Ib reverberation from one polarity cancels
out the Class Ia from the other. Note, however, that the Class Ib reverberation is lower
in magnitude due to more nonlinear attenuation caused by loss of energy up to harmonic
bands due to nonlinear propagation.

This delay corrected subtraction method works under the assumption that the
only difference between the reverberation components of signals transmitted with
different LF polarities is a time delay. The total signals are shifted in time such
that the reverberation components are overlapped and then subtracted. This re-
moves the reverberation noise but introduces a gain on the first order components.
This gain is corrected for by the denominator in (A.17). See Fig. A.2 for a visual
explanation on how the reverberation noise is suppressed with DCS.

As seen in Fig. A.2, the method requires that the Class Ia reverberation of
one pulse-complex transmit is equal to the Class Ib reverberation component of
another. And vice versa. This is a softer requirement than a pure delay difference
between the reverberation signals, as a pure delay difference would exclude also
speckle differences. As pulse form distortion and nonlinear propagation delays are
inherently dependent on the position of the first scatterer, as discussed previously,
this could make CIa and CIb different. Such effects are discussed in depth in
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Section A.3.

A.2.6 Limitations on band separation

To minimize the PFD which is due to variations of the LF wave across the HF pulse
(Section A.2.3), one needs to either: 1) lower the LF frequency; or 2) lower the
length of the HF pulse. With the relation between bandwidth, B, and pulse length,
Tp, given by B = 2π/Tp, and the relation between period, T , and frequency,
ω/2π, given by T = 2π/ω, it is possible to write a constraint on the bandwidth
of the HF based on the frequency of the LF given that the pulse length of the HF,
Tp,HF, should be much smaller than the period of the LF, TLF,

TLF � Tp,HF, giving (A.18)

ωLF � BHF. (A.19)

The lower limit for the LF band is determined by the transducer hardware.
When the goal is to have a uniform LF field as observed by the HF, one wants to
minimize the effect of focusing. The HF pulse therefore needs to be in the near-
field of the LF wave over the whole region of interest. The near-field region is
limited by D2

/
2λ in each dimension. [14, pp. 1.10-1.11] Here D is the width

of the transducer aperture. Increasing the LF wavelength thus results in the need
for a higher LF aperture. In previous work a factor of ≈1:10 between HF and LF
wavelengths has been used in DBI. This relation is also used here where the HF is
at 8 MHz and the LF is at 0.78 MHz.

A.2.7 Tissue harmonic imaging

Tissue harmonic imaging (or simply harmonic imaging) is an alternate method for
reducing reverberation noise in an image. A brief introduction is given here to get
an overview of the method SURF imaging can be seen to compete with.

Tissue harmonic imaging utilizes the generation of second order harmonic
components in the forward propagating signal. [5] If reverberation noise is said
to originate from scatterers at much shallower depths than the imaging region of
interest, then the first order component of the total signal should have a higher
second order harmonic signal strength than the reverberation component. By ima-
ging the second order harmonic, this would increase the signal to reverberation
noise ratio (SRR). However, as is discussed in Section A.2.4, reverberation noise
always act in pairs. And the statement about tissue harmonic imaging presented
here only holds for one of the components in such a pair. The reverberation com-
ponent scattered at shallow depths first, Class Ia. SURF imaging suppresses both
components equally.
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A.3 Destructive effects to DCS suppression
As explained above, the delay corrected subtraction method works by subtracting
equal reverberation noise of two signals from each other. The reverberation noise is
made equal by correcting for a difference in propagation delay in two signals. The
first order and “true” signal components have another propagation delay difference
and are thus kept in the subtraction. If the reverberation noise components are
unequal after delay correction, the reverberation suppression is reduced.

As shown in Section A.2.4 the reverberation signal can be divided into a Class Ia
and Ib. Further, Fig. A.2 illustrates that Class Ia from one signal is subtracted
away by the Class Ib of the other signal and vice versa. Keeping this in mind the
destructive effects to DCS suppression are here divided in to three parts.

1. Effects that make CIa and CIb unequal between two signals, described in
Sections A.3.1 and A.3.2.

2. Effects that make the alignment of CIa of one signal and CIb of another dif-
ficult, described in Sections A.3.3 to A.3.5.

3. Delay estimation errors, described in Section A.3.6.

A.3.1 Nonlinear self-distortion (NSD) and nonlinear attenuation
As mentioned in Section A.2 nonlinear propagation up to the first scatterer is re-
sponsible for a scatterer specific propagation delay. Another effect of nonlinear
propagation is nonlinear self-distortion of the imaging pulse. As the pulse propag-
ates nonlinearly, energy from the main frequency band is moved up into harmonic
bands and the pulse is distorted. Upon receive, the pulse-complex is bandpass
filtered to remove the LF wave and the harmonic components. This means that the
energy moved to the harmonic bands is lost. Call this loss nonlinear attenuation.
As noted earlier the amplitude of the pulse-complex is reduced so much after scat-
tering that further nonlinear propagation can be neglected. This means that the
loss of energy up to harmonic bands is dependent on the depth of the first scatterer.
Following this logic it means that the Class Ia reverberation component has less
nonlinear attenuation than the Class Ib component as CIb has a longer propaga-
tion path up to the first scatterer. This difference in CIa and CIb is damaging for
the delay corrected subtraction method as described in Section A.2.5 where it was
noted that CIa of one pulse-complex transmit is subtracted by CIb of another (see
Fig. A.2).
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A.3.2 Pulse form distortion (PFD)

Pulse form distortion or PFD, as mentioned briefly in Section A.2, is the modific-
ation of the HF pulse form by the LF wave. Since the modifying LF waves are
different for transmits of different polarities, the effects of PFD on the transmitted
HF pulses will also be different. Transmitting a HF on top of an LF peak (p = 1,
plus polarity) gives the center of the HF pulse higher propagation velocity than
its edges. Placing the HF on the trough of an LF wave (p = −1, minus polarity)
yields higher propagation speeds at the ends of the HF pulse compared to at its
center.

Different PFD between different HF/LF pulse-complex configurations (polarit-
ies) leads to sub par correction in DCS as the goal is to subtract equal reverberation
components from each other. The only correction done in DCS is adjusting for the
difference in delay between different polarity signals.

A solution is to lower the LF frequency which would keep the induced propaga-
tion delay introduced by the amplitude, but minimize the effect of PFD (see Sec-
tion A.2.6).

One consideration not taken into account here is the phase shift of the LF wave
as it propagates to its focus. [8, pp. 12.99-100] This phase change alters the po-
sition of the HF on the LF. The HF also has a phase shift but this is negligible
compared to that of the LF as the LF has a much lower frequency giving a big-
ger temporal effect of the same phase shift. Note how equal temporal shits of LF
waves of opposite polarities would move the co-propagating HF pulses in the same
direction on the LF waves. But since the sign of the underlying LF waves is dif-
ferent the introduced gradient of the LF pressure over the HF pulses would be of
opposite sign. The phase shift of the LF therefore introduces different PFD of HF
pulses in different polarity pulse-complexes. One polarity transmit would result in
a stretching of the HF pulse as effect of the LF pressure gradient over the HF pulse.
This would move the HF band down in frequency. For the opposite LF polarity
the HF pulse would experience a contraction resulting in moving the HF band up
in frequency. The increased frequency would result in a higher absorption of this
transmitted pulse-complex as absorption in tissue increases with frequency. [15]

It seems reasonable to the authors that it is possible to minimize the PFD by
finding an optimum position of the HF on the LF at the start of the transmit such as
to keep it on top of the LF up to the depth of interest. The authors would suggest
this as a future study. Here, the HF pulse is positioned directly on top of the LF at
transmit.

A.3.3 Propagation delay differences between polarities

The theory behind DCS as explained in Section A.2.5 assumes that the only dif-
ference between reverberation noise for different polarities at a given depth is a
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nonlinear propagation delay, τnp. In reality, as illustrated in Fig. A.2 there is not
one reverberation noise component with one varying delay for each polarity. The
correction delay applied in DCS is a mean between Class Ia and Ib components.
In addition there are multiple Class Ia and Ib pairs around a single depth which
may have different mean delays. As illustrated in Fig. A.2, the correction is pos-
sible by subtracting the mean delay between corresponding reverberation pairs at
different polarities and subtracting them from one another. It is assumed that all
reverberation pairs at a given depth have the same mean delay. This may not be
the case as is discussed further in Section A.3.4. It is not directly assumed that the
mean reverberation delay is equal in magnitude for signals of opposite polarities,
τn+ 6= −τn−, but it is assumed that the distance between Class Ia and Ib rever-
beration pairs are equal. If this distance is unequal it is not possible to align the
reverberation pairs on top of each other as in (b) in Fig. A.2 and optimal correction
is not possible.

Demanding that the distance between CIa and CIb is constant between polar-
ities (ignoring different strengths of CIa and CIb) yields

τn+(z − z1)− τn+(z1) =

−
(
τn−(z − z1)− τn−(z1)

)
∀z > 0.

(A.20)

This can be rewritten to the definition of the derivative around z/2 with step-size
∆z = (z − 2z1)/2,

τn+(z/2 + ∆z)− τn+(z/2−∆z) =

−
(
τn−(z/2 + ∆z)− τn−(z/2−∆z)

)
∀z > 0.

(A.21)

This shows that the mean gradient of the first order NPD from z1 to z3 = z −
z1 needs to have opposite sign between opposite polarities. If this relation is to
hold for all z the mean gradient needs to be equal for all depths. In addition
demanding τn+(0) = τn−(0) = 0 then results in τn+(z) = −τn−(z). It has not
been assumed that ∆z can take any value, meaning that the equation should hold
for any scattering combination. The equation only needs to hold when comparing
different polarity signals of the same underlying scatterers. If the equation is to
hold for any z1 (or ∆z) the result would be a reverberation delay independent of
the position of the scatterers. Equation (A.21) leads to τn+ and τn− being point
symmetric around the corresponding function values at z/2. If this is to hold for
all depths z, the shape of τn+(z) and τn−(z) would need to be linear.

Going back to the more general case where it is demanded that dτn+/dz =
−dτn−/dz, (A.3) shows that for (A.20) to hold it is required that the observed
LF pressure peak is of equal magnitude between transmits of opposite polarity. In
other words the propagation of the positive and negative polarity LF wave needs
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to have equal, but opposite sign, pressures across the co-propagating HF pulse. If
this is not the case the DCS correction suffers. Nonlinear distortion has the effect
of making the peaks higher than the troughs which would give this effect. [8, pp.
12.99-100]

A.3.4 Scatterer statistics and scatterer dependent delay

As noted briefly in Section A.3.3 many reverberation pairs contribute to noise at a
given depth. The reverberation delay used in the DCS correction is a mean of the
delays of all the reverberation pairs. If the variance of the delay between different
pairs is small, the mean delay will give a good estimation for all pairs and the DCS
method will be able to suppress many reverberation pairs well. If the variance is
high, the delay used for correction may only be good for a small portion of the
reverberation pairs, and the error present in the other pairs will result in a poor
reverberation suppression overall in the final image.

So when is the total reverberation delay close to the same value for all reverber-
ation pairs at a given depth? Considering collections of reverberation pairs alone,
and not individual scattering cases this is synonymous to that the mean delay of
a Class Ia and Ib pair being independent of the depth of the first and third scat-
terer. τn(z; z1, z3) = (τx(z1) + τx(z3))/2→ τn(z). This is the case when the first
order propagation delay increases linearly with depth (see Section A.3.3). When
the mean delay of a reverberation pair depends heavily on the position of the scat-
terers the resulting reverberation noise at a given depth will have high variance as
typically many possible scattering pairs give noise at a certain depth.

There are multiple effects that would make the propagation delay nonlinear.
From (A.3) it is seen that with either a depth variable nonlinearity parameter βn,
or compressibility κ, of the medium the shape of the first order NPD, τx(z), is
not linear. Focusing, or de-focusing of the LF wave would also alter the pressure
observed by the HF pulse. Movement of the HF relative to the top of the LF wave
would also alter the observed pressure and generate a nonlinear-with-depth NPD.
Typically one transmits a focused HF pulse on top of an unfocused LF wave. The
focusing delays of the HF will then make the HF be positioned on different points
on the LF on the periphery as compared to at the center channel. The alteration
of the received pulse this generates is rather complex as it results in a combination
of pulses from different parts of the transducer which exhibit not only different
propagation delays but also different pulse form distortion. However, it is reason-
able to assume that it has an effect on the linearity of the first order propagation
delay. Applying a focusing lens in elevation on the probe which is typically done
in linear array transducers to get a more narrow HF focus, would also give focusing
of the LF wave.

Another effect that yields a scatterer dependent reverberation delay is nonlinear

89



Paper A – Paper A: Limitations in reverberation suppression in dual band imaging

Im

Re

R2

R1

(a) No nonlinear attenuation.

Im

Re

R2

R1

(b) With nonlinear attenuation.

Figure A.3: Effect of nonlinear attenuation on the scatterer position dependence on the
combined reverberation delay of a reverberation pair at a given depth. A single third
order scattering event is modeled by α(z1)eiωτx(z1), where α represents the nonlinear
attenuation and τx is the first order delay. Two such events combine to a pair R with a
resulting delay (phase). (a) No nonlinear attenuation and no scatterer dependence on the
delay (phase) of the combined reverberation. Two reverberation pairs R1 and R2 have the
same phase independent of the depth of the scatterers. (b) Nonlinear attenuation yields a
delay (phase) dependent on the scatterer depths which combine to the reverberation pairs
R1 and R2.

attenuation, as discussed in Section A.3.1. This is the removal of energy from the
base band up to higher harmonics during nonlinear propagation. This effect makes
Class Ib noise lower in magnitude compared to Class Ia as Class Ib has a bigger
portion of nonlinear propagation compared to Class Ia (see Fig. A.3). The mean
reverberation delay is then weighted more towards the Class Ia reverberations than
Class Ib as Class Ia is more prominent in the total signal.

In conclusion the first order propagation delay will typically not be perfectly
linear even in a homogeneous material and there will be a scatterer combination
dependence on the reverberation delay at a certain depth. This is further discussed
by the authors in another paper. [13] The scatterer dependent propagation delay
yields a variance in the reverberation delay of different pairs contributing to rever-
beration noise at a given depth. This lowers the effectiveness of the DCS suppres-
sion method as it is not possible to apply a single delay (τn) that can align up all
the CIa and CIb components as described in Fig. A.2 of Section A.2.5. This is
studied later in simulations in Section A.5.2.

A.3.5 HF pulse length
A long pulse leads to poorer depth resolution. Defining the retarded time at the
center of the pulse when doing the conversion from time of flight to depth makes
thin scatterers stretch out both above and below the actual depth. Analogous to this
is what happens to the propagation delay as a pulse-complex hits a thin scatterer
in a low echogene region. The propagation delay is related to the depth, or time

90



Destructive effects to DCS suppression

of flight, of the pulse before it hits the first scatterer. As different parts of the
same pulse hits the scatterer at different times they will result in converted signals
representing scatterers at slightly different depths, but the propagation delay will
be the same as the total path propagated by different parts of the pulse is the same.

Consider two strong scatterers closer than one HF pulse length from each other.
As they are at different depths, pulses scattered off of each of them will have
different propagation delays. As the scatterers are closer than a pulse length, the
received signals from the two will interfere. The NPD in the area between the two
scatterers will be a weighted mean of the NPDs of each of the two scatterers.

For reverberation suppression by delay corrected subtraction this becomes a
problem. The DCS algorithm needs to know the exact delay between the reverber-
ation components of the two signals used. When scatterers representing different
NPDs overlap it is difficult to apply a single delay to correct for the noise generated
by both of them. This would indicate a dependence on the HF pulse length on the
effectiveness of DCS. This is studied by simulations in Section A.5.4.

A.3.6 Error in estimated nonlinear propagation delays
The effect of an error in the estimated reverberation delay, τ̂n, can be estimated
mathematically through a simple assumption of single band pulses without distor-
tion. The DCS correction can be written (based on (A.13) and (A.15)),

X̂0 = X0
eiω(τx−τ̂n) − e−iω(τx−τ̂n)

eiω(τ̂x−τ̂n) − e−iω(τ̂x−τ̂n)

+N0
eiω(τn−τ̂n) − e−iω(τn−τ̂n)

eiω(τ̂x−τ̂n) − e−iω(τ̂x−τ̂n)
,

(A.22)

X̂0 = X0
sin (ω(τx − τ̂n))

sin (ω(τ̂x − τ̂n))

+N0
sin (ωδτn)

sin (ω(τ̂x − τ̂n))
,

(A.23)

where δτn = τn − τ̂n, is the error in the estimated reverberation noise delay, and
τn = τn− = −τn+ and the same relation for τx with the same assumption for the
estimated delays. The estimated first order NPD is written τ̂x. Calculating the SRR
increase yields

SRRincrease =
SRRafter

SRRbefore
, (A.24)

=
sin (ω(τx − τ̂n))

sin (ωδτn)
. (A.25)

Note how this result is independent of the estimation of the first order NPD. Setting
τx = 40 ns and τn = τx/2 = 20 ns, with a center frequency of 8 MHz results in the
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Figure A.4: Effect of an error in the estimated reverberation delay as applied in delay
corrected subtraction. Decibel plot of (A.25).

curve shown in Fig. A.4. A relatively small error quickly reduces the possible SRR
increase achievable through DCS. With different reverberation pairs having differ-
ent delays at the same depth, the different reverberation pairs will be suppressed
with different effectiveness given one delay. To get a best possible suppression of
the noise it is therefore necessary to not only apply a correct delay in DCS but also
that all reverberation pairs have the same delay at a certain depth.

A.4 Numerical simulation setup
Pulses are simulated through an in-house program based on Abersim. [16] The
Abersim computer package is a simulation tool for the nonlinear propagation of
forward propagating waves from arbitrary geometries. Linear and nonlinear propaga-
tion is computed separately by using an operator splitting approach. The linear
propagation is solved for by using an angular spectrum method. Nonlinearity is
accounted for through pressure dependent perturbation of the linearly propagated
field using the method of characteristics. Abersim allows for accurate and fast
nonlinear simulation of forward propagating waves and was therefore ideal for
this study.

Setup for the simulations are found in tables A.1 and A.2. The pulse-complexes
are simulated in steps of 1 mm in a three dimensional homogeneous medium and
then beamformed. To generate an rf-signal from the simulated pulses, the pulses
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Table A.1: Simulation parameters

Parameter Value Unit
Samples in azimuth 64 -
Samples in elevation 64 -
Propagation depth 40 mm
Step size depth 1 mm
Step size azimuth 0.3 mm
Step size elevation 0.3 mm
Sampling frequency 200 MHz
Non-linearity parameter, βp 2.0 · 10−9∗ Pa−1

Wave propagation speed, c0 1540 m/s

∗Varied in Fig. A.6

Table A.2: Pulse setup parameters

Parameter HF LF Unit
Transmit pressure 0.5 0.5 MPa
Center frequency 8 0.78 MHz
Focus azimuth 22 ∞ mm
Focus elevation 22 22* mm
Pulse oscillations 2.5 2.5 -
Aperture azimuth 7.3 11 mm
Aperture elevation 4.3 8 mm
Shape Gaussian Gaussian -

∗Lens focus over HF aperture.
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are first stripped of their NPD. A synthetic NPD is applied to a set of scatterers
which is then convolved with the pulses. Overlapping squared sinusoidal windows
are utilized to get a smooth transition between pulses. The procedure is equal to
one published previously[13] and is therefore only briefly described here. The dif-
ference is that here, the NPD is extracted from the pulses and applied directly on
the scatterers.

The procedure is similar for generating reverberation signals. Here the sim-
ulated pulses are dependent on the depth of the first scatterer and on the total
propagation depth. The meshing of pulses and scatterers is therefore a little more
complicated. Reverberation noise for a 2 mm interval at depth z is generated by
first convolving a 1 mm square window at z1 of the stretched scatterers (as used
for generating the first order rf-signal), with an un-streched version of the same
scatterers with a corresponding 1 mm square window around z3. The result is a
triangular window of length 2 mm around depth z = z1 + z3. This resulting rever-
beration scatterer is then convolved with a pulse simulated nonlinearly to z1 and
linearly the remaining distance z1 + 2z3. The process is repeated for all combina-
tions of z1 and z3 for all depths z and summed to get a total reverberation signal.
As the scatterers in this study are planar, a scattering is a complete mirroring of
the pulse-complex. This means that to simulate a reverberated pulse-complex, one
propagates nonlinearly up to a depth z1 and then linearly the remaining distance
2z − z1. The second and third scatterer (the transducer and another scatterer in
the tissue) is not explicitly handled in the pulse-complex simulation. Only in the
reverberation scatterer with which the received pulse-complex is later convolved.

Using a synthetic delay on the scatterers achieves two things: 1) complete
control of the NPD, allowing the investigation of this effect isolated; and 2) a
continuously developing NPD. Having the NPD on the pulses would result in areas
of constant NPD meshed together. This would not produce speckle differences
between different polarities of the LF wave. Which is of interest in this study.

To study the signal to reverberation noise ratio (SRR), the simulated pulses are
combined with 300 sets of scatterers to generate 300 scan lines. One set of scat-
terers is sampled with fs = 200 MHz up to a total depth of 40 mm. The scatterers
are random with a Gaussian distribution of strength and Poisson distribution in
distance between each other. The mean distance between scatterers are 20 samples
or 20c0/2fs = 77 µm.

A.5 Results of numerical study
The damaging effects to DCS suppression of reverberation noise is studied by how
it alters the signal to reverberation noise ratio (SRR) after processing compared
to with no processing. The DCS algorithm of (A.17) is applied to the first order
signal and reverberation component of the total signal separately meaning that the
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Figure A.5: SRR increase simulations with nonlinear self-distortion (NSD), full pulse
form distortion (PFD), and a linear simulation. A linear propagation delay is applied
synthetically and is equal for all scenarios. Vertical lines used in comparison with Fig. A.7.

SRR increase can be calculated. This procedure is identical to that presented in a
previous paper by the authors. [13]

A.5.1 Effect of NSD and PFD
Applying a linear synthetic NPD on a linear simulation and applying DCS correc-
tion yields the top curve in Fig. A.5. The result is an increase in SRR between 35
and 40 dB between 5 mm and 40 mm depth compared to the unprocessed result.
Simulating pure HF pulses nonlinearly and then applying a synthetic NPD gives
rf-signals with NSD but no PFD. The result is an equal increase in the SRR in-
crease up to around the focus at 22 mm. After this the SRR increase is around
2-3 dB less than the linear simulation without NSD.

The effect of PFD is studied by introducing an LF wave in the simulation. With
the same linear synthetic first order NPD, the SRR increase is around 30 dB and
between 5 and 10 dB lower than that of the linear simulation. The effect of the PFD
is lowered when the LF frequency is halved, where at 10 mm the effect is a 6 dB
improvement which drops linearly towards 30 mm. The near field constraint on
the LF wave mentioned in Section A.2.6 is not maintained here and might explain
the decline in SRR increase with depth.

The effect of the nonlinearity of the medium on the SRR increase is shown in
Fig. A.6. The synthetic first order NPD is kept linear and equal such that the graph
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Figure A.6: Change in SRR increase after DCS correction in simulations with varying
nonlinearity. Change is calculated relative to SRR increase in a linear simulation. The
line thus shows the movement of the PFD line in Fig. A.5 with varying nonlinearity of
the medium. SRR increase is averaged between 5 mm and 39 mm to disregard an almost
equal increase up to 5 mm and uncertainties in the model at maximum depth. Errorbars
show the standard deviation over the range used in computation of the average.

only should reflect changes in the PFD. The change in decibels increase of SRR is
plotted in % relative to the top line in Fig. A.5 representing a pure linear simulation
(βnκ = 0, Linear). This method of displaying the result minimized the variance
with depth. The result is a near linear dependence on βnκ from values ranging from
0 Pa−1 to 3·10−9 Pa−1. A rule of thumb can be extracted as a reduction of 10 %dB
per 1 · 10−9 Pa−1 increase of βnκ. For comparison typical biological values range
from (all in 10−9 Pa−1): ≈ 1.59 for blood, through≈ 1.78 for skeletal muscle and
up to≈ 3.20 for fat (based on numbers found in literature[11]). This indicates that
higher nonlinearity gives lower effect of DCS suppression of noise in dual band
imaging.

A.5.2 Shape of the delay curve

As postulated in Section A.3.4 the shape of the delay curve seems to have a large
effect on the SRR increase. See Fig. A.7, compared to Fig. A.5. In Fig. A.7, the
mean NPD is still 1 ns/mm, but it is 50 % lower between 15 and 25 mm compared
to outside this interval. The effect is a gradient steeper than 1 ns/mm from 0 to
15 mm, and from 25 to 40 mm, and a lower gradient than 1 ns/mm between 15
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Figure A.7: SRR increase simulations with nonlinear self-distortion (NSD), full pulse
form distortion (PFD), and a linear simulation. A piecewise linear propagation delay is
applied synthetically and is equal for all scenarios in the figure. The gradient of the linear
delay is reduced to 50 % between 15 and 25 mm compared to outside this region.

and 25 mm. In medical terms this would correspond to a fatty layer from 0 to
15 mm followed by blood between 15 and 25 mm, with another fatty layer down
to 40 mm. The scatterer dependent reverberation delay this generates removes
the 10 dB difference between the linear and full PFD simulation of Fig. A.5 and
drops both down to around 25 dB at 25 mm. A reduction of around 12 dB for the
linear simulation and around 6 dB for the simulations with full PFD. Note that the
simulation with full PFD already has a scatterer dependent reverberation delay as
this is introduced by the nonlinear attenuation as discussed in Section A.3.4 (see
Fig. A.3).

A.5.3 Propagation delay differences between polarities
In Section A.3.3 it was indicated that a difference in the propagation delay between
polarities also would lead to different reverberation components. This would re-
duce the effectiveness of the DCS algorithm. To isolate and study this effect,
signals based on zero polarity pulses are applied with delays and examined. First:
equal but opposite sign NPDs are applied to the plus and minus signals. The NPD
is linear and the value of the gradient is varied between 0.25 and 1 ns/mm. Second:
the NPD is fixed for the minus polarity signal at 1 ns/mm and varied between
−0.25 and −1 ns/mm for the plus polarity signal. The SRR increase through DCS

97



Paper A – Paper A: Limitations in reverberation suppression in dual band imaging

τx+(40 mm) [ns]
10 20 30 35

S
R
R

in
cr
ea
se

ch
a
n
g
e
[d
B
]

-15

-10

-5

0

|τx+| < |τx−|

|τx+| = |τx−|

Figure A.8: Change in SRR increase when altering the maximum delay of a linear
propagation delay development from 40 ns at 40 mm. Dashed line shows change when
maximum delay is changed for the plus and minus polarity signals simultaneously. The
full line shows the change in SRR increase when only the maximum delay of the plus
polarity is changed and the maximum delay of the minus polarity is kept at 40 ns. The
graph strengthens the theory laid out in Section A.3.3 and discussed in Section A.5.3.
SRR increase is averaged between 25 and 39 mm and errorbars shows the standard de-
viation within this region. Signals based on pure nonlinear HF simulation with synthetic
first order NPDs applied.

is then compared to the case when |τx+| = |τx−| = 40 ns at 40 mm (see Fig. A.8).
Fig. A.8 shows that the SRR increase is independent of the maximum of the

linear propagation delay when it is equal between polarities. Some variation with
depth is observed, but the variance between different runs of the simulations is too
high to state a dependence. When changing the maximum propagation delay of
the plus polarity there is a relatively large drop in the effectiveness of the DCS
algorithm. This result supports the discussion in Section A.3.3 that the separation
of CIa and CIb reverberation noise is increased and that this leads to a poorer result
of the DCS method.

A.5.4 Pulse length
As outlined in Section A.3.5 the temporal length of the HF pulse sets a limit on
the precision of the NPD as it varies with depth. Section A.2.6 also explains why
a longer pulse length of the HF increases PFD. Fig. A.9 shows that by reducing
the pulse length of the transmitted HF pulse from 2.5 to 1.5 oscillations gives an
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Figure A.9: Changing the pulse length of the HF from 2.5 to 1.5 yields a change shown
here in the SRR increase through DCS. Signals based on nonlinear pulse simulations with
synthetic first order delays. Whole line shows linear first order delay development while
dashed line shows the situation with a piecewise linear first order delay curve, similar to
the one used in Fig. A.7.

average increase of the SRR increase (nonlinear simulation with PFD). The gain by
lowering the pulse length is greater when the first order NPD is linear as in Fig. A.5
with an increase of 2 to 3 dB before the focus at 22 mm. After the focus the gain is
lowered to around 1 dB. For a piecewise linear first order NPD (Fig. A.7) the gain
from lowering the HF length is about the same up to 15 mm and slightly lower and
even negative around focus.

As illustrated by Fig. A.7 compared to Fig. A.5, the introduction of a piecewise
linear first order NPD reduces the difference between a linear simulation and a
simulation with full PFD. With a link between shorter HF pulse length and lower
PFD this effect is also observed in Fig. A.9. For a piecewise linear first order
NPD the reduction of PFD introduced by a shorter HF pulse is lower at the same
depths as where the linear and full PFD simulations are similar in Fig. A.7, namely
between 15 and 25 mm. Why a shorter pulse would give a lower SRR improvement
around focus is not understood by the authors.
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A.6 Further discussion
The results shown in Section A.5 gives an overview of how damaging the theoret-
ical effects presented in Section A.3 are to reverberation suppression with the DCS
algorithm. However, three topics need to be discussed explicitly: 1) The limits of
reverberation suppression when there is no nonlinear propagation effects except
for a linear delay; 2) The role of the shape of the nonlinear propagation delay
curve; and 3) A decision as to what is the largest damaging effect to reverberation
suppression. These are addressed in the subsequent sections.

A.6.1 Why does linear propagation not show infinite reverberation
suppression?

As discussed in Section A.3.5 the length of the imaging HF pulse sets not only
limitations on the spatial resolution, but also limitations on the accuracy of the
propagation delay correction that can be used. When pulses scattered of different
scatterers overlap, a mean correction delay must be used on the combined signal
(as discussed in Section A.3.5). It is worth noting that this effect is quite small
as the propagation delay does not change much over a pulse length. Assuming,
as in Section A.2.4, dτnp/dz ≈ 1 ns/mm, a center frequency of 8 MHz, and a
pulse length of 2.5 oscillations, leads to a variation of τnp over the pulse length to
1 ns/mm·1540 m/s·2.5

/
8 MHz = 0.481 ns. Reading from Fig. A.4 with an error of

0.481/2 ns the best case SRR increase is≈ 36 dB. This result can explain why not
an infinite SRR increase is observed for the linear simulation in Fig. A.5. Doing
the same calculation for a shorter pulse with 1.5 oscillations yields a maximum of
≈ 40 dB. This calculated increase corresponds to the 3-4 dB increase shown in
Fig. A.9.

A second contributor to sub-par SRR increase for a linear simulation is speckle
variations between reverberations of different polarities. A negative NPD effect-
ively moves the scatterers further apart while a positive NPD moves them closer
together. The result is different signal when convolved with the imaging pulse.

A.6.2 Gradient, value or shape of delay giving reduced suppression?
Introducing a piecewise linear shape of the NPD of the first order signal as in
Fig. A.7 compared to a fully linear delay as in Fig. A.5 shows a lower SRR im-
provement after DCS processing. As the maximum value of the delay is constant
and set to 40 ns at 40 mm, there are two possible reasons for this change in SRR
increase. Either the suppression is better with a higher gradient of the propaga-
tion delay as is the case from 15 to 25 mm in Fig. A.5, or it is the shape of the
whole curve that is important. Discussion of how reverberation components com-
bine would suggest that it is the shape of the whole curve and not the gradient at
a specific depth that is important. This is also reaffirmed by the observation that
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the SRR improvement is equal in the linear (Fig. A.5) and piecewise linear case
(Fig. A.7) up to 15 mm, where the gradient is changed in the latter case.

However, to be sure that it is the shape of the delay curve that give rise to
a lower SRR increase the case with piecewise linear delay was reexamined with
an inverse change in the delay curve. Instead of halving the gradient from 15 to
25 mm it was doubled. The plot is not included here but displays a similar trend to
what is shown in the inverse case as seen in Fig. A.7. The logical conclusion is thus
that it is the shape of the delay curve up to the imaging depth and not the gradient
at a specific depth that determines the level of reverberation suppression. Fig. A.8
also indicates that the maximum value of the delay plays no role. Note however
that this is the conclusion looking at the NPDs alone. For instance increasing the
nonlinearity of the medium, which would lead to an increase of the maximum
value of the NPDs, would also lower the SRR increase due to an increase in PFD
and NSD as shown in Fig. A.6.

To illustrate the importance of the shape of the delay curve the case of a piece-
wise linear delay as is used in Fig. A.7 can be discussed. Consider three scatterers
which all generate reverberation noise at 25 mm. Scatterers at 0 mm and 25 mm,
giving Class Ia and Ib reverberation noise.2 And one single scatterer at 12.5 mm
where CIa = CIb. Note how the scatterer at 25 mm also gives reverberations at
50 mm. This noise is not considered here. As in Fig. A.7 the mean gradient
is 1 ns/mm from 0 to 40 mm with 50 % reduction between 15 to 25 mm com-
pared to at other depths. It can be shown that this leads to a first order delay of
τx(12.5) = 14.29 ns and τx(25) = 22.86 ns. The reverberation coming from the
pair of scatterers at 0 and 25 mm gets a mean reverberation delay of τn({0, 25}) =
(τx(0) + τx(25))/2 = 11.43 ns. The pulse scattered twice of the scatterer at
12.5 mm gets a reverberation delay of τn({12.5, 12.5} = τx(12.5) = 14.29 ns.
The difference between these reverberation delays is 2.86 ns and by doing DCS
with the mean of these two reverberation delays the error is 1.43 ns for both the
pair and the single scatterer. Calculating the maximum SRR increase from (A.25)
this gives 16.54 dB. When Fig. A.7 shows a higher SRR increase than 16.54 dB at
25 mm, this indicates that there are more or other scatterers combining to reverber-
ation noise at that depth than those considered here. This example was designed
to illustrate the worst case.

A.6.3 What is the biggest effect?
When one assumes that the NPDs are relatively equal in magnitude between po-
larities (Fig. A.8), the biggest inhibitor of a high SRR increase using DCS seems
to be the effect of a nonlinear depth variation of the first order NPD as discussed in

2An observant reader could argue that this is simply a first order signal. Consider this instead as
the maximum limit for separation of the CIa and CIb reverberation components.
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Section A.6.2, and seen in Fig. A.7 compared to Fig. A.5. The scatterer dependent
reverberation delay that this introduces (Section A.3.4) creates a variance between
the delay of different reverberation pairs which makes it impossible to apply an
optimal reverberation delay (τ̂np) in the DCS method.

A.7 Conclusion
The effectiveness of the reverberation noise suppression is measured by the in-
crease in the signal to reverberation noise ratio (SRR) after processing. The ideal-
ized theoretical framework presented here shows that the increase in SRR is 10 dB
less when pulse form distortion (PFD) of the imaging pulse (HF) is present com-
pared to when it is not. This indicates that an increased suppression of reverber-
ation noise could be possible through the presented processing by methods which
lower the PFD. It was found here that lowering the frequency of the modifica-
tion pulse (LF) leads to less PFD and better reverberation reduction under delay
corrected subtraction (DCS) suppression. In a medium with large changes in the
nonlinearity with depth the destructive effects of PFD are negated by the increased
complexity of reverberation noise which also reduces reverberation suppression.
Optimizing transmitted pulses to reduce PFD therefore seems more important for
mediums with low changes in the nonlinearity with depth.
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The behavior of the propagation delays introduced in dual frequency band ul-
trasound imaging is discussed. In particular, the delay of reverberation noise com-
ponents is examined. Using a delay corrected subtraction (DCS) method it is pos-
sible to suppress the reverberation noise if the behavior of the propagation delays is
known. Here, a signal adaptive estimation for the reverberation delay is introduced
and applied through DCS to suppress reverberation noise in a numerically simulated
signal. The reverberation reduction is compared to DCS suppression using a simpler
delay estimation and shows that a signal based adaptive estimation yields a improved
suppression of reverberation noise. The study indicates that the advantage of the ad-
aptive estimation is highest when the medium has changing nonlinearity with depth.
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B.1 Introduction
Research in the field of ultrasound imaging has observed an increased focus on
nonlinear imaging over the past 25 years. Notable are the study and clinical
use of tissue harmonic imaging[1, 2], the use of nonlinear effects in ultrasound
contrast imaging using microbubbles[3–5], pulse inversion[6, 7], and amplitude
modulation[8, 9]. Another use, further studied here, is the use of a dual frequency
band pulse called dual band imaging (DBI), also known as Second order UltRa-
sound Field (SURF) imaging[10, 11], to reduce reverberation noise. A dual fre-
quency band pulse has a high frequency (∼8 MHz) pulse superimposed on a low
frequency (∼0.8 MHz) pulse. DBI has also been used in conjunction with contrast
agent imaging.[4, 12]

A received ultrasound signal can be broken down into three components, ig-
noring electrical noise. The first, and often most interesting is linear first order
scattering. This component is used to image density variations in the medium.
The second is nonlinear first order scattering, e.g. scattering from microbubbles[3].
Here the scattering strength depends nonlinearly on the pressure amplitude and
frequency.[3] For instance, imaging at the resonance frequency of a bubble gives a
stronger rf-signal back compared to imaging at other frequencies. This component
is further neglected in this study. The last is multiple scattering noise. Multiple
scatterings at shallow depths create ghost signals deeper in the medium which can
hide weak first order scattering signals. In this paper the use of DBI to suppress
multiple scattering, or reverberation, -noise is studied. The main concept behind
the suppression technique is that DBI introduces propagation delays which are dif-
ferent for the first order scattering and multiple scatterer components of the total
signal. By transmitting two pulses designed to give different propagation delays,
and knowing how these delays behave, it is possible to mathematically solve for
the first order signal. Here, a signal adaptive method to estimate the propagation
delays of the reverberation components is introduced. The method uses an estim-
ation for the reverberation noise strength to adaptively estimate the resulting delay
of the reverberation noise components. This differs from earlier work where a
fixed relation between the first order and reverberation delay was used.[13, 14]

Reverberation noise can be damaging to studies where information in low
echogene structures is required. Reverberation noise originating from strong scat-
terers at shallow depths can create image artifacts in the region of interest deeper
in the tissue. Examples include imaging of tumors or arthereosclerotic lesions
where fatty layers above the blood vessel combine with the vessel wall and create
reverberation noise in the blood vessel.

Effects of nonlinear propagation increase with propagation distance which is
utilized in harmonic imaging to reduce reverberation noise. The forward propagat-
ing pulse generates harmonic frequencies as it propagates but after the first scat-
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tering event the amplitude of the wave is reduced such that further propagation
can be considered linear. By bandpass filtering over the 2nd harmonic band of the
returned pulse it is therefore possible to suppress reverberation noise originating
from structures that scatter the pulse at shallow depths as these signals have a smal-
ler harmonic component. However, 3rd order reverberation noise always acts in
pairs.[15] Consider two scatterers; one close to the transducer, and another closer
to the imaging depth. A third order scattering combination can take two paths.
One path is to scatter off the shallow scatterer first, then the transducer, and lastly
the deep scatterer. This is denoted Class Ia (or CIa). The alternative route is the re-
verse, with scattering off the deep scatterer first, then the transducer, and lastly the
shallow scatterer. This path results in Class Ib (or CIb) noise (see Fig. B.1 from the
discussion in Sec. B.2.1). Where harmonic imaging only suppresses reverberation
noise generated by scattering of the shallow scatterer (CIa), DBI, or SURF, makes
it possible to suppress both at the same time. This theoretical advantage makes it
interesting to study DBI even if the hardware needed to transmit a dual band pulse
is more complex.

Previous work with DBI-based reverberation suppression is based on assump-
tions of equality of the reverberation noise pairs.[14] This paper tests this hypo-
thesis further backed by computer simulations. A new type of estimation of the
behavior of the reverberation components is derived based on the presented theory
and tested on simulated data to show an improvement of the Signal to Reverbera-
tion noise Ratio (SRR).

When implemented, the suggested improvements to DCS processing would al-
low for a more direct suppression of reverberation noise leading to higher contrast
resolution in B-mode ultrasound images damaged by reverberation noise. This
could potentially allow for easier medical diagnosis.

B.2 Theory
B.2.1 Dual band imaging
This section provides a short introduction to DBI, for a thorough review the au-
thors suggests earlier work.[10, 11, 13] DBI consists of adding a low frequency
(LF) manipulation pulse to a conventional high frequency (HF) imaging pulse.
By changing the amplitude or polarity of the LF pulse the propagation of the HF
pulse is altered. By placing the HF pulse on a positive swing of the LF pulse,
thus increasing the observed pressure in the tissue, the HF pulse achieves a higher
propagation velocity. A change in the polarity of the LF pulse results in a negative
pressure which in a similar way give a lower effective propagation speed. With a
varying LF pressure over the HF, the different parts of the HF pulse have different
propagation speeds and the result is a Pulse Form Distortion (PFD). A lower LF
frequency results in a slower variation in the LF pressure across the HF pulse and
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thus less PFD.
The change in effective propagation velocity has been shown to follow[11]

c ≈ c0
1− βnκpLF

≈ c0(1 + βnκpLF). (B.1)

Here c0 is the speed of sound in the medium without a modifying LF pulse, βn is
the nonlinearity parameter of the medium, κ is the compressibility, and pLF is the
mean LF pressure over the HF pulse. The change in propagation speed leads to
a Nonlinear Propagation Delay (NPD) along the propagation path of the forward
propagating pulse relative to propagation without a manipulating LF pulse,

τxp(z) = −
∫ z

0

ds

c0(s)
βn(s)κ(s)pLF(s). (B.2)

The subscript x indicates that this is a delay on the first order component. The
second subscript, p, indicates that the delay is dependent on the LF pulse. It can
be omitted for a simpler notation, as is done in the figures and tables in this paper.

Typically one transits multiple times per imaging line, keeping the HF constant
and altering the amplitude and/or polarity of the LF with each transmit. The para-
meter p is used to keep track of each of the LF amplitudes and polarities. A HF
positioned on top of a LF peak corresponds to p = +1, while changing the sign of
the LF the polarity gives p = −1. Transmitting with a pure HF pulse is equivalent
to p = 0. These three configurations are the only ones used in this study, although
it is possible to also transmit with p = ±1/2, reducing the LF amplitude by a
factor 2. The formalism is identical to defining the pressure through a reference
pressure multiplied by p, or pLF = p · prefLF. Henceforth different LF configurations
will be referred to as different polarities as the reference amplitude is considered
fixed, for instance, a zero polarity transmit corresponds to p = 0, or a pure HF
transmit.

The first order and multiple scattering noise behave differently depending on
the polarity (and amplitude) of the LF. By creating a model for the difference in the
behavior it is shown here that the first order scattering component can be extracted
from the received total signals. The result is a signal with less reverberation noise
than one generated by a pure HF transmit, as with conventional imaging.

The ratio between the LF and HF center frequencies typically vary from 1:5
to 1:20 depending on the implementation. The LF is unfocused and the HF is
focused. A lowest possible LF frequency gives less variation of the LF pressure
across the HF pulse. However, the lowest possible LF frequency is limited by the
transducer aperture and frequencies. It is ideal that the imaging region is in the
near-field region of the LF pulse to keep the LF pressure peak relatively constant.
This puts a limit on the transducer aperture as the near field region is defined as
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Table B.1: Pulse setup parameters

Parameter HF LF Unit
Transmit pressure 0.5 0.5 MPa
Center frequency 8 0.78 MHz
Focus azimuth 22 ∞ mm
Focus elevation 22 22 mm
Pulse oscillations 1.5 2.5 -
Aperture azimuth 7.3 11 mm
Aperture elevation 4.3 8 mm

z < 2a2/λ. Where the transducer width is 2a and λ is the wavelength of the
LF.[16] In this work a LF pulse at 0.78 MHz is used along a HF at 8 MHz. See
Table B.1 for a full overview of the pulse setup.

B.2.2 Signal components
Ignoring nonlinear scattering and electric noise, a received ultrasound signal can
be divided into two parts, first order scattering, x(t), and reverberation scattering,
n(t).

The total signal can be divided up in a set of depth regions with index i, and
Fourier transformed

Yip(ω) = Xip(ω) +Nip(ω). (B.3)

A received p 6= 0 first order scattering signal component can be modeled
through the p = 0 first order scattering signal through a filter Vip(ω), which
includes the changes to the signal introduced by a nonzero modifying LF wave.
Correspondingly for the reverberation components through, Lip(ω).

Yip(ω) = Vip(ω)Xi0(ω) + Lip(ω)Ni0(ω). (B.4)

The filter on the first order scattering components contains the nonlinear propaga-
tion delay (see Eq. (B.2)) due to the magnitude of the manipulation pressure, and
the pulse form distortion due to nonlinear effects and uneven manipulation pres-
sure across the HF pulse.

The NPD τxip represents a time shift between the first order components. This
time shift, or delay, is called the first order delay for short and corresponds to the
linear phase of Vip(ω),

Vip(ω) = e−iωτxip Ṽip(ω). (B.5)

Here Ṽip(ω) is the PFD filter.
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The total manipulation of the reverberation noise is a sum of all the pulse
distortions to the pulses that contribute to reverberation noise at the given depth.
Similarly to the first order scattering component, the difference between the rever-
beration noise of different polarities is modeled through a Noise Distortion (ND)
filter with a corresponding NPD. The relationship of these to Lip(ω) is similar to
the relationship of the PFD and first order delay to Vip(ω) (Eq. (B.5)).

Lip(ω) = e−iωτnipL̃ip(ω). (B.6)

Where L̃ip(ω) is the ND filter and τnip is the mean NPD of the reverberation com-
ponents that contribute to reverberation noise in interval i. In the same way that
the first order scattering signal component is delayed τxip, the reverberation com-
ponents are delayed τnip. This NPD of the reverberation signal is called the rever-
beration delay. Note how there can be many different combinations of scatterers
that generate reverberation noise at a certain depth, and it is therefore necessary to
talk about a mean reverberation delay.

The first order delay τxip and reverberation delay τnip generally vary with
depth. Neglecting the distortion of the pulses for different polarities, Vip = Lip =
1, and only looking at the delay difference, Eq. (B.3) can be rewritten to the time
domain with only a delay variance between the signal components.

yp(t) = x0 (t− τxp(t)) + n0 (t− τnp(t)) (B.7)

Here the NPDs are continuous with time instead of constant within a small interval
i. Given two received signals based on different LF pulses following the model in
Eq. (B.7), Sec. B.3 shows how the first order component x0(t) can be extracted
given estimated values for the delays, τxp(t) and τnp(t). The delays can be estim-
ated by comparing the p 6= 0 signals to a reference p = 0 signal as explained in
Sec. B.4.

B.2.3 Behaviour of the delays
By assuming that the amplitude drop at the 1st scattering is so large that the nonlin-
ear effects can be neglected and noting that the propagation delay is a cumulative
effect, the propagation delay can be directly related to the depth of the first scatter-
ing event. This assumes a monotonically increasing (or decreasing) propagation
delay which is the case if the sign on the LF pressure observed by the HF pulse is
constant throughout the propagation. This is always the case in this study.

The first order delay stems from the propagation delay at the imaging depth
while the delay from a reverberation component contributing to noise at the same
depth has the first scattering at a shallower position. Since the magnitude of the
propagation delay increases with depth, the delay of the reverberation component
will always be lower in magnitude compared to the first order component. The
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z1

z3

z1 + z3

F CIa CIb

Figure B.1: Classification of reverberation noise. The 2nd scatterer is limited to the trans-
ducer (z2 = 0) which is denoted by “I” in the notation. Dotted lines represent linear
propagation while solid lines represent nonlinear propagation.

classification scheme for reverberation components, as briefly mentioned in the
introduction, is shown in Fig. B.1. With planar scatterers at z1 and z3 the result is
reverberation noise at z = z1 + z3. The CIa component scatters of the plane at z1
first, and the CIb component scatterers of z3 first. The “I” in the notation indicates
that the second scatterer is the transducer surface as is the case for all reverberation
considered in the paper.

In a heterogeneous medium there are multiple pairs of scatterers contributing
to noise at a given depth. Since they always appear in pairs and the generated
signals can be added linearly, generality is not lost by studying such pairs of scat-
terers instead of the “a” and “b” reverberation components individually. The total
reverberation delay from the combined Class Ia and Ib reverberation pair can be
calculated through the phase of the combined signal. Assuming delta scatterers
and infinitely long pulses this results in a delay on the form

τnp(z;z1, ωc)

=
−1

ωc
∠
(
Qe−iωcτxp(z1) + e−iωcτxp(z−z1)

)
. (B.8)

The operator ∠{·} extracts the phase of the complex number. The factor Q allows
for effects such as unequal transmit and receive beams, and non-linear attenuation
that make the amplitudes of the reverberation components different. Assuming
equal transmit and receive beams and only considering plane scatterers, as is done
throughout this paper, and for now assuming no nonlinear attenuation a simple
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delay estimation can be calculated by setting Q = 1,

τnp(z; z1, ωc) =
−1

ωc
∠

{
e
−iωc

τxp(z1) + τxp(z − z1)
2

· 2 cos

(
ωc
τxp(z1)− τxp(z − z1)

2

)}

=
τxp(z1) + τxp(z − z1)

2
. (B.9)

With a linear delay, τxp ∝ z, the noise delay becomes τnp(z) = τxp((z1+z3)/2) =
τxp(z/2). Independent of the position of the first and third scatterers. This result
is therefore valid for all the scatterer pairs that contribute to noise at depth z. The
difference from this result introduced by nonlinear attenuation throughQ is studied
through simulations in Sec. B.6.1.

Assuming τnp(z) = τxp(z/2) in a very non-linear medium shows not to be
ideal. With changing non-linearity through the medium the propagation delay is
also not linear which adds another error to the simple τnp(z) = τxp(z/2) estimate.
Denote this simple reverberation delay estimate τhnp, where the h indicates value at
half depth,

τhnp(z) , τxp(z/2). (B.10)

In this paper a new delay estimate is introduced which circumvents the prob-
lems with different CIa/CIb strength and non-linear first order NPD, τxp(t), in the
estimation of the reverberation delay, τnp(t).

B.3 Suppression method
The aim is to solve for the first order signal from a set of equations on the form
of Eq. (B.7). In this section the received signal from transmit of two identical HF
pulses with opposite LF polarity is studied. The parameter p takes the values ±1.
In general p could take any value and the method is valid for any combination of
two pulse complexes. However, a special case is obtained when using opposite
polarities of the LF pulses. Switching the sign of the LF pulse would according to
Eq. (B.2) also result in a switch of the sign of the propagation delay. The cosine
factor in Eq. (B.9), representing a speckle variation which is dependent on the
propagation delay, is independent of the polarity of the delay and will hence remain
unchanged after a change in sign of the LF pulse.
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Returning to Eq. (B.7) with p = ±1 a set of two equations are obtained

y+(t) = x+(t) + n+(t),

= x0(t− τx+(t)) + n0(t− τn+(t)), (B.11a)

y−(t) = x−(t) + n−(t),

= x0(t− τx−(t)) + n0(t− τn−(t)). (B.11b)

Applying an appropriate delay to each of the total signals and subtracting, the
reverberation terms can be eliminated

y+(t+τn+(t))− y−(t+ τn−(t))

= x+(t+ τn+(t))− x−(t+ τn−(t))

= x0(t− τx+(t) + τn+(t))

− x0(t− τx−(t) + τn−(t)) (B.12)

This is known as the Delay Corrected Subtraction (DCS) method.[14] The res-
ulting signal has fully suppressed noise components under the given assumptions
but a shift between the first order components. This time shift introduces a gain
factor which is more easily calculated by studying the signal in the Fourier space.
Equation (B.12) is rewritten to

Yi+(ω)e−iωτni+ − Yi−(ω)eiωτni−

= Xi0(ω)
(

eiω(τxi+−τni+) − eiω(τxi−−τni−)
)
.

Solving for the signal component, Xi0, assuming narrowband pulses and trans-
forming to the time domain only taking care of the modulus for the gain factor,
results in an estimated first order signal

x̂0(t) =
y+(t+ τn+(t))− y−(t+ τn−(t))∣∣eiωc(τx+(t)−τn+(t)) − eiωc(τx−(t)−τn−(t))

∣∣ . (B.13)

This correction can also be used where one of the transmitted pulses is a pure HF
pulse by setting the first order and reverberation delay of the received p = 0 signal
to zero.

Note again that the phase of the gain factor is excluded in the calculation.
However, as it can be calculated this phase change poses no trouble for imaging
modalities such as tissue elastography where phase information of the signal is
required.
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B.4 Delay estimation
To be able to use the DCS method outlined above, one needs to estimate the delays
of the different components in the signal. The main scope of this paper is on
acquiring well suited delays for this purpose. The focus is mainly on acquiring a
good estimate of the reverberation delay, τnp.

Outside of computer simulations one cannot distinguish between the first order
and reverberation components of the total signal. There is no direct access to the
first order delay τxp, or the reverberation delay, τnp. What can be estimated is the
total delay between the received total signals generated with different polarities
of the LF pulse. Knowing how this total delay behaves it is possible to make an
estimate for the first order and reverberation delays.

The total delay τyp is found through an instantaneous phase method described
by Standal et al.[17] In areas with strong first order signal (high SRR) this value
approaches the first order delay. In areas with much stronger noise than first or-
der signal (low SRR), this total delay approaches the delay of the reverberation
components.[13] In practice there is always a mix between reverberation noise and
first order signal, and a total delay between the first order delay and reverberation
delay, |τnp| < |τyp| < |τxp|.

B.4.1 First order delay estimation
As the first order delay is always higher in magnitude than the reverberation delay,
the first order delay can be estimated by looking at the maximum values of the
total delay. Picking out the maximum values that show monotonic increase and in-
terpolating linearly between these peaks, then gives an estimated curve for τxp(t).
A more robust estimation can be done by only selecting monotonically increasing
peaks that minimize the gradient of τxp. This creates a shortest-path curve around
the peaks of τyp and avoids rapid fluctuations of the gradient.

Since this paper focuses on improving the estimation of the reverberation delay,
the comparison of the different correction methods below therefore assumes that
an ideal first order delay has been found. The first order delay is measured directly
from the first order signal in the simulation. However, in a real experimental setup
the true first order signal is not known. Only the total signal with noise.

B.4.2 Reverberation noise delay estimation
Earlier approaches to estimate the reverberation delay, τnp, assumed that the Class
Ia and Ib noise were equal in strength and that the propagation delay development
was linear. The result was the fixed relation from Eq. (B.10), τnp(z) = τhnp(z) ,
τxp(z/2).

The aim here is to develop a robust and adaptive estimation of the reverberation
delay without the assumptions of equal strengths for the Class Ia and Ib reverbera-
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tion components, and a linear propagation delay development. To model the factor
Q in Eq. (B.8) it is assumed that the only difference between CIa and CIb is due
to nonlinear attenuation. Let the nonlinear attenuation to a depth z introduce an
amplitude change αz , this yields (from Eq. (B.8))

Q(z; z1) = αz1/αz−z1 . (B.14)

With this definition a sum of all possible reverberation pairs resulting in noise at
z = z1 + z3 can be constructed as

z/2∑
z1=0

{
R(z1)R(z − z1)

(
αz1e−iωcτxp(z1)

+αz−z1e−iωcτxp(z−z1)
)}

.

(B.15)

Here, R(z) is defined as the scatterer strength at depth z. The strength of a rever-
beration signal originating from scatterers at z1 and z−z1 is thusR(z1)R(z−z1).
Note that Eq. (B.15) does not correspond to the reverberation signal, but rather
the strength and phase of the reverberation noise at a certain depth. An additional
factor, describing the scatterer strength off the transducer could also be included.
However, as only reverberation scattered off the transducer is studied here, and the
factor is equal for all these components, it is omitted from the model as it would
be canceled out in the SRR calculation. Equation (B.15) is used as a basis for an
adaptive delay estimation by estimating the scattering strengths, R(z), through the
envelope of the received unprocessed signal, R̂(z) = env {y0(2z/c)}. This estim-
ation is based on both the first order signal and any reverberation noise. This might
lead to an error in the estimation of the delay, discussed further in Sec. B.8.4.

Some scatterer combinations would create stronger reverberation noise than
others. The contribution from these to the phase would therefore be of more
importance than from diffuse weak scatterers. To highlight the stronger scatter-
ers a parameter γ is introduced as a power for the estimated scatterer strength,
R̂ → R̂γ . As the interest lies only in the linear phase of the reverberation estim-
ation (Eq. (B.15)), and not the absolute magnitude, this introduction of this para-
meter poses no further effects on the delay estimation save for the highlighting of
strong scatterer combinations.

Realizing that the sum in Eq. (B.15) can be written as an integral, and changing
the limits such that the integral sums Class Ia and Ib independently, an estimation
model for the reverberation delay is achieved, call this τRR

np

τRR
np (z;α, ωc, γ)

,
−1

ωc
∠
∫ z

0
dz1 R

γ(z1)α
z1e−iωcτxp(z1)Rγ(z − z1). (B.16)

115



Paper B – Paper B: Reverberation suppression in dual band imaging

B.5 Simulation method
What makes the simulation used in this paper different from a full simulation is
the separation of the pulse simulations and the scattering medium. The result is
that computation heavy pulse simulations can be reused with different scattering
sets and a faster computation time for a total problem is achieved. This is possible
by considering a homogeneous medium with planar scatterers. The readers only
interested in the main topic of this paper, the suppression results with an adapt-
ive reverberation delay estimation, can skip directly to Sec. B.6 without lacking
understanding when the results are discussed.

B.5.1 Simulation setup
The main assumption in this work is that the pulse amplitude drops so much after
the first scattering event that the propagation further can be considered linear. To
generate a first order received pulse from depth z, the simulation is nonlinear up to
z and linear back to the transducer. The scatterers are assumed to be planes. To get
the full signal, pulses were simulated in this manner for each whole millimeter up
to a total depth of 40 mm. The reverberation components are simulated in a similar
way, but the total propagation length is extended. As the scatterers were planar, a
scattering would correspond to a mirroring of the pulse. By simulating pulses up
to twice the maximum imaging depth of 40 mm with varying depth of nonlinear
propagation both the first order and reverberation pulses could be calculated.

B.5.2 Incorporation of simulations in mathematical model
A set of simulated pulses are merged with a set of scatterers defined in R(z) =
R̃(2z/c0) = R̃(t). In the frequency domain the final signal from a given depth is
the Fourier transform of the scatterers multiplied by an imaging function, or point
spread function.[16] The imaging function in this ultrasound system is the focused
and beamformed pulses. The signal xi(t) at a given depth is then the convolution
of the pulses and the scatterers at the same depth

xi(t) =

∫
dξ ui(ξ, zi)R̃(t− ξ). (B.17)

The signal is only valid for the depth at which the pulse is simulated. To generate
the total signal the computation in Eq. (B.17) must be done for each of the first
order simulated pulses and merged. Each result, xi(t), is windowed by a square
sinusoidal function centered around the valid depth, zi, with width 2 mm. The
results are then summed to generate the total signal.

Reverberation noise

Scatterers at z1 and z−z1 combine to give a reverberation signal at z, see Fig. B.1.
By combining all possible scattering combinations a pseudo scatterer can be cal-
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culated

RR(z) =

∫ z

0
dz1 R(z1)R(z − z1), (B.18)

= R(z)⊗R(z). (B.19)

For a linear simulation the reverberation signal would be the imaging pulse at z
convolved with this combined pseudo scatterer. However, since the pulses are
simulated linearly after the first scattering event (Born approximation), the rever-
beration pulses are dependent not only on the total propagation path, but also on
this first scatterer position. When creating the final rf-signal care has to be taken to
apply the simulated pulse with the correct scatterers corresponding to not only the
total propagation path, but also on the position of the first scatterer. A simulated
pulse with first scattering at z̃1 and second scattering at z̃3, written u(t, z̃1, z̃3),
should only interact with the combined scatterers based on R(z̃1) and R(z̃3). This
is solved by applying a square window on R(z) with width of one simulation step
around z̃ and writing this as Rw(z; z̃). The rf-signal based on a simulated pulse
u(t; z̃1, z̃3) can then be written as

n(t; z̃1, z̃3) =

∫
dξ

∫ z

0
dz1 u(ξ; z̃1, z̃3) · · ·

Rw(z1, z̃1)Rw(z − z1 − c0ξ/2; z̃3) (B.20)

The total reverberation signal is the combined signal from all components at
all depths, written

n(t) =
∑
z̃1

∑
z̃3

n(t; z̃1, z̃3). (B.21)

A factor representing the scattering strength of the transducer should also be in-
cluded, but is omitted here as it plays no role in the derivations and results de-
scribed in this paper.

B.6 Initial simulation results
The aim in this paper is to reduce the reverberation noise in the combined rf-signal.
However, as the simulation method first generates pure pulses independent of the
scatterers in the medium, it is also possible to study the propagation effects on the
pulses alone. This is done in this section, and related to the effect the pulses have
on the reverberation noise in the combined rf-signal.

B.6.1 Variance in noise delay depending on first scatterer position
Combinations of CIa and CIb noise components give a total delay. As non-linear
attenuation is different for the two components their weight will be different in
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Figure B.2: The difference in the combined delay of CIa and CIb components for rever-
beration noise at three depths, 20, 30, and 40 mm, compared to the simple assumption
of τn(z) = τx(z/2). By varying the position of the first scatterer, z1, a difference from
the delay when CIa and CIb are equal is observed. The curves are symmetrical around
z1 = z/2, but this symmetry is omitted here for a clearer figure. The pulses were simu-
lated with a constant nonlinear propagation delay gradient of 1 ns/mm. (Color online)

the resulting mean delay. The total reverberation noise delay will therefore be de-
pendent on the position of the scatterers in the noise. This is supported by Fig. B.2
where there is a difference in the order of 1 ns between the CIa and CIb combina-
tions with scattering at z1 = 1 mm and z3 = 39 mm, and the combination where
z1 = z3 = 20 mm.

Note that this is an observed effect on a linear first order propagation delay
curve. Making the first order propagation delay nonlinear would further create a
dependency on the scattering positions for the combined CIa-CIb delay.

B.6.2 Nonlinear attenuation
As mentioned in Sec. B.2.2 nonlinear attenuation makes the magnitude of a CIa
reverberation larger than for the corresponding CIb reverberation. This affects the
mean reverberation delay of this reverberation pair.

To estimate the effect of nonlinear attenuation, pulses of equal total propaga-
tion distance with varying amount of nonlinear propagation is compared. The
total energy is compared for a set range around the center frequency of the HF
(4.3 MHz – 9.6 MHz).[18] Comparing pulses with 39 mm nonlinear propagation
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to 1 mm nonlinear propagation a relative drop of Q ≈ 3.2 dB is found for the
positive polarity and Q ≈ 1.8 dB for the negative polarity pulses. Without any
modifying LF pulse the drop is Q ≈ 2.6 dB.

This result is inserted into Eq. (B.8) to calculate the resulting reverberation
delay estimate. Assuming a constant first order propagation delay gradient of
1 ns/mm and measuring a center frequency shifted from 8 Mhz to 6.25 MHz at
40 mm the reverberation delay differs by -2.22 ns for the positive polarity and
by -1.24 ns for the negative polarity compared to the simpler assumption that
τhnp(z = 40 mm) = 20 ns. This result fits within 0.1 ns of what is measured
directly (see Fig. B.2.)

Figure B.2 shows that a larger separation of the scatterers giving reverberation
noise at a certain depth yields a larger change in the mean nonlinear propagation
delay of the reverberations compared to the fixed-relation estimation τhnp. A high
separation between the scatterers along with a nonlinear attenuation makes the
combined reverberation delay closer to that of the CIa component and thus lower in
magnitude compared to the estimate from the fixed-relation equation (Eq. (B.10)).

B.7 Studying suppression
Since the first order and reverberation components are separated in the simulation,
it is possible to calculate the SRR before the correction. And since the DCS cor-
rection method is linear, it is also possible to apply the correction algorithm to the
first order- and reverberation signals alone and compute the SRR after correction.
This makes it possible to study the SRR increase of different delay estimation
algorithms through DCS correction.

B.7.1 Test method

The effect of the reverberation suppression methods are tested through five test
cases, or tissue models. All five cases have a set of equal underlying background
scatterers as basis. These have a Gaussian distributed amplitude and a Poisson
distributed distance between them. A total of 300 realizations of the scatterer
distributions are computed. These 300 realizations are then used as basis for each
of the five test cases resulting in 300 simulations for each test case. The mean
(and variance) of the Poisson distribution is λp = 20 samples, corresponding to a
spatial mean distance between scatterers as λpc0/2fs = 77 µm.

There are three factors that distinguish the tissue cases from each other. (1) The
introduction of a low echogenic region from 15 mm to 25 mm. Reducing the
scatterer strength of the Gaussian scatterers to 20 %. (Case III, IV and V.) (2)
Manipulation of the first order delay to be either linear, or piecewise linear with a
50 % lower gradient between 15 mm to 25 mm. Both up to a maximum delay of
±40 ns between the minus and zero, and plus and zero polarities. (Case II, IV, and
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Table B.2: Changes applied to default tissue defined in Sec. B.7.1 used for studying SRR
increase of different reverberation delay estimation methods. (Color online)

Case # Delay shape Scatterers
I Linear Homogeneous
II Piecewise linear Homogeneous
III Linear Low echogene insert
IV Piecewise linear Low echogene insert
V Piecewise linear Low echogene insert,

strong scatter lines.

V being piecewise linear.) (3) Introduction of strong scatterers equal for each run
of the test case at depths 7, 15 and 25 mm. This modification is only present in
tissue case V. See Table B.2 for an overview of the tissue models.

Note that although the scatters are different between the tissue cases, and
between different runs of each case, the same pulses are used in generating the re-
ceived signal. Simulating the pulses in a pure homogeneous medium ignores aber-
ration effects and ignores changes in the non-linearity of the propagation. Since the
propagation delay varies proportionally with the non-linearity, βnκ (Sec. B.2.1),
effects such as changes of the gradient in the first order delay curve is missed in
the homogeneous simulation. This effect is reintroduced in tissue case II, IV, and
V by manually altering the delay between the simulated pulses before the signal
is generated. In the other cases the nonlinear delay of polarities p 6= 0 is removed
and a linear delay is introduced.

The parameters for the pulse setup and simulation can be found in Table B.3.
Note the non-linearity, βnκ = 2 · 10−9Pa−1. For reference, typical values for tis-
sue range from (all in 10−9 Pa−1): ≈ 1.59 for blood, through ≈ 1.78 for skeletal
muscle and up to ≈ 3.20 for fat.[19, 20]

B.7.2 Processing and results

The plots in Figs. B.3 to B.7 show the relative increase in signal to reverberation
noise, SRR, for the DCS method outlined in Sec. B.3 using different delay es-
timations. All are based on a a posteriori direct measurement of the first order
propagation delay. As this work is on estimating the reverberation delay, which
is based on estimation of the first order delay, using a “perfect” first order delay
gives a best case scenario for the reverberation delay estimation. The SRR plots
(Figs. B.3 to B.7) show the increase in SRR for three different reverberation delays.
(1) Using a direct measured reverberation delay representing the best case scenario
with the suppression method, τynp(t). (2) The adaptive τRR

np (t) estimated delay in-
troduced in Sec. B.4.2 and (3) The fixed-relation τhnp(t) estimation from Sec. B.2.3.
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Table B.3: Simulation parameters

Parameter Value Unit
Samples in azimuth 64 -
Samples in elevation 64 -
Propagation depth 40 mm
Step size depth 1 mm
Step size azimuth 0.3 mm
Step size elevation 0.3 mm
Sampling frequency 200 MHz
Non-linearity parameter, βp 2.0 · 10−9 Pa−1

Wave propagation speed, c0 1540 m/s

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

depth [mm]

S
N
R

a
ft
er
/
S
N
R

b
ef
o
re

[d
B
]

 

 

τ
y
n

τ
RR
n

τ
h
n

Figure B.3: Case I. Increase in SRR after correction based on different delay estimates.
Linear first order propagation delay development (1 ns/mm) throughout plot. Delays used:
best case, τyn , proposed method, τRR

n , and earlier method, τhn . (Color online)
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Figure B.4: Case II. Increase in SRR after correction based on different delay estimates. A
decrease of 50 % in the gradient of the first order delay between 15 and 20 mm compared
to other depths. Delays used: best case, τyn , proposed method, τRR

n , and earlier method,
τhn . (Color online)
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Figure B.5: Case III. Increase in SRR after correction based on different delay estimates.
Linear propagation delay throughout plot. Scattering strength reduced to 20 % between 15
and 25 mm compared to case I scatterers (Fig. B.3). Delays used: best case, τyn , proposed
method, τRR

n , and earlier method, τhn . (Color online)

123



Paper B – Paper B: Reverberation suppression in dual band imaging

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

depth [mm]

S
N
R

a
ft
er
/
S
N
R

b
ef
o
re

[d
B
]

 

 

τ
y
n

τ
RR
n

τ
h
n

Figure B.6: Case IV. Increase in SRR after correction based on different delay estimates.
A decrease of 50 % in the gradient of the linear delay and reduction of scattering strength
to 20 % between 15 and 25 mm. A combination of case II (Fig. B.4) and III (Fig. B.5).
Delays used: best case, τyn , proposed method, τRR

n , and earlier method, τhn . (Color online)
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Figure B.7: Case V. Increase in SRR after correction based on different delay estimates.
Decrease of 50 % in the gradient of the linear delay and reduction of scattering strength
by 80 % between 15 and 25 mm. A combination of Case II (Fig. B.4) and III (Fig. B.5).
In addition, strong scatterers is introduced at 7, 15 and 25 mm. Delays used: best case, τyn ,
proposed method, τRR

n , and earlier method, τhn . (Color online)
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Figure B.8: Estimation of optimal nonlinear attenuation coefficient α for reverbera-
tion suppression. SRR increase (Eq. (B.22)) is compared for different values of α (in
Eq. (B.16)) summed in dB over three depth ranges. Abscissa shows αz[mm] in dB at 40
mm. The value for αz used in this paper is marked as a vertical line in the figure. (Color
online)
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The SRR is calculated through the envelope of the signal components. The
SRR after correction is averaged over all 300 runs and divided by the equally
averaged SRR before any correction to give the SRR increase. To extract the
general trend with depth and make a more readable plot the SRR increase is then
subjected to a lowpass filter, S (Hamming, order 300, cutoff at 10 MHz), and
plotted in decibels,

SRR = 20 · log10 S


〈

env{xafter}
env{nafter}

〉
runs〈

env{xbefore}
env{nbefore}

〉
runs

 . (B.22)

Section B.6.2 shows that there is a different nonlinear attenuation based on
the LF polarity. This would indicate a different value for α in the adaptive re-
verberation delay estimation (Eq. (B.16)). However, to keep the model simple, a
single mean value of α is used in this paper for both the plus and minus polarity
reverberation delay estimation.

To find the α giving best SRR improvement, different values were tested on
the case I tissue model, see Fig. B.8. An α corresponding to 2.75 dB loss over
40 mm was found to give the best SRR increase, and is therefore used further in
this study. In addition, γ = 3 (from Eq. (B.16)) was set for all the test cases. A
discussion of the value for γ is included in Sec. B.8.4.

In the tissue with linear propagation development, case I (Fig. B.3), the adapt-
ive delay correction, τRR

np gives an SRR improvement of about 25 dB around focus
at 20 mm and is 2.5 dB poorer throughout the image than the best case suppression
with a correction delay extracted directly from the reverberation components. The
delay correction based on the fixed-relation τhn is as good as the adaptive in the
beginning but declines with depth to a maximum of 2.5 dB difference at 40 mm.

Introducing a piecewise first order NPD development, by keeping the average
first order delay gradient between 0 and 40 mm as in case I, while lowering the
gradient by 50 % between 15 and 25 mm (leading to an increase of the gradient
at other depths), drops the SRR improvement of all three methods between 15
and 25 mm, case II (Fig. B.4). After 25 mm the difference between the adaptive
correction and the simple is increased to 5 dB compared to the homogeneous case.

Keeping the same linear first order propagation delay as in case I, but reducing
the scatterer strength to 20 % between 15 and 25 mm, case III Fig. B.5), does
not significantly alter the difference in SRR increase up to 25 mm. After 25 mm
the adaptive and true delay correction shows a small increase not observed for the
correction with τhnp.

The effect of multiplying the scatterer strength between 15 and 25 mm by 0.2
and reducing the relative gradient in the same region by 50 % is best described as
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Table B.4: SRR improvement at reverberation locations of strong scatterers, case V, with
correction based on different estimations of the reverberation delay. First column shows
scatterers that contribute to depth z (second column).

z1,z3 z τyn τhn τRR
n

[mm] [mm] [dB] [dB] [dB]
{7,7} 14 43 41 36
{7,15} 22 37 33 30
{15,15} 30 30 27 26
{7,25} 32 41 38 21

a combination of the effects from case I and case III (case IV, Fig. B.6). There is a
collective linear drop of the SRR increase from 15 to 25 mm followed by a rapid
increase for the adaptive and true delay corrections and a weaker later improve-
ment for the simple correction. From 30 to about 35 mm there is a separation of
about 10 dB between the SRR increase of the adaptive correction compared to the
simple correction.

Figure B.7 shows the SRR improvement from case V, where strong scatterers
are superimposed on the medium from case IV. The strong scatterers are positioned
at 7, 15 and 25 mm giving rise to reverberation noise at 14, 22, 30, and 32 mm (see
Table B.4). The SRR improvement is similar to that from case IV (Fig. B.6) save
for peaks at the reverberation locations. Peaks are observed for all correction meth-
ods at all peak positions except for at 32 mm for the fixed-relation τhnp correction.
A drop in the effectiveness of the adaptive correction is observed around 39 mm,
where it equals the simple correction. As the numbers of the SRR improvement at
the peaks can be hard to extract from the figure, they are also included in Table B.4.

B.8 Discussion
B.8.1 The general trend
A general trend in all the SRR-increase graphs (Figs. B.3 to B.6) is that the SRR
improvement increases with depth up to about 10 mm. This can be explained
by examining the components that make up the figure. Consider a medium with
scatterers homogeneously distributed with depth (case I). Ignoring attenuation the
signal amplitude from first order scattering will then be constant. The reverbera-
tion noise will increase linearly with depth as the number of possible combinations
increase. The SRR for the unprocessed signal is then inversely proportional to the
depth. Introducing a perfect correction removes the reverberations. One can as-
sume a residual noise that is more or less constant with depth. For a sub-optimal
correction assume that the residual noise increases with depth as there at higher
depths are more components combining with different reverberation delays, thus
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Figure B.9: Mean signal and noise component strengths before and after reverberation
correction plotted with depth. The medium consists of Gaussian plane scatterers and a
linear propagation delay (case I). (Color online)

making the correction delay more of an average than an accurate estimate. Cal-
culating the SRR increase then leads to an increase with depth in the beginning,
but as the correction becomes less precise the residual reverberation noise makes
the SRR increase curve flatten out. This general trend is observed in the SRR plot
for case I (Fig. B.3). In Fig. B.9 the strength of the signal and reverberation noise
components are plotted before and after correction for case I. The figure shows
that simulations agree with the discussion above.

Figure B.9 also shows that the signal strength of the first order component
drops with depth after correction, meaning that the gain factor applied to the total
signal is too low (denominator of Eq. (B.13)). A higher gain factor with depth
would also further increase the noise level after correction. Regardless of this gain
factor, or any Time Gain Compensation (TGC), the SRR plots remains unaffected
as any gain is applied to both reverberation and first order components and do not
show in the SRR result.

B.8.2 Effect of changes in nonlinearity

Figure B.4 shows that introducing a change in the nonlinearity of the medium
in a region, emulated by altering the gradient of the first order NPD, lowers the
achieved SRR increase. The SRR increase drops linearly as more and more rever-
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beration components with different mean delays are introduced. With a nonlinear
first order delay the total reverberation delay becomes more dependent on the scat-
tering positions that contribute. As there are more and more components in the
total signal that have a scattering position dependent delay, it is more difficult to
find a suitable single reverberation delay to adequately correct for all the com-
ponents as the variance in the reverberation delay between all the reverberation
components increases. This hypothesis is strengthened by Fig. B.6 where there
is a reduction to 20 % of the scatterer strength between 15 to 25 mm, meaning
that the new, scattering position dependent, reverberation components have less
strength than the other combinations coming from 0 to 15 mm where the delay
is linear. This would explain the higher SRR increase in Fig. B.6 compared to
Fig. B.4.

B.8.3 Understanding corrections at reverberation peaks

To understand the peak values in case V (Fig. B.7) it is necessary to study what
scatterer combinations give rise to the different strong reverberations. Table B.4
shows that scatterers at 7 mm and 15 mm combined gives reverberation at 14,
22 and 30 mm. As the propagation delay is linear up to 15 mm, the propagation
delay of these scatterer combinations would be well represented by the simple
delay estimate (Eq. (B.10)). However, for the reverberation noise at 32 mm (from
scatterers at 7 and 25 mm) the fixed-relation delay correction fails to suppress
the noise as well as the adaptive correction. Table B.4 shows a suppression of
18.5 dB for the fixed-relation τhnp based correction versus 35.5 dB suppression for
the one based on the adaptive τRR

np delay. The key behind this difference lies in
the positions of the scatterer that combine to this reverberation noise, namely the
scatterers at 7 and 25 mm. These do not have a linear first order delay of the
form τxp ∝ z crossing through them and τhnp (Eq. (B.10)) then fails to estimate the
resulting reverberation delay. The adaptive delay, τRR

np , takes both the delay and
the positions of the scatterers into account and is able to calculate a more accurate
delay giving an SRR improvement more close to the best case correction.

B.8.4 Ghost corrections

A pitfall of the adaptive delay is that the scatterer estimate it takes as input, R̂(z),
is based on the envelope of the total signal with reverberation noise, env{x0(t) +
n0(t)}. This can explain the failure of the adaptive method in case V (Fig. B.7)
at around 38–39 mm where the correction is equal to that based on the τhnp delay.
As the envelope of the total signal also contains the strong reverberation at 14 mm
caused by scattering of the 7 mm scatterer twice, a combination of this and the
scatterer at 25 mm would yield an estimated strong scatterer at 14 + 25 = 39 mm.
The adaptive method would then calculate a specific correction delay for this depth
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based on a reverberation combination not actually realized by any scatterers in the
true medium. This effect of specific correction based on false, ghost, scatterers is
called ghost corrections.

As increasing γ in Eq. (B.16) increases the specificity of the τRR
np estimate,

increasing this parameter value also increase the effect of ghost corrections. Since
increasing γ also increases the specificity towards true strong reverberation noise
the result is a tradeoff between high specificity and robustness. By setting γ = 1
instead of 3, as used in Figs. B.3 to B.7, the correction of case V yields better cor-
rection at 39 mm, but poorer correction for the peaks at 14, 22 and 30 mm. At 22
and 30 mm the adaptive correction is poorer than the fixed-relation reverberation
delay correction. This indicates that a γ > 1 is needed despite the higher chance
of ghost corrections. The correction at 32 mm stays unaffected by the change in γ.
The data showing this effect is for brevity not included in the paper

B.9 Conclusions
An adaptive estimation of the reverberation propagation delay is introduced and
evaluated against five special tissue models to study its possible advantage com-
pared to a more straightforward method. The estimation is adaptive in that it de-
pends on the envelope of a received signal. Although it only proved minor im-
provements in the signal to reverberation noise ratio, SRR, for a simple medium
with near uniformly distributed scatterers (Fig. B.3) in the order of 2 to 5 dB, it
showed improvements in the order of 15 dB (Table B.4) when evaluated in situ-
ations for which it was designed. Namely mediums with a large change in the
nonlinearity with depth and strong scatterers with large separation combining to
generate reverberation noise. It is in this case that the increased complexity of the
algorithm compared to a more simple approach can be justified.

This study has some limitations that might make the reported SRR increases
both for the new and older correction methods hard to acquire in the lab on a
real system. The system here consists of plane scatterers. The pulses used for
generating the rf-signal were simulated in a homogeneous medium so there are no
aberration effects. There is no electric noise or movement in the tissue between
the transmit pulse complexes. However, these are effects that would affect both
the adaptive and fixed-relation correction.

As this is a purely numerical study an obvious extension would be to take the
method to the lab for an in vitro study. There are also possible mathematical ex-
tensions to the work. The DCS correction utilizes a constant, depth-independent,
center frequency even though it is known that the center frequency drops with
propagation due to frequency dependent absorption.[21] More extensive simula-
tions could also be used to study the development of the nonlinear attenuation. A
possible improvement is also to introduce an iteration scheme for estimation of
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the scatterers, R, used in the adaptive correction to remove the ghost correction
artifacts discussed in Sec. B.8.4.
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Errata
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Corrections not present in included paper.
Section: B.3, Page: 113, Comment: Typo in equation.
Before:

Yi+(ω)e−iωτni+ − Yi−(ω)eiωτni−

= Xi0(ω)
(

eiω(τxi+−τni+) − eiω(τxi−−τni−)
)
.

Changed to:

Yi+(ω)eiωτni+ − Yi−(ω)eiωτni−

= Xi0(ω)
(

eiω(τxi+−τni+) − eiω(τxi−−τni−)
)
.

Section: Table B.4, Page: 128, Comment: Switched table headings. (Last two.)
Before:

z1,z3 z τyn τhn τRR
n

[mm] [mm] [dB] [dB] [dB]
{7,7} 14 43 41 36
{7,15} 22 37 33 30
{15,15} 30 30 27 26
{7,25} 32 41 38 21

Changed to:
z1,z3 z τyn τRR

n τhn
[mm] [mm] [dB] [dB] [dB]
{7,7} 14 43 41 36
{7,15} 22 37 33 30
{15,15} 30 30 27 26
{7,25} 32 41 38 21
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Section: B.8.3, Page: 130, Comment: Updated figures from on old table.
Before:

Table B.4 shows a suppression of 18.5 dB for the fixed-relation τhnp based
correction versus 35.5 dB suppression for the one based on the adaptive τRR

np

delay.
Changed to:

Table B.4 shows a suppression of 21 dB for the fixed-relation τhnp based cor-
rection versus 38 dB suppression for the one based on the adaptive τRR

np delay.
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