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Abstract

Image guided surgery (IGS) aims to enhance minimal invasive surgery with images and
computer technology. In IGS, preoperative images are used to plan the procedure. During
the procedure, the surgeon is guided by intraoperative images and tracking of the instru-
ments. Image segmentation is an important image processing step in IGS. Segmentation
enables visualization of the structures of interest, removing unnecessary information from
the images. Segmentation is also useful for registration and structure analysis, such as cal-
culating the volume of a tumor.

Segmentation of images acquired just before the operation as well as during the operation,
has to be fast and accurate in order to be useful in a clinical setting. Many segmentation
methods are computationally expensive, especially when run on large medical datasets.
There is often a trade-off between speed and accuracy, in which accuracy may be reduced
for increased speed and vica versa. Furthermore, the amount of data available for each
patient is steadily increasing, making fast segmentation algorithms even more important.

Today, consumer computers contain processors capable of running many operations in
parallel at a low cost. In addition to the central processing unit (CPU), most modern com-
puters also contain a specialized processor, the graphic processing unit (GPU). GPUs were
originally created for rendering graphics, and are primarily used for computer games. In
the last ten years, GPUs have also become popular for general-purpose high performance
computing, including medical image processing.

Robust and accurate medical image segmentation is challenging due to low image qual-
ity, tissue intensity inhomogeneity and other image artifacts. Model-based segmentation
methods incorporate prior knowledge such as the shape, location and appearance of the
structure of interest to increase performance.

The work documented in this thesis investigates the use of parallel and GPU computing to
accelerate model-based segmentation methods in image guided surgery. A comprehensive
review show that most of the common medical image segmentation methods can benefit
from running on GPUs. A fast segmentation method for extracting tubular structures is
proposed. This segmentation method is able to extract airways, blood vessels and abdom-
inal aortic aneurysms in a few seconds, using a modern GPU and a tubular shape model.
Ultrasound segmentation methods for the left ventricle of the heart and blood vessels are
also proposed. It is a challenge to segment these images at the same speed as they are pro-
duced, as ultrasound is a real-time imaging modality. The proposed methods achieve high
accuracy and real-time performance by using GPUs, and a model-based Kalman filtering
approach which combines temporal information with shape and appearance information
to segment the ultrasound images.



During this project, developing image segmentation software for different types of pro-
cessors was found to be challenging due to several factors, such as driver errors, proces-
sor differences, and the need for low level memory handling. Therefore a novel frame-
work for heterogeneous medical image computing and visualization was developed. This
framework aims to make it easier to simultaneously process and visualize medical images
efficiently on heterogeneous computer systems.
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Introduction

This chapter starts with an introduction to the key concepts of image segmentation and
image guided surgery, which is followed by a discussion on the challenges of image seg-
mentation. Finally, the research goals are presented.

1.1 Image segmentation

Image segmentation is the process of dividing the individual elements of an image or
volume into a set of groups, so that all elements in a group have a common property. In the
medical domain, this common property is usually that elements belong to the same tissue
type or organ. Medical images contain a lot of information as well as noise and other
image artifacts. Usually only one or two structures are of interest. Segmentation allows
visualization of the relevant structures, removing unnecessary information as shown in
Figure 1.1. Segmentation is also useful for registration and structure analysis such as
calculating the volume of a tumor.

There are many different segmentation methods from simple intensity-based methods like
thresholding and region growing (Adams and Bischof, 1994), to more advanced model-
based approaches such as statistical shape models (Heimann and Meinzer, 2009). No
segmentation method is considered to be the best, and the method of choice depends on
the application, structure to be segmented, and the type of images. Article A in Part II of
this thesis provides an overview of common medical image segmentation methods.

1.2 Image guided surgery

The term open surgery refers to any surgical technique where the incision in itself is
enough to enable the procedure. These methods may involve large wounds and unneces-
sary damage to healthy tissue. Minimal invasive surgery (MIS) is an alternative to open
surgery which aims to improve patient treatment. It has been shown in several surgical
procedures that MIS reduces the risk of complications, the amount of postoperative pain
and shortens recovery time (Darzi and Munz, 2004). In MIS, surgical instruments are
placed through small incisions, thus avoiding large surgical scars. Endoscopes equipped
with a camera and a light, are often used allowing the surgeon to see inside the body.



CHAPTER 1. INTRODUCTION

Figure 1.1: Example of airway segmentation of a CT scan. The green pixels of the segmentation
highlights the airways, while the rest of the pixels are identified as other tissue. The image to the
right shows a 3D visualization of the segmentation.

The goal of image guided surgery (IGS) is to enhance MIS with computer technology and
images acquired by ultrasound, X-ray, computer tomography (CT), magnetic resonance
imaging (MRI) and cameras. A typical computer assisted image guided intervention uses
the following sequence (Cleary and Peters, 2010). First, preoperative images are acquired
and used to plan the procedure. During the procedure, instruments are tracked using an
optical or electromagnetic tracking system. Using the tracked instruments, the preopera-
tive images are registered to the patient. This enables the instruments to be displayed in
relation to the preoperative images, thus guiding the surgeon during the procedure. Intra-
operative images are often acquired during the procedure to provide updated image data
of the patient.

IGS has been used in several applications. One such application is neurosurgery, in which
image and computer guidance has been practiced in more than 30 years, and its success
has made it a standard method in most centers (Cleary and Peters, 2010). Many of the
neurosurgical procedures require a craniotomy, which results in a brain deformation called
brain shift (Nimsky et al., 2001). This is a major challenge in neurosurgery, and the
conclusion is that these procedures can only be performed accurately with intraoperative
imaging (Cleary and Peters, 2010), using methods such as intraoperative MRI (Hall and
Truwit, 2008) and ultrasound (Unsgaard et al., 2002).

Another application of IGS is abdominal laparoscopy, which involves insufflation of a gas
into the abdominal cavity, and insertion of instruments through small incisions in the ab-
domen (Perrin and Fletcher, 2004). Procedures such as liver tumor resection and ablation
can be performed in this manner. The abdominal organs shift and deform due to res-
piration, surgical manipulation and pneumoperitoneum making accurate image guidance
challenging (Vijayan et al., 2014).

Bronchoscopy is a minimal invasive technique for diagnosis and treatment of the airways,
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1.3. IMAGE SEGMENTATION CHALLENGES

where a bronchoscope is inserted into the airways. Today, the bronchoscope is usually
flexible containing fiberoptic cables and light, which allows the surgeon to see inside
the airways through the bronchoscope (Leira, 2012). Due to the breathing motion of the
patient and the complex and narrow structure of the airways, it is difficult for the surgeon
to navigate to the target site using this procedure. Also, the bronchoscope is too wide to
pass through the smallest airways.

Anaesthesia is an important step in most surgical procedures. The use of regional anaes-
thesia (RA) is increasing due to the benefits over general anaesthesia (GA), such as re-
duced morbidity and mortality (Rodgers et al., 2000; Beattie et al., 2001; Urwin et al.,
2000), reduced postoperative pain, earlier mobility, shorter hospital stay, and lower costs
(Chan et al., 2001). Despite these clinical benefits, RA remains less popular than GA. One
reason for this is that GA is far more successful and reliable than RA. Ultrasound imaging
has been employed to increase the success rate of RA (Griffin and Nicholls, 2010; Dolan
et al., 2008). In ultrasound-guided RA, the nerve and other important structures, such as
blood vessels and fascias, are located using the ultrasound images. After a good view of
the target nerve has been achieved, a needle is inserted and used to inject local anaesthesia
around the nerve.

Several computer technologies are important in IGS, such as image segmentation, regis-
tration, tracking and visualization. The role of image segmentation in IGS is to extract
the structures of interest from the pre- and intraoperative images. In all of the applica-
tions mentioned above, it may be beneficial to use segmentation to extract the important
structures, and thereby create a map which can be used to plan and guide the procedure.
Segmentation can also be used for structure analysis and feature-based registration which
can deal with anatomical shift.

1.3 Image segmentation challenges

Gonzalez and Woods (2008) argued that segmentation of nontrivial images is one of the
most difficult tasks in image processing. In this section, the challenges of segmentation
will be discussed.

1.3.1 Accuracy

Human experts are in many cases still superior to computer algorithms in terms of accu-
racy when it comes to image segmentation of nontrivial images. For instance, Lo et al.
(2009) evaluated 15 different algorithms for segmentation of airways from CT images,
and concluded that none of the methods were able to extract more than 77% of the man-
ually segmented references on average.

Sharma and Aggarwal (2010) argued that image segmentation accuracy is affected by the
following factors:
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* Partial volume effect - If the image resolution is lower than the structure of interest,
multiple tissue types contribute to the intensity value of the pixel. This results in
the structure boundary being either blurred or not visible at all in the image (Pham
et al., 2000). This effect can be addressed by allowing segmentation regions to
overlap, often called soft-segmentation.

* Tissue intensity inhomogeneity - Many segmentation methods use the pixel in-
tensity value to identify the tissue type. However, in many cases the same tissue
has different intensity values and different tissue have the same intensity. This is
especially the case in magnetic resonance and ultrasound images were the intensity
of the same tissue varies with the location in the image.

* Low contrast - Different tissue may have similar intensity values. This is common
for soft-tissue in CT images, which can make it hard to separate different soft-
tissues based on intensity values alone.

* Other image artifacts - Different image modalities may also have other image
artifacts. One example is motion during image capture which can introduce blurring
or inconsistencies from one image slice to another. This occurs in CT due to the
heart beat which moves tissue around the heart while each slice is captured.

Given the challenges above, one may argue that relying on pixel intensity alone is not suf-
ficient for segmentation. To counter these challenges, prior knowledge about the anatomy
can be used to make the segmentation more robust, such as the shape and location of
the structure of interest. Segmentation methods using prior knowledge are often referred
to as model-based segmentation methods. One example is using a circle to model the
cross-section of a blood vessel as done by Krissian et al. (2000). Statistical shape mod-
els (SSMs) are more complex examples of model-based segmentation. These models are
trained to capture the average shape and variation of anatomical structures (Heimann and
Meinzer, 2009). Appearance models describe how a structure appears in an image, and
can also be used to make segmentation more robust. One example is active appearance
models (AAMs) (Cootes et al., 2001), which can generate synthetic images of how a
structure should look in an image based on training data.

1.3.2 Speed

Segmentation of images acquired just before the operation as well as during the operation,
has to be both fast and accurate in order to be useful in image guided surgery. Although
machines are generally faster than humans at image segmentation, several segmentation
methods are still not fast enough. Ideally, the result should be ready instantly, but many
segmentation methods may require several minutes of processing. The amount of data
available for each patient is steadily increasing (Scholl et al., 2010), making fast segmen-
tation algorithms even more important.

The following are factors affecting the speed of segmentation algorithms.
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* Segmentation algorithm complexity - The time-complexity of an algorithm quan-
tifies the amount of time an algorithm uses as a function of the input size.

* Segmentation algorithm implementation - An algorithm can be implemented and
optimized in different ways, for instance by using different data structures, intrinsic
functions and parallelization.

* Computer hardware - The speed and capacity of the computer hardware on which
the segmentation is executed.

» Image size - Larger images tend to require more processing time as well as memory.
Thus, speed may be increased by cropping the image before segmentation, use
image compression, or use a smaller and less accurate data type.

There is usually a trade-off between speed and accuracy, in which accuracy may be re-
duced for increased speed and vica versa.

1.3.3 Automation

Semi-automatic segmentation methods may be used to improve the accuracy over auto-
matic segmentation, while being faster than manual segmentation. Most segmentation
algorithms require some sort of initialization. This initialization may be difficult to do
automatically, while easy to do manually. For instance, region growing segmentation
requires one or more seed pixels, which may be selected by a user with the computer
mouse and anatomical domain knowledge. Although semi-automatic segmentation meth-
ods can be used to increase accuracy, user interactions during surgical procedures are not
desired as it takes time, distracts the surgeons from the actual procedure, require expert
knowledge, and is non-repeatable and subjective.

1.4 Research goals

The main goal of this thesis is to develop image segmentation methods for image guided
surgery that are accurate, fast and automatic, with primary focus on increasing the speed
of image segmentation. Two image segmentation domains which are important in im-
age guided surgery have been investigated. These domains are segmentation of tubular
structures, and segmentation of ultrasound images. In this section, these domains and the
related research goals are presented.

1.4.1 Accelerating segmentation with parallel and GPU computing

As discussed previously, speed is one of the main challenges of image segmentation for
image guided surgery. There are several ways of increasing the speed of an image seg-
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Figure 1.2: Segmentation and centerline of the airways.

mentation algorithm. One way is to exploit the parallel processing capabilities of modern
processors. Interconnected machines and processors were used to run image segmenta-
tion in parallel already in the 1980’s (Tilton, 1988; Morioka et al., 1990), but it required
expensive hardware. Today, consumer computers contain processors capable of running
many operations in parallel at a low cost. In addition to the central processing unit (CPU),
most modern computers also contain another processor called the graphic processing unit
(GPU). The main difference between a CPU and a GPU, is that a GPU has a lot more
arithmetic logic units (ALUs) than the CPU (McCool, 2008), allowing the GPU to process
many different data elements in parallel. However, many of the ALUs share a control unit
and therefore have to run the same instruction for each data element. GPUs were origi-
nally created for rendering graphics and are primarily used for computer games. However,
in the last ten years, GPUs have become popular for general-purpose high performance
computation, including medical image processing (Eklund et al., 2013). This leads to the
first research goal of this thesis:

Research goal 1: Investigate the use of parallel and GPU computing to accelerate image
segmentation.

1.4.2 Segmentation of tubular structures

Blood vessels, airways, bones, neural pathways and intestines are all examples of impor-
tant tubular structures in the human body. In addition to segmentation, it can be useful to
extract the centerline of these structures. The centerline is a line going through the center
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of the tubular structures, providing a structural representation of the tubular structures as
shown in Figure 1.2. The extraction of these structures can be essential for planning and
guidance of several surgical procedures such as bronchoscopy, laparoscopy, and neuro-
surgery. Tubular structures extracted from preoperative images can be matched to similar
intraoperative structures, such as a set of positions inside the airways generated by a
tracked bronchoscope, or brain vessels extracted from ultrasound. It has been shown that
registration of blood vessels from pre- and intraoperative image data can also be used to
detect and correct organ-shift, such as brain-shift (Reinertsen et al., 2007).

There are several methods for extracting tubular structures from medical images. A recent
and extensive review on blood vessel extraction was done by Lesage et al. (2009), and an
older one was done by Kirbas and Quek (2004). Two reviews on the segmentation of
airways were done by Lo et al. (2009) and Sluimer et al. (2006).

A common strategy for extracting tubular structures is to grow the segmentation from an
initial point or area, using methods such as region growing (Adams and Bischof, 1994),
active contours (Xu and Prince, 1998) and level sets (Sethian, 1999). A centerline can be
extracted from a binary segmentation using iterative morphological thinning, also called
skeletonization (Palagyi and Kuba, 1998; Paldgyi and Kuba, 1999; Xie et al., 2003). Iter-
ative thinning removes voxels from the segmentation in a particular order until the object
can not be thinned anymore. Another approach is to use a distance transform or gradient
vector flow (GVF), as done by Hassouna and Farag (2007). Direct centerline extraction
without a prior segmentation is also possible using methods such as shortest path and
ridge traversal. The segmentation can be grown afterwards using region growing with the
centerline as seeds. Aylward and Bullitt (2002) presented a review of different centerline
extraction methods. They proposed an improved ridge traversal algorithm based on a set
of ridge criteria, and different ways of handling noise. Bauer and Bischof (2008c) showed
that ridge traversal could be used together with GVF. Direct centerline extraction usually
needs some initial centerpoints and the direction of the tubular structure. This can be ac-
quired with tube detection filters (TDFs). TDFs are used to detect tubular structures by
calculating a probability of each voxel being inside a tubular structure. Most TDFs use
gradient information, often in the form of the eigenanalysis of the Hessian matrix. Frangi
et al. (1998) presented an enhancement and detection method for tubular structures based
on the eigenvalues of this matrix. Krissian et al. (2000) created a model-based detection
filter that fits a circle to the cross-sectional plane of the tubular structure. These TDFs
have the potential of detecting different types of tubular structures such as blood vessels
and airways. There are several examples of methods claiming to be robust enough to
segment and extract centerlines of tubular structures of different types (e.g. vessels and
airways), organs and modalities (Bauer, 2010; Bauer and Bischof, 2008b,a,c; Bauer et al.,
2009a,b; Krissian et al., 2000; Aylward and Bullitt, 2002; Benmansour and Cohen, 2010;
Li and Yezzi, 2007; Behrens et al., 2003; Cohen and Deschamps, 2007; Lorigo et al.,
2000; Spuhler et al., 2006). However, most of these present results for only a few datasets
of one or two organs/modalities. The PhD thesis of Bauer and related articles (Bauer,
2010; Bauer and Bischof, 2008b,a,c; Bauer et al., 2009a,b) are exceptions that present re-
sults for several different organs (e.g. lung, heart and liver), however only from CT scans.
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Bauer et al. use different methods to perform the major steps (tube detection, centerline
extraction and segmentation) for each organ. Instead, a generic method able to extract
different tubular structures would be beneficial as it would reduce code duplication. Also,
the future improvement of a generic method would benefit a wider range of applications.

Studies have shown that the extraction of tubular structures can be accelerated using
GPUs. Erdt et al. Erdt et al. (2008) performed TDF and region growing segmentation
on the GPU, and reported 15 times faster computation of the gradients and up to 100
times faster TDF. Narayanaswamy et al. (2010) did vessel luminae region growing seg-
mentation on the GPU, and reported a speedup of 8 times. Bauer et al. presented a GPU
acceleration for airway segmentation by computing the GVF on the GPU in Bauer et al.
(2009a), and the TDF calculation on the GPU in Bauer et al. (2009b). Helmberger et al.
(2013) performed region growing for airway segmentation on the GPU, and a lung vessel
segmentation on the GPU using a TDFE. They reported a runtime of 5-10 minutes using
a modern GPU and CUDA compared to a runtime of up to an hour using only the CPU.
These studies on tube detection filters and GPU acceleration lead to the second research
goal of this thesis:

Research goal 2: Create a segmentation method for tubular structures that is:

* Generic - Able to extract different tubular structures such as blood vessels and air-
ways from various image modalities using Hessian-based tube detection filters.

¢ Automatic - No user interaction needed.

* Fast - Accelerate processing using GPUs.

1.4.3 Segmentation of ultrasound images

Ultrasound is a key intraoperative imaging modality in image guided surgery, due to its
real-time imaging capability, low cost and small footprint in the operating room. It can be
used intraoperatively to look inside the patient during the procedure or to update preopera-
tive images and models. Ultrasound has shown significant potential in several procedures,
such as neurosurgery (Gronningsaeter et al., 2000) and laparoscopy (Langget al., 2008).

Segmentation of ultrasound images is challenging due to noise and image artifacts such
as tissue inhomogeneity, reverberations and acoustic shadowing. Thus, relying on pixel
intensity alone for may not be sufficient for robust and accurate ultrasound segmenta-
tion. Noble and Boukerroui (2006) conducted a review of current segmentation methods
for ultrasound images, where they concluded that a good ultrasound image segmentation
method needs to make use of all task-specific constraints and prior knowledge due to the
low image quality.

It is a challenge to segment ultrasound images at the same speed as they are produced, as
ultrasound is a real-time imaging modality, delivering several images per second. Several
different segmentation methods have been used on ultrasound images including region
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growing (Abdel-Dayem and El-Sakka, 2005), level sets (Xie et al., 2005; Li et al., 2006),
active contours (Mao et al., 2000; Miki¢ et al., 1998; Chen et al., 2004), tube detection
filters (Hennersperger et al., 2015) and statistical shape models (Bosch et al., 2002). How-
ever, most of these do not target real-time ultrasound segmentation.

One way to segment dynamic images, is to apply a segmentation method on each im-
age frame, but this may not satisfy real-time constraints. Another approach, often called
tracking, is to use the segmentation of the previous frame as prior knowledge to segment
the next frame, and thus reduce the computational cost. The Kalman and particle filters
are examples of such tracking methods. The Kalman filter (Kalman, 1960) is an algorithm
that estimates a state using a series of noisy measurements over time. In image segmenta-
tion, the state may be a set of parameters describing the shape of the structure of interest
and its position in the image. One type of measurement for object tracking, is the offset
from each point on the shape to the object’s edges in the current image frame. Previous
work has shown that the Kalman filter can track structures such as blood vessels (Guer-
rero et al., 2007) and the left ventricle of the heart (Orderud, 2006; Orderud et al., 2007,
Orderud and Rabben, 2008) in real-time. The Kalman filter algorithm consists mostly
of a set of matrix operations. Linear algebra libraries such as ATLAS, Eigen and boost
can accelerate these type of operations. The particle filter method (Arulampalam et al.,
2002) estimates the posterior density of the state variables given the measurements using
Monte Carlo simulations. Generally many samples are required, but each sample can be
evaluated in parallel using a GPU (Montemayor et al., 2006; Mateo Lozano and Otsuka,
2008; Lozano and Otsuka, 2008; Murphy-Chutorian and Trivedi, 2008; Lenz et al., 2008;
Brown and Capson, 2012).

The review of Noble and Boukerroui (2006) showed that most segmentation methods for
ultrasound depend on user interaction such as the selection of a seed point or region of in-
terest. As ultrasound is an intraoperative image modality, user interaction may distract the
physician from the procedure or require additional personnel, which is why automation
of ultrasound segmentation methods is important.

The studies mentioned above on ultrasound segmentation lead to the third and last re-
search goal of this thesis:

Research goal 3: Create segmentation methods for ultrasound images which are:
* Robust - Using model-based segmentation methods.

* Automatic - Initialize methods using a priori knowledge, thus eliminating the need
for user interaction.

* Real-time - Accelerate processing using GPUs, state estimation methods and fast
linear algebra libraries.
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Summary of contributions

The thesis is organized as a collection of articles. In this chapter, the articles are listed and
the results of these articles are discussed in relation to the research goals of the thesis.

2.1 Publication list

2.1.1 Selected publications

The following is a list of the articles, sorted after the research goal they contribute most
to. The full text of the articles can be found in Part II of the thesis.

Research goal 1: Parallel and GPU accelerated image segmentation

A Medical image segmentation on GPUs - A comprehensive review
Erik Smistad, Thomas L. Falch, Mohammadmehdi Bozorgi, Anne C. Elster and
Frank Lindseth
Medical Image Analysis, volume 20, February 2015, pages 1-18. Elsevier B.V.

B FAST: framework for heterogeneous medical image computing and visualization
Erik Smistad, Mohammadmehdi Bozorgi, and Frank Lindseth
International Journal of Computer Assisted Radiology and Surgery, 2015. Springer.
Not assigned to an issue yet.

Research goal 2: Segmentation of tubular structures

C GPU accelerated segmentation and centerline extraction of tubular structures in
medical images
Erik Smistad, Anne C. Elster and Frank Lindseth
International Journal of Computer Assisted Radiology and Surgery, volume 9, issue
4, July 2014, pages 561-575.

D A new tube detection filter for abdominal aortic aneurysms
Erik Smistad, Reidar Brekken and Frank Lindseth
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Proceedings of MICCAI 2014 Workshop on Abdominal Imaging: Computational
and Clinical Applications. Lecture Notes in Computer Science, volume 8676, Septem-
ber 2014, pages 229-238.

Multigrid gradient vector flow computation on the GPU

Erik Smistad and Frank Lindseth

Journal of Real-Time Image Processing, 2014. Springer. Not assigned to an issue
yet.

Research goal 3: Segmentation of ultrasound images

Real-time Tracking of the Left Ventricle in 3D Ultrasound Using Kalman Filter and
Mean Value Coordinates

Erik Smistad and Frank Lindseth

Proceedings MICCAI Challenge on Echocardiographic Three-Dimensional Ultra-
sound Segmentation (CETUS), September 2014, pages 65-72. Midas Journal.

Real-Time Automatic Vessel Segmentation and Model Registration for Improved
Ultrasound-Guided Regional Anaesthesia of the Femoral Nerve

Erik Smistad and Frank Lindseth

Submitted to IEEE Transactions on Medical Imaging, April 2015.

2.1.2 Other publications

The following publications were also produced during the work on this thesis, but are not
included in the thesis. However, the full text of these publications can be found in the
Appendix.

Al

A2

A3

Real-time surface extraction and visualization of medical images using OpenCL
and GPUs

Erik Smistad, Anne C. Elster and Frank Lindseth

Norsk informatikkonferanse 2012, pages 141-152.

GPU-Based Airway Segmentation and Centerline Extraction for Image Guided
Bronchoscopy

Erik Smistad, Anne C. Elster and Frank Lindseth

Norsk informatikkonferanse 2012, pages 129-140.

Real-time gradient vector flow on GPUs using OpenCL

Erik Smistad, Anne C. Elster and Frank Lindseth

Journal of Real-Time Image Processing, volume 10, issue I, March 2015, pages
67-74.

Contributions to two challenges were submitted and resulted in the two following publi-
cations, which are not included in this thesis.
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C1 Comparing algorithms for automated vessel segmentation in computed tomography
scans of the lung: the VESSEL12 study
R. D. Rudyanto, S. Kerkstra, E. M. van Rikxoort, C. Fetita, P-Y. Brillet, C. Lefevre,
W. Xue, X. Zhu, J. Liang, 1. Oksiiz, D. Unay, K. Kadipasaoglu, R. S. J. Estépar, J. C.
Ross, G. R. Washko, J-C. Prieto, M. H. Hoyos, M. Orkisz, H. Meine, M. Hiillebrand,
C. Stocker, F. L. Mir, V. Naranjo, E. Villanueva, M. Staring, C. Xiao, B. C. Stoel,
A. Fabijanska, E. Smistad, A. C. Elster, F. Lindseth, A. H. Foruzan, R. Kiros, K.
Popuri, D. Cobzas, D. Jimenez-Carretero, A. Santos, M. J. Ledesma-Carbayo, M.
Helmberger, M. Urschler, M. Pienn, D. G. H. Bosboom, A. Campo, M. Prokop, P.
A. de Jong, C. Ortiz-de-Solorzano, A. Mufioz-Barrutia and B. van Ginneken
Medical Image Analysis, volume 18, issue 7, October 2014, pages 1217-1232.

C2 Online system for standardized evaluation of algorithms for left ventricular seg-
mentation in 3D echocardiography
O. Bernard, J. G. Bosch, B. Heyde, M. Alessandrini, D. Barbosa, S. Camarasu-Pop,
FE. Cervenansky, S. Valette, O. Mirea, M. Bernier, P. M. Jodoin, J. S. Domingos, R.
V. Stebbing, K. Keraudren, O. Oktay, J. Caballero, W. Shi, D. Rueckert, F. Milletari,
S. A. Ahmadi, E. Smistad, F. Lindseth, M. van Stralen, C. Wang, O. Smedby, A. Pa-
pachristidis, M. L. Geleijnse, E. Galli and J. D’hooge
Submitted to Medical Image Analysis, March 2015.

2.2 Parallel and GPU accelerated image segmentation

The first research goal was to investigate parallel and GPU computing to accelerate image
segmentation. Article A is a comprehensive review on the use of GPUs to accelerate med-
ical image segmentation. The review first describes the properties of GPUs in comparison
to CPUs. With this description of the GPU, five key factors affecting the algorithm’s
suitability for GPU computation were identified:

* Data parallelism - An algorithm is data parallel if multiple data elements can be
processed using the same instructions in parallel. The degree of speedup achieved
by parallelization is limited by how much of the algorithm can be run in parallel.
Amdahl (1967) showed that the maximum speedup of a program where 95% is
executed in parallel is a factor of 20, regardless of the number of cores or thread
processors being used. Thus, an important GPU suitability factor is the percentage
of the algorithm that is data parallel.

* Thread count - Thread count is how many individual parts the calculations can
be divided into and executed in parallel. To obtain a substantial speedup of a data
parallel algorithm on the GPU, the number of threads has to be high.

* Branch divergence - Branches, such as "if-else" statements, are problematic be-
cause all thread processors sharing a control unit have to perform the same instruc-
tions. A branch is divergent if two or more threads in an atomic unit of execution
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(AUE, also called warp or wavefront) choose different execution paths. The threads
in an AUE with a divergent branch must perform all execution paths, which can
reduce performance.

* Memory usage - The GPUs limited amount of memory may not be enough to
process large images. Most image processing algorithms for the GPU are memory-
bound. Their speed therefore primarily depend on the memory bandwidth of the
GPU, and reducing memory usage can improve the speed of the algorithm.

* Synchronization - Many parallel algorithms require some form of synchronization
which can lower performance.

Several common medical image segmentation algorithms are explained and discussed in
article A in terms of GPU computation using the five key factors listed above. Most of
these segmentation methods process each pixel using the same instructions and data from
a small neighborhood around the pixel. Thus, the amount of data parallelism and thread
count is usually high. Typical sizes of medical datasets are 512 x 512 for images, and
5123 for volumes, which amount to over 262 thousand pixels and more than 134 million
voxels respectively. However, as seen in this review, some segmentation methods do not
process each pixel. Examples include active contours which move a contour consisting
of a set of points, and statistical shape models that model shapes using a set of landmark
points. These methods may only benefit from using GPUs when the number of points is
high.

Segmentation methods are often iterative, running a set of instructions several times. The
iterative processing may require double buffering, as global memory writes are not coher-
ent within one kernel execution. With double buffering, data is written back and forth to
the slow global memory of a GPU. The GPU has a specialized memory system for im-
ages, called the texture system. This system specializes in fetching and caching data from
2D and 3D textures and may improve performance when processing image data (NVIDIA
Corporation, 2010; Advanced Micro Devices Inc., 2012). Double buffering is currently
required when using textures, as a texture can only be read from or be written to in a
thread, not both. Double buffering also doubles the amount of memory used, which can
be problematic for some methods such as 3D gradient vector flow. Branch divergence is a
challenge for several methods such as region growing and narrow-band level sets, as not
all pixels need to be processed in these methods. The performance loss due to branch di-
vergence can be reduced using stream compaction methods (Billeter et al., 2009; Ziegler
et al., 2006). However, this comes at the cost of more processing, and will not necessarily
improve performance if it has to be used for each iteration, which is the case for region
growing. Some GPU methods may not provide a large speedup over an optimized serial
method because the GPU method implies more processing. This is true for methods such
as region growing and watershed. With region growing, the total number of pixels pro-
cessed in each iteration is much higher in the data parallel GPU implementation than in
the serial CPU implementation.
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Review article A concludes that most segmentation methods can benefit from GPU accel-
eration. However, factors such as synchronization, branch divergence and memory usage
may limit the speedup over serial execution.

2.2.1 FAST - A framework for heterogeneous medical image com-
puting and visualization

Computer systems are becoming increasingly heterogeneous in the sense that they consist
of different processors, such as multi-core CPUs and GPUs. As the amount of medical
image data increases, it is crucial to exploit the computational power of these proces-
sors. However, the programming of this hardware is still difficult due to several factors.
One factor is that the software needed to use the hardware, such as GPU drivers and
OpenGL/OpenCL implementations, may contain errors which are hard to debug. The
programmer may have to write separate code for different hardware and software ver-
sions, as the programmer can not change proprietary software such as GPU drivers. This
results in increased software development overhead, and fragmented source code. Most
GPU programming tools such as shaders, CUDA and OpenCL expose the programmer to
several hardware details. For instance, most GPUs have their own memory that is separate
from the computer’s main memory. This memory is often divided into the different mem-
ory spaces global, texture and constant memory (Owens et al., 2008). The programmer
has to explicitly move data between these memory spaces during execution.

Article B presents a novel FrAmework for heterogeneouS medical image compuTing and
visualization (FAST). The goal of this framework is to simplify the efficient process-
ing and visualization of medical images on heterogeneous systems. The insight toolkit
(ITK) (Ibanez and Schroeder, 2004; Kitware, 2014a) and the visualization toolkit (VTK)
(Schroeder et al., 2006; Kitware, 2014b) are two of the most commonly used frameworks
for medical image analysis and visualization. While these frameworks provide GPU ac-
celerated processing more as an extension and as an optional feature, the FAST framework
presented in this article was designed with heterogeneous accelerated processing in mind
from the start, and it is part of the core of the framework. We believe this will result in a
framework that is faster and easier to use. One framework that aims to aid the design of
image processing algorithms for different GPUs, is the Heterogeneous Image Processing
Acceleration Framework (HIPAcc) (Membarth et al., 2012, 2015). This framework copes
with the complexity of programming GPUs for medical image processing algorithms by
using a high-level domain specific language. Code written in this language is translated to
low-level OpenCL and CUDA code. HIPAcc targets only the design of image processing
algorithms. However, medical imaging pipelines consist of several other steps such as
visualization and registration. FAST considers all parts of the medical image computing
and visualization pipeline.

In article B, code examples and performance measurements demonstrates that the frame-
work is both easy to use, and performs better than ITK and VTK for several common
medical image algorithms. The FAST framework achieves this by using common pro-
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gramming paradigms, and hiding the details of memory handling from the user, while
still enabling the use of all processors and cores on a system. FAST aims to provide a
large set of tests and benchmarks to detect and report errors in the underlying hardware
and software (e.g. GPU drivers). This enables a user to check if there are any problems
for a specific setup. The framework is open-source, cross-platform and available online'.

The performance of four different image processing pipelines were evaluated and com-
pared to that of ITK and VTK. The pipelines include algorithms such as Gaussian smooth-
ing, surface extraction, region growing, thresholding, skeletonization and iterative closest
point. The results show that FAST is faster for the four pipelines with speedups of up to
20 times. This speedup is mainly due to the fact that FAST is able to use the GPU for
processing and rendering, while ITK and VTK rely on multi-threading for acceleration.

2.2.2 Fast visualization of segmentation - Surface extraction

In most segmentation applications, visualization of the segmentation result is required.
To visualize the segmentation result in 3D, a surface mesh of the segmentation must be
extracted. The main method of surface extraction is the marching cubes algorithm by
Lorensen and Cline (1987). This algorithm is highly data parallel, processing each voxel
independently. However, the algorithm has divergent branches which must be handled
efficiently. Ziegler et al. (2006) introduced a data structure called histogram pyramid
(HP), which can handle divergent branches in logarithmic time complexity on the GPU.
This data structure uses the texture system of the GPU to increase memory access speed.
In article A1, a GPU-based marching cubes method was presented. This method was
inspired by Dyken et al. (2008), which used HPs to accelerate marching cubes on the
GPU. Their method stores the HP in a single 2D texture with all the HP levels as mipmap
levels. A disadvantage of using single texture is that the same data type and format has to
be used for all levels. The proposed method in article A1 has a 3D texture for each level,
enabling the use of 8 and 16 bit data types when sufficient. This reduces the memory
usage and enables 3D spatial caching. The method proposed in article Al is able to
extract and visualize surfaces from large datasets (5123 and 10243 voxels) faster than
the implementation of Dyken et al. (2008), and was later integrated into FAST. In the
article on FAST (B), it was shown that this GPU method was more than 10 times faster
than the surface extraction method in VTK, and enables real-time surface extraction and
visualization of ultrasound image sequences.

2.3 Segmentation of tubular structures

A segmentation method able to extract different types of tubular structures from various
imaging modalities, has to handle variations in intensity, size, shape and contrast. Com-

'mttp://github.com/smistad/FAST/
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2.3. SEGMENTATION OF TUBULAR STRUCTURES
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Figure 2.1: GPU-based airway segmentation and centerline extraction

mon to all tubular structures is their elongated shape with a closed cross-sectional profile.
The results from the challenges EXACT’09 (Lo et al., 2009) and VESSEL’12 (Rudyanto
et al., 2014) showed that the best performing methods for both airway and vessel seg-
mentation of the lungs are Hessian-based tube detection filters. Article A of this thesis
described how these Hessian-based methods have high potential for GPU acceleration.
These results inspired the first work towards research goal 2, which used Hessian-based
TDFs and GPUs to create a fast airway segmentation and centerline extraction method for
image guided bronchoscopy.

2.3.1 Airways

In article A2, a GPU-based airway segmentation and centerline extraction method was
presented. This method extracts the airways of the lungs from CT images, using five
main steps as shown in Figure 2.1.

The first step is cropping of the input dataset. A CT thorax image usually contains 500-
850 slices with dimensions 512 x 512. As the memory on the GPU is limited (at that time
1-3 GB), the image size had to be reduced. A typical CT image of the thorax contains
a lot of data which is not part of the lungs, such as space outside the body, body fat
and the bench the patient is resting on. Article A2 introduced a novel parallel cropping
algorithm which removes this unnecessary data. On the six CT images used in this article,
the algorithm discarded over 70% of the image data, thus significantly reducing memory
usage and processing time.
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The next step of the method is pre-processing, which involves smoothing of the dataset to
remove noise, and gradient vector flow (GVF) to detect airways of different sizes. GVF
was found to be the most time-consuming part of the method. However, this algorithm is
very suited for GPU computation as each voxel is processed independently using the same
instructions. Several GPU implementation of 2D GVF have been reported (Eidheim et al.,
2005; He and Kuester, 2006; Zheng and Zhang, 2012; Alvarado et al., 2013). Bauer et al.
(2009a) used a GPU implementation of GVF for airway segmentation, but few details
on the implementation were provided. Article A3 presented a GPU-based GVF method.
This method was used in article A2 for the airway segmentation and centerline extrac-
tion. GVF is a memory bound iterative algorithm, and article A3 explored three different
memory optimization techniques to improve the performance. These techniques involved
using the texture memory, shared memory and a 16-bit compressed floating point storage
format. The results showed that using the texture memory with the 16-bit format and
without shared memory was fastest on GPUs and can double the performance. Accuracy
measurements revealed a small difference in the average vector magnitude, and a large
difference in the vector angle between the default 32-bit and compressed 16-bit storage
formats. However, the large angle differences were only present on small vectors, and
thus may not be a problem for most applications. The 16-bit storage format also allows
much larger volumes to reside completely in the GPU memory.

The tube detection filter (TDF) step used the circle fitting method by Krissian et al. (2000).
This TDF models the cross-section of a tubular structure as a circle. The cross-sectional
plane was determined by an eigenanalysis of the Hessian matrix for each voxel. A circle
was then fitted to the GVF gradients, and the TDF response was calculated. This TDF
response indicates how well the circle fits the GVF gradients.

A direct centerline extraction method was used to extract the centerlines using the result
of the TDF (Bauer et al., 2009a). This serial algorithm starts with the voxel with the
highest TDF response from the previous step. From this voxel a centerline is created by
traversing from one voxel to a neighbor voxel using the direction of the tubular structure
and the TDF responses. This is continued until no more centerlines can be added.

The segmentation was grown from the centerlines using a region growing approach. The
growing procedure is constrained by the GVF field so that the segmentation grows in
the inverse direction of the vectors, as long as the vector length increases (Bauer et al.,
2009a).

The proposed method in article A2 used about 20 to 40 seconds to process a full CT
scan using an NVIDIA Tesla C2070 GPU. This was a major improvement from the 6
minutes reported by Bauer et al. (2009a) which used a GPU for the GVF calculations. In
comparison, a multi-threaded CPU implementation of the same method used between 10
and 17 minutes. Due to the lack of ground truth for the CT images, the accuracy was not
properly evaluated.

20



2.3. SEGMENTATION OF TUBULAR STRUCTURES

2.3.2 Blood vessels and multi-modality

The airway extraction method from the previous section was later extended in article C
to extract other types of tubular structures such as blood vessels from different modalities
including CT, MRI and 3D ultrasound. This was done by parametrization of the method,
where the different parts of the method was tuned to different modalities and structures.
The cropping method from article A2 was extended to crop other types of datasets as well.

All steps in the previous implementation (article A2) except centerline extraction, were
executed on the GPU. In article C, a new parallel centerline extraction method was de-
veloped, enabling a complete GPU-based method for segmentation of tubular structures.
The previous implementation was tested with only one GPU, but in this study more GPUs
were available. The GPUs used included the NVIDIA Tesla C2070, which was the one
used in article A2, and two newer GPUs, the AMD HD7970 and the NVIDIA Tesla K20.
The newer GPUs had 4 times higher theoretical peak performance and were able to ex-
tract the tubular structures faster than the C2070 GPU. Of the two newer GPUs, the AMD
GPU performed better, as NVIDIA’s OpenCL implementation currently does not support
writing directly to 3D textures. Because of this restriction, buffers have to be used in the
most computationally expensive step, gradient vector flow. Using buffers instead of tex-
tures means no 3D cache optimization and hardware data type conversion, both of which
can increase performance. With the proposed methods, the AMD GPU was able to extract
airways from CT scans and blood vessels from MRI scans in about 5 seconds.

To show the general applicability of the method, clinical images from three different
modalities and two different organs were used:

* CT scans of the lungs (Airways, 12 datasets)
* MR images of the brain (Blood vessels, 4 datasets)
* 3D ultrasound Doppler images of the brain (Blood vessels, 7 datasets)

The results showed that the method is able to extract tubular structures from several
modalities and organs with comparable quality by only changing a few parameters.

The quality of the extracted centerlines and the segmentation were measured using realis-
tic synthetic vascular tree volumes, and their ground truth segmentation and centerlines.
These synthetic volumes and ground truth were created using the VascuSynth software
by Hamarneh and Jassi (2010). One of these synthetic volumes is depicted in Figure 2.2.
Three generated datasets were used, each with a different amount of Gaussian additive
noise. This was done to show how well the different methods performs with increas-
ing amounts of noise. The average centerline error was higher for the proposed parallel
centerline (PCE) algorithm, than the ridge traversal and skeletonization methods. This
increased centerline error was a result of the straight lines created by the PCE algorithm
between centerpoints. However, the error was below 0.7 voxels, which we argue is not
problematic for most applications. Also, the proposed PCE algorithm was able to extract
over 10% more of the synthetic vascular tree compared to the ridge traversal algorithm
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Figure 2.2: A synthetic vascular tree generated by the VascuSynth software (Hamarneh and Jassi,
2010).

for large noise levels (0.3).

2.3.3 Abdominal aortic aneurysms

An abdominal aortic aneurysm (AAA) is a vascular disease resulting in a permanent local
dilation of the abdominal aorta. AAAs can eventually rupture, a condition associated
with high mortality (85-95%) (Kniemeyer et al., 2000). When the risk of rupture exceeds
the risk associated with repair, AAA can be treated by open surgery, or by endovascular
placement of a stentgraft inside the aneurysm lumen to reduce the pressure on the arterial
wall. The segmentation and centerline of AAAs may be useful for visualization, volume
estimation, registration, and planning and guidance of stentgraft placement.

The method proposed in article C was able to extract blood vessels. However, AAAs
are larger than most other blood vessels, and this posed a challenge in terms of GVF.
The most common way to calculate GVF is to use Euler’s method as demonstrated by
Xu and Prince (1998). This method converges slowly (Han et al., 2007), which can be
a problem for large tubular structures where the gradients at the edges have to diffuse a
long way to the center. To solve this problem, Han et al. (2007) used multigrid methods to
calculate GVF, achieving a better convergence rate. However, non-GPU implementations
of multigrid GVF are not as fast as the Euler GVF method when executed on the GPU.
In article E, a GPU-based multigrid method was proposed to calculate GVF. The same
memory optimization techniques as in article A3 were used, such as texture memory and
compressed 16-bit storage format. Using the proposed multigrid GPU GVF method, 6
iterations and 1-2 seconds of processing were sufficient to process the AAA datasets as
shown in Figure 2.3. In comparison, the Euler GPU implementation of article A3 required
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Figure 2.3: Magnitude of the vector field after running gradient vector flow (GVF) on a AAA CT
dataset. Left: Euler’s method with 1000 iterations. Right: Multigrid method with 6 iterations.
The image to the left shows that GVF with Euler’s method has problems diffusing the gradients
on the edge of the aneurysm to the center, which is necessary for the TDFs.

iy
LD

Figure 2.4: Segmentation result of using region growing (left), the circle fitting TDF (middle),
and the proposed TDF (right).
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more than 10,000 iterations and several minutes of processing to achieve the same result.

In addition to the large size, AAAs often have a non-circular cross-sectional profile. In
article C, a circle fitting TDF was used to detect tubular structures. This TDF assumes a
circular cross-sectional profile, which leads to a lower response for non-circular tubular
structures. It may also respond to voxels where tubular structures are absent, for instance
semi-circles with high contrast can give a medium response. In article D, a new TDF
was proposed as a replacement for this filter, to improve detection of large non-circular
tubular structures such as AAAs. Instead of assuming a circular cross-sectional profile,
the proposed TDF only assumes a closed profile. The proposed TDF does /V line searches
in the cross-sectional plane at different angles, where the line search stops when an edge
is detected or the maximum radius is reached. If edges are found for all line searches, a
TDF response is calculated based on the centralness and the GVF vectors. In article D,
this new TDF, together with the multigrid GVF, was tested on both synthetic and clinical
data. The results showed that the proposed TDF was able to properly detect large non-
circular tubular structures, such as AAAs. This was tested on four AAA CT datasets,
and compared to algorithms such as seeded region growing and the circle fitting TDF.
Figure 2.4 shows the results for one of these datasets. The seeded region growing failed
to segment the AAAs due to segmentation leakage to the spine, and the circle fitting
TDF was unable to properly detect all the AAAs deviating from a circular cross-sectional
profile. The runtime of the proposed methods including the novel TDF, multigrid GVE,
centerline extraction and segmentation for these datasets was 4-10 seconds using an AMD
Radeon HD7970 GPU.

2.4 Segmentation of ultrasound images

The third research goal was to create real-time, robust and automatic segmentation meth-
ods for ultrasound images. As ultrasound is a real-time imaging modality, it is a chal-
lenge to segment these images at the same speed they are produced. However, one can
assume that the segmented structure in one image frame has only moved slightly in the
next frame. The Kalman filter is a method which can use the segmentation result of the
previous frames to predict the segmentation of the next. In this thesis, a Kalman filter was
used together with a shape model to automatically segment the left ventricle of the heart
and blood vessels from ultrasound image sequences in real-time.

2.4.1 Left ventricle of the heart

Volume assessment of the left ventricle (LV) of the heart throughout the cardiac cycle is
a routine task in diagnostic cardiology, and important in terms of patient management,
outcome, and long-term survival (Norris et al., 1992; White et al., 1987). LV border iden-
tification can be a challenging task, because of the low image quality and image artifacts.
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Figure 2.5: Shape model of the left ventricle of the heart. The mesh is deformed with mean value
coordinates by moving the control points of the control mesh (red) within the circles (green) to the
left. Left: The model before deformation. Right: The model after deformation.

In article F, a method for real-time segmentation of the LV in 3D ultrasound was pre-
sented. This is based on the method of Orderud and Rabben (2008), where a shape model
is used and transformed with a set of parameters which are estimated using the Kalman
filter. The speed of the method is dependent on the number of parameters to be estimated.
Orderud et al. used subdivision surfaces for local deformation of the shape model while
keeping the number of state parameters low. The proposed method used mean value
coordinates (Ju et al., 2005) to deform the shape model, and is able to deform a com-
plex shape with few control points as shown in Figure 2.5. This may prove useful when
tracking more complex shapes, in which traditional models such as B-spline and subdi-
vision surfaces will have to use many control points which reduce speed. Mean value
coordinates simplifies the shape modelling as only a surface consisting of a set of points
is required, and some calculations such as generating surface points for edge detection
are avoided. The proposed segmentation algorithm was evaluated in the Challenge on
Endocardial Three-dimensional Ultrasound Segmentation (CETUS) at the Medical Im-
age Computing and Computer Assisted Intervention (MICCAI) conference 2014. In this
challenge, the accuracy was compared to 8 other automatic and semi-automatic methods.
Before the challenge, 30 sequences were made available. The proposed method was able
to track the LV in all these sequences, and achieved a mean mesh difference of about 2.5
mm. At the challenge, 15 additional sequences were handed out. After all sequences
were processed by all contestants, the proposed method was ranked second in terms of
clinical relevance of the fully automatic algorithms, with a mean mesh difference of about
2.72 mm (Bernard et al., 2015). The best algorithm had a mean mesh difference of 2.35
mm. The average runtime per image of the proposed method was measured to be 65 ms,
and was the fastest in the CETUS challenge. Most of the proposed Kalman filter method
consists of matrix operations. For these operations the Eigen linear algebra library was
used. This library uses streaming SIMD extensions (SSE) which allows multiple data to
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Figure 2.6: Result of the vessel segmentation method.

be processed in parallel.

2.4.2 Blood vessels

Blood vessels appear as black spots in B-mode ultrasound images. Guerrero et al. (2007)
presented a method for vessel segmentation and tracking in ultrasound images, using an
extended Kalman filter. Their method was fast and accurate, but it had to be manually
initialized with a seed point inside the vessel. Article G of this thesis proposes a vessel
segmentation method, which is initialized automatically using a novel GPU-based ves-
sel detection algorithm. This segmentation method uses a Kalman filter based tracking
algorithm, similar to that of Guerrero et al. (2007) and article F. The proposed vessel seg-
mentation method is intended for ultrasound-guided regional anaesthesia of the femoral
nerve. By segmenting and visualizing the important surrounding structures such as the
femoral artery, we hope to improve the success of these procedures.

The vessel cross-section in the ultrasound images is modelled as a compressed circle. The
state parameters for the Kalman filter consists of the position, radius and flattening factor.
For each pixel, the vessel detection method fits the compressed circle to the image gradi-
ents, which is is similar to the circle fitting method in articles A2 and C. A vessel score is
calculated for each pixel based on how well the circle fits the gradients. The parameters of
the best fitting circle are used as the initial state of the tracking if the vessel score is above
a specified threshold. Using a GPU for the circle fitting, real-time performance of about
42 ms on average was achieved for the detection. The tracking was done on the CPU with

26



2.5. OTHER CONTRIBUTIONS

the Eigen linear algebra library using about 5 ms on average. A total of 12 ultrasound
image sequences from 3 subjects were collected. The number of images per sequence
ranged from 110 to 524. For each sequence, the vessel was manually segmented in 4 ran-
domly selected frames. The proposed femoral artery detection and tracking achieved an
average dice similarity coefficient of 0.90, mean absolute distance of 0.42 mm, and Haus-
dorff distance 1.17 mm. Figure 2.6 shows the result of the vessel tracking on ultrasound
image of the femoral artery.

2.5 Other contributions

2.5.1 Posters and presentations

In addition to the published articles and proceedings, the following posters and presenta-
tions were presented during the work on this thesis:

* Fast Surface Extraction and Visualization of Medical Images Using OpenCL and
GPUs
The Joint Workshop on High Performance and Distributed Computing for Medical
Imaging. MICCAI 2011, Toronto, Canada.

* Fast Surface Extraction and Visualization of Medical Images Using OpenCL and
GPUs
Joint National Ph.D. Conference in Medical Imaging and MedViz Conference 2011,
Bergen, Norway.

* A New Tube Detection Filter using Gradient Vector Flow, Line Search and Splines
3rd National PhD Conference in Medical Imaging 2011, Oslo, Norway.

* Airway Tree Segmentation and Centerline Extraction for Image Guided Bronchoscopy
4th National PhD Conference in Medical Imaging 2012, Trondheim, Norway.

* Segmentation of Abdominal Aortic Aneurysms from CT Images
Sth National PhD Conference in Medical Imaging 2013, Tromsg, Norway.

* FAST - Framework for Heterogeneous Medical Image Computing and Visualiza-
tion
Joint National PhD Conference in Medical Imaging and MedViz Conference 2014,
Bergen, Norway.

2.5.2 Challenges

Contributions to the following segmentation challenges were submitted including articles
based on the result of the challenges:
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* VESsel SEgmentation in the Lung 2012 (VESSEL 12) - http://vessell2.
grand-challenge.org/. Results published in Rudyanto et al. (2014).

 Challenge on Endocardial Three-dimensional Ultrasound Segmentation 2014 (CE-
TUS) http://www.creatis.insa—-lyon.fr/Challenge/CETUS/. Ar-
ticle based on results submitted to Medical Image Analysis (Bernard et al., 2015).

2.5.3 Source code

Most of the source code developed during this study is available at the GitHub page
http://github.com/smistad/. The following is a list of some of the source code
used in the different publications.

* FAST - Used in articles B and G.
http://github.com/smistad/FAST/

* GPU gradient vector flow - Used in articles A3 and C.
http://github.com/smistad/OpenCL-GVEF/

* GPU multigrid gradient vector flow - Used in articles E and D.
http://github.com/smistad/Multigrid-GPU-GVF/

* Tube segmentation framework - Used in articles A2, C and D.
http://github.com/smistad/Tube-Segmentation-Framework/

* GPU-based marching cubes - Used in article Al.
http://github.com/smistad/GPU-Marching—Cubes/
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Discussion and future work

3.1 Parallel and GPU accelerated image segmentation

Review article A showed that most common medical image segmentation methods may
benefit from running on GPUs. In the articles on GVF (A3, E), segmentation of tubular
structures (A2, C, D), segmentation of ultrasound images (G) and surface extraction (A1)
it was shown how these algorithms can be accelerated with GPUs.

The number of articles which report using GPUs for acceleration is increasing (Eklund
et al., 2013). As the amount and quality of GPU frameworks, drivers and libraries con-
tinue to improve, the number of GPU users will probably increase even more. Libraries
and frameworks aiding in writing image processing algorithms as well as scheduling,
memory management and streaming of dynamic image data, will probably become more
important as more algorithms and image data are processed on the GPU. Hybrid solu-
tions using GPUs for the massively data parallel parts, and the CPU for the less parallel
parts are possible. One challenge with these hybrid solutions is efficient sharing of data,
which currently has to be done explicitly by memory transfer over the PCI express bus.
The proposed framework FAST removes the burden of explicit memory transfer by han-
dling it in the core of the framework. The programmer simply request an image or other
data for a specific device, and the framework handles the rest. The Heterogeneous Sys-
tem Architecture (HSA) is a new processor architecture proposed by the HSA Founda-
tion, which includes major processor manufacturers such as AMD and ARM. The aim of
HSA is to reduce communication latency between CPUs, GPUs and other processors, and
make these devices more compatible from a programmer’s perspective (HSA Foundation,
2015). AMD has already released a processor named Kavari which uses this new archi-
tecture as well as a Linux kernel to utilize the full potential of this new type of processors.
A new generation of graphic frameworks have also appeared, including AMD’s Mantle
(Advanced Micro Devices Inc., 2015) and Apple’s Metal (Apple, 2015). This growth in
proprietary computing frameworks is worrisome, as it forces developers to create separate
code for different processors and operating systems. However, the next generation of the
cross-platform OpenGL framework, Vulkan, was just released and is similar to AMD’s
Mantle framework (The Khronos Group, 2015b). Vulkan offers lower overhead, more di-
rect control over the GPU, lower CPU usage and better support for multi-threading. Thus,
Vulkan will be a good candidate for replacing OpenGL in FAST, as high performance con-
current visualization and computation is the goal of this framework. To summarize, a lot
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is happening in the field of heterogeneous computing at the moment. When these new pro-
gramming architectures are in place as well as their low-level programming frameworks
HSA, OpenCL and Vulkan, high-level frameworks exploiting these new developments are
needed. This is where FAST may play its part in the field of medical image computing
and visualization.

Most image processing algorithms are memory bound, thus their speed is highly depen-
dent on the memory bandwidth of the GPUs. The GPU manufacturer NVIDIA has re-
ported working on a solution to boost the memory bandwidth considerably. This solution
is called stacked DRAM, and promises several times greater bandwidth, and NVIDIA
plans to ship this new technology in 2016 (NVIDIA Corporation, 2014). The speed of
data parallel algorithms developed for the GPU also depend on the number of thread pro-
cessors, which has been steadily increasing. These further developments of GPUs suggest
that the speed of algorithms developed for GPUs will increase even more as new GPUs
arrive. In article C, the same GPU segmentation algorithm was executed on several GPUs.
The performance on the newer GPUs were several times higher.

The amount of memory on the GPU has been challenging for medical imaging algorithms.
For instance, in the 2004 article Lefohn et al. (2004) had to use a complex streaming
method to segment 3D images with a level set method, as the GPU they used only had 128
MB of memory. The proposed methods for GPU-based segmentation of tubular structures
included a cropping method which reduced the amount of memory used. The memory on
GPUs has increased over the last years. Most consumer cards now have 4 GB of memory,
and high-end GPUs may have as much as 16 GB, indicating that the limited amount of
memory on GPUs will be less of a problem in the future. Still, reducing the size of
datasets by cropping does increase the performance, as less voxels has to processed.

The runtime measurements in article B showed that FAST has the potential to become
a high performance medical image computing and visualization framework for hetero-
geneous computer systems. However, the success of this framework depend on further
development. To become a valid tool for image guided surgery, FAST needs more algo-
rithms, importers, exporters, streamers and instrument tracking support. The plan is to
integrate an OpenlGTLink receiver into FAST. This standardized network protocol sup-
ports tracking and image streaming from several different devices (Tokuda et al., 2009).

To achieve the best performance, it is necessary to support heterogeneous processing in
the entire framework. This includes all steps in a pipeline from data import, to processing
and visualization. There exist a lot of medical image computing and visualization soft-
ware such as ITK and VTK. One might argue that it is better to focus on adapting these
existing frameworks to the new heterogeneous computing world. However, enabling this
kind of support in existing frameworks such as ITK and VTK would most likely mean
rewriting the entire core of these toolkits.

While FAST provides a high-level interface for creating medical imaging pipelines and
managing the data, developers currently have to write the actual image processing algo-
rithms using the low-level language OpenCL. The HIPAcc framework (Membarth et al.,
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2012, 2015) provides a high-level domain specific language and a source-to-source com-

piler to ease the development of image processing algorithms. OpenVX is another open

standard for cross platform acceleration of computer vision applications by the Khronos

group (The Khronos Group, 2015a), the same organization which have created the OpenCL
and OpenGL standards. One possibility is to integrate HIPAcc and OpenVX in FAST.

This would allow developers to do high-level development of the actual image process-

ing algorithms, and high-level programming of the entire pipeline from data import to

visualization.

3.2 Segmentation of tubular structures

In this thesis, a fast method for extracting different tubular structures from various image
modalities was developed (see articles A2, C and D). The proposed method was inte-
grated into the CustusX image guided surgery platform (Langget al., 2008) and further
clinical research on bronchoscopy is currently being conducted. The method is also being
integrated into FAST.

The centerline extraction method used is a local greedy optimization algorithm. It is un-
able to extract all the tubular structures from the TDF result, especially the small tubular
structures. Global optimization algorithms may be used for centerline extraction to im-
prove the amount of structures extracted. Two examples of global optimization centerline
methods are the ant colony system method by Tiiretken et al. (2011), and the graph based
optimization technique by Graham et al. (2010). However, these global optimization tech-
niques are computational expensive.

Gaussian smoothing is used to reduce the effect of noise in the image, but also destroys
important edge information. For small low-contrast tubular structures, Gaussian smooth-
ing may reduce the contrast further or eliminate the structure completely. A possible
solution is to replace the Gaussian smoothing with anisotropic smoothing, as suggested
by Bauer in his thesis (Bauer, 2010). An anisotropic smoothing filter varies the amount
of smoothing for different directions. Thus smoothing more in the direction of the tube,
and smoothing less in the cross-sectional plane thereby preserving the tubular structure.
Krissian (2002) and Manniesing et al. (2006) proposed two such smoothing filters.

The amount of false positive response was reduced in the proposed TDF in article D, but
it may still occur in proximity to high contrast edges such as the spine. Further work
is needed to reduce the amount of false positive responses, as it makes the centerline
extraction less accurate and may lead to extraction of false tubular structures. The circle
fitting and proposed TDFs used the local intensity variations and a simple shape model.
One way to improve the accuracy, may be to incorporate more shape and appearance
information such as the fact that airways in CT are surrounded by a bright airway wall.
More shape information can also be incorporated into the centerline extraction step. Bauer
et al. (2009b, 2010) used anatomical constraints on the centerline graph branching angle
and the radius before and after a bifurcation.
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Graham et al. (2010) reported that the choice of reconstruction kernel used in the CT
scanner can have a substantial effect on the extraction of small peripheral airways. Soft
kernels have a smoothing effect and may blur small airways, while sharp kernels can
enhance small airways, but increase high-frequency noise. In this thesis, different recon-
struction kernels were not considered, but it is something that could be investigated and
may improve the amount of airways extracted from CT images.

The proposed method is able to extract tubular structures from large 3D images in a few
seconds using GPUs. This was achieved mainly by reducing the amount of memory used
and optimizing the GVF calculations for the GPU. GVF is an algorithm that is also used
for active contour segmentation. Thus, the advancements in this thesis on GPU-based
GVF will also benefit these segmentation methods. In article, C a parallel centerline
extraction algorithm was proposed. However, the results showed that this method was not
significantly faster than the serial ridge traversal centerline method. 4D ultrasound probes
are capable of capturing several volumes per second. The proposed methods may be able
to extract tubular structures from ultrasound volumes, and use the result as a shape model
and initialization for a Kalman filter based tracking method similar to the ones proposed
in this thesis. This could enable real-time tracking of tubular structures in 3D ultrasound
and real-time vessel-based registration.

The proposed tubular extraction method may be extended to provide additional informa-
tion about tubular structures, such as branches, generation number, segment length and
radius. It may also be useful to separate different tubular networks such as the hepatic
vein and hepatic artery in the liver. TubeTK is an open-source toolkit based on ITK and
VTK for the segmentation, registration, and analysis of tubular structures in images (Kit-
ware, 2015). Combining the proposed tubular extraction methods with this toolkit could
provide more functionality.

3.3 Segmentation of ultrasound images

Articles F and G proposed real-time model-based segmentation methods for the left ven-
tricle in 3D ultrasound, and blood vessels in 2D ultrasound. Both these methods use a
general approach, in which a shape and appearance model is plugged into a Kalman filter
state estimation pipeline as shown in Figure 3.1. The shape model constrains the shape of
the segmentation and incorporates knowledge about the anatomy. The appearance model
constrains how the input image affect the state, and incorporates knowledge about how
the structure of interest appears in the ultrasound image. The state in the Kalman fil-
ter describes the segmentation for the current image frame, and includes the position,
orientation and deformation of the shape. This general approach should be applicable for
segmenting a wide variety of structures from 2D and 3D ultrasound given a suitable shape
and appearance model. The Kalman filter incorporates temporal information of the ultra-
sound videos and has three different steps which are executed in a loop for each image
frame. The first step is prediction, which uses the current state to predict the state for the
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Figure 3.1: Model-based Kalman filter tracking pipeline for segmenting 2D and 3D ultrasound
sequences. The pipeline is executed for each frame in the ultrasound image sequence.

next frame. Next is the measurement step that performs measurements on the current im-
age using the predicted state, shape model and appearance model. The final step updates
the state using the predicted state, measurements and shape model.

The model-based Kalman filter was tested on 3D ultrasound images of the heart by seg-
menting the left ventricle (LV). The shape model in this work was a 3D mesh transformed
by a linear transformation and deformed with mean value coordinates. The STEP edge
detection method was used for the appearance model, requiring the inside of the heart
to be darker than the border. While the segmentation of the LV is not necessarily aimed
at image guided surgery, the proposed method with the general approach outlined above
should be able to efficiently model and track various complex 3D shapes, due to the use
of mean value coordinates. This method may prove useful in image guided surgery ap-
plications, such as segmentation of the brain ventricles, tumors and blood vessels in 3D
ultrasound. More dynamic ultrasound data is required to test this.

An average runtime of 65 ms was achieved on the LV ultrasound datasets from the CE-
TUS challenge. The majority of the runtime was used on performing the edge detection
along the mesh model. After the CETUS challenge, GPU acceleration of this step was in-
vestigated. The results showed that GPU processing can reduce the average runtime down
to about 10 ms on the same data. This was done by doing the edge detection of each line
search in parallel. The number of line searches in the LV application was 389. As dis-
cussed previously, efficient GPU computation requires many threads. Thus to increase
the number of threads, one thread was used per £ in the STEP edge detection method,
resulting in more than 16 thousand threads. The ultrasound images were also put in the
texture memory to optimize memory access.

A fully automatic vessel segmentation method for 2D ultrasound was also developed. In
this work, the shape model consisted of a compressed circle, and the appearance model
included step and gradient edge detection methods. The method was only tested for track-
ing a single vessel. However, it should be possible to track multiple vessels by running
the vessel detection concurrently with the tracking, and spawning a new Kalman filter and
vessel state each time a new vessel is detected. This would also require a way of detecting
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when two vessels fuse together at a bifurcation.

One challenge with the model-based Kalman filter segmentation approach is the initial-
ization. On the LV ultrasound data, the LV shape model was initialized to the center of
the image. This was possible because the ultrasound probe was positioned in the same
way for all sequences. For the blood vessels in 2D ultrasound, an automatic initializa-
tion method was developed. This method performs a search for dark circles in the entire
image. This was only feasible to do in real-time with a GPU, as each pixel could be pro-
cessed independently. Doppler image data may be used to improve the vessel detection
and tracking methods, but enabling acquisition of Doppler data also reduces the frame
rate.

The particle filter (Arulampalam et al., 2002) is another state estimation method, which
was not explored in this work. In a linear system with Gaussian noise, the Kalman filter
is optimal. However, the measurements used in the proposed methods are not linear,
and thus the extended Kalman filter is used which entails approximations. The particle
filter may perform better at higher computational cost, as many samples would likely be
needed. This method has shown great potential with face tracking, and the tracking can
be done in in real-time with GPUs. Also, studies indicate that the unscented Kalman filter
may perform better than the extended Kalman filter, in terms of robustness and speed
of convergence (Dambreville et al., 2006; Kandepu et al., 2008). The unscented Kalman
filter avoids calculation of the Jacobians, which can be difficult to do for a complex model.
Thus, the particle filter and the unscented Kalman filter may be viable alternatives to the
extended Kalman filter for tracking structures in medical images.

The best performing method in the CETUS challenge used an optical flow tracker with
block matching (Barbosa et al., 2014). Block matching is able to track one block of the
image to the next by computing a similarity of the intensity values in the blocks. This
type of speckle tracking was also used by Orderud et al. (2008) to improve the tracking
of the left ventricle. In the proposed methods, speckle tracking was not used. However,
these types of measurements may be incorporated into the proposed methods for improved
accuracy and can be efficiently computed on a GPU (Kiss et al., 2009).

To summarize, the general model-based Kalman filter approach outlined in Figure 3.1
for segmenting 2D and 3D ultrasound images, is able to track objects in real-time. The
challenge lies in designing the shape and appearance model for a given segmentation
problem, and to initialize the Kalman filter. Real-time performance can be achieved using
fast linear algebra libraries for the Kalman filter, and GPUs for the measurements and
initialization.
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Conclusion

The work documented in this thesis investigates model-based segmentation methods and
GPU acceleration for fast, robust and automatic image segmentation within the field of
image guided surgery. In this section, the main contributions of this thesis are summa-
rized.

A comprehensive review and several implementations presented in this thesis have demon-
strated that most segmentation methods can benefit significantly from GPU computing,
due to a high amount of data parallelism. However, the programming of GPUs and multi-
core CPUs was found to be challenging due to several factors such as driver errors, explicit
memory handling, advanced memory hierarchy and the need for low-level programming.
To deal with these challenges, this thesis proposed a framework for efficient medical
image computing and visualization on heterogeneous systems consisting of different pro-
cessors such as multi-core CPUs and GPUs. It was demonstrated how this framework
can accelerate several common medical image computing pipelines and outperforms the
traditional frameworks ITK and VTK.

A fast and automatic segmentation method for tubular structures was proposed. This
method was able to extract different tubular structures such as airways, blood vessels
and aneurysms from various image modalities including CT, MRI and ultrasound. Large
tubular networks such as the airway tree can be extracted with this GPU-based method
in only a few seconds. This was enabled by contributions to acceleration of the time-
consuming calculation of gradient vector flow with GPUs.

A general model-based Kalman filtering approach for segmentation of ultrasound im-
ages was used to track the left ventricle of the heart and blood vessels. This approach
combines temporal information with shape and appearance information to segment ul-
trasound images in real-time. A method was proposed for tracking objects in 3D ultra-
sound where the surface deformation method mean value coordinates was used with the
model-based Kalman filter approach. This method was evaluated in the Challenge on En-
docardial Three-dimensional Ultrasound Segmentation (CETUS) and was ranked second
of the fully automatic methods in terms of clinical relevance. A tracking method for the
cross-section of blood vessels in 2D ultrasound was also proposed using the same Kalman
filter approach. Compared to previous methods which had to be initialized manually, the
proposed tracking method was initialized automatically in real-time using a GPU.

The overall conclusion of this thesis is:
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CHAPTER 4. CONCLUSION

* Parallel and GPU computing can significantly accelerate segmentation of medical
images.

* A high-level framework for efficient and concurrent medical image computing and
visualization on heterogeneous systems is needed.

* Good temporal, appearance and shape models are needed for automatic, robust and
accurate segmentation of medical images.
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Abstract

Segmentation of anatomical structures, from modalities like computed tomography
(CT), magnetic resonance imaging (MRI) and ultrasound, is a key enabling tech-
nology for medical applications such as diagnostics, planning and guidance. More
efficient implementations are necessary, as most segmentation methods are compu-
tationally expensive, and the amount of medical imaging data is growing. The in-
creased programmability of graphic processing units (GPUs) in recent years have
enabled their use in several areas. GPUs can solve large data parallel problems at
a higher speed than the traditional CPU, while being more affordable and energy
efficient than distributed systems. Furthermore, using a GPU enables concurrent vi-
sualization and interactive segmentation, where the user can help the algorithm to
achieve a satisfactory result. This review investigates the use of GPUs to accelerate
medical image segmentation methods. A set of criteria for efficient use of GPUs are
defined and each segmentation method is rated accordingly. In addition, references
to relevant GPU implementations and insight into GPU optimization are provided
and discussed. The review concludes that most segmentation methods may benefit
from GPU processing due to the methods’ data parallel structure and high thread
count. However, factors such as synchronization, branch divergence and memory
usage can limit the speedup.

1 Introduction

Image segmentation, also called labeling, is the process of dividing the individual ele-
ments of an image or volume into a set of groups, so that all elements in a group have
a common property. In the medical domain, this common property is usually that ele-
ments belong to the same tissue type or organ. Segmentation of anatomical structures is a
key enabling technology for medical applications such as diagnostics, planning and guid-
ance. Medical images contain a lot of information, and often only one or two structures
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Input volume Segmented volume 3D surface of
segmented volume

Figure 1: Threshold-based segmentation of a computed tomography (CT) scan. The intensity of
each voxel in the input volume is compared to a threshold. If it is higher than the threshold the
voxel is segmented as part of the blood vessel. The segmentation result can be used to generate a
3D surface model that can be displayed to the user.

are of interest. Segmentation allows visualization of the structures of interest, removing
unnecessary information. Segmentation also enables structure analysis such as calcu-
lating the volume of a tumor, and performing feature-based image-to-patient as well as
image-to-image registration, which is an important part of image guided surgery. Figure 1
illustrates segmentation of a volume containing blood vessels. The segmentation result,
or label volume, is used to create a surface model of the blood vessels using the marching
cubes algorithm (Lorensen and Cline (1987)).

Many segmentation methods are computationally expensive, especially when run on large
medical datasets. Segmentation of image data, acquired just before the operation as well
as during the operation, has to be fast and accurate in order to be useful in a clinical setting.
Furthermore, the amount of data available for any given patient is steadily increasing
(Scholl et al. (2010)), making fast segmentation algorithms even more important.

Graphic processing units (GPUs) were originally created for rendering graphics. How-
ever, in the last ten years, GPUs have become popular for general-purpose high perfor-
mance computation, including medical image processing. This is most likely due to the
increased programmability of these devices, combined with low cost and high perfor-
mance.

Shi et al. (2012) recently presented a survey on GPU-based medical image computing
techniques such as segmentation, registration and visualization. The authors provided
several examples on the use of GPUs in these areas. However, only a few segmentation
methods are mentioned, and few details on how different segmentation methods can ben-
efit from GPU computing is provided. Pratx and Xing (2011) provided a review on GPU
computing in medical physics with focus on the applications image reconstruction, dose
calculation and treatment plan optimization, and image processing. A more extensive sur-
vey on medical image processing on GPUs was presented by Eklund et al. (2013). They
investigated GPU computing in several medical image processing areas such as image
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Used in this review OpenCL AMD GPUs NVIDIA(CUDA)

Core Compute unit Compute unit Streaming  multi-
processor

Thread processor Processing element | Stream processor | CUDA Core

Thread Work-item Work-item Thread

Work-group Work-group Work-group Thread block

Atomic Unit of Execution (AUE) | N/A Wavefront Warp

Kernel Kernel Kernel Kernel

Shared memory Local memory Local data store | Shared memory

Table 1: The different terminology used by different GPU vendors and GPGPU frameworks.

registration, segmentation, denoising, filtering, interpolation and reconstruction.

This review will focus exclusively on medical image segmentation, and thus provide more
references and details as well as a comprehensive comparison of the different segmenta-
tion algorithms. The goals of this review are to:

1. Give the necessary background information regarding GPU computing, provide a
framework for rating how suitable an algorithm is for GPU acceleration, and explain
how segmentation methods can be optimized for GPUs. (Section 2)

2. Explain and rate the most common segmentation methods using this framework and
provide a survey of how others have accelerated these segmentation methods using
GPUs. (Section 3)

2  GPU computing

This section explains the basics of GPUs, and their potential and limitations related to
medical image segmentation. An overview of GPU computing, including examples of
applications, can be found in Owens et al. (2008). This section may be skipped by readers
with a good understanding of GPU computing.

Modern GPUs used for general-purpose computations have a highly data parallel archi-
tecture. They are composed of a number of cores, each of which has a number of func-
tional units, such as arithmetic logic units (ALUs). One or more of these functional units
are used to process each thread of execution, and these groups of functional units are
called thread processors throughout this review. All thread processors in a core of a
GPU perform the same instructions, as they share a control unit. This means that GPUs
can perform the same instruction on each pixel of an image in parallel. The terminol-
ogy used in the GPU domain is diverse, and the architecture of a GPU is complex and
differs from one model and manufacturer to another. For instance, the two GPU manu-
facturers NVIDIA and AMD refer to the thread processors as CUDA cores and stream
processors, respectively. Furthermore, the thread processors are called CUDA cores in

53



the CUDA programming language and processing elements in OpenCL (Open Comput-
ing Language). Because of this diversity, an overview of the terminology used in this
review and by OpenCL, AMD and NVIDIA/CUDA is collected in Table 1.

Thread processors are sometimes referred to as cores, giving the false impression that
these cores are similar to the cores of a CPU. The main difference between a thread pro-
cessor and a CPU core, is that each CPU core can perform different instructions on dif-
ferent data in parallel. This is because each CPU core has a separate control unit. McCool
(2008) defined a core as a processing element with an independent flow of control. Fol-
lowing these definitions, this review will refer to the group of thread processors that share
a control unit, as cores. GPUs are generally constructed to fit many thread processors on a
chip, while CPUs are designed with advanced control units and large caches. At the time
of writing, high-end GPUs have several thousand thread processors and around 20 to 40
cores (Advanced Micro Devices (2012)). On the other hand, modern CPUs have around
4 to 12 cores. Figure 2 shows the general layout of a GPU and its memory hierarchy.

The first adopters of GPUs for general-purpose computing had to use frameworks and lan-
guages originally designed for graphics, such as OpenGL Shading Language (GLSL) and
C for graphics (Cg). As the popularity of GPU programming increased, general-purpose
GPU (GPGPU) frameworks such as CUDA and OpenCL were introduced. As opposed
to graphic frameworks, these do not require knowledge about the graphics pipeline, and
are therefore better suited for general-purpose programming. OpenCL is an open stan-
dard for parallel programming on different devices, including GPUs, CPUs and field-pro-
grammable gate arrays (FPGAs). OpenCL is supported by many processor manufacturers
including AMD, NVIDIA and Intel, while CUDA can only be used with GPUs from
NVIDIA.

Image processing libraries that provide GPU implementations of several low-level im-
age processing algorithms are emerging. However, most libraries still lack high-level
algorithms such as segmentation methods. Two of the largest image processing libraries,
OpenCV and the Insight Toolkit (ITK), both provide a GPU module with support for ba-
sic image processing algorithms. A difference between the two toolkits is that OpenCV
supports both CUDA and OpenCL, while ITK only supports OpenCL. Accelerated seg-
mentation methods are so far limited to threshold-based segmentation in these libraries.
Other GPU-based image processing libraries include NVIDIA Performance Primitives
(NPP), ArrayFire, Intel Integrated Performance Primitives (IPP), CUVILIB and OpenCL
Integrated Performance Primitives (OpenCLIPP). At the time of writing, these libraries
mainly provide GPU accelerated low-level image processing routines.

Several aspects define the suitability of an algorithm towards a GPU implementation. In
this review, five key factors have been identified: Data parallelism, thread count, branch
divergence, memory usage and synchronization. The following sections will discuss each
of these factors, and explain why they are important for an efficient GPU implementa-
tion. Furthermore, several levels are defined for each factor (e.g. low, medium, high and
none/dynamic), thereby creating a framework for rating to what extent an algorithm can
benefit from GPU acceleration.
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2.1 Data parallelism

An algorithm that can perform the same instructions on multiple data elements in parallel
is said to be data parallel, and the set of instructions to be executed for each element is
called a kernel. Task parallelism on the other hand, is a less restrictive type of parallelism
in which algorithms execute different instructions in parallel. As previously discussed, an
important characteristic of GPUs is the highly data parallel architecture. Hence, an algo-
rithm has to be data parallel in order to benefit from execution on a GPU. In comparison,
task parallel algorithms are more suited for multi-core CPUs.

The degree of speedup achieved by parallelization is limited by the sequential fraction of
the algorithm. According to Amdahl’s law (Amdahl (1967)), the maximum theoretical
speedup of a program where 95% is executed in parallel is a factor of 20, regardless of
the number of cores or thread processors being used. The reason for this is that the pro-
cessing time for the serial part of the code will remain constant. However, in practice the
speedup measured and reported in the literature is often much higher than the theoretical
limit. There are many reasons for this, one is that the serial version of the program is not
fully optimized. Another reason is that the parallel version of the program may use the
memory cache more efficiently. Lee et al. (2010) discussed how to make a fair comparison
between a CPU and GPU program. Throughout this review the degree of parallelism in a
segmentation method is rated as follows:

High: Almost entire method is data parallel (75% - 100%)
Medium: More than half of the method is data parallel (50% - 75%)
Low: None or up to half of the method is data parallel (0% - 50%)

2.2 Thread count

A thread is an instance of a kernel. To obtain a substantial speedup of a data parallel
algorithm on the GPU, the number of threads has to be high. There are two main reasons
for this. Firstly, the clock speed of the CPU is higher than that of the GPU, and secondly
global memory access may require several hundred clock cycles (Advanced Micro De-
vices (2012)), potentially leaving the GPU idle while waiting for data. CPUs attempt to
hide such latencies with large data caches. GPUs on the other hand, have a limited cache,
and attempt to hide memory latency by scheduling another thread. Thus, a high number
of threads are needed to ensure that some threads are ready while the other threads wait.
Data parallelism as previously described, is the percentage of the algorithm that is data
parallel. Thread count is how many individual parts the calculation can be divided into
and executed in parallel.

For most image processing algorithms, each pixel or voxel can be processed indepen-
dently. This leads to a high thread count, and is a major reason why GPUs are well suited
for image processing. For example, an image of size 512x512 would result in 262,144
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threads, and a volume of size 256x256x256, almost 17 million threads. The rating of the
thread count is defined as follows:

High: The thread count is equal to or more than the number of pixels/voxels in the image
Medium: The thread count is in the thousands
Low: The thread count is less than a thousand

Dynamic: The thread count changes during the execution of the algorithm

2.3 Branch divergence

Threads are scheduled and executed atomically in groups on the GPU. AMD calls these
groups wavefronts while NVIDIA calls them warps. However, in this review they will
be referred to as an atomic unit of execution (AUE). An AUE is thus a group of threads
that are all executed atomically on thread processors in the same core. The size of these
groups may vary for different devices, but at the time of writing it is 32 for NVIDIA GPUs
(NVIDIA (2010)) and 64 for AMD GPUs (Advanced Micro Devices (2012)).

Branches (e.g. if-else statements) are problematic because all thread processors that share
a control unit have to perform the same instructions. To ensure correct results, the GPU
will use masking techniques. If two or more threads in an AUE execute different execu-
tion paths, all execution paths have to be performed for all threads in that AUE. Such a
branch is called a divergent branch. If the execution paths are short, this may not reduce
performance by much.

The following levels are used for branch divergence:

High: More than 10% of the AUEs have branch divergence and the code complexity in
the branch is substantial

Medium: Less than 10% of the AUEs have branch divergence, but the code complexity
is substantial

Low: The code complexity in the branches is low

None: No branch divergence

2.4 Memory usage

At the time of writing, GPUs with 2 to 4 GB memory are common while some high-
end GPUs have 6 to 16 GB. Nevertheless, not all of this memory is accessible from a
GPU program, as some of the memory may be reserved for system tasks (e.g. display)
or used by other programs. This amount of memory may be insufficient for some seg-
mentation methods that operate on large image datasets, such as dynamic 3D data. The
system’s main memory can be used as a backup, but this will degrade performance due
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to the high latency of the PCle bus. For iterative methods, this limit can be devastating
for performance as data exceeding the limit would have to be streamed back and forth for
each iteration. Defining /V as the total number of pixels/voxels in the image the rating of
memory usage is:

High: More than 5NV
Medium: From 2N to 5N

Low: 2N or less

2.5 Synchronization

Most parallel algorithms require some form of synchronization between the threads. One
way to perform synchronization is by atomic operations. An operation is atomic if it
appears to happen instantaneously for the other threads. This means the other threads have
to wait for the atomic operation to finish. Thus, if each thread performs an atomic oper-
ation, the operations will be executed serially and not in parallel. Global synchronization
is synchronization between all threads. This is not possible to do inside the kernels on
the GPU except using atomic operations. Thus global synchronization is generally done
by executing multiple kernels which can be expensive. This is due to the need for global
memory read and write, double buffering and the overhead of kernel launches. Local
synchronization is to perform synchronization between threads in a group. This can be
done by using shared memory, atomic operations or the new shuffle instruction (NVIDIA
(2013a)). The rating of synchronization is defined in this review as follows:

High: Global synchronization is performed more than hundred times. This is usually
true for iterative methods.

Medium: Global synchronization is performed between 10 and 100 times
Low: Only a few global or local synchronizations

None: No synchronization

2.6 Framework

The previous sections covered five criteria, which we argue represent the most important
factors affecting GPU performance. Generally, for an algorithm to perform efficiently
on a GPU it has to be data parallel, have many threads, no divergent branches, use less
memory than the total amount of memory on the GPU and use as little synchronization
as possible. However, there are several other factors affecting GPU performance, such as
kernel complexity, ALU to fetch ratio, bank conflicts etc. The rating of each segmentation
algorithm is summarized in Table 2, along with relevant references. The overall rating of
a segmentation algorithm is given by:
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Graphics card

GPU
Core Core
Thread processors Thread processors
SESEEEE .. SEEEEES .
Shared memory | L1 cache Shared memory | L1 cache

Texture cache | L2 cache

Global, constant, texture memory

PCle

Host (CPU)

Figure 2: General layout of a GPU and its memory hierarchy. The registers are private to each
thread processor, the shared memory is private to each core, and the global, constant and texture
memory is accessible from all thread processors. Note that the actual layout is much more complex
and differ for each GPU.

High: Large speedup (10 times faster or more)
Medium: Some speedup (2 - 10 times faster)

Low: No substantial speedup (O - 2 times faster)

2.7 GPU optimization

This section provides some insight on how segmentation methods can be optimized for
GPUs.

2.7.1 Grouping

As mentioned in the previous section, threads are scheduled and executed atomically
on the GPUs in groups (AUE). GPUs also provide grouping at a higher level, enforced
in software and not in hardware like AUEs. These are called thread blocks in CUDA,
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and are referred to as work-groups in OpenCL. One benefit of these higher level work-
groups is that they are able to access the same shared memory, and thus synchronize
among themselves. The size of these work-groups can impact performance, and should be
set properly according to guidelines provided by the GPU manufacturers (see Advanced
Micro Devices (2012); NVIDIA (2013a)).

2.7.2 Texture, constant and shared memory

In addition to global memory, GPUs often have three other memory types, which can be
used to speed up memory access. These memory types are called texture, constant and
shared (also called local) memory. They are cached in different ways on the GPU, how-
ever, the size of these caches on the GPU are small compared to that of the CPU. Figure
2 show how this memory hierarchy is typically organized on a GPU.

The GPU has a specialized memory system for images, called the texture system. The
texture system specializes in fetching and caching data from 2D and 3D textures (NVIDIA
(2010); Advanced Micro Devices (2012)). It also has a fetch unit which can perform
interpolation and data type conversion in hardware. Using the texture system to store
images and volumes can improve performance. Most GPU texture systems support nor-
malized 8 and 16-bit integers. With this format, the data is stored as 8 or 16-bit integers
in textures. However, when requested, the texture fetch unit converts the integers to 32-bit
floating point numbers with a normalized range. This decreases the memory usage, but
also reduces accuracy, and may not be sufficient for all applications.

The constant memory is a cached read-only area of the global off-chip memory. This
memory is useful for storing data that remains unchanged. However, the benefit of
caching is only achieved when threads in an AUE read the same data elements (Advanced
Micro Devices (2012)). On AMD and NVIDIA GPUs the constant cache is smaller than
the cache used by the texture system (L1) (Advanced Micro Devices (2012); NVIDIA
(2013a)).

The shared memory is a user-controlled cache, also called a scratchpad or local memory.
This memory is shared amongst all threads in a group and is local to each core (compute
unit) of the GPU.

Generally, the GPU memory that is fastest to access is registers, followed by shared mem-
ory, L1 cache, L2 cache, constant cache, global memory and finally host memory (via
PClI-express) (Advanced Micro Devices (2012)). The number of registers per core is
limited, and exceeding this limit causes register spill, which will reduce performance. To
give an impression of the typical size of these memory spaces, the AMD Radeon HD7970
has a 128 kB constant cache for the entire GPU and 64 kB shared memory and 256 kB of
registers for each core (Advanced Micro Devices (2012)).

Using as few bits as possible can also speed up processing considerably. Using 8 and 16-
bit integers when the range is sufficient instead of the default 32-bit, not only reduces the
memory needed, but also memory access latency.
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2.7.3 Stream compaction

Some applications may only require a part of the dataset to be processed. This will lead
to a branch in the kernel, where one execution path does processing while another does
nothing. If threads in the same AUE follow both execution paths, a divergent branch
occurs and no time is saved. In these cases, it may be more efficient to remove the un-
necessary elements in advance, thus removing the divergent branch. This is called stream
compaction, and two such methods are parallel prefix sum (see Billeter et al. (2009) for
an overview) and histogram pyramids by Ziegler et al. (2006).

3 Segmentation methods

In this section, several commonly used image segmentation methods are presented and
discussed in terms of GPU computing. All of these segmentation methods can be used on
both 2D and 3D images, and the terms pixel and voxel are used interchangeably through-
out the review.

3.1 Thresholding

Thresholding segments each voxel based on its intensity using one or more thresholds, as
shown in Figure 1. In its simplest form, the method performs a binary segmentation using

a single threshold 7"
o J 1 ifI(@)>T
5(%) = { 0 else 1

Where T is the threshold, /(%) is the intensity of the volume at position ' and S(Z)
is the resulting label or class of the voxel at position Z. As seen in this equation, the
method is completely data parallel, since each voxel can be classified independently of
all others, and has no need for synchronization. The number of threads needed is equal
to the total number of pixels or voxels. While the method contains a divergent branch (a
branch were both paths are executed for some AUES), its simplicity enables the branch
to be reduced to a single instruction. The memory usage of the method is low, as only
storage for the actual segmentation result is needed, which has the same size as the input
image. No references on GPU implementation of this segmentation method are provided
as it is trivial to implement on the GPU. An example of a threshold kernel is provided in
Algorithm 1. This example uses a single threshold 7" and a 2D thread ID. It is important to
note that this kernel is memory bound because it performs one read and write operation to
global memory, which is slower than the comparison operation. The performance may be
increased by minimizing the number of global memory accesses. This can be achieved by
reading several pixels per thread in each read operation, while at the same time increasing
the number of compute operations per memory operation.

60



Algorithm 1 Thresholding kernel

function THRESHOLDINGKERNEL(image, result, ')
if image(threadID.x, threadID.y) > 7" then
result(threadID.x, threadID.y) < 1
else
result(threadID.x, threadID.y) < 0
end if
end function

Figure 3: Illustration of parallel region growing with double buffering. The pixel labeled S is the
seed pixel. The numbers indicate at which iteration the pixels in the red regions are added to the
final segmentation.

3.2 Region growing

Seeded region growing (Adams and Bischof (1994)) is another commonly used segmen-
tation method. This method starts with a set of seed pixels known to be inside the object
of interest. The seeds are either set manually using a graphical user interface or auto-
matically using a priori knowledge. From these seeds, regions containing the object of
interest will expand to the neighboring pixels if they satisfy one or more predefined cri-
teria. These criteria compare the current pixel to the seed or the pixels already included,
using attributes such as intensity, gradient or color. The region will continue to expand as
long as there exist neighboring pixels that satisfy the criteria. This method is similar to
breadth first search and flood fill algorithms.

Region growing is especially useful when the background and the region of interest have
overlapping pixel intensities, and are separated spatially by some wall or region. One
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example is thorax CT, where the voxels of the airways and the parenchyma both have low
intensities, and are separated by a blood filled tissue with high intensities.

Region growing is a data parallel method as all pixels along the border of the evolving
segmentation region are checked using the same instructions. However, as the border ex-
pands, the number of threads change. This is problematic because changing the number
of threads typically involves restarting the kernel, and this requires reading all the values
from global memory again. Nevertheless, the method can be executed on the GPU by
having one thread for each pixel in the entire image in each iteration. Figure 3 depicts
how the data parallel version of region growing works when double buffering is used.
This involves adding more work and introduces branch divergence, limiting the potential
speedup over an optimized serial implementation. Furthermore, as this is an iterative
method, global synchronization is needed, which also limits the speedup. The memory
usage is low (2N), as only the input data and the segmentation result are needed.

An example of a region growing implementation is shown in Algorithm 2. This is based
on the parallel breadth first search algorithm by Harish and Narayanan (2007). Segmented
voxels are marked with 1, queued voxels with 2 and others 0, in a result data structure
Swhich has the same size as the input image. The function C'(¥) checks the growing
criteria for voxel 7. In this algorithm, texture memory can be used to speed up the global
memory access. However, this requires double buffering which increases the memory
usage. Shared memory may also be used by first reading global data to shared memory,
then grow the region in the area covered by the shared memory and finally write the result
back to global memory.

Schenke et al. (2005) implemented seeded region growing on the GPU using GLSL, but
provided little description on the implementation. Pan et al. (2008) presented an imple-
mentation using CUDA and suggested increasing the number of seeds to make full use
of the GPU. Sherbondy et al. (2003) presented a different type of seeded region growing
implemented on the GPU with GLSL, which uses diffusion to evolve the segmentation.
To reduce unnecessary computations due to branch divergence, their implementation uses
a computational mask of active voxels which is updated in each iteration. Chen et al.
(2006) presented an implementation of interactive region growing on a GPU. In this im-
plementation, the user marks a region of interest in 2D, which is extruded to 3D. This
region of interest is used to create a computational mask that constrains the segmentation.
Their implementation also uses GLSL and they reported real-time speeds for medical 3D
datasets.

3.3 Morphology

Morphological image processing is often used in combination with other segmentation
algorithms such as thresholding, and is therefore included in this review. Examples of
morphological techniques include filling holes, and finding the centerline of a segmented
tubular structure. See Serra (1986) for a detailed introduction to mathematical morphol-
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ogy in computer vision.

Morphological techniques use a mask called a structuring element to investigate each
pixel. The value of each pixel is determined by the neighboring pixels inside the struc-
turing element. The simplest morphological operations are dilation and erosion. For a
binary image, dilation adds all pixels in the structuring element if the current pixel under

Algorithm 2 Parallel region growing

function REGIONGROWING(seeds)
initialize segmentation result S to all zeros
for each seed voxel sin parallel do
9% Add seed voxels to the queue
S(8) <2
end for
stopGrowing <— false
while stopGrowing = false do
stopGrowing <— true
GROW(S, stopGrowing)
end while
return S
end function

function GROW(S, stopGrowing)
for each voxel Z in parallel do
if S(Z¥) = 2 then
% Check growing criteria for voxel &
if C(Z) = true then
% Add voxel to segmentation
S(7) + 1
for each neighbor voxel i of ¥ do
if S(¢) = 0 then
9% Add voxel to queue
S() 2
stopGrowing <— false
end if
end for
else
% Remove voxel from queue
S(T) <0
end if
end if
end for
end function
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Figure 4: Morphological dilation using a 3x3 square structuring element (shown in red to the left).
Since the center pixel is 1, all O valued pixels under the structuring element are flipped to 1.

the center pixel in the structuring element is 1 as shown in Figure 4, using a 3x3 square
structuring element. Erosion has the opposite effect in which it removes the current pixel
with value 1 if there are any pixels in the structuring element that is 0. By combining and
repeating these simple operations in addition to other common set operations such as the
complement, union and intersection, more advanced operations can be performed.

These morphological operations process each pixel using the same instructions. How-
ever, branch divergence limits the speedup, which is also dependent on the size of the
structuring element. To avoid reading pixels multiple times from global memory, it can
be beneficial to use shared or texture memory. The memory usage is low, as only the im-
age itself and the structuring element is needed for the calculations. Some morphological
operations such as thinning, are iterative and therefore require global synchronization.

Morphological operations are a type of stencil operations which can be optimized for
GPUs as demonstrated by Holewinski et al. (2012). Eidheim et al. (2005) presented GPU
implementations of dilation and erosion using shader programming. They suggested using
the shader min and max operations to avoid if-statements. The impact of the structuring
element size can be reduced with more advanced methods, such as the Herk-Gil-Werman
algorithm (Herk (1992); Gil and Werman (1993)). This was done on the GPU by Thur-
ley and Danell (2012) using CUDA. Morphological operations can be performed on both
binary and non-binary images. Karas (2011) presented a GPU implementation of mor-
phological greyscale reconstruction.

3.4 Watershed

The concept of watershed segmentation (Vincent and Soille (1991)) is based on viewing
an image as a three dimensional object, where the third dimension is the height of each
pixel. This height is determined by the intensity value of the pixel, as shown in Figure 5.
In the resulting landscape, there are three types of points. These are determined by the
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Figure 5: Watershed segmentation. If the intensity values of the pixels of the images on the left
are interpreted as heights, it will give create the landscape to the right.

analogy of how a drop of water falling on that specific point would move according to the
topographic layout of the landscape:

1. Points that are local minima and where a drop of water would stay in this point

2. Points at which a drop of water would move downwards into one specific local
minimum

3. Points at which a drop of water would move downwards into more than one local
minimum

The points belonging to type 2 are often called watersheds or catchment basins and the
points belonging to type 3 are often called divide lines or watershed lines.

The main idea of segmentation algorithms based on these concepts is to find the watershed
lines. To find them, another analogy from this topographic landscape is used. Suppose that
holes are created in all the points that are local minima, and that water flow through these
holes. The watersheds in the topographic landscape will then be flooded at a constant
rate. When two watersheds are about to merge, a dam is built between them. The height
of the dam is increased at the same rate as the water level rises. This process is continued
until the water reaches the highest point in the landscape, corresponding to the pixel with
maximum intensity. The dams then correspond to the watershed lines.

For a review of different implementations of watershed segmentation the reader is re-
ferred to Roerdink and Meijster (2001). They also investigated parallel implementations
of the method, and concluded that parallelization is hard, because of its sequential na-
ture. A parallel implementation is possible by transforming the landscape into a graph,
subdividing the image, or flooding each local minimum in parallel. However, Roerdink
and Meijster concluded that all of these methods lead to modest speedups. Performing
watershed segmentation in a data parallel manner entails adding more work and branch
divergence. Thus the speedup over an optimized serial implementation will not be high.
This is evident in the literature, where speedups of only 2-7 times are reported.
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Algorithm 3 Parallel watershed segmentation using a cellular automaton (Kauffmann and
Piche (2008))

for all voxels Z in parallel do
if 7 is local minima number 7 then
distance(r) < 0
label(¥) < @
else
distance(r) < oo
label(%) < 0
end if
end for
while convergence is not reached do
for all voxels ¥ in parallel do
% N is the set of all neighbors of &
d <— minzen(distance(7) + cost(7, ¥))
Y < argmin;n (distance(17) + cost(7, Z))
if d < distance(Z) then
distance ()" < d
label(Z)" «+ label(%)
end if
end for
distance < distance’
label « label’
end while

Kauffmann and Piche (2008) presented a GPU implementation of watershed segmentation
using the cellular automaton approach described in Algorithm 3. This method calculates
the shortest path from each local minima to all pixels using the Ford-Bellman algorithm.
By creating a cost function where the cost of climbing in the landscape is infinite, the
shortest path will always lead downwards. Pixels are then assigned the same segmentation
label as their closest minima. Using this approach, all the pixels in the image may be
processed in parallel using the same instructions. The number of iterations needed to
reach convergence depends on the longest path and the branch convergence is high. The
memory usage is 4N because of double buffering, and that the distance has to be stored for
each pixel. Kauffmann and Piche reported a speedup of 2.5 times, and presented results
for 3D images as well.

Pan et al. (2008) presented a CUDA implementation, using a multi-level watershed method.
However, few implementation details and results were included. Vitor et al. (2009) cre-
ated one GPU and one hybrid CPU-GPU implementation. They concluded that the hybrid
approach was up to two times faster. Their method initially finds the lowest point from
each pixel using a steepest descent traversal. The plateau pixels are then processed to
find the nearest border. Finally, the pixels are labeled using a flood fill algorithm from
each minimum similar to seeded region growing. Korbes et al. (2009) and Korbes and
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Figure 6: Illustration of active contours. The image to the left is the input image, and the image
to the right shows the gradient magnitude of the input image convolved with a Gaussian kernel.
The red line superimposed on the right image is the active contour, which is driven towards the
high gradient parts of that image, corresponding to the edges in the original image. The green line
superimposed on both images show the contour of the lumen.

Vitor (2011) presented an implementation based on the work of Vitor et al. (2009). They
also compared performance to the cellular automaton approach by Kauffmann and Piche
(2008), and concluded that their implementation was about six times faster than a sequen-
tial version. This parallel method also processes each pixel iteratively and suffers from
branch divergence. Wagner et al. (2010) processed each intensity level in order starting
with the lowest intensity. The labels were merged in each iteration. Their implementation
used CUDA, and was 5-7 times faster than a serial implementation on 3D images.

3.5 Active contours

Active contours, also known as snakes, were introduced by Kass et al. (1988). These con-
tours move in an image while trying to minimize their energy, as shown in Figure 6. They
are defined parametrically as v(s) = [z(s), y(s)], where z(s) and y(s) are the coordinates
for part s of the contour. The energy E of the contour is composed of an internal Ej,, and
external energy Fey:

1
E = / Eini(v,8) + Eex(v(s))ds (2)
0

The internal energy depends on the shape of the contour and can, for example, be defined
as:

1
Ei(v,5) = 5(alt/(s)]* + Blv"(s) ") 3)
where o and (3 are parameters that control the tension and rigidity of the contour.
The contour can be driven towards interesting features in the image, by having an ex-

ternal energy with low values at the interesting features and high elsewhere. There are
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several different choices of external energy. A popular choice is the negative magnitude
of the image gradient, i.e. Eey(T) = —|V[G, x I(£)]|?, where G, is convolution with
a Gaussian lowpass filter. This choice of energy drives the contour towards the edges in
the image, as depicted in Figure 6. The convolution and gradient calculation can be exe-
cuted in parallel for each pixel, and optimized using texture or shared memory. A study
on how to optimize image convolution for GPUs can be found in the technical report by
Podlozhnyuk et al. (2007).

Active contours can be divided into two processing steps. The first is calculating the
external energy, and the second is evolving the contour. Both are data parallel operations.
The number of threads for calculating the external energy is generally the same as the
number of pixels, while the thread count for evolving the contour is lower.

A numerical solution to find a contour that minimize the energy E can be found by making
the contour dynamic over time v(s, t).

av”(s,t) — BoW(s,t) — VEe =0 (4)

The Euler equation (4) can be solved on the GPU as done by He and Kuester (2006) and
Zheng and Zhang (2012). The thread count is equal to the number of sample points on
the contour, which is much lower than the number of pixels in the image. Eidheim et al.
(2005) concluded that evolving the active contour on the CPU was faster, as long as the
number of points on the contour was below approximately 500. To evolve the contour,
each point s has to be extracted from the image using interpolation. Thus, active contours
may benefit from using the texture memory, which can perform interpolation efficiently.

Several other formulations of active contours have been implemented on the GPU. Per-
rot et al. (2011) accelerated a type of active contours that optimizes a generalized log-
likelihood function on the GPU. They used a prefix sum algorithm to calculate sums of
the image, and shared memory to improve memory access latency. Schmid et al. (2010)
implemented a discrete deformable model with several thousand vertices on the GPU us-
ing CUDA. Their implementation also allows interactive and concurrent visualization by
inserting the vertices into a vertex buffer object, and rendering it with OpenGL. Li et al.
(2011) used active contours based on Fourier descriptors implemented on GPUs, for real-
time contour tracking in ultrasound video. Kamalakannan et al. (2009) presented a GPU
implementation of statistical snakes, which compared the intensity value of each sample
point to a seed point. Their implementation was used to assess stains on fabrics.

As shown by Xu and Prince (1998), some different formulations of the external force
field V E. may get stuck in local minima, especially if boundary concavities are present.
Xu and Prince (1998) introduced a new external force field, gradient vector flow (GVF),
which addressed this problem. The GVF field is defined as the vector field V, that mini-
mizes the energy function E:

B(V) = [ alVP@P + V() - Vo(a) P Va(@) Pz ©)
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Algorithm 4 Parallel gradient vector flow using Euler’s method

Input: Initial vector field 170 and the constant .
V"V,
for a number of iterations do

for all voxels ¥ in parallel do

V(@) = V(&) + nV2V (7) —
V(&) = Vo(2))|Vo(2)?

end for

ViV
end for

where Vj, is the initial vector field and 1 1s an application dependent constant. This equa-
tion can be solved using an iterative Euler’s method as depicted in Figure 7. This approach
differs from other choices of external energy, which are generally not iterative. GVF is
thus more time consuming as many iterations are needed to reach convergence. A par-
allel GPU implementation is possible, as each pixel can be processed independently in
each iteration using Algorithm 4. This gives a high thread count and requires global syn-
chronization at each iteration. There is no branch divergence in the calculations, but the
memory usage is high, as the method creates a vector for each pixel and requires dou-
ble buffering. The discrete Laplacian operator in Algorithm 4 is calculated as a stencil
operation, which requires access to neighboring pixels. This calculation may benefit from
the 2D/3D spatial caching of the texture system. Eidheim et al. (2005), He and Kuester
(2006) and Zheng and Zhang (2012) all presented GPU implementations of GVF and
active contours for 2D images using shader languages. A GPU implementation of 2D
GVF written in CUDA was done by Alvarado et al. (2013). Smistad et al. (2012b) pre-
sented an optimized GPU implementation of GVF for 2D and 3D using OpenCL. This
implementation use both texture memory and a 16-bit storage format to reduce memory
latency.

3.6 Level sets

Similar to active contours, level set methods perform segmentation by propagating a con-
tour in the image (Sethian (1999)). The advantage of level sets compared to the methods
in the previous section, is that it allows for splitting and merging of the contours without
any additional processing.

Contours in the level set method are represented by the level set function, which is one
dimension higher than the contour. Hence, the level set function is a 3D surface when
2D images are being segmented, and a 4D hypersurface for 3D images. The level set
function in 2D segmentation, z = ¢(z,y,t), is defined as a function which returns the
height 2 from the position x, y in the image plane to the level set surface at time ¢. The
contour is defined implicitly as the zero level set, which is where the height from the
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Figure 7: Example of how gradient vector flow diffuses the gradients while preserving the large
input gradients. The image to the far left is the input image. The next images depict the magnitude
of the vector field after 0, 50 and 500 iterations. The bottom row shows the vector field of the
zoomed area indicated by the small red square.

plane to the surface is zero (¢(z, y,t) = 0). This is where the image plane and the surface
intersect. To propagate the contour in the x, y plane, the level set surface is moved in the
z direction as shown in Figure 8. How fast and in which direction a specific part of the
contour moves, is determined by how the level set surface bends and curves. The closer
the surface is to being parallel with the image plane, the faster it propagates. When the
level set surface is orthogonal to the image plane, the contour does not propagate at all.
Assuming that each point on the contour moves in a direction normal to the contour with
speed F’, the contour can be evolved using the following PDE:

Op(,y,t)

% F(z,y, 1)|Vo(x,y,t)| (6)

The speed function F' varies for different areas of the image [ and can be designed to
force the contour towards areas of interest and avoid other areas. In image segmentation,
the speed function is usually determined by the intensity or gradient of the pixels, and
the curvature of the level set function. A negative F' makes the contour contract, while a
positive F' makes it expand.

The level set method starts by setting an initial contour on the object of interest. This is
done either manually or automatically using prior knowledge. Next, the level set function
is initialized to the signed distance transform of the initial contour. Finally, the contour is
updated until convergence.

The PDE above can be solved using an iterative data parallel method, and finite difference
methods as shown in Algorithm 5. The thread count is equal to the number of pixels in the
image, as the level set function is updated iteratively for each pixel. Rumpf and Strzodka
(2001) presented a GPU implementation as early as in 2001. Updating the level set func-
tion ¢ for voxels far away from the contour, does not significantly affect the movement
of the contour. This observation has lead to two different optimization techniques, known
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Algorithm 5 Parallel level sets

Input: Initial segmentation and input image /
Output: Segmentation result .S
Initialize ¢ to signed distance transform from the initial segmentation
for a number of iterations or until convergence do
for all voxels Z in parallel do
Calculate first order derivatives
Calculate second order derivatives
Calculate gradient V¢(7)
Calculate curvature
Calculate speed term F'(, I)
¢'(T) = o(F) + ALF(Z, 1)V (7))
end for
=0
end for
for all voxels Z in parallel do
if 9(7) < 0 then
S(Z) + 1
else
S(Z) <+ 0
end if
end for

as narrow band and sparse field. Both reduce the number of voxels updated in each it-
eration. The narrow band method updates ¢ only within a thin band around the contour.
However, the sparse field method updates ¢ only at the neighbor pixels of the contour. Al-
though these methods reduce the number of threads considerably, they introduce branch
divergence. All of these level set methods also require global synchronization after each
iteration.

Hong and Wang (2004) used shader programming to create a GPU implementation of
level sets for 2D images, and reported a speedup of over 10 times that of a CPU implemen-
tation. Cates et al. (2004) presented an interactive application for level set segmentation of
3D images on the GPU. Lefohn et al. (2004) created a GPU implementation for volumes,
which was 10-15 times faster than an optimized serial version. They used the narrow
band optimization method and streamed only the relevant parts of the volume to the GPU
from the CPU. This was done because the GPU memory was too small to fit the entire
volume at that time. Jeong et al. (2009) also used the narrow band method. However, they
updated the active voxel set on the GPU using atomic operations. Roberts et al. (2010)
presented an optimization technique similar to the sparse field method. They used prefix
sum scan (see Billeter et al. (2009)) to compact the buffers containing the coordinates of
the active voxels on the GPU.

71



Zero level set

Image plane

t=1 t=2

Figure 8: Illustration of level set segmentation. A level set (hyper)surface is moved through the
image plane x,y for each time step. The current contour of the segmentation is defined as the
location where the height h to the (hyper)surface is zero. This is also called the zero level set. In
this example the level set segmentation is a circle that is gradually inflated over time.

3.7 Atlas / registration-based

An atlas is a pre-segmented image or volume. Atlas-based segmentation methods use
registration algorithms to find a one-to-one mapping between the atlas and the input im-
age. This mapping is the segmentation result. Each pixel in the input image will have a
corresponding pixel and segmentation class in the atlas.

Pham et al. (2000) argued that atlas-based segmentation is generally better suited for
segmentation of structures that are stable in the population at study. This makes it easier
to create a representative atlas. Still, atlas-based methods can be used as an initialization
of other methods, when large variation or pathology (e.g. an MRI scan of a patient with a
brain tumor) is present. In addition, atlas-based methods have the advantage that regions
may be automatically classified, based on labels from the atlas.

Several registration methods exist, and are often divided into the two categories intensity-
and feature-based methods. Intensity-based registration methods use the intensity values
in the two images (or image and atlas), and a similarity measure to perform the regis-
tration. Feature-based registration methods first extract some common features from the
images, and then register the images by matching these features. Mutual information and
iterative closest point are the most common intensity- and feature-based registration meth-
ods respectively, and both are discussed in more detail below. For even more details on
how to accelerate registration methods on the GPU, the reader is referred to Shams et al.
(2010a) and Fluck et al. (2011).
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Intensity-based registration - Mutual Information

Mutual information (MI) is a measure that can be used to assess how well one image is
registered to another. This measure is based on the assumption that regions of similar in-
tensity distribution in one image, correspond to regions with similar intensity distribution
in the other image (i.e. a dark region in one image can be similar to a bright region in
another image). The MI measure M is based on Shannon’s entropy H and is defined as:

M(A, B) = H(B) — H(B|A) %

where A and B are two images. Shannon’s entropy is defined as:

H(A) = Zpilog(%) (8)

i€EA

For images, p; is the probability that the current pixel ¢ in image A has a specific gray
value. The probability p; can be calculated from the histogram of the image. MI can be
interpreted as the decrease in uncertainty of image B, when another image A is presented.
In other words, if the MI is high, the images are similar.

To register two images using MI, one of the images is transformed to maximize the MI
measure. The GPU texture memory has hardware support for interpolation, which is often
needed for the image transformations. Different optimization techniques such as gradient
descent and Powell’s method can be used to find the transformation needed to maximize
MI. For a detailed review of registration of medical images using MI see Pluim et al.
(2003). The calculation of the MI measure requires summation, which can be done in
parallel using the prefix sum scan method. The histogram may be calculated in parallel
using sort and count. The number of threads is high, but global synchronization is needed,
as this is an iterative method. The optimization techniques gradient descent and Powell’s
method are not ideal for parallel execution because of their sequential nature (Fluck et al.
(2011)). Thus, several GPU-based registration methods run the optimization on the CPU,
and the similarity measure on the GPU. Global optimization techniques such as evolution-
ary algorithms (EAs) are highly amenable to parallelization. However, EAs are generally
more computationally expensive, and may be slow even when run in parallel. Lin and
Medioni (2008) and Shams and Barnes (2007) presented GPU implementations of the
MI computation using CUDA. Shams et al. (2010b) improved their previous implemen-
tation by optimizing the histogram computations. This was done using a parallel bitonic
sort and count method to avoid performing expensive synchronization and use of atomic
counters. With these improvements they reported real-time registration of 3D images, and
a 50 times speedup over a CPU version of MI.

Feature-based registration - Iterative closest point

Iterative closest point (ICP) is an algorithm for minimizing the difference between two
sets of points. This algorithm was first used for registration by Besl and McKay (1992).
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Figure 9: Illustration of the iterative closest point method to align two lines. A set of points is
chosen along each line. One of the point sets is iteratively moved and transformed to minimize the
distance between each point set.

In order to use this algorithm for registration, corresponding physical points have to be
identified in both images. This can be done either manually or by using image processing
techniques. The algorithm starts by finding the closest point in the second point set for
each point in the first point set. The corresponding points are then used to calculate a
transformation, which transforms one of the point sets closer to the other. Transformation
parameters are usually estimated using a mean square cost function. This procedure is
repeated as long as necessary, and is depicted in Figure 9 for two lines.

Finding the closest points and transforming the corresponding points are both data par-
allel operations. The thread count is equal to the number of points, which is typically
significantly lower than the number of pixels in the image. The memory usage is low, and
there is no branch divergence. However, global synchronization is needed at the end of
each iteration.

Langis et al. (2001) described a parallel implementation of ICP for clusters where the
points were distributed on several nodes. The rigid transformation was computed in par-
allel using a quaternion-based least squares method. This resulted in an improved speedup
due to increased parallelization and reduced communication among the nodes. Qiu et al.
(2009) presented a GPU implementation of the ICP algorithm with 88 times speedup over
a sequential CPU version.

3.8 Statistical shape models

Several organs in the human body have similar shapes for different individuals. The shape
of these organs may be modeled and segmented using a statistical shape model (SSM).
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This method creates a statistical model of an organ based on a set of pre-segmented images
from several individuals. Segmentation is done by fitting the model to the new image
data. The difference between SSMs and atlas models is that SSMs model the shape,
while an atlas models the tissue distribution and location of each segmentation class in an
image. Nevertheless, one type of SSMs called active appearance models also use intensity
information in the image.

Heimann and Meinzer (2009) presented a review on image segmentation using SSMs.
They argued that this method is more complex than other methods, but more robust to
local image artifacts and noise. An SSM consists of a mean shape and modes of variations.
Generally, shapes are represented as a set of landmark points called a point distribution
model (PDM). These points have to be present in each training sample, and be located at
the same anatomical positions. Setting the landmarks in the training samples can be done
manually by an expert. However, this is time consuming, and not practical for large 3D
shapes. Thus, automatic methods are often used instead.

After the landmarks have been identified, the shapes of the training samples are aligned
using translation, rotation and scaling. The generalized procrustes analysis algorithm
(GPA) (Gower (1975)) is often used for this. This algorithm iteratively aligns the shapes
to their unknown mean. This entails a series of summations and vertex transformations.
All of these calculations are data parallel, and can be performed on the GPU with a thread
count equal to the number of landmarks. Next, a shape correspondence algorithm is
used to perform registration of all the shapes. The ICP and MI registration algorithms
can be used for this (see previous section). Other methods parameterize all shapes to
a common base domain, such as a circle for 2D and a sphere for 3D. Corresponding
landmarks are then identified as those that are located at the same locations in the base
domain. Nevertheless, the initial parameterization of the shapes may not be optimal, and
re-parameterization may be needed. Minimum description length (MDL) (Davies et al.
(2002)) is an objective function that tries to create optimal landmarks on each shape. This
can be used to guide the re-parameterization and give an optimal set of landmarks. Gen-
erally, establishing shape correspondence is one of the most challenging tasks of SSMs
and one of the major factors influencing the overall result (Heimann and Meinzer (2009)).

After the landmarks have been identified and placed in the same coordinate space, the
mean shape and modes of variation can be computed. Assuming that the landmark points
are arranged as a single vector #; = {(z1,v1,21), ..., (TN, Yn, 2v)} Of coordinates for
each training sample ¢, the mean shape, ., can be calculated as the average location
of each landmark:

1 M
Lmean = M ; X (9)

In addition to the mean, a small set of modes which describes the shape variations is cal-
culated. This is usually done with principal component analysis (PCA). Andrecut (2009)
and Josth et al. (2011) both presented a GPU implementation of PCA using CUDA. The
amount of speedup depends on the number of landmark points, and they argued that more
than a thousand landmark points are necessary. For large organs such as the liver, several
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Algorithm 6 Parallel PCA

Input: Matrix of landmarks for each shape: X = [¥, 7y, ...Z ]
Output: First c eigenvalues: ¢4, ¢o, ...0.
R=X
for k =1tocdo
¢r <0
for a maximum number of iterations do
Do several matrix operations in parallel
which result in a new ¢},
(see Andrecut (2009) for details)
if |¢r — ¢} | < e then
break
end if
O < P,
end for
Update residual matrix R
end for

thousand landmarks are often employed (Heimann et al. (2009)). However, there might
not be any benefit of GPU execution for small organs, where only a few hundred land-
marks are used. Algorithm 6 describes a crude parallel PCA implementation. More details
can be found in Andrecut (2009). The implementation is iterative and test for convergence
by comparing the absolute difference of the new and old eigenvalue ¢ to a parameter
€. The actual computations consist of several matrix operations such as multiplication,
addition and transpose, all of which can be executed in parallel on the GPU. There are
several GPU libraries that can be used to accelerate these matrix operations. A few exam-
ples are ViennaCL, MAGMA, cuBLAS and cIBLAS.

After PCA has been performed it is possible to approximate each valid shape using the
first c modes

T = fmean + Z gzgz (10)
=1

where b; is the ith shape parameter and (EZ is the ith of the c eigenvalues obtained by PCA.

The calculations of the mean shape 7., and a specific shape Z can also be run on the
GPU. However, the achievable speedup depends on the number of landmark points, which
as discussed above can be low. Nevertheless, the creation of the statistical shape model is
ideally done only once in a training phase and is not performed for each new segmentation.
It can therefore be done offline, and one can argue that the acceleration of the training
phase is not as important as the actual segmentation step in the SSM method.

After the SSM is built, an image is segmented using a search algorithm that tries to match
the SSM to the image.
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Figure 10: The active shape model algorithm locates borders in a line search from each landmark
point on the statistical shape model. A displacement is calculated and the shape is moved, scaled,
rotated and deformed to best fit the identified border points. This is repeated until convergence.

Khallaghi et al. (2011) used a registration method based on the linear correlation of lin-
ear combination similarity metric. They implemented the registration part on the GPU,
while the rest of the SSM method was implemented on the CPU. The registration pro-
cess entailed simulation of an ultrasound image based on a CT image, and a B-spline
deformable registration. They reported a speedup of 350 times in comparison to a CPU
implementation. However, they provided few details on the implementation.

Active shape models (ASMs) (Cootes et al. (1995)) is a local search algorithm that searches
for contour points along the normal of each landmark point. This is depicted in Figure 10.

After a displacement for each landmark point has been calculated, the shape is moved,

rotated and scaled. Finally, the shape parameters g, are estimated. This is repeated until

the shape change falls below a threshold, which requires global synchronization. ASM is

a data parallel method with the thread count equal to the number of landmark points. The

memory usage is low, as only the SSM has to be stored.

Another search algorithm for SSMs is active appearance models (AAMs) (Cootes et al.
(2001)). AAMs use appearance models to drive the search. These appearance models are
able to generate a synthetic image from the current shape. This synthetic image is super-
imposed on the input image, and used to calculate how well the current shape matches
the input image. Finally, this measure is used to estimate the orientation, scale and shape
parameters. As with ASM, this is done iteratively, and requires global synchronization.
The synthesis of images is done by texture transformation, a task which GPUs excel at
due to its data parallel nature and high thread count. Nevertheless, Heimann and Meinzer
(2009) argue that AAM is rarely used on 3D images as the memory requirement of AAM
is very high.

ASM and AAM have been popular for tracking faces in video. Ahlberg (2002) and Song
et al. (2010) presented GPU implementations of AAM and ASM respectively for face
tracking. Ahlberg (2002) used OpenGL for the texture mapping in the AAM search.
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Song et al. (2010) used the GPU for pre-processing operations such as edge enhancement
and tone mapping, and for the ASM search.

3.9 Markov random fields and graph cuts

Markov random field (MRF) segmentation (Wang et al. (2013a)) considers all the pixels
in the image as nodes in a graph. All nodes are connected and each pixel has an edge
to its neighbor pixels. Each node has a probability distribution associated with it, which
consists of the probability of the pixel belonging to each class. These nodes have the
Markov property, which states that the probability distribution of a node only depends on
its closest neighbors.

MREF segmentation is to find the segmentation S that maximizes the probability P(S|I),
where [ is the observed image to be segmented. S can express several different seg-
mentation classes for each pixel. This makes MRF segmentation ideal for multi-label
segmentation. Using Bayes formula this becomes:

P(I]S)P(S)

P(SIN = —ppy

(11)

In this formula, P(7|.S) is the probability of observing an image / given a segmentation S.
P(S) is the probability of a segmentation, and can be used to model how a segmentation
result should look like. P([) is considered to be a normalization constant, and is therefore
ignored in the calculations. Structures of interest can be segmented by creating different
expressions for P(I].S) and P(S).

There are several methods for maximizing the a posteriori distribution. One method is
iterative conditional modes (ICM), which was introduced by Besag (1986). ICM starts
with an initial segmentation S, and optimizes the local energy of each pixel deterministi-
cally. Thus, each pixel can be processed in parallel. This is repeated until convergence,
which requires global synchronization. However, ICM is prone to getting stuck in local
minima. Simulated annealing (SA) (Kirkpatrick et al. (1983)) is another optimization
method, which can avoid local minima. However, SA generally need a lot more iterations
to reach convergence. SA select the class of each pixel stochastically based on a tempera-
ture parameter. This temperature is first initialized to a high value, and gradually lowered.
This has the effect of allowing the segmentation S to reach many states in the beginning.
As the temperature is lowered, the segmentation is gradually restricted to minima states.
Both ICM and SA are iterative, and have a medium memory usage as double buffering
is required. The thread count is equal to the number of pixels in the image. The branch
divergence is low, as the number of instructions in the branches are low.

Griesser et al. (2005) presented a shader implementation of MRF segmentation, but pro-
vided few details of their implementation. Valero et al. (2011) implemented a GPU ver-
sion of the ICM method in the ITK library. They achieved significant speedups, and
mention optimizations such as using shared memory and loop unrolling. Jodoin (2006)
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Image 3x3

Figure 11: Illustration of graph cut segmentation of a 3x3 image. The image to be segmented is
shown to the left, its graph representation on the right. The thickness of the edges indicates their
weight.

presented an implementation using NVIDIA’s Cg shader language of both SA and ICM.
In both cases there is ample parallelism, as there is one thread for each pixel. The result
from one iteration is stored in texture memory, so that the neighborhoods of each pixel
can be read more efficiently during the next iteration. Walters et al. (2009) presented liver
segmentation using ICM and CUDA. They used coalesced reads from global memory to
increase performance, and experimented with different thread grouping configurations.
Another GPU implementation of ICM based MRF segmentation was presented by Sui
et al. (2012). As opposed to the other implementations mentioned here, they did not
process pixels with overlapping neighborhoods in parallel. Multiple passes are therefore
required for each iteration, and larger images are required for sufficient parallelism.

Modelling P(S) and P(I|S) can require several unknown parameters. These parameters
can be estimated using the expectation-maximization (EM) algorithm. This algorithm
is an iterative maximum-likelihood method. It requires calculation of the expectation of
the conditional distribution P(S|I), which is extremely complex (Zhang (1992)). How-
ever, a mean-field approximation can be used to make this calculation feasible Zhang
(1992). Saito et al. (2012) presented a GPU implementation of MRF segmentation using
the mean-field approximation and CUDA. However, they provided no details on the GPU
implementation.

Graph cut (Boykov and Veksler (2006)) is another MRF segmentation method. This
method also uses a graph where all the pixels in the image are nodes, and each pixel
has an edge to its neighbor pixels. However, all pixels have an additional edge to two
special nodes, called a source (S) and sink (T) node. This is depicted in Figure 11. The
edges are assigned a weight, so that background pixels have a large weight to one of these
nodes, a small weight to the other, and vice versa for the foreground pixels. The weights
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of the edges between the pixels are designed to be large between similar pixels, and small
between different.

The segmentation is determined using a minimum cut graph algorithm. These algorithms
partition the nodes of a graph into two sets. The graph is cut so that the sum of the weights
of the cut edges is minimized. The result is a binary segmentation that is optimal in terms
of the weights assigned to the edges.

There are several algorithms for finding the minimum cut, and its dual problem maximum
flow, where the graph is considered to be a flow network. Two examples are the push-re-
label and Ford-Fulkerson algorithms.

The push-relabel method uses two operations, which both are executed for every node in
the graph. With one thread for each node, the total number of threads is high. However,
there is significant branch divergence, as these operations are only performed for a subset
of the nodes during each iteration. The memory usage of this method is high because it
has to store several attributes for each edge.

Dixit et al. (2005) presented a GPU implementation of the push-relabel algorithm us-
ing shader programming. However, in their comparison with a serial implementation, the
GPU implementation was slower except if some approximations were used. Hussein et al.
(2007) presented an optimized GPU implementation using CUDA, which was faster than
two different serial implementations. Vineet and Narayanan (2008) presented a similar
implementation where they improved the performance by using shared and texture mem-
ory to speed up memory access. The two previous implementations restrict the graph to
a lattice. Garrett and Saito (2009) showed how a GPU implementation of push-relabel
could be extended to arbitrary graphs by representing the vertices and edges in a linear
array.

An augmenting path is a path in the graph which has available capacity. The Ford-
Fulkerson method solves the minimum cut and maximum flow problem by iteratively
finding an augmenting path from the source to the sink node. Flow is sent through this
path, and this is repeated until no more flow can be sent. This method is not as well suited
for data parallel computation as the push-relabel algorithm. However, it is possible to
run the method in parallel by splitting the graph and solving each sub-graph in parallel as
done by Liu and Sun (2010) and Strandmark and Kahl (2010).

3.10 Centerline extraction and segmentation of tubular structures

Blood vessels, airways, bones, neural pathways and intestines are all examples of impor-
tant tubular structures in the human body. In addition to the segmentation, the extraction
of the centerline of these structures is also important. The centerline is a line that goes
through the center and provides a structural representation of the tubular structures (see
Figure 12). It is important in several applications such as registration of pre- and intraop-
erative data, which is a key component in image guided surgery.

80



There are several methods for extracting tubular structures from medical images. A recent
and extensive review on blood vessel extraction was done by Lesage et al. (2009), and an
older one was done by Kirbas and Quek (2004). Two reviews on the segmentation of
airways were done by Lo et al. (2009) and Sluimer et al. (2006).

A common method for extracting tubular structures is to grow the segmentation iteratively
from an initial point or area. For instance using methods such as region growing, active
contours and level sets.

A centerline can be extracted from a binary segmentation using iterative morphological
thinning, also called skeletonization. With this method, voxels are removed from the seg-
mentation in a particular order until the object can not be thinned anymore. This is an
iterative data parallel method with a thread count equal to the size of the volume. The
method has branch divergence, because only a subset of the voxels need to be examined
at each iteration. Jiménez and Miras (2012) presented a GPU and multi-core CPU imple-
mentation of the thinning method by Paldgyi and Kuba (1999) using CUDA and OpenCL.

Another approach is to use a distance transform or gradient vector flow (GVF) as done
by Hassouna and Farag (2007). As explained previously, computation of GVF can be
accelerated on the GPU (Eidheim et al. (2005); He and Kuester (2006); Zheng and Zhang
(2012); Smistad et al. (2012b)).

Direct centerline extraction without a prior segmentation is also possible using methods
such as shortest path and ridge traversal. Aylward and Bullitt (2002) presented a review
of different centerline extraction methods. They proposed an improved ridge traversal
method based on a set of ridge criteria, and different methods for handling noise. Bauer
and Bischof (2008) showed how this method could be used together with GVF. However,
ridge traversal is not a data parallel algorithm and therefore not suited for GPU accelera-
tion.

These methods usually need an initial estimation of candidate centerpoints or the direction
of the tubular structure. Tube detection filters (TDFs) are used to detect tubular structures
by calculating a probability of each voxel being inside a tubular structure. Most TDFs use
gradient information, often in the form of the eigenanalysis of the Hessian matrix. Frangi
et al. (1998) presented an enhancement and detection method for tubular structures based
on the eigenvalues of this matrix. A similar vessel enhancement method was implemented
on the GPU by Wang et al. (2013b) using CUDA.. Krissian et al. (2000) created a model-
based detection filter that fits a circle to the cross-sectional plane of the tubular structure.
These TDFs are data parallel, and are computed for each voxel in the volume. No syn-
chronization is needed, and the memory usage is low, as only one likelihood value has to
be stored per voxel.

Erdt et al. (2008) performed the TDF and a region growing segmentation on the GPU and
reported a 15 times faster computation of the gradients and up to 100 times faster TDF.
Narayanaswamy et al. (2010) did vessel laminae segmentation with region growing and a
hypothesis detection on the GPU and reported an 8 times speedup. Bauer et al. used GPU
acceleration for the GVF computation in Bauer et al. (2009a), and the TDF calculation in
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Figure 12: Centerline, displayed in red, of the airway tree. The centerline was extracted using
tube detection filters from computed tomography data and the segmentation was created using a
region growing algorithm with the centerline as seeds. All the processing was done on the GPU
as explained in Smistad et al. (2013).

Bauer et al. (2009b). However, they provided no description of the GPU implementations.
Smistad et al. (2012a) presented an implementation of airway segmentation and centerline
extraction. In this implementation, dataset cropping, GVF and TDF were executed on the
GPU using OpenCL. This implementation was further developed in Smistad et al. (2013)
to run completely on the GPU, and process other types of tubular structures such as blood
vessels from different organs and modalities.

3.11 Segmentation of dynamic images - Tracking

So far, only segmentation of single images, acquired at one specific time, has been dis-
cussed. However, medical image data acquired over time also exist. For instance ul-
trasound devices captures several images per second. Real-time processing of such data
requires streaming of the data directly to the GPU. The segmentation of structures in
dynamic image data is often referred to as tracking. One way to do segmentation of
dynamic images, is to apply one of the segmentation methods discussed so far on each
frame. However, this may not satisfy real-time constraints. Another approach is to use
the segmentation of the previous frame to segment the next frame. The segmentation of
the previous frame can be used for initialization, or to create some a priori knowledge for
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the next frame. Or more advanced statistical state estimation methods can be used, such
as Kalman and particle filters. In this section, these two methods will be discussed fur-
ther. An open source library for tracking called Open Tracking Library (OpenTL) (Panin
(2011)) supports GPU processing, and implements both of these methods and others.

3.11.1 Kalman filter

The Kalman filter (Kalman (1960)) is an algorithm that tries to estimate a state using
a series of noisy measurements over time. In image segmentation, the state may be a
set of parameters describing the transformation of a shape, such as translation, rotation,
scaling and deformation. Several types of measurements can be conducted. One type of
measurement for object tracking is the offset from each point on the shape to the object’s
edges in the current image frame. These offsets are found by a line search along the
normal in each point, similar to active shape models (ASMs). The measurement process
is data parallel, and the thread count is equal to the number of line searches.

The algorithm itself consists of a set of matrix operations, and most of the matrices have
sizes dependent on the number of state variables and measurements. Matrix operations
such as multiplication, addition and inversion are all data parallel operations, and the
thread count is dependent on the matrix size. There exist several linear algebra libraries
for the GPU that can be used for acceleration of such operations. A few examples are
ViennaCL, MAGMA, cuBLAS and cIBLAS.

Thus, segmentation of dynamic images using the Kalman filter is a data parallel operation,
and the thread count is dependent on the number of measurements and state variables.
These numbers can vary a lot from one application to another. However, they are a lot
smaller than the number of voxels. Thus, the thread count is medium. The memory usage
is low, as only a few small matrices have to be stored. Some branch divergence may occur
on the line searches. For instance if some of the points on the shape are outside of the
image. However, the actual algorithm has no or little branch divergence.

Huang et al. (2011) presented a GPU implementation of the Kalman filter written in
CUDA. They observed a very large speedup compared to a serial implementation. The
number of state variables ranged from 250 to 4500 and measurements from 1000 to 7000.

3.11.2 Particle filter

The particle filter method (Arulampalam et al. (2002)) tries to estimate the posterior den-
sity of the state variables given the measurements. This is done by performing a Monte
Carlo simulation with a large number of samples, also called particles. Each particle is
a possible state for the next time step. The particles are assigned a weight, which deter-
mines how well it describes the posterior density. This is done by evaluating how well
each particle matches the object in the next image. With a large number of particles this
process can be computationally expensive. However, each particle can be processed in

83



parallel, and an estimate of the next state can be determined by calculating a weighted
sum of these particles. Thus, the method is highly data parallel. The thread count is equal
to the number of particles. A high particle count generally gives better results, and a
couple of thousand particles seems to be common (Montemayor et al. (2006); Brown and
Capson (2012)). The memory usage is dependent on how the weight calculation is im-
plemented. For instance, Brown and Capson (2012) generated an image for each particle,
and compared each of these synthetic images to the next image, which gave a high mem-
ory usage. The rest of the method uses little memory. The same applies for the branch
divergence.

Several GPU implementations of particle filtering have been reported, and have primar-
ily focused on accelerating the expensive weight calculation step. Montemayor et al.
(2006) used Cg and achieved real-time speeds with up to 2048 particles on a stream of
2D images with the size 320x240. Mateo Lozano and Otsuka (2008) and Lozano and Ot-
suka (2008) implemented face tracking on a stream of images with size 1024x768 using
CUDA. Murphy-Chutorian and Trivedi (2008) and Lenz et al. (2008) did face tracking
using GLSL. Brown and Capson (2012) created a GPU framework written in CUDA for
tracking 3D models in a stream of 2D images. They used shared memory to accelerate
the weight calculation process.

4 Discussion

In the preceding sections, GPU acceleration for medical image segmentation has been
reviewed. To conclude the survey, a discussion on the main findings and some predictions
regarding the future of image segmentation on GPUs are presented.

4.1 Current state of the art

The main findings of this review are summarized in Table 2. In this table, all the segmenta-
tion methods discussed in this paper are listed, and rated using the framework introduced
in Section 2.

In general, most segmentation and image processing methods process each pixel using the
same instructions, and data from a small neighborhood around the pixel. Thus, the thread
count is usually high. Typical sizes of medical datasets are 512 x 512 for images, and 5123
for volumes, which amount to over 262 thousand pixels and more than 134 million voxels
respectively. However, as seen in this review, some segmentation methods do not process
each pixel. Examples include active contours, which move a contour consisting of a set
of points, and statistical shape models, that model shapes using a set of landmark points.
For these methods, it may only be beneficial to use GPUs when the number of points is in
the thousands.
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Method [ Data parallelism [ Thread count [ Branch div. [ Memory usage [ Synch. [ GPU suit.

Thresholding High [ High [ None [ Low [ None [ High
Trivial to implement
Region growing High ] High [ High [ Low |  High [ Medium

Schenke et al. (2005); Pan et al. (2008); Sherbondy et al. (2003); Chen et al. (2006); Harish and
Narayanan (2007)

Morphology High ] High [ High | Low | None-High [  High
Eidheim et al. (2005); Thurley and Danell (2012); Karas (2011)
Watershed High [ High [ High [ Medium [ High [ Medium

Roerdink and Meijster (2001); Kauffmann and Piche (2008); Pan et al. (2008); Vitor et al. (2009);
Korbes et al. (2009); Korbes and Vitor (2011); Wagner et al. (2010)

Active contours

- External energy High High None Low None High
Podlozhnyuk et al. (2007)
-GVF High ] High [ None | High [ High [ High

Eidheim et al. (2005); He and Kuester (2006); Zheng and Zhang (2012); Smistad et al. (2012b);
Alvarado et al. (2013)

- Contour evolution High [ Medium | None | Low |  High [ Medium
He and Kuester (2006); Zheng and Zhang (2012); Eidheim et al. (2005); Perrot et al. (2011);
Schmid et al. (2010); Li et al. (2011); Kamalakannan et al. (2009)

Level sets

- Default High High High Medium High High
Rumpf and Strzodka (2001); Hong and Wang (2004)

- Narrow-band High | Dynamic | High [ Medium | High [ High
Cates et al. (2004); Lefohn et al. (2004); Jeong et al. (2009)

- Sparse-field High |  Dynamic | High [ Medium [ High [ High

Roberts et al. (2010)

Atlas-based

- Mutual Information High High None Medium High High
Lin and Medioni (2008); Shams and Barnes (2007); Shams et al. (2010b)
- Tterative closest point High | Low-Medium | None | Low | Medium [ Medium

Langis et al. (2001); Qiu et al. (2009)

Statistical shape mod.

- Active shape model High Low-Medium None Low Medium Medium
Song et al. (2010)
- Active appearance High High None High Medium Medium
model
Ahlberg (2002)
Markov random field
- Iterative conditional High High Low Medium High High
modes
Griesser et al. (2005); Valero et al. (2011); Jodoin (2006); Walters et al. (2009); Sui et al. (2012)
- Mean-field High ] High [ Low ‘ Medium ‘ High ‘ High
Saito et al. (2012)
- Graph cut: Push- High High High High High Medium
relabel
Dixit et al. (2005); Hussein et al. (2007); Vineet and Narayanan (2008); Garrett and Saito (2009)
- Graph cut: Ford- Low - - - - Low
Fulkerson

Liu and Sun (2010); Strandmark and Kahl (2010)

Centerline extr. & seg.
of tubular structures

- 3D thinning High High High Low High High
Jiménez and Miras (2012)

- Ridge traversal Low ] - [ - [ - [ - [ Low
Non found

- Tube Detection Filters High l High [ High [ Medium [ None [ High

Wang et al. (2013b); Erdt et al. (2008); Narayanaswamy et al. (2010); Bauer et al. (2009b); Smistad
et al. (2012a, 2013)

Dynamic image seg.

Kalman filter High Medium Low Low High Medium
Huang et al. (2011); Panin (2011)
Particle filter High Medium [ None-High ‘ Low-High ‘ High ‘ High

Montemayor et al. (2006); Lenz et al. (2008); Mateo Lozano and Otsuka (2008); Lozano and
Otsuka (2008); Murphy-Chutorian and Trivedi (2008); Brown and Capson (2012); Panin (2011)

Table 2: Comparison of how well the segmentation methods are suited for GPU computation. See
section 2 for details on how each method is rated for each criteria. The ratings are based on §§
most common parallel implementations, parameters and input.



Most segmentation methods are also iterative because they run the same kernel several
times. This requires global synchronization, which at present time is not possible to do
efficiently from inside a kernel. The iterative processing often require double buffering,
because global memory writes are not coherent within one kernel execution. When using
textures, double buffering is currently required, as a texture can only be read or written
to in a thread. Double buffering doubles the amount of memory used, which can be
problematic for some methods such as 3D gradient vector flow.

Branch divergence is also a challenge for several methods, as not all pixels need to be
processed. This is the case in segmentation methods such as region growing and narrow-
band level sets. The performance loss due to branch divergence can be reduced using
stream compaction. However, this comes at a cost, and will not improve performance if it
has to be used for each iteration, which is the case for region growing.

Some GPU implementations may not provide a large speedup over an optimized serial
version because the implementation implies performing more work. This is true for meth-
ods such as region growing and watershed. With region growing, the total number of
pixels processed in each iteration is much higher in the data parallel GPU implementation
than the serial one.

Hadwiger et al. (2004) presented a report on the state of the art of GPU-based segmenta-
tion in 2004. In contrast, there were very few GPU-based segmentation implementations
at this time, with level set (Rumpf and Strzodka (2001); Lefohn et al. (2004) being one of
the exceptions. They concluded that branch divergence and memory management present
challenges for GPU implementations.

4.2 Software predictions

General purpose GPU frameworks such as OpenCL and CUDA have attracted a lot of
users in recent years. Their popularity is likely to increase, as they ease the programming
of GPUs compared to shader programming.

OpenCL enables efficient use of both GPUs and CPUs. It is likely that more hybrid solu-
tions that use GPUs for the massively data parallel parts, and the CPU for the less parallel
parts will appear. The challenge with these hybrid solutions is efficient sharing of data.
At the time of writing, sharing data has to be done explicitly by memory transfer over the
PCI express bus. However, this seems to be an issue that both major GPU manufacturers
want to improve. This will be discussed in more detail in the next section.

It is also likely that there will be an increase in GPU libraries with commonly used data
structures and algorithms such as heaps, sort, stream compaction and reduction. Libraries
and frameworks that aid in writing image processing algorithms as well as scheduling,
memory management and streaming of dynamic image data will probably become more
important as more algorithms and image data are processed on the GPU. One framework
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that aims to aid the design of image processing algorithms for different GPUs is the Het-
erogeneous Image Processing Acceleration Framework (HIPAcc).

4.3 Hardware predictions

The two main GPU manufacturers, NVIDIA and AMD, provide some details of the future
development of their GPUs. However, these details are subject to change.

In general, the trend in GPU development has been increasing the number of thread
processors, the clock speed and the amount of on-board memory. This allows more data
to be processed faster in parallel.

NVIDIA recently launched their new Kepler architecture, which provide dynamic paral-
lelism that allow threads to schedule new threads. However, the nesting depth is currently
limited to 24 (NVIDIA (2012)). Dynamic parallelism might prove to be useful in seg-
mentation methods that solve PDEs, such as level sets and GVF, by enabling fine grid
computations on some image areas and coarse grid computations on other parts. Their
current roadmap (NVIDIA (2013b)) suggests that their focus for the two next milestones
(Maxwell and Volta) will be on memory. Unified virtual memory will allow CPUs and
GPUs to share memory more seamlessly. Further down the road they plan to pile memory
modules atop one another, and place them on the same silicon substrate as the GPU core
itself. This technology is called stacked DRAM, and can supposedly give GPUs access to
up to one terabyte per second of bandwidth.

AMD plan to focus on heterogeneous computing through their Heterogeneous System
Architecture (HSA) initiative (Advanced Micro Devices (2013)). They state that current
CPUs and GPUs have been designed as separate processing elements, and do not work to-
gether efficiently. Their plans is to rethink processor design to unify these two processors
types, and give applications a unified address space.

Intel recently released another type of processor called the Intel Xeon Phi Coproces-
sor (Intel (2014)). These processors have a large number of cores (~60), large cache
(~30MB) and a lot of on-board memory (~16GB). However, in contrast to GPUs, they
have fewer thread processors (~240). Still, the large cache, memory bandwidth and size
may make these processors interesting also for medical image segmentation.

5 Conclusions

In this review, the most common medical image segmentation algorithms have been
discussed, and rated according to how suited they are for graphic processing units (GPUs).
Through this comparison, it is shown that most segmentation methods are data paral-
lel with a high amount of threads, which makes them well suited for GPU acceleration.
However, factors such as synchronization, branch divergence and memory usage can limit
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the speedup over serial execution. To reduce the impact of these limiting factors, several
GPU optimization techniques are discussed.
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Abstract

Purpose Computer systems are becoming increasingly heterogeneous in the sense
that they consist of different processors, such as multi-core CPUs and graphic pro-
cessing units (GPUs). As the amount of medical image data increases, it is crucial to
exploit the computational power of these processors. However, this is currently diffi-
cult due to several factors, such as driver errors, processor differences, and the need
for low level memory handling. This paper presents a novel FrAmework for hetero-
geneouS medical image compuTing and visualization (FAST). The framework aims
to make it easier to simultaneously process and visualize medical images efficiently
on heterogeneous systems.

Methods FAST uses common image processing programming paradigms, and hides
the details of memory handling from the user, while enabling the use of all processors
and cores on a system. The framework is open-source, cross-platform and available
online.

Results Code examples and performance measurements are presented to show the
simplicity and efficiency of FAST. The results are compared to the insight toolkit
(ITK) and the visualization toolkit (VTK), and show that the presented framework is
faster with up to 20 times speedup on several common medical imaging algorithms.
Conclusions FAST enables efficient medical image computing and visualization on
heterogeneous systems. Code examples and performance evaluations have demon-
strated that the toolkit is both easy to use, and performs better than existing frame-
works, such as ITK and VTK.

1 Introduction

An increasing amount of medical image data is becoming available for any given patient
today. Modern image analysis techniques make it possible to extract and visualize more
information from the images. The race for using the increasing amount of image data
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more effectively is paramount for better diagnostics and therapy in the future. Still, con-
current medical image computing and visualization of both static and dynamic real-time
data is computationally expensive. In the efforts toward improving computer assisted ra-
diology and surgery, this may entail that computational demanding research methods that
have been assessed to be quantitatively better then existing methods (in terms of accuracy
for example) can not be used in a routine clinical setting due to time constraints.

Most modern computer systems are heterogeneous in the sense that they consist of sev-
eral different processors, such as multi-core CPUs and graphic processing units (GPUs).
These processors enable parallel processing, which can accelerate many medical image
computing tasks significantly [7, 25]. The programming of this hardware is, however,
still difficult due to several factors. One factor is that the software needed to use the
hardware, such as GPU drivers and compilers, may contain errors which are hard to de-
bug. Also, the different manufacturers may have interpreted the standards differently.
This forces programmers to do more debugging and testing. Since the programmer can
not change proprietary software such as GPU drivers, the programmer may even have
to write separate code for different hardware manufacturers and software versions. The
result is increased software development overhead and fragmented source code.

GPUs were originally programmed using shaders intended for graphics rendering. Newer
frameworks, such as CUDA [18], enable general-purpose programming of GPUs. The
open computing language (OpenCL) [29] is an open standard for parallel programming
of heterogeneous systems. OpenCL enables parallel programming of different processors
such as multi-core CPUs and GPUs. These GPU programming tools expose the program-
mer to several hardware details. For instance, most GPUs have their own memory that
is separate from the computer’s main memory. This memory is often divided into sev-
eral different memory spaces such as global, texture and constant memory [19]. Thus, the
programmer has to explicitly move data between the different memories during execution.

In this article, we propose a framework called FAST (FrAmework for heterogeneouS
medical image compuTing and visualization). This framework aims to make it easier to do
efficient processing and visualization of medical images on heterogeneous systems. The
framework is open-source and available online!. FAST is also cross-platform, supporting
Windows, Mac OS X and Linux. The authors believe that in order to achieve satisfactory
performance in the more computational demanding medical applications, the framework
has to cover the entire pipeline from reading and streaming data to visualizing the result
on the screen. Thus, the framework currently includes methods for:

e Reading, writing and streaming image data in different formats.
e Image processing algorithms such as filtering, segmentation and registration.
e Surface mesh extraction and rendering.

e Multi-volume and slice rendering.

'"http://github.com/smistad/FAST/
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The framework aims to be easy to use by utilizing common programming paradigms from
popular toolkits, such as the insight toolkit (ITK) and the visualization toolkit (VTK), and
hiding the details of memory handling from the user. Also, the framework has many tests
and benchmarks which enable the user to make sure that all the hardware and software are
working properly, and gives the performance and accuracy necessary for a whole range
of medical image processing applications. We acknowledge that there exist many medi-
cal image computing algorithms created using ITK and VTK. The framework therefore
supports interoperability with these frameworks, such that image data can be shared and
pipelines from FAST, ITK and VTK can be linked. This may ease the integration of FAST
into existing applications.

1.1 Related work

ITK [9, 10] and VTK [21, 12] are two of the most commonly used frameworks for med-
ical image analysis and visualization. ITK contains several image processing algorithms
used in the medical domain, while VTK is mostly used for visualization. Several of the
image processing filters in ITK and VTK support multi-threading for execution on multi-
core CPUs. In this multi-threading model, the input image is split among a set of threads.
Each subimage is processed individually and the result is stitched together. These frame-
works were not initially created with support for GPU acceleration, except GPU-based
rendering. However, extensions have been proposed to enable such support [2, 11]. The
current version of ITK (4.6) includes GPU implementations of some algorithms such as
thresholding, smoothing and optical flow registration. However, these are implemented
as separate modules which are only available if compiled with a specific flag.

The open computer vision library (OpenCV) [20] is another popular image processing and
visualization framework. However, this framework focus primarily on 2D image process-
ing and lack several features that are important in the medical imaging domain such as
3D image processing, medical image formats and surface extraction. Still, OpenCV was
designed for computational efficiency and with a strong focus on real-time applications.
Several algorithms in OpenCV are implemented for the GPU using OpenCL.

While these frameworks provide accelerated processing more as an extension and as an
optional feature, the FAST framework presented in this article has been designed with
heterogeneous accelerated processing in mind from the start and it is part of the core of
the framework. We believe this will result in a framework that is faster and easier to use.

MeVisLab [13, 15] is a software which focus on rapid prototyping of medical image soft-
ware using a visual programming interface. It also supports integration with ITK and VTK
and has support for multi-threading. FAST on the other hand, focus on high performance
heterogeneous medical image computing and visualization and has currently no visual
programming interface.

One framework that aims to aid the development of image processing algorithms for dif-
ferent GPUs is the Heterogeneous Image Processing Acceleration Framework (HIPAcc)
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Figure 1: Block diagram of the framework. The numbers indicate which section describes the
different parts of the framework.

[14]. However, HIPAcc focus on the design of image processing algorithms and does not
include visualization and registration.

1.2 Outline

The next section describes the details of the framework. The result section presents code
examples and performance benchmarks of common medical image computing pipelines
on different systems. Finally, a discussion and conclusion is presented.

2 Methodology

The FAST framework consists of five main layers, as illustrated in Fig. 1. The bottom
layer is the actual hardware, i.e. the CPUs and GPUs. The second layer are the drivers
for this hardware, which are provided by the hardware manufacturers. Next is the library
layer, which consists of several libraries that are needed in the framework. The libraries
in this layer are:

e Open Computing Library (OpenCL) - An open standard for parallel program-
ming on heterogeneous systems, including multi-core CPUs, GPUs, and FPGAs. It
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is supported by most processor manufacturers including AMD, NVIDIA and Intel.
Open Graphics Library (OpenGL) - A cross-platform library for visualization.
GL Extension Wrangler (GLEW) - A library for handling OpenGL extensions.
Eigen - A fast cross-platform linear algebra library.

Qt - A cross-platform graphical user interface (GUI) toolkit.

Boost - A C++ utility library.

The next layer is the core of the framework, which is split into several groups:

Data (2.2) - Objects for data (both static and dynamic) such as images and meshes,
which enables the synchronized processing of such data on a set of heterogeneous
devices.

Importers/Exporters (2.3) - Data import and export objects for different formats
such as Metalmage (.mhd), raw, ITK and VTK.

Streamers (2.4) - Objects that enable streaming of data.

Algorithms (2.5) - A set of commonly used filtering, segmentation and registration
algorithms.

Visualization (2.6) - A set of renderers such as image, volume, slice and mesh
renderers.

Tests (2.7) - A set of tests for the framework which ensures that all parts of the
framework are working properly.

Benchmarks (2.8) - Mechanisms for measuring, assimilating and reporting the per-
formance of all operations in the framework.

The last layer is the application layer. The framework may be both a stand-alone applica-
tion, which enables benchmarking and tests of a heterogeneous system, and an external
library for other medical image computing applications.

The rest of this section will describe each part of the framework in more detail, but first
the execution pipeline of the framework is described.

2.1

The execution pipeline

FAST uses a demand-driven execution pipeline similar to what is used in ITK and VTK.
This entails that each processing step is first linked together to form a pipeline, that is not
executed until some object calls the update method. This can be done in two ways:

Explicitly by calling the update method on an object in the pipeline.
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e Implicitly by a renderer which calls update on its input connections several times
per second.

The pipeline consists of process objects, which extend the abstract base class ProcessOb-
ject. A process object is an object that performs processing and may have zero, one or
several parent process objects. Most process objects produce data objects which extend
the abstract base class DataObject. Similar to the newest version of VTK (version 6),
FAST uses a pipeline where the data objects are not explicitly part of the pipeline. Fig. 2
illustrates a simple pipeline with these two types of objects and how they are connected.

Data object Data object

/ Rendering
Data importer <——  Processing
\ Data exporter

Figure 2: A simple pipeline with process (blue/bright) and data objects (orange/dark). The arrows
indicate how the objects are connected.

Data objects have an internal timestamp. The timestamp is always updated when the
data is changed. Each process object has a list of timestamps for each connection. These
timestamps represent which version of the data objects were used the last time the process
object was executed. In addition, each process object has a flag indicating whether it has
been modified or not. This could be a parameter or input change.

When the update method is called on a process object, it will first call update on all its
parent objects. Thus update will be called on all objects backwards in the pipeline until
a process object with no input connections is encountered (e.g. an importer object). A
process object will re-execute by calling its execute method, if it is modified or one of its
input connections have changed timestamps. Thus each process object will implement its
own execute method while the update method is the same for each process object.

2.2 Data management

Throughout this article, we will use the OpenCL terminology and refer to a processor
with its memory as a device, and the main CPU as the host.

Data organization and synchronization is one of the key components in the proposed
framework. Image data is represented by an object called Image which is used for both
2D and 3D image data. These image objects represent an image on all devices, and its
data is guaranteed to be coherent on any devices after being altered. Thus, if an image
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| \

Pointers to where the
data is stored

Figure 3: A data object (e.g. an image) has pointers to all the devices where the data is stored.
Using the OpenCL terminology, a device is a processor with its memory, and the host is the main
CPU.

is changed on one device it will also be changed on the other devices before the data is
required on those devices. The same applies for other types of data like meshes where an
object called Mesh is used to represent a mesh on all devices (see Fig. 3). Dynamic data,
such as temporal 2D and 3D image data, is also supported. This is discussed in further
detail in section 2.4 on data streaming.

2.2.1 Data access

Two forms of data access are possible in the framework: 1) Read-only and 2) Read and
write. The general rule is that several devices can perform read operations on a data
object at the same time. However, if a device needs to write data, only that device can
have access to the data object at that time. This policy ensures data coherency across
devices. Thus, if a device wants to write to an image, it has to wait for all other operations
on that image to finish. When a device is writing to an image, no other devices can read
or write to that image.

To enforce this policy, several DataAccess objects are introduced for each data object.
For instance, in OpenCL, an image can be represented either as a buffer (i.e. a regular
array) or as an image/texture. Thus there exist one OpenCLBufferAccess object and one
OpenCLImageAccess object to facilitate such access to image data. From these objects
an OpenCL Image or Buffer object can be retrieved, which is needed to perform OpenCL
computations on the image. Access to the image from the main memory can also be re-
quested for doing processing on the CPU using C++. The DataAccess objects also have
methods for releasing the access, thus enabling other devices to perform write operations
on the image. The access will also be released in the destructor of this object to avoid
deadlocks. When the access is released, the OpenCL Image/Buffer object pointer is inval-
idated to ensure that the program can no longer manipulate the data. However, this does
not delete the actual data on the device. When write access to an object is requested, the
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framework will check that any previous access objects have been released.

2.2.2 Data change

Every time data is changed on a device, the change should be reflected on the other devices
as well. However, this doesn’t have to be done immediately. Updating the data can be
done the next time the data is requested on another device. This is often referred to as
lazy loading. The benefit of lazy loading is that the number of data transfers can be
reduced. However, the drawback is that there will be a transfer cost the next time the data
is requested on a device which doesn’t have the updated data.

Thus, each data object has a set of flags indicating whether the data (in the form of
OpenCL buffers, images and C++ pointers) is up to date for each device. When one
device has changed some data, these are set to false for all devices except the device in
which the change was performed. Next time the data is requested on a device, the flag is
checked and if it is false, a data transfer will start and the flag will be set to true for that
device.

2.2.3 Data removal

The amount of memory available on a system as well as on graphic cards are limited, and
may not be enough when working on large datasets. Thus it is crucial to remove data
that is not needed anymore. Data may be deleted explicitly by the programmer, however,
this is a burden for the programmer and may easily be forgotten. After the entire pipeline
has been defined by the programmer it is known which process objects need which data
objects as input. Thus it is possible to delete a data object after all the process objects that
use this data object have finished execution. This requires each process object to retain
and release the data objects when they are defined as input and when the process object
is finished using it. To facilitate this, each data object has a reference counter and when it
reaches zero, the data is deleted.

2.2.4 Data types

Medical images are represented in different formats. Some common examples are: Ultra-
sound (unsigned 8 bit integer), CT (signed/unsigned 16 bit integer) and MR (unsigned 16
bit integer). The framework currently supports the following data formats for images:

TYPE_FLOAT - 32 bit floating point number

TYPE_UINTS - 8 bit unsigned integer
TYPE_INTS - 8 bit signed integer
TYPE_UINTI6 - 16 bit unsigned integer
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e TYPE_INTIG6 - 16 bit signed integer

An image can also have multiple channels, or components, and currently 1-4 channels are
supported.

2.3 Data import and export

Data can be imported to and exported from the framework in several different forms such
as:

Metalmage file (.mhd, .raw and .zraw)

Image file (.jpg, .png etc.)

ITK image object

VTK image object
VTK file (.vtk)

In the future, the framework will also support common data formats such as DICOM [16]
and NIfTI [17].

2.4 Data streaming

Streamers are process objects that provide access to dynamic data. This can for instance
be real-time images from an ultrasound probe or a series of images stored on disk. The
output of streamer objects is a DynamicData object, which has a method for retrieving the
current frame in the stream. The DynamicData objects can contain one of several types
of data such as images or meshes. The streamers read data into the DynamicData object
in a separate thread so that processing and data streaming can be performed concurrently.
Streamers can use one of three different streaming modes:

e STREAMING_MODE_NEWEST_FRAME_ONLY
This will only keep the newest frame in the DynamicData object.

¢ STREAMING_MODE_PROCESS_ALL_FRAMES
This will keep all frames in the DynamicData object, but will remove the frame
from the object after it has been processed.

e STREAMING_MODE_STORE_ALL_FRAMES
This will store all frames in the DynamicData object.

For the second of these streaming modes it is also important to limit the size of the dy-
namic data buffer so that the streaming does not use up all memory. With this mode it
is therefore possible to set the maximum size of the dynamic data buffer. A producer-
consumer model is used to synchronize the use of the data.
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The data and process objects are designed so that it is easy to accept both static and
dynamic data as input and output to an algorithm.

2.5 Algorithms

Algorithms are implemented in the framework as process objects and thus have to over-
ride the execute method. Currently only a few filtering, segmentation and registration
algorithms have been implemented such as Gaussian smoothing, seeded region growing
[1], thresholding, skeletonization [8], iterative closest point [3] and surface extraction
(marching cubes) [23]. All algorithms support parallel processing on CPUs and GPUs.
In the near future, we plan to implement and integrate several other algorithms such as
level set segmentation, Kalman filter object tracking [28], gradient vector flow [22, 27]
and tube detection filters [24, 26].

2.6 Visualization
2.6.1 Graphical user interface and rendering

Qt is used in FAST as the graphical user interface. Qt is cross-platform, supports multi-
threading, direct rendering from OpenGL and event handling of keyboard and mouse
input. A visualization window in the FAST framework can have multiple views, and
each view can have multiple renderers. Windows are implemented using Qt’s QWidget
class, while the View extends the QGLWidget, which is a widget that may be rendered
to by OpenGL. The FAST renderers do the actual rendering. These renderers and the
event handling is executed in one thread, while the pipeline is run in another thread. This
enables concurrent visualization, camera movement and pipeline execution. Five different
types of renderers are currently available in FAST:

e Image renderer - For displaying 2D images.

Slice renderer - Extracts and displays an image from a volume in an arbitrary plane
using trilinear interpolation.

Mesh renderer - Renders a mesh.

Volume renderer - Creates an image of a volume using ray casting [4].

Point renderer - Renders a list of points.

2.6.2 Scene graph
Correct placement of images and geometry in the visualization scene is important. FAST

uses a scene graph for this purpose. In this directed graph, each data object has a node.
All data nodes are connected to a parent node, which can be another data node or a root
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Figure 4: An example of a scene graph. Images A and B are registered because they share a
root node. Image C is not registered to any other data. Each edge between the nodes has a
transformation object. This transformation determines how data is positioned relative to other
nodes. Meshes A and B are dependent on image A. Thus, moving image A will also move these
meshes.

node. Each edge between the nodes has a transformation object. This transformation
determines how data is positioned relative to other nodes. Fig. 4 shows an example of
a scene graph with three images and two meshes. The images A and B share a root
node, and are therefore registered. Image C is not registered to any other data. Image
A is placed in the visualization scene by applying the transformation 774 to the image.
Similarly, image B uses the transformation 775. Since these images are registered, the
corresponding voxel position in image B of a voxel position in image A can be determined
by first applying the transformation 774, and then the inverse transformation of image B
T;5. The meshes A and B are related to image A. These meshes may for instance be the
result of a segmentation of image A. Mesh A is placed in the visualization scene by first
applying the transformation from the mesh to image A 7’4, and then the transformation
from image A to the root node 774. Thus, if image A is moved in the scene, the meshes
A and B are also moved.

When an image or mesh is created, a corresponding data node is created in the scene
graph and connected to a root node. However, if the data is created from another data
object, it is connected to the data node of that data object instead. For instance, the sur-
face extraction algorithm will connect the resulting mesh to the image used to create the
mesh. A visualization of an image and a segmented surface mesh using the scene graph is
illustrated in Fig. 6. When importing a Metalmage, any transformation information such
as translation and rotation is read from the Metalmage file (.mhd) and put in the scene
graph.

2.7 Tests

As much as possible of the framework should be covered by unit and system tests. This
enables a user to ensure that the framework is working correctly on the user’s current
software and hardware configuration. The authors know by experience that new drivers,
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compilers and libraries can introduce errors that may stop the framework from working
properly. These tests enable a user to quickly detect these problems. The tests are writ-
ten using the Catch C++ testing framework [5]. Realistic test data is needed to test the
framework properly, and is therefore provided for download?.

The framework is available on the open-source community website GitHub. Each time
a user contributes to the project, three different computers will execute all tests with the
new code and verify that everything is working. These machines use all the supported
operating systems Windows, Mac OS X and Ubuntu Linux and processors from Intel,
AMD and NVIDIA. Thus, the source code of the framework is tested continuously on
several hardware and software configurations. We believe this is needed in order to ensure
the stability of FAST.

2.8 Benchmarks

Users may also want to test how well their current setup performs and see how perfor-
mance changes when software and hardware changes are introduced. For this purpose
benchmarks are provided, which are tests of different pipelines in which performance is
measured and reported.

3 Results

This section first presents some examples of how the framework can be used. These
examples are provided to show how easy it is to set up pipelines in FAST. Next, the
performance of the framework is measured and compared to that of ITK and VTK.

3.1 Code examples

The first example is a simple pipeline of four steps: import 3D image from disk, Gaussian
smoothing, surface extraction and rendering. The result is shown in Fig. 5. The steps of
the pipeline are linked together using the getOutputPort and setInputConnection methods
of the process objects. This is the same method used by ITK and VTK. The ::pointer
types are smart pointers which are created with the New method. These pointers reduce
memory problems such as memory leakage.

http://github.com/smistad/FAST/wiki/Test-data
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Figure 5: Result of pipeline A in Example 1. A 3D ultrasound image is first smoothed. Then,
surface extraction is used to extract a surface mesh from the smoothed image. Finally, a slice of
the smoothed 3D image is rendered together with the surface mesh.

Example 1: Pipeline A

// Import image
ImageFileImporter::pointer importer = ImageFileImporter::New();
importer->setFilename ("image.mhd") ;

// Blur image with Gaussian smoothing
GaussianSmoothing::pointer smoothing = GaussianSmoothing::New();
smoothing—->setInputConnection( importer->getOutputPort ());
smoothing->setStandardDeviation(1.0);

// Extract surface mesh with marching cubes
SurfaceExtraction::pointer extraction = SurfaceExtraction::New/();
extraction->setInputConnection( smoothing->getOutputPort ());

// Render surface mesh
MeshRenderer: :pointer meshRenderer = MeshRenderer::New();
meshRenderer->addInputConnection ( extraction->getOutputPort());

// Render slice

SliceRenderer::pointer sliceRenderer = SliceRenderer::New();
sliceRenderer->addInputConnection( smoothing->getOutputPort ());
sliceRenderer—->setSlicePlane (PLANE_X) ;

// Create a window, attach the renderers and start pipeline
SimpleWindow: :pointer window = SimpleWindow: :New () ;
window—->addRenderer (meshRenderer) ;

window->addRenderer (sliceRenderer) ;

window—->start () ;

This pipeline can easily be changed from using a single static image as input to a stream
of images by only substituting the Importer object with a Streamer object. The rest of
the pipeline is the same. Example 2 shows how a ImageFileStreamer object is created
to stream a series of Metalmages from disk. The streamer object uses a filename format
to find files. The hash sign (#) is replaced by an integer index which changes for each

111



Figure 6: Result of pipeline B in Example 4. Region growing is used to segment the bone structure
from a CT scan. A surface mesh is extracted from the segmentation and rendered together with a
slice of the CT scan. The scene graph is used to correctly position the two data objects.

image that is loaded. It is possible to change the start index and step which are 0 and
1 respectively by default. The streamer stops when no more images with the format are
found.

Example 2: Streaming images

ImageFileStreamer::pointer streamer = ImageFileStreamer::New();
streamer->setFilenameFormat ("image_frame_#.mhd") ;

The user may want to specify which device should be used as the default device. This
is done using the DeviceManager object as shown in Example 3. However, each process
object may override this if desired.

Example 3: Set the default device to be a GPU

DeviceManager: :setDefaultDevice ( DeviceManager::getOneGPUDevice ()) ;

The next example shows another pipeline. This pipeline performs region growing seg-
mentation on an image, extracts the surface mesh of the segmentation, and finally renders
the mesh and a slice of the input image. The result can be seen in Fig. 6.

Example 4: Pipeline B

// Import image
ImageFileImporter::pointer importer = ImageFileImporter::New();
importer->setFilename ("CT-Abdomen.mhd") ;

// Segment image with region growing

SeededRegionGrowing: :pointer segmentation = SeededRegionGrowing: :New () ;
segmentation->setInputConnection( importer->getOutputPort ());
segmentation->addSeedPoint (261,284,208);
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segmentation->setIntensityRange (150, 5000);

// Extract surface mesh with marching cubes
SurfaceExtraction::pointer extraction = SurfaceExtraction::New();
extraction->setInputConnection( segmentation->getOutputPort ());

// Render slice plane

SliceRenderer::pointer sliceRenderer = SliceRenderer::New();
sliceRenderer—>setPlaneToRender (PLANE_Z) ;
sliceRenderer->setIntensityWindow (1000);
sliceRenderer->setIntensityLevel (0)
sliceRenderer->setInputConnection( importer->getOutputPort ());

// Render surface mesh
MeshRenderer: :pointer meshRenderer = MeshRenderer::New () ;
meshRenderer->addInputConnection ( extraction->getOutputPort ());

// Create a window, attach the renderers and start pipeline
SimpleWindow: :pointer window = SimpleWindow: :New () ;
window->addRenderer (sliceRenderer) ;

window->addRenderer (meshRenderer) ;

window->start () ;

Pipeline C imports a 2D image and performs binary threshold segmentation. The segmen-
tation is skeletonized and finally rendered using the ImageRenderer as shown in Fig. 7.

Example S: Pipeline C

// Import image
ImageFileImporter::pointer importer = ImageFileImporter::New();
importer->setFilename ("image.png") ;

// Segment image with thresholding

BinaryThresholding: :pointer thresholding = BinaryThresholding::New () ;
thresholding->setInputConnection( importer->getOutputPort ());
thresholding->setLowerThreshold(0.5);

// Skeletonize the segmentation
Skeletonization::pointer skeletonization = Skeletonization::New();
skeletonization->setInputConnection( thresholding->getOutputPort ());

// Render image
ImageRenderer: :pointer renderer = ImageRenderer::New();
renderer->addInputConnection( skeletonization->getOutputPort ());

// Create a window, attach the renderers and start pipeline
SimpleWindow: :pointer window = SimpleWindow: :New () ;
window—->addRenderer (renderer) ;

window->start () ;

The next pipeline first imports two point sets from VTK files (.vtk). The PointSet object
is a data object, which only contains a set of points. These point sets are then registered
using the iterative closest point (ICP) algorithm [3]. Finally, the point sets are rendered
using the PointRenderer (see Fig. 8).

Example 6: Pipeline D

// Import two point sets

PointSetImporter::pointer importerA = PointSetImporter::New();
importerA->setFilename ("pointsA.vtk");

PointSet::pointer pointsA = importerA->getOutputPort ();
PointSetImporter::pointer importerB = PointSetImporter::New();
importerB->setFilename ("pointsB.vtk");
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Figure 7: Result of pipeline C in Example 5 where an image of the retina blood vessels is thresh-

olded, and skeletonized using iterative thinning.
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Figure 8: The two point sets of pipeline D in Example 6 before and after the iterative closest point

(ICP) algorithm is used to register the two sets.
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Pipeline Framework System (CPU/GPU/OS) Runtime (ms) Memory usage
Pipeline A FAST Intel/NVIDIA/Windows 86 (0.2, 34,52, 0.6) 92 MB
Data import, AMD/AMD/Linux 52 (0.2, 23,29, 0.6) 53 MB
Gaussian smoothing, Intel/NVIDIA/Mac 135 (0.1, 71, 63, 0.5) 34 MB
surface extraction ITK and VTK | Intel/NVIDIA/Windows 696 (9, 97, 511, 78) 260 MB
and rendering. AMD/AMD/Linux 1133 (6, 262, 568, 295) 255 MB
Intel/NVIDIA/Mac 704 (29, 68, 441, 165) 140 MB
Pipeline B FAST Intel/NVIDIA/Windows 2293 (230, 1954, 108, 0.7) 398 MB
Data import, AMD/AMD/Linux 2270 (262, 1848, 158, 0.8) 402 MB
region growing, Intel/NVIDIA/Mac 5103 (273, 4588, 242, 0.7) 355 MB
surface extraction ITK and VTK | Intel/NVIDIA/Windows 3041 (346, 732, 1673, 290) 1.5GB
and rendering. AMD/AMD/Linux 4615 (301, 906, 2309, 1099) 1.4 GB
Intel/NVIDIA/Mac 3473 (765, 623, 1616, 467) 1.1 GB
Pipeline C FAST Intel/NVIDIA/Windows 50(39,4,3,3) 79 MB
Data import, AMD/AMD/Linux 20 (9, 2,6, 3) 55 MB
thresholding, Intel/NVIDIA/Mac 26 (11, 3,9, 3) 42 MB
skeletonization ITK and VTK | Intel/NVIDIA/Windows 856 (3, 1, 819, 33) 28 MB
and rendering. AMD/AMD/Linux 489 (5, 0.8, 384, 99) 23 MB
Intel/NVIDIA/Mac 721 (10, 0.4, 682, 28) 50 MB
Pipeline D FAST Intel/NVIDIA/Windows 25(2,23,0.2) 80 MB
Data import, AMD/AMD/Linux 21 (4,17,0.2) 52 MB
iterative closest point Intel/NVIDIA/Mac 9(1,8,0.2) 16 MB
and rendering. ITK and VTK | Intel/NVIDIA/Windows 293 (31, 84, 178) 22 MB
AMD/AMD/Linux 241 (4, 109, 128) 20 MB
Intel/NVIDIA/Mac 152 (6, 61, 85) 14 MB

Table 1: Performance measurements of the four pipelines in examples 1, 4, 5 and 6. The same
pipelines were implemented in ITK and VTK for comparison. Three systems with different op-
erating system and hardware were used. The runtime of each step in the pipeline is listed in
parentheses.

PointSet::pointer pointsB = importerB->getOutputPort ();

// Run iterative closest point

IterativeClosestPoint::pointer icp = IterativeClosestPoint::New();
icp->setMovingSet (pointsA) ;

icp->setFixedSet (pointsB);

// Render the two point sets

PointRenderer: :pointer renderer = PointRenderer::New () ;
renderer->addInput (pointsA, Color::Blue(), 10);
renderer->addInput (pointsB, Color::Green(), 5);

// Create a window, attach the renderers and start pipeline
SimpleWindow: :pointer window = SimpleWindow: :New () ;
window->addRenderer (renderer) ;

window->start () ;

3.2 Performance

The runtime and memory usage of pipeline A, B, C and D (see examples 1, 4, 5 and 6)
were measured and collected in Table 1. The runtime is the average of 10 runs on each
system. The memory usage is measured using the system monitor, and includes only the
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system memory and not the GPU memory usage. The same pipelines were implemented
and measured in ITK and VTK for comparison. Several of the ITK and VTK image
processing filters used in these pipelines including smoothing, thresholding, thinning,
region growing and iterative closest point use multi-threading. Three different computer
systems, all with solid-state drives (SSD), were used for the measurements:

e Intel i5 3.4 GHz CPU with 16 GB RAM, NVIDIA Geforce GTX 970 4 GB running
Windows 8.1.

e AMD A10 CPU with 16 GB RAM, AMD Radeon R9 290 GPU 4 GB running
Ubuntu 14.04 Linux.

e Intel i5 3.4 GHz CPU with 16 GB RAM, NVIDIA Geforce GTX 780M 4 GB run-
ning Mac OS X 10.9.

The following datasets were used for the different pipelines, and informed consent was
obtained from all patients for being included in the study:

e Pipeline A: 3D ultrasound image, unsigned 8 bit integer, 276x249x200 voxels ~
14 MB.

e Pipeline B: CT image, signed 16 bit integer, 512x512x426 voxels ~ 223 MB.
e Pipeline C: 2D image, 565x584 pixels ~ 11 kB.

e Pipeline D: Two point set files of the left ventricle with 386 3D points each of ~
31kB.

Runtime (ms)
4000

B FAST
ITK+VTK

3500

3000
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2000
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1000
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0 I

A- Smoothing and B — Region growing C —Thresholding D - Iterative
surface extraction and surface extrac- and skeletonization closest point
tion

Figure 9: Average runtime performance for all computer system in section 3.2 of the four pipelines
in examples 1, 4, 5 and 6 using FAST, ITK and VTK.
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Figure 10: Detailed average runtime performance for all computer system in section 3.2 of the
four pipelines in examples 1, 4, 5 and 6 using FAST, ITK and VTK.

4 Discussion

As more medical imaging data becomes available, a framework that exploits the increas-
ingly heterogeneous and parallel computers is needed. These heterogeneous systems are
hard to program due to several factors such as such as driver errors, processor differences,
and the need for low level memory handling. The FAST framework makes medical image
processing and visualization easier by using familiar programming paradigms, and hiding
the details of memory handling from the user, while still enabling the use of all processors
and cores on a system. Errors and differences in proprietary software and hardware (e.g.
GPU drivers) can not be fixed by the medical imaging community, as the development of
these are dependent on the manufacturers. FAST aims to provide a large set of tests and
benchmarks to detect and report these problems. This enables an easy way for a user to
check if there are any problems for a specific setup.

Although ITK has a couple of algorithms that support OpenCL as an optional extension,
we believe that it is necessary to support heterogeneous processing in the entire frame-
work to achieve the best performance. This include all steps in a pipeline from data import,
to processing and visualization. Enabling this kind of support in ITK, VTK or MeVisLab
would most likely mean rewriting the entire core of these toolkits.

The code examples in the previous section show how easy it is to set up different pipelines
consisting of data import, streaming, processing and rendering. Implementation of the
same pipelines in ITK and VTK required more lines of code and code complexity mainly
due to the need for exporting data from ITK to VTK and templating in ITK. One may
argue that this is because ITK and VTK have more features. However, we believe that
common operations, such as these four pipelines, should require little code.

The performance measurements in Table 1 and figures 9 and 10 show that FAST is faster
for the four pipelines with speedups of up to 20 times compared to ITK and VTK. This
speedup is mainly due to the fact that FAST is able to use the GPU for processing and
rendering, while ITK and VTK rely on multi-threading for acceleration. All steps in the
pipeline, including data import, processing and rendering, are faster with the proposed
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framework, with region growing, 2D thresholding and data import in pipeline C as the
only exceptions. As shown in Fig. 10, the largest difference in runtime is with rendering,
where FAST uses from 0.2 to 3 ms, while VTK uses 28 to 1099 ms.

ITK and VTK use more system memory than FAST on pipelines A and B which use
large 3D images as input with sizes of 14 and 223 MB. However, FAST uses the GPU
for most of this processing and will therefore also use more GPU memory. The overall
goal is to significantly reduce the total memory usage in medical image computing and
visualization applications. This will be done by avoiding data duplications, and keeping
tracking of the CPU and GPU memory used in future versions of FAST.

For FAST to be accepted by the medical imaging community, it needs commonly used
algorithms to speed up the development of high-level image processing algorithms. We
plan to implement more algorithms in FAST, and hope that others will contribute to this
open-source framework through the collaboration platform GitHub. Still, developers can
use algorithms that already exist in ITK, as FAST supports interoperability with ITK
pipelines. Documentation and examples are also vital for the framework’s success. Thus,
an online open-source wiki has been created?.

The most important application for high performance medical image processing and visu-
alization is image guided surgery, where preoperative data is combined with intraoperative
data which needs to be acquired, processed and visualized in the operating room. Optical
and electromagnetic tracking are important in this context. Our future work will be on
incorporating tracking in the framework to enable surgical navigation.

The authors strongly believe in open-source code for medical image computing and visu-
alization as a mean for advancing the state of the art, as well as open data for evaluating
algorithms. Each year a vast amount of new methods and modifications of existing ones
are proposed (e.g. registration and segmentation algorithms). In order to increase the
amount of methods that are actually used clinically it’s crucial that new algorithms are
benchmarked thoroughly, both in terms of accuracy and computational performance. In
the last decade, several challenges have been arranged [6], and open databases with an
established ground truth are probably the best tool we have today to achieve this. As the
proposed framework becomes more mature the authors hope that FAST can contribute to
this effort and make more algorithms clinically ready faster.

5 Conclusion

A novel framework for efficient medical image computing and visualization has been pre-
sented. The framework was built from ground up with optimal performance on heteroge-
neous systems in mind. Code examples and performance evaluations have demonstrated
that the toolkit is both easy to use, and performs better than existing frameworks, such as

Shttp://github.com/smistad/FAST/wiki/
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ITK and VTK. Built-in benchmarking support will make additional fine-tuning a lot eas-
ier, and produce new insight about heterogeneous computing in the medical domain. As
more quality and performance benchmarked functionality is added to the framework, the
authors hope that FAST will be a valid tool for bringing more medical imaging software
into clinical practice in the years to come.

Acknowledgements

This project has received funding from the European Union’s Seventh Framework Pro-
gramme for research, technological development and demonstration under grant agree-
ment no 610425. The hardware used in this project was funded by the MedIm (Norwegian
Research School in Medical Imaging) Travel and Research Grant.

Conflict of interest Erik Smistad, Mohammadmehdi Bozorgi and Frank Lindseth declare that they
have no conflict of interest.

References

[1] R. Adams and L. Bischof. Seeded region growing. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(6):641-647, June 1994.

[2] R. Beare, D. Micevski, C. Share, L. Parkinson, P. Ward, W. Goscinski, and M. Kuiper. CITK
- an architecture and examples of CUDA enabled ITK filters. pages 1-8, 2011.

[3] P.J. Besl and N. D. McKay. A method for registration of 3-D shapes. IEEE Transactions on
pattern analysis and machine intelligence, 1992.

[4] M. Bozorgi and F. Lindseth. GPU-based multi-volume ray casting within VTK for medical
applications. International journal of computer assisted radiology and surgery, May 2014.

[5] Catch. C++ Automated Test Cases in Headers. https://github.com/
philsquared/Catch/ - Last accessed 10. Oct 2014.

[6] Consortium for Open Medical Image Computing. Grand Challenges in Biomedical Image
Analysis. http://grand-challenge.org/ - Last accessed 25. Nov 2014.

[7]1 A. Eklund, P. Dufort, D. Forsberg, and S. M. Laconte. Medical image processing on the
GPU - Past, present and future. Medical image analysis, 17(8):1073—1094, June 2013.

[8] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Pearson Prentice Hall, third
edition, 2008.

[9] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, 2.4 edition, 2004.

[10] Kitware. Insight toolkit ITK). http://itk.org/ - Last accessed 18. Aug 2014.

119



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

120

Kitware. ITK Release 4 GPU Acceleration. http://www.itk.org/Wiki/ITK/
Release\_4/GPU\_Acceleration/ - Last accessed 10. Oct 2014.

Kitware. Visualization toolkit (VTK). http://www.vtk.org/ - Last accessed 18. Aug
2014.

M. Koenig, W. Spindler, J. Rexilius, J. Jomier, F. Link, and H.-O. Peitgen. Embedding VTK
and ITK into a visual programming and rapid prototyping platform. In Proceedings of SPIE,
volume 6141, pages 614120-614120-11, 2006.

R. Membarth, F. Hannig, J. Teich, M. Korner, and W. Eckert. Generating Device-specific
GPU code for Local Operators in Medical Imaging. In Proceedings of the 26th IEEE Inter-
national Parallel & Distributed Processing Symposium (IPDPS), number Section III, 2012.

MeVis Medical Solutions AG. MeVisLab. http://www.mevislab.de - Last accessed
26. Jan 2015.

P. Mildenberger, M. Eichelberg, and E. Martin. Introduction to the DICOM standard. Euro-
pean Radiology, 12:920-927, 2002.

Neuroimaging Informatics Technology Initiative. NIfTI-1 Data Format. http://nifti.
nimh.nih.gov/ - Last accessed 26. Jan 2015.

NVIDIA Corporation. CUDA. http://developer.nvidia.com/cuda-zone/ -
Last accessed 26. Jan 2015.

J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips. GPU computing.
Proceedings of the IEEE, 96(5):879-899, May 2008.

K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov. Real-time computer vision with
OpenCV. Communications of the ACM, 55(6):61, June 2012.

W. Schroeder, K. Martin, and B. Lorensen. Visualization Toolkit: An Object-Oriented Ap-
proach to 3D Graphics. Kitware, 4th edition, 2006.

E. Smistad, A. C. Elster, and F. Lindseth. Real-time gradient vector flow on GPUs using
OpenCL. Journal of Real-Time Image Processing, pages 1-8, 2012.

E. Smistad, A. C. Elster, and F. Lindseth. Real-Time Surface Extraction and Visualization of
Medical Images using OpenCL and GPUs. In Norsk informatikkonferanse, pages 141-152.
Akademika forlag, 2012.

E. Smistad, A. C. Elster, and F. Lindseth. GPU accelerated segmentation and centerline
extraction of tubular structures from medical images. International Journal of Computer
Assisted Radiology and Surgery, 9(4):561-575, 2014.

E. Smistad, T. L. Falch, M. Bozorgi, A. C. Elster, and F. Lindseth. Medical image segmen-
tation on GPUs — A comprehensive review. Medical Image Analysis, 20(1):1-18, 2015.

E. Smistad and F. Lindseth. A New Tube Detection Filter for Abdominal Aortic Aneurysms.
In Proceedings of MICCAI 2014 Workshop on Abdominal Imaging: Computational and Clin-
ical Applications, 2014.



[27] E. Smistad and F. Lindseth. Multigrid gradient vector flow computation on the GPU. 2014.

[28] E. Smistad and F. Lindseth. Real-time Tracking of the Left Ventricle in 3D Ultrasound
Using Kalman Filter and Mean Value Coordinates. In Proceedings MICCAI Challenge on
Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS), pages 65-72,
Boston, 2014.

[29] The Khronos Group. OpenCL. http://www.khronos.org/opencl/ - Last accessed
26. Jan 2015.

121



122



GPU accelerated segmentation and centerline
extraction of tubular structures in medical
images

Authors

Erik Smistad, Anne C. Elster and Frank Lindseth

Published in

International Journal of Computer Assisted Radiology and Surgery, volume 9, issue 4, July 2014,
pages 561-575.

Copyright

Copyright ©2014 International Journal of Computer Assisted Radiology and Surgery. Springer.

123



124



GPU accelerated segmentation and centerline
extraction of tubular structures from medical
1mages

Erik Smistad!, Anne C. Elster!, Frank Lindseth!+?

1) Norwegian University of Science and Technology

2) SINTEF Medical Technology. Trondheim, Norway

Abstract

Purpose To create a fast and generic method with sufficient quality for extracting
tubular structures such as blood vessels and airways from different modalities (CT,
MR and US) and organs (brain, lungs and liver) by utilizing the computational power
of graphic processing units (GPUs).

Methods A cropping algorithm is used to remove unnecessary data from the datasets
on the GPU. A model-based tube detection filter combined with a new parallel cen-
terline extraction algorithm and a parallelized region growing segmentation algo-
rithm is used to extract the tubular structures completely on the GPU. Accuracy of
the proposed GPU method and centerline algorithm is compared to the ridge traver-
sal and skeletonization/thinning methods using synthetic vascular datasets.

Results The implementation is tested on several datasets from three different modal-
ities: airways from CT, blood vessels from MR and 3D Doppler Ultrasound. The
results show that the method is able to extract airways and vessels in 3-5 seconds on
a modern GPU and is less sensitive to noise than other centerline extraction methods.
Conclusions Tubular structures such as blood vessels and airways can be extracted
from various organs imaged by different modalities in a matter of seconds, even for
large datasets.

1 Introduction

Blood vessels and airways are both examples of important tubular structures in the human
body. The extraction of these structures can be essential for planning and guidance of
several surgical procedures such as bronchoscopy, laparoscopy and neurosurgery.

Registration is to create a mapping between two domains, for instance between an image
and the patient or between different image modalities [34]. Registration is an important
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step in image guided surgery as it enables us to accurately plot the location of surgical
tools inside the body onto images of the patient using optical or magnetic tracking tech-
nology. Tubular structures extracted from preoperative images can be matched to simi-
lar intraoperative structures, e.g. airways generated by a tracked bronchoscope or brain
vessels extracted from power Doppler based 3D ultrasound, and consequently create the
mapping between preoperative images and the patient. Also, extracted tubular structures
from pre- and intraoperative image data can be used to reduce registration errors when
a corresponding point (anatomical landmarks or fiducials) patient registration method is
used.

Furthermore, during surgical procedures, anatomical structures have a tendency to move
and deform inside the body due to respiration, pulsation, external pressure and resection.
This is called anatomical shift and is a major challenge as it reduces the surgical naviga-
tion accuracy. However, it has been shown that registration of blood vessels from pre- and
intraoperative image data can be used to detect and correct organshift such as brainshift
[38].

The automatic extraction of tubular structures can be very time consuming. As time
during surgery is very crucial, long-lasting processing should be avoided. Preoperative
data is often acquired just before the procedure and thus it is desirable to process these
data as fast as possible as well. The purpose of this work is to create a fast and generic
method with sufficient quality for extracting tubular structures such as blood vessels and
airways from different modalities (CT, MR and US) and organs (brain, lungs, liver) by
utilizing the computational power of graphic processing units (GPUs).

The rest of the introduction discuss GPU computing and provides a brief survey of exist-
ing methods for extracting tubular structures from medical images. An overview of the
contributions in this paper is also given. The methodology section provides a detailed de-
scription of each part of the implementation including how it is optimized for the GPU and
evaluated. In the result section, performance is measured in terms of speed and quality.
Finally, the results are discussed and conclusions are given.

1.1 GPU computing

Several image processing techniques are data parallel because each pixel can be processed
in parallel using the same instructions. Graphic Processing Units (GPUs) allow many
pixels/voxels to be processed in the same clock cycle, enabling substantial speedups. The
GPU is a type of single instruction, multiple data (SIMD) processor. It can perform the
same instruction on each element in a dataset in parallel. This is achieved by having many
functional units like arithmetic-logic units (ALUs) that share a control unit. Fig. 1 de-
picts the general layout of a GPU and its memory hierarchy. The GPU originally had a
fixed pipeline that was created for fast rendering of 3D graphics. The introduction of pro-
grammable shaders in the pipeline made it possible to run programs on the GPU. How-
ever, the task of programming shaders to solve arbitrary problems requires knowledge

126



/Graphics card h
GPU
Core Core
Functional units Functional units

PCle

[ Host (CPU) j

Figure 1: General architecture of a GPU and its memory hierarchy. Note however, that the actual
architecture is much more complex and differ for each GPU. This diagram only shows the general
features.

about the GPU pipeline as the problem at hand needs to be transformed into a render-
ing problem. General purpose GPU (GPGPU) programming languages and frameworks
such as CUDA and OpenCL were created to make GPU programming easier. The field of
GPU computing is still young. However, a brief survey of medical image processing and
visualization on the GPU was recently provided by Shi et al. [39].

1.2 Methods for extracting tubular structures

Tubular structures are usually extracted from volumes in two different ways:

e As a segmentation, either as a binary classification where each voxel in the volume
is given a non-zero value if it belongs to the tubular structure or as a surface model
of the structure.

e As a centerline, i.e. a line that goes through the center of the tubular structures.
Both representations are useful in different applications. For instance, the centerline is

very useful for registration while the segmentation is useful for volume estimation and

127



visualization of the structures’ surface.

There exist several methods for extracting tubular structures from medical images. A
recent and extensive review on blood vessel extraction was done by Lesage et al. [29] and
an older one by Kirbas and Quek [25]. Two reviews on the segmentation of airways were
done by Lo et al. [31] and Sluimer et al. [40].

A common method for extracting tubular structures is to grow the segmentation itera-
tively from an initial point or area using methods such as region growing [27, 45, 16],
active contours and wave front propagation (e.g. snakes and level sets) [24, 35, 46, 32].
A centerline can then be extracted from the segmentation using skeletonization and 3D
thinning methods [28, 18, 22].

Growing a segmentation using only a model of desired intensity values has shown to give
limited result in several applications such as airway segmentation where the thin airway
walls may cause severe segmentation leakage [32]. Thus in many applications it may
be necessary to use a model of the shape of the tubular structures as well. Also, these
growing methods are very sensitive to initialization.

Tube Detection Filters (TDFs) are used to detect tubular structures and calculates a prob-
ability that a specific voxel is inside a tubular structure. Most TDFs use gradient in-
formation, often in the form of an eigenanalysis of the Hessian matrix. Frangi et al. [15]
presented an enhancement and detection method for tubular structures based on the eigen-
values of this matrix. Krissian et al. [26] created a model-based detection filter that fits a
circle to the cross-sectional plane of the tubular structure defined by the eigenvectors of
the Hessian.

A centerline can be extracted directly from the TDF result without a segmentation using
methods such as ridge traversal. Aylward et al. [2] provides a review of different center-
line extraction methods and proposed an improved ridge traversal algorithm based on a
set of ridge criteria and different methods for handling noise. Bauer et al. [6] showed how
this method could be used together with Gradient Vector Flow. For applications where
only the centerline is needed, segmentation can be skipped using this method and thus
reduce processing time.

Some related work on accelerating the extraction of tubular structures on the GPU exist.
Erdt et al. [14] performed the TDF and a region growing segmentation on the GPU
and reported a 15 times faster computation of the gradients and up to 100 times faster
TDF. Narayanaswamy et al. [36] did vessel luminae region growing segmentation on the
GPU and reported a speedup of 8. Bauer et al. presented a GPU acceleration for airway
segmentation by doing the Gradient Vector Flow computation on the GPU in [7] and the
TDF calculation on the GPU in [8]. However, they only provide a limited description
of the GPU implementations. Helmberger et al. performed region growing for airway
segmentation on the GPU and a lung vessel segmentation on the GPU using a TDF [21].
They reported a runtime of 5-10 minutes using a modern GPU and CUDA compared to a
runtime of up to an hour using only the CPU.
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1.3 Contributions

The methodology in this paper is inspired by the works of Bauer et al. [7, 3, 8] and
Krissian et al. [26] and is a continuation of our previous paper on GPU accelerated airway
segmentation [41].

The main contributions in this paper are:

e A fast and generic method that can extract tubular structures like blood vessels and
airways from different modalities (e.g. CT, MR and Ultrasound) and organs (e.g.
lung, brain and liver) entirely on the GPU.

e A new parallel GPU algorithm for extracting centerlines directly from the TDF
result.

e A generic parallel cropping algorithm for reducing memory usage on the GPU.

2 Methodology

The implementation is written in C++ and OpenCL and is available online'. OpenCL is
a framework for running parallel programs on heterogeneous platforms such as CPU and
GPU. The implementation consists of five main steps that are all executed on the GPU
(see Fig. 2).

The first step is to crop the volume in order to reduce the total memory usage. The second
step involves a few pre-processing steps such as Gaussian smoothing and Gradient Vector
Flow which are necessary to make the results less sensitive to noise and differences in
tube contrast and size. After pre-processing, the model-based TDF by Krissian et al.
[26] is used. From the TDF result, the centerlines are extracted using a new parallel
algorithm. Finally, a segmentation is performed using the centerlines as seeds for a region
growing procedure. However, if only the centerlines are needed for a given application,
the segmentation step can be skipped. The rest of this section will describe each of the
five steps in further detail.

2.1 Cropping

Memory on the GPU is limited and may not be enough for processing large datasets.
However, most medical datasets contain a lot of data that is not part of the structures of
interest. Usually these areas are located at the borders of the image. For instance, in
the thorax CT image in Fig. 3, the actual lungs where the airways and blood vessels are
located, constitutes only about 50% of the image. The rest consist of space outside the
body, body fat and the bench that the patient is resting on. As several of the methods

Thttp://github.com/smistad/Tube-Segmentation-Framework/
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Figure 2: Block diagram of the implementation

used to perform segmentation and centerline extraction process each voxel in the entire
volume, removing the unnecessary data will not only reduce memory usage, but also
execution time.

In our previous work [41], we presented a novel cropping algorithm for airway segmen-
tation that could be run in parallel on the GPU using less than half a second for large
CT volumes of the lungs. In this paper, this algorithm is extended to crop other medical
datasets, such as MR and 3D Doppler Ultrasound. The cropping method works by con-
sidering slices in all three orthogonal directions X, y and z. For each slice s, the method
determines if the slice intersects the region of interest (ROI). This is done by counting the
number of rows in the slice that intersects the ROI for each slice and storing it as L. If
Ls > Lin, the slice is considered to have intersected the ROI. The cropping borders are
found by traversing through L twice from s = 0 and s = size and finding the first slice
that has a value above a specific threshold L,;,. These slices are then selected as crop-
ping borders ¢; and c;. This is done for each direction and results in 3 pairs of cropping
borders which is all that is needed to crop the volume. An example of how this cropping
procedure works is shown in Fig. 3. For some applications and directions it may be nec-
essary to start the search from the middle s = % to the end instead. This was the case
for the axial direction of CT airway datasets.

Algorithm 1 provides pseudocode for the cropping method. The function CALCULATEL
is used for estimating L for each slice in a given direction and the function FINDCROP-
BORDERS is used to find the cropping borders for a specific direction given L and using
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Ls < Lmin Ls > Lmin Ls < Lmin

Ca Cz

Figure 3: Example of the cropping procedure. The black arrows indicate slices that have Lg > Ly,
and thus intersected the ROI while the grey arrows are the opposite. This can be used to find the
cropping borders, marked with dotted red lines in the figure. This is done in all three directions
and each slice is processed in parallel.

the threshold L,;,. Each direction and slice can be processed in parallel on the GPU. For a
dataset of size 512x512x512 this results in 3*512 individual threads that can be processed
using the same instructions.

The parts of this cropping method that is application dependent, aside from the parameter
Lin, is the estimation of Lg and whether the search for cropping borders starts from the
middle or at the ends of the dataset in a given direction.

For MR and 3D Doppler Ultrasound images it is sufficient to remove the background from
the dataset. For this purpose Lg can be estimated by counting the number of voxels n, on
a scan line that is above a certain threshold /7. L, is then set to the number of rows in
slice s where n,, > Ir. A threshold value of 100 was found to be enough for the MR and
Ultrasound datasets.

For CT images of the lungs, fat and other tissue that are not part of the lungs can also be
discarded by counting the number of areas that are above and below a certain threshold.
Details on this estimation of Lg can be found in our previous work [41].
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Algorithm 1 Cropping

function CROP(volume)
L < CALCULATEL(volume, x)
X1,Xp < FINDCROPBORDERS(L, x)
L < CALCULATEL(volume, y)
¥1,Y2 <~ FINDCROPBORDERS(L, y)
L < CALCULATEL(volume, z)
71,22 < FINDCROPBORDERS(L, z)
crop volume according to x1,x2,y1,y2,z1 and z2
return volume
end function

function CALCULATEL(volume, direction)
for each slice s in direction in parallel do
Estimate L;
end for
return L
end function

function FINDCROPBORDERS(L, direction)
size < volume.direction.size
cir —l,cp——1,5<0

while (c; = —1orcy; =—1) and s < size do
if Ly > Ly, and ¢y = —1 then
Cl< S
end if

if Lgi,e_1_5 > Lmin and ¢ = —1 then
¢y < size —1—s
end if
s s+1
end while
return cq,c>
end function

2.2 Pre-processing and Gradient Vector Flow

Before the actual tube extraction, some pre-processing is necessary. First, an optional
thresholding is performed on the dataset using a lower and upper threshold (/,,i, and
Imax). Thresholding may be necessary for datasets which have a large range of intensity
values such as CT images. The thresholding is done to remove unnecessary gradient
information in the image which may lead to unwanted tubular structures being detected.
For instance, when extracting airways all intensities above -500 HU can be converted to
-500 as no airways have intensity above this threshold. Second, some noise suppression is
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performed. This is done by blurring the dataset using Gaussian smoothing with standard
deviation o. Afterwards, the gradient vector field V is created and normalized using a
parameter called Vy,x. All gradients with a length above this parameter will be set to unit
length and the others will be scaled accordingly. The gradient normalization is necessary
for contrast invariance. Vp,x should be adapted to the expected level of contrast and
noise. Also, if black tubular structures are to be extracted (e.g. airways), the gradients
have to inverted V = —VI. All of these pre-processing parameters (Inin, Imax> 05 Vimax)
are modality dependent and the values used in this paper for each modality is collected in
Table 1.

Filters that use the Hessian matrix to detect tubular structures require gradient information
to be present in the center of the tube. For large tubes, such as trachea and the main
bronchi, the gradient information will not exist in the center. Thus, it is necessary to
propagate the gradient information from the tube edge to the center. There exist two main
methods of doing this: Gaussian scale space and Gradient Vector Flow (GVF). Xu et al.
[47] originally introduced GVF as an external force field for active contours. Bauer et al.
[5, 3] were the first to show that GVF could be used to create scale-invariance of TDFs.
The GVF method has the advantage that it is feature-preserving and thus can avoid the
problem of several structures diffusing into each other to create the illusion of a tubular
structure at a higher scale. Also, GVF is only calculated using one scale. However, it
has the disadvantage that it is very computationally expensive. Nevertheless, it has been
shown that GVF can be accelerated using GPUs. Eidheim et al. [13], He and Kuester
[20] and Zheng and Zhang [48] all presented a GPU implementation of GVF and Active
Contours using shader languages. However, their implementation was for 2D images
only. In this paper, a highly optimized 3D GPU implementation of GVF from Smistad et
al. [42] was used with a predefined number of 250 iterations. This implementation allows
GVF to be calculated for large volumes in only a few seconds.

2.3 Tube Detection Filter

Krissian et al. [26] created a TDF that assumes that the cross-section of the tubular struc-
ture is circular. Their TDF calculates how well a circle match the gradient information
in the cross-sectional plane defined by the eigenvectors of the Hessian matrix. The TDF
starts by creating a circle with a small radius in the cross-sectional plane. N = 32 evenly
spaced points on the circle is sampled from the vector field. Each point, i, is found by
calculating its angle o from the center and then calculating a vector d; which lies in the
plane and has angle o.

2mi
o=— 1
N M
d; = érsino+ é3cos o 2)

The position of point i on a circle with radius r and center V is then given as v+ rd;. How
well the circle match the gradient information is calculated as the average dot product of
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the gradient at position i and the inward normal of the circle at point i which is equal to
—d;. The TDF of Krissian et al. [26] is shown in equation 3. The radius of the circle is
increased with 0.5 voxels as long as the average dot product also increases.

-

| N=
er_N; —d; 3)

As noted by Bauer et al. [7, 3], the GVF method may eliminate the gradient information
for small low-contrast tubular structures. Thus to detect these tubular structures it is
necessary to run the TDF two times. Once with a small radius on the initial vector field
to detect the small low-contrast structures and once with the GVF vector field to detect
the rest. Different amounts of Gaussian blur can be used for the tube detection of large
and small structures (Osman and Ojarge as seen in Table 1). The TDF response from each
of these are combined by selecting the largest TDF value for each voxel.

2.4 Centerline Extraction

Centerline extraction from TDF results has primarily been done by ridge traversal [2, 4, 6,
5]. One problem with the ridge traversal procedure is that it can’t be run in parallel. Thus,
the GVF vector field and the TDF result has to be transferred to the CPU. Nevertheless, the
serial ridge traversal algorithm can be used together with the rest of the GPU algorithms
presented in this paper (e.g. cropping, pre-processing, tube detection and segmentation).

In this section, a new parallel centerline extraction (PCE) algorithm is presented. This
centerline algorithm, unlike ridge traversal, can be run efficiently in parallel on a GPU.
The method has 4 main steps: Identifying centerpoints, filtering centerpoints, link center-
points and centerline selection.

2.4.1 Identify candidate centerpoints

The method for extracting centerlines starts by identifying all possible centerpoints. This
is done by creating a 3D structure with the same size as the dataset. This structure is
initialized to O for each voxel and all voxels with a TDF value above the threshold 7. = 0.5
issetto 1.

2.4.2 Filter centerpoints

The next step removes centerpoints that are either not in the center of a tube or too close
to other centerpoints. Whether a centerpoint is in the center of a tube or not can be
determined by the magnitude of the GVF vector field |V|, because |V| is smallest in the
center of the tube.
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Figure 4: Determining the angle 6 from a centerpoint X to its neighbor 7.

First, a vector from the centerpoint X to a neighbor voxel 7 is calculated:
F=n—Xx 4)

Second, this vector is projected onto the cross-sectional plane of the tube (see Fig. 4). The
plane’s normal €, is the eigenvector of the Hessian matrix associated with the eigenvalue
of smallest magnitude. This vector points in the direction of the tube.

rp=T—2¢1(é1F) (&)

Finally, the angle 6 from the plane to the vector 7 can be calculated using the projected

VECLOr Fp:
77
6 =cos™! ( P ) (6)

7117

Let N be the set of all neighbor voxels that are close (|| < r, where r is from Eq. 3)
and the angle is 6 < 30°. For each of these 7, the magnitude of the GVF vector field |I7|
is compared to the centerpoint X. The centerpoint is only valid if the magnitude for the
centerpoint X is lower than all 7 € N:

C(ﬂ):{ 1 if VAeN |V(i)|>|V(®) (7)

0 else

This has the effect that it removes centerpoints that are not in the center of a tubular
structure.

The next step is to remove centerpoints that are too close to each other. The reason for
doing this is that it reduces the total number of centerpoints and thus makes the next step,
linking the centerpoints, much more efficient. Removing points that are too close to each
other is done by dividing the entire dataset into a grid with each grid element spanning
4x4x4 voxels. For each cube in the grid, the best centerpoint is selected and the rest of
the centerpoints in that cube is removed. The centerpoint with the highest TDF value is
selected as the best centerpoint in a cube.
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2.4.3 Link centerpoints

For each centerpoint, the method establishes links between the centerpoints to create cen-
terlines. This is done by connecting each centerpoint to the two centerpoints that are
closest and fulfills the following criteria:

e The angle between them is above 120 degrees.

e The average TDF value along the line is higher than Tieqn = 0.5.

2.4.4 Centerline selection

Due to noise and other image artifacts invalid centerpoints and centerlines may be created.
However, these are usually short and not connected to the actual tubular structures. Thus
invalid centerlines can often be discarded based on their length.

In this step, all centerpoints that are connected with centerlines from the previous section
are assigned the same label. Those that are not connected get different labels. Graph
component labeling is the problem of finding and labeling nodes in a graph that are con-
nected. Hawick et al. [19] presented several GPU implementations of algorithms for
graph component labeling. In our implementation, an iterative method using atomic op-
erations was used. Assuming N labels, N counters are created and initialized to 0. A
kernel is executed for each centerpoint and the length of each centerline, identified with a
label, is determined by using an atomic increment operation on the counter identified by
the centerpoints’ labels. After the execution of this kernel, the counters will contain the
total length of each centerline. When the length of all connected centerlines have been
calculated, the largest centerline or all centerlines with a specified minimum length can
be extracted.

2.5 Segmentation

Bauer et al. [7] proposed a method for generating a segmentation from the centerline
using the already computed GVF vector field. They named this method Inverse Gradient
Flow Tracking Segmentation because it for each voxel tracks the centerline using the di-
rections of the GVF vector field, but in the inverse direction. This segmentation method
is a type of seeded region growing, where the centerlines are the seeds and the direc-
tion and magnitude of the vectors from the GVF vector field is used to determine if the
segmentation is allowed to continue to grow.

In this paper, a data parallel version of this algorithm is presented (see Algorithm 2).
First, the centerlines, C, are dilated in parallel on the GPU and added to the segmentation
S. Next, the neighboring voxels of S is added to a queue Q. For each iteration, the GROW
function runs a kernel on each voxel X in the entire volume. If the voxel X is part of
0, the gradients of all unsegmented neighbors are checked to see if they point to X and
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has a larger magnitude than X. If such a neighbor voxel y is found, X is added to S, its
neighbor ¥ is added to Q and the stopGrowing variable is set to false. Since this variable
is initialized to true for every iteration, the growing procedure will stop when no more
voxels are added.

For the 3D Ultrasound Doppler modality another segmentation method than the inverse
gradient tracking method is used. The reason for this, is that this data can be quite noisy.
This alternative segmentation method starts by calculating an average radius based on the
circle fitting method for each link. For each discrete point on the centerline, all voxels
within a sphere with the same radius is marked as part of the segmentation.

Algorithm 2 Parallel Inverse Gradient Flow Tracking

S <+ DILATE(C)

Q < DILATE(S) - S

stopGrowing <— false

while !stopGrowing do
stopGrowing < true
GROW(S, Q, stopGrowing)

end while

return S

function GROW(S, Q, stopGrowing)
for each voxel X in parallel do
if X € Q then
for each voxel y € Adj26(X)

do
if y ¢ Sand |V(3)| > |V ()| and
argmaxzc odi26(y) % = X then

S« SuU{x}
0 < QU{y}
stopGrowing <— false

end if

end for
end if
end for

end function

2.6 GPU Optimization
2.6.1 Texture system
The GPU has a specialized memory system for images, called the texture system. The

GPU has this because the GPU is primarily made and used for fast rendering which in-
volves mapping images, often called textures, onto 3D objects.
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The texture system is optimized for fetching and caching data from 2D and 3D textures
[37, 1] (see Fig. 1 for an overview of the memory hierarchy on the GPU). The fetch unit
of the texture system is also able to perform interpolation and data type conversion in
hardware.

Since most of the calculations in this implementation involves the processing of voxels,
the implementation can be accelerated considerably by storing the volumes as 3D tex-
tures and using the texture system. This increases the speed of fetching data and trilinear
interpolation which is used in the TDF calculation when sampling arbitrary points on a
circle.

In this implementation, textures has been used for almost all 3D and 2D structures, such
as the vector field V, TDF and segmentation.

NVIDIA’s OpenCL implementation does not support writing to 3D textures in a kernel.
Thus for NVIDIA GPUs, the results has to be written to a regular buffer first and then
copied to a texture. Still, writing to 3D textures is possible with CUDA.

Memory access latency can also be improved by reducing the number of bytes transferred
from global memory to the chip. The most common way to store a floating point number
on a computer is by using 32 bits with the IEEE 754 standard. However, most GPUs
also support a texture storage format called 16-bit normalized integer. With this format,
the data is stored as 16-bit integers (shorts) in textures. However, when it is requested,
the texture fetch unit converts the 16-bit integer to a 32-bit floating point number with a
normalized range from -1.0 to 1.0 or 0.0 to 1.0. This reduces accuracy, and may not be
sufficient for all applications. However, it was found to be sufficient for this application
(see result section). This storage format also halves the global memory usage, thus al-
lowing much larger volumes to fit in the limited GPU memory. In our recent work on
optimizing GVF for GPU execution [42], it was discovered that using textures and the
16-bit format could make the parallel execution a lot faster, depending on the size of the
dataset being processed. In this implementation, the 16-bit normalized integer format is
used for the dataset, vector fields and TDF result.

2.6.2 Stream compaction

After finding the candidate centerpoints, we only want to process these points in the next
centerpoint filtering step. This can be done by launching a kernel for every voxel in the
volume and have an if statement checking whether the voxel is a candidate centerpoint.
However, this can be very inefficient on a GPU. As explained in the introduction, the
functional units on the GPU are grouped together and share a control unit. This means that
the functional units in a group have to execute the same instructions in each clock cycle.
To ensure that the correct result is generated by if statements, the GPU will use masking
techniques. Nevertheless, such an if statement may not reduce the processing time as it
would if it was executed sequentially on a CPU. On a GPU, it might even increase the
processing time due to the need of masking techniques to ensure correct results. This
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Figure 5: Grouping with work-group size of 8 work-items and unit of execution size of 3. As 8 is
not a multiple of 3, there will be idle functional units for each work-group that is scheduled. This
leads to an inefficient use of the GPU.

is a common problem in GPU computing and one solution is a method called stream
compaction. Stream compaction removes voxels that should not be processed from the
volume so that the kernel is only run for the valid voxels, thus no if statement is needed.
Stream compaction can be done on the GPU with logarithmic time complexity. Two
methods for performing stream compaction is parallel prefix sum (see Billeter et al. [11]
for an overview) and Histogram Pyramids by Ziegler et al. [49]. In this work, Histogram
Pyramids has been used due to the fact that this data structure has shown to be better in
some applications by exploiting the GPU’s texture system for faster memory access. The
original implementation by Ziegler et al. [49] was for 2D. However, in our previous work
[43], we presented a 3D version of this stream compaction algorithm which also reduced
the memory usage for this data structure.

The Histogram Pyramid stream compaction method has been used in three places of this
implementation. All in the centerline extraction step. The 3D Histogram Pyramid is used
after the candidate centerpoint step and filter centerpoints step. A 2D Histogram Pyramid
is used after the link centerpoints step, where each link is stored in an adjacency matrix
on the GPU.

2.6.3 Work-group size

Work-items, also called threads, are instances of a kernel and are executed on the GPU
in groups. AMD calls these units of execution wavefronts, while NVIDIA calls them
warps. The units are executed atomically and has, at the time of writing, the size of 32
and 64 work-items for NVIDIA and AMD GPUs respectively. The work-items are also
grouped together at a higher level in software. These groups are called work-groups in
the OpenCL terminology (in CUDA they are referred to as thread blocks). If the number
of work-items in a work-group is not a multiple of the unit of execution size, some of the
GPUs’ functional units will be idle for each work-group that is executed as shown in Fig.
5. Thus, the work-group sizes can greatly affect performance and optimal size can vary a
lot from device to device. There is a maximum number of work-items that can exists in
one work-group. This limit is on AMD GPUs currently 256 and on most NVIDIA GPUs
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it is 1024. Also, the total number of work-items in one dimension has to be dividable
by the size of the work-group in that dimension. So, for a volume of size 400 in the x
direction, the work-group can have the size 2 or 4 in the same direction, but not 3, because
400 is not dividable by 3.

For most of the GPUs used on this implementation a work-group size of 4x4x4 was used.
One exception is the new Kepler GPUs from NVIDIA where a work-group of 16x8x8
was found to be much better. The 4x4x4 work-group size gives a total of 64 work-items
in each work-group. To make sure that the cropped volume is dividable by 4 in each
direction, the size of the cropping is increased until the new size is dividable by 4.

2.7 Evaluation

In this section, the evaluation of the proposed GPU method is described.

2.7.1 Comparison with other methods

The method in this paper was compared in terms of speed and quality with other com-
monly used segmentation and centerline extraction algorithms. Blood vessels from the
MR Angio, Doppler Ultrasound and synthetic datasets were segmented using threshold-
ing after performing Gaussian blur. As thresholding is unsuitable for segmenting airways,
an implementation of region growing, similar to the conservative region growing used in
Graham et al. [16], was used instead. This region growing methods starts by automati-
cally finding a seed point inside trachea. This is done by looking for a dark circular region
in the middle of one of the upper slices. After a seed has been found, the dataset is filtered
with a Gaussian mask with ¢ = 0.5 voxels and the intensities are capped at -500 HU as
no airways have intensities above this threshold. Next, a region growing procedure with
segmentation leakage detection is used. The region growing is performed several times
with increasing threshold starting with the intensity of the seed. For each iteration, the
volume size is measured. If the volume size increases with more than 20 000 voxels in
one iteration a segmentation leakage has most likely occurred and the previous threshold
is used. Finally, a morphological closing is performed to remove any holes inside the
segmentation.

The proposed GPU implementation can be used together with both the PCE algorithm
and the ridge traversal algorithm for the centerline extraction step. Thus, with the serial
ridge traversal algorithm a hybrid solution is used where all steps except the centerline
extraction step is run on the GPU.

For the centerline extraction, the proposed GPU method is evaluated with both the pro-
posed PCE centerline algorithm and the ridge traversal algorithm and compared to an
ITK filter by Homann [22] based on the skeletonization algorithm by Lee et al. [28]. This
skeletonization method performs iterative thinning of a segmented volume. Note that the
implementation by Homann [22] does not exploit parallelism.
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2.7.2 Qualitative analysis

To show the general applicability of the method, clinical images from three different
modalities and two different organs were used:

1. Computer Tomography scans of the lungs (Airways, 12 datasets)
2. Magnetic Resonance images of the brain (Blood vessels, 4 datasets)
3. 3D Ultrasound Doppler images of the brain (Blood vessels, 7 datasets)

The study was approved by the local ethics committee, and the patients gave informed
consent prior to the procedure. For each modality, several datasets were processed using
the proposed GPU implementation together with the PCE and the ridge traversal center-
line algorithms and region growing / thresholding together with skeletonization.

Note that for each modality the same parameters were used, except for a small set of
modality dependent parameters such as blur and radius (see Table 1).

2.7.3 Speed and memory usage

The speed of the method was measured on all the clinical datasets using three differ-
ent GPUs from both AMD and NVIDIA. Two high-end GPUs with a peak performance
of around 4 tera floating point operations per second (TFLOPS) (AMD HD7970 and
NVIDIA Tesla K20). And one GPU of the previous generation with a peak performance
of about 1 TFLOPS (NVIDIA Tesla C2070). The implementation was run using both
16-bit normalized integers and 32-bit floating point vectors to see how the two different
data types affected the speed. The proposed method was also run on an Intel 17-3770
CPU (4 cores, 3.4 GHz) with 16 GB memory to show the speedup of using a GPU versus
a multi-core CPU. This was also done to demonstrate that the proposed implementation
can be run in parallel on a multi-core CPU with no modification.

For comparison, runtime measurements for region growing, thresholding and skeletoniza-
tion were performed for each modality using an Intel 17-3770 CPU with 4 cores running
at 3.4 GHz. Parts of the region growing and thresholding methods were parallelized using
OpenMP.

As explained earlier, the memory available on GPUs is limited. Thus it is important
to keep the memory usage as low as possible. In this paper, a cropping procedure and
a 16-bit normalized integer data format was used to reduce the memory usage on the
GPU. To show the effect of the cropping procedure, the average dataset size and peak
memory usage before and after cropping was measured on several datasets from different
modalities. Peak memory usage occurs in the Gradient Vector Flow step. In this step, 3
vector fields with 3 components, each of the same size as the dataset are needed. For an
uncropped volume of size 512x512x800 and 32-bit floats this amounts to 3*3 x4 x 512 x
512 %800 bytes = 7200 MB. When using 16-bit normalized integers the memory usage is
halved.
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2.7.4 Quantitative analysis

The quality of the extracted centerlines and the segmentation were measured using real-
istic synthetic vascular tree volumes and their ground truth segmentation and centerlines.
These synthetic volumes and their ground truth data were created using the VascuSynth
software by Hamarneh and Jassi [17, 23]. One of these synthetic volumes is depicted in
Fig. 6. Three generated datasets were used. Each with a different amount of Gaussian
additive noise. This was done to show how well the different methods performs with
increasing amounts of noise.

Each discrete point of the centerline is called a centerpoint. The accuracy of the centerline
was measured using the Hausdorff distance measure which is the average distance from
each centerpoint of the extracted centerline to the closest point on the ground truth center-
line. To estimate how much of the vascular tree was extracted, each extracted point marks
all ground truth centerpoints within a radius of 4 voxels as detected. The total percentage
extracted is then calculated as the number of detected points divided by the total number
of ground truth centerpoints. Any extracted centerpoint that was farther away than 4 vox-
els from a grouth truth centerpoint was marked as invalid. The parameters for the amount
of Gaussian blur and Vi, were adjusted for each dataset and centerline method so that no
extracted centerpoints were marked as invalid. Precision and recall for the segmentation
is calculated by comparing each voxel of the segmentation result to the ground truth.

The quantitative analysis was performed using the proposed GPU implementation with
both PCE and ridge traversal and thresholding+skeletonization together with 16-bit nor-
malized integers and 32-bit floating point numbers.

Figure 6: Synthetic vascular image created using the VascuSynth software by Hamarneh and Jassi
[17,23].
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Parameter | CT Airways | MR Vessels | US Vessels
Inin -1024 100 50

Imax -400 300 200

Ogmall 0.5 1.0 2.0

Olarge 1.0 1.0 3.0

Vimax 0.3 0.1 0.1

Tmin 0.5 0.5 1.5

Tmax 25 8 7

Lin 128 10 0

Table 1: A list of modality dependent parameters and the values used for each of the datasets.

Figure 7: Results for a CT image of the lungs. Left: Proposed GPU method + proposed PCE
algorithm. Middle: Proposed GPU method + ridge traversal algorithm. Right: Region growing
with skeletonization

3 Results

3.1 Qualitative analysis

Figures 7, 8 and 9 show results for each method on each modality. Also, to further show
the general applicability of the method, extracted vessels from liver and lung is included
in Fig. 10. These results indicate that the method is able to extract tubular structures from
several modalities and organs with comparable quality by changing only a few parameters
(see Table 1).
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Figure 8: Results for an MR Angio image of the brain. Left: Proposed GPU method + proposed
PCE algorithm. Middle: Proposed GPU method + ridge traversal algorithm. Right: Thresholding
with skeletonization

Figure 9: Results for a 3D Ultrasound Doppler image of vessels in the brain. Left: Proposed GPU
method + proposed PCE algorithm. Middle: Proposed GPU method + ridge traversal algorithm.
Right: Thresholding with skeletonization
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Figure 10: Segmentation result from other organs using proposed GPU method. From left to
right: Vessels of liver from CT, vessels of liver from MR and vessels of one lung from CT.

Method Datasets AMD HD7970 NVIDIA Tesla K20 | NVIDIA Tesla C2070 | Intel i7-3770 CPU
16-bit / 32-bit (secs) | 16-bit/32-bit (secs) | 16-bit/ 32-bit (secs) 32-bit (secs)
Proposed GPU CT Airways (12) | 4.7/6.9 2197134 40.9/19.2 177.1
implementation MR Vessels (4) 4.6/6.6 28.7/16.4 44.9/26.6 200.7
+ Proposed PCE US Vessels (7) 2.7/3.8 13.0/7.1 24.1/14.8 134.4
Proposed GPU CT Airways (12) | 5.8/8.3 223/139 37.3/19.3 1759
implementation MR Vessels (4) 6.3/8.5 29.7/17.5 45.3/27.3 200.5
+ Ridge traversal US Vessels (7) 3.4/47 13.3/7.4 24.1/15.0 141.5

Table 2: Average runtime of 10 runs using the proposed GPU implementation together with the
proposed parallel centerline algorithm and the ridge traversal centerline algorithm on different
datasets and devices. The first three devices (HD7970, K20, C2070) are GPUs while the last
device (17-3770) is a multi-core CPU.

3.2 Speed and memory usage

The speed measurements of our GPU implementation with the proposed centerline extrac-
tion method and the ridge traversal algorithm is collected in Table 2. These results show
that using 16-bit normalized integers is faster than 32-bit on AMD GPUs, and opposite
on NVIDIA GPUs.

Table 3 contains speed measurements of the non-GPU methods: region growing, thresh-
olding and skeletonization. Comparing the runtime of Table 2 and 3 reveals that the GPU
methods are much faster than the simple serial segmentation and skeletonization methods.

Table 4 shows the average memory usage for all the clinical datasets, both with and with-
out cropping and the 16-bit data type. From these results it is evident that the memory
usage is significantly reduced when cropping and 16-bit normalized integers are used.
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Segmentation and centerline method \ Datasets \ Avg. runtime (seconds)

Region Growing + Skeletonization CT Airways (12) | 158
Thresholding + Skeletonization MR Vessels (4) 77
Thresholding + Skeletonization US Vessels (7) 33

Table 3: Average runtime of 10 runs using region growing, thresholding and skeletoniza-
tion/thinning on different modalities.

Datasets Avg. original size | Avg. percentage removed | Avg. peak memory usage | Avg. peak memory usage
without cropping (MB) with cropping (MB)
16-bit / 32-bit 16-bit / 32-bit

CT Airways (12) | 512x512x704 76% 3169 /6339 762 /1524

MR Vessels (4) 628x640x132 23% 2826 /5652 793 /1586

US Vessels (7) 272x288x437 31% 1223 /2445 417/834

Table 4: Memory usage and effect of cropping

3.3 Quantitative analysis

Table 5 contains the results of the quantitative analysis described in 2.7.4. From these
results it is clear that using the 16-bit normalized integer format does not affect the quality
compared to using the standard 32-bit floating point numbers. The same applies to the
clinical datasets.

Furthermore, thresholding is able to extract more from the synthetic datasets for noise
levels 0.1 and 0.2. However, for noise level 0.3, the proposed PCE algorithm is able
to extract almost 10% more than the thresholding and skeletonization technique and the
ridge traversal algorithm.

4 Discussion

4.1 Qualitative analysis

The results of the clinical datasets (Fig. 7, 8 and 9) indicate that the quality of the segmen-
tation and centerlines are quite comparable with some small differences. However, if the
segmented tubular structure is very irregular or has holes, skeletonization will create poor
centerlines as can be seen in Fig. 9. The PCE and ridge traversal algorithms however, do
not suffer from this problem as the centerline extraction is not based on the segmentation
result.

There are several examples in the literature of methods that claim to be robust enough to
segment and extract centerlines of tubular structures of different types (e.g. vessels and
airways), organs and modalities. Some examples are Bauer et al. [3, 4, 5, 6, 7, 8], Krissian
et al. [26], Aylward et al. [2], Benmansour et al. [10], Li et al. [30], Behrens et al. [9],
Cohen et al. [12], Lorigo and Faugeras [33] and Spuhler et al. [44]. However, most of
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Dataset Noise(c) | Method Avg. centerline | Extracted Segmentation | Segmentation
error (voxels) centerpoints (%) | recall precision
16-bit / 32-bit 16-bit / 32-bit 16-bit / 32-bit | 16-bit/ 32-bit

Dataset 1 | 0.1 Proposed GPU method + | 0.57/0.58 95.6/95.6 0.79/0.79 0.84/0.84

PCE

Proposed GPU method + | 0.35/0.35 92.9/92.9 0.78/0.78 0.84/0.84
Ridge traversal

Thresholding + Skele- - /034 - /98.8 - /0.70 - /099
tonization

Dataset2 | 0.2 Proposed GPU method + | 0.60/0.59 80.9/80.8 0.57/0.57 0.83/0.83

PCE

Proposed GPU method + | 0.31/0.31 76.1/76.1 0.56/0.56 0.86/0.86
Ridge traversal

Thresholding + Skele- - 1036 - /821 - 10.67 - /0.89
tonization

Dataset3 | 0.3 Proposed GPU method + | 0.65/0.65 54.4/54.4 0.36/0.36 0.7970.79

PCE

Proposed GPU method + | 0.31/0.31 424/424 0.28/0.28 0.90/0.90
Ridge traversal

Thresholding + Skele- - 1047 - 1456 - 1047 - 1074
tonization

Table 5: Performance on three synthetic dataset created with the VascuSynth software (Hamarneh
and Jassi [17, 23]). For each line, the first value is acquired using 16-bit normalized integers and
the second using 32-bit floats.

these present results only for a few datasets of one or two organs/modalities. The PhD
thesis of Bauer and related articles [3, 4, 5, 6, 7, 8] is one exception that present results
for several different organs (e.g. lung, heart and liver), however only from CT. Although
their approach is similar to the approach in this paper, Bauer et al. use different methods to
perform the major steps (tube detection, centerline extraction and segmentation) for each
organ. In this paper, results from several organs (e.g. lung, brain and liver), modalities
(e.g. CT, MR and Ultrasound) and structures (e.g. vessels and airways) are presented and
use the same method for all the major steps. In addition, the method presented in this
paper is open source and very fast.

4.2 Speed and memory usage

The proposed GPU implementation is slightly slower using 1-2 seconds more when used
with the ridge traversal centerline extraction method than PCE on the two fastest GPUs,
the AMD HD7970 and the NVIDIA Tesla K20. However, for the slower GPU, the pro-
posed GPU implementation with ridge traversal is just as fast or even faster. Since this
GPU have a peak performance of about one fourth to that of the HD7970 and K20 GPUs,
the parallel computation cost of PCE on this slower device is most likely higher than the
ridge traversal computation plus the data transfer time.

It is clear from the results that using 16-bit normalized integers instead of 32-bit floats for
the vector fields is faster on AMD GPUs, and slower on NVIDIA GPUs. This is due to
the fact that NVIDIA’s OpenCL implementation does not support writing directly to 3D
textures. Because of this restriction, buffers have to be used in the most computationally
expensive step, Gradient Vector Flow. This means no 3D cache optimization and hardware
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data type conversion. Both of which can increase performance.

The runtime of the proposed GPU implementation on a multi-core Intel CPU is several
minutes compared to a few seconds on the high-end GPUs. This illustrates the huge
speedup gained from running tube detection and segmentation on the GPU.

Skeletonization is the most time-consuming step of the serial methods and is mainly de-
pendent on the thickness of the tubular structures. This is evident in the long execution
time of over 2 minutes when processing the airway datasets. Nevertheless, the skele-
tonization implementation used in this comparison does not exploit parallelism.

Helmberger et al. [21] noted that it is difficult to process a large CT scan due to the
limited memory on the GPU. They solved this challenge by decomposing the volume into
overlapping sub-volumes that are processed sequentially on the GPU. However, this takes
more time and they reported runtime of several minutes. In this paper, the memory limit is
avoided by performing cropping and using a 16-bit normalized integer data format. Table
4 shows that the cropping algorithm is able to discard a large portion of the total input
volume. This reduces memory usage significantly and without it, no GPU at the present
time would have enough memory to perform the entire calculation in one step for large
medical images. Using 16-bit for storage also halves the memory usage allowing larger
volumes to be processed entirely on the GPU. On average, the peak memory usage is
below 1 GB when cropping and 16-bit data types are used, which is below the memory
limit of most modern GPUs.

4.3 Quantitative analysis

The average centerline error is worse for the proposed PCE algorithm than the ridge
traversal and skeletonization methods. This increased centerline error is due to the fact
that the PCE algorithm creates straight lines between centerpoints. However, it is below
0.7 voxels which we argue is not problematic for most applications and this approximation
enables the proposed PCE algorithm to extract over 10% more of the synthetic vascular
tree compared to the ridge traversal algorithm for large noise levels (0.3).

Thresholding assumes that all voxels with an intensity above some threshold is part of the
tubular structures. This assumption is correct for these synthetic datasets and is thus able
to extract more for noise levels 0.1 and 0.2. However, this assumption is usually never
correct for a clinical dataset and especially not if the noise level is high. This is evident
with noise level 0.3 and in the MR Angio modality in Fig. 8 where the segmentation
contains some noise and parts of the cranium.
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5 Conclusion

In this article, a fast and generic method that can extract tubular structures such as blood
vessels and airways from images of different modalities (CT, MR and US) and organs
(brain, lungs and liver) was presented. This was achieved by utilizing the computational
power of modern Graphic Processing Units. The method was compared to other methods
such as region growing, thresholding, skeletonization by thinning and ridge traversal.
Results from both synthetic and clinical datasets from three different modalities (CT, MR
and US) was presented. The results show that the method is able to extract airways and
vessels in 3-5 seconds on a modern GPU. These near real-time speeds can be beneficial
in reducing processing time in image guided surgery applications such as bronchoscopy,
laparoscopy and neurosurgery. Although faster and more general than other methods,
the quality of the centerline and segmentation was found to be comparable for all the
methods.
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Abstract

Tube detection filters (TDFs) are useful for segmentation and centerline extraction
of tubular structures such as blood vessels and airways in medical images. Most
TDFs assume that the cross-sectional profile of the tubular structure is circular.
This assumption is not always correct, for instance in the case of abdominal aor-
tic aneurysms (AAAs). Another problem with several TDFs is that they give a false
response at strong edges. In this paper, a new TDF is proposed and compared to
other TDFs on synthetic and clinical datasets. The results show that the proposed
TDF is able to detect large non-circular tubular structures such as AAAs and avoid
false positives.

1 Introduction

Tube detection filters (TDFs) are used to detect tubular structures in 3D images. They
perform a shape analysis on each voxel and return a value indicating the likelihood of
the voxel belonging to a tubular structure. The likelihood can be used for segmenta-
tion and centerline extraction of tubular structures such as abdominal aortic aneurysms
from medical images. The segmentation and centerline of these structures are useful for
visualization, volume estimation, registration and planning and guidance of vascular in-
terventions.

Many TDFs use second order derivative information to perform the shape analysis like
the eigenanalysis of the Hessian matrix. The eigenvalues of this matrix can be used to
determine the shape of the local structure and the eigenvectors can be used to find the
shape’s orientation. To calculate the Hessian matrix at a voxel inside a tubular structure,
the gradient information from the edges has to be present. For small tubular structures
this is not a problem, but for large ones the gradients have to be propagated from the
edges to the center. One way to do this is to compute the Hessian matrix in a Gaussian
scale space by convolution with a Gaussian of different standard deviations. The final
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TDF measure is calculated as the maximum response over all scales. One problem with
using Gaussian scale space is that on larger scales objects diffuse into each other and
small tubular structures that are close to one another can diffuse together and give the
impression that a larger tubular structure is present. Bauer and Bischof [2] suggested to
replace the gradient vector field from the Gaussian scale space with an edge-preserving
diffusion process called gradient vector flow (GVF), originally introduced by Xu and
Prince [13] as an external force field to guide active contours. With the GVF, only one
scale is needed and the problem of objects diffusing into each other is avoided.

Frangi et al. [6] introduced a TDF called a vesselness filter. This filter uses the eigen-
values () of the Hessian matrix to determine whether the current voxel ¥ is part of a

tubular structure. With the three measures R, = |[X\a|/|As], Ry = |A1|/+/| 23| and
A? + A3 + M2 the vesselness filter is defined in (1).

T,(Z) = w2 R o (1)

0 if )\2 >0 or )\3 >0
(1-— e_ﬁ)efﬁ(l —e 22)  else

Frangi et al. used Gaussian scale space methods to do the multi-scale filtering, however

Bauer et al. [2, 3, 4] later used the vesselness TDF successfully with the GVFE.

The circle fitting TDF introduced by Krissian et al. [8] uses the eigenvectors of the Hes-
sian matrix to identify the tubes cross-sectional plane. In this plane a circle is fitted to the
underlying edge information. The fitting procedure samples N points on a circle with ra-
dius r and calculates the average dot product (2) of the edge direction (‘7) and the circle’s
inward normal (—d;). The radius is gradually increased and the radius with the highest
average is selected. The TDF response is then equal to the average with the select radius
rasin (2).

1 . - -

7

=2

Il
=)

As a measure of edge direction, Krissian et al. [8] used the gradient calculated at the
scale corresponding to the current radius. Bauer et al. [5] used the GVF field instead.
Since this TDF assumes that the cross-sectional profile of the tubular structure is circular,
it produces a lower response for non-circular tubular structures. Also, the cross-section of
a tube is estimated using the eigenvectors of the Hessian matrix which are not accurate,
hence even if the tubes are circular the cross-section may often appear as ellipses instead.
Furthermore, the circle fitting TDF can give response in voxels where there is not a tubu-
lar structure. A semi-circle with a very high contrast can be enough to give a medium
response. Pock et al. [9] proposed a symmetry measure to reduce the false response at
such edges. This measure reduces the TDF response where the gradient’s magnitude, i.e.
the contrast, differs along the circle. However, this also reduces the response for tubu-
lar structures with a non-circular cross-section. Bauer [1] concluded in his thesis that
several TDFs, including the vesselness and circle fitting TDF, have the problem that the
response decreases significantly when the cross-section of the tubular structure deviates
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from a circle, which makes these tubular structures hard to distinguish from noise in the
TDF response.

In this paper, a new TDF is proposed that uses GVF and is able to properly detect non-
circular irregular tubular structures and reduce the amount of false responses. In addition,
it is demonstrated that a multigrid method is necessary for calculating the GVF for large
tubular structures such as abdominal aortic aneurysms (AAAs).

2 Methods

Cropping
Previously, we have developed a framework for ex- ¢
tracting airways and blood vessels from different im-
age modalities (e.g. CT, MR and US) using tube de- Pre-Processing
tection filters [10]. The framework consists of five main ¢
steps that are all executed on the graphic processing unit
(GPU) (see Fig. 1) . The first step is to crop the volume Tube Detection Filter
in order to reduce the total memory usage. The sec- ¢
ond step involves some pre-processing, such as Gaus- . _
sian smoothing and gradient vector flow, which are nec- Centerline Bxtraction )
essary to make the results less sensitive to noise and dif- #
ferences in tube contrast and size. After pre-processing, S .
the TDF is performed. From the TDF result, the cen- )

terlines are extracted and finally, a segmentation is per-

formed with a region growing procedure using the cen- Figure 1: Block diagram of the
terlines as seeds. The entire implementation is available implementation

online!. Previously, the circle fitting TDF by Krissian et

al. [8] was used in this framework. In this paper, a new TDF is proposed as a replace-
ment for this filter to improve detection of large non-circular tubular structures and avoid
detection of false tubular structures.

2.1 Large Tubular Structures and Gradient Vector Flow

The most common way to calculate GVF is to use Euler’s method as demonstrated by Xu
and Prince [13]. However, this method is very slow to converge [7]. And for large tubular
structures where the gradients at the edges have to diffuse a long way to the center, this
becomes a problem (see Fig. 3). To solve this problem, Han et al. [7] used multigrid
methods to calculate GVF and achieved a much better convergence rate. In this paper, a
GPU implementation of this multigrid method was used [11].

'http://github.com/smistad/Tube-Segmentation-Framework/
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2.2 A New TDF for Non-Circular Tubular Structures

Like the circle fitting TDF, the proposed TDF uses the eigenvectors of the Hessian matrix
to identify the orientation of the tubular structures. The two eigenvectors associated with
the eigenvalues of the largest magnitude é; and €3 span the cross-sectional plane of the
tubular structure. In this plane, /N line searches are performed from the current voxel &
at different angles. For each line search ¢, a phasor is used to create vectors d: that define
the search direction 6.

91‘ == % Ci; = 52 sin 01 + 53 COS 91 (3)
Each line search continues until the edge of the tubular structure is encountered and the
distance from the center to the edge for line search ¢ is r;. The edges are detected as the
first peak in the vector field’s magnitude above the fixed threshold 0.01. This threshold
states the minimum gradient magnitude of an edge of a tubular structure. Thus, the value
of 0.01 will allow most edges, but it is necessary to eliminate noise. If a dataset has noise
with a higher contrast, this threshold may be increased. The problem of detecting false
tubular structures is reduced by limiting the length of the line searches with a parameter
max- HOWever, when detecting very large tubular structures, such as AAAS, rmax has to be
set high and thus might not reduce the number of false positives. Also, if only large tubular
structures are to be detected, a parameter, r,;,, can be set which sets the lower bound for
the radius of the tubular structures to be detected. Using these distances, a measure C'(¥)
is created of how likely it is that the voxel Z is in the center of the tubular structure (4).
This measure enables the proposed TDF to be used for extracting centerlines and was also
used by Wink et al. [12].

N/2—1

min(ri, TN/2+Z‘>

max (7, 7N /244)

“4)

Finally, the TDF measure 7' is defined as the product of the center likelihood measure
C and a measure M of how well the gradient vectors at the border correspond to the
direction of the tubular structure €.

N-1

1
Z (1 VNE 1) - |) 5)
. fo it VT +rd;) - (—d;) <0
(@) _{ CHM(E)  else ©

Ideally, the gradient vectors V should be perpendicular to the direction of the tubular
structure. This can be checked by taking the dot product of the normalized vectors vr
and e7. The closer the dot product is to zero, the closer the two vectors are to being per-
pendicular. At the borders of large tubular structures, the data will, locally, resemble more
a plate structure than a tubular structure which may lead to an incorrect tube direction €.
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The measure M thus reduces the response in the borders of the tubular structure where the
tube direction €7 may be incorrect. This greatly improves the centerline extraction which
uses the tube direction €7 [10]. Also, if there exist a vector that is more than 90° from the
direction to the center —d;, the TDF measure is set to 0. This is done to further reduce the
amount of false responses in which the edge gradient has another direction than towards
the center and is similar to the circularity measure used by Pock et al. [9].

3 Results
Circular Elliptical Irregular False
1 h Vesselness
! /\ /\‘! Circle fitting
1 /\ /\ A_ﬂ Proposed

]

Figure 2: The top row shows the cross-section of five different tubular structures and one false
tubular structure. The three graphs below are the responses from the vesselness, circle fitting and
proposed TDFs respectively, measured in a line that goes through the middle of all the cross-sec-
tions (the grey line in the top row).

In this section, results of the proposed TDF are presented for both synthetic and clinical
data and compared to the vesselness and circle fitting TDF in conjunction with GVFE. The
parameters used for the GVF are p = 0.1 with 6 iterations. The vesselness TDF was run
with the parameters o = 0.5, # = 0.5 and ¢ = 100. And the circle fitting TDF used 32
sample points and the proposed TDF used N = 12 line searches.

Synthetic Data: A dataset containing tubular structures with different types of cross-
sectional profiles was created. The profiles are displayed in the top of Fig. 2. This dataset
contains tubular structures with circular, elliptical, several irregular profiles and one false
tubular structure. The vesselness, circle fitting and proposed TDF were performed on
this dataset. The responses along a line going through the middle of all of these tubular
structures were recorded and are displayed as graphs in Fig. 2. The figure shows that

161



the response of the circle fitting TDF is considerably reduced when performed on tubular
structures with a non-circular cross-section, while the proposed TDF detects these almost
as well as the circular structure. The circle fitting TDF also has a high response at the
false tubular structure to the far right.

Figure 3: Magnitude of the vector field after running gradient vector flow (GVF) on a AAA CT
dataset. Left: Euler’s method with 1000 iterations. Right: Multigrid method with 6 iterations.
The image to the left shows that GVF with Euler’s method has problems with diffusing the gradi-
ents on the edge of the aneurysm to the center which is necessary for the TDFs.

Clinical Data: The TDFs were also executed on clinical CT datasets of abdominal
aortic aneurysms (AAAs). Figure 3 illustrates the need for the multigrid method when
calculating the GVF on large tubular structures such as an AAA. The figure shows the
magnitude of the vector field after running GVF using Euler’s method with 1000 iterations
(about 6 seconds) and the multigrid method with 6 iterations (about 1 second). From
this figure, it is evident that GVF with Euler’s method has problems with diffusing the
gradients on the edge of the aneurysm to the center, which is necessary for the TDFs.
Over 10 times more iterations would be needed to reach the center with Euler’s method
which would reduce performance considerably. However, with the multigrid method the
gradients are diffused to the center in about 1 second.

Figure 4 shows a maximum intensity projection of the response for each TDF on a CT
image of an AAA. The TDFs were all executed on the same GVF vector field thus re-
quiring only one scale. The same window and level were used on the circle fitting and
the proposed TDF as both of these TDF have responses from O to 1. Also, the minimum
radius (ry;,) and maximum radius (rm.) used were 7 and 45 mm. This enables visual
comparison of the two TDFs and it is clear that the circle fitting TDF creates a weaker
response in the aneurysm than the proposed TDF. Furthermore, the amount of noise, es-
pecially from the spine, is higher with the circle fitting TDF. A different level and window
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were used for the vesselness TDF as its range is exponential. However, the AAA was not
detected with this filter.

Figures 5 and 6 depicts the results using three different algorithms on four different AAA
CT images. For comparison, the first column in the figures shows the segmentation result
using the seeded region growing segmentation method. However, as this method leads
to segmentation leakage into the spine on all datasets, the centerline was not possible to
extract. The middle and right column show the segmentation surface and centerlines ob-
tained with the circle fitting and the proposed TDF using the framework from [10] and the
multigrid GVF method [11]. Here, ry, and rp, were set to 2 and 45 mm respectively.
The vesselness TDF was not able to detect the AAAs and was therefore not included.
The datasets consisted of 388-420 slices with size 512x512. The runtime of the entire
implementation (see Fig. 1) including the TDF, centerline extraction and segmentation
for these datasets was 4-10 seconds using a modern AMD Radeon HD7970 GPU.

Figure 4: Maximum intensity projection of TDF responses on a CT image of an abdominal aortic
aneurysm (AAA) using the same GVF vector field. Left: Vesselness TDF. Middle: Circle fitting
TDF. Right: Proposed TDF. The same level and window were used on the circle fitting and
proposed TDF. A different level and window were used for the vesselness TDF as its range is
exponential.

4 Discussion

The results shows that the proposed TDF is able to properly detect large non-circular
tubular structures such as AAAs in CT images. Figures 5 and 6 show that seeded re-
gion growing fails to segment the AAAs due to leakage to the spine and the circle fitting
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Figure 5: Left: Region growing. Middle: Circle fitting TDF. Right: Proposed TDF.
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Figure 6: Left: Region growing. Middle: Circle fitting TDF. Right: Proposed TDF.
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TDF is not able to properly detect some of the AAAs that deviate most from a circular
cross-sectional profile.

The response of the vesselness and circle fitting TDF is dependent on the contrast due
to the use of eigenvalues (Eq. 1) and gradient (Eq. 2). However, the response of the
proposed TDF is invariant to the contrast due to the use of the normalized gradient V™ in
(5). Nevertheless, Bauer and Bischof [4] proposed a solution to this by adding a parameter
Fhax for the maximum contrast. Any gradient with a magnitude above this parameter
would be normalized and any below, divided by this parameter. But this has also the
effect of amplifying the effect of noise. The proposed TDF eliminates the need for this
parameter.

5 Conclusions

A new tube detection filter using gradient vector flow was proposed and compared with
two other commonly used filters. It was shown that the proposed filter is able to properly
detect non-circular tubular structures such as abdominal aortic aneurysms and thus enable
segmentation and centerline extraction of these structures.
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Abstract

Gradient vector flow (GVF) is a feature-preserving spatial diffusion of image gradi-
ents. It was introduced to overcome the limited capture range in traditional active
contour segmentation. However, the original iterative solver for GVF, using Euler’s
method, converges very slowly. Thus many iterations are needed to achieve the de-
sired capture range. Several groups have investigated the use of graphic processing
units (GPUs) to accelerate the GVF computation. Still, this does not reduce the num-
ber of iterations needed. Multigrid methods, on the other hand, have been shown
to provide a much better capture range using considerable less iterations. How-
ever, non-GPU implementations of the multigrid method are not as fast as the Euler
method when executed on the GPU. In this paper, a novel GPU implementation of a
multigrid solver for GVF written in OpenCL is presented. The results show that this
implementation converges and provides a better capture range about 2-5 times faster
than the conventional iterative GVF solver on the GPU.

1 Introduction

Gradient vector flow (GVF) is a feature-preserving spatial diffusion of image gradients.
The GVF field is defined as the vector field 1/, that minimizes the energy function £:

BOV) = [ W9V @)+ V() — Vo@) Voo az 0

where V), is the initial vector field. The first part of this integrand |[VV ()|, is the diffu-
sion part that favors a vector field that is smooth. The second part |V (Z) — V,(Z)|, on the
other hand, is the feature-preserving part that pushes the vector field to be similar to the
initial vector field. The last part |‘7g(f)\ reduces the feature preservation for weak edges
so that they are smoothed out instead. The parameter ;. governs how much the vector field
should be smoothed. Thus p should be increased if there is a lot of noise. Also, note that
the gradient operator V is applied separately for each vector component.
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Figure 1: Example of GVF execution using Euler’s method. The image to the left is the input
image and the three next images show the GVF vector field after 0, 10 and 400 iterations. The top
row shows the magnitude of the vector field and the bottom row shows the vectors superimposed
on a zoomed area of the input image.

Figure 1 depicts the process of the GVF algorithm. The image to the left is the input im-

age. Next, is the initial vector field ‘70 and the next two images show the vector field 1%
after 10 and 400 iterations. The top row shows the magnitude of the vectors fields while
the bottom row shows the vectors superimposed on a zoomed area of the input image. The
initial image shown top-left is an image smoothed by convolution with a Gaussian.

The GVF algorithm was introduced by Xu and Prince [19] as a new external force field
for active contours (AC). Also known as snakes or deformable models, AC are curves
that move in an image while trying to minimize their energy and are used extensively
for boundary detection and segmentation. The original snake, introduced by Kass et al.
[12], has the problem of getting stuck in boundary concavities and low capture range.
The capture range is how far from the object’s border a snake can be initialized and still
converge to the border. The GVF method is able to overcome both these problems.

After its introduction, the GVF algorithm has been applied for several other image pro-
cessing applications. Bauer and Bischof [3] developed a novel approach to use the GVF as
a replacement for the scale-space framework in Hessian based tube detection. Hassouna
and Farag [10] and Bauer and Bischof [4] used the GVF to extract skeletons from objects.
Ray and Acton [14] used GVF to track leukocytes from intravital video microscopy. Guo
and Lu [8] argued that GVF combined with mutual information can improve multi-modal
image registration.

Xu and Prince [19] showed that the GVF field can be found by solving the Euler equation:

—

HVV () — (V(#) = Vo()[Vo(Z)]* = 0 2)
This can be done by treating the vector field V as a function of time and using Euler’s
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method:

3)

Algorithm 1 shows how this is done numerically.

Algorithm 1 3D Gradient vector flow using Euler’s method

Input: Initial vector field Vj, and the constant L.
V¥,
for a number of iterations do
for all voxels 7 do
L + —6‘7(3?) + ‘7(.1'—|- 1L,y,2) + V(x —1,9,2) + V(x,y+ 1,2) + V(m,y -
1,2)+ V(a:,y,z—l— 1) +X7(x,y,z -1)
Vo(Z) = V(&) + uL — (V(Z) — Vo())| Vo (D)
end for
V1V,
end for

Calculating the GVF field serially using this numerical approach is slow due to the need
for many iterations to converge. However, since each pixel is calculated independently of
the other pixels, each pixel can be processed in parallel with the same instructions for each
iteration. This data parallelism makes the GVF ideal for execution on graphic processing
units (GPUs). The GPU is a type of single instruction, multiple data (SIMD) processor. It
can perform the same instruction on each element in a dataset in parallel. GPUs achieve
this with many functional units (e.g. ALUs) that share control units.

Because of the simplicity and data parallelism of Euler’s method for solving GVF (see
Algorithm 1), there exist several GPU implementations of this method. Eidheim et al. [6],
He and Kuester [11] and Zheng and Zhang [20] all presented GPU implementations of
GVF and active contours for 2D images using shader languages. A GPU implementation
of 2D GVF written in CUDA was done by Alvarado et al. [2]. In our previous work
[16], we presented a highly optimized GPU implementation of GVF for both 2D and
3D images using OpenCL. This implementation uses both texture memory and a 16-bit
storage format to reduce memory latency and has been used for fast segmentation and
centerline extraction of tubular structures in medical images [15, 17]

Han et al. [9] proposed an alternative numerical scheme to Euler’s method using a multi-
grid method. Their results showed significant improvement in speed and quality.

There exist several implementations of multigrid methods on the GPU. Some examples
are Bolz et al. [5] who implemented a sparse matrix multigrid solver on the GPU and
Grossauer and Thomas [7] who implemented a denoising filter and a solver for optical
flow on the GPU using multigrid methods. However, to our knowledge, there are no
published implementations on multigrid methods for GVF on the GPU.
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In this paper, we present a parallel GPU implementation of GVF for 3D images using the
numerical multigrid scheme presented by Han et al. [9]. The implementation is available
online!.

The next section describes the multigrid solver for GVF and how it was implemented and
optimized for the GPU. The implementation was evaluated on several large medical 3D
datasets and execution time and average error are reported in the result section. Finally, a
discussion of the results and conclusions are presented.

2 Methods

2.1 Multigrid gradient vector flow

Throughout this article, a computational grid refers to the current vector field V with
a specific resolution. While Euler’s method only work on one computational grid with
one specific resolution, multigrid (MG) solvers work on several computational grids with
different resolutions. Thus MG methods are a type of multiresolution methods. The
general idea of MG methods is to accelerate the convergence by solving the same problem
only on a coarser computational grid and then use this solution when solving the finer grid.
Thus this is a recursive method and for each recursive call there are five steps:

1. Pre-smoothing: Smooth the current grid to remove high frequency errors.
2. Restriction: Create a coarser grid of the current grid.

3. Run this method recursively on the coarser grid from the previous step.

4

. Correction: Prolongate/Interpolate the solution of the previous step to the same
resolution as the current grid and use it to correct the current solution.

5. Post-smoothing: Smooth the current grid again.

This is called the V-cycle and is depicted in Figure 2. In the next sections, these steps
are explained in more detail. Note that for each of these steps there are several choices
of methods and parameters. Han et al. [9] investigated which of these choices gave the
best convergence rate for GVF. Thus in this study, the same methods and parameters have
been used.

2.1.1 Smoothing

The purpose of the pre- and post-smoothing is to reduce high frequency errors. This is
done using the red-black Gauss-Seidel (RBGS) relaxation method. The advantage of us-
ing the RBGS method versus the default lexiographic Gauss-Seidel method is that RBGS

"http://github.com/smistad/GPU-Multigrid-Gradient-Vector-Flow/
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Figure 2: The multigrid V-cycle with 1 levels.

allows half of the voxels in the grid to be computed in parallel. Which is crucial for the
GPU implementation. One important parameter in this step, is how many iterations of
smoothing will be performed.

In the rest of the article, the following notation will be used. v; is the current solution
for one component in the GVF vector field V' at resolution level [. r; is the residual of
the current solution v; at resolution level . The vector & = [z, vy, 2], is the voxel position.

The squared magnitude of the initial vector field Vj, is constant and simplified to S;(%) =
|Vo(Z)|?. Assuming isotropic spacing & in the computational grid, the update equation for
the Gauss-Seidel method is as follows [9]:

L(ﬂf,y,Z):Ul(ﬂf“—l,y,Z)—FUl(l’—1,y,Z)+’Ul(fL',y+LZ)
+Uz(x,y—l,z)+vl(x,y,z+1)+vl(x,y,z—1)
2ul(z,y, z) — 2h?r(x,y, 2
o) = B2~ Dl

“4)

The update equation is executed on the entire dataset at each level and is done with two
kernels as shown in Algorithm 2. To accomplish the checkerboard (red-black) pattern as
shown in Figure 3, the Manhatten distance from origo (z + y + 2) is first calculated. If the
Manhatten distance is even the voxel is red, and if it is odd the voxel is black. The first
kernel, GAUSSSEIDELRED, calculates the red voxels using Equation 4. Thus this kernel
only works on half the voxels in the dataset. The second kernel, GAUSSSEIDELBLACK,
copies the red voxels from the previous kernel and computes the black voxels.
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Figure 3: Checkerboard pattern used in the Figure 4: Illustration of boundary conditions

red-black Gauss-Seidel method to process half  in the top left corner of an image. Bound-

the voxels in parallel on the GPU. ary pixels (green/dark) get the same value as
the pixels two steps inside the image (arrows).
This will create zero gradients at the white pix-
els because a central difference scheme is used
for the Laplace operator.

A double buffering mechanism is used here with the datasets v,..,q and vyi.. This is
necessary because the data is stored in textures which can only be read or written to in a
kernel. More details about the use of textures can be found in the optimization section.

At the boundary of the image, the neighboring voxels needed to calculate L in Equation 4
does not exist. It is desirable to have a zero gradient at the boundary, because a gradi-
ent larger than zero at the boundary would diffuse into the rest of the image giving an
impression of an edge at the boundary. This can have the effect of forcing the active con-
tours towards the image boundary. There are several ways to implement a zero gradient
at the boundary. In this implementation, any voxel that is on the boundary of the image
will change its value to the same as the voxel two steps inside the image as shown in
Figure 4. For example a voxel with coordinate x = 0 uses the value of the voxel with co-
ordinate z = 2. Also, a voxel with x = N — 1 uses the value of the voxel with coordinate
x = N — 3. The same applies for the y and z coordinates. The reason for doing it this way
is that the calculations are simple.

2.1.2 Restriction

The restriction step downsamples the residual r at level [ to a coarser grid (level [ + 1).

The residual is calculated using the current solution v; and residual r; as [9]:

(&) = (&) — (“L(f) h_? bu (@) vl(f)S,(f)) 5)

The restriction operator used in this implementation takes the average of each 2x2x2 voxel
cell and creates a grid which is half the size in each dimension as shown in Equation 6.
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Algorithm 2 Parallel red-black Gauss-Seidel

function GAUSSSEIDEL(r, v, i, S, h)
for i times do
GAUSSSEIDELRED(r, v, vy, S, h)
GAUSSSEIDELBLACK(r, v, v, S, h)
end for
return v
end function

function GAUSSSEIDELRED(7, Ureads Vwrites O, 1)
for each voxel (x,y, z) in parallel do
if z + y + 2 is even then
Use Equation 4 to calculate v for voxel x, vy, z
end if
end for
end function

function GAUSSSEIDELBLACK(T, Ureads Vwrites O»> 1)
for each voxel (z,y, z) in parallel do
if x + y + z is even then
Copy the red voxel from vyeaq 10 Vyrite
else
Use Equation 4 to calculate v for voxel x, vy, z
end if
end for
end function

The same operator is used when creating the different levels of the squared magnitude of
the initial vector field \S;.

1
rl+1(:lj'7y, Z) = g(’]"l<2$72y722) + ’1"1(21' + 17 2y7 22)

+ 722, 2y + 1,22) + (22, 2y,22 + 1) (6)

+r(2z+ 1,2y +1,22) + m(2x,2y + 1,22 + 1)

+r(2x+1,2y,224+ 1) +1(2x + 1,2y + 1,22+ 1))
If the grid size is 256x256x256 for level [, the next level will have size 128x128x128.
Usually, the size of the finest grid (level [ = 0), the actual image size, is not equal in
every dimension or a power of two for that matter. By taking the largest dimension and

rounding up towards the closest number that is a power of 2 (see Equation 7), the size of
the next level can be determined.

A= 2]'log2(maa3(M,N,O))]—1 (7)

Then the size of level 1 would be Ax AxA. Thus for an input vector field of size 460x390x120

(level 0), level 1 would have a size of 256x256x256, and level 2 would have a size of
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128x128x128. This method leads to some waste of space and processing, but gives a
much simpler implementation. The spacing of each level is calculated as h;; = 2h;. The
multigrid method will process grids from level O to the coarsest level with the smallest
possible size, 2x2x2.

2.1.3 Prolongation

Prolongation is the opposite of restriction. Prolongation resamples and increases the size
of the grid. It is used when correcting the current solution with a solution of a coarser grid
such that CORRECT(vy, Uj41) — v +

PROLONGATE(v;41). Bi- or trilinear interpolation may be used as a prolongation operator,
but according to Han et al. [9] a simple nearest voxel method (Equation 8) give a better

convergence rate.
atens = (3] 12]. )

2.1.4 The V-cycle

Putting all of this together we end up with Algorithm 3. This algorithm needs 6 sepa-
rate GPU kernels: GAUSSSEIDELRED, GAUSSSEIDELBLACK, RESIDUAL, RESTRICT,
CORRECT and INITIALIZETOZERO which simply initializes a solution to zero.

The two constants b and ¢ determines how many times pre- and post-smoothing will be
performed.

Algorithm 3 The V-cycle

function VCYCLE(r, v, [, S, hi, b, ©)
v, < GAUSSSEIDEL(r;, vy, b, S}, hy)
if [ is NOT the coarsest grid level then
9 Calculate residual of current solution v;
r; = RESIDUAL(7, v;)
7141 < RESTRICT(r;)
% Initialize coarse solution to O
V41 ¢ INITIALIZETOZERO
Upy1 < VCYCLE(T[+1, V41, I+ 1, SlJrl’ hl+1, b, C)
% Correction of the v; using the coarse solution
v; < CORRECT (v, vj41)
end if
v; <= GAUSSSEIDEL(ry, vy, ¢, Sy, hy)
return v;
end function
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Figure 5: The full multigrid algorithm with 4 levels.

2.1.5 The full multigrid algorithm

One MG scheme is to repeat the V-cycle until convergence. However, faster convergence
can be achieved with the full MG algorithm (FMG) [9]. The FMG algorithm is based
on the MG V-cycle. However, instead of performing a set of similar V-cycles, the FMG
algorithm starts with the coarsest grid and uses the solution for this grid to get a good
initialization of the next finer grid (see Figure 5). This is done recursively using the func-
tion RECURSIVEFULLMULTIGRID for all computational grids as shown in Algorithm 4.
The FMG algorithm can also be repeated until convergence, the constant a determines
how many times the FMG algorithm will be repeated. The function FULLMULTIGRID is
the entry point of the entire method and takes in the parameters a, b and ¢ and the initial
vector field ‘70. The FMG algorithm needs one more additional GPU kernel and that is
the PROLONGATION kernel which implements Equation 8. The other kernels, RESTRICT,
RESIDUAL and INITIALIZETOZERO, are the same as in the V-cycle algorithm.

2.2 GPU optimization

Accessing the off-chip global memory on a GPU is a very time-consuming operation [1].
Since all of the kernels in this implementation require many memory access operations
and few arithmetic operations, the performance of these kernels are memory-bound. Thus,
optimization of these kernels should focus on optimizing the memory access. In this sec-
tion, GPU memory optimization techniques such as using the texture memory system and
a 16-bit storage format are described.
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Algorithm 4 The full multigrid algorithm

function RECURSIVEFULLMULTIGRID(7y, I, b, ¢)
if [ is the coarsest grid then
v; < INITIALIZETOZERO
else
ri41 < RESTRICT(1)
U141 < RECURSIVEFULLMULTIGRID(7;11,1 4+ 1,0, ¢)
v; <~ PROLONGATE(v;41)
end if
U VCYCLE(T[, v, 1, Sy, hy, b, C)
return v;
end function

function FULLMULTIGRID(VO, a, b, c)
V <« INITIALIZETOZERO
for a times do
for each component C' € [z, y, z] do
% Calculate initial residual
r— RESIDUAL(—%,C%,CP, Ve)
Ve RECURSIVEFULLMULTIGRID(r, 0, b, ¢)
end for
end for
return V
end function
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2.2.1 Texture memory

The GPU has a specialized memory system for images, called the texture system. It has
this system because the GPU is primarily made and used for fast rendering which involves
mapping images, often called textures, onto 3D objects. The texture system specializes in
fetching and caching data from 2D and 3D textures [13, 1]. The fetch unit of the texture
system is also able to perform interpolation and data type conversion in hardware. When
working with images and volumes, using the texture system to store these structures can
greatly improve performance as shown in our previous work on GVF [16]. All of the
vector fields, residuals and squared magnitudes at different levels are stored in textures.

2.2.2 16-bit storage format

Memory access can also be improved by reducing the number of bytes transferred from
global memory to the chip. Floating point numbers are usually represented using 32
bits and the IEEE 754 standard. However, if the floating point numbers are normalized
between 0.0 and 1.0 or -1.0 and 1.0 a different format can be used. Most GPU’s texture
system supports normalized 8- and 16-bit integers. With this format, the data is stored as
8- or 16-bit integers in the textures. However, when the data is requested, the texture fetch
unit converts the integer to a 32-bit floating point number with a normalized range. This
reduces accuracy, and may not be sufficient for all applications. In our previous work on
GPU-based GVF using Euler’s method, the results showed that 8-bit was too inaccurate
for any practical use [16]. Also, our previous work on applications such as segmentation
and centerline extraction of airways and blood vessels using GVF has shown that 16-bit
gave just as good results as 32-bit and increased the speed considerably on large images
[17, 18]. The 16-bit storage format also halves the global memory usage, thus allowing
much larger volumes to reside completely in the GPU memory.

2.2.3 Work-group size

Threads are executed on the GPU in groups. AMD calls these units of execution wave-
fronts while NVIDIA calls them warps [1, 13]. The units are executed atomically and
have at the time of writing the size of 64 (AMD) or 32 (NVIDIA) threads. The threads
are also grouped in software. In OpenCL these groups are called work-groups, and in
CUDA they are called thread-blocks. If the work-group sizes are not a multiple of the
wavefront/warp size, some of the GPUs thread processors will be idle for each work-
group that is executed. Also, there is a maximum number of threads that can reside in a
work-group. On AMD GPUs, this limit is currently 256 and on NVIDIA up to 1024.

When a kernel is scheduled on the GPU using OpenCL, the kernel is executed on a global
grid. The grid size has to be dividable by the work-group size. Thus if an image of
size 512x512x256 is to be processed with one kernel per voxel, a 3D global execution
grid is used with the same size of the image. A possible work-group size is then 4x4x4
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Figure 6: Average error € over time in ms for both the Euler and multigrid GPU implemen-
tations with 32-and 16-bit floating point storage formats and datasets of different sizes. Top:
512x512x512. Middle: 512x512x256. Bottom: 256x256x256.
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Figure 7: Magnitude of the GVF vector field after the same amount of execution time displayed
using the same intensity transformation. Left: Input image (Thorax CT). Middle: Euler GPU
GVF [16] (512 iterations). Right: Multigrid GPU GVF (15 iterations). Note the larger capture
range with the multigrid method.

because 512 and 256 is dividable by 4, and 4x4x4 = 64 threads which is a multiple of the
wavefront/warp sizes and is below the maximum limit.

In this implementation a work-group size of 4x4x4 was used. However, the optimal work-
group size can vary from different GPUs. Volumes that have a dimension size that is not
dividable by 4 are cropped.

3 Results

The overall goal of the proposed GVF implementation is to achieve a low error as fast
as possible. Thus the GVF error and execution time were measured at different number
of iterations. This was done on three different datasets using a modern AMD Radeon
HD7970 GPU with 3GB memory. The setup was running Ubuntu 12.04, AMD Catalyst
12.11 graphic drivers and AMD APP SDK 2.9. The parameters used in all experiments
are 4 = 0.1, a = 1, b = 2 and ¢ = 1. Recall that the constant a is the number of times
the FMG algorithm is repeated, and b and c are the number of pre- and post-smoothing
iterations. These constants were determined through experimentation. The gradient of the
input image smoothed with a Gaussian filter with standard deviation o = 0.5 was used as

the input vector field Vj in all experiments.

The graphs in Figure 6 show the average error € versus time for both the Euler [16]
and multigrid method on the GPU. These measurements were done on three different
datasets with varying sizes using both 16- and 32-bit storage. One large volume of size
512x512x512, one medium volume of size 512x512x256 and one small volume of size
256x256x256. All of the volumes are clinical computed tomography (CT) volumes. The
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Figure 8: Segmentation and centerline extraction of an abdominal aortic aneurysm using the
proposed multigrid GVF implementation [18].

average error ¢ is calculated using Equation 2 over all /V voxels:

—

= V@) - (@) - (@)l To(@) ©

From these graphs, it is evident that the MG GPU method converges faster than the Euler
GPU method for all three datasets. However, it was not possible to process the largest
volume (512x512x512) with either method using 32-bit storage as there was not enough
memory on the GPU to do this. Thus only results for 16-bit storage are included in the
graph for this volume.

Figure 7 shows the increased capture range with the MG method versus the Euler method
[16] when run on a CT thorax image using the same amount of execution time. The figure
shows images of the magnitude of the GVF vector field ]‘7| using the same intensity
transformation for visual comparison.

Table 1 shows the average runtime on different datasets for the two GPU implementations
and a serial C++ CPU implementation of Euler’s method?. The datasets were processed
10 times with Euler’s method first using a fixed number of iterations and then the multi-
grid GPU implementation was executed for as many iterations as needed to reach the
same error € or lower as the Euler method. The results show that the multigrid GPU
implementation is several times (1.9-5.1) faster than the Euler GPU implementation.

’http://github.com/smistad/Gradient-Vector-Flow/
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Dataset Euler

Euler CPU ‘ Euler GPU Multigrid GPU Multigrid Speedup

size iterations 32-bit 16-bit / 32-bit 16-bit / 32-bit iterations needed | 16-bit/32-bit
512x512x512 512 3085 secs 7.80 / N/A secs 2.17 / N/A secs 4 3.6/ N/A
512x512x256 512 1531 secs 3.88/10.16 secs 1.4/1.99 secs 4 2.8/5.1
256x256x256 256 188 secs 0.46/ 1.10 secs 0.24/0.33 secs 3 1.9/33
256x256x128 256 97 secs 0.23/0.54 secs 0.12/0.17 secs 2 1.9/3.2

Table 1: Average runtime for three different GVF implementations: One serial CPU and one GPU
implementation of the Euler method, and the proposed multigrid GPU implementation. The Euler
method is run with a specific number of iterations for each dataset, and the multigrid method is
run for as many iterations needed to reach the same error € or lower.

4 Discussion

Defining NN as the size of the largest dimension of an image, the Euler method need at
least [V iterations to diffuse gradients to all voxels of the image. Han et al. [9] defined this
as a rule of thumb of how many iterations should be used with this method. This is due to
the discrete Laplace operator used which only uses neighbor voxels. Thus, the gradients
can only diffuse one voxel at a time. Multigrid methods, on the other hand, can diffuse
gradients across the image in a single iteration. This is why multigrid methods for GVF
achieve a greater capture range and thus lower error faster. In the experiment depicted in
Figure 7, both methods were run for the same amount of time and the result is that the
multigrid method ends up with a higher capture range. Although multigrid methods need
fewer iterations, the multigrid iterations are much more time consuming as they do a lot
more work in each iteration.

In our previous work [18], the proposed MG GVF implementation was used in the seg-
mentation and centerline extraction of abdominal aortic aneurysms (AAAs) (see Figure
8). In this work, GVF is used to diffuse the image gradients from the edge of the blood
vessels to the center. Because AAAs often involve very large blood vessels, the gradients
have to diffuse a long way and thus benefit a lot from the MG GPU implementation. Using
the proposed implementation, 6 iterations and 1-2 seconds of processing were sufficient.
While over 10,000 iterations and several minutes of processing were needed to achieve
the same result with the Euler GPU implementation using the same GPU.

From the graphs in Figure 6 it is clear that the amount of speedup depends on what the
target average error is and the size of the dataset. The speedup may also vary a lot for
different types of GPUs. These graphs also show that it is possible to get a lower average
error with 32-bit than with 16-bit storage format.

Note that the multigrid method processes one component of the vector field at a time.
This is less efficient than processing all components at the same time as with the Euler
method in Algorithm 1. The reason for processing one component at a time in this multi-
grid implementation is to reduce memory usage. Thus, if a GPU had more memory, all
components could be processed in parallel and the method would probably be even faster.
As GPUs get more and more memory every year, this will most likely be possible in the
near future.
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5 Conclusions

In this paper, a GPU implementation of a multigrid solver for gradient vector flow was
presented. The results showed that this multigrid implementation was able to achieve
a higher capture range with a lower average error faster than a highly optimized GPU
implementation of the traditional Euler’s method for calculating the gradient vector flow.
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Abstract

A method for real-time automatic tracking of the left ventricle (LV) in 3D ultrasound
is presented. A mesh model of the LV is deformed using mean value coordinates
enabling large variations. Kalman filtering and edge detection is used to track the
mesh in each frame. The method is evaluated using the framework of the Challenge
on Endocardial Three-dimensional Ultrasound Segmentation (CETUS). The results
show that the method is able to robustly track the LV in all sequences with a mean
mesh difference of about 2.5 mm.

1 Introduction

Ultrasound is a real-time, flexible and affordable medical image modality which makes it
ideal for intraoperative imaging. However, 3D ultrasound images can be hard to interpret
and visualize due to noise and other imaging artifacts. Tracking of structures in ultrasound
images can be a way to make this easier and provide quantitative measures such as volume
size.

The Kalman filter [1] is a method for estimating a state using a series of noisy mea-
surements over time. This method can be used to track meshes in ultrasound images by
using a state consisting of translation, rotation, scaling and deformation parameters of a
mesh model in addition to edge detection measurements. Jacob et al. [2] developed a
tracking method for myocardial borders using a Kalman filter and active contours in 2D
ultrasound. Orderud [3] presented a method for tracking the left ventricle (LV) in 3D
ultrasound using a deformable contour model. This was later extended to incorporate
local deformation using a B-spline surface in [4] and using a subdivision surface in [5].
B-spline and subdivision surfaces can model mesh deformations using a set of control
points.
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If the surface is simple, only a few control points are needed which results in faster com-
putation of the Kalman filter. However, creating such a model can involve a lot of manual
work. In this paper, we present a fully automatic method for tracking a closed surface
with free-form surface deformation based on the Kalman filter approach by Orderud et al.
[4]. The presented method uses a mesh model with mean value coordinates which is able
to deform a complex shape with few control points. It also makes the shape modelling
easier as only a surface consisting of a set of points is required, and some calculations
such as generating surface points needed for edge detection are avoided. The new method
is tested on 3D ultrasound images of the LV of the heart, and evaluated as part of the
Challenge on Endocardial Three-dimensional Ultrasound Segmentation (CETUS).

2 Methods

In this section, the different methods used are described. First, the mesh model for the
LV is presented together with the method for deforming it. Next, the Kalman filter used
to track the mesh in the images is described and finally, a pseudo-code of the complete
implementation is provided.

2.1 Mesh model

The LV is modelled as a set of points p. The initial mesh

W x
Al
is defined by the points py and is first transformed using . ,‘\‘fl k
a local transformation p; = T}(po,x;) and then a global flkpm
: _ BTN
transformation p = T} (p;, X,). x; and x,, are the local and FMW""{‘ i
. '!r r gl
global transformation parameters. py was created from i{ﬂﬂk‘ﬂﬁﬁm

the end diastolic reference mesh of the first patient and AN
resampled down to M = 386 vertices using the surface _ - r
simplification method of Garland and Heckbert [6]. The T

reason for reducing the number of vertices is to increase

the speed of the implementation. Figure 1: Mesh model of the
LV and the control mesh around
Mean value coordinates are used to perform the local de-  (req).

formation of the mesh. This is done using a control mesh

c which has a lot less vertices than the mesh. The control mesh was created from pgy by
resampling it to N = 18 vertices using [6] and finally scaling it by 1.5. The mesh is
deformed by moving the vertices in the control mesh. Initially, a weight w; ; is calcu-
lated between each vertex j in each triangle of the control mesh and vertex 7 in the mesh
po- The mean value coordinate weights are calculated as described by Ju et al. [7] using
equation (1) where W and @ are the dihedral angles and arc lengths as depicted in Fig. 2.

0, — cos(Vy)0. — cos(¥.)0,
Wi q = . . —y =
’ 2sin(W,) sin(¥..)|¢, — pil

)
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i,0bserved

The edge in the image

Figure 2: Notation used for the calculation of Figure 3: Edge detection for a vertex ¢ on the
mean value coordinates. p; is a point on the predicted mesh p. A line is created with the cen-
model mesh. ¢y, ¢, ¢, are control points for one ter at the vertex position and in the direction of
triangle in the control mesh. ¥ and 0 are the an-  its normal 77;. v; is then the normal displace-
gles for the spherical triangle formed by these ment between the vertex and the detected edge
control points. on this line.

The weights for the other vertices in the triangle (¢, and ¢,) are calculated using the same
formula by swapping a with b or c. After all the weights have been calculated, they
are normalized as w; ; = w;;/ Y, ; wx,. The calculation of the normalized weights are
only performed once for the mesh model and is not repeated for every dataset. The local
state vector Z; consist of a displacement vector CZ; for each of the control mesh’ vertices.
The local deformation of the mesh is calculated by using the normalized weights and the
displacement vectors:

N
Dli = Ty(po, ©1)i = Zw;](EJ + CZ;) )
j=0
The global transformation is performed using equation (3) below. The mesh is first moved
so that its centroid C' is placed in the origin. Next, rotation around each axis is performed
as well as scaling. Finally, translation is performed using T. As translation, rotation and
scaling is used in all three directions, the global state vector Z, consist of 9 values.

Bi = Ty(p1, 7y); = R.BR RS (i — C() + C(p) + T (3)

Initially, the mesh py is placed automatically in the center of the image and scaled to 0.8 of
its original size, effectively placing the mesh model inside the LV. Although it is slightly
counterintuitive to do the local transformation first, this greatly simplifies the calcula-
tions. For instance, performing the global transformation first would require calculating
the weights w; ; in every iteration.

2.2 Mesh tracking using a Kalman filter

As proposed by Orderud et al. [4], the state of a mesh p is described using both the local
and global transformation parameters x = 7, ¥,]. A Kalman filter with a motion model
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(4) is used to predict the mesh’s state Xj 1, and the corresponding covariance error matrix
P k+1 1n (5). For the state transition model, diagonal matrices were used with values 1.5
for A; and -0.5 for A,. A diagonal matrix was also used for the process error matrix Q
with values 1.5 for the global and 0.001 for the local transformation parameters.

X1 = AiXg + AoXyp 4)
Piy = A\PLAT + AP, AT + APLAT + AP AT+ Q (5)

The edge detection finds the normal displacement (v; = ﬁf(pj-pbserved — Dipredicted)) for
each vertex ¢ in the predicted mesh in a 25 mm long line centered at the vertex and in
the direction of the normal 77 as shown in Fig. 3. The edge is detected using the STEP
model [8] which entails finding a k& that maximizes the following measure where /() is
the image intensity at step ¢ along the line with step size 0.6 mm (see Fig. 4).

ggigmmqwigﬂgagyM4w ©)

Image (‘Til)y“)zij)

i intensity {(t)

/\/\/\/\/ (wi‘?; ym; Zi‘?

k (0,0,0)

(xz'Q’ yi,’Z’ zz'2

Figure 4: Edge detection using the STEP model. Figure 5: Tetrahedron formed by a tri-
angle ¢ and the origin.

A measurement noise value r; is also recorded for each vertex and is calculated based on

the edge strength:
1

= : - - @)
2 1G) - 2 S 1G)

T

However, these edge measurements are nonlinear and thus an extended Kalman filter has
to be used in which the observation model is linearized. This is done by calculating
Jacobi matrices that relate changes in each vertex ¢ to changes in the mesh state x. The
final measurement vector ﬁ;f is the normal projection of these Jacobi matrices:

TaTg(phf)Z _ ﬁT 8Tg<plafg)i aTg(pbfg)i aﬂ(pOJfDZ

ET — ﬁ )
’ ! oxr ! 07, opy 0%

®)
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By assuming that the measurements are independent, the measurement noise covariance
matrix R becomes a diagonal matrix of the measurement noise values r;. The multi-
plications of R, the measurement-to-state transition matrix H and the measurements ¢/
becomes a simple summation as shown in equation (9) [3]. This makes the Kalman
update equations (10) invariant to the number of measurements which improves speed
significantly, as matrix inversion of large matrices is avoided.

M M
H'R 'v = Z Efr;lui H'R'H = Z ﬁ?Tflﬁi )
i=0 i=0

Using P,HTR ! as the Kalman gain, the updated state and error covariance estimate
becomes: _
%, =%+ P, H R v P,=P.' +H'R'H)™! (10)

2.3 End-systolic and end-diastolic volumes

The volume of the mesh is calculated for every frame using equation (11) [9]. This equa-
tion calculates the signed volume of tetrahedrons formed by each triangle in the mesh and
the origin as depicted in Fig. 5. The end-systolic (ES) and end-diastolic (ED) phases are
identified using the minimum and maximum volumes respectively from the volumes of
the meshes in all image frames.

1
V= Z 6(%‘2%321‘1 — X;3Yi2Zi1 T Ti3Yi1Zio — Tin¥YizZi2 — Tioli12i3 + %1%‘22@‘3) (11)

%

The pseudo-code below describes the complete implementation which is written in C++.
The entire Kalman filter procedure is repeated 10 times per image frame.

3 Results

The method was evaluated as part of the Challenge on Endocardial Three-dimensional
Ultrasound Segmentation (CETUS). In this challenge, a dataset of 30 sequences of 3D ul-
trasound volumes of one cardiac cycle was provided. The sequences were collected from
both healthy subjects and subjects with a history of myocardial infarction and dilated car-
diomyopathy using three different ultrasound probes. The same parameters were used for
all subjects. Results for the training and test dataset are gathered in tables 1 and 2 respec-
tively. The tables contain measures such as mean absolute difference (MAD), hausdorff
distance (HD) and min and max error all expressed in millimeters. The correlation of the
ejection fraction (EF) and stroke volume (SV) was 0.91 and 0.92 for the training dataset
and 0.91 and 0.55 for the test dataset. A Bland-Altman analysis of the EF and SV gave the
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Algorithm 1 Implementation

Set initial state xg and x; = xg
k1
for each image frame do
for a number of iterations do
Predict state and error for the current frame using Eq. (4) and (5).
Perform transformations to create the predicted shape p = T,(7;(po, 7)), Z4)
Perform edge detection for each vertex in the mesh p
Assimilate the measurements using Eq. (8) and (9).
Estimate the state and error for the current frame using Eq. (10).
E+—FkE+1
end for
Calculate volume size V' of the current mesh model defined by &, using Eq. (11).
if V < Vi, then
Viin <V
Tps < T
end if
if V > V.« then
Viax <V
Tpp < Tj
end if
end for
Save the meshes defined by ©'gg and Zgp to disk

95% limits of agreements intervals 1.52-£12.37 and 0.34+19.14 for the training dataset
and 3.87£8.15 and 0.75£20.31 for the test dataset. Fig. 6 show two ultrasound images
where the border of the result mesh of the proposed method and the ground truth is illus-
trated. The average runtime per subject was measured to be 2.1 seconds with a standard
deviation of 0.6 seconds. This includes everything from reading data, processing and stor-
ing the result meshes to disk. The average runtime per image frame was measured to be
65 ms which enables real-time tracking of the LV. The runtime was measured on a system
with an Intel 17-3770 CPU running at 3.4 GHz, 16 GB RAM and a solid-state drive.

4 Discussion

The results show that the presented method is able to automatically and robustly track the
LV in 3D ultrasound with a mean mesh difference at about 2.5 mm. However, the results
for the training set is slightly better than for the test set which may indicate that the pa-
rameters have been overtuned for the training set. Also, the max error was high (~10mm)
on some sequences. The image to the right in Fig. 6 illustrates such a case. The experts
have included bright parts of the heart’s apex in the image, while the proposed method
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Figure 6: Result of subject 5 ES to the left and subject 10 ED to the right. The yellow line is the
mesh border of the ground truth given by the CETUS organizers and the green line is the mesh
border of the proposed method.

track the inside edge. Thus, to deal with this problem, different edge detection meth-
ods may be needed for different parts of the mesh model. The implementation achieved
speeds that enable real-time tracking and it is mainly the number of model and control
mesh vertices (M and N) that affect the speed. The proposed mesh model which use
mean value coordinates is able to model a complex shape with few control points. This
may prove useful when tracking more complex shapes in which traditional methods such
as B-spline and subdivision surfaces will have to use many control points which reduces
speed significantly. Thus, our future work will focus on applying this method to other
applications such as tracking the ventricle of the brain in 3D ultrasound for guidance of
ventricular drainage procedures.

5 Conclusion

A method for fully automatic real-time tracking of the LV in 3D+t ultrasound was pre-
sented. The method was able to track the LV in all 30 sequences and achieved a mean
mesh difference of about 2.5 mm. However, the max error was high (~ 10 mm) on some
of the sequences due to failure to detect the LV border in some areas.
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Abstract

The goal is to create an assistant for ultrasound-guided femoral nerve block. By
segmenting and visualizing the important structures such as the femoral artery, we
hope to improve the success of these procedures. This article is the first step towards
this goal and presents novel methods for identifying the femoral artery and register-
ing a model of the surrounding anatomy to the ultrasound images in real-time.

The femoral artery is modelled as a circle compressed by the ultrasound probe.
The vessel is first detected by a novel algorithm which initializes the vessel track-
ing. This algorithm is completely automatic and requires no user interaction. Vessel
tracking is achieved with a Kalman filter. A mesh model of the surrounding anatomy
was created from a CT dataset. Registration of this model is achieved by first plac-
ing the ultrasound image frames at the target site. After this initialization, each
ultrasound image frame is registered to the artery model using the detected center-
points from the tracking. A bone segmentation method is also used, and if any bone
is detected, it is used to register the model in the head-feet direction.

The vessel detection method was able to automatically detect the femoral artery
and initialize the tracking in all 12 ultrasound sequences. The accuracy of the track-
ing algorithm achieved an average dice similarity coefficient of 0.90, mean absolute
distance of 0.42 mm, and Hausdorff distance 1.17 mm. The average runtime was
measured to be 42, 5, 0.11 and 34 milliseconds for the vessel detection, tracking,
registration and bone segmentation methods respectively.

This project has received funding from the European Union’s Seventh Framework Programme for
research, technological development and demonstration under grant agreement no 610425.
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Figure 1: Illustration of the femoral nerve block region showing the femoral artery, vein and nerve
along with femur and the pelvic bone. Image courtesy of H. E. Mgrk (helemork.com)

1 Introduction

The use of regional anaesthesia (RA) is increasing due to the benefits over general anaes-
thesia (GA) such as reduced morbidity and mortality [20, 3, 25], reduced postoperative
pain, earlier mobility, shorter hospital stay, and lower costs [7]. Despite these clinical
benefits, RA remains less popular than GA. One reason for this is that GA is far more
successful and reliable than RA. Ultrasound has been employed to increase the success
rate of RA [12, 9]. However, ultrasound-guided RA can be a challenging technique, espe-
cially for inexperienced physicians and in difficult cases. Good theoretical, practical and
non-cognitive skills are needed in order to achieve confidence in performing RA and to
keep complications to a minimum. Studies indicate that RA education focusing on illus-
trations and text alone is not sufficient [26]. The RASimAs project (Regional Anaesthesia
Simulator and Assistant) is a European research project which aims at providing a virtual
reality simulator to improve the training of doctors performing RA, as well as an assistant
to lessen the cognitive burden and help performing RA procedures.

This article focuses on creating an assistant for ultrasound-guided RA to block the femoral
nerve. In this application, the femoral artery is an important structure used to identify
the location of the femoral nerve as shown in figures 1 and 3. This article presents novel
methods for identifying the femoral artery in ultrasound images and registering a model of
the surrounding anatomy to the images. The idea is that the registered model together with
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the segmented artery will help locate the femoral nerve and fascias. Also, the registered
model will be visualized together with the ultrasound probe in a 3D scene thus giving
the user an overview of the probe location and the surrounding anatomy. Ultrasound is
a real-time imaging modality and delivers several images per second. The segmentation
and registration methods must be able to process the ultrasound images in real-time to be
useful for the femoral nerve block assistant.

Several methods for segmentation of the cross-section of vessels in 2D ultrasound have
been reported, using methods such as level sets [1], fuzzy c-means clustering [2] and evo-
lutionary algorithms [14]. These methods focus on segmenting a single image. However,
in this work the goal is to segment the femoral artery in real-time on a sequence of ul-
trasound images. Guerrero et al. [13] presented a method for vessel segmentation and
tracking in ultrasound images using an extended Kalman filter. Their method was fast
and accurate, but it had to be manually initialized with a seed point inside the vessel.

The contributions of this article are:

e A real-time automatic vessel detection method. This method eliminates the need
for manual initialization such as in the method of Guerrero et al. [13].

e A real-time vessel tracking method of the femoral artery similar to the approach of
Guerrero et al. [13]. While their method uses two Kalman filters, one for estimating
the position of the vessel and another to estimate the shape, the proposed method
uses only one Kalman filter resulting in a simpler method.

e A real-time vessel registration method which registers a model of the surrounding
anatomy to the ultrasound images.

e An ultrasound bone segmentation method based on the method of Foroughi et al.
[11]. In comparison to their method, the proposed method uses a GPU to achieve
real-time bone segmentation.

2 Methods

This section first describes the vessel model used to detect and track the femoral artery.
Next, the vessel detection and tracking methods are presented. Finally, the bone segmen-
tation and registration methods are described. To achieve real-time performance, the pre-
sented methods are implemented using the framework for heterogeneous medical image
computing and visualization (FAST) [21]. This framework enables efficient computation
and visualization on heterogeneous systems which include different processors such as
CPUs and graphic processing units (GPUs). GPUs have shown to have great potential in
accelerating medical image segmentation [24], registration [10] and visualization [22, 6].
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Figure 2: Vessel cross-section modelled as a compressed circle with radius 7, center ¢ and flatten-
ing factor f =1 — 7.

2.1 Vessel model

The vessel cross-section in the ultrasound images is modelled as a compressed circle of
radius r. The circle is compressed with the flattening factor f = 1 — l;’ creating an ellipse
with major and minor radii 7 and b as shown in Fig. 2. The point p; and its normal 77; on
a circle of N points with center ¢ can be calculated with the following equations.

o= (1)
d; = [cos(ey), (1 — f) sin(ay)] (2)
7 = ¢+ rd; 3)
o [(1 = f)rcos(ay), rsin(ay)]

~ (= f)reos(ay), rsin(ay)]| @)

2.2 Vessel detection

In this section, a novel fully automatic vessel detection method is presented which is used
to initialize the vessel tracking algorithm described in the next section. First, the image
is blurred using convolution with a Gaussian mask (¢ = 0.5mm) and then the image
gradients G are calculated. For a given radius r and flattening f, the vessel score S is
calculated as the average dot product of the outward normal 7; and the corresponding
image gradient at /N points on the compressed circle, as shown in (5). Before the dot
product is calculated, the image gradient is normalized so that it has unit length. This
normalization makes this vessel detection method invariant to the contrast of the image,
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and only the direction of the gradients influence the score.
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For each pixel, ellipses of different radii ranging from 3.5 to 6 mm, flattening factor from
0to 0.5 and N = 32 samples were used to calculate the vessel score. The ellipse with the
highest score is selected for each pixel. The best score and the values r and f is stored for
each pixel. The ellipse with the highest score of all pixels is selected and used to initialize
the tracking. Real-time performance of this vessel segmentation method is achieved by
using a GPU to compute the vessel score of all pixels in parallel.

For a detected vessel to be accepted it has to have a vessel score S above the threshold
T, = 0.8. Also, the centerpoint detected from five consecutive frames has to be within 1.5
mm of each other and the average intensity of the detected vessel border has to be above
the threshold 7}, = 40. These requirements are needed to make the vessel detection robust
enough to properly initialize the vessel tracking.

2.3 Vessel tracking

Vessel tracking in the ultrasound images is achieved with a Kalman filter [17]. The
Kalman filter estimates a state using a set of noisy measurements over time. The state
consists of 4 variables, the vessel center, radius and flattening factor x = [c,, ¢y, 7, f].
The state is predicted for the next image frame using a motion model as shown in (6),
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along with the covariance error matrix P in (7).

X1 = AiXe + Aok 6)
P, =APAT + AP, AT + AP AT+
AP AT +Q @)

For the motion model, the velocity was dampened by a factor of d = 0.5 so that x;,1 =
x; + (x¢ — x4-1)0.5 = 1.5x; — 0.5x;_1. This gives diagonal state transition matrices A
and A, with values 1.5 and -0.5 respectively. The dampening reduces tracking failure
when the vessel moves quickly in the image and suddenly stops. A diagonal matrix was
also used for the process error matrix Q with values 0.01. The size of these matrices is
equal to the size of the state vector (4 x 4).

A hybrid edge detection method is used to detect two different types of edges, step edges
and ridge edges. The edge detection finds the normal displacement (v; = ﬁZT (D observed —
i predicted)) fOr €ach point ¢ in the predicted circle in a line centered at the point and in the
direction of the normal. The length of these lines is set to be equal to the radius of the
circle. The hybrid edge detection method first looks for a step edge using a step model
[19], which entails finding a k that maximizes the following measure where [(s) is the
image intensity at step s along the line.

> [ﬁ )S zo’)] ~1(s) ®

A measurement noise value 7; is also recorded for each edge and is calculated based on
the edge strength:
1

T i L) — g =0 ()

9

Ty

The step edge 1s only accepted if the denominator of (9) is above the threshold 7, = 10.
If the step edge is not accepted, a ridge edge detection method is used. This method looks
for the first position s on the line where the gradient is larger than the threshold 7.. The

measurement noise value for the ridge edges are set to be r; = m

These edge measurements are nonlinear because they cannot be expressed as matrix mul-
tiplication of the state x. Therefore an extended Kalman filter is used in which the ob-
servation model is linearized. This is done by calculating the Jacobi matrix that relate
changes in each circle point p; to changes in the state x. The final measurement vector FllT
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is the normal projection of these Jacobi matrices:

. a7,
T — T2

7 nl ax
11 0 cos(ay;) 0

=7 |y (1 — f)sin(ay) —rsin(«qy) (o

By assuming that the measurements are independent, the measurement noise covariance
matrix R becomes a diagonal matrix of the measurement noise values r;. The multi-
plications of R, the measurement-to-state transition matrix H and the measurements v
becomes a simple summation as shown in equations (11) and (12) [18]. If no edge is
found for a measurement point ¢, it is omitted in the summations.

N-1

H'R™'v =Y hlr ' (11)
=0
N—-1

H'R'H=) hlr'h (12)
=0

This makes the Kalman update equations (13) and (14) invariant to the number of mea-
surements which improves speed as matrix inversion of large matrices is avoided. Using
P, ;HT"R ! as the Kalman gain, the updated state and error covariance estimate becomes

[5]:

P.= (P, +H'R'H)™! (13)
X1 = X1 + P HR (14)

2.4 Bone segmentation

Although the bone is not an important feature for identification of the nerve in the ultra-
sound images, it helps with the registration of the model as shown in the next section.

The dynamic programming approach of Foroughi et al. [11] was used to segment the bone
in the ultrasound images. This method first calculates the probability of each pixel being
the interface between non-bone and bone tissue. Bone creates a specific response in B-
mode ultrasound images. High reflection and shadowing effect are two features which are
used to calculate this probability. A Laplacian of Gaussian (LoG) filter is used to calculate
the amount of reflection. The shadow strength of a pixel is calculated using the weighted
sum of the intensity values of all pixels beneath. The bone probability is then the product
of the amount of reflection and shadow. The calculation of the bone probability images
was done on a GPU to make this method real-time. Dynamic programming is used to find
the bone interface in the bone probability image.
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2.5 Registration

The identified vessel and bone structures are used to register the model to the ultrasound
images. The anatomical model was created from an abdominal CT image. The bone
was segmented from this image using region growing. The surface and centerline of the
femoral artery was extracted using the tubular extraction method of Smistad et al. [23].

The registration process requires an approximate initialization of the model. Thus an
automatic landmark registration is first used to provide a rough registration of the model to
the ultrasound images. The ultrasound probe is tracked using an optical tracking system.
The position of the four corners of each frame in the ultrasound image stream is collected,
and the average position of these four corners is calculated. The corners of frames that are
closer than 3 mm from previous frames are not included. This is done to evenly distribute
the positions over the scanned area. The rotation and translation to a target frame located
at the femoral artery is calculated using procrustes analysis and Kabsch’s algorithm [16].

After the initialization, each frame is registered to the model using the centerline and the
tracked vessel centerpoint z° of that frame. First, the point on the centerline ¢; that is
closest to the image plane is found. The image has four corners (fo, fl, IE, I_;:»,), which are
used to calculate the normal 77 (15). The distance d from a centerline point 7 to the image
plane is calculated using (16).

I — Iy) x (I — I
==l x Uy = o) (15)
|(Ir — Io) x (I2 — Io)|
di = |(Ty — ) - 7 (16)
= argmini:[ovc_l]di (17)

Movement is only allowed in the image plane. This is enforced by projecting the closest
centerline point ¢, to the plane, and then calculating the translation 7" using the projected
point ¢, and the vessel centerpoint 7.

& =G +d,i (18)
T=¢ -1 (19)

If bone is detected in the image, it used to register the model in the head-feet direction.
The iterative closest point (ICP) algorithm [4] is used for this purpose.

2.6 Evaluation

A total of 12 ultrasound image sequences from 3 subjects were collected. The number
of images per sequence ranged from 110 to 524. For each sequence, the vessel was
manually segmented in 4 randomly selected frames. The dice similarity coefficient D [8]
was calculated to measure the overlapping regions of the segmentation S and the ground
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truth G as shown in (20). For the contour of the segmentation, the mean absolute distance
A and Hausdorff distance H was calculated in millimeters. These measures are calculated
using the shortest distance d(j) from contour point j in G to the contour in S as shown in
(21) and (22).

I Elsrel

D=—"=_"1 20
EEaE 0
1 0O-1 B

A= ; d(5) 1)

i e, 10) @

3 Results

The vessel detection initialized the tracking successfully in all 12 sequences. On average,
the tracking was successfully initialized after the vessel detection was run on 84 frames.
Assuming 25 frames per second, the tracking is initialized in about 3.4 seconds. In 8% of
the manually segmented images, a false artery was detected. Due to the requirement that
the vessel must be detected at a similar location in five consecutive frames this did not
lead to an incorrect initialization. Of the correctly identified arteries, the vessel detection
method achieved a dice similarity coefficient of 0.87, mean absolute distance 0.61 mm,
and Hausdorff distance of 1.62 mm.

The results of the vessel tracking method for each ultrasound sequence are summarized
in Table 1. On average, the tracking method achieved a dice similarity coefficient of
0.90, mean absolute distance of 0.42 mm, and Hausdorff distance 1.17 mm, after being
initialized by the proposed detection method. Images of the best and worst segmentation
results, according to D, are shown in Fig. 4 for each subject. Fig. 5 show 3D visualizations
of one ultrasound frame and the model of the surrounding anatomy after initialization and
after registration for each of the three subjects.

The runtime of the vessel detection, tracking, registration and bone segmentation was also
measured. Table 2 contains the average speed of processing one frame of each sequence
with the different steps. The computer used to measure the runtime was running Ubuntu
14.04 Linux with an AMD A10 CPU with 16 GB RAM, an AMD Radeon R9 290 GPU
with 4 GB RAM, and a solid state drive (SSD).

4 Discussion

The vessel detection method was able to automatically detect the femoral artery and ini-
tialize the tracking in all 12 ultrasound sequences, while the method of Guerrero et al.
has to be manually initialized. This is a great benefit to the femoral nerve block assistant
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Figure 4: Best (left column) and worst (right column) segmentation results for each of the three
subjects determined by the dice similarity coefficient in (20). The green line is the manually seg-
mented artery, while the yellow smooth line is the result of the proposed vessel tracking method.
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Figure 5: 3D visualization of one ultrasound frame and the model of the surrounding anatomy
after initialization (left) and after registration (right) for each of the three subjects.

Subject Seq. | Dice similarity coeff. | Mean absolute distance (mm) | Hausdorff distance (mm)
1 1 0.93 0.30 0.79
1 2 0.92 0.34 1.00
1 3 0.93 0.30 0.86
1 4 0.91 0.48 1.37
2 1 0.90 0.35 1.12
2 2 0.94 0.22 0.62
2 3 0.90 0.36 1.12
2 4 0.83 0.47 1.03
3 1 0.86 0.81 1.90
3 2 0.89 0.60 1.53
3 3 0.85 0.41 1.28
3 4 0.90 0.41 1.38
Average 0.90 0.42 1.17
Std. dev. 0.04 0.16 0.35

Table 1: Accuracy of the vessel tracking using the measures in (20-22).

213



Subject | Seq. | Image size | Vessel detection | Vessel tracking | Vessel reg. | Bone seg.
1 1 616 x 749 | 48.77 7.59 0.09 35.96
1 2 616 x 749 | 43.89 5.86 0.10 37.63
1 3 616 x 657 | 34.92 6.59 0.07 35.73
1 4 616 x 657 | 39.79 6.57 0.16 39.76
2 1 616 x 820 | 57.95 6.76 0.21 36.53
2 2 616 x 820 | 50.93 6.73 0.11 29.91
2 3 616 x 681 | 39.03 3.51 0.10 31.85
2 4 616 x 681 | 38.77 4.24 0.08 36.90
3 1 616 x 681 | 32.48 3.19 0.11 31.74
3 2 616 x 681 | 34.86 3.88 0.12 32.08
3 3 616 x 681 | 40.05 3.23 0.08 31.76
3 4 616 x 681 | 38.46 3.49 0.10 28.96
Average 41.66 5.14 0.11 34.07
Std. dev. 7.48 1.68 0.04 3.42

Table 2: Average speed in milliseconds of processing one frame for each of the ultrasound se-
quences. Note that the vessel detection is only run for the first frames, until the tracking is initial-
ized. The bone segmentation is run concurrently with the other tasks until some bone is found.

Parameter

Description

Value used

Possible range

Te

Edge detection threshold. For an edge detection measurement to be ac-
cepted, the edge must be stronger than this value. Lowering it will allow
weaker edges (possibly false edges) to be accepted as measurements for
the Kalman filter. The value used is low and allow most edges.

10

0-255

Ty

Vessel detection border threshold. The average intensity along the ves-
sel border must be at least this value to be accepted in the vessel detec-
tion step. Lowering this value will make the detection algorithm accept
dark circles with low intensity borders. Setting it too high, and the de-
tection will not accept any vessels dark circles as vessels.

40

0-255

Ts

Vessel detection score threshold. The average fit of the inward normals
and the image gradient at each sample point on the circle (5) must be
higher than this value for the vessel to be accepted. A vessel score of 1
is a perfect fit.

0.8

Number of samples to be used for the detection and tracking algorithms.
Increasing it may increase accuracy, but will also result in slower run-
time as more measurements must be acquired.

32

4 - 00

Covariance matrix of the process noise. This matrix influences how
much the measurements affect the state update in the Kalman filter.
Lowering it will make the state update less affected by the measure-
ments and vica versa.

0.01

0-o00

Dampening factor in the motion model (6). This value determines how
much the previous state estimate x¢—1 influence the state prediction.
Lowering it will decrease the velocity from one frame to another and
setting it to 0 will remove the motion completely. If set to 1, the motion
model will use constant velocity.

0.5

0-1

Table 3: A list of parameters used in the proposed methods along with a description of how their
value influence performance.
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application as no user interaction is needed. Guerrero et al. [13] reported a mean error of
1.7 pixels using their method on ultrasound images of the common carotid artery, jugular
vein and saphenous vein and artery. They do not report the error in millimeters nor the
pixel spacing of their ultrasound data. The mean absolute distance using the proposed
method on the femoral artery datasets in pixels is 7.78, thus worse than the method by
Guerrero et al. However, this may be due the low pixel spacing of the ultrasound images
used in this work (0.044-0.058 mm). Nevertheless, we argue that the achieved tracking
accuracy (mean absolute difference of 0.42 mm) is good in terms of the application of
ultrasound-guided femoral nerve block.

Fig. 4 shows the worst result for each subject in the right column. The worst result of
subject 2 (middle) is due to an overcompression of the artery, and the artery was only
allowed a compression of 0.5 in this work. The image frame of the worst case result of
subject 3 (bottom) was located at the branch of the deep artery of the thigh. The elliptical
model was not able to properly describe the cross-section of this branch section.

As long as the artery is properly tracked, the artery model will be placed inside the artery
of the ultrasound image. The area of the target site which will be scanned during the
femoral nerve block procedure is small (within 5 cm inferior of the inguinal ligament),
and the ultrasound images are initialized to this area. If bone is detected in the ultrasound
images, it is used to register the model in the head-feet direction. Currently, a static model
of the surrounding anatomy is used, which does not incorporate the anatomical variances
seen in a population. This may not be accurate enough and remains to be evaluated.

The runtime of the tracking was about 5 ms for each image, thus less than the 23 ms re-
ported by Guerrero et al. [13]. For the vessel detection and bone segmentation the runtime
was higher. However, these two methods are executed concurrently and both are within
the real-time constraint of 20-25 frames per second of the ultrasound system. Foroughi
et al. [11] reported a runtime of 550 ms of their bone segmentation implementation on
images of size 378 x 378. However, in this work GPUs have been employed to reduce
the processing time to an average of 34 milliseconds to satisfy the real-time constraints of
this application. The pixel height of the images used in this work ranged from 657 to 820,
while the width was constant at 616. The runtime of the vessel detection is dependent on
the size of the images. Sequences 1 and 2 from subject 2 had the largest height of 820,
thus the runtime is larger for these sequences.

The proposed methods contain several parameters, which values have been determined
through experimentation. Table 3 provides a list of these parameters along with a descrip-
tion of how their value influence the performance of the proposed methods.

Future work includes segmentation of other structures, such as the femoral nerve, fascia
lata and fascia iliaca, needle insertion guidance and enhancement of the local anaesthesia
after insertion. The idea is that the registered model together with the segmented artery
will help locate the femoral nerve and fascias (see Fig. 3). It may also be necessary
to create a model which incorporates the anatomical differences in a population using
methods such as statistical shape models [15].
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5

Conclusion

The presented methods are able to automatically and accurately track the femoral artery
in ultrasound images and use this to register a model of the surrounding anatomy in real-
time. This will be part of an assistant for ultrasound-guided regional anaesthesia of the
femoral nerve.
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Abstract

Marching Cubes (MC) is an algorithm that extracts surfaces from volumetric scalar
data. It is used extensively in visualization and analysis of medical data from modal-
ities like CT and MR, usually after a 3D segmentation of the structures of interest
have been performed. Implementations of MC on CPUs are slow, using several
seconds (even minutes) to extract the surface before sending it to the Graphics Pro-
cessing Unit (GPU) for rendering. Fast surface extraction implementations are very
beneficial in medical applications, where large datasets are used and time is crucial.
Analysis of medical image data often entails changing different parameters, thus
real-time implementations are very desirable. MC is a completely data-parallel al-
gorithm, making it ideal for execution on GPUs. GPU processing enables the result
to be rendered on screens in a few milliseconds. In this paper, a MC implementa-
tion written in OpenCL that runs entirely on the GPU is presented. We show that
our implementation uses a more efficient storage scheme than previous GPU imple-
mentations, and that this enables real-time processing of large medical datasets. Our
implementation also shows that GPU implementations written in OpenCL has the
potential of being just as fast and efficient as CUDA or shader implementations.

1 Introduction

Creating 3D visualizations of large medical datasets using serial processing on the Cen-
tral Processing Unit (CPU) is very time consuming and inefficient. The Marching Cubes
(MC) algorithm was introduced by Lorensen and Cline [9], and has become the standard
algorithm for generating surfaces from volumetric data. MC divides the 3D dataset into a
set of cubes that can be processed independently. The original implementation processed
each cube sequentially. Image analysis in medical imaging applications often requires
experimentation of parameters before a satisfactory result is achieved. For each trial of
parameters the result has to be visualized. The total waiting time for creating the surface
needed to visualize the result of many trials can become very long. The waiting time
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can be significantly reduced by exploiting the data parallel nature of the MC algorithm
and running it on a Graphics Processing Unit (GPU). These processors have several hun-
dred functional units that can each process a cube in parallel. MC is a completely data
parallel algorithm as each cube in the grid can be processed independently. A typical
medical dataset can have from 2 to 200 million cubes. Thus parallel implementations of
the algorithm has the potential of large speedups.

The Open Computing Language (OpenCL) is a new framework for writing programs that
can execute on heterogeneous platforms. OpenCL enables execution, data transfer and
synchronization on different devices, such as CPUs, GPUs and Cell Broadband Engines,
without having to write device or vendor specific code.

In this paper, we present a MC implementation written in OpenCL, that runs entirely on
the GPU. It uses the Histogram Pyramid data structure, presented by Ziegler et al. [18].
We show that our implementation use a more efficient storage scheme for Histogram
Pyramids than previous implementations and that this enables the real-time processing of
large medical datasets.

The next section describes the MC algorithm, GPU computing and related work. The
methodology section describes our implementation in detail. In the results section, per-
formance measures for our implementation on three different GPUs are presented and
compared to the implementation of Dyken ef al. [5]. The last two sections include dis-
cussion and conclusions based on the results.

2 Background

In this section, an introduction to the MC algorithm and GPU computing is given. This is
followed up with a discussion on the challenges and related work of running MC on the
GPU.

2.1 Marching Cubes

MC was introduced by Lorensen and Cline [9] as an algorithm for creating a 3D surface
consisting of triangles from a volumetric dataset of scalars. The algorithm uses a param-
eter, called the iso-value, to classify points in the dataset as either inside or outside the
surface. The dataset is divided into a grid cubes, and each corner in each cube is repre-
sented by a data point in the dataset. By knowing which corners are outside and inside,
triangles can be placed inside each cube to create the entire surface. In total, there are
2% = 256 unique corner configurations of a cube. However, by considering symmetry
this can be reduced to the 15 configurations depicted in Figure 1. It has been shown, that
using only these 15 configurations can lead to topologically incorrect surfaces due to am-
biguities. Chernyaev [3] showed how to deal with this by extending the number of unique
configurations to 33.
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Linear interpolation is often used to place the vertices of the triangles and approximate the
surface normals, so that the surface becomes more smooth and represents the data better.

=

Figure 1: The 15 cube configurations from Lorensen and Cline [9], and the set of triangles that
represents the surface. The marked corner points are considered to be inside the surface.

2.2 GPU Computing

GPUs were originally designed to help speed up the memory-intensive rendering calcu-
lations in demanding 3D applications. These devices are now increasingly used to ac-
celerate the numerical computations in science and technology [15, 2]. The calculations
the original GPUs were targeting was texture mapping, rendering polygons and transfor-
mation of coordinates. The GPU is a type of single instruction, multiple data (SIMD)
processor. It can perform the same instruction on each element in a dataset in parallel.
GPUs achieve this by having several hundred functional units. These are usually not re-
ferred to as "cores" in the same sense as the multi-core CPUs. McCool [10] defined a core
as a processing element with an independent flow of control. The functional units on a
GPU do not have an independent flow of control. They are grouped together in a SIMD
manner, so that the functional units in one group has to perform the same instruction in a
clock cycle. These SIMD groups can thus be referred to as cores with the above definition.
Most current GPUs also allow branching to avoid executing unnecessary instructions. If
the code flow is convergent in a SIMD group, no special treatment is needed, and only
the instructions needed are executed. However, if the code flow is divergent in a SIMD
group, the GPU will run all the instructions, and no time is saved. The GPU use masking
techniques to ensure the correct answer is produced by each processing element.

The GPU originally had a fixed pipeline that was created for fast rendering. The in-
troduction of programmable shaders in the pipeline enabled the possibility of running
programs on the GPU. Programming shaders to solve arbitrary problems requires deep
knowledge about the pipeline of the GPUs to be able to transform the problem into a
rendering problem. General-purpose GPU (GPGPU) programming languages and frame-
works like CUDA and OpenCL were created to ease the programming of the GPU.
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2.3 Marching Cubes on the GPU

Several parallel multi-chip, multi-threaded and multi-core CPU implementation have been
proposed in the literature. A survey of these implementations was done by Newman and
Yi [12]. Pascucci [13] accelerated a variation of MC, called the Marching Tetrahedra
algorithm, by creating a quad per tetrahedra and letting a vertex shader program calculate
the vertices on the GPU. Klein ef al. [8] moved the calculations to the fragment shader
by coding the data in textures. Reck et al. [14] improved on these methods by removing
empty cubes on the CPU using an interval tree. Goetz et al. [6] used a vertex shader
program on the MC algorithm and Johansson and Carr [7] improved on this by removing
empty cubes using a similar method to that of Reck et al. [14].

Each cube in the voxel grid can be processed independently of the other cubes. The
main challenge with running MC on the GPU is how to store the triangles of each cube
in memory in parallel. In the serial implementation, this is simple by using a stack and
adding the triangles to the stack as each cube is processed. Two things are needed to store
the triangle data in parallel on the GPU: 1) The number of triangles produced, so that the
proper amount of memory can be allocated. 2) A unique index for each cube, so that the
cubes can store their triangles in separate places.

It is not possible to assume that all the cubes produce triangles, because the device mem-
ory is too small for allocating memory for the maximum number of triangles. For most
medical datasets only a small amount of the cubes actually produce triangles.

NVIDIA has included a CUDA and an OpenCL GPU implementation of MC in their
SDKs. Their implementations use the parallel algorithm prefix sum to calculate the sum
of triangles and storage index to each cube. Stream compaction is performed on the
prefix sum result to avoid processing cubes that do not produce any triangles. Aksnes and
Hesland [1] used this method to run MC on large porous rock datasets. Dyken et al. [5]
used a data structure called Histogram Pyramid (HP), originally presented by Ziegler et
al. [18], and implemented a vertex shader, geometry shader and CUDA version of it. This
method was shown to be slightly better than NVIDIAs prefix sum scan approach in cases
where the dataset was sparse. More recently, Ciznicki et al. [4] presented a multi GPU
implementation of Marching Tetrahedra using the Histogram Pyramid data structure.

2.4 Our contribution

This paper builds on the work by Dyken et al. [5] and is a continuation of our previous
workshop paper [16]. Similar to Dyken et al. and Ciznicki et al. we have used Histogram
Pyramids. The main contributions of our paper are:

e OpenCL is used, which enables execution on GPUs from different vendors. This
differs from CUDA which is for NVIDIA GPUs only.

e Dyken et al. packed the 3D data in 2D textures and used 2D Histogram Pyramids.
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In this work, we extend Histogram Pyramids to 3D. This increase cache locality
and removes the need for address translations.

e An efficient storage scheme for Histogram Pyramids is presented. This scheme
reduces the memory consumption allowing larger volumes to be processed with a
single pass.

3 Methodology

This section starts with explaining and extending the data structure Histogram Pyramids
to 3D. Finally, a detailed description of our implementation is presented.

3.1 Histogram Pyramids

The Histogram Pyramid (HP) data structure consists of a stack of textures. These textures
can be either 2D or 3D. Figure 2 illustrates the construction of a HP in 2D. Let’s say we
are interested in the white pixels in the 4x4 image to the left. The base level of the HP
is created as a 2D texture of the same size as the original image. An element in the base
level will have a O if the corresponding pixel in the image is black and 1 if it is white. The
next level of the HP is created by summing 2x2 cells and storing it in another 2D texture
with the size halved in both dimensions. This procedure is repeated until a 1x1 texture is
left and no more reduction can be performed. The sum in the top level is the sum of the
Is in the base level. This sum can be used to allocate memory.

ofofofH1 o] o [fo=pd
0(1]111]0 o110
O(1]11]0(|1]2 of111]0 (142
olofofolf[1]1]]5] olofofo]|[ 151 |5}
Image Base level Top level Traversal for element nr. 3
Figure 2: Construction of a HP Figure 3: Traversal of a HP

To retrieve a specific white pixel with a given index the HP is traversed as shown in Figure
3. The traversal starts with the second level. The elements are scanned in a Z pattern as
shown in the figure. When the sum of all scanned elements + the current element are
above or equal to the index of the requested pixel, the procedure jumps to the next level
and scans the 2x2 cell that corresponds to the last element in the scan. This process is
repeated until the base level is reached. The final element is the one requested.

MC is a 3D algorithm, hence the HP has to be designed so that it can be used for 3D.
Dyken et al. [5] used a flat 3D layout to pack the volume onto a 2D texture and then
used the HP in the same way as in the example above. The drawback of using the flat
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3D layout, is that it requires some extra computation for the address translation from
3D to 2D. It is also possible to extend the HP to 3D, as shown in Figure 4, by using
3D textures in OpenCL. This was done in our implementation. Writing to a 3D texture
requires an OpenCL extension called cl_khr_3d_image_writes. AMD currently supports
this extension, but NVIDIA does not. Due to this restriction on NVIDIA GPUs, a separate
version was created for NVIDIA devices. This version uses regular buffers instead of
textures, and Morton codes [11] to facilitate 3D caching. This is a bit slower than the
3D texture version used on AMD devices, due to a decrease in cache hits and additional
processing. In a 3D HP, summing and traversal is performed on 2x2x2 cells instead of
2x2 cells. Also, in the example above, the element in the base level had values of O or 1.
In MC, each cube can produce between 0 and 5 triangles, where each triangle consists of
3 vertices each. Thus, each element in the base level of the HP for MC will have a number
between 0 and 5, depending on how many triangles each cube produces.

Most modern GPUs have support for several texture formats of different data types. These
include 8, 16 and 32 bit integer data types. In our 3D Histogram Pyramid implementation,
each level is stored as one texture. This enables the use of different texture formats for
each HP level. 8 bit storage format for each pixel is sufficient for the base level because
each cube can only produce a maximum of 5 triangles. And the maximum for the second
level is 8 * 5 = 40, which is also within the 8 bit limit. The next three levels can use
16 bit data types. By using these different texture formats the memory required for the
Histogram Pyramid is reduced significantly and this allows faster processing and larger
volumes to be processed in a single pass. This differs from the implementation of Dyken
et al. [5] where all levels are packed in a single texture with the 32 bit format.

7

Figure 4: 3D Histogram Pyramid
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3.2 Implementation

Our MC implementation consists of 6 main steps as de- [ Data Transter )
picted in Figure 5. It is based on the original MC algo- Loop
rithm by Lorensen and Cline [9]. Y N

Base Level Construction

The bright/blue steps are performed using OpenCL,
while the dark/green steps are performed using
OpenGL. Synchronization is necessary for each switch

J

HistoPyramid Construction

J

between the two APIs. In this section, each step will be
explained in detail.

Data Transfer. The first step is to transfer the dataset [
to the device using the fast PCI express bus. The dataset

is stored as a 3D texture on the device. Most GPUs to-
day have a separate texture cache which allow for fast
retrieval. This step is only performed once.

Figure 5: Block diagram of our
MC implementation

Y
A

HistoPyramid Traversal ]

Base Level Construction. In this step, the base level of
the HP is created. Recall that the base level contains the
number of triangles necessary for each cube. In medical
imaging the scalar field is usually constant. However,
the iso-value can be changed, which can change the number of triangles needed. All
levels of the HP are stored in textures on the GPU. This reduces the impact of the HP
construction and traversal steps significantly, with cache hits over 90%. A NDRange
kernel is run with the size of the dataset and the base level. This kernel creates an 8 bit
cube index, where each bit represents a corner in the cube. If the corner has a value in the
original dataset which is below the iso-value, that bit is set to 1, and if it is above it is set
to 0. With this 8 bit index, we can look up in a table how many triangles are needed for
this specific cube and store it in the base level.

Histogram Pyramid Construction. The entire HP can be constructed by a set of NDRange
kernel calls in OpenCL. The number of calls needed is [ogs of the size of the base level.
If the base level has the size 256x256x256, a NDRange kernel of size 128x128x128 is ex-
ecuted to fill the next level which has the size 128x128x128. In the next step, a NDRange
kernel of size 64x64x64 is executed and so on until the 1x1x1 level is reached. This kernel
simply sum all the elements in a 2x2x2 cell in the previous level and stores the sum in the
current level.

Memory Allocation. When the HP has been created, the sum of triangles is retrieved
from the 1x1x1 top level of the HP, and sent to the CPU via the PCI-express. This sum is
used to allocate memory on the graphics card for all the vertices and normals needed to
store the surface. The memory is allocated in the form of a vertex buffer object (VBO) in
OpenGL. After the memory has been allocated, OpenGL has to synchronize and transfer
control back to OpenCL.

Histogram Pyramid Traversal. The memory is filled with the output of the MC algo-
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rithm by running a NDRange kernel of the same size as the total sum of triangles retrieved
in the previous step. This kernel implements the HP Traversal procedure from section 3.1
using the global index as the triangle element index. When the 3D coordinate of the tri-
angle’s cube is located, the exact coordinates and normal of each vertex in the triangle
can be calculated. The cube index is reused to look up in a table the cube edges that this
triangle should have its vertices on. Linear interpolation is performed on each vertex with
the data from the original dataset for each corner. The normals are calculated using for-
ward differences as shown by Lorensen and Cline [9]. Finally, the vertices and normals
are stored in the VBO made in the previous step.

The total sum of triangles is not necessarily dividable by a multiple of the units of ex-
ecution (32 on NVIDIA, 64 on AMD). This sum must also be dividable on the number
of work-items in each work-group. If the number of work-items in a work-group is not
a multiple of the units of execution, several threads in each work-group will be idle on
the GPU. To deal with this, we add a set of dummy work-items so that the total num-
ber of work-items is dividable by 64 and set the work-group size to 64. This way, only
work-items in the last work-group will be idle.

Render. When the traversal step has created all the vertex and normal data, the CPU is
notified and the control is transfered to OpenGL, which then renders the contents of the
VBO on the screen. If the iso-value or scalar field has changed, all of these steps can be
repeated to create a new surface or the program can continue rendering the next frame
using the same surface.

4 Results and Discussion

The performance of our implementation was assessed by measuring the average number
of frames per second (FPS) and execution time on the graphics device. For comparison,
we also tested the OpenGL shader implementation of Dyken et al. [5] that also uses
Histogram Pyramids (HPs). We call this implementation HPMC Shader. The dataset
used for the measurements was a rotational angiography scan of a head with an aneurysm
taken from [17] and depicted in Figure 7. The algorithm was run with a constant iso-
value of 0.2 for 5 different sizes of the original dataset with size 5123. Each dataset was
processed on three different GPUs: AMD Radeon HD 5870 with 1GB memory, NVIDIA
GTX 470 with 1280MB memory and NVIDIA Tesla C2070 with 6GB memory. The
OpenCL implementations used were AMD APP 2.6 and NVIDIA CUDA 4.2. The FPS
and execution time was measured in the rendering loop and gathered in Table 1 and 2.
The two implementations were not able to process the largest dataset on all devices. This
is indicated with a - in the tables. The execution time for each step in our implementation
was also measured and is depicted in Figure 6.
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Size | AMD HD5870 | NVIDIA GTX 470 | NVIDIA Tesla C2070

10243 _ - -

5123 | 3324 ms (0.3 FPS) | 526 ms (1.9 FPS) 65 ms (15 FPS)
2563 | 5 ms (223 FPS) 7 ms (149 FPS) 7 ms (140 FPS)
1283 | 3 ms (394 FPS) 2 ms (556 FPS) 3 ms (389 FPS)
643 | 2ms (519 FPS) 2 ms (524 FPS) 1 ms (1154 FPS)

Table 1: Performance of the shader implementation of Dyken et al. [5]. Their implementation
was not able to process the largest dataset (1024%) on any of the devices.

Size | AMD HD5870 | NVIDIA GTX 470 | NVIDIA Tesla C2070
10243 - - 1279 ms (0.8 FPS)
5123 | 34 ms (30 FPS) 127 ms (7.9 FPS) 136 ms (7.3 FPS)
2563 | 10 ms (105 FPS) 19 ms (52 FPS) 19 ms (50 FPS)
128% | 4 ms (223 FPS) 4 ms (241 FPS) 3 ms (276 FPS)
643 3 ms (319 FPS) 2 ms (524 FPS) 2 ms (498 FPS)

Base Level Construction

Memory Allocation + Sync

Table 2: Performance of our OpenCL implementation

HP Construction

HP Traversal .

Render + Sync

o

1 2 3

Milliseconds

Figure 6: Execution time of each step of our implementation when run on the 2563 dataset using
an AMD Radeon HD5870

4.1 OpenCL-OpenGL Synchronization

Comparing the performances of the HPMC Shader versus our implementation, Tables 1
and 2 show that the HPMC Shader implementation is almost twice as fast for the three
smallest datasets. With the profiling tool gDEBugger, it was discovered that the synchro-
nization between OpenCL and OpenGL is very time consuming as shown in Figure 6.
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The total time used on synchronizing between these two APIs was measured to be from
2 to 20 ms. This makes the GPU stay idle for the major part of the total execution time
for the smallest datasets. It is thus believed that this synchronization cost is the reason for
the HPMC Shader implementation being faster than our OpenCL implementation on the
smaller datasets.

The synchronization cost is a major problem with the OpenCL-OpenGL interoperability.
A possible solution to this problem has been proposed by The Khronos Group through
an extension in both APIs, allowing them to share synchronization objects which should
enable more efficient synchronization. The extensions are called GL_ARB_cl_event and
cl_khr_gl_event. At the time of writing none of these extensions are implemented by any
of the GPU vendors.

4.2 Histogram Pyramid Memory Usage

The HPMC Shader implementation was not able to process the 10243 dataset on any of the
GPUs. This is due to the fact that this implementation requires over SGB just to store the
Histogram Pyramid. Our implementation, on the other hand, use a compressed storage
format that use only a little over 1GB to store the HP for the large 10243 dataset. The
HPMC Shader implementation is able to process the 5123 dataset. However, there is not
enough memory on the HD5870 and GTX 470 GPUs to store the entire HP. This forces
the application to move data back and forth from the host to the GPU, resulting in a large
drop in speed as can be seen in Table 1. Our implementation use only 148MB to store the
5123 dataset and can thus extract and visualize the surface quickly on all three GPUs.

The excess use of memory is due to the way HPMC Shader stores the Histogram Pyramid.
HPMC Shader stores the HP in a 2D texture with all the HP levels as Mipmap levels. The
disadvantage of this is that the same texture format has to be used for all levels. Our
implementation has a single texture for each level, enabling the use of 8 and 16 bit texture
formats when it is sufficient.

N is the size of the HP in each dimension. N has to be larger than the dataset size in each
dimension for it to fit, and it has to be a power of 2. The total memory requirements of
the HP with our method is calculated in bytes as shown in equation 1. The first two levels
use only one byte per voxel, while levels 3 to 5 use 2 bytes and the rest use 4 bytes.

we3) (@) @) @S G o

HPMC Shader has to use 32 bit storage for all levels and this leads to a much higher
memory usage. The HPMC Shader uses 4 channels in a 2D texture which results in
4 % 4 = 16 bytes per pixel. The size of the texture M? is chosen so that the entire dataset
fits into the top level, hence 4M? >= N3. As with N, M also has to be a power of 2.
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The memory requirements of the HPMC Shader implementation is given by equation 2,
and is always larger than the HP size of our OpenCL implementation.

loga (M)

Table 3 shows the memory requirements for both methods for datasets of different sizes.

N M HP Size of HPMC Shader | HP Size of proposed
2048 | 65536 87 381 9509
1024 | 16384 5461 1188
512 | 8192 1 365 148
256 | 2048 85 18
128 | 1024 21 2
64 256 1 <1

Table 3: Storage size in MBs of Histogram Pyramids of different sizes for both methods. Critical
HP sizes are marked in bold/red.

Figure 7: Two rendered results of the MC implementation

4.3 Other GPU Implementations

NVIDIA’s CUDA and OpenCL implementations that use prefix sum, were also tested
on these datasets using an NVIDIA Geforce GTX460 with 2GB device memory. Their
OpenCL implementation was excluded from the comparisons above because the largest
dataset it could process was 64°, running with an average FPS of 452 and memory usage
of 23 MB. Also, NVIDIA’s CUDA implementation failed for the largest dataset due to
memory exhaustion.
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4.4 Improvements on other platforms

The improvement of storing data in a more efficient format should be applicable to OpenGL
shader and CUDA implementations which would allow larger volumes to be processed
with the same speeds as our OpenCL implementation. Due to the expensive OpenCL-
OpenGL synchronization, an OpenGL shader implementation using this efficient storage
format would probably be faster than our OpenCL implementation.

5 Conclusions

In this paper, an OpenCL implementation of Marching Cubes (MC) that uses Histogram
Pyramids was presented. Our novel implementation is able to extract and visualize sur-
faces from large datasets (512% and 10243) faster than other implementations. This is
achieved by using an efficient storage scheme that significantly reduces the memory us-
age of the Histogram Pyramid data structure. Our results revealed that the implementa-
tion lose some performance due to an expensive synchronization costs in the OpenCL-
OpenGL interoperability. This issue will hopefully be overcome in future GPUs.

The source code of this implementation is available online'.
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Abstract

Bronchoscopy is an important minimal-invasive procedure for both diagnosis and
therapy of several lung disorders, including lung cancer. However, narrow airways
and complex branching structure increases the difficulty of navigating to the target
site inside the lungs. It is possible to improve navigation by extracting a map of the
airways from CT images and tracking the tip of the bronchoscope. Most of the meth-
ods for extracting such maps are computationally expensive and have a long runtime.
In this paper, we present an implementation of airway segmentation and centerline
extraction, which utilizes the computational power of modern graphic processing
units. We also present a novel parallel cropping algorithm which discards over 70%
of the dataset as non-lung tissue, thus significantly reducing memory usage and pro-
cessing time.

1 Introduction

Lung cancer is one the most common type of cancer in Norway and has one of the highest
mortality rates [5]. Early and precise diagnosis is crucial for improving the mortality rate.
Bronchoscopy is an important minimal-invasive procedure for both diagnosis and ther-
apy of several lung disorders, including lung cancer. Currently, at St. Olav’s University
Hospital in Trondheim, Norway, diagnosis is done by extracting a tissue sample of the
tumor using a bronchoscope. The bronchoscope is a flexible tube with a camera and light
source that enables the physician to see inside the lungs. It is inserted through the mouth
and the airways of the lungs. Tissue samples can then be extracted through a shaft in the
bronchoscope. The airways of the lungs is a complex tree structure, where each branch is
smaller than the previous. After several divisions, the airways becomes very small. The
small airways and complex branching structure increases the difficulty of navigating to
the target site inside the lung. Thus, one of the major challenges with bronchoscopy is to
actually find the tumor inside the lungs.
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Together with SINTEF Medical Technology and St. Olav’s University Hospital, our main
goal is to increase the success rate of bronchoscopy procedures by using images and
electromagnetic tracking of the bronchoscope. By registering a map of the airways to
the patient, the surgeon is able to see the location of the bronchoscope on the map, and
use this to navigate. The map is automatically extracted from Computer Tomography
(CT) images of the lungs and consists of two things: A segmentation and a centerline.
The segmentation is a classification of each voxel in the CT volume which determines
whether the voxel is part of the airways or not. The centerline is a line that goes through
the center of each branch of the airways and is used to register the CT data to the patient.
The registration is done by matching the centerline with the positions of the tip of the
bronchoscope. Deguchi et al. [6] performed a study on performing such a navigated
bronchoscopy using phantom airways and achieved an accuracy of 2.0 - 3.5 mm.

Several methods for extracting the airway tree exists in the literature. Two notable reviews
on airway tree segmentation and centerline extraction from CT images can be found in
the works by Sluimer et al. [12] and a newer one by Lo ef al. [11]. A larger and more
general review on vessel segmentation was done by Lesage et al. [10]. Most of these
methods are very computationally expensive and require a long runtime. Many of the
methods, also require several runs with different parameters before satisfactory results
are achieved. The CT image is acquired right before the procedure or the day before.
In either case, the image is processed right before the bronchoscopy. To reduce waiting
time, it is essential that the airway extraction and registration goes as quickly as possible.
Also, the method presented in this paper is applicable for extracting blood vessels from
intraoperative 3D ultrasound. In this application, time is even more crucial.

Several image processing techniques are data parallel because each pixel can often be
processed in parallel using the same instructions. Graphic Processing Units (GPUs) allow
many pixels to be processed in the same clock cycle enabling massive speedups.

In this paper, we present a GPU-based implementation of the airway segmentation method
introduced by Bauer et al. [4], [2]. Their method showed very promising results in the
Extraction of Airways from CT challenge in 2009 (EXACT’09) [11]. We also present
a novel data parallel algorithm for cropping the large CT datasets. The CT images are
often very large and include a lot of voxels which are not part of the lungs, such as
background and body fat. Our cropping algorithm automatically crops the CT volume,
thus reducing the amount of irrelevant voxels. With this cropping algorithm, processing
time and memory usage can be reduced significantly.
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Detected white regions = 2
Detected black regions = 3

Detected white regions = 1
Detected black regions = 2

Figure 2: Left: A typical CT image of the lungs. The border indicates the minimal rectangular
area that includes the lungs. Right: Thresholded CT image and two scan lines in the x and y
directions. For each scan line the number of detected white and black regions are listed.

2 Methodology

Cropping
In this section, we present our implemen- y
tation of the airway segmentation and cen- Pre-Processing
terline extraction methods of Bauer et al.
[4], [2]. The implementation was created y

using C++ and the Open Computing Lan-
guage (OpenCL). OpenCL is a new frame- ‘
work for writing parallel programs for het-
erogeneous systems. This framework al-

Tube Detection Filter ’

/

lows execution of parallel code directly on ‘ Centerline Extraction ’ e
the GPU and CPU concurrently. Figure 1 ' :
depicts the main steps of our implementa- \/

tion. First, the dataset is cropped. Then ‘ ,
Segmentation

the dataset is pre-processed with Gaussian
smoothing, Gradient Vector Flow (GVF)
and vector normalization to make the fol-
lowing Tube Detection Filter (TDF) invariant to scale and contrast of the airways. The
TDF use the Hessian matrix to detect tubular structures in the dataset. Centerlines are
extracted from the TDF result using a ridge traversal approach and finally, the airways are
segmented from the centerlines.

Figure 1: Our implementation

241



2.1 Cropping

A typical CT image of the thorax will contain a lot of data which is not part of the lungs,
such as space outside the body, body fat and the bench which the patient is resting on.
Figure 2 shows a typical CT image of the thorax. The rectangle is the smallest rectangular
area in which the lungs are contained. For this slice, more than half of the image is not part
of the lungs and thus not relevant for further processing. As several of the methods used
to perform segmentation and centerline extraction of the airways will process each voxel
in the entire volume, removing this unnecessary data not only reduce memory usage, but
also execution time.

A common way to remove the unwanted data, is to perform a lung segmentation first and
then crop the data to the segmentation. Such methods usually needs one or two seeds to
be set manually and can be time consuming.

In this paper, we introduce a novel cropping algorithm that do not need a lung segmen-
tation. The algorithm is data parallel and very efficient on GPUs. The pseudocode for
the cropping procedure is shown in Algorithm 1 below. The cropping algorithm works by
scanning slices in all three directions: x, y and z. And for each slice, the method deter-
mines how many scan lines went through the lungs. The number of scan lines that went
through the lungs, L, is recorded for each slice in the function CALCULATEL. A pixel on
the scan line is categorized as black or white based on the intensity in the CT volume us-
ing a threshold Tyy = —150HU. A scan line is considered to have intersected the lungs if
the number of detected black regions B, and white regions ¥, are both above 1. A white
or black region is detected if the number of consecutive black or white pixels has reached
a threshold 7. Figure 2 shows a CT image thresholded using 7Tyy, two scan lines in the
x and y directions and the number of detected black and white regions. If L, is above a
threshold called L;,, we know that slice s has to be part of the dataset. This threshold
is necessary due to noise in the dataset. The function INDCROPBORDERS locates the
cropping borders (c¢; and ¢2) in a specific direction. The dataset is assumed to be oriented
so that the patient’s back is parallel with the z direction. For directions x and y, we look
for the first and last slice with the minimum required scan lines (L,,) inside the lung.
These two slices determine the borders of the cropping. For the z direction, we start at the
center of the dataset and locate the first slices below the threshold L ;.

Each direction and slice can be processed in parallel using the same instructions in the
CALCULATEL function. This creates many threads and is ideal for GPU execution. The
FINDCROPBORDERS function is run serially on the CPU. Using an NVIDIA Tesla GPU,
this algorithm uses only 1-2 seconds on regular CT datasets. The parameters Ly, = 128
and 7. = 30 were chosen through experimentation.

2.2 Pre-processing and Gradient Vector Flow
Before the TDF can be calculated, some pre-processing is necessary. First the dataset is

blurred using Gaussian smoothing. Smoothing is done by convolution of the dataset with
a small Gaussian kernel of scale/standard deviation 0 = 0.5. After the smoothing, the
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Algorithm 1 Cropping

function CROP(volume)

L <~ CALCULATEL(volume, x)
1, T2 < FINDCROPBORDERS(L, x)
L < CALCULATEL(volume, y)
Y1, Y2 < FINDCROPBORDERS(L, y)
L < CALCULATEL(volume, z)
21, 22 < FINDCROPBORDERS(L, z)

if aLge—1—s > aLlmi, then

function CALCULATEL(volume, direction)
for each slice s in direction do
Ls<+0
for each scan line do
for each scan line element do
if volume[position] > Txy then
if W, = T then

crop volume according to x1,x2,y1,y2,z1 and z2 Wy Wy+1
return volume Bc«+0
end function end if
We +— We+1
function INDCROPBORDERS(L, direction) else
size < volume.direction.size if B. = T¢ then
c1 ¢ —1,c0 +— —1 Bg+ Bg+1
if direction = z then We <+ 0
S % end if
a <+ —1 Be +— B:.+1
else end if
s+ 0 end for
a<+1 end for
end if if Wy > 1 and By > 1 then
while (c; = —1orcyg = —1) and s < size do Ls<+ Ls+1
ifals > aLpy, then end if
c1 < s end for
end if return L

end function

co < size —1 —s
end if
s« s+1
end while
return ci, co
end function

gradient vector field V is created and normalized. The normalization is done according
to equation 1 and is necessary to ensure contrast invariance for the TDF. The parameter
Fhax controls the normalization. All gradients with a length above this parameter will be
set to unit length and the others will be scaled accordingly.

All of these pre-processing steps are completely data parallel and are implemented as
separate kernels that process the entire dataset.

V(@) >
V(@) =1 Wl if [V (0)| > Finax N
‘;S) else

To be able to calculate the Hessian matrix at a certain voxel, the image gradients has to
exist. In large tubular structures, such as trachea in the airways, the gradients will only
exists at the edge and not in the center. Thus, to detect tubular structures that are larger
than a few voxels, the gradient information has to be propagated from the edge to the
center. There exists two main methods of doing this: The Gaussian scale space method,
where the image is blurred using Gaussian smoothing at different scales. And the Gra-
dient Vector Flow (GVF) method, in which the gradient vectors are diffused iteratively.
Bauer and Bischof [3] were the first to point out that GVF could be used to create scale-
invariance of TDFs and serve as an alternative to the Gaussian scale space method. The
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GVF method has the advantage that it is feature-preserving and avoid the problem of two
or more tubular structures diffusing together to create the illusion of a larger, false tube.
The disadvantage of this method is that it is very time consuming.

GVF was originally introduced by Xu and Prince [14] as a new external force field for
active contours. The resulting gradient vector field V' of GVF aims to minimize the energy

—

function E(V):
BV) = [ V7@ + @)1V () — Va(a 2

where ‘70 is the initial gradient vector field and ;. a weighting constant of the two terms.
Xu and Prince [14] developed a method for calculating the GVF by iteratively solving the
following Euler equation for each vector component independently:

pVEV — (V= Vp)|Vol* =0 (3)
This equation is solved by treating V as a function of time and solving the resulting

diffusion equations as shown in Algorithm 2. The Lapacian VZV(U) 1s approximated
using a 7 point stencil finite difference scheme.

Algorithm 2 3D Gradient Vector Flow

for a predefined number of iterations do
for all points ¥ = (z, y, z) in volume do
laplacian <~ —6V (9)+V (z41,y, 2)+V(z—1,y, 2)+V (2, y+1,2)+V (2,y—1,2)+V (2,9, 24 1)+ V(z,y,2—1)
V(%) + V(¥) + p laplacian —(V (7) — Vo(9))|Vo (7)[2
end for
end for

With this iterative numerical scheme, each voxel can be processed in parallel using the
same instructions. This makes the calculations ideal for data parallel executions on GPUs.
He and Kuester [8] presented a GPU implementation of GVF and Active Contours using
OpenGL Shading Language (GLSL). They reported that their GPU implementation was
up to 4 times faster than a CPU implementation. Their implementation was for 2D images
only and used the texture memory system to speed up data retrieval. In our recent work
[13], we presented a highly optimized 3D GPU implementation of GVF which we have
used in this implementation.

2.3 Hessian-based Tube Detection Filters

Tube Detection Filters (TDFs) are used to detect tubular structures, such as airways, in
3D images. TDFs perform a shape analysis on each voxel and return the probability of
the voxel belonging to a tubular structure.

We assume that, for an ideal tubular structure, the smallest intensity change is in the direc-
tion of the tube and the highest intensity change is in the cross-sectional plane of the tube.
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Such a tubular structure can be detected by checking all possible tube directions and cal-
culating the derivatives. However, this would be very inefficient. Frangi et al. [7] showed
how to use the eigenvalues of the Hessian matrix to efficiently determine the likelihood
that a tube is present without having to check all directions. The Hessian is a matrix of
the second-order derivative information at a specific voxel position ¢. The three eigen-
vectors of the Hessian matrix corresponds to the principal directions of the second-order
derivatives. These are the directions where the curvature is the maximum and minimum.
Thus, one of the three eigenvectors will be associated with the direction of the tube, and
the other two will lay in the cross-sectional plane of the tube. The direction of the tube
is given by &, which is the eigenvector with the eigenvalue of smallest magnitude |)\|.
The reason for this is that the eigenvalues corresponds to the principal curvature which
means that they represent the amount of curvature, or in our case: change in intensity
change. And since we know that the smallest intensity change is in the direction of the
tube, the eigenvector with the smallest eigenvalue magnitude will also point in the direc-
tion of the tube. The two other eigenvectors €5 and €3, will lay in the cross-sectional plane
of the tube and have high corresponding eigenvalues. This is because the highest intensity
change is in the cross-sectional plane of the tube, and because the eigenvectors has to be
orthonormal.

By assuming that the airway cross-section is circular, Krissian et al. [9] showed that a

TDF response for each voxel can be calculated by fitting a circle to the gradient infor-

mation in the cross-sectional plane defined by the eigenvectors €5 and e5. This method

starts by creating a circle with a very small radius in the cross-sectional plane. For a

defined number of evenly spaced points, NV, on the circle, the gradient vector field is sam-

pled using trilinear interpolation. The position of each point ¢ on the circle is found by
273

first calculating the angle as o = =* and the direction from the center to the point as

d; = & sina + & cosa. The position of point 7 on a circle with radius r and center v’ is
then equal to ¥ + rcl:. As shown in equation 4, the average dot product between the sam-
pled gradient and the inward normal (—d;) of the circle at each point is calculated for the
given radius. This radius is then increased and the average dot product is calculated again.
This is done as long as the average increases. The gradients will continue to increase in
length until the border is reached. After the tube border, the gradients will decrease in
length.

The circle fitting TDF is more selective than the TDF of Frangi ef al. [7], but is slower to
compute because it has to sample many points.

V(T +rd;) - —d; (4)
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2.4 Centerline Extraction by Ridge Traversal

Centerlines can be extracted from a valid segmentation using skeletonization and 3D thin-
ning techniques. Another method is to extract the centerlines directly, without a segmen-
tation, by traversing a ridge in the TDF result. This is possible when the TDF have the
medialness property. Medialness is a measure of how “in the center” a position is inside
an object such as a tube. The response from a TDF with this property will be largest in
the center of the tube and decreasing from the center to the boundary.

Aylward et al. [1] provides a review of different centerline extraction methods and pro-
posed an improved ridge traversal method based on a set of ridge criteria and different
methods for handling noise. Their ridge traversal method starts with a seed voxel . For
each voxel ¥;, a tube likeliness value 7'(;) and an estimate of the tube’s direction 7; is
available. The direction estimate is based on the eigenvector associated with the smallest
eigenvalue €; of the Hessian matrix. The direction of the seed voxel is set to this eigen-
value t} = ¢7. From this voxel, a new voxel is selected as the next point on the centerline.
This is done by selecting the neighboring voxel in the direction £, that has the largest TDF
value. This procedure is repeated until the TDF value of the next maximum neighboring
voxel drops below a certain threshold. When the traversal stops, the method returns to the
seed voxel 7, and continues traversing in the opposite direction —t.

Several seed points are necessary to extract the centerline for complex tubular networks
such as the airway tree. When a traversal procedure hits a voxel that has already been
extracted as part of another centerline, the traversal stops. Multiple seed points can be
retrieved by selecting all voxels that have a TDF value above a high threshold and has
the highest TDF value amongst its neighbors. However, this method requires some way
to throw away invalid or unnecessary centerlines as some seed points will be invalid and
thus create invalid centerlines. This can be done by rejecting very small centerlines and
requiring that the average TDF value of each voxel on the centerline is above a given
threshold.

As this method is completely serial its speed cannot be increased by parallelization.

2.5 Segmentation by Inverse Gradient Flow Tracking

Bauer et al. [4] proposed a method for performing a segmentation from the centerline
using the already computed GVF vector field. They named this method Inverse Gradi-
ent Flow Tracking Segmentation because it for each voxel tracks the centerline using the
directions of the GVF vector field. First, the centerlines are dilated and added to the seg-
mentation result. The rest of the segmentation is gradually grown in the inverse direction
of the GVF field as long as the magnitude of the gradient vectors are larger than the pre-
vious ones. This makes sense because the magnitude of the gradient vectors should be
largest at the border of the airways. Figure 3 depicts a cross section of a tube with the
GVF vector field superimposed and the magnitude of the GVFE.
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Figure 3: Inverse Gradient Flow Tracking Segmentation. Left: The GVF vector field superim-
posed on the cross section of a tube. The dot in the middle is the dilated centerline. From this
centerline, the segmentation is grown in the inverse direction of the vectors as long as the length
of the vectors increase. Right: The magnitude of the GVF vector field. The border shows the final
segmentation.

2.6 Texture Cache Optimizations

Most modern GPUs have a separate texture cache. These texture caches exists on GPUs
because video games and 3D applications use texture mapping to map images to 3D ob-
jects to create realistic 3D scenes. Textures are simply images, either 1, 2 or 3 dimen-
sional. The texture caches are optimized for 2D and 3D spatial locality. Regular buffers
on the other hand, have only caching in one dimension. Using textures can thus increase
cache hits which will increase the speed of global memory access.

In our implementation, we have several 3D structures, such as the dataset itself, the vec-
tor fields and the TDF result. We store all of these structures in textures, or images as
they are called in OpenCL. A texture can also have up to four channels. These channels
exist to support color textures and transparency, and are perfect for storing the x, y and z
components of the vector fields.

Note that writing to 3D textures inside a kernel is not enabled by default in OpenCL.
However, it is possible with the extension c/_khr_3d_image_writes. At the time of writ-
ing, only AMD support this extension. The alternative is to only read from textures and
write to regular buffers instead. However, this entails having to copy the contents of
buffers to textures explicitly.

2.7 Trilinear Interpolation

Data from textures are fetched with a specific unit that can also perform datatype conver-
sion and interpolation in hardware which is much faster than doing it in software. The
circle fitting TDF has to sample many points on a circle. This sampling is done with trilin-
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ear interpolation which is a technique to approximate a continuous point in a discrete grid
by using the 8 closest neighboring points in the grid. Thus this requires access to 8 points
in the texture and many arithmetic operations to compute the sample. Using the texture
interpolation sampler in OpenCL removes the burden of doing this explicitly in software
and utilizes the caching mechanisms making sampling of continuous points much faster.

2.8 Work-group Optimization

Work-items are instances of a kernel and are executed on the GPU in groups. AMD
calls these units of execution wavefronts, while NVIDIA calls them warps. The units are
executed atomically and has, at the time of writing, the size of 32 and 64 work-items for
NVIDIA and AMD respectively. If the work-group sizes are not a multiple of this size,
some of the GPUs stream processors will be idle for each work-group that is executed.
This leads to very inefficient use of the GPU. There is also a maximum number of work-
items that can exists in one work-group. On AMD GPUs this limit is currently 256 and
on NVIDIA higher. Also, the total number of work-items in one dimension has to be
dividable by the size of the work-group in that dimension. So, if we have a volume of
size 400 in the x direction, the work-group can have the size 2 or 4 in the same direction,
but not 3, because 400 is not dividable by 3. The optimal work-group size can vary a lot
from device to device so we decided to use the fixed work-group size 4x4x4 (=64 total
work-items in a group) which satisfies all the constraints above. To make sure that the
cropped volume is dividable by 4 in each direction, the size of the cropping is increased
until the new size is dividable by 4.

3 Results and Discussion

Six anonymized Computer Tomography datasets of the lungs were provided by St. Olav’s
University Hostpital and SINTEF Medical Technology. To analyze the speed of our im-
plementation, the six airway datasets were run on two different processors, one NVIDIA
Tesla C2070 GPU with 6GB memory and one Intel i7 720 CPU with 4 cores. For each
dataset and processor the implementation was executed 10 times and the average runtime
calculated. Note that the runtime includes everything, including loading the dataset from
disk and storing all the results (centerline and segmentation) on disk. The results are
summarized in Table 1. The six datasets were processed with the same parameters. The
segmentation and centerline for two of the datasets are depicted in Figure 4.

The runtime for each part of the implementation was also measured on a NVIDIA Tesla
C2070 GPU. Figure 5 depicts the runtime in seconds of each step when performed on
patient 1.

Table 2 shows the original sizes of the datasets, the sizes they were cropped to and the
percentage of the original dataset that was removed. Also, the peak memory usage is
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Figure 4: Segmentation and centerline for two of the patients.

measured in MBs for both the original and cropped volume. Peak memory usage occurs

in the GVF step.

Dataset | GPU Runtime | Multi-threaded CPU Runtime

Patient 1 31 secs 12 min 52 secs

Patient 2 31 secs 14 min 43 secs

Patient 3 26 secs 10 min 44 secs

Patient 4 27 secs 14 min 4 secs

Patient 5 20 secs 10 min 5 secs

Patient 6 38 secs 17 min 25 secs

Table 1: Speed measurements

Dataset | Original size | Cropped size | Removed | Peak memory usage (MB)
Patient 1 | 512x512x829 | 376x280x496 76% 1793 (7461)
Patient 2 | 512x512x714 | 400x288x456 72% 1803 (6426)
Patient 3 | 512x512x846 | 432x264x392 80% 1535 (7614)
Patient 4 | 512x512x619 | 392x256x472 71% 1626 (5571)
Patient 5 | 512x512x696 | 376x264x360 80% 1227 (6264)
Patient 6 | 512x512x843 | 448x312x424 73% 2035 (7587)

Table 2: Result of cropping for each dataset. Peak memory usage is at the GVF step. The number

in parentheses is the memory usage without cropping.




Segmentation [N
Centerline Extraction [ NNININGITNGEGEG
GVvF I —
Blurring |
ToF I
Create vector field i
Pre-process |
Cropping I
/o N
0 2 4 6 8 10 12 14

Seconds

Figure 5: Measured runtime for each step of the implementation in seconds for the first dataset.

3.1 Cropping algorithm

The cropping algorithm discards on average 75% of the original dataset as non-lung tis-
sue. In fact, without this cropping, there would not be enough memory on the GPUs to
process the dataset in its entirety. The GVF step is the most memory demanding step and
the first patient would require 512*512*829 * 3 components * 3 vector fields * 4 bytes =
7461 MB of memory, which is more memory than any GPU has onboard at the time of
writing. On the other hand, with the cropping algorithm this memory usage is reduced to
1793 MB.

As the airways are contained within the lungs the cropping does not affect the result of
airway segmentation and centerline extraction as long as the L, variable has a reasonable
value. If the value is to high, the upper part of trachea and some of the distal airways
might be lost. However, decreasing this value will result in less cropping. In the six
patient datasets that were tested, no airways were lost with the value L, = 128.

3.2 Speed

The implementation uses about 20 to 40 seconds on a full CT scan when run on a modern
NVIDIA Tesla GPU. This is a major improvement from the 3-6 minutes reported by
Bauer et al. [4] that only used a GPU for the GVF calculations. The standard deviation in
runtime for each patient on the GPU was found be 0.5-1.5 seconds. Thus the runtime is
very stable. The implementation was also run on a multi-core CPU which clearly shows
that this application benefits a lot from the GPUs data parallel processing power.

Runtime analysis of each step of the implementation showed that the GVF calculation
was the most expensive step and was very dependent on the dataset size and number of
iterations. The runtime of the segmentation and centerline extraction steps are highly

250



dependent on how large the detected airway tree is, but generally they and the TDF cal-
culation are the three most expensive steps after the GVE.

We were not able to exploit the GPU’s texture system in the GVF computation because
NVIDIA’s GPUs doesn’t support writing to a 3D texture. AMD GPUs, on the other
hand, support writing to 3D textures and may thus be able to run the implementation even
faster. Our previous work [13] showed that AMD GPUs could calculate the 3D GVF
several times faster than NVIDIA GPUs. Unfortunately, we did not have an AMD GPU
with enough memory to test this.

3.3 Accuracy

Lo et al. [11] concluded from their evaluation of 15 different algorithms for segmentation
of airways from 20 CT images, that none of the methods were able to extract more than
77% of the manually segmented references on average. Thus the problem of airway
segmentation is far from solved. With our implementation of the method of Bauer et al.
[4], we conclude that the extraction of the centerlines is the weakest step of the method.
And because the segmentation is created using the centerlines, the segmentation is only
as good as the centerline extraction is. The ridge traversal method has large problems
dealing with noise and local artifacts. This is due to the local greedy nature of the ridge
traversal algorithm. Branches that are not detected properly by the TDF thus present a big
challenge for this method and may lead to gaps and lines that are not in the center of the
airway. Also, small branches at the end of the detected tree are often discarded as noise.

4 Conclusions & Future Work

We have presented an airway segmentation and centerline extraction implementation that
utilizes the computational power of modern GPUs. A novel data parallel cropping algo-
rithm was also presented. This algorithm significantly reduces memory usage, thus al-
lowing an entire CT scan to be processed even faster on the GPU in one single pass. The
implementation uses about 20 to 40 seconds on a full CT scan when run on an NVIDIA
Tesla GPU. This allows the image guided bronchoscopy to start almost immediately after
the CT scan is acquired.

Future work will include creating a parallel centerline extraction method and improving

it to better extract the small airways. Also, we will test this method on other applications
such as blood vessel segmentation.
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Abstract

The Gradient Vector Flow (GVF) is a feature-preserving spatial diffusion of gradi-
ents. It is used extensively in several image segmentation and skeletonization algo-
rithms. Calculating the GVF is slow as many iterations are needed to reach conver-
gence. However, each pixel or voxel can be processed in parallel for each iteration.
This makes GVF ideal for execution on Graphic Processing Units (GPUs). In this
paper, we present a highly optimized parallel GPU implementation of GVF written
in OpenCL. We have investigated memory access optimization for GPUs, such as
using texture memory, shared memory and a compressed storage format. Our results
show that this algorithm really benefits from using the texture memory and the com-
pressed storage format on the GPU. Shared memory, on the other hand, makes the
calculations slower with or without the other optimizations because of an increased
kernel complexity and synchronization. With these optimizations our implementa-
tion can process 2D images of large sizes (5122) in real-time and 3D images (2563)
using only a few seconds on modern GPUs.

1 Introduction

The Gradient Vector Flow (GVF) is a feature-preserving spatial diffusion of gradients.
The GVF field is defined as the vector field V/, that minimizes the energy function £:

E(V) = [ WV @) + Vo(@) PV (2) - Vo(@) a7 (1)

where \70 is the initial vector field.

The GVF was introduced by Xu and Prince [11] as a new external force field for active
contours (AC). Also known as snakes or deformable models, AC are curves that move
in an image while trying to minimize its energy and are used extensively for boundary
detection and segmentation. The traditional snake introduced by Kass et al. [8] has the
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Figure 1: Example of GVF execution. From left to right: Top: 1) Smoothed image. 2) Magnitude
of image gradients Vo 3) Magnitude of GVF after 10 iterations, 4) Magnitude of GVF after 400
iterations. Bottom: 1)Zoomed area of smoothed image 2, 3 and 4) Image gradients superimposed
on zoomed image after 0, 10 and 400 iterations.

problem of getting stuck in boundary concavities and low capture range. The GVF snake
can deal with these problems.

Fig. 1 depicts the GVF when used for Active Contours. The initial image shown top-right
is an image smoothed by convolution with a Gaussian. Next is the initial vector field
Vo displayed using vector magnitude in the top row and the vectors in a zoomed region
below. The next column shows the GVF field after 10 iterations of diffusion and the last
column 400 iterations.

After its introduction, the GVF has been applied on several other image processing appli-
cations. Bauer and Bischof [2] developed a novel approach to use the GVF as a replace-
ment for the scale-space framework in Hessian based tube detection. Hassouna and Farag
[6] and Bauer and Bischof [3] used the GVF to extract skeletons from objects. Ray and
Acton [10] used GVF to track leukocytes from intravital video microscopy. Guo and Lu
[4] argued that GVF combined with Mutual Information can improve multi-modal image
registration.

Xu and Prince [11] showed that the GVF field can be found by solving the Euler equation:

—

uVAV(@) = (V (&) = V(@) |Vo(#)* = 0 2)

This is done by treating the vector field V as a function of time. Calculating the GVF
field serially using this numerical approach is slow due to the need for many iterations
to reach convergence. However, since each pixel is calculated independently of the other

This is a preprint. The final publication is available at link.springer.com.
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pixels, each pixel can be processed in parallel with the exact same instructions for each
iteration. This data parallelism makes the GVF ideal for running on Graphic Processing
Units (GPUs). GPUs enable execution of the same instructions on many different data
elements in parallel.

He and Kuester [7] presented a GPU implementation of GVF and Active Contours using
OpenGL Shading Language (GLSL). They reported that their GPU implementation was
up to 4 times faster than a CPU implementation. Their implementation was for 2D images
only and used the texture memory system to speed up data retrieval. Performance result
for only one NVIDIA GPU was presented. Also, Han et al. [5] proposed another serial
numerical scheme for GVF using a multigrid method. Their results showed significant
improvement in speed.

In this paper, we present an optimized parallel GVF implementation written in OpenCL.
OpenCL is a new cross-platform framework for writing applications that can run on het-
erogeneous systems. In contrast to the work of He and Kuester [7], we investigate three
different memory optimization techniques for GPUs instead of just using the texture mem-
ory. We also discuss 3-dimensional GVF and show results for both GPUs and multi-core
CPUs from different manufacturers.

In the next section, we show how GVF can be implemented in parallel and note that the
algorithm is memory intensive. We also present three memory usage optimizations for
GPUs: texture memory, shared memory and a 16-bit floating point data type for storage.
Section 3 presents performance results for each optimization in terms of both speed and
memory usage. An analysis of the accuracy of the 16-bit floating point data type is also
conducted. Section 4 provides a discussion of the presented results and the last section
conclusions.

2 GPU Implementation

The parallel version of the numerical implementation of GVF by Xu and Prince [11] is
given in Alg. 1 and for 3D in Alg. 2. The Laplacian V2\7(f) is calculated using a
finite difference method. On the boundaries of the image, some of the neighboring points
required to calculate the Laplacian, will not exist. This can be solved by expanding the
image with 1 pixel in all directions and have the same vector on the border as the third
outermost pixel as depicted in Fig. 2. The gradient at the original border will then be 0.
In practice, this is done by swapping the x, y or z components in the read address to 2 if
it is 0 and to M-2 if it is M, where M is the size of that dimension.

From these pseudocodes, we can see that calculating the GVF needs 6 global memory
accesses for 2D and 8 for 3D and about 20 ALU operations. The GVF computation
is memory-bound because global memory access can have a latency of several hundred
clock cycles while the ALU operations are only a small fraction of this [1]. Thus, in this
project, we have focused on optimizing memory access and storage.
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Algorithm 1 Parallel 2D Gradient Vector Flow
for all points 7 in parallel do . . .
laplacian < —4V(Z) + V(z + L, y) + V(z — L,y) + V(z,y + 1) + V(z,y — 1)
V(Z) < V(&) + px laplacian —(V (%) — Vo (Z))|Vo(T)|?
end for

Algorithm 2 Parallel 3D Gradient Vector Flow

for all points 7 in parallel do
laplacian < —6V (Z)+V(z+1,y,2)+ V(z — 1Ly, 2) + V(z,y +1,2) + V(z,y —
1L2)+V(z,y,z2+1)+V(z,y,z—1)
V(&) « V(Z) + px laplacian —(V (&) — V,(Z))| Vo (2))2

end for

The unoptimized GPU implementation uses regular global memory with a 32-bit floating
point storage format. In this article, we explore using texture memory as an alternative to
global memory as well as shared memory in combination with texture and global mem-
ory. We also use a compressed 16-bit floating point storage format with each of these 4
memory combinations as an alternative to the default 32-bit format. Thus in total, we test
8 different memory optimization combinations on the GPU.

2.1 Texture memory

The default memory on GPUs is called global memory. This memory is not always cached
(for AMD GPUs, global memory caching has to be enabled explicitly). When caching is
enabled, it only has linear spatial locality. Most modern GPUs also have a separate texture
memory system. Textures are 1D, 2D or 3D structures that can be addressed based on
coordinates. GPUs have this texture memory system because GPUs are primarily used
for 3D applications where textures are mapped to 3D objects to create a more realistic
3D scene. The textures are stored off-chip, but are cached and have spatial locality in
multiple dimensions. When working with images and volumes this cache with 2D/3D

Figure 2: The top left corner of an image. The arrows indicate the values the boundary pixels use.
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spatial locality can increase cache hits.

In the GVF calculations, there are two 2D/3D structures: the GVF field V and the initial
vector field V,. We optimize our implementation by putting both of these data structures
in textures. In OpenCL, textures are called images, and an image bound to a kernel can
only be either read or written to. This is a limitation needed to assure cache coherency.
Since the GVF vector field V has to be both read and written, we have used a double
buffering mechanism.

By creating two textures for the GVF field V, we use one texture for writing and one for
reading, and after each iteration we swap the textures in the arguments to the kernel.

The handling of the boundaries as depicted in Fig. 2 can be handled automatically by the
texture system using the addressing flag ADDRESS_CLAMP_TO_EDGE. With this flag
set, pixels requested outside of the texture will use the pixel value closest to the request
pixel.

In OpenCL, writing to a 3D texture is an optional extension called cl_khr_3d_image_writes.
AMD supports it while NVIDIA does not. To support 3D GVF calculation on NVIDIA
GPUs we created a separate kernel for these devices that uses global memory instead
of textures for V. Since global memory only have linear spatial cache locality, this is
expected to reduce the number of cache hits.

2.2 Shared Memory

Shared memory is an on-chip memory that is shared among all work-items in a work-
group. This memory is reported by GPU manufacturers to be more than 10 times faster
than global memory which is off-chip ([1],[9]). It is generally beneficial to use shared
memory when several work-items need the same data from global memory as their neigh-
boring work-items.

When calculating the Laplacian, V2V(f), the data from the 4 (or 6 for 3D) closest neigh-
boring pixels are needed. If N is the total number of pixels, there will be 5N global
memory accesses to V in total because each pixel is requested 5 times. By using shared
memory the number of global memory accesses can be reduced significantly.

The input image is divided into a set of work-groups as shown in Fig. 3. Each work-
group process one tile of the input image and allocates a block of shared memory with the
same size as the work-group. Each work-item in a work-group loads the pixel value from
global memory and stores it in shared memory. As the work-items on the edges of the
work-group will not have all their neighbor’s data in shared memory, these work-items
will not do calculations, only load data. These pixels are called the work-group’s frame
and are calculated by their neighboring work-groups. This causes some overhead in terms
of redundant global memory accesses and work-items that are idle, but this is very small
compared to the overhead of 5/V global memory accesses to V.
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Work-group with frame

Image
Divided into several work groups

Figure 3: The input image is divided into several work-groups. The green/dark area is the part of
the work-group that is calculated and the box around is the frame where only data is loaded.

Synchronization is necessary after writing to the shared memory, because all work-items
in a work-group are not executed simultaneously (if a work-group is above a certain size).
Work-items in a work-group can synchronize using a barrier in the shared memory.

The shared memory is divided into several banks usually 16 or 32. Memory requests to
different banks can be served in parallel while memory requests to the same bank has to
be serialized. Requests to the same bank in a clock cycle is called a bank conflict. These
bank conflicts can be avoided with a sequential access pattern.

2.3 16-bit float storage format

Memory access can also be improved by reducing the number of bytes transferred from
global memory to the chip. The most common way to store a floating point number on a
computer, at present time, 1s by using 32 bits with the IEEE 754 standard. However, most
GPUs also support a texture storage format called normalized 16-bit integer. With this
format, the data is stored as 16-bit integers (shorts) in textures, but when it is requested,
the texture fetch unit converts the 16-bit integer to a 32-bit floating point number with a
normalized range from -1.0 to 1.0. This reduces accuracy, and may not be sufficient for
all applications. Due to the reduced accuracy, the 16-bit storage format is made optional
in our implementation. This storage format also halves the global memory usage, thus
allowing much larger 3D volumes to reside completely in the GPU memory.

2.4 Work-group sizes

Work-items are executed on the GPU in groups. AMD calls these units of execution
wavefronts while NVIDIA calls them warps. The units are executed atomically and has
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at the time of writing the size of 32 or 64 work-items. If the work-group sizes are not
a multiple of this size, some of the GPUs stream processors will be idle for each work-
group that is executed. There is also a maximum number of many work-items that can
exists in one work-group. On AMD GPUs, this limit is currently 256 and on NVIDIA
up to 1024. In conjunction with shared memory, we want to maximize the size of the
work-group minus the frame, given this limit. For 2D, this is maximum when the work-
group is 16x16 and for 3D, 8x8x4. E.g. an image of size 512x512 would give 32x32
work-groups of size 16x16. Also, in OpenCL, each dimension has to be dividable by
the work group-size. Thus, we pad the data so that the size is dividable by the highest
possible work-group. This avoids idle threads and branch divergence while keeping a
large work-group size.

3 Results

3.1 Speed

The speed of our implementation was measured using OpenCL timers. Fig. 4 shows
the average execution time of one iteration on an image of size 512x512 with different
combinations of global, texture and shared memory as well as 32-bit and 16-bit storage
formats. This figure clearly shows that using the texture memory is faster than using
regular global memory. Also, it illustrates that utilizing shared memory slows down the
computation and that the 16-bit storage format is only beneficial when used together with
the texture memory. Fig. 5 shows the average total execution time for images of different
sizes for both 32 and 16-bit. In this figure, we notice that as the image size increases, the
execution time difference also increases. All of these tests were run on an AMD Radeon
HD5870 with 1GB of memory.

Tables 1 and 2 includes the average execution time measured both on 2D and 3D and on
several different GPUs and multi-core CPUs. For the GPUs only the texture memory with
the 16-bit storage format was used. For the CPUs the same version was used, but with
32-bit instead. From these two tables, we observe two things: 1) Execution on GPUs is
much faster than on CPUs. 2) While NVIDIAs GPUs are comparable to AMDs GPUs on
the 2D dataset in terms of speed, NVIDIAs GPUs perform much worse on the 3D dataset.

3.2 Memory usage

Global synchronization is needed in each iteration when calculating GVF in parallel. Be-
cause global synchronization is not possible inside a kernel, a double buffering mecha-
nism is needed. This means that two copies of the vector field V is needed in addition to
the initial vector field V. The GPU implementation needs 2 vector components (x and y)
* 3 vector fields * 32 bits = 24 bytes per pixel and 36 bytes per voxel for 3D volumes,
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Figure 4: Average execution time for one iteration of a 512x512 image measured in milliseconds
using OpenCL timers with both 32-bit and 16-bit storage format and different combinations of
using regular global memory, texture memory and shared memory.
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Figure 5: Average execution time for 512 iterations of images of different sizes using OpenCL
timers with both 32 and 16-bit storage format. Note: The execution time difference between 32
and 16-bit storage format increases with the size of the images.
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Processor | One iteration | All iterations
AMD 5870 0.035 ms 28 ms
AMD Mobile 5830 0.147 ms 77 ms
NVIDIA Quado FX5800 0.104 ms 66 ms
NVIDIA Tesla c2070 0.077 ms 41 ms
Intel 15 750 1.485 ms 851 ms
Intel 17 720 2.344 ms 1550 ms

Table 1: Average execution speeds for a 2D image of size 512x512 run for 512 iterations. The
first 4 processors are GPUs, while the rest are multi-core CPUs.

Processor | One iteration | All iterations

AMD 5870 4.501 ms 1124 ms

AMD Mobile 5830 20.739 ms 5129 ms
NVIDIA Quadro FX5800 | 105.631 ms 27172 ms
NVIDIA Tesla c2070 27.989 ms 7151 ms

Intel 15 750 | 310.846 ms 92591 ms
Intel i7 720 | 378.876 ms 106747 ms

Table 2: Average execution speeds for a 3D volume of size 2563 run for 256 iterations. The first
4 processors are GPUs, while the rest are multi-core CPUs.

because of the additional z component. On the other hand, when using a 16-bit float stor-
age format, the memory usage is halved. As an example a volume of size 5123 would
consume 4.5 GB with the 32-bit data type and only 2.25 GB with the 16-bit data type.
Figures 6 and 7 graphs the memory usage for this implementation for images and vol-
umes for both 32- and 16-bit. Both figures depict the fact that the difference in memory
usage increases as the dataset size increases.

3.3 Relative accuracy

We measured the relative error between a 32-bit and a 16-bit floating point data type on
the final GVF vector field of the 512x512 image shown in Fig. 8. This was done by
calculating the GVF for each data type on the same image. Relative error measures for
both the magnitude and angle were calculated as shown in Eq. 3 and 4. From these
equations, the average, variance, maximum and minimum were calculated for all pixels &
and collected in table 3.

Merror - |"Zszt(f)| - "%szt(l—:)H (3)
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Figure 6: Memory usage in MBs versus size of image. Dimension size x on the x axis is the size
of one of the dimensions so that total number of pixels is z2
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Figure 7: Memory usage in MBs versus size of volume. Dimension size x on the x axis is the size
of one of the dimensions so that total number of voxels is x>
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Merror eerror
Average | 0.00078 | 0.55
Variance | 4.29e-7 | 0.59

Maximum | 0.00377 | 3.14

Minimum | 8.92e-10 0

Table 3: Relative error of vector magnitude M and angle 6 from 32-bit to 16-bit floating point
storage format. Calculated using Eq. 3 and 4 on the image in Fig. 8. Angles are in radians

Figure 8: The 512x512 MRI Brain scan image the relative error measurements have been run on.

9 _ 003_1 ‘_/)16bit (f) : ‘%2bit<f> (4)
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4 Discussion

4.1 Speed

Fig. 4 shows that introducing shared memory actually makes the calculations slower.
The reason for this is threefold: the code is more complex, requires explicit work-group
synchronization and more threads/work-items are needed. Also, we notice that using the
texture memory on the GPU is much faster than using the global memory, which is due to
the 2D/3D caching.

This figure further shows that using the 16-bit storage format without textures is slower
than using the 32-bit storage format. When the 16-bit format is used in conjunction with
textures on GPUs all the data type conversions are done in hardware in the texture fetch
units which is much faster than doing the conversion in the code. With CPUs using 32 bits
is faster than 16 bits because although the CPU supports texture structures in OpenCL,
the CPU does not have dedicated texture fetch units that can do the data type conversion
in hardware as GPUs do.

Also, we noticed from tables 1 and 2 that NVIDIAs GPUs performed much worse on
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Figure 9: Normalized GVF vector field, run with the same number of iterations. The top is with
32-bit storage format and the bottom is 16-bit. These two images clearly show the reduced capture
range when using 16-bit.

the 3D dataset than AMDs GPUs. The reason for this is that NVIDIA does not support
writing to 3D textures in their OpenCL implementation. Thus, global memory had to be
used. This memory, as we have explained earlier, is much slower than the texture memory.

Fig. 5 illustrates that the difference in execution time between using 32- and 16-bit stor-
age formats increases as the image size increases. Thus the performance gain for 16-bit
is biggest for large images and volumes, while for very small images it is almost insignif-
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icant.

4.2 Memory usage

From the graph in Fig. 6, we can see that processing 2D images of typical sizes is no
problem with modern GPUs that have 1GB memory and more. For 3D volumes a 1GB
graphics card would manage to process a dataset, without any additional PCI express data
transfer, of about 300® and 3803 voxels for 32-bit and 16-bit data types respectively.

4.3 Relative accuracy

Relative accuracy tests were performed to measure the error by using the 16-bit storage
format versus 32-bit. As seen in table 3 these tests showed that there was very little error
in magnitude, but on average around 30 degrees angle error. The high angle errors was
found to only be present for the very short vectors. In fact, the maximum magnitude of all
vectors with angle error above 0.1 was 9.15- 10~ on the 512x512 MRI brain scan image.
The size of the angle error generally increases when the vector length decreases. Thus,
this angle error may not be problematic for most applications. For instance, very short
vectors will have very little pulling force on a snake.

Still, the capture range of using the 16-bit format is lower than 32-bit as seen in Fig. 9
where the resulting vector field has been normalized. Thus, the 16-bit storage format may
not be sufficient for all applications.

5 Conclusions

In this paper, we presented a highly optimized parallel GPU implementation of Gradi-
ent Vector Flow written in OpenCL. Our implementation enables real-time execution of
GVF for images of sizes up to 5122 on modern GPUs. Since it is written in OpenCL,
it can also run efficiently on multi-core CPUs. We investigated three different memory
optimizations for GPUs. Our results show that using the texture memory with the 16-bit
compressed floating point storage format and without shared memory is fastest on GPUs
and can double the performance compared to an unoptimized GPU implementation. Rel-
ative accuracy measurements reveal that there is very little error in magnitude, but a high
angle error between the 32- and 16-bit storage formats. However, the high angle errors
are only present on very small vectors, and thus may not be a problem for most applica-
tions. The 16-bit storage format has also the advantage of allowing much larger volumes
to reside completely in the limited memory on GPUs.

The source code of this implementation is available online at http://www.github.com/smistad/OpenCL-
GVF/
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