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Abstract

Pulsed Wave (PW) Doppler is a flow imaging modality in which the velocity
distribution of the blood flow in a spatial region is displayed over time. In this work,
methods for improvement of the conventional PW Doppler technique are evaluated
using mathemathical models, in vitro and in vivo studies. The first part of the thesis
is an evaluation of the use of sparse sequences for simultaneous PW Doppler and B-
mode imaging, the second part investigates properties of the recently proposed 2-D
Tracking Doppler method, and in particular the feasibility of this method for cardiac
applications.

In conventional PW Doppler/B-mode duplex ultrasound, packets of B-mode and
Doppler transmissions are interleaved, producing undesirable gaps in the Doppler data.
In this context, several sparse sequence methods have been proposed in which PW
Doppler spectra are generated from observation windows containing missing samples.
In this work we show that sparse sequence methods have two significant weaknesses.
Firstly, it is shown that long reverberation times lead to discontinuities in the signal
from stationary clutter after each B-mode interruption. Secondly, using frequency
analysis, it is shown that clutter filtering of non-uniformly sampled data may introduce
artifacts in the velocity spectrum. Methods are presented for quantification of these
effects, and their severity in clinical applications are shown using in vivo examples.

Two-dimensional (2-D) tracking Doppler is a proposed alternative to PW Doppler,
in which the sample volume follows the trajectory of the blood scatterers over time.
Compared to PW Doppler, 2-D tracking Doppler has longer observation time of
individual scatterers and therefore reduced transit time broadening. An extensive
signal model is presented and is, in addition to in vitro and in vivo recordings, used
to evaluate properties of the 2-D tracking Doppler technique. It is shown that the
spectra have lowest bandwidth and maximum power when the tracking angle is equal
to the beam-to-flow angle, which may be used for automatic angle correction. In
vitro studies and simulations indicate that automatic angle correction using tracking
Doppler may be more accurate than manual angle correction, especially for high beam-
to-flow angles.

The feasibility of using 2-D tracking Doppler for maximum velocity estimation in
cardiac jet flow was investigated using simulations, in vitro and in vivo recordings.
The results indicate that the -6 dB relative broadening of tracking Doppler spectra is
smaller than 5% for tracking angles up to 80◦, and also that the maximum power is
found when tracking in the flow direction.
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Chapter 1

Introduction

Ultrasound imaging of blood flow in the human body has become an important
diagnostic tool in several fields, including gynecology, obstetrics, pediatrics, oncology,
and in the cardiovascular field [1–5]. The use of ultrasound technology to measure
velocities in the human body was first suggested by Satomura [6] in 1959, then by
transmitting a single frequency signal into the body and using the Doppler shift to
measure the movement of heart walls and valves. This technology is still in use today
and is commonly referred to as Continuous Wave (CW) Doppler. The method was
soon adapted to measure blood velocities [7, 8]. Since then, several techniques have
been introduced, significantly improving velocity estimation in medical ultrasound
imaging. In the late 1960s, Pulsed Wave (PW) Doppler was described [9], in which
finite pulses are transmitted with regular intervals, allowing the use of range gating to
measure blood velocities at several depths and thus to acquire velocity profiles. The
first images of arteries came in the early 1970s [10], and the first 2-D gray-scale or
B-mode (Brightness-Mode) scan of a human joint in 1972 [11]. The duplex systems,
allowing for both flow measurements and B-mode images for navigation were developed
shortly thereafter [12].

The two most common ways of displaying Doppler velocity measurements as of
today are illustrated in Fig. 1.1. In Color Doppler Imaging (CDI), or color flow
imaging, the mean velocity is calculated in a 2-D or 3-D region of interest, color
coded and then overlaid a grayscale anatomical image. The other imaging modality
is commonly referred to as spectral Doppler, and is based on the PW Doppler and
CW Doppler techniques. In this modality, the full spectrum of blood velocities
in a small spatial region is displayed as a function of time. In this work, we
investigate recently proposed methods addressing two fundamental challenges of PW
Doppler imaging. The first challenge is to achieve simultaneous B-mode images and
velocity measurements without significantly degrading the two modalities. The second
challenge is to avoid broadening of the estimated spectra due to the limited observation
time of moving scatterers.

1.1 The duplex challenge

PW Doppler/B-mode duplex ultrasound is a modality in which the ultrasound system
is used for simultaneous acquisition and visualization of B-mode images and PW
Doppler data. The two modalities strongly differ in their requirements on the
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1.1. The duplex challenge

Figure 1.1: Left: example of a color Doppler image. A mean velocity color map is
shown in a region of interest (ROI). Flow towards the probe is visulized as red, flow
away from the probe is blue. Right: example of a PW Doppler image, where the flow
velocity distribution in a sample volume is displayed over time. The sample volume is
indicated by two parallel lines in the B-mode image above the spectral display.

transmitted pulses. B-mode images are used for navigation and anatomic assessment,
and requires high resolution and contrast. High resolution is achieved by using pulses
with high center frequency and short pulse length, and resolution can be traded off
for contrast by using receive apodization. In PW Doppler imaging, however, the use
of long pulses and low center frequency is preferred to increase the penetration depth
and the Nyquist velocity limit. For this reason, separate pulses are typically used for
the two modalities.

In conventional duplex imaging, the Doppler acquisition is interrupted regularly to
acquire segments of B-mode images. However, this causes gaps in the Doppler data,
which again lead to gaps in the velocity spectrum display. The gaps in the velocity
spectrum are also larger than the gaps in the Doppler data, due to filter initialization
and the use of overlapping windows for spectrum estimation.

Methods have been proposed to fill in the missing data in the Doppler signal before
velocity spectrum estimation, in which the missing signal segments are essentially
synthesized from preceding or successive samples [13, 14]. Ideally the interruptions
should be short so that the signal can be assumed to be stationary throughout their
duration. The number of interruptions should also be low to minimize the number
of lost samples after each interruption. On the other hand, a minimum ratio of B-
mode-to-Doppler insonations is required to maintain a decent B-mode frame rate and
quality. Note that in addition to finding the right balance between Doppler and B-
mode firings, an important part of duplex sequence design is the choice of clutter filter.
Due to the samples lost to filter initialization after every interruption, it is desirable
that the impulse response of the clutter filter should be as short as possible.

A number of proposed techniques have potential to influence the design of duplex
sequences. One possibility is to use compounding of plane waves or diverging waves
to produce B-mode images [15]. In this approach, received echoes from multiple

2



Chapter 1. Introduction

transmissions are coherently combined in post-processing to achieve higher contrast,
resolution and SNR than the images generated from a single transmission. Lateral
resolution increases with the maximum angles used, whereas contrast and SNR
increases with the number of transmissions. A study performed by Bercoff et al. [16]
shows that about 16 transmissions are enough to obtain higher SNR than focused
imaging, and about 30 transmissions to achieve better anechoic contrast. However, on
the order of 10 transmissions should result in an image quality comparable to that of
focused imaging. A disadvantage of using plane wave compounding is that, similarly to
other synthetic aperture techniques, rapid tissue motion leads to incoherency between
the compounded signals and motion artifacts in the compounded image. The severity
of this effect increases with the time lag between the first and last transmission used
for each compounding frame [17,18].

Also, some adaptive spectral estimation techniques like Power Spectral Capon [19],
projection-based Capon [20] and BIAA [21, 22] have been proposed in which PW
Doppler spectra are generated from shorter temporal observation windows. While
this improves temporal resolution and thus the ability to depict rapid flow events, it
can also decreases the length of the gaps in the velocity spectrum. In addition, the
resulting spectra do not suffer from clutter sidelobes, and it has been shown that it
is possible to produce high quality spectra without clutter rejection [20], avoiding the
loss of samples due to filter initialization after B-mode interruptions. However, also
these methods have notable drawbacks. The Capon methods are not robust without
spatial or temporal averaging, unless a diagonal loading parameter is used for the
covariance matrix. In addition, the projection-based Capon method is parametric -
requiring an estimate of the number of signal components for every timestep. The
BIAA method is less dependent on averaging, but being an iterative method, it is very
computationally expensive.

Finally, a number of sparse sequence methods [22–25] have been proposed as
potential solutions to the duplex problem. Common for all these methods is that
the spectra are estimated from observation windows containing short and frequent
gaps due to B-mode interruptions, as opposed to the longer gaps of conventional
duplex acquisition. This eliminates the gaps in the spectral display, on the cost
of potential artifacts due to the degraded observations windows. However, most of
these techniques have only been validated on fully sampled data which have been
synthetically undersampled in post-processing, and thus may face additional challenges
when applied to data acquired by ultrasound systems using sparse sampling.

1.2 Challenges in spectral velocity estimation

The maximum velocity of blood flow is an important parameter used for grading
stenosis, both in the carotid artery and in heart valves. It is also commonly used in the
assessment of cardiac function. By using the simplified Bernoulli equation ∆P = 4v2

[26], the maximum jet flow velocity in stenosed or insufficient valves is used to estimate
the peak pressure gradient between heart chambers. Delineation of the maximum
velocities in the spectral display of jet flow provides an estimate of the velocity-

3



1.2. Challenges in spectral velocity estimation

time integral (VTI), which multiplied with cross-sectional area at the jet location
gives an estimate of stroke volume. Maximum velocities are also used to estimate
the pressure half-time (PHT), which is related to the severity of mitral stenosis and
aortic regurgitation [27, 28]. To assure the diagnostic value of the maximum velocity
estimates, ideally they should be accurate, or at least be minimally dependent on
parameters that vary between observers and subjects. However, the conventional PW
Doppler and CW Doppler spectral estimators have several weaknesses that makes this
difficult to achieve in practice.

One such weakness is that only the velocity in the axial direction is measured.
In order to estimate the true velocity, the beam-to-flow angle needs to be estimated
manually by the observer. This may cause significant errors in velocity estimates,
especially for large beam-to-flow angles. To limit errors in velocity estimation, clinical
guidelines recommend against the use of beam-to-flow angles above 60◦ [29, 30].
Moreover, angle correction is not recommended in cardiac jet flow measurements,
as it is likely to introduce more erroneous velocity estimates given the unpredictable
jet direction [31].

The angle dependency problem of Doppler ultrasound have been subject to research
since the early 1970s, and several techniques have been proposed for estimating two
or three vector velocity components, either by using multiple beams from different
angles [32], by using correlation techniques [33–36], or by studying the symmetry
properties [37] or the bandwidth of the Doppler spectrum [38, 39]. This is a rapidly
developing field, and one might argue that vector velocity imaging techniques also
have the potential to determine maximal velocities in blood flow, and may therefore
soon replace PW Doppler and CW Doppler in some applications. A notable challenge,
however, would be to achieve high enough spatial resolution to accurately determine
the maximal velocities. In most techniques used for vector velocity imaging, the mean
velocity in each sample volume is estimated. Thus if the sample volumes containing the
maximum velocities also contain notable velocity gradients, the maximum velocities
would be underestimated by such approaches. In peripheral arteries, however, high
enough resolution might be achievable.

Generation of velocity spectra for flow in the transversal direction has been
investigated in a recent work by Jensen [40]. In this method, the received signals
at left and right subapertures are combined in such a way that an oscillating field
is generated in the transversal direction. Because the lateral velocity component is
estimated, angle correction is performed relative to the transversal direction rather
than the beam direction. This significantly decreases the sensitivity to errors in
angle correction for high beam-to-flow angles. The spectral quality degrades when
the beam-to-flow angle deviates from 90◦, however, and use of the lateral spectrum is
not recommended for beam-to-flow angles below 75◦.

Another challenge in spectral Doppler is that the estimated spectra are subject to
spectral broadening, due to the limited observation time of individual scatterers. This
causes overestimation of maximum velocities, but also introduces intra-observer and
inter-observer variation as the apparent maximum velocity depends on the beam-to-
flow angle. Two notable techniques for reducing spectral broadening in the spectral
display are the multifrequency Doppler technique [41] and the velocity-matched
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Chapter 1. Introduction

spectrum technique [42]. In the former technique, Doppler spectra are generated
from several ultrasound frequencies transmitted simultaneously and then averaged to
reduce the variance of the spectral estimates. In the latter technique, the samples used
for estimating the power at each velocity are following the axial position of scatterers
over time, maximizing observation time for each velocity and thus minimizing spectral
broadening. Even though the motivation for the two techniques were different, it
turned out that they have essentially the same properties. A limitation of both
techniques, however, is that they do not reduce transit time broadening for high beam-
to-flow angles when the observation time is limited by the lateral extent of the sample
volume.

A recently published technique for the reduction of spectral broadening is based
on the use of plane waves [15]. In this technique, termed Doppler Frequency Spatial
Analysis (DFSA) [43], the mean frequency is calculated from every spatial point in
a region of interest, and mean velocity histograms are displayed over time, similar in
appearance to velocity spectra produced by PW and CW Doppler. Provided that the
velocity spectrum in each resolution cell is symmetric, this effectively reduces spectral
broadening. A notable drawback, however, is that the velocity variations need to be
small within each resolution cell. This makes the use of the technique difficult in for
example cardiac applications, where the resolution is limited by the acquisition depth
and the size of the transducer aperture. High velocity gradients within each sample
volume would then contribute to underestimation of the maximum velocities.

Another notable technique addressing the estimation of maximal blood velocities
in blood vessels is that of Ricci et al [44]. In this work, the velocity spectrum is
estimated from a large sample volume, covering the entire vessel in the axial direction,
and more than 30% of the diameter in the lateral direction. Through a model-based
analysis, it is shown that the maximal velocity is then found at the half power, or -6 dB
threshold, in the descending slope located at the higher frequencies of the spectrum.
According to the model, this estimate is accurate for a wide range of beamwidths,
velocities and flow profiles. However, the velocity estimates are still prone to errors
due to angle correction. Also, further work is needed to understand the performance
of the technique for more complex patterns.

Two dimensional (2-D) tracking Doppler [45] is a recently proposed extension of
the velocity-matched spectrum technique, in which the sample volume follows both
the axial and lateral movement of the blood scatterers over time. This was made
possible by an increase in the number of available receive channels, facilitating the use
of broad beams on transmit and parallel beams on receive. Compared to PW Doppler,
the use of 2D tracking Doppler results in an increased observation time of individual
scatterers, and therefore reduced transit time broadening.

1.3 Aims of study

The overall objective of this thesis is to investigate the practical applicability of
recently proposed methods for improvement of the PW Doppler modality. The
first part concerns the duplex challenge, the second part the quality of the velocity
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spectrum. In short, the papers included in this thesis aimed to:

1. Investigate the use of sparse sequences for duplex imaging:
Several techniques have been proposed in recent years for spectral estimation
from non-uniformly sampled Doppler data. This potentially solves the problem
of gaps in the spectral display, but may degrade the quality of the resulting
spectra. This study aims to investigate the use of sparse sequences in cardiac and
carotid applications, considering both pulsed wave Doppler and color Doppler
imaging modalities.

2. Investigate the angle dependency of 2-D tracking Doppler:
The 2-D tracking Doppler method is an extension of the velocity matched
spectrum technique where tracking of scatterers is done across several receive
beams. The new method has been shown to significantly decrease spectral
broadening due to the transit time effect when the tracking angle coincides with
the beam-to-flow angle. This study aims to investigate the dependency of the
2-D tracking method on the tracking angle and the beam-to-flow angle, and the
potential use of this knowledge to perform automatic angle correction.

3. Adapt the 2-D tracking Doppler technique to cardiac applications:
Promising results have been presented using the 2-D tracking Doppler technique
for velocity estimation in the carotid artery. The ability of the method to
suppress effects of aliasing and the potential for automatic angle correction makes
it a candidate for use in cardiac flow imaging. This work therefore aims to
investigate the properties of the technique when implemented on a phased array
for estimation of maximum velocities in cardiac jet flow.

1.4 Thesis outline

The contributions of this thesis are summarized in Section 1.6, discussed in 1.7, and
presented in Chapters 2-4. The following section provides the unfamiliar reader with
a short introduction to some key concepts and conventional methods relevant for this
work, including PW Doppler, clutter rejection and blood flow signal modeling.

1.5 Background

1.5.1 Pulsed Wave (PW) Doppler

In PW Doppler imaging, the volume of interest is insonated with several pulses in
rapid succession, to obtain the signal from moving scatterers over time. The received
signal from a single pulse is referred to as the fast time signal, whereas the signal
from a fixed sample volume over successive pulses is called the slow-time signal. The
velocity estimation in PW Doppler is based on a narrowband approximation, in which
the transmitted pulse is assumed to be infinitely long and sinusoidal. In this case, the
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Chapter 1. Introduction

resulting RF signal from a scatterer moving with constant velocity is also sinusoidal,
with frequency given by the pulse frequency fp and the axial velocity va:

s(r, k) = A cos (2πfdtk + 4πfpr/c+ φ). (1.1)

where r is axial position, k is the slow-time index, tk = k/PRF and PRF is the slow-
time sampling frequency, or pulse repetition frequency. The frequency shift fd is given
by:

fd =
2vafp
c

. (1.2)

Here c is the speed of sound. After IQ-demodulation, this becomes a complex single
frequency signal:

sIQ(r, k) = Ae2πifdtk+iφ (1.3)

If the sample volume contains several scatterers with different velocities, the signal
contribution from the scatterers will be uncorrelated, and the frequency content of
the total signal will reflect the velocity distribution of the scatterers. The velocity
distribution, or the velocity spectrum, may then be estimated as the discrete Fourier
transform of a segment of the slow-time signal.

P̂ (fd) =

∣∣∣∣∣
N∑
k=0

sIQ(r, k)e−2πifdtk

∣∣∣∣∣
2

(1.4)

The estimated velocity spectra are displayed as vertical lines in a spectral display,
and the development of the velocity spectra over time is visualized along the horizontal
direction, as shown in the right panel of Fig. 1.1. The measureable velocity span is
determined by the pulse repetition frequency, and the resolution of the spectrum is
determined by the number of slow-time samples N .

The velocity spectrum estimator used in conventional PW Doppler has several
limitations. First and foremost, it only estimates the velocity components along the
direction of the transmitted beam. To obtain the true velocity distribution, the beam-
to-flow angle θ must be estimated manually by the operator, using a simultaneous
anatomical image or color Doppler image. The velocity spectrum is then scaled by
an angle correction factor of 1/ cos θ. Because the angle correction factor tends to
infinity when θ approaches 90◦, the velocity spectrum is very sensitive to errors in the
angle estimate for high beam-to-flow angles. The use of PW Doppler is therefore not
recommended for beam-to-flow angles above 60◦ [29, 30].

Another limitation of PW Doppler is that the observation time of each scatterer is
finite, invalidating the narrowband assumption of (1.1)-(1.3). A scatterer moving with
constant velocity through the sample volume will produce a spectrum with bandwidth
inversely proportional to the transit time, commonly referred to as the transit time
effect. Because the transit time is again inversely proportional to the velocity of
the scatterer, this effect causes the same fractional broadening for all velocities [46].
Considering that each frequency component in the pulse contributes to the frequency
content of the signal, the expression (1.3) becomes an integral:
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Figure 1.2: Left: example of a PW Doppler spectrum using overlapping temporal
windows. Right: PW Doppler spectrum generated from the same data without using
overlapping windows.

sIQ(r, k) =

∫
fp

A(fp)e
2πifdtk+iφrdfp, (1.5)

Because fd and fp only differ by a constant scaling factor, as described in (1.2), the
relation (1.5) implies that the frequency content of SIQ is essentially the same as
that of the transmitted pulse with a scaling of the frequency axis. Consequently, the
fractional broadening of the spectrum (1.4) is equal to the fractional bandwidth of
the pulse. However, this is only true if the transit time is limited by axial resolution,
because the signal model only included movement in the axial direction. If the transit
time is limited by the lateral resolution or out-of-plane flow, the fractional broadening
will be larger than the fractional bandwidth of the pulse. The spectral broadening due
to the transit time effect causes overestimation of maximum velocities. It is also more
severe for high beam-to-flow angles, as the Doppler shift decreases and the fractional
broadening increases.

A final limitation of conventional PW Doppler is the high variance of the Fourier
based spectrum estimator in (1.4). Each power estimate in the frequency spectrum
is a random variable, and the underlying probability density function is a chi-squared
distribution with two degrees of freedom. In this distribution, the standard deviation is
equal to the expected mean value. This is an intrinsic property of the estimator and not
dependent on spatial resolution or the number of slow-time samples used for spectrum
estimation. The variance may, however, be reduced by spatial or temporal averaging
of the estimated spectra. Temporal averaging of spectral estimates from overlapping
windows is used in many applications and is commonly referred to as Welch’s method
[47]. In practice, this problem may be partially resolved by allowing overlap of the
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Figure 1.3: Left: B-mode image with clutter signal in the lumen due to
reverberations. Right: Image generated from the same data after applying a
reverberation suppression technique. Adapted from [49].

temporal windows used for spectral estimation, synthesizing a high temporal resolution
in the spectral display. Temporal averaging may then be performed visually by the
observer, as illustrated in Fig. 1.2.

1.5.2 Clutter rejection

The blood signal, which is the signal of interest in Doppler measurements, is typically
40-60 dB weaker than the signal from surrounding tissue [48]. Due to multiple
reflections in tissue layers near the probe, multiple copies of the tissue signal, or
reverberations, may occur after the direct echo, interfering with the blood signal. An
example of reverberations in the lumen of the carotid artery is shown in Fig. 1.3. This
unwanted signal contribution from tissue is commonly referred to as clutter.

The velocities in tissue are typically much lower than blood velocities, and the
two signal components can in some cases be distinguished in the frequency domain.
However, in many cases sidelobes from stationary or slowly moving tissue obscure
the blood signal in the spectral display. Sidelobes appear because the signal used
to generate the spectrum is only observed over a limited time, which corresponds to
applying a rectangular window function to the slow-time signal. This causes spectral
broadening and the occurence of sidelobes in the frequency domain. The use of window
functions before spectral estimation attenuates the sidelobes from tissue, but this only
solves the problem if the sidelobes of the clutter fall below the thermal noise floor.
The angle dependency of velocity measurements in ultrasound imaging also results in
challenges for clutter rejection. In peripheral vessels such as the carotid artery, it may
be difficult to separate the blood and tissue signal, because the movement of the vessel
wall is aligned with the beam axis, whereas the blood flow is close to perpendicular
to it. In these cases, the tissue velocities in the axial direction may be as high or even
higher than the axial blood velocities. This is another reason why a beam-to-flow
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1.5. Background

angle smaller than 60◦is recommended in these cases.
The clutter signal may be attenuated by applying high pass, or clutter filters, to

the slow-time signal. A filter is usually characterized by its amplitude response, which
is the attenuation as a function of input frequency. The stopband of a filter consist of
the frequencies that are not allowed to pass. The required stopband attenuation may
vary with the application. Similarly, the passband of a filter consist of frequencies that
are allowed to pass through the filter without attenuation. Between the stopband and
the passband is the transition band. Desired filter properties in Doppler ultrasound
include a high stopband attenuation to suppress the strong clutter signal, and a narrow
transition band to avoid attenuation of the frequencies of interest. In general, there
is a tradeoff between these properties and the length of the impulse response of the
filter.

Linear time-invariant filters

A filter is linear if its output is obtained by a linear operation on its input. A filter
is causal if its output is dependent on current and past inputs or outputs, but not
future inputs or outputs. Finally, a filter is said to be time-invariant if a time shift
in the input x implies the same time shift in the output y. A general causal linear
time-invariant filter has the form:

M−1∑
m=0

a(m)y(n−m) =

K∑
k=0

b(k)x(n− k). (1.6)

If a filter is linear and time-invariant, the output y can be described as a convolution
between the input x and the filter impulse response h:

y(n) = (h ∗ x)(n) (1.7)

The frequency response H of the filter may then be obtained as the Fourier transform
of h, and filtering is equivalent to a multiplication in the Fourier domain:

Y (f) = H(f)X(f) (1.8)

Thus, if X(f) is zero for some frequency f , Y (f) will also be zero. In other words, no
new frequency components are introduced in the signal by applying the filter. This is
usually a desired filter property, especially when spectral analysis is to be performed
on the filter output.

In addition to the amplitude response, linear time-invariant filters also have a phase
response. The most ideal phase response is a zero phase filter, meaning that the phase
of all input frequencies are unaltered after filtering. Thus a waveform with frequency
content in the passband will not be distorted nor delayed by the filter. Unfortunately,
the impulse response of a zero phase filter must be symmetric around zero. Such filters
are not suited for real time implementation as they are not causal. However, applying
a suitable time shift to a zero phase filter produces a causal filter which imposes a
time shift on waveforms in the passband, but leave them undistorted. The time shift
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corresponds to a linear phase variation in the frequency domain, and such filters are
referred to as linear phase filters. Filters which are neither zero phase nor linear
phase are referred to non-linear phase filters. Because they have no restrictions on
the phase of the output, it is usually possible to achieve a desired amplitude response
with shorter impulse response for non-linear phase filters than for linear phase filters.

FIR filters

If a(0) 6= 0 and a(m) = 0 for m ≥ 1 in (1.6), the result is a Finite Impulse Response
(FIR) filter, termed finite because each output is a weighted sum of a finite number of
current or past inputs. The output of a FIR filter is a convolution between the input
signal x and the impulse response h with h(k) = b(k), see (1.6):

y(n) =

K∑
k=0

h(k)x(n− k) (1.9)

The length of the impulse response K is referred to as the order of the FIR filter.
Because all filter registers must be filled before the output is valid (n ≥ K − 1), an
input signal of length N will result in an output signal with length N −K + 1. These
lost samples due to filter initialization cause challenges when the acquired Doppler
data contains interruptions, as further discussed in Chapter 2.

IIR filters

If a(0) 6= 0 and also a(m) 6= 0 for some m ≥ 1 in (1.6), we get an Infinite Impulse
Response (IIR) filter. Compared to FIR filters, for which the output is dependent on
past and current inputs, the output of an IIR filter is also dependent on past outputs.
Most analog filters based on resistors, inductors and capacitors employ feedback and
are thus IIR filters.

In the case of IIR filters, the filter order is the length of a or b in (1.6), whichever is
longer. The recursive formulation yields impulse responses that continue indefinitely.
However, in practice the impulse responses are essentially zero after a finite number
of samples and may be truncated, after which the filter is essentially a FIR filter. The
resulting impulse responses may be quite long, however, and similar to FIR filters,
the output samples are not valid during initialization of a truncated IIR filter. An
alternative is to use a filter initialization technique, in which essentially a synthetic
signal is appended to the start of the input signal to initialize the filter. For step
initialization, the input signal is assumed to be equal to the first sample before the
signal onset. More sophisticated techiques include projection initialization [50] and
exponential initialization [51]. When using initialization techniques with IIR filters, we
differentiate between the steady state frequency response, which is valid for infinitely
long signals, and the transient frequency response, which is dependent on the length
of the signal and the filter initialization technique.
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Polynomial regression filters

The last category of filters discussed in this section is the polynomial regression
filters. Polynomial regression clutter filters essentially attenuate the clutter signal
by approximating it with a low order polynomial, and subtracting the polynomial
from the Doppler signal. For these filters, the filter order is defined as the order of
the polynomial used for clutter estimation. A more detailed description of polynomial
regression filters is included in chapter 2, but some of its properties are discussed here.
Polynomial regression filters are well suited for short signals because no samples are
lost due to filter initialization, and they have been shown to yield amplitude responses
with narrow transition bands on short signal segments [52].

Unlike FIR and IIR filters, polynomial regression filters can not be represented on
the form (1.6). Instead, the weighting of the slow-time samples changes over time, and
such filters are therefore time variant. Polynomial regression filtering can therefore
not be described as a multiplication in the Fourier domain like in (1.8), and frequency
components may occur in the output signal that were not present in the input signal.
A more quantitative analysis of the filter response of polynomial regression filters may
be found in [52].

Discussion

In general, it is possible to achieve a specified filter response using a lower filter order
with an IIR filter than a FIR filter, making them potentially less computationally
intensive and less memory demanding. A disadvantage of IIR filters is that they
are never linear phase filters, although some IIR filters like the Bessel filters have
approximately linear phase. Also, in their digital implementation, IIR filters are more
prone to numerical instability as errors may propagate through the feedback loop. The
main advantages of FIR filters are that they are easy to design and implement. It is
for example easy to design a linear phase FIR filter, as the only requirement is that
the impulse response is symmetric. The main disadvantage of FIR filters is the high
memory demand and higher computational cost.

In PW Doppler and color Doppler imaging, the estimated power spectrum is not
affected by the phase response of the slow-time clutter filter, making it possible to
perform clutter filtering with non-linear phase FIR filters as well as IIR filters. The
primary considerations when choosing clutter filters for Doppler are thus the properties
of the amplitude response, or more precisely, sufficient stopband attenuation and a
narrow transition band. For PW Doppler with a continuous stream of Doppler data,
FIR and IIR filters are usually preferred because they are time invariant. Of these
alternatives, IIR filters should be less computationally expensive because a lower filter
order is achieveable. However, FIR filters are easier to design and also less prone to
numerical instability.

The use of polynomial regression filters for PW Doppler is not very common, but
they are of interest when the slow-time signal used for PW Doppler is interrupted
to acquire B-mode images, as will be further discussed in Chapter 2. The primary
disadvantage of regression filters is that they are time variant, and this may lead to
artifacts in the resulting frequency spectra, as will also be shown in Chapter 2.
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1.5.3 Blood flow modeling

In ultrasound models of scattering from blood, the red blood cells are typically assumed
to be independent scatterers. Red blood cells are small (< 10 µm diameter) compared
to typical wavelengths in ultrasound (150 − 750 µm). They are also densely packed
and strongly interacting, so that concerning wave propagation, blood can be regarded
as a continuum [53].

The scattering properties of blood are determined by spatial fluctuations in the
cell concentration n(r, t). The correlation length of n is so small compared to typical
ultrasound wavelengths that it can be considered to be spatially uncorrelated, or δ-
correlated in space. This simplifies modeling of the backscattered signal as its spectral
properties are the same as for noninteracting scatterers. Therefore, we will in the
following describe the scattering from blood through a scatterer density function ns.

The backscattered signal from the flow field will, however, be spatially correlated
due to the spatial correlation of the transmitted pulse. If p denotes the point spread
function, the backscattered signal from pulse k becomes:

x(~r, k) =

∫
~r1

p(~r1)ns(~r − ~r1, k) d3 ~r1 , (1.10)

Note that ns is a discrete function of its second argument, we have thus assumed that
changes in n(r, k) during the pulse propagation time are negligible. In the following,
ns(r, k) will be treated as a random variable. Each x̂(r, k) is then a weighted average
of random variables with near-zero correlation length, and can thus be approximated
as a Gaussian random variable by the central limit theorem. The time series x̂ then
becomes what is known as a Gaussian process. Note that the central limit theorem
may also be used to argue that ns(r, t) itself is a Gaussian process.

Even if the values in a Gaussian process are random, they may be correlated. If the
slow-time covariance function C(k, l) is only dependent on the lag m = k− l, and the
expected mean value does not vary with time, the Gaussian process is said to be wide-
sense stationary. The Wiener-Khinchin theorem then states that the spectral power
density function of the Gaussian process is equal to the temporal Fourier transform of
its autocorrelation function Rx.

Rx(ρ,m) =

∫
~r

∑
k

x(~r + ~ρ,m+ k)x(~r, k), (1.11)

Gx(f) =
∑
m

R(0,m)e2πifm∆t. (1.12)

It now remains to find the autocorrelation function of the slow-time signal x. Let
~v′(~r, t) be the velocity field of the blood scatterers. Then

n~v(~r, t) =

{
ns(~r, t), if v′(~r, t) = ~v

0, otherwise
(1.13)

represents the blood scatterers moving with velocity ~v. Because the spatial correlation
length of n~v is zero, its autocorrelation function can be expressed on the form:
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n~v2(~ρ,m) = aδ(~ρ−m∆t~v), (1.14)

where the subscript is short notation for the autocorrelation operator. The
autocorrelation function of the corresponding slow-time signal xv then becomes:

x̂v2(~ρ,m) =

∫
~r1

∫
~r2

∫
~r3

∑
k

p(~r1)n(~ρ+ ~r3 − ~r1,m+ k)p(~r2)n(~r3 − ~r2, k) d3~r3 d3~r2 d3~r1

= a

∫
~r1

∫
~r2

p(~r1)p(~r2)δ(~ρ− ~r1 + ~r2 −m∆t~v) d3~r2 d3~r1

= a

∫
~r2

p(~ρ+ ~r2 −m∆t~v)p(~r2) d3~r2 = ap2(~ρ−m∆t~v).

(1.15)

Because the blood flow is spatially uncorrelated, the autocorrelation of the total signal
x may be obtained by adding the contribution from all velocities:

x̂2(ρ,m) =

∫
v

ap2(ρ−m∆t~v). (1.16)

1.6 Summary of contributions

1.6.1 Evaluation of the use of sparse sequences for clinical
applications (Chapter 2)

In conventional PW Doppler/B-mode duplex ultrasound, the Doppler signal is
interrupted regularly to allow for the acquisition of B-mode image segments. This
leads to several gaps in the Doppler data and in the corresponding spectral display.
In this context, several sparse sequence methods have been proposed in which the
Doppler signal is frequently interrupted by short B-mode acquisitions, and the PW
Doppler spectra are generated from observation windows containing missing samples.

In this work we show that sparse sequence methods have two significant weaknesses.
Firstly, in many applications, the backscattered echoes from preceding pulses are not
sufficiently attenuated before the onset of the next pulse. In Doppler sequences without
interruptions this is not a problem, as the interfering signal becomes stationary after
a few samples and is removed by the clutter filter. However, after every B-mode
interruption a transient signal contribution is introduced in the slow-time signal, with
length equal to the reverberation time of a single Doppler pulse. This introduces
broadband noise into the slow-time signal, and we show an example where the
amplitude of this noise is 30 dB above the noise level. This reverberation noise can only
be removed by discarding the samples containing the transient signal before clutter
filtering. In a cardiac example we measured reverberation times exceeding 400 µm,
corresponding to 2-4 lost samples after every B-mode interruption with typical PRF
values. For vascular imaging we found that typically one sample needs to be discarded
after every interruption.
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Secondly, the non-uniform sampling pattern of the Doppler data makes it necessary
to regression filters for clutter removal, but we show that non-uniform sampling
patterns degrade the filter response of polynomial regression filters and produces
artifacts in the resulting velocity spectra. Using three example sequences, we show that
artifacts that may occur include multiple copies of the spectra, spectral broadening
and increased noise floor, depending on the sampling pattern used.

We also evaluated the use of sparse sequences for mean velocity estimation in
color Doppler Imaging (CDI). For two of the example sequences, the bias in the
mean estimate due to clutter rejection is smaller than 1.3 % of the Nyquist limit
for all velocities. An in vitro flow example was shown the use of a sparse sequence
resulted in an improved filter amplitude response and reduction in the bias due to
signal loss in the transient band. Additionally, an in vivo example of blood flow with
low axial velocity from the carotid artery is shown, where the use of a sparse sequence
significantly reduced signal dropout in the lumen.

This work is described in the paper: “Effects of reverberations and clutter filtering
in pulsed Doppler using sparse sequences”, which has been accepted for publication
in IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control in revised
form.

1.6.2 2-D Tracking Doppler (Chapters 3 and 4)

Pulsed wave (PW) Doppler is an important tool in cardiovascular diagnostics.
However, errors are frequently introduced in the estimates because of spectral
broadening and incorrect choice of the beam-to-flow angle. Errors from both effects
become worse with larger beam-to-flow angles.

The aim of this work is to evaluate the potential use of the recently proposed 2-D
tracking Doppler technique [45] for reducing such errors. The behavior of the method
was investigated using simulations and in vitro recordings. Using the signal model,
it was shown that the Doppler spectra have lowest bandwidth and maximum power
when the tracking angle is equal to the beam-to-flow angle. The findings motivated two
velocity calibration methods, using either the minimum full width at half maximum
(FWHM) or the maximum power of the 2-D tracking Doppler spectra to predict the
Doppler angle. The techniques were tested using in vitro recordings of flow in a straight
tube, at beam-to-flow angles of 63◦, 73◦and 83◦. The results indicated that velocity
calibration errors may be lower for the FWHM method than for PW Doppler with
manual angle correction, especially for large beam-to-flow angles. With an in vivo
example, it was demonstrated that applying the 2-D tracking Doppler technique in
patients with carotid stenosis is feasible.

The properties of the 2D tracking Doppler method were also investigated for cardiac
jet flow velocity estimation using phased array probes. A new signal model was
developed to include the effects of a spatially variant point spread function. The
simulation software Field II [54] was used to calculate point spread functions along
flow lines. The expected velocity spectra were then calculated separately for each
flow line and then summed incoherently. The results were validated using an in vitro
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measurement

Using the signal model, it was shown that the spectral broadening of tracking
Doppler is significantly lower than that of PW Doppler also in the case of cardiac
imaging. In fact, for beam-to-flow angles up to 60 deg the spectral broadening of
tracking Doppler was comparable to that of CW Doppler with a 0 deg beam-to-flow
angle. The dependency of spectral broadening and spectral amplitude on the tracking
angle was investigated in a simulation model of a straight tube with parabolic flow
and a beam-to-flow angle of 71◦. It was shown that the maximal spectral amplitude
was found at the correct beam-to-flow angle, and the minimal spectral broadening was
observed when the beam-to-flow angle was about 69◦.

The correctness of the signal model and the results was validated using an in
vitro measurement of a straight tube phantom, and an in vivo example was presented
showing the feasibility of using tracking Doppler for maximum jet velocity estimation
in an aortic insufficiency.

This work is described in the papers:
“Investigations of Spectral Resolution and Angle Dependency in a 2-D Tracking
Doppler Method”, which was a joint work with Tonje Fredriksen, and was published
in IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 61,
no. 7, pp. 1161–1170, 2014.
“2-D Tracking Doppler for Cardiac Jet Flow Velocity Estimation”, which has been
submitted to IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

1.7 Discussion

In this thesis, several methods have been evaluated concerning two fundamental
challenges of PW Doppler imaging: the duplex challenge and spectral broadening.
The properties of the methods have largely been described using mathematical models
of the received ultrasound signal. Simulation tools and in vitro measurements have
been used to verify the conclusions and the correctness of the models, and in vivo
measurements have been used to investigate the feasibility of using the methods in
clinical applications.

1.7.1 The use of sparse sequences for duplex imaging

The feasibility of using sparse sequences for duplex imaging was investigated using
methods in which velocity spectra are estimated without requiring uniformly sampled
Doppler data [22–25]. Using these techniques, slow-time Doppler data with interleaved
B-mode transmissions can be used to provide separate and interleaved B-mode and
Doppler images without reduction in velocity range. In this work we focus on two
fundamental problems which are common to all the proposed methods when applied
to spectral Doppler, as they occur due to the use of a non-uniform sampling pattern.

First, it was shown that long reverberation times can introduce substantial signal
dependent noise in acquisitions with frequent B-mode interruptions. The reverberation
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noise occurs after each transition between B-mode and Doppler, and the duration of
the noise is equal to the reverberation time of a single pulse, measured in number of
slow-time samples. These samples must be discarded before clutter filtering to remove
the noise, but in sparse sequences this may cause the loss of many samples due to the
frequent interruptions. An in vivo example is shown where the reverberation noise
has amplitude 30 dB higher than the noise floor and is also coherent, and would thus
introduce strong coherent noise in the power spectrum estimates. This justifies that
the noise should be removed before spectrum estimation.

The results showed that the reverberation problem is significantly more severe for
cardiac applications than for vascular applications due to the low center frequency
(∼ 2 MHz). A reverberation time of more than 400 µs was measured in a healthy
volunteer, which would correspond to 2-4 slow-time samples when using typical PRF
values for cardiac imaging. This severely limits the use of sparse sequences in cardiac
applications. For instance, in a sequence with one interruption for every 10 Doppler
transmissions, 20-40 % of the Doppler data would be lost due to reverberation noise.
In vascular imaging the center frequency is higher (∼ 5 MHz) and thus the problem
is less severe, but the presented results indicate that one sample still needs to be
discarded after every B-mode interruption for PRF values of about 10 kHz or higher.
In this case, the loss of samples might not be a critical problem, but may influence
the choice of duplex sequence. Because the number of lost samples essentially scales
with the number of interruptions, it might be preferable to use fewer and longer
interruptions, an approach that is more similar to sequences used in conventional
packet-based acquisition.

The reverberation problem is not specific to duplex imaging, but is relevant in all
applications involving transitions between different pulses. One example is Doppler
sequences using interleaved beams, where the first samples in each packet should be
discarded to avoid reverberation noise. Another example is triplex imaging, where
color Doppler, PW Doppler and B-mode images are displayed simultaneously. In this
case, the reverberation problem is relevant because of the frequent transition between
the imaging modalities. Notably, the reverberation problem also influences techniques
where pulses are transmitted with unequally spaced intervals to overcome the Nyquist
limit [55–58]. In this case, long reverberation times would lead to a non-stationary
reverberant clutter signal due to the variations in pulse repetition time.

Another challenge when using sparse sequences is that they require the use of
regression filters for clutter rejection due to the non-uniform sampling pattern. We
show that the filter response of polynomial regression filters depends strongly on
the sampling pattern of the slow-time data, and that some sampling patterns lead
to distinct artifacts in the resulting velocity spectra. It is seen that using random
sampling patterns result in an increased noise floor, whereas using non-random
sampling patterns result in coherent noise. This may be explained by considering the
clutter filtering of non-uniform data as a multiplication with a characteristic function
(1 at sampled data, 0 otherwise) before filtering. The frequency response of the filter is
therefore related to the Fourier transform of the characteristic function. The severity
of the artifacts presented shows that this effect should be accounted for before applying
clutter filters to non-uniformly sampled data.
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For color Doppler imaging, we show that the use of sparse sequences for mean
velocity estimation is possible without significant reverberation effects and without
notable bias due to clutter filtering. It is also shown that sparse sequences offer
a potential advantage compared to conventional packet-based CDI, because clutter
filtering across several consecutive packets results in filters with a narrower transition
band. Given the same required stopband attenuation, this approach both reduces
overestimation due to loss of low frequency components and reduces the amount of
signal dropouts compared to conventional packet-based imaging.

In summary, we have shown that the use of sparse sequences in cardiac applications
is severely limited by the effects of long reverberation times. In vascular applications
using a linear probe the reverberation problem should be considered, but might not be
critical. However, the use of polynomial regression filters on non-uniformly sampled
data may also introduce significant artifacts in the velocity spectra, depending on the
sampling pattern. The presence of signal dependent noise in the spectra makes it less
likely that sparse sequence spectral estimation methods will be used in clinical practice
unless they can avoid clutter filtering of the signal. However, the clutter filtering
artifacts have less impact on color Doppler images, and the use of sparse sequences in
this modality might have some advantages over conventional packet-based imaging.

1.7.2 2-D Tracking Doppler

The 2-D tracking Doppler technique is a recently proposed method for generation of
velocity spectra. In this method, the spectral power estimate for a given velocity is
obtained by summation along straight lines in space and slow-time to increase transit
time and thus reduce spectral broadening. In [45], properties of the technique were
investigated when implemented on a linear array probe. Both simulations, in vitro
and in vivo results indicated that the method reduced spectral broadening compared
with conventional PW Doppler, especially for large beam-to-flow angles.

For all results presented in [45] the tracking angle coincided with the beam-to-flow
angle. In clinical settings, determining the beam-to-flow angle is sometimes challenging
as the flow field may be complex and not parallel to the vessel walls. Estimating the
flow angle accurately is especially important for near transversal flow, as the angle
correction factor tends to infinity as the beam-to-flow angle approaches 90◦. We
therefore extended the signal model to investigate the 2-D tracking Doppler spectra
when the tracking angle differs from the beam-to-flow angle. It was shown that the
expectation value of the spectra have lowest bandwidth and maximum power when
the tracking angle is equal to the beam-to-flow angle.

The angle dependency of the method was studied through repeated measurements
of in vitro flow, using the minimum FWHM and the maximum power as indicators of
the correct beam-to-flow angle. The estimated angles using the minimum FWHM as
indicator had a bias of less than 4 % for all the investigated beam-to-flow angles. The
velocity calibration errors when using the minimum FWHM criterion were compared
with expected velocity when using manual angle correction. Whereas the velocity
errors of manual angle correction increase rapidly for large beam-to-flow angles,
the estimated velocity calibration errors of the 2-D tracking Doppler method had
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a standard deviation of less than 6% for all the investigated angles (63◦, 73◦and 83◦).

Application of the tracking Doppler technique to cardiac applications presented
several potential challenges. Compared with applications using a linear probe, a
cardiac probe has smaller aperture and the region of interest is deeper, leading
to higher F-numbers for receive focusing. The degraded resolution may affect the
behavior of the method for erroneous tracking angles. In addition, the smaller width
of plane waves emitted from a cardiac probe may limit the size of the tracking
region for high velocities. The simulation results showed, however, that the tracking
Doppler technique has the potential to resolve both the angle dependency and spectral
broadening problems also when implemented on a phased array probe. A relative
spectral broadening of 5% for a beam-to-flow angle of 80◦ may be good enough for use
in clinical applications. Thus, the primary source of velocity estimation error is likely
to be errors in angle correction.

The dependence of the maximal amplitude and spectral broadening on tracking
angle when using a phased array was investigated using a model of a straight tube
phantom. Similarly to the results in Chapter 3, the maximal spectral amplitude was
found when the tracking angle coincided with the flow angle. The minimal spectral
broadening was observed at a tracking angle slightly smaller than the true flow angle. A
comparison of the angle dependency results from the two papers (Fig. 3.4 and Fig. 4.9)
shows that the sensitivity of the parameters to the tracking angle is much greater when
using a linear probe than when using a phased array. A probable explanation for this is
that the improved resolution when using the linear array also results in less correlated
signals between tracking lines with different angles. This would make automatic angle
correction more difficult in cardiac applications than in vascular applications.

Several factors may limit the performance of the tracking Doppler technique in vivo
compared to in vitro or in simulations. For example, the flow field may not be constant
along the tracking line, or it may be out-of-plane, curved, accelerated or turbulent. All
these effects would increase spectral broadening. Also, if the sample volume contains
flow lines with beam-to-flow angle smaller than the tracking angle, this may lead to an
overestimation of maximum velocities. It should be noted, however, that all of these
effects would also limit the quality of conventional PW Doppler in a similar way.

Automatic angle detection may also be more challenging in vivo, for several reasons.
Several flow lines may be present with different beam-to-flow angles. If the flow is
non-uniform, curved or out-of-plane, the estimated angle may be dependent on the
geometry of the vessel. Also the direction of the flow may change during the heart cycle
due to movement of the heart valves and walls, limiting the use of temporal averaging.
The severity of most of these problems can be reduced by increasing spatial resolution,
but this again might require increased caution by the operator when selecting the
tracking region.

A natural improvement of the 2-D tracking Doppler technique would be to use
3-D probes to allow tracking also in the elevation direction. Also, the use of diverging
waves from phased array probes might have potential and should be investigated.
More ambitious extensions of the method may include automatic detection of jets,
and detection and tracking of curved flow fields. The primary challenges expected
for these potential extensions are increased computational workload and, for cardiac

19



1.8. Concluding remarks

applications, the limited spatial resolution of the system.
The combination of increased spectral resolution and more robust velocity

calibration for large beam-to-flow angles may give both challenges and opportunities
in blood flow imaging. Most importantly, the increased robustness for large beam-to-
flow angles may facilitate reliable velocity estimation for angles above 60◦. This can
improve blood velocity estimation in regions with near-transversal flow, for instance
in vascular imaging or when imaging the heart from a parasternal view. However,
as the 2-D tracking method produces narrower spectra, and hence might give lower
maximum velocity estimates than conventional approaches, introducing the method
in the clinics would necessitate a revision of thresholds used in clinical guidelines.

1.8 Concluding remarks

Methods concerning two fundamental challenges of pulsed wave Doppler have been
evaluated using mathematical models of the received ultrasound signal.

It has been shown that long reverberation times may introduce significant signal
dependent noise when using sparse sequences for velocity estimation. Based on the
high reverberation noise power and the long reverberation times seen in our cardiac
example, we conclude that the use of sparse sequences is not recommended for cardiac
applications.

In vascular imaging, the reverberation problem may be resolved by discarding one
sample after every B-mode interruption. However, regular time-invariant filters cannot
be applied to sparse signals, and the use of polynomial regression filters was shown to
produce different artifacts in the velocity spectra depending on the applied sampling
pattern.

Properties of the 2-D tracking Doppler method have been investigated both for
use in vascular applications, and for cardiac applications. All results indicate that
2-D tracking significantly reduces spectral broadening compared with PW Doppler,
especially for high beam-to-flow angles. In the cardiac study, the spectral broadening
of tracking Doppler was substantially lower than that of PW Doppler, reducing spectral
broadening by factor of six or more for all investigated beam-to-flow angles. For beam-
to-flow angles below 60◦, the spectral broadening of tracking Doppler spectra was
comparable to that of CW Doppler with flow in the beam direction.

The dependency of 2-D tracking Doppler spectra on the tracking angle was also
investigated. In all results, the maximal spectral amplitude was found when the
tracking angle coincided with the beam-to-flow angle. The spectral broadening
measures were also minimal close to the true tracking angles, but the angle would have
been slightly underestimated in the cardiac case, if used as a criterion. A comparison
of the two modalities reveals that the tracking Doppler technique is less sensitive to
changes in tracking angle in cardiac applications than in vascular imaging. This makes
automatic as well as manual angle correction more difficult in cardiac applications.
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Chapter 2

Effects of reverberations and clutter
filtering in pulsed Doppler using
sparse sequences

Jorgen Avdal1, Hans Torp1, and Lasse Løvstakken1

1 MI Lab and Dept. of Circulation and Medical Imaging, NTNU, Norway

Duplex ultrasound is a modality where an ultrasound system is used for
simultaneous acquisition of both B-mode images and velocity (Doppler) data.
Conventional duplex sequences interleave packets of B-mode and Doppler
transmissions, producing undesirable gaps during B-mode interruptions. In
recent years, several techniques have been proposed for avoiding such gaps
by using sparse sequences, where velocity spectra are generated from non-
uniformly sampled Doppler data containing frequent B-mode interruptions.
In this work, two negative effects are discussed that may influence velocity
estimation when using non-uniformly sampled sequences. Firstly, it is shown
that long reverberation times lead to discontinuities in the signal from
stationary clutter after each B-mode interruption. Secondly, using frequency
analysis, it is shown that clutter filtering of non-uniformly sampled data may
introduce artifacts in the velocity spectrum, and also lead to significant bias
in mean velocity estimates. Methods are presented for quantification of these
effects, and utilized to analyze three types of sparse duplex sequences for blood
velocity estimation. In particular, it is argued that the use of such sequences
in cardiac applications is not recommended due to long reverberation time.
Additionally, it is found that the use of regression filters to filter non-uniformly
sampled data may produce significant artifacts in Pulsed Wave Doppler
spectra, but is less significant for Color Doppler Imaging applications. In
vitro and in vivo examples are included showing the presence and magnitude
of these problems in clinically relevant applications.

2.1 Introduction

Doppler ultrasound is a non-invasive technique for velocity estimation of moving tissue
and blood. By insonating the volume of interest with several pulses in rapid succession,
it is possible to follow moving scatterers over time. The velocity distribution can then
be estimated by Fourier analysis, as done in pulsed wave (PW) Doppler, or the mean
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velocity may be estimated by correlation techniques [1], as done in Color Doppler
imaging (CDI).

In addition to Doppler measurements, simultaneous B-mode images are desired for
visualization of anatomical structures. However, whereas low center frequency and
long pulse length are preferred in Doppler imaging to increase the Nyquist velocity
limit and penetration depth, high center frequency and short pulse length are preferred
in B-mode imaging for increased resolution. Therefore, separate pulses are typically
used for the two modalities. A recently proposed method in which B-mode and
Doppler images may be generated from the same data, is coherent spatial compounding
for ultrafast imaging using plane or diverging waves [2–4]. In this method, spatial
resolution is improved by compounding images from multiple angles, and the Doppler
pulse repetition frequency (PRF) is reduced according to the number of different angles
used in the compounding process. However, approximately 10 compounding angles
are necessary to achieve image quality comparable to B-mode [3], in which case the
Doppler PRF would be too low for applications with high velocity flow. For example in
assessment of severe stenosis in the carotid artery, velocities in the range 3-7 m/s have
been reported [5], and thus aliasing may already occur when using the maximal PRF.
This motivates the use of separate B-mode transmissions also when using coherent
compounding.

In conventional duplex imaging the Doppler acquisition is interrupted regularly to
acquire segments of B-mode images [6]. Early attempts included alternating between
B-mode and Doppler transmissions [7]. This produces a continuous stream of both
Doppler and B-mode data, but effectively halves the PRF of the Doppler acquisition
and introduces non-stationary clutter from the B-mode echoes. Another alternative
is time-sharing between Doppler and B-mode acquisitions, where the two modalities
are acquired separately in relatively short (10-50 ms) disjoint time periods [8]. This
restores the full PRF of the Doppler signal, but the signal is lost during B-mode
interruptions. Techniques have also been proposed to reduce the number of B-mode
transmissions, thus reducing the number and the duration of interruptions in the
sequence. However, as long as the Doppler signal is not continuous, it is not possible
to use overlapping windows for PW Doppler without introducing gaps in the spectral
display. Even small interruptions in the Doppler signal cause potentially large gaps
in the velocity estimates, depending on the length of the observation window and the
impulse response of the clutter filter. Techniques have in this context been proposed
to estimate the missing signal segments. [9, 10].

In recent years, methods have been proposed for spectral estimation from non-
uniformly sampled data, where gaps between the Doppler samples are used for B-
mode transmissions. Using these methods, in this work referred to as sparse sequence
methods, both maximal PRF and a continuous stream of Doppler data are achieved. In
[11], the autocorrelation function was estimated directly from the sparse Doppler data,
and further Fourier transformed to produce the Doppler spectrum display. In [12], a
method was suggested for spectral estimation from gapped velocity data, based on
the PG-APES (Periodically Gapped Amplitude and Phase Estimation) method [13].
In [14], the Blood Iterative Adaptive Approach (BIAA) and Blood Sparse Learning via
Iterative Minimization (BSLIM) methods are proposed. These are iterative methods
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for estimation of velocity spectra without restrictions on the sampling pattern, and
have been further developed for ultrasound Doppler applications in the works [15] and
[16]. In other approaches, the missing data are estimated, allowing velocity estimation
to be performed on a full data set. In [17], the missing samples were reconstructed using
a filter bank technique. Recently, a compressive sensing technique was proposed [18],
reconstructing the missing data based on the assumption that the data has a sparse
representation in a given basis.

The above methods have primarily been tested on fully sampled data which have
been synthetically undersampled in post-processing. One potential challenge when
these methods are implemented on an ultrasound system, is that long reverberation
times may lead to interference between subsequent pulses. If echoes from one
insonation are not sufficiently attenuated before the onset of the next pulse, they
will interfere with direct echoes from the region of interest. In uniformly sampled
Doppler sequences without B-mode interruptions this is usually not a problem, as the
signal interference becomes stationary after a few samples and is removed by the clutter
filter. In a duplex sequence, however, a discontinuity in the clutter signal is introduced
every time an acquisition switches from B-mode to Doppler. Due to frequent B-mode
interruptions, this problem is particularly relevant for sparse sequences.

Another challenge for the sparse duplex methods is that the contribution from
stationary tissue, or clutter, needs to be removed before velocity estimation. Multiple
reflections, particularly in near field layers, produces clutter which reduces image
contrast and has been found to be a dominating source of image degradation in
fundamental ultrasound imaging [19], [20]. If not removed, clutter can severely
compromise velocity measurements. In CDI, remaining clutter might lead to severe
underestimation of velocities. In PW Doppler, the clutter signal may obscure blood
velocities due to spectral leakage, or due to clutter from non-stationary tissue [21].

Clutter rejection is typically performed using highpass FIR-filters or IIR-filters, or
polynomial regression filters for shorter segments. For sparse duplex sequences with
missing samples, applying FIR or IIR-filters is not straightforward as they require
uniform sampling. Polynomial regression filters do not have this limitation and were
the preferred choice for clutter removal in [11] and [14]. The use of regression filters,
however, may introduce frequencies in the output that are not present in the input
signal [22], and thus degrade the quality of spectra used for clinical diagnosis. In
addition, further degradation of the filter response may be expected when applying a
regression filter to non-uniformly sampled data.

The aims of this work are to describe and quantify the problems caused by long
reverberation time and regression filtering of non-uniformly sampled data, and reassess
the feasibility of using sparse Doppler sequences in cardiac and carotid applications.
The outline of the paper is detailed in the following. In section 2.2, methods are
developed for quantifying the impact of reverberation time and clutter filtering on
Doppler velocity estimates when using sparse duplex sequences. These methods are
applied in sections 2.3 and 2.4 to investigate the feasibility of utilizing sparse sequences
for cardiac and carotid PW Doppler and CDI. The results are discussed in section 2.5
and section 2.6 contains concluding remarks.
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2.2 Theory

In this section a brief introduction to reverberation time and polynomial regression
filters are provided. Further, methods for estimation of reverberation times and
quantification of clutter filtering effects on velocity estimation are presented.

2.2.1 Reverberation time

In an ultrasound scan, signal from tissue deeper than cPRT/2 will lead to interference
between subsequent transmissions if not sufficiently attenuated. Here c is the speed
of sound and PRT = 1/PRF is the pulse repetition time of the sequence. Combined
with multiple reflections in the tissue, this may lead to a reverberation time much
longer than the pulse repetition time. Note that whereas the term reverberations is
associated with multiple reflections from the body wall close to the transducer, a signal
may also be reverberant due to reflections from deep tissue structures. The signals
from preceding transmissions are attenuated due to propagation in tissue, but also due
to defocusing, because of a mismatch between the focus depth and the time-of-flight
of the signal. However, such reverberant signals may interfere with velocity estimation
as long as they are above the thermal noise floor.

In the following, a model is presented describing the impact of long reverberation
time on duplex sequences. The received signal C from a single pulse transmission can
be written

C(t) =

M∑
m=1

Cm(t+ τ(m, t)), (2.1)

where Cm is the signal from channel m, t is the time after pulse excitation and τ(m, t)
is the delay on channel m at depth ct/2. Let tR (reverberation time) be the time
from pulse excitation until C drops below the noise floor. If the signal is not allowed
to settle before the next excitation (PRT < tR), echoes from several transmissions
will arrive simultaneously at the transducer. To describe the total signal S, it will
then be necessary to include the contributions from preceding pulses. If it is assumed
that the relative motion between the probe and the reflecting tissue structures can be
neglected, so that C(t) is constant from pulse to pulse, and beamforming is performed
with fixed focus on receive, as used in PW Doppler, the signal S becomes:

S(t) =

∞∑
n=0

C(t+ nPRT), (2.2)

After a number of PRTs, namely N = dtR/PRTe, the clutter signal will drop below
the noise floor. Now, if the insonation starts at k = 0, the received signal after pulse
k can be approximated:

Sk(t) ≈

{∑k
n=0 C(t+ nPRT) + rk(t), k < N∑N−1
n=0 C(t+ nPRT) + rk(t), k ≥ N

(2.3)
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Fast time signal

Slow time samples

PRT

D D D D D D D D
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Discontinuity

Figure 2.1: Illustration of the problem caused by long reverberation time. A received
signal with a late echo is measured with low PRF (top). When transmitting with
high PRF (middle), the late echo influences subsequent measurements, but the signal
becomes stationary after two samples. However, after an interruption due to one or
more B-mode transmissions, a discontinuity occurs in the slow time signal (bottom).

where rk represents thermal noise. As can be seen, the clutter signal becomes
stationary after N consecutive pulses.

Now, if the pulse at k = k1 is left out, corresponding for instance to a B-mode
interruption in a duplex sequence, this introduces a non-stationary response in the
N − 1 slow-time samples k1 + 1 ≤ k < N + k1. This is illustrated in Fig. 2.1 for the
case N = 2. The discontinuity in the Doppler signal after the B-mode interruption
introduces high frequency noise into the slow time signal, which is not removed by the
clutter filter. Note that no actual B-mode firing is necessary for reverberation noise
to occur, the omission of Doppler firings alone is sufficient.

The power of the reverberation noise due to one missing Doppler transmission in
the subsequent signal is obtained by summation of the contributions from n ≥ 1 in
(2.2):

P1(t) =

N−1∑
n=1

|C(t+ nPRT)|2 . (2.4)

For interruptions of more than one sample, the reverberation noise power would be at
least P1(t). Thus, if assuming that no B-mode interruptions are within N samples of
each other, a lower bound for the reverberation noise power in the signal is given by:

P (t) ≥ rB
N−1∑
n=1

|C(t+ nPRT)|2 , (2.5)

where rB is the density of B-mode interruptions (not transmissions). Equality is
achieved if each interruption is exactly one transmission or if N ≤ 2.

Based on the theory presented above, the following method is used for estimation
of reverberation time.
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• Measure the received signal C from a Doppler pulse with low PRF, that is, with
PRT� tR.

• Estimate the reverberation time tR until C drops below the noise floor.

• Calculate N = dtR/PRTe.

The reverberation effects can be eliminated by discarding N−1 samples after every
B-mode interruption before clutter rejection. In a sequence with many interruptions
this may severely reduce the number of available Doppler samples. Therefore,
knowledge of the reverberation time and amplitude should influence the choice of
duplex sequence for a given PRF. In general, the PRF of the Doppler transmission
may differ from that of B-mode transmissions, but some velocity estimation methods
put restrictions on this. For example, the approach suggested in [11] requires the
duration of the B-mode interruptions to be a multiple of the Doppler PRT.

2.2.2 Clutter filtering of sparse sequences

A brief introduction to regression filters is given below. For more background, the
reader is referred to [22] and [23].

Polynomial regression filtering attenuates the signal from slowly moving tissue,
assuming that it may be approximated by a low order polynomial. A least-squares
polynomial fit of the data is found and then subtracted from the signal. Regression
filtering may be implemented by constructing an orthogonal basis of polynomials
with increasing polynomial order, finding the projections of the signal onto the p+ 1
polynomials with lowest order, and subtracting these from the signal. The quantity p
is the order of the filter.

Polynomial regression filters are not time-invariant [22]. Because of this, defining
a frequency response is not straightforward. For real valued signals, an average over
all possible phases is necessary to achieve a well-defined frequency response. However,
if the input is a complex harmonic signal xω, the amplitude of the filtered signal yω is
unaffected by a phase shift in xω, as this is equivalent to multiplication with a constant
phase factor. It is then possible to define the frequency response P by [22]:

xω(k) = eikw; k = 1, 2, ...,K (2.6)

yω(k) =

K∑
n=1

a(k, n)xω(n) (2.7)

P (ω) =
1

K

K∑
k=1

|yω(k)|2 (2.8)

where A = {a(k, n)} is the filter matrix.
Regression filters perform better than FIR or IIR filters for short Doppler segments,

as they can produce filter responses with narrower transition bands. For longer signals,
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FIR and IIR filters are normally preferred as they are time-invariant. For sparse
signals, however, filtering using FIR and IIR filters is not straightforward due to non-
uniform sampling. Because a least squares polynomial fit can be estimated regardless
of sampling pattern, polynomial regression filters have been preferred in these cases.

Regression filters are applied to sparse data by first utilizing the Gram-Schmitt
orthogonalization algorithm to create a modified set of Legendre polynomials Pn,
using the inner product:

〈U, V 〉 =
∑
s∈I

U(s)V (s)′ (2.9)

where I denotes the indices of Doppler samples. Filtering is then implemented
by projecting the signal onto the polynomials (using the same inner product) and
subtracting the lower order components. Using this method, the estimated clutter
signal is essentially a least squares polynomial fit of the measured Doppler data, using
Pn, n = 0...p as regressors.

The following frequency analysis is proposed for quantifying the impact of clutter
filters on a velocity estimation scheme, where the scheme to be evaluated includes
sampling sequence, clutter filtering, and algorithms for spectral and mean velocity
estimation.

• Construct single frequency signals xω(k) = eikω, with −π ≤ ω < π.

• Sample according to chosen sampling sequence. To account for reverberation
effects, discard N − 1 samples after every B-mode interruption.

• Perform clutter filtering (2.7) and calculate the amplitude response (2.8).

• Calculate the mean frequency estimate ω̂ and the frequency bias ω̂−ω from each
yω.

• Calculate the frequency spectrum from each yω.

This form of frequency analysis was used in [22], and is here expanded to include
sparse signals.

2.3 Materials and methods

The methods described in 2.2.1 and 2.2.2 were utilized to evaluate the use of sparse
sequences in two clinical applications, cardiac PW Doppler and CDI/PW Doppler in
the carotid artery using plane waves [24], [25], [26]. These are both applications where
pathology typically requires measurement of high velocities and therefore a high PRF,
e.g. in the presence of stenosis, where blood velocities can be 4 m/s or more [5], [27].
As simultaneous high quality B-mode images are also desirable for navigation and
anatomical assessment, some sort of interleaving of B-mode and Doppler firings is
neccesary.

To support the theoretical analysis, in vivo Doppler data were acquired for
experimental validation. The presence and impact of reverberations are shown both

35



2.3. Materials and methods

in the cardiac and carotid applications, and it is shown that the cardiac application
is very susceptible to reverberation problems due to the lower transmit frequency.
Clutter filtering problems are therefore exemplified using data acquired from the
carotid artery, for three different types of sparse sequences. Finally, a sequence
was implemented on a research system to illustrate that sparse Doppler sequences
containing B-mode interruptions may be used for CDI with only minor impact from
reverberations and clutter filtering effects, as long as these problems are considered
during sequence design. The sequence was evaluated both in vitro and in vivo.

In the following, the sequence setup and the post-processing necessary to perform
the analysis and experimental validation are presented.

2.3.1 Data acquisition and processing

All in vivo and in vitro data were acquired using a Sonix MDP research system
(Ultrasonix, Richmond, BC, Canada), with a Sonix DAQ for channel data acquisition.
Sequence programming was performed using the development toolkit Texo which
allows for the use of custom sequences. For B-mode, focused line acquisition was
utilized to ensure high quality tissue images for all applications. For velocity
estimation in vascular imaging, single plane waves were utilized on transmit and
parallel beamforming on receive, achieving the highest Doppler PRF and also allowing
simultaneous mean velocity estimation and retrospective PW Doppler at every image
point in the field of view. For the cardiac PW Doppler example, fixed focus was
utilized on both transmit and receive.

Channel data were sampled with frequency 40 MHz. IQ demodulation, receive
filtering and beamforming were then performed offline. For receive beamforming,
dynamic focus was used for B-mode images and CDI, whereas PW Doppler and signals
acquired with low PRF for estimation of reverberation effects were beamformed with
fixed focus in the sample volume. No apodization was used on transmit or receive.
Using the notation from (2.1), the delays for beam B at depth ct/2 are given by

τB(m, t) =
√

(p(m−B)/c)2 + t2 − t, (2.10)

where c = 1540 m/s is the speed of sound, p is the pitch of the transducer, and m is the
channel index. The setup parameters are given in Table 2.1. All data were acquired
from healthy volunteers.

2.3.2 Reverberation quantification

The method for reverberation quantification described in 2.2.1 required a Doppler
transmission with low PRF to estimate the received signal C in (2.1). In addition, a
Doppler sequence with missing transmissions was acquired to illustrate the resulting
reverberation noise in the slow time signal. A three-part sequence was implemented
on the scanner to ensure that the data were acquired from the same spatial region:
Focused B-mode transmissions for navigation, followed by a Doppler transmission with
PRF 1 kHz, and finally a Doppler sequence of 400 transmissions, alternating between a
sequence with every 5th transmission missing, and Doppler without interruptions every
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Table 2.1: In vivo imaging parameters

Parameter B-mode Doppler Cardiac

Probe L9-4/38 L9-4/38 SA4-2/24

Probe type Linear Linear Phased

Elements used on transmit 128 128 64

Pitch [µm] 304 304 254

TxFrequency f0 [MHz] 6.7 5 2

PRF [kHz] 12 0.6-12 1-10

Cycles @ f0 1.5 2.5 5

Receive F# 1.4 2.3 3.7

Transmit F# 2.2 ∞ 3.7

100 transmissions. Every fifth sample was discarded from the uninterrupted Doppler
data in post-processing, to ensure that the only difference between the packets was
the missing transmissions. Clutter filtering was then performed on the sparse data as
described in 2.2.2, using a polynomial filter with observation window 100 and order
15. For simplicity, no B-mode pulses were fired during the interruptions, as the lack
of Doppler transmissions alone causes reverberation noise (as explained in 2.2.1).

2.3.3 Quantification of clutter filtering effects

The effect of clutter filtering on sparsely sampled Doppler data was quantified for
the power spectral estimation scheme proposed in [11]. For PW Doppler, first the
autocorrelation function R(m) was estimated from the slow time signal y(k):

R̂(m) =
1

Nm

∑
k∈Im

y(k −m)∗y(k). (2.11)

The sum was taken over the Nm indices Im such that both k−m and k correspond to
Doppler transmissions for k ∈ Im. The power spectrum estimate was then calculated
as the Fourier transform of R̂(m):

Ŝ(f) =

N−1∑
m=−N

w(m)R̂(m) e−2πiftm , (2.12)

where w is a window function and tm = m/PRF. For CDI, the normalized mean
frequency was estimated by:

fd = ∠R̂(1)/2π. (2.13)

The frequency spectrum and the mean frequency was converted to velocities using the
relation:
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Table 2.2: Sequence setup

Tag Description Sequence Period % B-mode

A Short period v v v v b v v v v b .. 5 20

B Packet v x 39 b x 11 .. 50 22

C Random v v v b v b b v v v .. 256 23

v=velocity sample, b = B-mode sample

v =
c PRF

2f0
fd, (2.14)

where c is the speed of sound, f0 is the center frequency and PRF is the pulse repetition
frequency of the measurement sequence.

When choosing sequences for the analysis of clutter filtering effects, sequences
containing approximately 20% B-mode samples were chosen to maintain a decent B-
mode frame rate when using focused beams (approximately 19 frames per second
using a PRF of 12 kHz and 128 transmissions per B-mode frame). The sequences
are described in Table 2.2. Sequence A has short period, and is comparable to the
sequences used in [11]. Sequence B is a packet acquisition with short and frequent B-
mode interruptions, an attempt at a sequence without long interruptions and without
losing too many Doppler samples due to transitions between the different modes.
Sequence C is a random acquisition with period 256, comparable to the sequence used
in [18].

In order to compare the analysis to in vivo results, a slow time signal was extracted
from a recording in the carotid artery, acquired using an uninterrupted plane wave
Doppler sequence with a PRF of 4 kHz. The data were synthetically undersampled in
post processing to emulate the sequences A-C.

2.3.4 In vivo and in vitro color Doppler

As will be shown in the results section, the use of sparse sequences might not be
suited for cardiac applications due to reverberation problems, and might also result in
significant artifacts in PW Doppler spectra due to clutter filtering problems. However,
it is also shown that it is possible to use such sequences for CDI in the carotid artery
with only minor impact from these problems. Therefore, two sequences based on
sequence B were implemented on the scanner for in vitro and in vivo validation. For in
vivo validation, each packet consisted of 39 single plane wave transmissions with PRF 6
kHz used for Doppler followed by 22 focused B-mode transmissions with PRF 12 kHz.
One Doppler sample was discarded after each interruption to avoid reverberation noise
from B-mode transmissions. Clutter filtering was performed using a regression filter
of order 10 with observation window spanning four packets. For comparison, the same
data were filtered using a regression filter of order 4 spanning a single packet, with no
B-mode interruptions. To enable quantification of low Doppler shifts, filter orders were
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chosen to be as low as possible without passing the signal from moving tissue. Color
Doppler images were then produced using the mean velocity estimates in (2.13) and
(2.14). To make the visualization less dependent on segmentation threshold values,
segmentation was only performed on B-mode amplitude. The chosen parameters
resulted in about 30 independent velocity estimates per second.

For in vitro validation, an uninterrupted Doppler sequence with a PRF of 6 kHz
was used, using single plane waves transmitted from a linear probe. The uninterrupted
Doppler data were used to provide a ground truth velocity measurement, using 200
samples, before undersampling the data synthetically and applying the two filters used
for the in vivo recording.

2.4 Results

2.4.1 In vivo reverberation quantification

Figure 2.2 shows how the use of sparse sequences in cardiac PW Doppler introduces
reverberation noise into the slow time signal. Using a Doppler PRF of 10 kHz, and
with every fifth Doppler pulse missing, the power of the reverberation noise was 29-30
dB, as shown in panel C. The reverberation time of almost 500 s seen in panel B
means that reverberant noise will influence the received signal from the next four
transmissions.

The power of the noise in panel C was compared to the theoretical noise power
estimate in 2.2.1. By inserting the received signal of panel B into (2.5) with N = 4
and rB = 0.2 (one interruption per five samples), the reverberation noise power is
estimated to be 28 dB.

For comparison, a corresponding measurement of the reverberation time when
using a linear probe and plane waves with transmit frequency 5 MHz is shown in
Figure 2.3. The sample volume was positioned at depth 13 mm. In this case,
the reverberation time was approximately 100 s, meaning that for a PRF between
10 kHz and 20 kHz it would be sufficient to discard one sample after every B-mode
interruption.

2.4.2 Impact of clutter filtering on the velocity spectrum

The left column of Fig. 2.4 shows the resulting frequency responses when a polynomial
regression clutter filter is applied to data sampled with the sparse sequences A-C in
Table 2.2. One sample was discarded after every B-mode interruption before filtering.
As is observed, clutter filtering results in different artifacts for the different sparse
sequences. When using sequence A, where the sampling pattern is periodic with short
period (5 samples), the filtering produces copies of the signal distributed throughout
the velocity spectrum. For the packet-like acquisition B, the effect of filtering is
an increase in sidelobe level. Filtering data acquired using the random sequence C
distributes energy throughout the spectrum, producing an artificial noise floor which
in this case reduces the dynamic range to about 25 dB.
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Figure 2.2: Illustration of noise due to reverberations in a cardiac measurement.
(A) B-mode image showing the sample volume and the corresponding beam. (B) The
received signal. Arrows indicate parts of the signal that will contribute to the slow
time signal when sampling with PRF 10 kHz. (C) Slow time signal, with reverberation
noise occuring after each interruption in the Doppler signal.
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Figure 2.3: Amplitude of the signal C(t) from a plane wave transmission using a
linear probe, at depth 13 mm in the carotid artery, illustrated in the upper panel. The
transmit frequency is 5 MHz. The data are normalized so that the thermal noise level
is at 0 dB.

The right column of Fig. 2.4 shows how these artifacts influence PW Doppler
spectra from the carotid artery. When using sequence A, the aliasing-like artifacts
severily compromises the quality of the spectrum. For sequences B and C the clutter
filtering results in increased sidelobes and noise floor, respectively, but the contour of
the spectrum is still resolvable.

2.4.3 Impact of clutter filtering on the mean frequency
estimate

Fig. 2.5 shows the amplitude responses and bias in the mean frequency estimator as
function of input frequency when clutter filtering data sampled with the sequences A-
C. One sample was discarded after every B-mode interruption before filtering. As
shown, the amplitude responses are not significantly affected by sparse sampling.
When using sequence A, large bias (up to 17% of the Nyquist limit) is observed in
bands around frequencies corresponding to the repetition frequency of the sampling
pattern. For sequences B and C, however, the bias is smaller than 1.3 % of the Nyquist
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Figure 2.4: Filter responses for sequences A-C (Table 2.2) are shown in the left
panels. The packet size was 100 samples and the polynomial filter had order 15. A
hanning window was used as window function. Corresponding spectrograms when the
sampling schemes are applied to a fully sampled in vivo data set are shown in the
right panels.

limit for all frequencies.

2.4.4 Experimental validation of Color Doppler Imaging se-
quence

Based on the small velocity bias found for sequence B, it was chosen for the
implementation of a CDI sequence on the research system. Two clutter filters were
compared, a regression filter with observation window spanning four packets, and
a conventional regression filter with observation window spanning a single packet,
without B-mode interruptions. The two filters have equal stopband (-70 dB), but the
filter spanning four packets has narrower transition band, as shown in Fig. 2.6.

The results from the in vitro recording are shown in Fig. 2.6. A Doppler acquisition
without interruptions and a 4th order Butterworth clutter filter were used to provide
ground truth velocity estimates. The data were then undersampled using sequence B,
and one sample was discarded after every B-mode interruption before applying the two
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Figure 2.5: The amplitude response (left) and frequency bias of the autocorrelation
estimate (right) when using sequences A-C (Table 2.2) with an observation window
of 200 samples and polynomial order 10 for the regression filter. For the amplitude
responses in the left column the attenuation was less than 2 dB for all frequencies
above 0.03. Note that the frequency bias when using sequence A is presented with a
different scale on the y-axis.

regression filters. The amplitude responses of the filters used are shown in the lower left
panel. As the clutter-to-blood signal ratio was lower in the phantom than in vivo, the
filter used for ground truth estimates had lower cutoff frequency than the evaluated
filters, in order to minimize signal loss from low velocity flow. As is seen, filtering
using single packets in this case causes overestimation of flow velocities, as lower
frequency components in the signal are attenuated by the filter. The overestimation
becomes more severe for the lower velocities along the walls. Increasing the length
of the observation window by clutter filtering across four packets largely removes the
overestimation except for the lowest velocities.

In vivo color Doppler images using the same filters are shown in Fig. 2.7. In the
left panels the sparse regression filter was applied to an observation window of four
packets, whereas in the right panels, using the same observation window, the four
packets were filtered separately before averaging the autocorrelation estimates. To
make the visualization less dependent on threshold parameters, segmentation was only
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Figure 2.6: Results from in vitro color Doppler imaging. The three CDI images
are produced using the same observation window of length 200 samples, but filtered
using three different clutter filters. The IIR filter is applied to fully sampled data and
used as ground truth velocities. The data were then synthetically undersampled using
sequence B and filtered using a conventional polynomial regression filter with packet
size 50, and a regression filter with packet size 200 containing B-mode interruptions.
When using the conventional filter, autocorrelation estimates were averaged over the
4 packets. The amplitude responses of the filters and scatter plots showing all velocity
measurements in the ROI are shown in the lower panels.

performed on B-mode amplitude, so that high frequency noise appears in the dropout
regions where the Doppler results would normally be removed during segmentation.
Visual inspection shows that clutter filtering across several packets reduces the amount
of dropouts and thus increases the measureable velocity span.

2.5 Discussion

This work has investigated the feasibility of using sparse sequences for Doppler
imaging. Sparse imaging techniques are of interest in ultrasound imaging, as they
have the potential to provide separate and interleaved B-mode and Doppler without
reduction in velocity range. However, in this work it was shown that long reverberation
times can introduce substantial signal dependent noise in acquisitions with frequent
B-mode interruptions. It was also shown that clutter rejection on sparsely sampled
data introduces artifacts in the velocity spectra, and may also lead to significant bias
in the mean velocity estimates. Methods have been proposed for quantification of
these effects. These methods have been used to evaluate the feasibility of using sparse
sequences for PW Doppler and CDI in cardiac and vascular imaging.
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Figure 2.7: In vivo mean velocity estimates of flow with low axial velocity, based
on sequence B. The two images on the left show the results when clutter filtering is
performed with observation windows spanning four packets. The images on the right
show the corresponding results when packets in the same observation windows are
filtered separately and the autocorrelation estimate is averaged over the four packets.
The images are only segmented using B-mode amplitude, so that high frequency noise
appears where the signal falls below the noise floor.

For the investigated examples, the analysis showed that reverberation effects should
be considered. In the cardiac example shown in Fig. 2.2, unless 2-4 Doppler samples are
discarded after every B-mode interruption, reverberant echoes will produce significant
noise when using PRF values relevant for clinical practice. Additionally, since the
distribution of B-mode interruptions in the sequence is not random, the noise appears
structured and may be interpreted as a false flow signal. As it will be necessary to
discard several samples after every interruption, sequences with frequent and short
interruptions will be less efficient and have lower SNR in the Doppler signal. This
puts strong limitations on the use of sparse sequences for cardiac applications. When
using a 5 MHz linear probe for imaging of the carotid artery, the problem is less severe
due to the higher center frequency, but it is still necessary to discard one sample
after every interruption for PRF values of about 10 kHz or higher. Of the sequences
types evaluated in this work, packet-like sequences like sequence B is least affected
by long reverberation times. Due to the frequent B-mode interruptions sequences like
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A and C will be less robust against transient effects in general and especially with
reverberation times spanning several PRTs. Note that long reverberation time is a
potential problem not just in duplex imaging, but in all applications using interleaving.
For example in beam interleaved Doppler sequences, the first samples in each packet
should be discarded to avoid reverberation noise.

For PW Doppler, the main motivation for the use of sparse sequences is to
avoid gaps in the spectral display during B-mode interruptions and maintain the
maximal PRF for high velocity estimation. Another advantage is increased flexibility
in choosing observation windows for velocity estimation, without compromising the
frame rate of the B-mode images. A long observation window can be utilized to
achieve a sharper filter response for the removal of stationary tissue. It also improves
the resolution of the velocity spectrum estimates, and allows for better quantification
of low velocities. In addition, overlapping windows may be used to increase the line
density in the spectral display, or Welch’s method may be applied for improved velocity
spectrum estimation.

However, due to the non-uniform sampling pattern the use of sparse sequences also
requires polynomial regression filters for clutter removal. The results presented in Fig.
2.4 show that these filters applied to sparsely sampled data may introduce artifacts
in the velocity spectrum. When using sequence A, strong aliasing artifacts appeared
that made it difficult to delineate the contour of the spectrum. The use of sequence B
resulted in an increased sidelobe level that may lead to an apparent broadening of the
spectrum and overestimation of maximal velocities. When using the random sequence
C, an increased noise floor was observed. Assuming sufficiently attenuated clutter, the
amplitude of the noise due to clutter filtering scales with blood signal strength, and
therefore reduces the dynamic range of the blood signal. Even though the observed
artifacts are specific to the sequences used, the severity of the artifacts shows that this
effect should be accounted for before applying clutter filters to non-uniformly sampled
data.

Another notable disadvantage in using sparse sequences for spectral velocity
estimation is related to the use of regression filters in general. When using FIR
or IIR filters before velocity spectrum estimation, a sufficient criterion for clutter
filtering is that the sidelobes of the clutter are sufficiently attenuated. Regression
filters, however, are not time-invariant, and therefore stronger stopband attenuation
is required as residual clutter may be distributed throughout the velocity spectrum.

For the CDI case, however, the results in Fig. 2.5 show that the use of sparse
sequences for mean velocity estimation is possible without significant reverberation
effects and without notable bias due to clutter filtering. Whereas the strong biases
observed when using sequence A would not be acceptable for most applications, the
biases when using sequence B and C are both below 1.3% of Nyquist for all input
frequencies. Of these two sequences, sequence B provides the best SNR because fewer
samples need to be discarded due to reverberation effects.

The main difference between conventional CDI and a sparse sequence implementa-
tion using sequence B is that in the latter case, the observation window of the clutter
filter spans several packets rather than just one packet. The potential advantage of
this approach is shown in the Color Doppler results in section 2.4.4. The sharper filter

46



Chapter 2. Reverberations and clutter filtering effects using sparse sequences

response achieved by clutter filtering across several consecutive packets both reduces
overestimation due to clutter filtering (Fig. 2.6), and reduces the amount of signal
dropouts (Fig. 2.7) given the same required stopband attenuation. This gave a fairly
good representation of the blood flow even for the diastolic flow in the in vivo example,
where the axial blood velocities were as low as 1-4 % of the Nyquist velocity.

The example sequences in this paper used about 20% B-mode transmissions,
so that a decent frame rate could be achieved using conventional focused B-mode
transmissions. As stated in the introduction, techniques have been proposed for
reducing the number of B-mode firings. Reducing the number of B-mode interruptions
will reduce the number of samples that need to be discarded due to long reverberation
time, as argued in 2.2.1, and should also reduce the severity of the regression filter
artifacts shown in Fig. 2.4. However, these effects will still be significant and should
be considered when using sparse sequences for velocity estimation.

2.6 Conclusion

It has been shown that long reverberation times may introduce significant signal
dependent noise when using sparse sequences for velocity estimation, with imaging
parameters relevant for clinical use. The problem is particularly severe for cardiac
applications where a reverberation time of 500 s was observed. Additionally, clutter
filtering of sparsely sampled data produces artifacts in the velocity spectra and may
introduce significant bias in mean velocity estimates. The results show that these
challenges should be considered when designing and utilizing sparse duplex sequences,
and general methods have been proposed for quantification of these effects. However, it
was possible to design a sequence where these effects had only marginal impact on mean
velocity estimation, and it was shown that a Color Doppler Imaging scheme based on
this sequence could improve conventional packet based acquisition by reducing bias in
the velocity estimate and increasing the measurable velocity span.
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An important source of error in velocity measurements from conventional
pulsed wave (PW) Doppler is the angle used for velocity calibration. Because
there are great uncertainties and interobserver variability in the methods used
for Doppler angle correction in the clinic today, it is desirable to develop new
and more robust methods.
In this work, we have investigated how a previously presented method, 2-D
tracking Doppler, depends on the tracking angle. A signal model was further
developed to include tracking along any angle, providing velocity spectra
which showed good agreement with both experimental data and simulations.
The full-width at half-maximum (FWHM) bandwidth and the peak value of
predicted power spectra were calculated for varying tracking angles. It was
shown that the spectra have lowest bandwidth and maximum power when
the tracking angle is equal to the beam-to-flow angle. This may facilitate new
techniques for velocity calibration, e.g., by manually adjusting the tracking
angle, while observing the effect on the spectral display. An in vitro study
was performed in which the Doppler angles were predicted by the minimum
FWHM and the maximum power of the 2-D tracking Doppler spectra for 3
different flow angles. The estimated Doppler angles had an overall error of
0.24◦ ± 0.75◦ when using the minimum FWHM. With an in vivo example,
it was demonstrated that the 2-D tracking Doppler method is suited for
measurements in a patient with carotid stenosis.

3.1 Introduction

Blood velocity measurements are essential in cardiovascular diagnostics. Increased
flow velocities or abnormal flow patterns can indicate disease and a possible need for
surgery. Ultrasound imaging is the primary instrument for cardiovascular diagnostics
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as the measurements can be done noninvasively and in real-time. High velocity flow
is found, for instance, at stenotic regions. The degree of stenosis is normally assessed
by using pulsed wave (PW) Doppler to estimate the maximum velocities. With
PW Doppler the complete spectrum of velocities are estimated; typically displayed
as a 2-D sonogram with velocity along the y-axis and time along the x-axis. PW
Doppler analysis of the Doppler signal is usually performed using the fast Fourier
transform (FFT) on short data segments in time, acquired from a single sample point
in space. For high velocities and large beam-to-flow angles, the blood will pass rapidly
through the sample volume, resulting in a short observation time and a broadening
of the estimated velocity spectrum. The loss in frequency resolution may give severe
overestimation of blood velocities and a risk of misdiagnosis.

Approaches for increasing the transit time include methods that utilize the full 2-D
Fourier transform of the signal in the fast- and slow-time directions. Reduced spectral
broadening has been shown by several authors [1–4], but only for flow in the axial
direction. In [5] we presented a method called 2-D tracking Doppler, which tracks
the scatterers along the direction of the flow. The method is based on the principles
described in [4], but is adapted for situations with any beam-to-flow angle. By using
plane transmit waves and parallel receive beams, it is possible to have instantaneous
acquisition of multiple image lines in a 2-D region. By tracking the scatterers along the
direction of the flow within this region, the transit time is increased, giving a higher
spectral velocity resolution. The method was in [5] tested both in vitro and in vivo
on a carotid artery of a healthy volunteer. The results showed that the 2-D tracking
Doppler method could be used to increase the velocity resolution in PW Doppler,
especially for large beam-to-flow angles.

In addition to a limited transit time, the greatest source of error in PW Doppler
velocity estimation is the angle used for calibrating the spectra. Conventional Doppler
techniques can only measure the axial component of blood flow. The blood velocity
is estimated by multiplying the measured velocity with an angle correction factor of
1/ cos θ, where θ is the estimated beam-to-flow angle. As the angle correction factor
tends to infinity as θ approaches 90◦, the velocity estimates are very sensitive to
angle estimation errors for large beam-to-flow angles. Therefore, clinical guidelines [6]
discourage the use of Doppler angles above 60◦.

Several techniques have been suggested to overcome the angle dependence in
Doppler ultrasound. Cross-beam vector Doppler has been one of the main approaches
to 2-D flow imaging since the onset of the idea in the 1970s. Using triangulation, the 1-
D velocity estimates from two different angles of insonation can be used to reconstruct
a 2-D velocity vector [7]. An alternative dual-beam method has been introduced by
Tortoli and colleagues [8], [9], characterized by the different role played by each beam.
One of the beams acts as reference, being devoted to estimate only the flow direction.
Through the inspection of the spectrum from the reference beam, a 90◦ beam-to-flow
angle is sought. Such spectra, from transverse flow, are expected to be centered on
the zero frequency, and even small deviations from the desired 90◦ orientation cause
noticeable losses of spectral symmetry. However, local secondary flow oscillations,
which are often found at atherosclerotic regions [10], may restrict the applicability of
the method.
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Another approach has been described by J. Jensen and colleagues [11], [12], in
which both the velocity magnitude and angle is determined using a crosscorrelation
technique. The angle is found from beamforming directional signals in a number of
directions and then selecting the angle with the highest normalized correlation. This
method has some similarities with the presented method in that minimum spectral
bandwidth corresponds to the maximum correlation. However, it only estimates the
mean velocity, whereas the 2-D tracking Doppler method produces a full Doppler
spectrum display. Mean velocity estimates may have a bias caused by clutter filtering
or spatial averaging and they do not provide the peak velocity, as used in e.g., stenosis
classification.

Techniques for Doppler angle estimation based on the transit time spectrum
broadening effect has been presented by several authors [13–18]. Because the Doppler
bandwidth is inversely proportional to the transit time of a scatterer crossing the
ultrasound beam, the Doppler angle can be estimated from the resulting Doppler
bandwidth. Many promising results have been shown in vitro, but the methods have
not yet reached clinical practice.

The 2-D tracking Doppler method generates velocity spectra with increased
velocity resolution, especially at large beam-to-flow angles. In this work, it is
demonstrated that the spectra broaden when the incorrect tracking angle is chosen,
compared with spectra with the correct tracking angle. The angle dependency of the
2-D tracking Doppler method will be investigated using simulations and in vitro and
in vivo experiments. Two methods for velocity calibration are proposed; using the
Doppler angle given by the minimum spectral broadening or the maximum power. In
Section 3.2.1, a brief description of the 2-D tracking Doppler algorithm is given. In
Section 3.2.2, the signal model presented in [5] is extended to include incorrect selection
of the tracking angle. The experimental work is described in Section 3.3. 2-D tracking
Doppler spectra from varying Doppler angles will be presented in Section 3.4, and
compared with a conventional PW Doppler method. In Section 3.5, the results are
discussed.

3.2 Theory

Two spectral Doppler methods have been applied in this work; the 2-D tracking
Doppler method and the more conventional Welchs method. The 2-D tracking Doppler
algorithm was described in [5], but will also be summarized in Section 3.2.1.

A signal model was presented in [5] where statistically expected 2-D tracking
Doppler spectra were calculated for tracking angles equal to the beam-to-flow angles.
In Section 3.2.2, this model will be extended to include tracking along any angle, which
allows for investigation of the influence of incorrect tracking angle on the 2-D tracking
Doppler estimates.
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3.2.1 The 2-D Tracking Doppler Algorithm

The 2-D tracking Doppler algorithm requires simultaneous acquisition of Doppler
signals from a 2-D spatial region. The complex pre-envelope of the received signal
is denoted by u(x, z, k), and the in-phase and quadrature demodulated (IQ) signal is
denoted by uIQ(x, z, k), where x and z are the spatial coordinates in the azimuth and
axial direction, respectively, and k is the slow time index. Post-processing of the data
is performed in two steps:

1. The beamformed signal is resampled along a tracking line, using 2-D spline
interpolation.

2. The resampled data are processed using the velocity matched spectrum
algorithm, first presented in [4] and later applied in [5].

For a chosen tracking angle, θ, the resampled signal can be written as

uθ(r, k) = u(r sin θ + x0, r cos θ + z0, k) , (3.1)

uIQ,θ(r, k) = uIQ(r sin θ + x0, r cos θ + z0, k) , (3.2)

where r is the position along the line through the sample volume point [x0, z0]. The
resampled signal as a function of slow-time was described in [5] as an M-mode matrix.
M-mode usually refers to data from one scan line as a function of time (slow time),
but is in this context extended to include any straight line in space and slow time.

The signal from scatterers moving with constant velocity will form straight lines in
the M-mode matrix, where the slope of each line corresponds to a particular velocity.
A velocity spectrum can then be generated by summing the signal along lines with
varying slopes.

p̂(v) =

∣∣∣∣∣∑
k

w(k)uθ(r0 + kvT, k0 + k)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
k

w(k)uIQ,θ(r0 + kvT, k0 + k)eiωdk∆t

∣∣∣∣∣
2

, (3.3)

∆t =
2vT

c
cos θ , (3.4)

where v is a velocity, r0 and k0 are the center positions in range and time, ωd is the
angular demodulation frequency, T is the pulse repetition time, and w is a smooth
window function which is zero outside the range k ∈ [−N/2, N/2− 1], where N is the
window length in number of samples. Because uIQ is complex demodulated, a phase
correction factor must be included to account for axial motion.
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Using the same formulation as in (3.3), an expression for a conventional, Fourier-
based estimate of the power spectrum in a point r0 can be written as

p̂conv(v) =

∣∣∣∣∣∑
k

w(k)uθ(r0, k0 + k)eiω0k∆t

∣∣∣∣∣
2

=

∣∣∣∣∣∑
k

w(k)uIQ,θ(r0, k0 + k)eiω0k∆t

∣∣∣∣∣
2

, (3.5)

where ω0 is the center frequency of the received signal, which may differ slightly from
the demodulation frequency, ωd.

Note that p̂(v) and p̂conv(v) also are functions of r0 and k. However, these variables
were omitted for clarity.

3.2.2 Signal Model

In [5], the statistical expectation values of the power spectra were calculated for
tracking angles equal to the beam-to-flow angles. We will now extend the model
to include tracking along any angle, by introducing a 2-D point spread function. All
motion is assumed to be in the imaging plane. The calculated statistical expectation
value of the power spectra will henceforth be referred to as the expected velocity
spectra.

The complex pre-envelope of the received signal, s(x, z, k) was in [5] sampled along
an oblique line to produce a signal sθ(r, k). By adding noise with power N0, a clutter
filter h(k) and a bandpass filter b(r) a signal corresponding to uθ(r, k) was constructed.
The expected power spectrum for the 2-D tracking Doppler method was shown to be

〈p̂(v)〉 =
∑
k,n

w2(k)Rsθ (kvT, k − n)h2(n)

+
∑
k

w2(k)N0b2(kvT )h2(k) , (3.6)

where 〈〉 is the expectation value operator, the subscript 2 is a shorthand notation for
the autocorrelator operator, and Rsθ is the autocorrelation of sθ.

In the subsequent formulations in [5], θ = θ0 was assumed, where the beam-to-
tracking angle is denoted θ and the beam-to-flow angle θ0. However, by introducing
the 2-D point spread function, f(~r), the signal can be evaluated along any tracking
angle.

If the blood velocity field is uniform with velocity v0 at an angle θ0 and the velocity
component in the elevation direction is zero, the autocorrelation of the signal can be
written in terms of the autocorrelation of the point spread function:

Rsθ (ρ,m;~v0) = f2(ρ~eθ −m~v0T ) , (3.7)
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~v0 = v0 · ~eθ0 , (3.8)

where ~eθ and ~eθ0 are unit vectors in the θ and θ0 directions respectively. Inserting
(3.7) into (3.6), we obtain the expected power spectrum for the 2-D tracking Doppler
method, given the true velocity ~v0:

〈p̂θ(v | ~v0)〉 =
∑
k,n

w2(k)f2(k~vT − (k − n)~v0T )h2(n)

+
∑
k

w2(k)N0b2(kvT )h2(k) , (3.9)

~v = v · ~eθ (3.10)

The geometry of a situation in which θ 6= θ0 is shown in Fig. 3.1. The velocity
is v0 and the beam-to-flow angle is θ0. By choosing a different tracking angle, θ,
the point spread function is evaluated at a distance ~r = k~vT − k ~v0T from its center.
Assuming an ideal plane wave, where the phase fronts extend in the lateral direction,
the estimated velocity spectrum in direction θ will have maximum power when

v cos θ = v0 cos θ0 = vz . (3.11)

In [5], an expression for the expected power for the conventional PW Doppler
spectra was found by using the same signal model, but only considering samples
originating from a fixed position in space:

〈p̂conv(v)〉 =
∑
k,n

w2(k)Rsθ (0, k − n)h2(n)e−iω0k∆t

+
∑
k

w2(k)N0b2(0)h2(k)e−iω0k∆t . (3.12)

Inserting (3.7) into (3.12) we get the expected power spectrum for the conventional
PW Doppler method, given the true velocity ~v0:

〈p̂conv(v | ~v0)〉 =
∑
k,n

w2(k)f2(−(k − n)~v0T )h2(n)e−iω0k∆t

+
∑
k

w2(k)N0b2(0)h2(k)e−iω0k∆t . (3.13)

3.3 Methods

Velocity spectra were generated by applying the 2-D tracking Doppler algorithm to
data from simulations and in vitro and in vivo recordings. Spectra from one or more
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Figure 3.1: Geometric considerations and explanation of the behavior of the 2-
D tracking Doppler method when the angle of the tracking trajectory is chosen
incorrectly. The diagram shows a point spread function moving from one location
to another in the imaging plane. The beam-to-flow angle is θ0 and the chosen angle
for the tracking trajectory is θ. During k pulse repetition periods, the scatterers move
a distance kv0T from point 1 to point 2. When evaluating the signal along a line
with angle θ, the maximum correlation is found at point 3. Because of the widened
correlation area in the side lobes of the point spread function, the velocity spectrum
will broaden. Underestimations of the traveling distance, and hence underestimations
of the velocity, will be the result for this scenario. The opposite is true for θ > θ0.

tracking angles were generated from a region of interest (ROI). The ROI was chosen as
large as possible while ensuring that the flow inside was moving approximately along
straight lines with uniform velocities. The tracking length, L, was limited by the size of
the ROI for high velocities. For low velocities, L was limited by the temporal window
length, Nw, and given by the formula L = v ·Nw · PRT , where v is the velocity and
PRT is the pulse repetition time.

For comparison, velocity spectra were also generated by a conventional PW Doppler
method, using (3.13) for the signal model and (3.5) for the in vitro and in vivo
experiments. The same data were used for both spectral estimation techniques, using
only a single sample from the tracking line for the conventional method. The same
temporal window length was used in the two approaches, and no spatial averaging was
performed following any of the two spectral estimation techniques.

3.3.1 Field II Simulations

To validate the new signal model derived in 3.2.2, comparisons were done with the
widely used ultrasound simulation program Field II [19], which utilizes an approximate
form of the time-domain impulse response function. The blood flow was modeled as a
collection of random point scatterers in a simple cylindrical volume with a constant,
uniform velocity of 1 m/s at a beam-to-flow angle of 50◦. The acquisition and post-
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processing parameters were the same as listed in Table 3.1, but with a PRF of 6 kHz.
2-D tracking Doppler spectra were generated by extracting signals from tracking

trajectories angled at 20◦, 50◦ and 70◦ in the cylindrical phantom, and utilizing (3.3)
and (3.5). The resulting spectra were qualitatively compared with spectra obtained
using (3.9) and (3.13).

3.3.2 Application of the Signal Model

2-D tracking Doppler spectra were generated for different combinations of the beam-
to-flow angle, θ0, and the tracking angle, θ, using the signal model (3.9) and the
parameters given in Table 3.1. The spectra were plotted and qualitatively compared
with spectra generated from in vitro recordings.

To investigate how the spectral width and the maximum power in the 2-D tracking
Doppler spectra vary with tracking angle, the signal model (3.9) was used to calculate
the expected Doppler power spectra for θ0 = 73◦ and θ ranging from 65◦ to 77◦. The
full-width at half-maximum (FWHM) of the spectral main lobes were estimated and
compared with the FWHM when θ = θ0, to obtain the relative spectral broadening.
To be able to compare the FWHM value for different tracking angles, (3.11) was used
to estimate the axial velocity components, vz, of the flow. The spectral broadening
and the maximum power were visualized as functions of the velocity calibration error,
allowing the bias and sensitivity of angle correction based on either parameter to be
evaluated.

3.3.3 In Vitro Recordings

To investigate the performance of the 2-D tracking Doppler method for arbitrary
tracking angles, recordings were done using a flow phantom for which the correct
beam-to-flow angle was easy to identify. The flow phantom consisted of a silicon tube
with an inner diameter of 6 mm, coupled to a flow loop driven by the PhysioPulse 100
Flow System (Shelley Medical Image Technologies, London, ON, Canada), giving a
slowly pulsating flow. However, only a short time period with approximately constant
flow velocities was used for the recording. The tube was partly surrounded by a stiff
silicon layer, creating an imaging distance of approximately 3.7 cm and a beam-to-
flow angle of 73◦. The phantom was filled with a blood-mimicking fluid that has been
tested and described by Ramnarine et al. [20].

A longitudinal cross section of the tube was imaged using a SonixMDP ultrasound
scanner with a 5 MHz linear probe and a SonixDAQ for channel data acquisition
(Ultrasonix, Richmond, BC, Canada). The acquisition consisted of continuous
plane wave transmissions and the RF channel data was beamformed and complex
demodulated offline using Matlab (The MathWorks Inc., Natick, MA). The acquisition
setup and post-processing parameters are listed in Table 3.1.

A region of interest (ROI) with center in the middle of the tube was chosen from
a B-mode image. Signals from lines of varying slopes centered in the middle of the
ROI were extracted and processed using the algorithm given in Section 3.2.1. Both
velocity-time spectra and power-velocity plots were used to investigate properties of the
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2-D tracking Doppler method. The power-velocity plots were generated by averaging
spectral estimates from 100 temporal segments of length 120 with an overlap of 119.

3.3.4 Velocity Calibration Analysis

Repeated measurements of in vitro flow were performed using the setup described in
Section 3.3.3, with beam-to-flow angles of 63◦, 73◦ and 83◦. For each measurement,
different directions were tracked with an angular step of 0.2◦ for the recordings with
beam-to-flow angles of 63◦ or 73◦, and an angular step of 0.1◦ for the recordings with
a beam-to-flow angle of 83◦. The flow angle was then automatically estimated in two
different ways: by minimizing the FWHM, or by maximizing the peak value in the
corresponding 2-D tracking Doppler spectrum. The velocity calibration percentage
errors, epct, of the resulting angles, θ, were calculated using the formula

epct =
1/ cos θ − 1/ cos θ0

1/ cos θ0
· 100 , (3.14)

where θ0 was measured from B-mode images of the tubes. Both methods for velocity
calibration were evaluated by estimating the mean and the standard deviation of 10
independent angle estimates for each of the three beam-to flow angles.

The velocity calibration errors resulting from the minimum FWHM estimates were
plotted and compared with the velocity calibration errors expected when using manual
angle correction, e.g., from the B-mode or color flow image. To illustrate the potential
error which can occur when performing manual angle correction, it was assumed that
the Doppler angle can be estimated within ±3◦.

3.3.5 In Vivo Recordings

The 2-D tracking Doppler method was tested in a patient with a moderate carotid
stenosis. The study was approved by The Regional Committee for Medical and Health
Research Ethics (REC) in Trondheim, Norway. A color flow image of the artery,
recorded with a high-end ultrasound scanner, Vivid E9 (GE Vingmed Ultrasound,
Horten, Norway), is shown in Fig. 3.2. Narrowing of the artery, resulting from plaque
formation, is causing a high-velocity jet to be formed.

Recordings for the 2-D tracking Doppler method were done in the same way as for
the in vitro recordings, using the SonixMDP ultrasound scanner with a SonixDAQ for
channel data acquisition. The region of interest (ROI) was placed in the stenotic part
of the carotid bifurcation. The beam-to-flow angle was estimated, by visual inspection
of color flow images, to be approximately 50◦. However, it may have varied to some
extent during the heart cycle. The acquisition setup and post-processing parameters
are listed in Table 3.1.

The tracking line was probed to find the point that maximized the SNR for the
conventional PW Doppler method, and a point close to the beginning of the line was
selected.
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Figure 3.2: A color flow image overlaid on a B-mode image of a carotid artery
with moderate carotid stenosis. The image shows the common carotid artery (CCA)
bifurcation which divides into the external carotid artery (ECA) and the internal
carotid artery (ICA). Plaque formation causes a high velocity jet to be formed, depicted
in orange color in the lower right of the image. The recording was done using a high-
end Vivid E9 ultrasound scanner.

Table 3.1: Parameters

Acquisition setup Post-processing parameters
Parameter Value Parameter In vivo value In vitro value
Tx center frequency 5 MHz Tracking length 1 cm 1.5 cm
Pulse periods 2.5 Window Hamming Hamming
PRF 8 kHz Window length 80 samples 120 samples
F-number 1.4 HP-filter FIR, order 50 FIR, order 50

HP-filter cutoff 400 Hz 400 Hz

3.4 Results

3.4.1 Validation of Signal Model

In Fig. 3.3, 2-D tracking Doppler spectra generated from Doppler signals simulated
using Field II, and 2-D tracking Doppler spectra predicted by the signal model are
shown. The results show good agreement between the spectra from the two models.

3.4.2 Investigations of the Tracking Angle Sensitivity

Fig. 3.4 shows relative broadening and maximum power in Doppler power spectra,
predicted using the signal model (3.9). The black line (left y-axis) shows relative
broadening of the 2-D tracking Doppler spectra and the gray dashed line (right y-axis)
shows the maximum power, plotted with respect to the velocity calibration percentage
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Figure 3.3: 2-D tracking Doppler spectra generated for validation of the signal model
(dashed lines) with the Field II software (solid lines).
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Figure 3.4: Relative broadening (solid line) and maximum power (dashed line)
plotted with respect to the velocity calibration error. The FWHM of the spectral
main lobe of predicted velocity spectra were estimated for varying θ and compared
with the FWHM when θ = θ0. The FWHM is at its minimum and the maximum
power is at the maximum when the tracking angle is equal to the beam-to-flow angle.
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Figure 3.5: Velocity spectra generated from an in vitro recording of flow in a straight
tube. The three left spectra are generated using the 2-D tracking Doppler method
with three different tracking angles, θ. The rightmost spectrum is generated using
a conventional PW Doppler method. The velocity axes are scaled using the limits
vmin = 0 and vmax = vNyq/ cos θ, to make the spectra comparable for different tracking
angles. The dynamic range in decibels is given by the color bar. The white transparent
lines mark the time period used when generating the power-velocity plots in Figs. 3.6
and 3.7(a).

error (3.14). The plot shows that the velocity resolution is highest and the peak power
is largest for θ = θ0.

In Fig. 3.5, velocity spectra generated from an in vitro recording of flow in a
straight tube are shown. The 2-D tracking Doppler spectrum with the correct tracking
trajectory angle (θ = θ0 = 73◦) seems to provide the highest contrast and velocity
resolution. From this spectrum, it is observed that the flow has a slightly oscillating
character around a center velocity of approximately 0.9 m/s. Broadening of the spectra
is observed when using incorrect tracking angles. This is most evident for the spectrum
with the largest tracking angle.

Figs. 3.6 and 3.7 show power-velocity plots from the in vitro recording, at times
marked with vertical lines in Fig. 3.5, compared to those predicted using (3.9) and
(3.13).

In Fig. 3.6, 2-D tracking Doppler spectra with θ = θ0 = 73◦ are compared with
conventional PW Doppler spectra. The predicted spectra correspond well to the in
vitro spectra, with some differences due to estimator variance. In addition to an
improved velocity resolution, due to the more narrow spectral peaks, the 2-D tracking
Doppler spectra have a signal-noise-ratio (SNR) that is about 9 dB higher than the
conventional PW Doppler spectra.

In Fig. 3.7 a), 2-D tracking Doppler spectra generated from the in vitro recording
using three different tracking trajectory angles are shown. Fig. 3.7 b), shows the
corresponding velocity spectra predicted by (3.9). To be able to compare the spectra
for different tracking angles, equation (3.11) was used to estimate the axial velocity
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Figure 3.6: Velocity spectra generated from the in vitro recording and their
corresponding predicted velocity spectra. Short time periods, marked with white
vertical lines in Fig. 3.5, were averaged when generating the spectra. Only the 2-
D tracking Doppler spectrum with θ = θ0 = 73◦ and the conventional spectrum are
shown here. An increase in velocity resolution may be observed in the 2-D tracking
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Figure 3.7: (a) Velocity spectra generated from the in vitro recording and (b) their
corresponding predicted velocity spectra. Short time periods, marked with white
transparent lines in Fig. 3.5, were averaged when generating the in vitro spectra.
Eq. (3.11) was used to estimate the axial velocity component, vz, of the flow. The
highest velocity resolution is found when using the correct tracking angle.
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component, vz, of the flow. The spectra found using the correct tracking angle have
the highest velocity resolution and the maximum power. The spectra with θ = 63◦ and
θ = 80◦ seem to have a spectral leakage towards the low and the high velocity region
respectively. The same trends are found in the predicted spectra as in the in vitro
spectra, although the difference in maximum power is slightly larger in the predicted
spectra.

3.4.3 Velocity Calibration

In Table 3.2, the mean values and the standard deviations of angle estimates using
the minimum FWHM and the maximum power are given. The results show that
the mean values of the angles estimated by the maximum power are closer to the
angles measured from the B-mode images than the angles estimated by the minimum
FWHM. However, the angles estimated by the minimum FWHM have lower standard
deviations than the angles estimated by the maximum power.

Table 3.2: Results from the Velocity Calibration Analysis

63◦ 73◦ 83◦ Total error

Estimated angle by min.
FWHM (◦)

63.66± 1.05 72.78± 0.68 83.28± 0.35 0.24± 0.75

Velocity calibration er-
ror by min. FWHM (%)

2.46± 3.70 −1.1± 3.85 4.4± 5.61 1.92± 4.74

Estimated angle by max.
power (◦)

62.86± 2.06 73.10± 1.80 83.17± 0.37 0.04± 1.60

Velocity calibration er-
ror by max. power (%)

0.03± 7.07 1.55± 10.06 2.75± 5.63 1.44± 7.81

The circles in Fig. 3.8 give the velocity calibration errors in percent for 30
measurements when using the minimum FWHM for Doppler angle estimation. The
two lines give the estimated maximum velocity calibration errors for the manual angle
correction, given a ±3◦ error in the chosen angle. For the investigated angles, the
measured calibration errors for the 2-D tracking Doppler method are smaller than the
maximum calibration errors for the conventional approach.

3.4.4 In Vivo Imaging

In Fig. 3.9, a conventional PW Doppler spectrum and two 2-D tracking Doppler
spectra generated from an in vivo recording are shown. The recording was done on
a patient with a moderate carotid stenosis. The 2-D tracking Doppler spectrum with
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Figure 3.8: Experimental results using the 2-D tracking Doppler method for
velocity calibration. The circles give the velocity calibration errors in percent for
30 measurements of in vitro flow. The Doppler angles used for velocity calibration
were estimated by using the minimum FWHM of the velocity spectra. The two lines
gives the velocity calibration errors for the manual angle correction, given a ±3◦ error
in the chosen angle.
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Figure 3.9: Velocity spectra generated from an in vivo recording of flow in a carotid
artery at a stenotic region. The left spectrum is generated using a conventional PW
Doppler method. The two rightmost spectra are generated by the 2-D tracking Doppler
method, using tracking angles of 50◦ and 60◦. The velocity axes are scaled using the
limits vmin = 0 and vmax = 2vNyq/ cos θ, to make the spectra comparable for different
tracking angles. A higher velocity resolution may be observed in the 2-D tracking
Doppler spectrum with θ = 50◦, compared with the 2-D tracking Doppler spectrum
with θ = 60◦. The dynamic range in decibels is given by the color bar.
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θ = 50◦ has a better velocity resolution than the 2-D tracking doppler spectrum with
θ = 60◦. By visual inspection, an estimate of the maximum velocity was found to
be approximately 1.6 m/s when using the suggested spectral estimation technique,
whereas an estimate of this parameter could not be extracted from the conventional
PW Doppler spectrum.

3.5 Discussion

In this work, we have investigated properties of the 2-D tracking Doppler method when
the tracking direction differs from the flow direction. A motivation for such a study
is estimation of the beam-to-flow angle, which is essential for calibration of velocity
spectra.

The 2-D tracking Doppler method was investigated for varying tracking angles
using simulations, in vitro and in vivo experiments, focusing on situations with high
beam-to-flow angles, where limitations in velocity estimation and calibration are
most evident. It was shown that when applied to the same data, the 2-D tracking
Doppler method reduced spectral broadening and increased the SNR compared with
a conventional spectral estimation technique, and further, that it can give information
about the beam-to-flow angle. The latter is possible because of relative broadening of
the velocity spectrum at erroneous tracking angles.

An erroneous tracking trajectory results in summation of the signal along lines that
extend through the side lobes of the point spread function, causing broadening of the
velocity spectra. Spectral leakage toward the low- and the high-velocity region was
observed for spectra with tracking angles that were too small or too large, respectively.
This asymmetric behavior of the spectra may be due to the side lobes of the point
spread function, because they are not symmetric around point 3 in Fig. 3.1.

The improved velocity resolution in the 2-D tracking Doppler spectra over
conventional spectra is due to the increased transit time, especially at large beam-to-
flow angles. When using a large tracking length in the 2-D tracking Doppler method,
a long transit time is achieved and the transit time broadening is minimal. However,
in complex flow fields, a shorter tracking distance is more appropriate, because the
presence of velocity gradients will broaden the spectrum. A compromise in the tracking
length must therefore be found. The suitable tracking length for the in vivo test case
was based on apparent uniform flow in the color flow image, which was found to be
approximately 1 cm. A longer tracking length was set for the more uniform in vitro
flow. The temporal window length was reduced for high velocities because of the
tracking distance limitation. Averaging in the flow direction could be done for low
velocities, but at the cost of extra computational time. Because of the greater interest
in high velocities for this examination, this was not deemed necessary.

Conventional power spectral estimation [(3.5) and (3.13)] was used as a reference in
simulations, in vitro and in vivo. The poor spectral resolution of this approach, found
especially in the in vitro comparison, is partly due to the large beam-to-flow angles.
The effect is also enhanced by the short temporal excerpt of the flow, containing
only small oscillations around the highest velocities of a sinusoidal waveform. These
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oscillations were not resolvable by the conventional approach, resulting in a very poor
representation of the power spectrum; however, the sinusoidal waveform would be
recognizable in a longer temporal segment. The quality of the conventional spectra
was also influenced by acquisition parameters, which were more suited for the tracking
technique than regular spectral estimation. The short pulse length, which is preferable
for tracking, limits the SNR, as will the use of unfocused transmit waves. However,
the latter is required for tracking of lateral flow.

2-D tracking Doppler spectra were calculated for different tracking angles by using
an extended version of the signal model applied in [5]. The predicted spectra showed
good agreement with both the in vitro results and the spectra generated from the
Field II simulated signal, although the signal model does not contain any restrictions
on the size of the transmit aperture. An infinitely large plane wave is assumed and
no edge effects are therefore present. Small differences between the spectra generated
from the Field II simulated signal and the signal model may be observed in Fig. 3.3
because of estimator variance. It is assumed in the model that the blood flow is in
the imaging plane. Presence of out-of-plane flow would shorten the effective tracking
length and, hence, broaden the main lobe of the velocity spectrum.

The in vitro recordings were done on flow in a straight tube, where a near-parabolic
flow profile was expected. The mid-point of the tracking trajectory was placed in the
middle of the tube. An erroneous tracking angle was therefore expected to result
in broadening toward lower velocities in vitro, compared with the spectra predicted
using the signal model, for which an infinitely large blood vessel of uniform velocity
was assumed. However, no significant difference between the in vitro spectra and the
signal model spectra was found. This may be due to the short tracking lengths applied
for the low velocities. Using the in vitro spectra generated with a tracking angle of 63◦

as an example, the radial distance, R, from the center of the tube can be calculated
using the formula R = 0.5 ·Nw/PRF · v · sin (10◦). For v = 0.4 m/s, this corresponds
to a distance of 0.5 mm, which is much less than the tube radius.

Both the minimum FWHM and the maximum power of the spectra were
investigated as candidates for Doppler angle estimation. Repeated measurements of in
vitro flow were performed and the statistical analysis of the angle estimates (Table 3.2)
showed that both methods could provide reliable estimates of the true flow angle, and
could therefore be used for automatic angle correction of velocity spectra. However,
the standard deviations of the velocity calibration errors were found to be larger for
the maximum power method than the minimum FWHM. Also, if the technique is
to be used as a guide for the examiner during an investigation, spectral broadening
is the most attractive candidate because this may be easier to observe than changes
in the SNR. The angles estimated by the minimum FWHM were somewhat biased
for two of the investigated beam-to-flow angles. However, angles measured from B-
mode images were used as a ground truth in the analysis. A possible inaccuracy in
these measurements could explain the calculated bias in the angles estimated by the
minimum FWHM.

In Fig. 3.8 the velocity calibration errors for the minimum spectral broadening
method were compared with the velocity calibration errors for a conventional method.
The results indicated that the 2-D tracking Doppler method gives better velocity

69



3.6. Conclusion

estimates than the conventional approach for large beam-to-flow angles, because all
the velocity calibration errors for the 2-D tracking Doppler method were smaller than
the velocity calibration errors resulting from a 3◦ erroneous Doppler angle. The
validity of using ±3◦ as a maximum angle error for the conventional approach can
be investigated further in a more comprehensive study. In any case, the maximum
velocity calibration errors of the conventional method increase rapidly for large beam-
to-flow angles, whereas the estimated velocity calibration errors of the 2-D tracking
Doppler method has a standard deviation of less than 6% for all the investigated
angles. The increased robustness of the 2-D tracking Doppler method for large beam-
to-flow angles may facilitate reliable velocity estimation for angles above 60◦. This can
improve blood velocity estimation in regions with near-transversal flow, for instance
in vascular imaging or when imaging the heart from a parasternal view.

The results in Fig. 3.9 indicate that also in vivo, the 2-D tracking Doppler method
gives better velocity resolution than the conventional PW Doppler method. The SNR
is poor in all spectra, but the velocity-time waveform may be easier to delineate in
the 2-D tracking Doppler spectra, because the clutter aliasing is overlapping with the
high velocities in the conventional spectrum. This ability of the tracking technique
to resolve the ambiguity problem, when the maximum velocity is beyond the Nyquist
limit, has earlier been shown for blood flow in the axial direction [4]. The SNR is
somewhat better in the conventional PW Doppler spectrum than in the 2-D tracking
Doppler spectrum. This may be due to out-of-plane motion, because the sample point
for the conventional PW Doppler method was placed near the source of the jet, and
not in the middle of the tracking line. The 2-D tracking Doppler spectrum in Fig.
3.9 with θ = 50◦ has a better velocity resolution than the other spectra. In the 2-D
tracking Doppler spectrum with θ = 60◦ the high velocities are blurred, suggesting
that the tracking angle is incorrect.

Further studies will include a more comprehensive patient study for evaluation
of the 2-D tracking Doppler method, with respect to both spectral estimation and
calibration. As a ground truth for the beam-to-flow angle, the results could be
compared with vector Doppler or speckle tracking estimates. A challenge in vivo is
that spatial velocity gradients are expected to broaden the spectra, which may reduce
the angle sensitivity of the technique. Also, the flow direction may vary through the
heart cycle, and in regions of complex flow the accuracy of the angle estimation may
be limited. However, in many applications the primary interest is the quantification of
high velocity flow, for instance in cases of valvular insufficiency or in stenotic regions
where flow of less complexity can be found, e.g., in the laminar vena contracta of
the jet. In these situations, the 2-D tracking Doppler technique should be applicable,
and might provide angle-corrected velocity spectra with significantly higher spectral
resolution than the conventional approach.

3.6 Conclusion

We have investigated how the 2-D tracking Doppler method depends on the tracking
angle. The results showed that the 2-D tracking Doppler method can provide PW
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Doppler spectra with improved velocity resolution at large beam-to-flow angles, in
addition to information about the Doppler angle. Using a signal model, it was shown
that the spectra have lowest bandwidth and maximum power when the tracking angle
is equal to the beam-to-flow angle. New techniques for velocity calibration were tested
in vitro, showing improved performance for large beam-to-flow angles compared with
a conventional technique. With an in vivo example, it was demonstrated that the
method is suitable for vascular Doppler assessment.
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The maximum velocity of jet flow through an insufficient heart valve provides
important information on the pressure gradient, and is usually measured
by continuous wave Doppler. With this method, correct estimation of the
maximum velocity relies on a small (< 20◦) beam-to-flow angle. 2-D tracking
Doppler is a recently proposed method which has been shown to produce
robust estimates of blood velocities even at high (50◦-80◦) beam-to-flow
angles, and can also partially suppress the effects of aliasing. The method
reduces transit-time broadening by sampling and summing the received signal
along the trajectory of the blood scatterers. In this study, the tracking
Doppler technique is further investigated for use in cardiac applications using
phased array plane wave imaging. A new simulation model is presented,
accounting for spatial variations in the point spread function. Simulating flow
with a maximum velocity of 4 m/s, and using a -6dB threshold, the spectral
broadening when utilizing tracking Doppler is predicted to be less than 1 %
for beam-to-flow angles between 0 and 60 deg, clearly outperforming PW
Doppler and being comparable to CW Doppler with 0◦ beam-to-flow angle.
Additionally, the maximum spectral amplitude was found when the tracking is
performed in the flow direction, indicating the potential for automatic angle
correction. A tracking Doppler sequence was implemented on a modified
GE Vivid E9 scanner (GE Vingmed, Horten, Norway), and the model was
validated using an in vitro measurement. Feasibility of using the method for
determination of maximum flow velocity in an aortic insufficiency was shown.

4.1 Introduction

The maximum velocity in cardiac jet flow is an important parameter in the diagnosis
of heart disease. Together with the simplified Bernoulli equation ∆P = 4v2 [1], the
maximum flow velocity provides an estimate of the peak pressure gradient across septal
defects and stenotic or insufficient heart valves, and is for instance used to assess
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the severity of valvular stenosis. Another example is the pulmonary artery systolic
pressure, which may be estimated from the velocity of tricuspid regurgitations [2].
Delineation of the maximum velocity in the Doppler spectrum is used for estimation
of the velocity-time integral (VTI). The VTI, measured at the mitral annulus or
the left ventricular outflow tract, multiplied with the corresponding cross-sectional
area provides an estimate of stroke volume [3]. Importantly, in aortic stenosis, the
aortic valve area can be calculated based on the equation of continuity, using a VTI
of the stenotic jet by CW Doppler together with stroke volume measurements [4].
Maximal velocities are also used for estimation of the pressure half-time (PHT). In
mitral stenosis, the PHT can easily be measured from the apical window and is related
to the mitral valve area [5]. In aortic regurgitation the aorto-ventricular PHT reflects
both the degree of regurgitation and left ventricular end-diastolic pressure [6].

In severe aortic stenosis velocities may exceed 4 m/s [7] and in mitral and aortic
regurgitation the velocities usually reach 4 - 6 m/s [8,9], which would lead to aliasing
if measured by pulsed wave (PW) Doppler. The use of CW Doppler ensures that no
such aliasing of the maximal velocities occur, but the modality has some limitations.
For example, it has no spatial resolution. In addition, when using CW Doppler, a good
spectral velocity estimate depends on a small beam-to-flow angle. Angle correction is
not recommended due to difficulties in estimating the correct Doppler angle needed
for velocity calibration. Larger beam-to-flow angles also lead to increased spectral
broadening due to the decreased transit time, resulting in overestimation of the peak
velocities. These imaging requirements may lead to prolonged examination times as it
is difficult to locate a proper view in certain patients [10]. Especially for aortic stenosis
it is recommended to use CW Doppler with multiple acoustic windows to detect the
highest velocities. [7].

Compared to CW Doppler, PW Doppler is more susceptible to spectral broadening
and aliasing problems, due to the smaller sample volume and the limited velocity range
implied when using a pulsed sequence. However, some methods have been proposed
with potential to reduce the severity of these problems. In the multifrequency Doppler
technique [11], Doppler spectra are generated from several ultrasound frequencies
transmitted simultaneously and then averaged to reduce the variance of the spectral
estimates. In the velocity matched spectrum technique [12], the sample volume
followed the scatterers in the axial direction over time, reducing spectral broadening
for small beam-to-flow angles. It was also shown that the latter technique could reduce
the effects of aliasing, and an example was shown in which velocities as high as 4.5
times the Nyquist limit were measured. An analysis in the 2-D Fourier domain shows
that these two techniques share many of the same properties [13].

Two-dimensional (2-D) tracking Doppler is a recently proposed extension of the
velocity matched spectrum technique, in which the observation window follows the
trajectory of the blood scatterers in both axial and lateral directions to increase transit
time and thus reduce spectral broadening. By using plane waves on transmit and
parallel receive beams, the signal from a moving scatterer may be tracked by using
spatial interpolation for each time instance. In [14] it was shown that the use of the
method for spectral velocity estimation in the carotid artery resulted in a significant
reduction in spectral broadening compared with conventional PW Doppler. In [15],
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the dependency of the method on the tracking angle was investigated, and it was
shown that the estimated velocity spectra had lowest bandwidth and highest amplitude
when the tracking angle coincided with the beam-to-flow angle. These quantities
could potentially be used for automatic angle correction. Also, because the tracking
Doppler method acquires data from a large spatial region, color Doppler images may
be generated from the same data.

The potential ability of the tracking Doppler method to accurately measure
high velocities at a wide range of beam-to-flow angles motivates this study of the
performance of the method for measurement of jet flow velocities in the heart.
Adaptation of the tracking Doppler technique to cardiac applications, however,
presents several potential challenges. Compared with velocity estimation in the carotid
artery using a linear probe, a cardiac probe has smaller aperture and the region of
interest is deeper. This leads to higher F-numbers for receive focusing, and thus
decreased spatial resolution, which may affect the dependency of the tracking Doppler
spectra on the tracking angle. Diffraction effects may lead to non-uniform beam
profiles in depths of interest, which may cause spectral broadening or artifacts in
the spectra. In addition, the smaller width of plane waves emitted from a cardiac
probe potentially limits the size of the tracking region for high velocities.

The aim of this work is to investigate the properties of the 2-D tracking method
using phased arrays for measurement of cardiac jet flow velocities with non-zero beam-
to-flow angles, using a signal model and simulations as well as in vitro and in vivo
measurements. Specifically, we want to quantify the spectral broadening properties
for different beam-to-flow angles, and investigate the potential for automatic angle
correction by quantifying the dependencies of the spectral bandwidth and amplitude on
the tracking angle. The work is a continuation of [14] and [15], where these properties
were quantified for vascular applications using a linear probe. A new model is presented
in this work to allow for a spatially variant point spread function. The results are
validated using an in vitro measurement, and feasibility of applying the 2-D tracking
Doppler technique in vivo is shown by using it to measure the maximum blood velocity
in an aortic insufficiency.

4.2 Methods

4.2.1 Doppler processing

For conventional PW Doppler, the axial velocities are estimated by performing a
temporal Fourier transform of the ultrasound signal from a fixed spatial position [14].

p̂c(v) =

∣∣∣∣∣∑
k

w(k)S(~r0, k0 + k)e−2iω0kvz∆t/c

∣∣∣∣∣
2

. (4.1)

Here w is a window function, S(~r, k) is the IQ demodulated ultrasound signal, ~r0 is
spatial position, k is the slow-time index, ω0 is the received signal center frequency, ∆t
is the pulse repetition time, c is the speed of sound, vz = v cosα, v is the velocity and
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Figure 4.1: Illustration of the signal summation performed for generation of tracking
Doppler spectra. For each slow-time frame, the signal is sampled from a spatial line,
indicated in red. Then for each velocity, the spectral amplitude of that velocity is
estimated by summation along skewed lines in the 2-D domain consisting of space and
slow-time.

α is the assumed beam-to-flow angle. For 2-D tracking Doppler, the signal is summed
along the assumed trajectory T of the scatterers [14]:

p̂(v) =

∣∣∣∣∣∑
k

w(k)S(~r0 + kv∆t~eT , k0 + k)e−2iω0kvz∆t/c

∣∣∣∣∣
2

, (4.2)

where ~eT is a unit vector in the tracking direction. The summation performed to
produce tracking Doppler spectra is illustrated in Fig. 4.1. In the 2-D Fourier domain,
this corresponds to summation along skewed lines, each with an angle corresponding
to the velocity v, see Fig. 4.2. The figure also shows that, in comparison, conventional
PW Doppler corresponds to projecting the Doppler signal in the 2D Fourier domain
down on the Doppler frequency axis.

4.2.2 Signal model

In the signal model, it is assumed that the spatial correlation length of blood scatterers
is much shorter than the wavelength of the transmitted signal [16]. Let hF (~r, t) be the
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a summation along a skewed line through the origin in 2-D Fourier space, with tilt
angle ϕ depending on the tracking velocity as shown. For PW Doppler, the signal
contribution comes from a fixed spatial position, corresponding to a projection down
on the Doppler frequency axis in 2-D Fourier space.

IQ demodulated signal from a single scatterer moving along a flow line F . The signal
contribution SF from F is obtained by summation of the signal from all scatterers
along F :

SF (~r, k) =
∑
n

anhF (~r, tn + k∆t), (4.3)

where an is an amplitude scaling factor and tn is the time lag of scatterer number
n. Because the scatterers in blood are δ-correlated in space by assumption, the
expected power spectrum when tracking along the line T from scatterers moving along
F becomes:

〈pF (v)〉 = 〈a〉
∫
t

∣∣∣∣∣∑
k

w(k)hF (~r0 + kv∆t~eT , t+ k∆t)e−2iω0kvz∆t/c

∣∣∣∣∣
2

dt, (4.4)

where ~r0 is the center of the sample volume and a =
∑
n a

2
n. The corresponding

expression for conventional PW Doppler is:

〈pcF (v)〉 = 〈a〉
∫
t

∣∣∣∣∣∑
k

w(k)hF (~r0, t+ k∆t)e−2iω0kvz∆t/c

∣∣∣∣∣
2

dt, (4.5)
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Again, based on the assumed δ-correlation in space for blood scatterers, the expected
total power spectrum is found by summing the power spectra from each flow line.

4.2.3 Simulations

The signals hF were calculated using the simulation software Field II [17, 18]. For a
flow line F , point spread functions f(~r|~rn) were calculated for scatterers at spatial
positions ~rn ∈ F , sufficiently dense to produce f(~r|~rf ) for a scatterer at any point
rf ∈ F by interpolation. The signal hF could then be obtained for any velocity profile
along F , using the relation:

hF (~r, t) = f(~r|~rf (t)), (4.6)

where the velocity profile is given implicitly by ~rf (t). The relation between the
simulation model parameters is illustrated in Fig. 4.3.

The described model provides the statistically expected velocity spectrum rather
than a realization of the signal. A good estimate of the spectrum could also be obtained
by simulation of long ensembles with high scatterer density, but the chosen method
was preferred as it is faster and also has no variance except due to numerical error.

For simulation of Doppler signals used for tracking Doppler and PW Doppler,
plane waves were used on transmit. CW Doppler acquisition was simulated in Field
II as a PW Doppler using half of the aperture on transmit and the other half on
receive, using fixed focus, long pulse length and pulse repetition frequency (PRF)
high enough to avoid aliasing, see Table 4.1 for details. The resulting signal then has
spatial sensitivity and temporal frequency content similar to that of a CW Doppler
signal after IQ demodulation.

4.2.4 Spectral broadening

The spectral broadening properties of the 2-D tracking Doppler method were quantified
by simulating a typical flow pattern for a cardiac jet. The Computational Fluid
Dynamics (CFD) simulation software ANSYS Fluent (ANSYS Inc, Canonsburg, PA,
USA) was used to simulate a jet from a 5 mm opening. Two cylindrical chambers
with diameter 20 cm and lengths 10 cm and 30 cm were connected by a cylindrical
hole with diameter 5 mm and length 3 mm, and pressure was applied uniformly across
the cross-section of the first chamber. The flow field and velocity profile are shown in
Fig. 4.4. In this analysis, only the contribution from the central flow line was included.

The signals hF were calculated, as described in 4.2.2, for the central flow line, with
beam-to-flow angles between 0◦ and 80◦. For each beam-to-flow angle, the expected
power spectra for conventional PW Doppler, CW Doppler and tracking Doppler when
tracking along F were calculated using (4.4) and (4.5). See Table 4.1 for simulation
setup parameters. To estimate the spectral broadening properties, we used the half-
power threshold, which is the velocity with power equal to half the maximum power in
the descending slope located at the higher frequencies of the spectrum. This measure is
used as an estimate for the maximal velocity in a method described by Ricci et al [19].
For our purposes we note that the value of the estimator increases with increasing
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Figure 4.3: Illustration of the relation between the parameters used to estimate
hF in (4.6), using the simulation model. For each flow line F , the velocity profile is
used to calculate the locations rf of a scatterer at the insonation times. Point spread
functions (PSF) are then calculated from scatterers at positions ~rn ∈ F using Field
II, and interpolated to produce the point spread functions at positions rf . Note that
each flow line may have different velocity profiles.

bandwidth of the spectrum, and the bias of the estimator was used as a measure of
spectral broadening.

4.2.5 Transmit apodization

Using a rectangular window for transmit window results in a non-uniform beam profile
due to diffraction. However, apodization may be used to obtain more homogeneous
fields from the emitted plane waves in the depth range of interest (5-10 cm). The
spectral broadening properties of tracking Doppler were therefore also quantified when
using a Hann window, a Tukey window with taper ratio 0.45, and rectangular window
on transmit.
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Figure 4.4: Illustration of imaging setup used in simulations. The flow profile shown
in the lower panel was extracted from the ANSYS Fluent simulation and used as input
to Field II simulations when calculating expected velocity spectra.

Parameter Tracking PW CW
Probe type Phased Phased Phased
Elements used on transmit 96 96 48
Pitch [µm] 229 229 229
TxFrequency f0 [MHz] 2 2 2
PRF [kHz] 10 10 40
Cycles @ f0 1.5 6.5 200
Receive F# 2.7 2.7 5.4
Ensemble length 100 100 400

Table 4.1: Parameters used in single flow line (jet) simulations.

4.2.6 Dependency of tracking angle

The angle dependency of tracking Doppler when using a phased array probe was
investigated using a simulation model of flow in a straight tube with 4 mm diameter.
The point spread function was assumed to be invariant in the beam axis direction inside
the tube, and separable in axial and elevation directions. The elevation amplitude
profile was calculated using Field II. The signals hF were then estimated for flow lines
in a grid with resolution 0.08 mm inside the tube. Each flow line had constant velocity
chosen such that the flow profile of the tube was parabolic with maximum velocity
2 m/s. Expected velocity spectra were calculated for each flow line and then summed
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Parameter Tracking/PW
Probe type Phased
Elements used on transmit 96
Pitch [µm] 229
TxFrequency f0 [MHz] 2.1
PRF [kHz] 6.7
Cycles @ f0 2.5
Receive F# 2.7
Ensemble length 73

Table 4.2: Parameters used in straight tube simulation.

to obtain the expected velocity spectrum for a tracking trajectory through the center
of the tube. See Table 4.2 for setup parameters.

The simulated tube had a beam-to-flow angle of 71◦ and a depth of 6 cm. Tracking
Doppler was performed with tracking angles between −80◦ and 80◦. The maximum
amplitude in the spectrum, the half-power (-6 dB) and quarter power (-12 dB)
thresholds were calculated for each tracking angle.

4.2.7 In vitro validation

A flow phantom experiment was performed to validate the signal model. The phantom
consisted of a silicon tube with an inner diameter of 4 mm, connected to a flow loop
driven by a PhysioPulse 100 Flow System (Shelley Medical Imaging Technologies,
London, ON, Canada). The flow system was set to output constant flow with a
velocity of about 2 m/s, as measured by a CW Doppler measurement with a beam-to-
flow angle of 24◦. The probe was placed approximately 6 cm from the center of the
tube, and tilted to obtain a beam-to-flow angle of approximately 71◦.

The phantom was insonated using plane wave transmissions from a modified GE
Vivid E9 scanner(GE Vingmed, Horten, Norway). Channel data were extracted from a
depth range of 4.5 cm−8.5 cm and beamformed offline, before performing the Doppler
analysis using (4.1) and (4.2). The setup parameters are detailed in Table 4.3. Welch’s
method was used to generate line spectra, using a window length of 73 samples (6 ms),
and an window overlap of 69 samples (95 %). A temporal average of 60 spectrum
estimates were used to generate the final line spectra. Clutter rejection was performed
using a FIR filter with order 132 and -3 dB cutoff at 0.11 m/s.

4.2.8 In vivo measurements

In vivo data were also acquired from aortic flow in a volunteer with a mild aortic
insufficiency. The setup parameters are provided in Table 4.3. A CW Doppler
recording from the apical position acquired by an experienced cardiologist was used
as a ground truth measurement. Multiple recordings using plane waves were then
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Parameter In vitro In vivo
Probe type Phased Phased
TxFrequency f0 [MHz] 2.1 2.1
PRF [kHz] 6.7 12.1
Cycles @ f0 2.5 2.5
Receive F# 2.7 3.8
Ensemble length 73 73

Table 4.3: Parameters used for in vitro and in vivo measurements.
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Figure 4.5: Simulated spectra from jet flow using CW Doppler with flow in the beam
direction, and from PW Doppler and tracking Doppler with beam-to-flow angle 60◦.
The maximum velocity and the half power (-6 dB) threshold are illustrated.

made from different views before performing the Doppler analysis offline. Due to
limitations in data storage capacity, only about 600 ms of data were available for
each recording. Additionally, navigation had to be performed on B-mode images only
during the experiment, as the modification did not allow for simultaneous color flow
imaging. Tracking Doppler spectra were averaged over several tracking lines spanning
a depth range of 2 cm. PW Doppler spectra were produced from the same data as
tracking Doppler, and were averaged over a region of size 4 cm x 2 cm.

4.3 Results

4.3.1 Simulation results

Fig. 4.5 shows the simulated spectra for CW Doppler, PW Doppler and tracking
Doppler for a single flow line with jet flow profile and maximum velocity 4 m/s. The
beam-to-flow angle was α = 60◦ for PW and tracking Doppler, and α = 0◦ for CW
Doppler. Using a -6dB threshold, the overestimation of the maximum velocity is
approximately 1% both for CW and tracking Doppler and 10% for PW Doppler.
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Figure 4.6: Bias in the maximum velocity using the half-power (-6 dB) threshold,
as a function of beam-to-flow angle, for PW Doppler and tracking Doppler with three
different transmit apodizations. Tracking is performed in the flow direction.

4.3.2 Spectral broadening vs beam-to-flow angle

The dependence between spectral broadening and beam-to-flow angle is shown in
Figure 4.6, for 2-D tracking Doppler and PW Doppler. For the results shown, the
scatterers are tracked along the true angle. The results show that tracking Doppler
significantly reduces spectral broadening compared to PW Doppler, by a factor of
more than six for all beam-to-flow angles between 0◦ and 80◦. For a beam-to-flow
angle of 80◦, the spectral broadening is approximately 5% for tracking Doppler and
30% for PW Doppler.

4.3.3 Transmit apodization

Also included in Figure 4.6 is the impact of using plane waves with transmit
apodization on spectral broadening. The results show that the use of a Tukey window
with taper ratio 0.45 slightly increases spectral broadening, whereas the use of a Hann
window substantially increases spectral broadening, especially for high beam-to-flow
angles. Fig. 4.7 shows beam profiles at depth 6 cm for different transmit apodizations.
It can be seen that the use of a Tukey window results in a more homogeneous field,
but also a narrower beam, whereas the use of a Hann window significantly reduces the
beam width.

4.3.4 In vitro validation

In Fig. 4.8 spectra from the flow phantom are compared with those predicted by the
signal model. By visual inspection, there is good correspondence between the model
predictions and the in vitro results.
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Figure 4.7: Beam profiles at depth 6 cm when using no transmit apodization, a tukey
window with taper ratio 0.45, and a Hann window.
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Figure 4.8: A comparison of in vitro measurement and model predictions. Left:
Ground truth measurement using angle corrected CW Doppler spectrum with beam-
to-flow angle 24◦, showing a maximum velocity of 2 m/s. Middle: tracking Doppler
spectra when tracking with beam-to-flow angle 71◦. Right: angle corrected PW
Doppler spectra with beam-to-flow angle 71◦.

4.3.5 Variation with tracking angle

The left panel of Fig. 4.9 shows the maximum amplitude of the spectrum as a function
of tracking angle, for simulated and in vitro flow in a straight tube with a beam-to-
flow angle of 71◦. The maximum amplitude is attained at the correct tracking angle.
The results in the right panel of Fig. 4.9 show that, for this setup, the -6 dB and
-12 dB threshold velocities, which are indicators of spectral broadening, of the model
spectra and in vitro spectra are minimal (before angle correction) for tracking angles
of 69◦−70◦. Using a tracking angle of 69◦ when the true value is 71◦ would contribute
to a decrease in the estimated maximum velocity of about 9%.
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Figure 4.9: Candidate parameters for automatic angle correction, as a function of
tracking angle. The beam-to-flow angle is 71◦. Left: the maximum amplitude in
spectrum as function of tracking angle. Right: the bias in the maximum velocity
estimate as function of tracking angle, using the half power (-6 dB) and quarter power
(-12 dB) thresholds.

4.3.6 In vivo results

In vivo spectra showing blood flow in a volunteer with a mild aortic insufficiency
are shown in Fig. 4.10, for PW Doppler, tracking Doppler and conventional CW
Doppler. Automatic angle correction was not attempted in these recordings because
of movement of the jet during the heart cycle, which would require a more sophisticated
algorithm. Instead the tracking angles were estimated from retrospective color flow
images, shown in the left panel.

In the tracking Doppler spectrum from an apical view with a beam-to-flow angle of
30◦, it is possible to delineate the maximum velocities, and the results are comparable
to the CW Doppler measurements used as ground truth. It is also seen that tracking
Doppler overcomes the Nyquist limitations seen in the corresponding PW Doppler
spectrum, where delineation of the maximum velocities is difficult because of aliased
clutter noise.

4.4 Discussion

Properties of the 2-D tracking Doppler technique using a cardiac probe have been
investigated using simulations, in vitro and in vivo measurements. The results show
that even though the cardiac probe has smaller aperture and the tracking regions are
located deeper than in vascular imaging, the tracking Doppler method still outperforms
PW Doppler in terms of spectral broadening at all investigated beam-to-flow angles.

The dependency of spectral broadening on the beam-to-flow angle was investigated
in Fig. 4.6, both for PW Doppler and tracking Doppler. It is clear from the results that
spectral broadening increases with beam-to-flow angle, and that this effect becomes
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Figure 4.10: In vivo spectra generated using Tracking Doppler and CW Doppler.
Tracking Doppler and angle corrected PW Doppler from an apical view with beam-to-
flow angle of approximately 30◦. The axes of the tracking Doppler and PW Doppler
results has been scaled to match those of the CW Doppler image, and a corresponding
part of the heart cycle has been highlighted in the CW Doppler spectrum. A color
Doppler image including the tracking angle is shown. The dynamic range of the
tracking and PW Doppler spectra is 40 dB.

increasingly important for beam-to-flow angles above 60◦. For PW Doppler, the
spectral broadening increases from 10% at 60◦ to 30% at 80◦, which would not be
acceptable for pressure gradient measurements. For tracking Doppler, however, the
bias at 80◦ beam-to-flow angle is about 5%, corresponding to pressure gradient error
of 10%. In fact, for beam-to-flow angles up to 60◦, the tracking Doppler spectra are
comparable to those produced by CW Doppler with a beam-to-flow angle of 0◦. Thus,
for tracking Doppler, the primary source of velocity estimation error is likely to be
the determination of the correct beam-to-flow angle rather than spectral broadening.
This is further discussed below.

Due to diffraction effects, the field from the emitted plane wave will not be
homogeneous, an effect which is more prominent in cardiac imaging due to the small
aperture size. This effect may be mitigated by using transmit apodization, as this
reduces diffraction effects from the edges of the aperture. However, the results in
Fig. 4.6 show that transmit apodization yields no positive effect on spectral broadening.
Indeed, a significant increase in spectral broadening is observed when using a Hann
window for transmit apodization. This may be explained by studying the beam profiles
shown in Fig. 4.7. The significant reduction in beam width observed when using a
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Hann window should lead to spectral broadening when tracking at high beam-to-
flow angles. The ripples which can be observed in the beam profile when using a
rectangular apodization could potentially lead to artifacts in the tracking Doppler
spectrum. However, no artifacts were seen in the spectra shown in Fig. 4.5 when
using a rectangular window, and this also results in the best SNR. Thus, it is not
recommended to use transmit apodization for tracking Doppler in this setup.

A limitation of the simulation results for the high velocity jet flow is that only
the central flow line containing the maximum velocity was included. The other flow
lines contain lower velocities, and should not influence the spectral shape close to
the maximum velocity. However, they may have a smaller beam-to-flow angle, thus
potentially yielding a higher Doppler shift. The single flow line model is, however, still
useful for comparison between the different Doppler modalities.

In the results presented in Fig. 4.6, it was assumed that tracking is performed
in the flow direction. For large beam-to-flow angles (> 60◦), the velocity estimates
are very sensitive to errors in the tracking angle. This motivated an investigation
on the potential for automatic angle correction at high beam-to-flow angles. The
results in Fig. 4.9 show that, when the beam-to-flow angle is 71◦, the highest spectral
amplitude is indeed observed along the flow direction, indicating that automatic angle
correction is feasible. However, without spatial or temporal averaging, the spectral
amplitude estimates will have a standard deviation equal to the expectation value, and
this can result in high variance in the tracking angle. In the specific case presented
in Fig. 4.9, where the true beam-to-flow angle is 71◦, the maximum amplitudes of
spectras produced with tracking angles 60◦ − 80◦ are all less than 1 dB below that
of the correct tracking angle, and thus the risk of error is high unless spatiotemporal
averaging is performed.

The results in the right panel of Fig. 4.9 showed that, for the current setup, using
the -6 dB or -12 dB threshold for automatic angle correction would lead to a slight
underestimation of the tracking angle. The small discrepancy in tracking angle would,
however, contribute significantly (9%) to underestimation of the maximum velocity
because of the high beam-to-flow angle. It should be noted, however, that the bias
in tracking angle is dependent on scanning parameters and the geometry of the flow.
Changing parameters in the scan sequence may therefore reduce or remove the bias.
Another possibility is that knowledge of the bias in the tracking angle may be used
for calibration of this parameter using the model.

Good correspondence was seen between the in vitro results and model predictions,
strengthening the validity of the model and its predictions on spectral broadening and
dependency on tracking angle. Some discrepancies can be seen by studying the right
panel of Fig. 4.8 and the left panel of Fig. 4.9, but a possible explanation to these
is that the maximum velocity in the flow phantom is lower than 2 m/s, either due to
spectral broadening or erroneous angle correction in the ground truth CW Doppler
measurement.

The in vivo results presented in Fig. 4.10 show the feasibility of using tracking
Doppler to measure the maximum velocity in an aortic insufficiency. Despite some
acquisition limitations, tracking Doppler spectra could be generated and the contour
of the spectrum could be delineated at two times the Nyquist velocity, where the
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corresponding PW Doppler spectrum was obscured by clutter or the clutter filter
band. Movement of the jet during the cardiac cycle would require dynamic movement
of the sampling volume to achieve optimal spectra and estimates for the tracking angle.
The spatial resolution of tracking Doppler would also require additional precision of
the observer when choosing the sample volume. These challenges may be addressed by
either using spatial averaging or dynamic detection of jet position, but this was beyond
the scope of this work. On the other hand, when using tracking Doppler, color Doppler
images may be generated from the same data, and the sample volume position and
the tracking angle may be adjusted after data acquisition. This may facilitate manual
or automatic correction of position and tracking angle in post-processing, provided
that the jet is in the imaging plane, and that the data processing is sufficiently fast
for practical use.

The performance of the 2-D tracking Doppler technique, similar to PW Doppler
and CW Doppler, is reduced when the flow direction is not in the imaging plane. For
out-of-plane flow, the effective transit-time is limited by the size of the ultrasound
field in the elevation direction, and the tracking Doppler method then has less
advantage over conventional PW Doppler. Another notable limitation is that the
current tracking Doppler method assumes straight flow lines. Curvilinear flow would
shorten the observation time of individual scatterers and contribute to increased
spectral broadening in the tracking Doppler spectra. Both the implementation of
tracking Doppler on a 3-D probe, allowing tracking in the elevation direction, and
tracking along curved flow lines are possible future improvements of the method.

4.5 Conclusion

Properties of the 2-D tracking Doppler method for cardiac applications have been
investigated using a signal model. Regarding spectral broadening of simulated spectra,
the tracking Doppler method clearly outperformed angle-corrected PW Doppler by
reducing the spectral broadening with a factor of more than six for all beam-to-flow
angles. For beam-to-flow angles below 60◦, the spectral broadening of tracking Doppler
spectra was comparable to that of CW Doppler with flow in the beam direction. In
a simulation of a straight tube phantom with beam-to-flow angle 71◦, the maximal
spectral amplitude was found when the tracking angle coincided with the flow angle,
whereas the minimal spectral broadening was seen when the beam-to-flow angle was
69◦. The model was validated using an in vitro flow phantom measurement. In
vivo results showed the feasibility of using the tracking Doppler technique to measure
maximum flow velocities in an aortic insufficiency.
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