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Hurtig beregning av adaptive algoritmer for ultralydavbildning
ved hjelp av programmerbare skjermkort

De siste årene har det vært en rivende utvikling innen bruken av skjermkort (GPU-
er), som egentlig er laget for å kjøre dataspill, til å gjøre numeriske beregninger
for naturvitenskapelige anvendelser. Et sistegenerasjons skjermkort har n̊a like mye
beregningskraft som verdens kraftigste datamaskin hadde rundt år 2000. Utfordringen
er at problemet som skal løses må best̊a av mange uavhengige deler som kan beregnes i
parallell. For ultralydmaskiner har denne utviklingen gjort at algoritmer som tideligere
krevde spesialhardware, n̊a kan programmeres i software og kjøres i sanntid p̊a et
rimelig skjermkort. Et ultralydsystem som bruker skjermkort til å gjøre beregninger
vil være mye rimeligere, mer fleksibelt og gjøre det lettere å implementere avansert
prosessering enn et system hvor alle algoritmer er og må ”hugges i stein”.

Målet med denne studien har vært å utforske hvordan programmerbare skjermkort
kan utnyttes til avansert prosessering i et avbildende ultralydsystem. Blant
de problemene vi har sett nærmere p̊a finner man b̊ade adaptiv bildedannelse
(str̊aleforming), adaptiv visualisering av 3D ultralyd og ultralydsimuleringer. Felles
for disse problemene er at de krever parallellprogrammering for å g̊a i sann tid.

I første del av avhandlingen utforskes Capons adaptive str̊aleformingsmetode. Vi
starter med å implementere metoden p̊a et skjermkort for sanntidsprosessering av
sonardata (Artikkel I) og av data fra medisinsk ultralyd (Artikkel II). Sanntid-
sprosessering oppn̊as for begge modaliteter. Artikkel II presenterer ogs̊a, for første
gang, videoer hvor b̊ade simulerte og in vivo medisinsk ultralyddata er prosessert med
Capon-str̊aleforming. I Artikkel III viser vi at Capon-str̊aleformeren er følsom for
små skift, enten ved at ultralydproben eller objektet man avbilder beveger seg. Videre
foresl̊as det en metode som gjør at str̊aleformeren ikke lenger er like følsom for slike
forflytninger. Dette er viktig å f̊a p̊a plass for at Capon-str̊aleformeren skal kunne tas
i bruk i praksis.

I Artikkel IV foresl̊ar vi en adaptiv metode for visualisering av 3D ultralydbilder
av hjertet. Metoden undertrykker støy som med konvensjonelle metoder hadde skygget
for hjertevev. Dette arbeidet viser at det med moderne skjermkort er mulig å utføre
avansert visualisering i et ultralydsystem og fortsatt ha sanntidsytelse.

I siste del av avhandlingen utforsker vi hvordan skjermkort kan utnyttes til å ak-
selerere ultralydsimuleringer. Resultatet av dette arbeidet ble et simuleringsprogram
hvor geometrien til et gitt ultralydarray kan tegnes interaktivt, og hvor det resulterende
trykkfeltet simuleres og visualiseres i sanntid.
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Institutt for sirkulasjon og bildediagnostikk, NTNU
Hovedveileder: Sverre Holm
Biveiledere: Stein-Inge Rabben, Erik Steen and Hans Torp
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Abstract

A rapid development in computer game technology and accompanying programming
languages have recently provided researchers with small personal supercomputers,
comprised in a single graphics processing unit (GPU). This immense rise in
computational capabilities and improved programmability are currently changing
how ultrasound imaging systems are designed. When researchers are exploring new
algorithms for ultrasound imaging, it is therefore important to keep the architecture
of parallel accelerators like the GPU in mind. If a new complex algorithm is supposed
to run in real time, it needs to fit the programmable and parallel pipeline of modern
ultrasound scanners.

The aim of this study has been to investigate the possibility of utilizing GPUs
for advanced processing in an ultrasound imaging system. Among the investigated
problems are both adaptive beamforming, adaptive visualization of ultrasound
volumes, and ultrasound simulations. The presented problems have in common that
they require parallel programming in order to reach real-time processing.

In the first part of the thesis, the Capon adaptive beamformer is investigated
and implemented on a GPU for the application of real-time sonar (Paper I) and
medical ultrasound imaging (Paper II). Real-time frame rates are achieved for both
modalities. Paper II also presents, for the first time, videos where the Capon
beamformer has been applied on loops of simulated and in vivo medical ultrasound
images. In Paper III, we show that Capon beamforming does not provide shift-
invariant imaging in a real-time imaging setting. A method is then proposed that
improves the shift-invariant property. Shift-invariant imaging is essential if the method
is ever to be used in practice.

In paper Paper IV we propose an adaptive method for visualization of volumetric
cardiac ultrasound images. The method is capable of removing noise that by
conventional methods would have occluded cardiac tissue. This work also shows
that with modern GPUs it is possible to add advanced visualization methods to an
ultrasound imaging system and still have real-time performance.

Finally, we investigate how GPUs can be utilized to accelerate ultrasound
simulations (PaperV). The result of this work was a simulation program where
ultrasound array geometries can be interactively drawn and where the resulting
pressure field is simulated and visualized in real time.

v





Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor (Ph.D.) at the Faculty of Medicine at the Norwegian University
of Science and Technology (NTNU). The research was funded by Medical Imaging
Laboratory (MI-Lab), and was carried out at the Department of Circulation and
Medical Imaging. The main supervisor has been Professor Sverre Holm in the
Department of Informatics (IFI), University of Oslo (UiO), and Professor II at MI-
Lab, NTNU. Co-supervisors have been Ph.D. Stein Inge Rabben, Ph.D. Erik Steen,
both at GE Vingmed Ultrasound AS, and Professor Hans Torp in the Department of
Circulation and Medical Imaging, NTNU.

Acknowledgments

First of all I would like to thank my main supervisor Sverre Holm and the rest of my
team of supervisors for all the help and guidance through the Ph.D. project. Andreas
Austeng also deserves a big thank you for all valuable help and for showing so much
interest in my work. Thank you to all my co-authors for their contributions. I also
want to thank the Faculty of Medicine, MI-Lab and the Department of Circulation
and Medical Imaging, NTNU for believing in me and making it possible to conduct
this work.

During these years I have had the great pleasure of working with and getting
to know several research communities and companies. I therefore would like to
thank all colleagues at the Department of Circulation and Medical Imaging, NTNU,
the Department of Informatics, UiO, GE Vingmed Ultrasound AS, and Squarehead
Technology AS for providing great working environments. A special thanks goes to
all my fellow Ph.D. students at MI-Lab. I will never forget our conference trips. A
special thanks also goes to Jo Inge Buskenes in ”o�ce” 4470 at IFI, UiO for making
every working hour so much fun.

Ines Hafizovic and Carl-Inge Colombo Nilsen have used their spare time to review
this thesis, for which I am very grateful.

Finally I would like to thank my family and all my friends for being there, and for
providing a world away from work. But most of all, I want to thank Beate for her
love and patience. Without your support I would never have managed to complete
this thesis.

Dedicated to Sofie Mathilde Åsen
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Chapter 1

Background

This chapter gives the background information needed in order to understand the
topics of this thesis and the associated papers. First, in Section 1.1, the history and
the principles of general-purpose computing on graphics processing units (GPGPU)
are reviewed, followed by an introduction to medical ultrasound imaging and adaptive
beamforming in Section 1.2. Finally, the concepts of volume rendering and ultrasound
field simulations are presented in Sections 1.3 and 1.4.

1.1 General-purpose computing on graphics pro-
cessing units

Herb Sutter, a leading authority on software development, reviews the current state
of the software and computer industry in a recent essay [1]. The essay bears the
name ”Welcome to the Jungle” and is a sequel to the essay ”The Free Lunch is
Over” from 2004 [2]. The two essays spin around the fact that manufacturers of
central processing units (CPUs) hit a frequency wall in the beginning of the 21st
century. Until then, all mainstream computer programs were typically running in a
single thread on a single CPU processing core, and a programmer could expect the
software to annually gain performance without touching the code. This was the ”free-
lunch” era as depicted in Fig. 1.1. The increase in processing power came mostly from
an ever-growing clock frequency. However, power consumption and heat generation
were also growing until the required cooling finally became too much in 2004. From
that point, CPU manufactures had to look at di↵erent strategies than just increasing
the clock frequency. One strategy was to embed several cores in one CPU. This
ensured continuation of Moore’s law, since the number of transistors per chip (CPU)
could continue to grow. For programmers, multi-core CPUs meant that computer
programs now had to be multi-threaded in order to annually gain performance. It was
a concurrency revolution, as Herb Sutter named it, and the ”free lunch” was over.

Around the same time as CPU manufacturers hit the frequency wall, people
had started experimenting with programmable shaders in the field of graphics
programming. The graphics processing pipeline had before programmable shaders

1



1.1. General-purpose computing on graphics processing units

Figure 1.1: Illustration of transitions between di↵erent eras in the computer industry.
Currently there are three ongoing transitions; multi-core, heterogeneous-core and
cloud-core (herbsutter.com).

been a fixed function pipeline, where geometry and colors were converted into shaded
and rasterized sceneries by the graphics processing unit (GPU). Programmable shaders
introduced the ability to replace some steps in the fixed-function pipeline with custom
computations. This made it possible to utilize the GPU for other tasks than just
rendering graphics [3]. The rationale behind this development was that GPUs were
already available in consumer PCs, and hidden behind its graphics interface were
processing capabilities an order of magnitude larger than what the CPU could provide
(Fig. 1.2). Actually, at the time when CPU manufacturers hit the frequency wall, the
GPU had already gone multi-core, first of all driven by an ever-increasing demand for
more realistic computer games.

The original graphics pipeline involved no conditional branching (caused by if-else
control flow statements), and data were typically used once [4]. Designers of GPUs
could therefore skip advanced features found in most CPUs, like branch prediction and
di↵erent levels of data caching. These measures reduced the silicon footprint of each
core and made it possible to add multiple cores to the GPU before CPU designers
where able to do the same. Today, even if more advanced caching has been added
to GPUs, this is still the main reason why GPUs have higher peak performance than
CPUs (Fig. 1.2). Another reason is the inherent parallel nature of the problem of
rendering graphics. When geometry is shaded, projected, and rasterized, the same
instruction is needed for a lot of data at the same time. This makes a special kind of
instruction, known as Single Instruction Multiple Data (SIMD) [5], especially suited
for this problem. How SIMD instructions are utilized in modern CPUs and GPUs is
discussed in Section 1.1.1.

For the first adopters of general-purpose computing on GPUs (GPGPU) it soon
became evident that o✏oading all types of computations to the GPU was not always
a good idea. In most cases it is important to balance the load equally between the
CPU and GPU to get the most out of each processors. Balancing means that highly
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Chapter 1. Background

Figure 1.2: Development in theoretical peak throughput, single precision (SP)
and double precision (DP), the last decade for Intel CPUs and Nvidia GPUs
(github.com/mgalloy/cpu-vs-gpu).

parallel and computationally intensive tasks should be o✏oaded to the GPU while
serialized and memory intensive work should stay on the CPU. This paradigm of
utilizing specialized cores for solving specific problems is today known as heterogeneous
computing. The specialized core can be a GPU or e.g. a field-programmable gate array
(FPGA). A recent trend is that specialized accelerator cores are embedded onto the
CPU. This heterogeneous processor is often referred to as an accelerated processing
unit (APU). The last three generations of CPUs from Intel have all had on-chip
integrated graphics, and all of them are therefore APUs. An on-chip GPU is less
powerful than a high-performance discrete GPU, but valuable time can be saved by
not having to send data across the PCI Express bus, which connects the di↵erent parts
of a computer to the CPU. This is the reason why one of the first rules of GPGPU
(with discrete GPUs) is to minimize (or hide) CPU-to-GPU memory transfers. An
integrated GPU can therefore provide increased performance over a discrete GPU if
the problem requires a lot of CPU-GPU data transfers.

The final transition currently taking place in the computer industry is the
introduction of cloud computing, where compute power is provided as a web service
and automatically scales on demand. Together, multi-cores, heterogeneous cores, and
cloud cores form the ”jungle” that today’s software engineers have to handle. In this
thesis we focus on heterogeneous computing with a multi-core CPU and a discrete
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Figure 1.3: Schematic overview of CPU (Intel Haswell) and GPU (Nvidia Kepler)
architectures. Note how more space is dedicated to compute cores on a GPU, and
how more space is dedicated to control and caching on a CPU.

high performance GPU. This is a cheap, high-performance system which is likely to
be the specification of current and future ultrasound imaging systems.

1.1.1 Comparing CPU and GPU performance

The CPU is designed to be the main control unit of a personal computer, and is
therefore good at general processing. The GPU, on the other hand, has a history of
processing graphics which involves heavy vector arithmetic. Although they started out
as very di↵erent processors, modern CPUs are now including more and more GPU-
like features, and GPUs are adding CPU features. In this section we will see what
these features are and why there is still a big di↵erence in theoretical peak arithmetic
performance between a CPU and a GPU.

A special kind of instructions called SIMD was mentioned in Section 1.1. These
are instructions that are designed to execute a single instruction on multiple data
elements in one clock cycle. In the late 1990s, Intel introduced a SIMD instruction
set for their Pentium III processor called the Streaming SIMD Extensions (SSE).
The first SSE instruction set had registers of 128 bit which meant that four single-
precision (32 bit) floating point values could be processed per clock cycle. Updates of
the SSE instruction set (SSE2, SSE3, SSE4, AVX, AVX2, and AVX-512) have added
new instructions and longer registers. The recently introduced extensions, AVX and
AVX2, add registers of 256 bit and fused multiply-add (FMA) instructions which
means that sixteen single-precision floating point operations can be performed per
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Chapter 1. Background

clock cycle per core. The new extension AVX-512, that extends the registers to 512
bit, is found in the Intel accelerator board Xeon Phi, and might show up in the next
generation of CPUs from Intel. The latest CPU architecture from Intel, the Haswell
architecture, has two processing ports per core supporting FMA-AVX2 instructions,
and is therefore capable of performing 32 single-precision floating point operations per
clock cycle per core (Fig. 1.3). For an eight-core1 CPU with a clock frequency of 3.8
GHz this sums to a theoretical peak arithmetic performance of

32⇥ 8⇥ 3.8 = 972.8GFLOPS, (1.1)

where FLOPS stands for floating point operations per second. This is the same number
as visualized in Fig. 1.2 for the Haswell architecture (single precision). In addition, the
most powerful integrated GPU found on Haswell CPUs, the HD 5200, has 40 execution
units capable of processing sixteen single-precision floating point values at 1.3 GHz.
This adds

16⇥ 40⇥ 1.3 = 832GFLOPS (1.2)

in extra processing capabilities to the APU.
Modern GPUs can also be interpreted as units consisting of multiple SIMD cores

(Fig. 1.3). The recent Kepler architecture from Nvidia provides up to 15 SIMD cores2

capable of processing 192 single-precision floating point values per clock cycle per core.
These GPUs are also capable of performing FMA instructions, e↵ectively doubling the
number of theoretical FLOPS. The maximum theoretical peak single precision FLOPS
for this architecture with a core frequency of 745 MHz is then found to be

15⇥ 192⇥ 2⇥ 745 = 4291GFLOPS. (1.3)

Each SIMD core also includes 16 special function units (SFU) with close to 1 TFLOPS
in computational capabilities. One Kepler GPU therefore provides more than 5
TFLOPS as shown in Fig. 1.2 for the GeForce GTX 780 TI GPU. From Fig. 1.3 we see
how the high number of SIMD cores found on GPUs and their larger width, compared
to the SIMD cores on CPUs, results in five times the computational performance of a
high-end CPU (without the integrated GPU).

Note that the derived numbers are strictly theoretical and that the actual
throughput is highly algorithm dependent. Nevertheless, in theory, the computational
throughput provided by modern GPUs is five times higher than that provided by
CPUs. A claimed speed-up of several orders of magnitude is therefore typically a
result of comparing a non-optimized CPU implementation with an optimized GPU
implementation or by comparing incomparable hardware [6, 7]. However, in the next
section we will see why it is often easier to obtain an optimized implementation for
the GPU than for the CPU.

1An 8-core Haswell CPU is scheduled to launch during 2014. The numbers in Fig. 1.2 for the last
three generations of CPUs are all based on 8-core CPUs.

2Nvidia likes to refer to the unit capable of processing one single precision floating point value as
a core. In Nvidia’s world, Kepler therefore has 15 ⇥ 192 = 2880 cores. A SIMD core on a Nvidia
GPU is called a Streaming Multiprocessor (SM or SMX).
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(a) Kernel (b) Threads, blocks and grid

Figure 1.4: GPU threads are grouped into blocks and arranged in a grid. One thread
runs a copy of a kernel function. In this example the kernel function performs an
in-place element-wise matrix square ((b) is from http://docs.nvidia.com/cuda).

In this section we have focused on CPUs from Intel and GPUs from Nvidia,
however, CPUs and GPUs from AMD have similar specifications and di↵erences in
theoretical peak performance.

1.1.2 Programming a GPU

Early GPGPU programming required expert knowledge of computer graphics and the
graphics pipeline. When GPGPU gained a broader interest and the GPU started to be
used to compute problems that did not involve graphics, it quickly became evident that
new programing languages were needed. One of the first GPGPU oriented languages
was the Brook language by Buck et al. [8]. Buck later joined Nvidia where he led
the work on CUDA (Compute unified device architecture), a GPGPU language and
framework by Nvidia for Nvidia GPUs only. The first version of CUDA was released
in 2007. The following year, Apple launched a GPGPU framework known as OpenCL,
a standard which is maintained by the Khronos Group. These two frameworks are
still today the main programming frameworks for GPGPU. While CUDA only runs
on Nvidia GPUs, OpenCL can now run on GPUs from both Nvidia and AMD, CPUs
from both Intel and AMD, FPGAs from Altera, and mobile processors from ARM.

Both CUDA and OpenCL are centered around a kernel function which is executed
by a large group of threads. The kernel function, for both CUDA and OpenCL, has
a C-like syntax with some additional specifiers. An example of a CUDA kernel is
depicted in Fig. 1.4a. The global specifier tells the CUDA compiler that this
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function is a kernel function, and in CUDA this kernel function is launched by using
a CUDA-specific syntax:

square<<<grid, block>>>(a, N),

where grid and block are 3-component vectors specifying grid and block size in ”xyz”
as depicted in Fig. 1.4b, a is a pointer to a memory bu↵er located on the GPU, and
N⇤N is the size of the bu↵er a.

When the kernel is launched, a copy of it is scheduled for each thread in each
block, and each kernel instance gets as input its location in the grid (blockIdx and
threadIdx) together with the grid size (gridDim and blockDim). This information
is then typically used to calculate which values to gather from the global memory, in
this case an element of a. When a kernel is executed, multiple arbitrary thread blocks
are scheduled to each SIMD core where they stay until all instructions in the kernel
are finished for all threads in all the blocks. This step is then repeated until all blocks
have been processed. Thus, in order to formulate a given problem as a kernel function,
it must be possible for the GPU to schedule the resulting thread blocks in any order.
As an example, the global memory input to each thread can therefore not depend on
the output from other blocks.

As we see, a thread has a di↵erent conceptual meaning on a GPU than on a CPU.
While a CPU is said to execute threads which can perform SIMD instructions, a
thread on a GPU can be interpreted as a unit capable of processing one data element
in the SIMD instruction. Because of this the GPU is sometimes referred to as a
single instruction multiple threads (SIMT) processor instead of a single instruction
multiple data (SIMD) processor. This also explain why GPU threads are said to be
light-weighted. Such a conceptual di↵erence means that there is an inherent focus on
breaking algorithms down into SIMD instructions when programing for the GPU. This
often leads to a highly optimized parallel implementation on the GPU and not on the
CPU. Manually typed SIMT, or SIMD, instructions is the only way of programming the
GPU, while a single thread with automatic vectorization of for-loops is the standard
way of programming the CPU.

It is important to understand that not all algorithms will benefit from wider SIMD
registers. As the width increases, the only algorithms that will benefit are those which
can be divided into a su�ciently large number of independent calculations. Also, to
achieve peak performance, the implementation must perform one FMA operation on
each core per clock cycle, and it must be possible for the GPU to hide all memory
latency by scheduling threads which are not stalled by a memory fetch. All of this is
something that is not likely to happen in practical applications, and therefore one will
usually end up with a throughput which is a fraction of the peak throughput.

The code in Fig. 1.4b is an incomplete and minimal example of a GPU program.
A full example will involve several lines of C++ code transferring data to and from
the GPU, and the kernel could include manual administration of the L1 cache (shared
memory), and intra-block thread barriers. This is part of the reasons why writing
a high performance GPU kernel is often found to be a complex and time consuming
task. Therefore, we will probably see a lot of work aimed at reducing this overhead
in the future. A recent development is the introduction of C++ AMP which enables
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developers to write accelerated code (e.g. by a GPU) in plain C++. Hopefully, in
near future, programming the GPU will be a job for compilers, and direct fiddling with
GPU kernels should only be needed if maximum throughput is absolutely needed. This
is similar to how SIMD instructions are handled in CPU-code today. Most of the time
developers will rely on the CPU compilers to analyze the code and auto-apply SIMD
instruction whenever it is possible. However, when maximum throughput is needed,
developers with deep knowledge of the algorithm are often able to make faster code by
manually writing SIMD instruction. The relevance of auto-applied GPU instructions
will also increase due to the recent embedding of GPUs on the same chip as the
CPU. Soon, GPU programming will hopefully be a matter of coding a heterogeneous
collection of cores where operations are automatically o✏oaded to the right core (e.g.
a GPU) by the compiler.

1.2 Medical ultrasound imaging

Medical ultrasound imaging is considered to be a low-risk tool for non-invasive
investigation of the human body. Neither gamma rays nor high intensity magnetic
fields are involved, just sound pressure below well-controlled limits. It is also far less
costly than other medical imaging modalities and o↵ers real-time imaging. Ultrasound
imaging is well known for its use in fetal imaging during pregnancy, however, in this
thesis we will focus on a di↵erent modality, namely cardiac ultrasound imaging. An
illustration of the human heart is therefore included in Fig. 1.5a. Throughout the
thesis we will refer to some of the parts shown in Fig. 1.5a. Especially note the four
chambers of the heart, the left and right atria, and the left and right ventricles. The
tissue separating the left and right ventricle is known as the inter-ventricular septum.
The left side is responsible for pumping blood out to the whole body through the
aortic valve. It is therefore the strongest and hardest working part of the heart. When
blood flows out of the aorta, it is important that the mitral valve, which separates
the left atrium from the left ventricle, is closed and does not leak. The left side, and
especially the left ventricle and the mitral valve, therefore receives the most attention
during cardiac ultrasound examinations. When visualizing 3D ultrasound images in
Paper IV we will have a strong focus on visibility of cardiac tissue, thus note for
later that the endocardium refers to the innermost layer of the cardiac muscle.

To generate the ultrasonic frequencies used for imaging, a piezoelectric ceramic is
used. A piezoelectric material has a special property where mechanical vibrations are
generated when voltage is applied and vice versa. It can therefore be used to both
send and receive ultrasound signals, like a combined microphone and speaker. A set
of piezoelectric elements organized in an array is referred to as an ultrasound probe,
and special probes are typically designed for di↵erent medical imaging modalities.
Examples of probes for imaging of the carotid artery in the neck and for cardiac
imaging are shown in Fig. 1.5b, to the left and right respectively.

If the width of a piezoelectric element is less than the wavelength of the transmitted
signal the element approaches omnidirectional characteristics, hence, energy will
be distributed or sensed equally in all directions. When multiple omnidirectional
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(a) (b)

Figure 1.5: a) Overview of the human heart. Illustration from wikipedia.org. b)
Illustration of probe geometry and layout for phased array imaging.

elements are arranged in an array, the transmitted pulse will get shaped into a beam3

of ultrasound by di↵raction as the width (the aperture) of the array grows. The
angular width of this beam, and also the angular resolution in radians of the array, is
approximately given by [9]:

�✓a =
�

D
=

c

fD
, (1.4)

where � and f are the ultrasound wavelength and frequency respectively, c is the
speed of sound in human tissue, and D is the aperture width. With an average speed
of sound in human tissue of 1540m

s , the angular resolution or opening angle of a 2 cm
cardiac probe operating at 3 MHz is around 1.5�. The axial resolution is inversely
proportional to the pulse length, and is typically better than the lateral resolution.
An overall view of the cardiac ultrasound imaging geometry is depicted in Fig. 1.5b.
A line in the depicted ultrasound image is generated by firing an ultrasound pulse or
beam into the body and sample the received echo. We will refer to this amplitude
trace as an image line.

3A beam refers to the accumulated magnitude across time of a pulse traveling in space.
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1.2. Medical ultrasound imaging

Figure 1.6: Delay-and-sum array beamforming. Image courtesy of Jo Inge Buskenes.

1.2.1 Beamforming

If time delays are applied to the signal emitted by the array elements it is possible
to steer and focus the ultrasound beam in space (Fig. 1.6). This technique is known
as beamforming, and for ultrasound imaging it is applied both when transmitting and
receiving ultrasound pulses. A cardiac probe is a phased probe, which means that
the image is constructed from image lines which are gradually steered from �✓/2 to
✓/2. As depicted in Fig. 1.5b, this results in an imaging sector which is ✓ wide. This
is known as a 2D B-mode image (B for brightness). If image lines are acquired for
multiple B-mode images that are tilted in the yz-plane we get what is known as a
volumetric B-mode or a 3D ultrasound image. A probe for 3D imaging has several
thousand elements arranged as a matrix in order to facilitate steering in both the xz
and yz planes. In this thesis we will focus on 2D imaging when the topic is adaptive
beamforming, and 3D imaging when the topic is adaptive visualization.

The standard form of beamforming used in ultrasound imaging is known as delay-
and-sum (DAS):

z[n] =
M�1X

m=0

w⇤
mxm[n��m[n]] = wHx[n]. (1.5)

Here, M is the number of elements in the array, xm is the per-element data, �m is the
per-element focusing and steering delay, w is the array weight vector or apodization,
x is a vector of pre-delayed element data, and z[n] is the output image line in the
direction given by {�m[n]}. From now on we will omit the dependency on {�m[n]}
and xm will refer to delayed element data. A schematic overview of delay-and-sum
array beamforming is depicted in Fig. 1.6. If po is the phase center of our array and p
is the point to which we want to steer and focus the ultrasound beam, we have to use
the following delays:

�m[n] =
|po + p|� |pm + p|

c
, (1.6)

where c is the speed of sound in human tissue, and pm is the position of the m’th
element. When transmitting, the pipeline depicted in Fig. 1.6, without the sum
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operator, is reversed and the negated set of delays has to be used. Also note that
on transmit we have to decide where to steer and focus prior to transmitting a pulse.
Transmit delays therefore do not vary within an image line.

1.2.2 Sampling and processing complexity

When generating a B-mode image, we have to ensure that the spatial and temporal
sampling is su�cient. We have already seen that the lateral resolution of an ultrasound
probe is given by (1.4). Hergum et al. [10] have further shown that the lateral
frequency support for a system that both emits and receives energy is governed by the
sum of the transmit (Dtx) and receive (Drx) aperture. The lateral resolution of what
is known as an active imaging system is found to be

�✓ =
�

Dtx +Drx
. (1.7)

Then, in order to properly sample an imaging sector of ✓ radians we have to acquire

N✓ =
✓

�✓
(1.8)

image lines distributed across the imaging sector. If r is the maximum range in our
image, as shown in Fig. 1.5b, we can acquire

fFPS =
c

2rN✓
(1.9)

images or frames per second (FPS). With our 2 cm cardiac probe we get a frame rate
of around 55 FPS when imaging a 70� sector with r = 15 cm.

The required axial sampling is dictated by the transmit frequency and the frequency
bandwidth of the probe. From Fourier theory we know that a short pulse consists of
many frequency components. A short ultrasound pulse, which would yield a high
axial resolution, requires therefore a large frequency bandwidth. Medical ultrasound
systems typically have a bandwidth between 33 % and 100 % of the pulse frequency.
This corresponds to transmitting a pulse which is between 1 and 3 oscillations long.
In the analog-to-digital converter of an ultrasound imaging system a high sampling
frequency is typically used (e.g. 40 MHz). However, the ultrasound signal is band
limited, and the data rate can therefore be reduced in a process known as in-phase
quadrature (IQ) demodulation. In this process the axial sampling rate is reduced to
the bandwidth of the imaging system in the following three steps: demodulation with
a complex exponential, low-pass filtering, and decimation. The number of samples in
one image line is after this process given by:

N =
2r

c
Bwfc, (1.10)

where fc is the center frequency of the transmitted pulse, and where Bw is the relative
bandwidth in percent. Note that after this process the ultrasound data will be complex
valued. The total number of samples in a B-mode image from a phased array is then

NB-mode = N✓N. (1.11)
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If our cardiac probe, which is used to image a 70� sector, has a relative bandwidth
of 80 % we have to process almost 50000 complex data vectors of length M every
1/55 second. The formula for the number of FLOPS required for real-time DAS
beamforming of cardiac ultrasound is then roughly given as:

FLOPSDAS = MNB-modefFPS = MBwfc. (1.12)

If our cardiac probe has M = 128 elements, DAS beamforming requires a processing
throughput of around 300 MFLOPS. This is far below the peak processing throughput
of modern GPUs and CPUs. The main challenge with DAS beamforming is the amount
of data that has to be moved. In our example, for a sample size of four bytes, around
1.2 GB has to be moved to the GPU every second. This is however less than the
maximum bandwidth of PCI Express 2.0 (8 GB/s), even after the relative bandwidth,
transmit frequency and number of array elements are increased with a total factor of
5. Newer versions of PCI Express, which support even higher transfer rates, have also
recently been introduced.

1.2.3 GPUs in medical ultrasound imaging

Ultrasound scanners generate an incredible amount of data. A modern system capable
of 3D imaging will generate several tera-bytes of data inside the probe handle during a
clinical scan. Fortunately the data rate is reduced to the level of 2D imaging before the
data reaches the scanner. The data rate of a 2D scan is ”only” in order of giga-bytes
per second. To handle this amount of data, ultrasound imaging systems have, for
the last twenty years, relied heavily on application-specific integrated circuits (ASIC)
for all steps in the processing pipeline [11]. However, as the computational power of
generic processors have increased, the expensive ASICs have gradually been replaced
by software [12]. One of the last remaining ASICs in ultrasound scanners is used
for beamforming [11]. As seen from (1.5), beamforming involves a reduction of the
data rate with a factor equal to the number of elements in the ultrasound probe.
The input data rate is therefore very high. Nevertheless, real-time beamforming has
recently been achieved on a GPU [13], and a French company (SuperSonic Imagine)
are utilizing GPUs in their plane wave beamforming algorithm [14]. This is the same
technique as reported implemented on a GPU by Yiu et al. [15]. Software beamforming
is also available in the Vantage research ultrasound system by Verasonics4. We can
therefore conclude that beamforming is finally moving into software too. The largest
players in the medical ultrasound business, General Electric and Philips, are also well
aware of where the trend is going [16] [17].

Software beamforming opens up for cost-e�cient and rapid prototyping of advanced
processing of ultrasound data. One example is Capon beamforming which is explored
in this thesis (Papers I and II) and introduced in the next section. The increased
computational power introduced by GPUs makes it also possible to include more
advanced 3D visualization as presented in [18], Papers IV and IX.

4http://www.verasonics.com/25
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(a) Uniform weights (b) Capon weights

Figure 1.7: Examples of array beampatterns where the array weights are either uniform
(a) or derived using Capon’s method (b). An interfering echo is coming from 20�.
Notice the reduced sidelobe level for the Capon beampattern in the direction of the
interferer. Image courtesy of Jo Inge Buskenes.

1.2.4 Adaptive beamforming

Adaptive beamforming has several meanings in the medical ultrasound imaging
literature. It can for instance refer to aberration correction [19] which is the task
of applying time delays to compensate for pulse distortion introduced by fatty layers
in the human body. However, in this thesis adaptive beamforming will refer to data-
dependent weighting derived from a given optimization criterion. The optimization
criterion that we focus on is the minimum variance distortionless response criterion,
which is also known as Capon’s method [20]. A beamformer that uses weights derived
with Capon’s method will in this thesis mainly be referred to as the Capon beamformer
[21]. However, it is also known as the minimum variance (MV) beamformer [22], the
minimum variance distortionless response beamformer (MVDR) [Paper I], or the
constrained adaptive beamformer [23].

The Capon beamformer produces a weight vector, as introduced in (1.5), based
on the impinging signal and a constrained optimization problem. The problem is as
follows [20]:

min
w

E{|z[n]|2} ⇡ min
w

wHR̂w (1.13)

subject to wHa = 1,

where R̂ is a sample covariance matrix, and (.)H is the complex conjugate transpose.
Hence, the resulting weight vector minimizes the output power (the criterion) while
maintaining unit gain in the steering direction a (distortionless response). The
benefit of Capon beamforming is seen from Fig 1.7, which presents a sensitivity map
(an array beampattern) for DAS beamforming with uniform weights and the Capon
beamformer. In this simulated case, an interfering echo is coming from 20�, which
for the DAS beamformer with uniform weights (1.7a) will leak into the beamformer
output with its power attenuated by around 13 dB. Since the Capon weights are data-
dependent, the method ”knows” where the interfering echo is coming from and is able
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1.2. Medical ultrasound imaging

to position a zero in its direction (Fig. 1.7b). Hence, the interfering echo will be highly
attenuated independent of the direction from which it arrives. Another interesting
case is when the interfering echo has a direction-of-arrival within the mainlobe of the
array beampattern. In theory, an echo will be regarded by the Capon beamformer as
an interferer as long as the signal propagation vector of the echo does not match the
steering vector (a) exactly. Positioning of a zero in the direction of an interferer within
the mainlobe will lead to a shifted and scaled mainlobe if this is what is needed in order
to achieve minimum output power. Adaptive positioning of zeros and mainlobe shifting
are the sources of the super-resolution capabilities of the Capon beamformer [22], and
the positive implications of this e↵ect [24] is the main reason why this beamformer has
been highly studied in the field of medical ultrasound imaging over the last decade.

To ”know” the direction of interfering echoes the Capon beamformer has to
estimate the statistics of the impinging wave field. This is done by estimating a
sample covariance matrix, which for an active broadband system can be done in the
following way [24]:

R̆[n] =
1

NLNK

n+KX

n0=n�K

NL�1X

l=0

xl[n
0]xl[n

0]H (1.14)

xl[n
0] = [xl[n

0], . . . , xl+L[n
0]] (1.15)

where NK = 2K + 1 is the number of samples used for temporal smoothing, xl is
a subarray of length L, and NL = M � L + 1 is the number of subarrays used for
spatial averaging. Temporal averaging is used to obtain DAS-like speckle statistics
in combination with large subarrays [25], and subarray averaging is applied to reduce
signal cancellation caused by coherent signals [26]. The number of temporal samples
is selected relative to the pulse length. To ensure robustness against model errors and
numerical stability the matrix is further loaded with a diagonal factor,

✏ = d⇥ trace{R̆}/L (1.16)

R̂ = R̆+ ✏I. (1.17)

This adds a white noise component proportional to the in-coherent signal power to
the estimate [27].

The solution to the constrained minimization problem in (1.13) is, by the method
of Lagrange multipliers [28], found to be

w[n] =
R̂[n]�1a

aHR̂[n]�1a
2 CL. (1.18)

Since w is time (or range) dependent, a matrix has to be constructed and inverted
for each data vector x[n] received by the system. This is indeed computationally
demanding, something which becomes clear when each step of the beamformer
is examined closer. It is then found that constructing the covariance matrix
has a computational complexity of O(L2NLNK), inverting it has a computational
complexity of O(L3), and the final normalization and calculation of w is O(L). For
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L = M/2, a subarray size often used in the literature, the first two steps both have
a complexity of O(L3). These steps should therefore receive the same amount of
attention when a real-time implementation of Capon beamforming is attempted.

A rough estimate of the number of FLOPS required by a Capon beamformer for
real-time cardiac ultrasound imaging is then given by:

FLOPSCapon = L3Bwfc. (1.19)

For our example, with L = M/2 = 64, this sums up to a required throughput of more
than 1/2 TFLOPS, which is more than thousand times that needed for real-time DAS
beamforming. On the other hand, 1/2 TFLOPS is just 10% of the peak throughput of
modern GPUs, but remember that the latter is only a theoretical number, and that the
actual throughput is highly algorithm dependent. The required throughput for Capon
beamforming might therefore still be hard to achieve in practice [29, Paper II]. As
for DAS beamforming, this number also scales with higher relative bandwidth, pulse
frequency, and more array elements since the subarray size is typically proportional
to the number of array elements.

In the medical ultrasound imaging literature we find few attempts of implementing
a Capon beamformer for real-time imaging. In addition to the papers in this thesis
only Chen et al. [30–32] are known to have explored GPU and FPGA implementations
of the Capon beamformer for medical ultrasound imaging. The di↵erences between
our work and Chen et al. are discussed in Papers I, II, and VI.

To reduce the processing requirement of the Capon beamformer for medical
ultrasound imaging, several simplified versions have been proposed in the literature
[33, 34]. Among the most interesting proposals we find the low complexity adaptive
(LCA) beamformer by Synnev̊ag et al. [35], and the beamspace (BS) Capon
beamformer by Nilsen and Hafizovic [36]. The LCA beamformer uses a predefined
set of weights, and the BS-Capon beamformer takes advantage of the narrow transmit
and receive beams used in medical ultrasound imaging. Beamspace typically refers to
the polar grid that cardiac ultrasound data are located in before it is scan converted
into a Cartesian grid. In combination with the Capon beamformer, beamspace refers
to the wavenumber-space representation of the recorded signals, i.e., the spatial Fourier
transform of the element data:

xBS,l = B[xl[n], . . . , xl+L[n]]
T (1.20)

[B]p,q =
1p
L
e�j2⇡pq/L. (1.21)

The idea behind BS-Capon beamforming is that spatial beams with little information
can be removed from R̂ by removing rows in B. When investigating the complexity
of the BS-Capon beamformer [Paper II] we find that it is dominated by the
transformation of data into beamspace, O(NLLNb), whereNb is the number of selected
beams.

The number of FLOPS required for BS-Capon beamforming of real-time cardiac
ultrasound is then found to be around:

FLOPSBS-Capon = NLLNbBwfc (1.22)
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For our example, BS-Capon beamforming with L = M/2 = 64 and Nb = 3 will require
a throughput of around 30 GFLOPS. This is a level of processing which both modern
CPUs and GPUs should be able to handle. A GPU implementation of the BS-Capon
beamformer for real-time cardiac ultrasound imaging is presented in Paper II. The
rationale behind using the GPU is that in the heterogeneous computing paradigm a
highly parallel task like the Capon and BS-Capon beamformer should be o✏oaded
to the processor made for parallel processing. The CPU is then left to do managing
and all the tasks it traditionally performs. It should also be possible to achieve higher
processing throughput on a GPU than on a CPU for this kind of problem.

1.2.5 Capon beamforming of focused broadband beams

Both the LCA and BS-Capon beamformers are based upon a detailed investigation of
how Capon beamfoming behaves when applied to medical ultrasound images. For the
LCA beamformer, the windows selected by the Capon beamformer were investigated
and a special set of predefined windows were defined. If one looks closer at the windows
selected for the LCA beamformer we see that half the set performs micro-steering
of the mainlobe and the other half provides di↵erent mainlobe widths. The results
from applying the LCA beamformer [35, Fig. 9] and the success of the BS-Capon
beamformer shows that the main benefit of applying Capon beamforming to medical
ultrasound imaging is micro-steering of the mainlobe, and not attenuation of far o↵-
axis backscatter. This is mainly due to the focused beams used in medical ultrasound
which highly limits the amount of energy arriving o↵ axis. This focusing of energy
also explains why Capon beamforming works on broadband ultrasound data.

The Capon beamformer is derived for narrowband applications and has tradi-
tionally been applied to medical ultrasound imaging ”as is”. Medical ultrasound
imaging is, however, a broadband imaging modality and one could think that a
broadband Capon beamformer would therefore be needed [37]. The investigation
performed for the BS-Capon beamformer [36] showed, that with pre-delayed data,
energy will be centered on-axis and as little as three near-axis beams in beamspace is
therefore adequate in order to achieve similar performance for BS-Capon and Capon
beamforming. The two-way beam will be wider for unfocused (plane wave) transmit
beams [37, 38], but steering and focusing on receive will still make the main amount
of energy arrive on axis. As shown in Paper III it is also possible to micro-steer with
phase delays (narrowband) instead of time delays (broadband) without introducing
large errors. Since Capon beamforming mainly performs main-lobe shifts smaller than
the beam width [35, 36], the di↵erence between a broadband and narrowband Capon
beamformer will be minimal [39]. Broadband Capon beamforming is also significantly
more computationally demanding than narrowband Capon beamforming.

1.3 Volume rendering

A 3D ultrasound dataset is a cloud of scalar values that somehow needs to be presented
to the user. One approach used for cardiac ultrasound is to extract slices corresponding
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(a) Ray-casting (b) Opacity transfer function

Figure 1.8: The principle behind volume ray casting. a) A ray is casted out from
every pixel in a 2D image. Along the ray, samples are gathered from the volume. The
samples are assigned a color and an opacity before they are combined into a single
pixel value (wikipedia.org/wiki/Volume ray casting). b) The opacity transfer function
used to determine how opaque a sample should be.

to di↵erent long-axis and short-axis views of the cardiac chambers. Another way is
to project the whole volume into a two-dimensional image. The latter technique is
known as volume rendering, and it presents to the user the three dimensional structure
of the heart in a single two-dimensional image. Many di↵erent methods for volume
rendering exist [40], but in this thesis we will focus on ray casting [41].

The principle behind ray casting is depicted in Fig. 1.8. The projection of
volumetric data is performed by casting a ray out from every pixel in the 2D image
(Fig. 1.8a). Along each ray, samples are gathered from the volume and assigned a
color and opacity. For ultrasound visualization, the color intensity is dictated by
the ultrasound backscatter intensity, and the colorfulness is often encoded with depth
information in order to improve depth perception. An example of a volume rendering of
cardiac ultrasound data is presented in Fig. IV.1. The opacity, however, is governed by
a user-controlled opacity transfer function (OTF) as shown in Fig. 1.8b. For ultrasound
visualization a monotonically increasing function is typically used, which means that
below a certain threshold all samples will be rendered transparent (opacity = 0). We
will refer to this as the opacity threshold (⌧), and for the example in Fig. 1.8b this
threshold is 25.

The iterative composition scheme for front-to-back ray casting of one ray, from s0
to sNs�1 where s is the sample position and Ns is the number of samples along the

17



1.3. Volume rendering

ray, is [42]

I(s0, si+1) = I(s0, si) + (1� ↵acc,i)ci+1 (1.23)

↵acc,i+1 = ↵acc,i + (1� ↵acc,i)↵(ci + 1). (1.24)

Here, ↵(v) is the opacity transfer function, ck is the color of sample sk, ↵acc is the
accumulated opacity, and I(s0, sNs�1) is the intensity value of all the projected samples
combined. If ↵(v) is close to one for one or two consecutive samples, ↵acc will quickly
approach a value of one. An ↵acc,k-value close to one means that the contribution from
ck+1, · · · , cNs�1 to the final value, I(s0, sNs�1), will be minimal. Hence, the iteration
can stop at i = k without loosing visible samples. This optimization technique is
known as early-ray-termination, and will significantly speed up the rendering algorithm
if an opaque material is rendered.

For visualization of cardiac ultrasound we want ↵acc to be close to one only when
a tissue interface has been encountered. If a sample of clutter noise is assigned a high
opacity value, cardiac tissue further behind will not be visible. It is said to be occluded
by clutter noise. The general goal in cardiac ultrasound visualization is therefore to
assign high opacity to cardiac tissue and low opacity to noise samples. This is a big
challenge for cardiac ultrasound since the backscattered signal level from tissue varies
a lot throughout the volume. The sample value distributions for tissue and noise
therefore always overlap to some degree. With a global OTF it is therefore impossible
to find a threshold that separates tissue from noise.

Volume rendering of a single volume has a complexity of O(NxNyNs), where NxNy

is the number of pixels in the output image. With Nx = Ny = Ns = 512 and a
required frame rate for 3D cardiac ultrasound between ten and twenty, we find that the
required number of FLOPS for real-time volume rendering of 3D cardiac ultrasound
is in the order of several GFLOPS. When calculation of gradients for shading and
more advanced processing is added per sample this number continues to grow with a
constant factor.

1.3.1 Adaptive volume rendering

As for adaptive beamforming, adaptive volume rendering means to derive and use
information about the data being visualized from the data itself. In the literature on
volume rendering this is known as feature enhancement or visibility driven visualization
[43–45]. The common feature of these techniques is how the sample opacity is
modulated in order to achieve visibility of relevant structures. If we somehow are
able to classify samples as cardiac tissue we can use this information as input to
an adaptive volume rendering algorithm, and by that achieve improved visibility of
cardiac tissue.

In Paper IV we extend the work by Honigmann et al. [46] on a global adaptive
OTF by formulating a regional adaptive OTF for visualization of cardiac ultrasound
volumes. This regional adaptive OTF is based on estimated statistics of the clutter
noise inside the left ventricle (the blood pool). The added complexity of this technique
is caused by the statistical estimation, which is basically a second volume rendering
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Figure 1.9: An example of a simulated ultrasound pressure field from a linear array
without focusing. The field was simulated using the simulator in Paper V.

(mean and variance projection) that has to be performed before the rendered image
is produced.

1.4 Ultrasound field simulations

Simulation of ultrasound probes are heavily used by researchers in order to test out
new algorithms and probe designs. A simulator for ultrasound probes typically works
by approximating the probe surface with discrete points or patches. In software it is
then possible to transmit a pulse from a given probe and measure its response in space
and time. Figure 1.9 shows a snapshot of a simulated pressure field from an unfocused
linear array emitting a continuous wave. The image was simulated with the simulator
from Paper V.

The most popular simulator for medical ultrasound field simulations is Field II
[47]. All simulations in both Paper II and III are produced with this simulator.
The Field II simulator applies a far-field approximation where each element is divided
into mathematical elements. All field points then needs to be in the far-field of these
small elements5. It is then possible to approximate the spatial impulse response for
a given probe by summing a trapezoid impulse response function originating from
each mathematical element in all field points [47]. A rough estimate of the number of
required FLOPS for calculating the spatial impulse response as it is done in Field II
is:

FLOPSField II = fs
w

c
NelementsNfield points, (1.25)

where fs is the sampling frequency, w is the width of the mathematical elements,
fs

w
c is the maximal number of samples in each trapezoid function, Nelements is the

total number of mathematical elements, and Nfield points is the number of field points.
The required number of FLOPS for a simulation at 100 MHz with 500, �/2 wide,
mathematical elements across a field of 0.5 million points is 6 GFLOPS in order for it
to complete after one second. If we want to simulate an ultrasound image the spatial

5l � w2

4� , where w is the mathematical element width, l is the distance to the field point, and � is
the wavelength of the transmitted pulse. For w = �/2 the approximation is valid for l > �/16.
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impulse response on both transmit and receive have to be calculated and convolved
in time. The response will also be di↵erent for each image line. Hence, more than
800 GFLOPS is required in order to complete a Field II simulation in one second with
the given example values and an image consisting of 70 image lines. Other simulators
have also been introduced which are faster but less exact than Field II [10].

For the simulator presented in Paper V the required number of FLOPS in order
to achieve a certain frame rate fFPS is:

FLOPSHOS = Nsource pointsNfield pointsfFPS. (1.26)

To simulate a field of one million points with several thousand source points at 50 FPS,
more than 100 GFLOPS is required. Note that this simulator evaluates a cosine and
sine function for each calculation, something which makes it even harder to achieve
the required throughput, since the GPU has less silicon devoted to such tasks (SFUs).

The above examples show that realistic and dense ultrasound simulations are
computationally demanding. On the other hand we find that the required amount
of processing is within the theoretical limits of modern CPUs and GPUs. Since
ultrasound field simulations are quite easy to accelerate in parallel it should be possible
to add increased interactivity to ultrasound simulations tools by utilizing parallel
programing and SIMD instructions. In addition to Paper V, several simulators have
recently accomplished this by leveraging the powers of GPUs [48–50].

1.5 Concluding remarks

All the presented problems in this chapter, except DAS beamforming, have in common
that they require a processing throughput of several GFLOPS. Comparing this to the
typical clock frequency of modern CPUs at 3 GHz we see that GFLOPS problems
quickly require parallel execution in order to achieve real-time performance. With
CPU threads the theoretical peak performance on an eight-core CPU increases to
24 GFLOPS. However, to reach a peak performance above 100 GFLOPS, SIMD
instructions on a CPU or SIMT instructions on a GPU have to be used. However, to
apply threads and SIMD instructions, it must be possible to divide the problem into
a large number of independent calculations.
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Chapter 2

Introduction to Papers

2.1 Motivation

The rapid development of computer game technology and accompanying programming
languages, as shown in Chapter 1, have recently provided researchers with small
personal supercomputers, comprised in a single graphics processing unit (GPU).
This immense rise in computational capabilities and improved programmability are
currently changing how ultrasound imaging systems are designed. Algorithms that
previously had to be implemented in hardware, for performance reasons, can now be
implemented in software. It is clear that high-performance programmable processors,
like the GPU, already have and will continue to make future ultrasound imaging
systems more flexible, cheaper to produce, and equipped with even more cutting-edge
processing.

The Capon beamformer in ultrasound imaging is a good example of an algorithm
that has been widely studied over the last decade where the number of calculations was
thought to be too high for real-time processing to happen in near future. As shown
in Section 1.2.4, an e↵ective processing rate of hundreds of GFLOPS is required to
achieve real-time processing for cardiac ultrasound imaging. This number, as explained
in Section 1.2.4, also grows with larger subarrays and an increasing number of samples
per second. Nevertheless, with modern GPUs, this amount of processing is finally
available within a single GPU card. When researchers are exploring new algorithms
for ultrasound imaging, it is important to keep the architecture of parallel accelerators
in mind. If a new complex algorithm is supposed to run in real time, it needs to fit
the programmable and parallel pipeline of modern ultrasound scanners.

2.2 Aims of study

The overall aim of this study has been to investigate the possibility of utilizing GPUs
for advanced processing in an ultrasound imaging system.

The main focus has been the Capon beamformer, and the problem of making
this computationally intense algorithm available for real-time ultrasound imaging
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[Papers I and II]. However, two additional methods have also been explored. The
first one being adaptive visualization of cardiac ultrasound volumes [Paper IV], and
the second one being the simulation of dense ultrasound pressure fields [PaperV].
Both share the property of being computationally complex, but on the other hand
they consist of many independent computations, which makes them perfectly suited
for parallel GPU acceleration.

Well into the project, when a real-time Capon beamformer was realized, and
loops of images for the first time were processed at real-time frame rates, new issues
where discovered and had to be solved. This led to a more theoretical study of
the Capon beamformer in Paper III, with special attention on how to obtain high
lateral resolution while preserving the important shift-invariant property of ultrasound
imaging. Shift-invariant behavior is crucial if the method is ever to be applied for live
scanning.

2.3 Summary of papers

2.3.1 Paper I

An Optimized GPU Implementation of the MVDR Beamformer for Active
Sonar Imaging
J. I. Buskenes, J. P. Åsen, C.-I. C. Nilsen and A. Austeng
IEEE Transactions on Oceanic Engineering, Jul 2014.

The first paper describes in detail how the Capon beamformer is mapped to the GPU
architecture. Even though the paper is written within the field of active sonar imaging,
the presented implementation is applicable to a range of active imaging systems. A
similar discussion for cardiac ultrasound imaging can be found in PaperVI. Active
sonar imaging typically di↵ers from medical ultrasound imaging by a less strict real-
time requirement and fewer array elements. This makes it somewhat easier to reach
the goal of real-time processing. The transmit beams used for sonar imaging are also
much wider than the once used for ultrasound imaging. This makes techniques like the
BS-Capon beamformer less attractive for sonar imaging. However, as shown in this
paper, low-complexity methods are not needed to reach real time Capon beamforming
for sonar imaging.

The estimation of the spatial covariance matrix receives special attention in this
study. In previous literature on Capon beamforming the matrix inversion has always
been regarded as the most computationally complex step. In this paper we show that
estimation of the sample covariance matrix is the most complex part when spatial
and temporal smoothing is performed with common parameters. We then show how
the computational complexity of this estimation procedure can be reduced from cubic
to square. Finally, an in-depth analysis of the arithmetic throughput on multiple
platforms is given. Despite our e↵orts, the number of e↵ective FLOPS is only 4 %
and 14 % of the theoretical throughput of the target GPU for the matrix equation
solver and covariance matrix estimator respectively. Still, the reported throughput
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of 1 Mpx/s on a high-end GPU is enough to provide real-time processing for sonar
imaging.

2.3.2 Paper II

Implementing Capon Beamforming on a GPU for Real-Time Cardiac
Ultrasound Imaging
J. P. Åsen, J. I. Buskenes, C.-I. C Nilsen, A. Austeng and S. Holm
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 61, no.
1, pp. 76-85, Jan. 2014.

The second paper aims at implementing real-time Capon beamforming for cardiac
ultrasound imaging. Achieving this will facilitate further study of the method’s in
vivo performance in the future. This is something that has been suggested as further
work in many publications on Capon beamforming for medical ultrasound imaging over
the past decade. In Paper I, arrays with no more than 32 elements were investigated.
A linear array for cardiac ultrasound imaging typically has 64 or more elements. In
PaperVI, which is summarized in Paper II, it is shown that our implementation
from Paper I does not reach the level of throughput required for real-time Capon
beamforming in cardiac ultrasound imaging. The matrices that have to be inverted
become to large, and the frames that need to be processed per second are too many.

In this paper, we implement the beamspace version of the Capon beamformer (BS-
Capon) on the GPU to reduce the covariance matrix size. For parameters that give
similar performance for BS-Capon and element-space Capon (ES-Capon), we show
that real-time BS-Capon beamforming is feasible for cardiac ultrasound imaging. The
reported processing throughput is able to keep up with the acquisition frame rate
in a typical cardiac ultrasound imaging system equipped with 64- and 96-element
linear arrays. Papers II and VI also present, for the first time, videos where the
ES-Capon and BS-Capon beamformer have been applied on loops of simulated and in
vivo medical ultrasound images.

2.3.3 Paper III

Capon Beamforming and Moving Objects - An Analysis of Lateral Shift-
Invariance
J. P. Åsen, A. Austeng and S. Holm
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, , vol. 61,
no. 7, pp. 1152-1160, Jul 2014.

In the third paper we study the shift-invariant property of an imaging system based
on the Capon beamformer. As mentioned, shift-invariant imaging is essential if the
method is ever to be used in practice. The paper is based on an observation of aliasing
artifacts when the Capon beamformer was used to image bright point scatterers in
vitro and in simulations. The intensity of the point scatterers were observed to oscillate
as either they or the probe moved. In earlier work on Capon beamforming for medical
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ultrasound imaging the real-time nature of ultrasound imaging has often been ignored,
and a large degree of oversampling on transmit might have been applied without this
being clearly stated. Oversampling on transmit will reduce the acquisition frame rate,
and is therefore not an option if the imaging system is used to image rapidly varying
objects. Smooth presentation of probe motion is equally important since real-time
user interaction is one of the key selling points of ultrasound imaging.

Further, it has been investigated how the Capon beamforming achieves its super-
resolution, and how this makes it highly sensitive to di↵erences between the assumed
steering vector and the signal propagation vector. Earlier work, focusing on single
images, has typically referred to this e↵ect as speed-of-sound errors, however, it
also comes naturally into play when objects move across an imaging sector which
has insu�cient lateral sampling. With a narrowband and farfield model it is shown
that the Capon beamformer su↵ers from lateral gain variations as large as 27 dB for
parameters previously used to obtain high resolution medical ultrasound images. To
obtain the same lateral gain variations as for DAS beamforming, 25 times oversampling
is shown to be required. The same gain variations are observed for broadband nearfield
simulations. Finally, we show that the gain variation can be reduced by oversampling
on receive using phase rotation steering, hence improving shift-invariance. This is
achieved without a↵ecting the acquisition frame rate and with only a minor increase
in computational complexity. The method is successfully applied on simulations and
in vitro phantom data.

2.3.4 Paper IV

Adaptive Volume Rendering of Cardiac 3D Ultrasound Images - Utilizing
Blood Pool Statistics
J. P. Åsen, E. Steen, G. Kiss, A. Thorstensen and S. I. Rabben
Proc. SPIE Medical Imaging 2012, vol. 8320, pp. 832008.

The fourth paper proposes an adaptive volume rendering method based on statistics
derived from the blood pool of the left ventricle. Noise located in the blood
pool tends to occlude cardiac tissue when rendered in 3D, and is often impossible
to remove by adjusting global rendering parameters. This is because ultrasound
signals have high variability within blood, as well as high variability within tissue,
even when heavily smoothed. Delineation of the blood pool is done by a state
estimation algorithm, capable of tracking the endocardium in real time. The final
visualizations are compared, with respect to location of tissue, by using a state-of-
the-art endocardium segmentation tool. The paper presents both quantitative and
qualitative results supporting the method’s improved capabilities of reducing tissue
dropouts and spurious structures inside the blood pool, leading to a maximized amount
of visible endocardium tissue. The proposed method is implemented on a GPU with
real-time frame rates as the result. This results shows that with modern GPUs it is
possible to add more advanced visualization methods to an ultrasound imaging system
and still have real-time performance.
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2.3.5 PaperV

Huygens on Speed: Interactive Simulation of Ultrasound Pressure Fields
J. P. Åsen and S. Holm
Proc. IEEE Ultrasonics Symposium 2012, pp. 1643-1646.

The fifth paper presents an interactive simulation tool capable of simulating dense
pressure fields from ultrasound arrays in real time. Simulation tools are heavily
used by researchers to test new algorithms and the performance of new array designs
prior to manufacturing. However, dense simulations involve extensive calculations and
computational time. With the presented simulator we aim at reducing the time needed
for calculating pressure fields by means of GPU acceleration. The tool is based on
Huygens’ principle, which describes di↵raction caused by a slit as the superposition
of several point sources located inside the opening. Thus, the simulator works by
accumulating the contribution from a collection of point sources in a set of observation
points. How the source and observation points are laid out is left for the user to
decide. Point sources positioned along a line will for instance simulate an ultrasound
array. The simulator is linked with both a painting interface for interactive drawing of
arrays, and a Matlab interface for precise scripting of array configurations. The main
contribution in this paper is the increased performance of the GPU implementation
compared with CPU and Matlab1 versions. Second, the painting interface provides a
neat way of demonstrating array beamforming principles in real time. We believe this
to be of great value both for array designers and when teaching array processing.

2.4 Main contributions

The main contributions of this thesis are:

1. a GPU implementation of the Capon beamformer.

2. a GPU implementation of the beamspace Capon beamformer.

3. achieving real-time beamspace Capon beamforming for cardiac ultrasound
imaging.

4. a first-time investigation of Capon beamforming applied on multiple frames in
medical ultrasound imaging (simulated, in vitro, and in vivo).

5. an analysis of shift-invariance of the Capon beamformer when applied to medical
ultrasound imaging.

6. a method for real-time reduction of blood-pool noise in volume renderings of
cardiac ultrasound volumes.

7. a GPU implementation of a painting tool for rapid simulation and visualization
of ultrasound pressure fields.

1The Ultrasim toolbox.
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In addition, the thesis provides several more general discussions on how to utilize the
GPU to accelerate advanced ultrasound imaging algorithms.

2.5 Discussion and future work

2.5.1 Paper I

As mentioned, we were only able to achieve a fraction of the peak theoretic throughput
of the target GPU in Paper I. This shows how hard it is to reach the theoretical level
of throughput, and that how close one can get is highly algorithm dependent. There
might be ways to improve on these numbers, but both the matrix equation solver and
the covariance matrix estimation step consist of several points where fine granular
synchronization and serialized instructions are needed. These facts will restrict even
the most finely tuned implementation from reaching the maximum throughput of the
GPU. The work in Paper I also showed that the covariance estimation kernel was
memory bound, hence there are not enough instructions to hide all the memory latency.
Further improvements through improved memory management could therefore be
possible.

An interesting observation in Paper I can be found in Fig. I.10. Here we see how
the achieved throughput of the covariance estimation kernel is more than three times
higher than the theoretical throughput of a high-end CPU (The target CPU is from
2010). Note that the target high-end GPU, the Nvidia Quadro 6000, is also from 2010.
This clearly shows the benefit of modern GPU computing.

The matrix equation found in the Capon beamformer is solved using a batched
Gauss Jordan solver implemented by Nvidia. In our work we focused on the
covariance matrix estimation step. Nevertheless, Paper I showed that the solver
had significantly lower throughput than the covariance matrix estimation kernel. A
natural next step would therefore be to analyze the current solver, and figure out if any
further optimization is possible. Since the sample covariance matrix is hermitian, a
solver based on Cholesky decomposition should also help to improve the throughput.
However, a triangular matrix can make memory management and finding the best
thread layout even more di�cult.

2.5.2 Paper II

In Paper II we focused on achieving real time Capon beamforming for cardiac
ultrasound imaging by implementing the BS-Capon beamformer on a GPU. However,
we also present the first medical ultrasound loops processed with ES- and BS-Capon
beamforming. The paper does not provide any detailed evaluation of the method’s
in vivo performance. Yet, initially it has been proven hard to transfer all results
obtained in simulations to in vivo images. Improvements are observed, but they are
not large enough to justify the large number of calculations involved with Capon
Beamforming. The beamformers are clearly able to decrease the lateral width of point
scatterers and thin structures in vivo, and to sharpen edges. On the other hand,
the observed contrast is not improved, and sometimes it is even worse (Fig. 6b of
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Paper II). Since the Capon beamformer only a↵ects directional noise, it is clear that
contrast will get worse in low SNR situations when signal cancellation occurs. The
oversampling approach presented in Paper III might improve on this, but it will only
reduce signal cancellation if the phase shifts across the aperture are close to linear and
small. Another issue is that bright points with a wide lateral profile exhibit better
visual contrast when surrounded by speckle noise than points with narrow lateral
profiles. Future work should address a detailed investigation of why some results,
especially the contrast obtained in simulations, are so hard to achieve in vivo. It will
also be crucial to show larger improvements in vivo than what is presented inPaper II,
both to justify all our computations, and to show an image with both highly improved
resolution and contrast.

As pointed out at the end of Paper II, cardiac ultrasound imaging might not
be the best modality for Capon beamforming. Cardiac ultrasound imaging was
mainly selected because it is the medical ultrasound modality that requires the most
calculations per second. A better suited adaptive beamformer for cardiac ultrasound
imaging might be the low-complexity adaptive beamformer (LCA beamformer),
where the Capon optimization problem is applied on a set of predefined windows.
This method has linear computational complexity and has similar super-resolution
properties as the Capon beamformer. If only minor improvements are obtained, it
would be easier to ignore this fact if the algorithm is less computationally costly.

The work in Paper II made it clear that interesting findings are done when a
real-time implementation makes it possible to watch the temporal behavior of an
algorithm. An observation of temporal artifacts was the fact that stimulated for the
work of Paper III.

2.5.3 Paper III

In Paper III we investigate the inherent self nulling of Capon beamforming, and
how this e↵ect comes naturally into play when the beamformer is subjected to linear
steering vector errors caused by lateral undersampling. This observation is something
which has been missing in the literature on Capon beamforming for medical ultrasound
imaging. The reason could be that researchers have focused more on the theoretical
aspects of Capon beamforming than on the practical aspects of ultrasound imaging.
A lack of studies where Capon beamforming is performed on consecutive frames might
also explain the lack of discussions on this theme. Fortunately, as shown in Paper III,
it is possible to maintain the same acquisition frame rate as for DAS beamforming by
applying oversampling on receive using a set of steering vectors (phase delays). It
also turns out that more matrix inversions are not needed either. Oversampling on
receive will, however, increase the penalty of applying post-processing, like filtering,
on polar-grid data.

As just mentioned in the discussion of Paper II, reduced signal cancellation
should prevent contrast from degrading to less than the contrast obtained with DAS
beamforming. With improved shift invariance it will also be interesting to see if high-
resolution beamforming could act as a post-processing step for other algorithms, for
example to increase the precision of speckle and edge tracking. In the case where
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the image is generated for post processing it does not need to be visually pleasant
anymore, as long as signal cancellation is avoided and the shift-invariance property
is maintained. DAS-like speckle has been the driving force behind many of the
robustification techniques and the default parameters seen in the literature. Hence,
more aggressive parameters might be used if the image produced is intended as input
to another algorithm and not for the human eye.

2.5.4 Paper IV

One limitation of the algorithm described in Paper IV is its dependence on a
successful tracking. If the tracking fails, then the proposed method will fail. Another
issue is the view-dependent visibility, where an object could become visible or
disappear while rotating or if the local statistics change a lot during the cardiac cycle.
Even if the method successfully removes noise, this means that the rendering will
become non-intuitive to interact with and unrealistic to watch. However, the method
could still be used to clean up still images of standard cardiac views.

The paper does also propose an interesting method for automatic tuning of
rendering parameters. Figure IV.3d in Paper IV actually shows that an optimal
threshold could be found based on global and not only local statistics. Even though
the visualization based on global statistics has more errors with respect to endocardium
visibility, the tuning of the opacity function is still automatic if an iterative search for
the minima in Fig. IV.3d is performed. A global opacity transfer function will insure
a rendering which is realistic, but it will still be dependent on a successful tracking for
the auto-adjustment to work.

An automatically tuned opacity transfer function based on global statistics
combined with an improved smoothing scheme is likely to be better suited for cardiac
ultrasound imaging than a local opacity transfer function. A local opacity transfer
function is just too extreme to be clinically robust.

For future work, it would also be interesting to see if statistics based on the weight
vector selected by the Capon or the LCA beamformer could be utilized to control local
opacity modulations. It should also be possible to use this statistic as input to image
filtering. An adaptively selected weight vector will be symmetric in homogeneous
regions, and left-right shifted close to tissue interfaces. In that way we can, with
improved confident, apply less smoothing and higher opacity values at tissue interfaces.
If this will be di↵erent than just looking at neighboring pixels in an edge-preserving
image filter is to be seen.

2.5.5 PaperV

The fifth paper stands out from the other papers by not dealing with an adaptive
processing technique. However, it is still centered around the topic of implementing
algorithms for ultrasound imaging on the GPU. Ultrasound simulations are typically
used for research and sometimes also to pre-calculate configurations of a given scan
sequence, for instance to achieve a certain pressure in a given area. The continuous
growth in computational power will in the future make it possible to evaluate a scan
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sequence on the fly. For example to improve the estimation of the mechanical and
thermal index. It will also add improved interactivity to ultrasound simulation tools.

Achieving higher processing speed for an existing algorithm by implementing it on
a new architecture is not academically relevant in its own. A good analysis has to be
given of how the algorithm was modified for the architecture, or how to utilize the
gained speed. These are points we have tried to answer in both Paper I, II, IV, and
V.

In PaperV the increased speed made an interactive painting ultrasound
simulation program feasible. As of January 2014 the simulator has been download
200 times and counting2. It also has close to a 1000 views on Youtube3.

2.6 Multimedia content

In Paper II and III there will be references to several videos that can be accessed
online4. There is one folder for each paper having multimedia content.

2.7 Software

Finally it is worth mentioning that the code for both the Capon beamformer5 and the
ultrasound field simulator6 have been released under an open source license.

2folk.uio.no/jpaasen/huygens
3youtube.com/watch?v=rLgsfskliJM
4folk.uio.no/jpaasen/thesis
5github.com/jpaasen/cos
6github.com/jpaasen/hos
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I.1. Introduction

The Minimum Variance Distortionless Response (MVDR) beamformer
has recently been proposed as an attractive alternative to conventional
beamformers in active sonar imaging. Unfortunately, it is very
computationally complex because a spatial covariance matrix must be
estimated and inverted for each image pixel. This may discourage its use
unnecessarily in sonar systems which are continuously being pushed to ever
higher imaging ranges and resolutions.
In this study we show that for active sonar systems up to 32 channels,
the computation time can be significantly reduced by performing arithmetic
optimizations, and by implementing the MVDR on a Graphics Processing
Unit (GPU). We point out important hardware limitations for these devices,
and assess the design in terms of how e�ciently it is able to use the GPU’s
resources. On a quad-core Intel Xeon system with a high-end Nvidia GPU, our
GPU implementation renders more than a million pixels per second (1 MP/s).
Compared to our initial CPU implementation the optimizations described
herein led to a speedup of more than 2 orders of magnitude, or an expected
5-10 times improvement had the CPU received similar optimization e↵ort.
This throughput enables real-time processing of sonar data, and makes the
MVDR a viable alternative to conventional methods in practical systems.

I.1 Introduction

Data driven methods have been introduced in various imaging fields over the years
in attempts to improve image quality. One such method is the Minimum Variance
Distortionless Response (MVDR) beamformer. When compared to conventional
methods, MVDR is often able to improve image contrast and resolution, as shown
in e.g. radar [1], ultrasound [2], and active sonar [3–6].

Despite its inherent potential, the MVDR beamformer has yet to see widespread
adoption in the active sonar field. There may be several reasons for this. For
one, the method is not inherently robust, and may su↵er from a phenomenon called
signal cancellation in active systems [7]. Another reason is that in its original form,
the computational complexity is cubic with the number of channels, O(M3), while
conventional beamformers are at O(M). This is because a spatial covariance matrix
is estimated and inverted for each image pixel.

To ensure MVDR robustness, the literature suggests combining means such as
temporal and spatial averaging, and regularization [8, 9]. The complexity issue, on
the other hand, can be handled by introducing well-founded approximations. For
instance, some studies assume data stationarity which allows the formation of a
Toeplitz-structured covariance matrix that is simpler to invert [10, 11]. Other studies
perform MVDR beamforming in beamspace (the spatial frequency domain), which can
be considered sparse due to the limited angular extent of the received beam [8, 12].
Exploiting this can lead to considerable performance improvements, especially in high
channel count systems.

In this work, we show that such approximations may not be necessary for sonar
systems up to 32 channels, since here the computation time can be reduced by 1-2
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orders of magnitude by implementing MVDR on a Graphics Processing Unit (GPU).
Similar work may be found in e.g. medical ultrasound imaging, where Chen et al.
have demonstrated a GPU implementation of the MVDR that operates on real valued
data [13, 14]. While this implementation is fast, the real valued data constraint does
not allow the creation of asymmetric and shifted responses, and hence prevents the
MVDR’s potential to be fully reached. Our implementation is not restricted in this
manner.

Our implementation is adapted to a well sampled 100 kHz wideband active sonar
system operating in the near field. The system has a range resolution comparable to
the sample period so our MVDR implementation runs in near single snapshot mode. To
deal with this and to avoid signal cancellation we compute and average the covariance
estimates from overlapping subarrays [9]. This may resemble techniques such as
”subarray MVDR” [15], but unlike that technique we are not using subarrays to reduce
complexity but to make it feasible to use MVDR in an active system. In related work,
we investigated using the same MVDR GPU implementation in cardiac ultrasound
imaging [16, 17], and in active sonar imaging we have compared the performance of
this implementation to comparable adaptive methods [18].

This article is outlined as follows: In section I.2 we introduce the concept of
adaptive beamforming and provide details on the MVDR method. Then in I.3 we
investigate the complexity issue, discuss means for reducing arithmetic complexity,
and detail an implementation that makes e�cient use of the GPU’s parallel resources.
The final design is assessed in I.4-I.5, where we provide benchmarks, comparisons with
similar CPU implementations, and measures of how e�ciently our implementation
makes use of the GPU’s resources.

I.2 Methods

Consider a sonar imaging scenario where an encoded signal is transmitted to highlight
a surface of interest, and assume that the backscattered wavefield is properly sampled
using a uniform linear array of receivers. An image can then be formed by coherently
combining the receiver outputs to focus at one angle at the time. The principle
of adjusting the array’s focus in range and direction is commonly referred to as
beamforming, and involves assigning suitable delays and weights to the array’s
channels.

I.2.1 Beamforming

Let the receiver be an M element uniform linear array, and assume that the signature
of the transmitted signal has been removed by a matched filter (Fig. I.1). Further
assume that the array channels are digitally delayed to focus at a pixel with azimuth
angle ✓ and range sample n, such that the delayed data from the mth channel can be
expressed as xm[✓, n]. To simplify notation, we make the dependence on ✓ implicit
from now on.

By definition the beamformer output z[n] can now be expressed as the weighted
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Figure I.1: Beamforming principle. Signal signature is first removed by matched
filtering. Then - before summation - a suitable set of delays, �, and weights, w, are
applied to focus on a pixel of interest at angle and range (✓, n).

sum of all the delayed data samples:

z[n] = w

H [n]x[n] =

2

6664

w0[n]
w1[n]

...
wM�1[n]

3

7775

H 2

6664

x0[n]
x1[n]
...

xM�1[n]

3

7775
, (I.1)

where wm is the weight factor assigned to channel m. With static weights this
would be referred to as the conventional delay-and-sum (DAS) beamformer. A large
variety of weighting functions exists here for trading lateral resolution for improved
noise suppression (contrast), but one always ends up with a compromise between the
two [19].

Various adaptive beamformers target this limitation by allowing the weights to
change for each pixel to better fit the dynamic nature of the incoming wavefield. In
other words, they attempt to use the a priori information present in the data to
improve image quality. The MVDR beamformer is one such method. It finds the set
of complex weights that minimizes the beamformer’s expected output power, while
ensuring unity gain in the look direction [20]. This is a convex optimization problem
that can be solved using Lagrange multipliers to yield the solution:

w[n] =
R

�1[n]a

a

T
R

�1[n]a
, (I.2)

where a is a steering vector and R = E{x[n]xH [n]} 2 CM,M is the spatial covariance
matrix for the full array. Since we pre-steer our data to every pixel in the image
we simplify (I.2) by substituting a with a row vector 1 that represents broadside
phase-steering. To estimate R we compute a sample covariance matrix R̂. In this
computation we perform some degree of:

• spatial averaging to avoid signal cancellation by decorrelating coherent echoes [9],
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• temporal averaging over an interval comparable to the pulse length (1-5 samples)
to maintain true speckle statistics [21], and

• diagonal loading to improve robustness to parameter errors [22, 23].

Combined, these steps will also ensure a numerically well conditioned R̂.
We perform temporal and spatial averaging first and put the result in an

intermediate sample covariance matrix R̆. To do this we need to segment our array
into subarrays. If we let xl[n] represent the data vector from subarray l,

xl[n] =
⇥
xl[n] xl+1[n] . . . xl+L�1[n]

⇤T
, (I.3)

then R̆ can be calculated as:

R̆[n] =
1

NKNL

M�LX

l=0

n+KX

n0=n�K

xl[n
0]xH

l [n
0] 2 CL,L, (I.4)

where NK = 2K + 1 is the number of temporal samples to perform averaging over,
and NL = M � L+ 1 is the number of subarrays.

The final estimate R̂ is found by adding a fraction d of the total power of R̆[n] to
its diagonal [2]:

R̂[n] = R̆[n] + I

d

L
tr{R̆[n]}, (I.5)

where I is an identity matrix, tr{·} represents the matrix trace operation, and tr{R̆[n]}
is an estimate of the energy received from this pixel.

Note how subarray averaging led to a size reduction of R̂ from CM,M to CL,L, and
hence will produce an L-element weight set when substituted into (I.1). This weight
set is applied to all the subarrays, before computing the beamformer output as in (I.1).
Or, equivalently, we may apply the weight set to the sum of all the subarrays:

z[n] = w

H [n]
M�LX

l=0

xl[n]. (I.6)

As summarized in Fig. I.2, the MVDR method is applied to each pixel independently,
by:

1. computing the sample covariance matrix R̂ in (I.5),

2. computing R̂

�11 in (I.2), and

3. computing the beamformer output z in (I.6).

Next we will evaluate these steps in terms of arithmetic complexity, and then discuss
their mappability to parallel hardware.
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Figure I.2: MVDR beamforming. For each pixel in range and azimuth,
1. an L⇥ L sample covariance matrix R̂ is computed,
2. the term R̂

�11 is found using a linear equation solver,
3. and the beamformer output z is computed from (I.6), where w is found by
substituting R̂

�11 into (I.2).

I.2.2 Computational Complexity

If we neglect spatial and temporal averaging, then the computation of R̂ is reduced to
a single outer product with complexity of O(M2), and the inversion is then of O(M3).
This might lead us to believe that the inversion step is by far the most complex. But
if we implement spatial and temporal averaging as in (I.4), then computing R̂ is of
O(NKNLL

2) and the inversion of O(L3). Computing R̂ is now the most complex
operation whenever NLNK > L. To visualize these relations, and include the e↵ects
of using complex numbers, we set up complexity formulas that account for the total
number of arithmetic operations for each step in the MVDR process (see appendix
I.7.1). The only excluded operation was partial pivoting used in the inversion step,
but this should contribute marginally to the end result. The entire range of possible
subarray sizes from L 2 [1,M ] was finally evaluated, with temporal averaging set to
K 2 {0, 1, 2}, and the number of channels set to M 2 {8, 16, 32}. The results are
shown in Fig. I.3.

Note how the computation of R̂ completely dominates at smaller subarray sizes,
that solving R̂

�11 only plays a notable role for larger array and subarray sizes,
and that the computation of z has a negligible impact on computation time. Also
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Figure I.3: Per-pixel computational complexity of the steps in MVDR beamforming
(before any optimizations). To avoid signal cancellation in an active sonar system
we usually set L < M

2 , in which region the computation of R̂ dominates in terms of
arithmetic complexity, especially when performing temporal averaging.

notice how temporal averaging comes with a high computational penalty. This is
because building R̂ is heavy on complex multiplications, which require 3 times as
many arithmetic instructions as a complex addition, and a lot of these are repeated
unnecessarily.

I.3 Mapping the MVDR to a GPU

An important feature of MVDR beamforming, as with beamforming in general, is that
each pixel can be computed independently and in an identical fashion. Furthermore,
a typical sonar image may contain millions of pixels. This represents a level of data
parallelism that appears very well suited for a massively parallel architecture such as
the GPU.
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We decided to investigate the feasibility of running MVDR on a GPU by mapping
it to a Nvidia GeForce Quadro 6000, which performs similarly to the consumer grade
Geforce GTX 480. This is a high-end Compute Unified Device Architecture (CUDA)
enabled GPU based on Nvidia’s Fermi architecture, which as now been superseded by
the Kepler architecture. The code was written in Nvidia’s “C for CUDA” framework,
which adds a few extra features to the C language to specify how to distribute work
across a large number of threads. It would have been possible to use GPUs from
AMD and the cross-platform OpenCL framework from the Khronos group instead,
but CUDA has a batch linear equation solver [24] that no OpenCL library provides.
As will be discussed later, this is a key component in our design.

To use Nvidia’s own terminology, the Quadro 6000 is comprised of 14 streaming
multiprocessors (SMs), each having 32 CUDA cores that execute a common program
called a kernel. Combined these cores deliver a peak performance of more than
1 Tflop/s (appendix I.7.2). In practice this performance is hard to obtain, but one can
get fairly close by balancing the load evenly on all cores, and by trying to avoid that
some cores are forced to idle due to a pending data transfer or thread synchronization.
As the steps in the MVDR method require di↵erent strategies for achieving this, we
have designed a di↵erent kernel and configuration for each of them. We will pay
particular attention to building R̂, since the potential for gaining overall speedups are
greatest here.

I.3.1 Computing the Spatial Covariance Matrix, R̂

As observed in Fig. I.3, a direct computation of R̂ by implementing (I.4) and (I.5) is
the greatest computational burden. We target this issue by first minimizing arithmetic
operations, then aim to get as close to the peak arithmetic throughput on the GPU as
possible.

Minimizing Arithmetic Operations

In Fig. I.4 we illustrate how to reduce the arithmetic complexity of building R̂ in a
system with M = 5 sensors, a subarray size of L = 3 and temporal averaging is set
to K = 1. Here the spatial sum is carried out before the temporal sum. To reduce
arithmetic operations we may:

1. exploit the fact that R̂ is Hermitian positive semi-definite to compute only one
half of it,

2. avoid redundant multiplications, and

3. avoid redundant summations by first computing the upper row of R̂ and then
add/subtract to these iteratively to find the diagonals of R̂.

To study the e↵ect of these optimizations we altered the complexity formulas to
take them into account. Exploiting symmetry and performing iterative summing (step
1 and 3) is always desirable, but avoiding redundant multiplications (step 2) comes
at the cost of increased memory consumption. When all optimizations are applied
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Figure I.4: Step 1: Building R̂. This is a visualization of how R̂ could be built in
a case with M = 5 sensors, with subarray size L = 3 and temporal averaging set to
K = 1. Here R

0
l is the sample covariance matrix for the lth subarray, and R̆ is the

average of NK of these. Note that instead of performing the temporal sum last as
here, one could take more temporal samples into consideration in the computation of
each rij .

we call it a ”minimum instructions” solution, and when step 2 is left out we call it a
”minimum memory” solution. Fig. I.5 compares the two solutions, and formulas may
be found in appendix I.7.1. Here the complexity curves are relative to the reference
implementation in Fig. I.3. Both solutions reduce the complexity considerably, and
recomputing the multiplications does not make that much of a di↵erence. We selected
the memory minimized version since our algorithm is severely memory bound, as we
will see next.

Arithmetic Throughput

When we compute R̂, we very rarely perform more than 1-3 floating point operations
for every float read or written to memory. Unfortunately, the GPU prefers kernels to
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Figure I.5: Arithmetic optimization of computing R̂: Relative reduction in arithmetic
complexity compared to the initial implementation shown in Fig. I.3 (higher is better).
Note how the arithmetic count is reduced by a factor 4-10 in the memory optimized
case, and by a factor 6-22 in the instruction optimized case.

be more arithmetically intensive than this. This can be inferred from Table I.1, where
the peak bandwidth of the three types of GPU memory are compared to the peak
arithmetic throughput (see appendix I.7.2 for derivations). Global memory (RAM),
in which all data must reside at some point, is at best only able to move one float for
every 30 floats processed by the CUDA cores, and potentially much worse if care is not
taken to use ”coalesced” memory access patterns (that avoid memory bank conflicts).

Barith Bmem Bmem/Barith

Arithmetic 1.03 Tflop/s
Global memory 36 Gfloats/s 1:30
Shared memory 257 Gfloats/s 1:4
Registers >1.5 Tfloats/s >3:2 [25]

Table I.1: Nvidia Quadro 6000: Memory throughput, Bmem, compared to arithmetic
throughput, Barith.

46



Chapter I. GPU MVDR Beamformer for Active Sonar Imaging

Figure I.6: MVDR implementated on a GPU. We do this in 3 steps, where each
step process the full image before moving on to the next step. Step 1 : The
sample covariance matrix R̂ is formed by threads running along its diagonals. This
allows spatial averaging to be implemented in a computationally e�cient manner and
minimizes inter-thread communication. Step 2 : R̂�11 is computed using the heavily
optimized batched linear equation solver from Nvidia [24]. Step 3 : The beamformer
output z is computed in a straight forward fashion using L threads that first sum the
subarrays and then apply the MVDR weighting function. A single thread finally sum
all the channels up.

This is why the usage of global memory should be minimized. Shared memory, on the
other hand, is a very fast level 1 cache that is shared by all threads on an SM. At peak
performance it is almost able to keep up with the computing units, but to obtain this
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performance we must make sure that:

1. the data needed to compute a pixel can fit in shared memory, while

2. the access patterns we use promote maximum bandwidth.

These challenges are very closely linked. Since the Quadro 6000 architecture is of
compute capability 2.0, it has 48 kB shared memory (L1 cache) and 128 kB registers
per streaming multiprocessor (SM) [26]. This memory is shared by all active threads
on that SM, a number that should be no less than 768 [27]. This is to expose a
su�cient level of data parallelism to ensure that memory latency is completely hidden
(in accordance with Little’s law). If we divide the shared memory evenly on all 768
threads we find that each thread should store no more than 8 single precision complex
numbers in shared memory, and 24 stored in registers. This should make it apparent
why computing a single pixel per thread is a bad idea, and why we need to keep each
thread as light on memory consumption as possible.

In Fig. I.6 we illustrate how we get around these challenges. First we make each
SM compute entire range lines of pixels, then load the subset of x that all these pixels
depend upon into shared memory. This lets us perform temporal averaging without
having to read additional channel data.

Second, we assign L threads per pixel to traverse the diagonals of R̂. On the top
row a full computation is carried out, then that row is saved back to global memory
following a coalesced access pattern that maximizes global memory bandwidth. For
subsequent rows the threads move along the diagonals while performing iterative
summations; the result from the previous element on the diagonal is updated by adding
and removing the correlation coe�cients that enters and exits the sum, respectively.
To minimize memory consumption, we compute the coe�cients again every time we
need them. When a thread has finished up a diagonal, we have them wrap around
to compute one of the diagonals in the lower triangular of R̂. Since R̂ is conjugate
symmetric, the values in the leftmost column is obtained by a complex conjugate copy
of the relevant value in the first row. This is slightly non-optimal as it causes divergent
branching, but is needed because the solver is Gauss Jordan based and thus require
a full R̂. Combined these steps balance the load evenly on all threads, is almost
completely free of arithmetic redundancy, and consumes less memory.

I.3.2 Solving R̂

�11

As intuition might suggest the matrix product R̂

�11 can be carried out by first
inverting the matrix R̂, then performing the inner product with 1. However, one can
also solve the linear equation R̂b = 1 for b, where b = R̂

�11. This is the preferred
approach since the solution is obtained directly and without the added computational
cost of the final inner product.

An important thing to note, however, is that unlike the problems most GPU
libraries tries to solve we do not attempt so solve large linear equations or invert
large matrices; our matrices are small, but we have a very large number of them.
Fortunately Nvidia recently released a highly optimized batched linear equation solver
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tailored for this particular task. It is Gauss Jordan based and supports partial pivoting
and complex numbers. The only downside to using it in our application is that it does
not exploit the Hermitian property of our sample covariance matrix. A better choice
would be a solver based on Cholesky decomposition. These are designed for Hermitian
positive semi-definite matrices such as our covariance matrix, and require only half the
arithmetic operations of a Gauss Jordan solver.

I.3.3 Computing z

The beamformer output z is computed on a per-pixel basis by first computing the
MVDR weights w, which are merely scaled versions of R̂�11 (I.2). Then the sum in
(I.6) is found by assigning a group of L threads to respective elements of xl, which
then proceed to accumulate these for all NL subarrays. The resulting data vector is
finally multiplied with the weight vector using the same threads, and then a single
thread is used to sum these products to obtain z.

I.3.4 Implementation summary

The GPU design is summarized and compared to our CPU designs in table I.2.

GPU CPU
Pixel processing In batches One by one
Threads per pixel Multiple One
1. Building R̂:
Values computed All Only upper triangular
Optimization Minimized memory

consumption
Minimized number of
instructions

2. Computing R̂

�11:
Method Nvidia’s batch

Gauss Jordan solver
Custom inline
Cholesky solver

Cache utilization E�cient Not e�cient
Data transfers Minimum Moderate

Table I.2: Implementation summary.

I.4 Images and Benchmarks

To demonstrate the imaging capability of the MVDR beamformer, we have processed
experimental datasets from the M = 32 element Kongsberg Maritime HISAS1030
sonar mounted on a HUGIN AUV [28]. HISAS1030 is a high resolution synthetic
aperture sonar with an array length of 1.2 m, operating frequency of 100 kHz, and
bandwidth of 30 kHz. The element size and spacing is 2.5� and the opening angle is
25�. To produce the image shown in Fig. I.7 the sonar was operated in sidescan mode.
The studied object is the 1500 dwt oil tanker wreck Holmengraa. It is 68 m long and
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Figure I.7: HISAS sidescan sonar (SSS) image of the shipwreck Holmengraa that lies on
a slanted seabed at 77 m depth outside of Horten, Norway. The image was processed
with M = 32, L = 16, K = 1 and d = 1%. The image was linearly upinterpolated by
a factor 2 in azimuth making its total size 1.46 megapixels (MP). Note how MVDR
improves edge definition and reduces noise in shadow regions.

9 m wide, and lies at a slanted seabed at 77 m depth outside of Horten, Norway. The
1 megapixel (MP) MVDR image were here processed with parameters L = 16, K = 1,
and d = 1%.

The computational performance of our implementation was first assessed on a test
system with a quad-core Intel Xeon E5620, 64 GB of RAM and an Nvidia Quadro 6000
card. The results were obtained by processing a 1 MP image from the data from a 32
channel array, for all subarray sizes L, and for K 2 {0, 1, 2}. Run-time measurements
are shown in Fig. I.8, the run-times of memory-only and arithmetic-only GPU kernels
are depicted in Fig. I.9, and an estimate of computation e�ciency is presented in
Fig. I.10. We were also granted a test drive at the Boston HPC centre on a machine
with an Intel Xeon E5-2670, 32 GB RAM and an Nvidia K20. The results from this
run are shown in Fig. I.11.

As seen in the run-time comparisons presented in Fig. I.8, the GPU method became
2-3 orders of magnitude faster than the C implemtation we started out with. The
remaining bottleneck in the final design is the inversion step, which is typically 5
times slower than the build step. In most cases the processing speed of the Quadro
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Figure I.8: MVDR benchmarks. A 1 MP image from a M = 32 channel array was
processed for all L, and for K 2 {0, 1, 2}.
Top: The time the GPU spent on building R̂, solving R̂

�11, and computing z. Note
the major speedup of building R̂ when compared to the complexity plot in Fig. I.3.
Bottom: Compared to a reference MATLAB and single thread C implementation
running on a CPU the GPU o↵ered a speedup of 2-3 orders of magnitude, but these
numbers are somewhat misleading. If the C implementation was properly optimized
we expect the GPU to be no more than a factor 5-10 faster, even if its theoretical peak
performance is 20 times higher than that of the CPU.

6000 is above 1 MP/s, and this was only improved by a factor 1.5-2 when run on the
new K20 GPU. The benchmarks of our memory-only and arithmetic-only kernels show
that the kernels spend roughly the same time on both these tasks, so optimising only
one of these further will have marginal impact. All GPU kernels were compiled with
nvcc at optimization level O2. Excluded from these benchmarks is the data transfer
time from CPU to GPU, which account for 2-20% of the total processing time. We
believe it makes little sense to include them since it keeps getting easier to perform
these data transfers in parallel by o✏oading the task to the Direct Memory Access
(DMA) controllers present on modern GPUs. Furthermore, the data rates in active
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this plot we can infer that the kernel building R̂ is memory bound, as the time the
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can see that building R̂ su↵ers from with the chosen parameters.

5 10 15 20 25 30

L

0

20

40

60

80

100

120

140

160

T
h
ro
u
gh

p
u
t
[M

fl
op

s/
s]

Quadro 6000

Xeon E5620

peak 1 Tflop/s

peak 43 Gflop/s

All steps mean

Step 1: Build R̂

Step 2: Solve R̂�11

Step 3: Computing z

Figure I.10: Code e�ciency. An estimate of the number of floating point operations
per second (Flop/s), found by dividing the theoretical complexity curves by actual
run-times. This is a crude measure as it does not include any other instructions than
the actual arithmetic operations in the MVDR computation.

sonar are relatively low compared to the bandwidth available for these transfers.
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Figure I.11: MVDR benchmarks from Boston HPC centre with the new high-end
Nvidia K20 Kepler GPU. The exact same scenario and code as in Fig. I.8 was
used here. With no code alterations the performance was only improved marginally
compared to running on the Quadro 6000.

I.5 Discussion

In accordance with previous studies, Fig. I.7 demonstrates the MVDR beamformer’s
ability to produce images with suppressed interference and improved detail resolution.
Compared to the DAS beamformer, the ship’s edges appear sharper and the
shadows less noisy. In this scenario the MVDR’s performance was not particularly
sensitive to parameter adjustments. Similar performance was obtained with arbitrary
combinations of L 2 {12, 16, 24}, K 2 {1, 2, 3} and d 2 [0.01, 0.05], and no adjustments
had to be made when processing other parts of the scene.

As observed in Fig. I.8 the combination of minimizing arithmetic operations and
implementing the MVDR on a GPU lead to a significant improvement in processing
speed. Compared to a MATLAB and single thread C implementation an order 2 and
3 speedup was achieved, respectively. Note that we do not consider this comparison
fair. In fact, the theoretical peak throughput of this GPU is roughly 20 times higher
than that the CPU in question, meaning the potential of the CPU was far from
reached in our initial implementations. The key reason for this is that the GPU design
process pixels in batches, which allows us to minimize data transfers and maximize
the use of fast memory cache. In other aspects the designs are similar, both CPU
implementations compute R̂ e�ciently, and they make use of either an optimized
custom Cholesky based solver or one from the Intel Math Kernel Library (MKL).
Unfortunately we had little time to write a custom batch based solver and covariance
builder for the CPU, but we expect the speed di↵erence to be 5-10 times if we had
compared two such designs.

Note from Fig. I.8 how the building of R̂ now only takes up a fraction of the total
processing time, and recall that it was the other way around when we presented the
theoretical complexity curves in Fig. I.3. Also, the benchmark curves for building
R̂ now seem linear. The main reason for this is that the optimization step negated
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much of the extra complexity introduced by averaging, i.e. reduced the complexity
from O(NKNLL

2) to less than O(L2). Another reason for the run-time to appear
more like O(L) is likely that our design makes better use of the GPU’s resources when
there is more processing involved per pixel. The inversion step, on the other hand,
gains less from being implemented on a GPU. This is because its nature is less data
parallel. In particular, the back substitution step involved in its computation is mostly
sequential. This di↵erence can be observed in Fig. I.3. Alternative solvers, such as one
based on Cholesky decomposition that exploits the Hermitian property of R̂, can in
theory reduce complexity by a factor two, but we question whether this result can be
obtained in practice using a GPU. The CPU implementations perform Cholesky based
inversion, but this does not explain why the C and MATLAB implementation have a
total run-time that is linearly dependent on L. We believe this happens because these
implementations are dominated by the calculation of the covariance matrix and data
movement, and not by the inversion step.

When optimizing a GPU design it is important to know whether it is limited by
memory bandwidth or arithmetical throughput. To measure this we made two versions
of the MVDR kernel, one that only performs arithmetic operations, and one that only
performs memory operations. Then we benchmarked these kernels and compared
their run-times to the total run-time (Fig. I.9). A first thing to note is how these
kernels seem equally occupied performing memory and arithmetic operations. This is
a good sign, but since we consistently minimized memory consumption at the expense
of some extra computations when building R̂ , we know it to be bound by memory
bandwidth. It also has a problem with latency, which can be inferred from the total
run-time being significantly higher than that of the two single-function kernels. Since
the GPU hardware can carry out memory and arithmetic operations concurrently and
independently, this gap indicates that the GPU sometimes does “nothing”. In our case
this is due to synchronization hold-ups when performing temporal averaging, which is
carried out in a sequential manner.

Even with all our e↵orts we were only able to obtain processing rates of 40 GFlop/s
on average in the desirable range of subarray sizes (Fig. I.3). This is mainly due to
the inversion step, since we for the most part obtained more than 100 GFlop/s when
building R̂. While these numbers are slightly underestimated, they are regardless
far away from the Quadro 6000’s peak of 1 TFlop/s. Again, we believe this is due
to the design being bound by memory bandwidth. This belief is further supported
by the test results from running the code on the new K20 Kepler card, where we
saw a modest factor 1.5-2 speedup. Although the Kepler card peaks at 3.5-4 Tflop/s,
its shared memory bandwidth is only approximately twice that of the Quadro 6000,
hence matches the observed speed-up. However, it is likely that the Kepler card would
perform better had we optimized our design for it. For scientific computing the Kepler
boards are considered more attractive, with the introduction of features such as kernels
calling kernels, more registers, more shared memory, and better mechanisms for hiding
or removing data transfers.
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I.6 Conclusion

The MVDR beamformer is an algorithm capable of producing images with improved
detail resolution and contrast compared to conventional DAS beamforming. The
downside is its inherent need for robustification and the high computational complexity
associated with estimating and inverting the spatial covariance matrix.

We have shown that for systems consisting of up to 32 channels the problem can
be largely mitigated by building the covariance matrix in a clever way, and by making
use of the massive computational power available in modern GPUs. We were able to
improve upon the run-time of a single thread C-implementation by roughly two orders
of magnitude. For most choices of parameters the GPU was able to create images
at ⇠1 MP/s at an average data processing rate of ⇠40 GFlop/s. This is less than
5% of the peak performance of the GPU, but we believe it to be near optimal given
the constraints of memory bandwidth and the sequential nature of some parts of the
MVDR implementation.

All in all, the MVDR maps well to the GPU since the computations involved are
independent on the pixel level, and partially also within each pixel. The GPU allows
MVDR to be used in real-time processing of sonar data, and makes the MVDR a
viable alternative to conventional methods in practical systems.

I.7 Appendices

I.7.1 MVDR Complexity Formulas

To estimate the number of floating point operations needed to MVDR beamform a
single pixel, we formed expressions that accumulate the number of complex arithmetic
operations found in the MVDR process. From observing the generated assembly code
we inferred that each complex addition and multiplication would require Oa = 2 and
Om = 6 floating point operations, respectively. The formulas are listed for each step
below for reference.

Building R̂. The initial complexity of this step can be inferred directly from (I.4)
and (I.5):

OBuild R̂
initial

= OmNkNlL
2

| {z }
Multiplications

+Oa(Nk +Nl � 2)L2

| {z }
Additions

+Odload, (I.7)

where Odload = (2L � 1)Oa + Om is the minor cost of performing diagonal loading.
If we apply the optimization strategies discussed in section I.3.1 we can arrive at the
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following instead:

OBuild R̂
min arith

= Om
M +Nl

2
L

| {z }
Multiplications

+Oa(Nk � 1)(Nl � 1)L| {z }
First row additions

+
(L� 1)(L� 2)

2


2Oa + 2(Nk � 1)Oa

i

| {z }
Iteration additions

+Odload (I.8)

Of the solutions discussed, this is the least expensive in terms of arithmetic
instructions. However, if memory bandwidth is a limiting factor a better solution
is to recompute multiplications where they are needed:

OBuild R̂
min mem

= OmNkNlL| {z }
First row multiplications

+Oa(Nk � 1)(Nl � 1)L| {z }
First row additions

+
(L� 1)(L� 2)

2


2Oa + 2(Nk � 1)Oa + 2NkOm

�

| {z }
Iteration multiplications and additions

+Odload. (I.9)

Solving R̂

�11 is achieved by using a batched Gauss Jordan solver with support for
complex numbers and partial pivoting. Its complexity - with partial pivoting excluded
- can be expressed as:

OSolve R̂�11 =
LX

r=0

 �
L� r

��
(L� r + 2)Oa + (L� r + 3)Om

�
| {z }

Reduction

+(r � 1)Oa + rOm| {z }
Backsubstitution

�
, (I.10)

where r is a running variable r that indexes rows in the augmented matrix
⇥
R̂|1

⇤
.

Computing z is very simple once the covariance matrix R̂ is built and inverted,
and has an near negligible impact on performance:

OCompute z = Oa(2L� 2)2 +Om3L. (I.11)

I.7.2 GPU Throughput

In the context of determining whether an implementation is computationally
bound or memory bound, one should first compare the target platform’s sustained
computational throughput to sustained memory throughput. Let us start with the
former.
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The Quadro 6000 has 32 CUDA cores per SM, each operating at a rate of 1148 MHz
and being able to perform 2 floating point operations (flop) per clock cycle when
multiply-add instructions are used. The theoretical peak arithmetic throughput is
then given as:

Barith = 2 · 1148 Mflop/s/core · 32 cores/SM · 14 SMs

= 1.03 Tflop/s. (I.12)

Now let us compare this to the memory throughput. The “global” GDDR5 memory
bus is 384 bit wide, and operates at 3 Ghz where 2 bits are sent every cycle. Its peak
bandwidth is then:

Bgmem =
2 · 3 Gbit/s · 384 bit

8 bit/byte

= 144 GB/s (36 Gfloats/s). (I.13)

The shared memory, on the other hand, is organized into 32 banks per SM, each
being 32 bit wide and operating at 1148 MHz where 1 bit is sent per cycle. Its peak
aggregated bandwidth is then:

Bsmem =
1148
2 Mbit/s · 32 bit/bank · 32 banks/SM · 14 SMs

8 bit/byte

⇡ 1.03 TB/s (257 Gfloats/s). (I.14)

The bandwidths are compared in Tab. I.1. Note that even when using shared memory
at least 4 floating point operations must be carried out per float transferred to the
CUDA cores, otherwise the algorithm will be memory bound and the peak arithmetic
throughput can not be reached.
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II.1. Introduction

Capon beamforming is associated with a high computational complexity,
which limits its use as a real-time method in many applications. In this
paper we present an implementation of the Capon beamformer that exhibits
real-time performance when applied in a typical cardiac ultrasound imaging
setting. To achieve this performance we make use of the parallel processing
power found in modern Graphics Processing Units (GPUs), combined with
beamspace processing to reduce the computational complexity as the number
of array elements increases.
For a three dimensional beamspace we show that processing rates supporting
real-time cardiac ultrasound imaging are possible, meaning that images can
be processed faster than the image acquisition rate for a wide range of
parameters. Image quality is investigated in an in-vivo cardiac dataset.
These results show that Capon beamforming is feasible for cardiac ultrasound
imaging, providing images with improved lateral resolution both in element-
space and beamspace.

II.1 Introduction

Capon beamforming [1] has recently been applied to medical ultrasound imaging with
promising results in several studies [2–6]. Most of this work focuses on the improved
lateral resolution and contrast obtained with the Capon beamformer. However, some
interesting trade-o↵s have also been introduced. In [7], Synnev̊ag et al. explains
how image resolution can be maintained at higher framerates, with smaller probes, or
for deeper penetration. Despite these benefits, widespread adoption of the Capon
beamformer has not been seen due to its high computational complexity [8]. In
this paper we present an implementation of the Capon beamformer exhibiting real-
time performance when applied in a typical cardiac ultrasound imaging setting. To
achieve this performance we make use of the parallel processing power found in modern
Graphics Processing Units (GPUs) (found in almost all PCs), combined with novel
methods to reduce the computational complexity as the number of array elements
increases.

Previous work on parallel implementations of the Capon beamformer have been
focused on radar and passive sonar systems using custom made systolic array
processors [9–11]. For medical ultrasound, Chen et al. [12–14] implemented a Capon
beamformer on the GPU that produces real apodization weights based on real data.
However, the Capon beamformer is meant to process complex data. Under the
constraint of using real data, the Capon beamformer is not allowed to micro-steer
the main lobe, and therefore its full potential is not reached. Micro-steering of the
main lobe is an important property of the Capon beamformer in order for it to improve
structural details and edge definitions in an ultrasound image [7, Fig 9.]. Complex
arithmetic leads to more operations per sample, but also allows the sampling frequency
to be reduced. The number of samples needed per image can therefore be minimized.
All results in this paper are reported with the use of baseband (or I/Q) data, where
the sampling frequency is near the system bandwidth.

In recent work we have applied a GPU-based Capon beamformer for both active
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sonar imaging [15, 16] and cardiac ultrasound imaging [17]. Sonar has a less strict
real-time requirement than medical ultrasound imaging, which means that most array
configurations can be handled in real time using the GPU. In [17] and in this paper
we show that Capon beamforming applied in medical ultrasound imaging, and in
particular cardiac ultrasound imaging, demands frame rates that not even a cluster
of high-end GPUs can provide. Since the execution time of Capon beamforming is
cubic with respect to the number of array elements, we need methods that reduce
the computational complexity for large arrays. Various approaches to low-complexity
Capon beamforming for medical ultrasound imaging have been proposed in the
literature [18–21]. In this paper we extend the work done in [17] and [16] by utilizing
a beamspace transformation. The beamspace transform has been proposed used in
ultrasound imaging by Nilsen and Hafizovic [22] in order to maintain high frame
rates as the number of elements increases while maintaining almost the same lateral
resolution and sidelobe reduction capabilities of element-space Capon when applied in
narrow-beam systems.

In the next section we present background information on Capon beamforming
in both element-space and beamspace. We also give an introduction to the GPU
computing model. In Section II.3 we give a summary of our parallel implementation
of the element-space Capon beamformer, before the GPU implementation of the
beamspace Capon beamformer is presented in Section II.4. Benchmark results and
resulting images for both implementations are presented in Section II.5 and II.6,
together with a discussion of trading image quality for speed in Section II.7. Finally
we discuss the results in Section II.8, and draw conclusions in Section II.9.

II.2 Background

II.2.1 Capon Beamforming

The conventional form of array beamforming in medical ultrasound imaging is delay-
and-sum (DAS). Here, the signal recorded at element number m 2 [0,M � 1] at time
n is delayed with an appropriate delay �m[n] to focus and steer the ultrasound beam.
This delayed data is here denoted xm[n]. The beamformer output z[n] is then the sum
of all M elements weighted with a factor wm,

z[n] =
M�1X

m=0

w⇤
mxm[n] = wHx[n], (II.1)

where (·)H is the Hermitian transpose. The weight vector, or window, w is usually
real in DAS beamforming, and is applied to trade resolution for a lower side lobe level.
Although di↵erent windows can be used in di↵erent areas of the images, w is usually
predefined.

As shown in Fig. II.1, the basic idea of an adaptive beamformer is to form a
complex weight vector based on the received data. The Capon beamformer produces
weights that minimize the beamformer output power while maintaining unity gain in
the focus direction. The result is that interference impinging from other directions
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Figure II.1: Capon beamforming. The impinging signal is demodulated, and aligned
in phase by applying steering and focusing delays �m[n]. Adaptive weights, w[n],
are then calculated based on in-phase data, and finally the output is formed by a
Capon-weighted coherent sum.

is suppressed [2]. As with coarse-fine beamformers [23], the complex weights cause
a micro-steering which is minute compared to the initial steering and focusing step,
therefore the beamformer also works well for broadband ultrasound signals.

The Capon beamformer, following the approach in [7], can be divided into three
main steps: estimation of a sample covariance matrix, solving a system of linear
equations, and calculation of the beamformer output. The sample covariance matrix
is estimated as

R̆[n] =
1

NLNK

n+KX

n0=n�K

NL�1X

l=0

xl[n
0]xl[n

0]H , (II.2)

where NK = 2K + 1 is the number of temporal samples included, xl =
[xl[n], . . . , xl+L�1[n]] is the lth subarray of length L, and NL = M � L + 1 is the
number of subarrays. Note that the covariance matrix dimension is L ⇥ L. The
covariance matrix is loaded with a diagonal factor ✏ to ensure numerical stability and
increased robustness:

R̂[n] = R̆[n] + ✏[n]I = f(x[n]). (II.3)

The operator f(·) represents the process of estimating R̂ from the input x. A factor
proportional to the output power is often used to reduce the need for parameter
adjustments, and the trace of R̆,

✏[n] = d⇥ trace{R̆[n]}
L

, (II.4)

has been applied in much of the recent literature on Capon beamforming for medical
ultrasound imaging [2, 6, 22, 24]. It has also been applied to HF and VHF antenna
processing [25].
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Next, a linear system of equations has to be solved,

b[n] = R̂[n]�1a 2 CL, (II.5)

where the steering vector a = 1L = [10, 11, ..., 1L�1]T since x is pre-delayed.
Finally the Capon weight vector is formed from (II.5) as

w[n] =
b[n]

1Hb[n]
2 CL, (II.6)

and the beamformer output is calculated by combining all NL subarrays weighted with
the same set of adaptive weights. This is formally stated as

z[n] =
1

NL
w[n]H

NL�1X

l=0

xl[n] (II.7)

= 1/NL (w[n] ⇤ 1NL
)Hx[n], (II.8)

where ⇤ is a non-truncated convolution across elements. Note how we can either choose
to sum all subarrays (II.7), or accumulate a weighting per element (II.8).

In passive systems, assuming stationary statistics, the sample covariance matrix
in (II.2) is typically averaged over a long sequence of samples[26]. Since medical
ultrasound imaging is an active, short-pulsed system, there is a limited amount of
data from which R̂ can be estimated. The estimated matrix is therefore often found
to be both inaccurate and poorly conditioned. Another challenge with active systems
is the high correlation between signal and interference, resulting in signal cancellation
[27]. Thus, the beamformer output can be lower than expected, even when there is
signal present and the distortionless-response criterion is applied.

In order to get a well-conditioned R̂, avoid signal cancellation, and to get DAS-like
speckle, R̂ has to be averaged over L  M/2 long subarrays and NK ⇠ Tp/Ts time
samples [28], where, Tp is the pulse length in seconds and Ts is the sampling period.
For our baseband data, one pulse length (1.5�) is around 3 samples (K = 1). Typical
values for d is between 1/10 and 1/100.

II.2.2 Beamspace Processing

Nilsen and Hafizovic [22] have proposed to apply beamspace processing to reduce
the required computations of the Capon beamformer when applied to medical
ultrasound imaging. Beamspace is an alternative representation of the per-element
data, transformed into a fan of beams covering the sector illuminated by transmit
beams. The transformation is formally stated as

xBS[n] = Bx[n], B 2 CN,M (II.9)

[B]p,q =
1p
M

e�j2⇡pq/M N  M. (II.10)
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The steering vectors in B, the so-called Butler or normalized discrete fourier transform
(DFT) matrix, determine each beam’s direction in space. Beams where no interference
is present can therefore be removed by simply removing rows from B.

For an imaging system using narrow transmit and receive beams, like cardiac
ultrasound imaging, the received signal will be concentrated in a narrow band in
wavenumber space. Hence, a small percentage of the beams will contain almost all the
received energy. Nilsen and Hafizovic concluded that as little as three beams around
(and including) the transmit direction were adequate to produce results comparable to
applying Capon beamforming in element space. Hence, for equally pitched arrays the
inversion steps is found to be constant with respect to the number of array elements.

The beamspace version of the Capon beamformer is derived by replacing the
covariance matrix in (II.6) with the beamspace covariance matrix

R̂BS = f(xBS) = f(Bx), (II.11)

where B 2 CNb,L, Nb is the number of selected beams, and f(·) represent the
covariance estimation process as defined in (II.3).

In the remaining sections, the methods described in this section and Section II.2.1
will be referred to as beamspace Capon (BS-Capon) and element-space Capon (ES-
Capon) respectively. The name Capon will refer to both methods.

II.2.3 GPU Compute Model

In this section we give a brief discussion of GPU computing, laying the basis for
our discussions on parallel implementation strategies. The Capon beamformers have
been implemented using the CUDA GPU framework by Nvidia [29], however the
challenges and proposed methods described in this paper are valid for other GPU
framworks as well, like e.g. OpenCL. Independent of framework, the key point is that
GPUs are designed to execute large sets of small concurrent tasks, like beamforming
a pixel in a large image, much faster than a CPU. While the CPU has few cores,
but logic to process complex threads, the GPU has many cores, but each core needs
many (preferably simple) threads to keep it occupied and by that achieve maximum
throughput.

In CUDA programming a kernel function is executed over a large set of threads,
where the kernel function describes the work to be done in each thread. As depicted
in Fig. II.2, threads are organized in a grid of thread-blocks, with maximal size of
1024 threads per block (e.g. 32 ⇥ 32). Threads inside a block support low-cost
synchronization if needed. From a CUDA perspective the GPU consist of one or
more streaming multi-processors (SM), where each SM is capable of executing multiple
arithmetic operations per clock cycle.

An SM has a limited amount of shared memory (or near-core cache) and registers.
Therefore, to achieve maximum GPU occupancy (defined as having the maximum
number of threads residing on each SM), a conservative use of registers and shared
memory per thread is required. Each thread should perform enough instructions
per transferred byte in order to hide memory latency, and the problem should be
divided into enough threads in order to hide instruction latency. Global GPU memory
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Figure II.2: Calculation of Capon adaptive weights mapped to GPU architecture. A
recorded echo across the array for a given range and angle (selected cell) is assigned
to a group of L threads that can run independently of all other groups. Note that
several samples can be processed per thread-block if L is small. The task of these L
threads is to calculate the Capon beamformer output in the three depicted steps.

transactions, in addition to CPU-GPU transfers, are slow and must be minimized. All
of these constraints combined pose a real challenge as the target problem has to map
well to the GPU framework on both a grid, block, thread, and memory consumption
level in order to benefit from parallel acceleration. In the next two sections, we will
describe how this mapping can be done for the Capon beamformers.

II.3 Parallel ES-Capon

In this section we will give a brief summary of our parallel implementation of the
ES-Capon beamformer as presented in [17] and [15]. This implementation was our
starting point when the BS-Capon beamformer was implemented.

If the beamformer in (II.7) is analyzed in combination with the matrix equation in
(II.5) and the covariance estimation process in (II.3), we see that the calculation of a
set of Capon weights is independent across the outputs z[n]. As shown in Fig. II.2, a
first level of granularity is therefore to divide the image into a grid, where the output
in each cell can be calculated independently. Further, based on memory dependencies
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and to hold memory consumption per thread at a minimum, a group of threads should
process one output in the final image. Continuing with the calculation of one weight
vector, the algorithm can be broken down into three main steps that, to some extent,
can be divided further into a set of parallel processes. That is, for each data vector x
in the image:

1) Calculate the sample covariance matrix R̂ as in (II.3).

2) Solve the linear system of equations as in (II.5).

3) Calculate w = b/1H
L b and the amplitude as in (II.7).

The computational complexities of these three steps are O(NKNLL
2), O(L3), and

O(L), respectively. As M (and thereby L) increases, the first two steps quickly become
unmanageable, and real-time performance in cardiac ultrasound imaging can only be
achieved by exploring methods with reduced complexity.

II.3.1 Calculation of Multiple Sample Covariance Matrices

Calculation of one element of R̂ is from (II.2) found to be independent of calculation of
the other elements. A natural level of granularity would then be to assign one thread to
each element of R̂ [13]. This will minimize global reads and writes needed per thread,
but since we want to avoid block-to-block synchronization, the maximum supported
subarray length is limited to 32 by this approach. Since most medical ultrasound
arrays have 64 elements or more, an implementation not limited by Lmax = M/2 = 32
is preferable.

In [15, 17] we demonstrated how the cubic complexity with L can be reduced
by realizing that calculations in (II.2) overlap across subarrays. The complexity of
calculating R̂ is by this reduced to O(NK(L(NL � 2) + 2L2)). For L = M/2 this
reduces to O(NKM2). Maximum supported L is also increased to the maximum
number of threads per block (currently 1024).

II.3.2 Solving Multiple Small Linear Systems

In [17] we discussed how it is not given that solving on the GPU is faster than solving
on the CPU in general. However, there are two arguments for solving on the GPU.
First the CPU, which might already run a lot of ultrasound-related algorithms, is
o✏oaded. Second, the transfer of several thousand covariance matrices over the PCI-
Express bus, from the CPU to the GPU, is avoided.

For the results presented in this paper, we have used a GPU implementation of
batched Gauss-Jordan elimination made by Nvidia to solve R̂b = 1L, where b =
R̂�11L, for all pixels in an image in one kernel launch. The solver is available online
for registered CUDA developers [30].

II.3.3 Compute Beamformer Output

The final output can be formed by either reducing the data down to length L as in
(II.7), or increasing the weight vector to length M as in (II.8). Since we selected to
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Figure II.3: Calculation of the sliding beamspace transform. A group of Nb threads
is assigned a set of subarrays which they transform to beamspace in a sliding window
fashion. In this example Nb = 3, l is the current subarray and k is the current beam.

use L threads per output, the data is reduced to length L by letting thread r calculate

x̆r =
r+NL�1X

k=r

xk for r 2 [0, L� 1]. (II.12)

Each thread now computes zr = w⇤
rxr, and finally one thread computes and outputs

z = 1
NL

PL�1
r=0 zr to global memory.

II.4 Parallel BS-Capon

In this section we will derive a parallel implementation of the BS-Capon beamformer,
and comment on how it deviates from the implementation in Section II.3. The three
main steps described in Section II.3 are present here as well, but in addition we need
to transform the per-element data to beamspace. This can be done using a FFT, but
for few beams (Nb < logL) a matrix multiply with the truncated Butler matrix is less
costly.
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In order to reduce the complexity of the matrix inversion problem the transforma-
tion must be performed before or after the covariance matrix has been estimated. If
the transformation is applied before, one transformation is needed per subarray. This
results in subarrays that no longer overlap. The amount of input data are therefore
changed from M to NLNb elements per sample, but all remaining steps should get
lower computational complexity as long as Nb < L.

The other option is to transform the element space covariance matrix to beamspace:

R̂BS = BR̂BH . (II.13)

The advantage of this approach is that minor changes have to be made to the pipeline
described in Section II.3, but it will only speed up the solving step if the solution
bBS is transformed back to element space. In this paper we will focus on the first
approach, and how it has been implemented on the GPU. In both cases solving has to
be performed against a beamspace steering vector

aBS = B1L =
p
Le1, (II.14)

where ei has the value one in the ith position and zeroes elsewhere. Note that the
factor

p
L was not included in [22].

As mentioned, transforming subarrays into beamspace yields subarrays that no
longer overlap. This means that the spatial overlap previously exploited when
calculating the sample covariance matrix in element space is no longer available.
On the other hand, since Nb should be small (Nb < 32), one thread assigned to
each element in R̂BS is now an option. A kernel similar to the one described in [13]
has therefore been implemented. The computational complexity of this step is now
O(NKNLN

2
b ), which for L = M/2 is less than the complexity of building R̂ in element

space as long as Nb <
p
M .

The overlap between subarrays that were exploited when estimating the covariance
matrix in element space, can now be utilized when calculating the beamspace
transform. Given a M long data vector divided into NL subarrays, the beamspace
transformation of the lth subarray for the kth beam is from (II.9) found to be:

xBS,l,k = Bkxl k 2 [0, Nb � 1] (II.15)

=
1p
L

l+L�1X

p=i

xpe
�j2⇡k(p�l)/L, (II.16)

where Bk is the kth row of B.
This formula has been implemented using a normalized sliding DFT (SDFT)[31].

The SDFT allows us to still save instructions by utilizing the overlap between
subarrays, but with an increase in task level granularity. In this situation, it might
be tempting to use one thread per beam (index k) that calculates this beam for all
subarrays. However, since the number of selected beams usually is small (Nb ⌧ M)
we will end up with a large memory-per-thread ratio (M/Nb). Using one thread per
beam is therefore not feasible for small-Nb-large-M configurations. One solution, as
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depicted in Fig. II.3, is to combine SDFT with full computations. A number of sub
thread groups of size Nb is created that targets di↵erent sets of subarrays which they
transform using the SDFT algorithm. In that way, the number of threads per sample
is increased and thus the memory-per-thread ratio is decreased.

After solving bBS =
p
LR̂�1

BSe1, the beamspace weight vector is calculated as

wBS =
bBSp
Le1bBS

2 CNb (II.17)

using one thread per beam, and applied to the beamspace data summed across
subarrays,

z[n] = wH
BS

L�1X

l=0

xBS,l. (II.18)

As presented in (II.3), adaptive diagonal loading is performed by loading the sample
covariance matrix with the average energy per element, that is trace{R̆}/L. When
data are transformed into beamspace, a high percentage of the total energy is mapped
to a small subset of beams. Therefore, if a set of high energy beams is selected,
the average energy per beam will be higher than the average energy per element
(trace{R̆}/L < trace{R̆BS}/Nb). This means that less diagonal loading (smaller d)
has to be applied when the covariance is estimated among beams and not elements.

To summarize, by transforming data to beamspace the complexity of all subsequent
steps is potentially reduced. Calculation of the covariance matrix is now O(NKNLN

2
b ),

the inversion step is O(N3
b ), and calculation of weights and the beamformer output are

both O(Nb). The added complexity of SDFT is O(NbL). To maximize performance,
large adjustments to the processing pipeline described in Section II.3 is required.

II.5 Benchmarks

In this section we present benchmarks of the implementations presented in Sections
II.3 and II.4 performed on a Nvidia Quadro 6000 graphics card (14 SMs, 1 TFlops
theoretical single precision performance, 6 GB global memory, and 144 GB/s memory
bandwidth). Problem sizes are calculated based on 64 and 96 element phased arrays
with a 3.4 MHz center frequency. Assuming a system bandwidth of 80% (relative to
the center frequency) we need a complex sampling frequency of 2.7 MHz, and when
imaging down to a depth of 15.4 cm we have approximately 540 samples per range
line. The angular sampling is given by the Rayleigh criterion divided by two [32],

�✓ = �/(2Mp), (II.19)

where � is the pulse wavelength and p is the element pitch. To sample a 70� sector
with 64- and 96-element arrays with p = �/2 we therefore need approximately 80 and
120 receive beams respectively.

The presented execution times do not include transfer of data from CPU- to the
GPU-side, since data are assumed to be pre-delayed and available in global GPU

73



II.5. Benchmarks

(a)

(b)

Figure II.4: Benchmarks of GPU Capon beamforming in element space for a cardiac
image covering a 70� wide 15.4 cm deep sector. Execution time is plotted as a function
of subarray length L. The figures show execution times for the three steps listed in
Section II.3: Calculating covariance matrices with three di↵erent choices of temporal
averaging, solver, and the final beamformer sum.

memory. This is a valid assumption, since the imaging scenarios presented in this
paper are well below the 8.0 GB/s limit of PCI Express 2.0. What is included are
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(a)

(b)

Figure II.5: Benchmarks of GPU beamspace Capon beamforming for a cardiac image
covering a 70� and 15.4 cm deep sector. Execution time is plotted as a function of
subarray length L. If L had been fixed at M/2 and execution time was plotted against
Nb, the solver would have shown the same quadratic growth as in Fig. II.4. When Nb is
fixed, calculating the covariance matrix and the BS-transform is inverse proportional
and proportional to L respectively. The large jumps in execution times are caused by
adaptive kernel launch configurations, which depends on M , L and Nb.
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all calculations, memory transfers from global to shared GPU memory, and shared
memory access. The delay step has previously been shown to take far less time than
what we report for both Capon beamformers [13, 33].

Benchmarks of the ES-Capon beamformer are presented in Fig. II.4. For each
subarray size, the total execution time is split into one bar for each of the three steps
described in Section II.3, and the calculation of R̂ is presented for three di↵erent
values of K. For M = 64, L = 32 and K = 2, a typical setup for high-quality cardiac
imaging, processing throughput is 8.3 frames per second (FPS). For M = 96, L = 48
and K = 2 the processing throughput drops below 0.5 FPS.

In Fig. II.5 we present similar benchmarks for the BS-Capon beamformer. The
figure only presents results with use of temporal averaging (K = 2). For M = 64,
L = 32, K = 2 and Nb = 3, processing throughput is 125 FPS (8 ms). For M = 96,
L = 48, K = 2 and Nb = 3, processing throughput is 77 FPS (13 ms). In all four
benchmarks there is a line indicating the time it takes to acquire the underlying image
using one receive line per transmit. Hence, below this line we are capable of performing
real-time processing.

II.6 In-vivo cardiac images

Fig. II.6 presents results of applying ES- and BS-Capon on an in-vivo image of the
left ventricle. The image was acquired using a 64-element and p = 0.65� pitched
phased array in harmonic mode (1.7 MHz at transmit and 3.4 MHz at receive). The
image frame is extracted from a cardiac cycle, that can be viewed in its full length in
the attached videos Media-Movie 1, 2 and 3. The region of interest is 70� with a
minimal lateral sampling of 98 receive beams given by (II.19). The image was acquired
using 50 transmit beams and ”Synthetic Transmit Beamforming” was used on receive
[32].

The data set has been processed with the following settings for the ES-Capon
beamformer: L = 32, K = 2, and d = 0.1. These settings have previously been shown
to provide improved lateral resolution while maintaining DAS-like speckle [28]. For
BS-Capon the following parameters have been used: L = 32, K = 2, d = 0.01, and
Nb = 3.

II.7 Trading resolution for speed

As seen from Fig. II.4 the execution time, for the solver in particular, is reduced when L
is reduced. The same is true when Nb is reduced in beamspace. So to gain an increase
in processing throughput we can reduce L in element space or Nb in beamspace. In this
section we investigate how adjusting L for ES-Capon and Nb for BS-Capon impacts
the lateral resolution.

In Fig. II.7, the minimum distance between two point targets (while preserving
a 6 dB saddle point in between the two) is plotted against L (when processed with
ES-Capon) and Nb (when processed with BS-Capon). To produce the result in Fig.
II.7 K = 2 and d = 0.01 has been used on both methods in order to obtain the same
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(a)

(b) (c)

Figure II.6: In-vivo harmonic cardiac ultrasound image acquired using a 3.5 MHz, 64
elements phased array. Number of receive beams for the 70� sector is 98, and number of
samples in range is 610. Dynamic range is -20 dB to 20 dB with mean value represented
as 0 dB. The image is the first frame in the attached videos. a) Delay-and-sum with
uniform weights Media-Movie 1. b) Element-space Capon (L = 32,K = 2, d = 0.1)
Media-Movie 2. c) Beamspace Capon (L = 32,K = 2, Nb = 3, d = 0.01) Media-
Movie 3.

resolution for L = Nb = M/2. In Fig. II.6, the diagonal loading factor for BS-Capon
was adjusted to make the two results equal for L = 32 and Nb = 3.

The phantom used contained two point targets with 30 dB amplitude located at 90
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mm depth. The two point targets were placed inside speckle, with 0 dB in amplitude,
covering an area from ±90� in azimuth. The phantom was simulated using Field II
[34, 35]. The simulation was performed using a 64-element, p = �/2 pitch, 10 µm
kerf, 80% bandwidth, and 10 mm high phased array. The transducer was excited with
a 3.4 MHz and 1.5� long pulse with transmit focus at 90 mm. The precision of the
presented measurements is 0.12 mm, dictated by the simulated frame rate of 25 FPS,
and the relative speed of the two point scatterers, 3 mm/s. To avoid having to deal
with signal cancellation and errors caused by not hitting each point with a receive
beam, 16x oversampling has been used on transmit.

For high values of L and Nb the two methods are equal, but for lower values,
BS-Capon provides improved resolution compared to using small subarrays. We see
that the resolution for BS-Capon gradually decreases due to an automatic increase in
diagonal loading (cf. end of Section II.4). If we compensate by reducing d, BS-Capon
will provide resolution equal to ES-Capon (with L = M/2) for all values of Nb except
one [22]. For Nb = 1 the resolution is worse than for DAS because of a triangular
apodization caused by subarray averaging.

In element space, resolution decays rapidly since the e↵ective adaptive aperture
is proportional to L. For L = Nb = 3, BS-Capon provides almost 1 mm improved
resolution over DAS and ES-Capon. However, note that the resolution of the Capon
beamformers strongly depends on the image signal-to-noise ratio (SNR) and the choice
of parameters. Thus, di↵erent SNR scenarios and choices of parameters will lead to
di↵erent results. It is also worth noting that ES-Capon beamforming in this example
performs worse than DAS for small values of L. For these small subarrays, the method
is not able to steer zeros at each point target or accurately micro-steer the main lobe.
Subarray averaging further impose a triangular or trapezoid apodization function,
which leads to worse resolution if the introduced adaptivity can not compensate for
the increase in main lobe width. For L = 1 the ES-Capon is equal to DAS.

II.8 Discussion

In this paper we have presented a parallel implementation of the BS-Capon
beamformer for high-resolution cardiac ultrasound imaging. The results show that
it is now possible to apply BS-Capon in real-time in cardiac ultrasound imaging by
utilizing the power of a GPU. According to Fig. II.5 it is also possible to process two
parallel receive lines per transmit beam (for both M = 64 and M = 96. L = M/2).

For ES-Capon, processing rates for high quality settings are still too high to support
real-time cardiac ultrasound imaging. From Fig. II.4a we see that for L = M/2 = 32
and K = 1, the total execution time is 110 ms (9 FPS). Taking into account that
we use complex data, but less samples per image, these results are similar to the
performance reported by Chen et al. [13].

A major part of the total execution time for ES-Capon comes from solving the
system of linear equations. This limitation is targeted by reducing the sample
covariance matrix size in beamspace, and as shown in Fig. II.5, inverting the 3 ⇥ 3
beamspace covariance matrix is then barely visible. The time it takes to construct all
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Figure II.7: Trade-o↵ between resolution and speed by reducing subarray size or
reducing beamspace dimension. As L or Nb gets smaller, the execution time is reduced
(Fig. II.4 and II.5). When Nb is varied, L is fixed on 32.

covariance matrices is also reduced, but for few beams this is now the major contributor
to the total execution time. If real-time is defined as 10 FPS [13] almost all execution
times in both Fig. II.4a and II.5 are real-time. More natural for cardiac ultrasound
imaging is to define real-time as the time it takes to acquire the underlying image.
With this requirement the images formed using a 64 and 96 element array have a real-
time requirement of 62.5 and 41.7 FPS respectively using single line acquisition. Each
benchmark plot has a line indicating this real-time requirement. With beamspace
processing, all processing times for large subarrays are below this line.

This paper further shows how to obtain a parallel formulation of the BS-Capon
beamformer, and how to implement it in a GPU framework. The per-pixel granularity
suggests that the beamformer is easily dividable across multiple GPUs. It is therefore
possible to achieve higher frame rates if several GPUs are used simultaneously.
However, there is usually a space-cost-energy limitation for how many GPUs that
can be assembled in an ultrasound scanner.

Turning to image quality we see from Fig. II.7 and the attached videos, that Capon
beamforming provides improved lateral resolution of moving point targets both in
element- and in a reduced beam-space (Nb = 3). In the cardiac recording (Fig. II.6),
structures are thinner and better resolved when the Capon beamformers are applied.
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One example is the mitral valve located at 10 cm depth and -1.5 cm width. On the
other hand we observe a loss in contrast, especially in the septum (Fig. II.6, 6 cm
depth, -2 cm width). This loss can be partially explained by the presence of highly
correlated signals and mismatch between the assumed steering vector and signal. This
is the same issue that made us use 16x oversampling when producing Fig. II.7. Future
work should focus on how large this oversampling needs to be and how it should be
conducted in order to still achieve real time processing.

In the end we want to point out that cardiac ultrasound has not been selected
as the target modality in this paper because Capon beamforming shows large
improvements in image quality in particular. It has been selected because it is the
most computationally demanding modality, measured in floating points operations
per second. The rationale being that if BS-Capon can run in real time for cardiac
ultrasound it can run in real time for all medical ultrasound modalities. We believe
that Capon beamforming may show more improvements in other imaging modalities
where detection of small point targets is important.

II.9 Conclusion

In this paper a parallel formulation and implementation of the beamspace Capon
beamformer have been presented, and the beamformer has successfully been
implemented on the GPU. For a three dimensional beamspace, processing rates
supporting real-time cardiac ultrasound imaging was shown to be possible, meaning
that processing rates higher than the image acquisition rate are obtained for a wide
range of parameters. Image quality was investigated in an in-vivo cardiac dataset.
These results showed that Capon beamforming is feasible for cardiac ultrasound
imaging, providing images with improved lateral resolution both in element- and
beamspace.
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III.1. Introduction

If an ultrasound imaging system provides a presentation of a moving object
which is sensitive to small spatial shifts, the system is said to be locally
spatially shift-variant. This can, for instance, happen if the axial or lateral
sampling is insu�cient. The Capon beamformer has been shown to provide
increased lateral resolution in ultrasound images. Increased lateral resolution
should demand denser lateral sampling. However, in previous literature
on Capon beamforming for medical ultrasound imaging only single-frame
scenarios have been simulated. Temporal behaviour and e↵ects caused by the
increased resolution and lack of oversampling have therefore been neglected.
In this paper, we analyse the local lateral shift-invariance of the Capon
beamformer when imaging moving objects. We show that insu�cient lateral
sampling makes an imaging system based on the Capon beamformer laterally
shift-variant. Di↵erent methods for oversampling on transmit and receive are
then discussed and investigated to improve on the Capon beamformer. It is
shown that lateral shift-invariance can be improved by oversampling based on
phase rotation on receive. This without a↵ecting the acquisition frame rate
and with a minor change in processing complexity.

III.1 Introduction

In the last decade several authors have applied the Capon beamformer [also known as
the minimum variance beamformer] for medical ultrasound imaging [1–3]. The method
has been shown to improve lateral resolution and edge sharpness in ultrasound images
[1, 4, 5]. This is accomplished by adaptively adjusting the array weights based on
element-to-element covariance to minimize interference. The method is, however, also
highly sensitive to model errors [6–9]. This has led to the development of several
robust versions of the Capon beamformer with e.g., spatial smoothing [10] or diagonal
loading [11] of the covariance estimate, or application of steering vector uncertainty sets
[12, 13]. Spatial smoothing and diagonal loading, together with temporal smoothing
of the covariance estimate, have been applied in earlier work on Capon beamforming
for medical ultrasound imaging [4]. The first two trade resolution for robustness and
temporal smoothing helps to preserve speckle statistics for high resolution parameters
[14]. Steering vector uncertainty sets, however, have not been applied for medical
ultrasound imaging.

A steering vector uncertainty set reduces signal-nulling which appears if the signal
of interest is present during the covariance estimation process and if this estimate is
later used with a steering vector that does not match the signal propagation vector
exactly. This self-nulling is actually how the Capon beamformer obtains its super
resolution capabilities, but the signal can also get lost in the process. In [11], it was
shown that most methods based on steering vector uncertainty sets are equivalent to
diagonal loading where the loading factor depends on the steering vector uncertainty.
In that way, they make up for a given uncertainty by making the Capon beam wider.
Hence, the maximal achievable resolution is decreased if the initial steering vector
spacing was too coarse. In medical ultrasound imaging, this initial set of steering
vectors is governed by the number of receive beams. In this paper, we will make
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use of an additional set of steering vectors to reduce the self-nulling e↵ect by means
of oversampling. The maximal achievable resolution is then maintained without the
presence of severe self-nulling.

In [15], Cox presents in great detail how the amount of mismatch between the
selected steering vector and the signal propagation vector impacts the beamformer
output in simple situations. He also states the following important fact about the
Capon beamformer (the k3 processor):

”... a k3 processor requires more closely spaced beams than a ...
k1-processor in order to avoid serious signal suppression e↵ects being
introduced on signals arriving from directions between the beams”,

where k1 is the delay-and-sum (DAS) beamformer. In Fig. III.1 we have plotted the
two-way response for DAS and the Capon beamformer using [15, Eqs. (26) and (32)].
A 64-element linear array with �/2 element spacing, where � is the wavelength, is
scanned over a sector equal to four times the array resolution using narrow band
excitation. Located in the farfield of the sector is an object moving parallel to the
array surface. The plot shows the high precision scanned output when the object is
located at plus and minus half the required beam spacing for DAS [See (III.8)]. The
e↵ect of typical subarray averaging and diagonal loading have been added to the Capon
beamformer output [subarray length of 32 and a diagonal loading factor of 0.01]. We
see that a DAS beamformer, using the required beam spacing, could yield a 1.9 dB
scalloping loss [16] if the object is moving parallel to the array. However, if the Capon
beamformer is used with the same beam density, the loss could be as large as 27 dB.
This imaging system is then highly sensitive to small spatial shifts, either by the object
or the array itself. A 1.9 dB scalloping loss for the Capon beamforming is obtained
for this specific example when the beam spacing or object distance is decreased with
a factor of 25.

In previous literature on Capon beamforming for medical ultrasound imaging, only
single frame scenarios have been simulated. The scalloping loss e↵ect has therefore
been passed over in silence by either oversampling on transmit, by carefully positioning
point scatterers exactly on transmit-receive beams, or by ignorance. In our first work
in which Capon beamforming was applied on a loop of images containing moving
objects [17, 18], we commented on the e↵ect, but no solution was presented other
than oversampling on transmit when simulating. The same was done by Jensen and
Austeng [19].

In this paper, we investigate the issue further. We show that when a moving point
scatterer is imaged with the Capon beamformer with the same beam spacing which is
su�cient for DAS, the predicted scalloping loss is observed both in simulations and in
vitro data. The problem is then to find what can be done to improve on the situation
without a↵ecting the acquisition frame rate and processing throughout.

The next section gives an introduction to Capon beamforming together with a
short introduction to lateral sampling and shift-invariance. In Section III.3 we study
the scalloping loss yield by the Capon beamformer and its local lateral shift-invariance
property. Di↵erent methods for reduced scalloping loss and by that improved local
lateral shift-invariance are presented in Section III.4. Then, in Section III.5, we present
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Figure III.1: Estimated drop in output power mid-way between receive beams for
delay-and-sum and Capon beamforming (with subarray length of 32 and a diagonal
loading factor of 0.01) applied in a far-field-narrowband setting.

the results of applying the most promising method on in vitro data. Finally, we discuss
our findings in Section III.6 and give our conclusions in Section III.7.

III.2 Background

III.2.1 Standard Beamforming

The standard form of time-domain array beamforming is the DAS beamformer, for
which the output z is calculated as

z[n] =
M�1X

m=0

w⇤
mxm[n��m[n]] = wHx[n], (III.1)

where M is the number of elements or channels in the array, �m[n] is the per-element
focusing and steering delay, and w is a weight vector or window function. The weight
vector is typically selected to trade resolution for a lower side-lobe level. Hence, the
weights are typically real and their K-space response is then symmetric.
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III.2.2 Capon Beamforming

The Capon beamformer produces a weight vector, like the one in (III.1), based on the
impinging signal and an optimization criterion. The problem is as follow [20]:

min
w

E{|z[n]|2} ⇡ min
w

wHR̂w (III.2)

subjected to wHa = 1, (III.3)

where R̂ is a sample covariance matrix. Hence, the resulting weight vector minimizes
the output power while maintaining unit gain in the steering direction a.

The sample covariance matrix can be estimated for an active broadband system in
the following way [4]:

R̆[n] =
1

NLNK

n+KX

n0=n�K

NL�1X

l=0

xl[n
0]xl[n

0]H , (III.4)

where K is selected proportional to the pulse length, NK = 2K +1, NL = M �L+1,
and xl is a L-long subarray [xl[n], . . . xl+L[n]]. Finally the matrix is loaded with a
diagonal factor for numerical stability and increased robustness,

✏ = d ⇤ trace{R̆}/L (III.5)

R̂ = R̆+ ✏I. (III.6)

The solution to the minimization problem in (III.2) is

w[n] =
R̂[n]�1a

aHR̂[n]�1a
2 CL. (III.7)

Note that one matrix has to be constructed and inverted for each data vector x[n]
received by the system. From (III.7) it is also clear that complex data [in-phase
and quadrature data] can lead to complex weights. The weights can therefore have an
asymmetric K-space response with a shifted main lobe and zeros at arbitrary positions.

III.2.3 Lateral Sampling and Shift-Invariance

The required lateral sampling in an ultrasound image for a given center frequency, fc,
and bandwidth, B, is given by the aperture size, D, and the wavelength of the center
frequency, �c = c/fc, where c is the speed of sound. The required Nyquist beam
spacing is then:

�✓ <
�c

2qD
, (III.8)

where the factor two is the e↵ect of a two-way acquisition [21], and where q is an
oversampling factor which can be applied to reduce folding of frequencies between fc
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and fc + B/2. In this paper, we will use the q-factor to perform oversampling before
Capon beamforming.

Equation (III.8) was used to calculate the object positions in Fig. III.1. Therefore,
if (III.8) is not fulfilled, the resulting scalloping loss for the DAS beamformer could
become visible in the image. The system output will then be sensitive to small
spatial shifts. We say that the system is locally spatially shift-variant. Since Capon
beamforming improves the lateral resolution we will focus on sensitivity to small lateral
shifts, or in other words, the local lateral shift-invariance property of the imaging
system.

In an ultrasound image with 50 dB dynamic range mapped to 256 gray levels, a
1 dB loss corresponds to 5 gray levels. This is approximately equal to the visibility
threshold [Weber fraction of 2%] for grayscale images. A loss larger than 1 dB could
therefore end up being visible to the observer.

To visualize the local lateral shift-invariance of a given imaging system, we will
make use of lateral shift-variance plots (LSV-plots) [22]. An LSV-plot is constructed
for a given imaging system by imaging a point scatterer moving laterally at constant
speed. For each lateral position, the rms of the image data is calculated in range, and
the resulting beam profiles are stacked in to an image. The LSV-plots in this paper
are displayed as a contour plot with contours on -1, -2, -3, -6, -12 and -24 dB. The
maximum for each beam profile is also marked with a black dot, and the amplitude
variation among these points is presented in a subplot next to the LSV-plot. The LSV-
plots based on simulations have been up-interpolated to 128 samples in each direction
using cubic interpolation if the number of receive beams is less than 128.

To further quantify the shift-invariance we have calculated the mean absolute error
(MAE) between the maximum point position in each beam profile and a straight line
[f(x) = x]. We will refer to this measure as P-MAE. The MAE of the maximum points’
amplitude versus the data maximum is also measured. We refer to this measure as
A-MAE. The first measure quantifies the amount of geometric distortion [22]; and the
latter quantifies the peak gain variation, or in other words, the scalloping loss. The
maximum amplitude deviation, or maximum scalloping loss, along this point trace is
also calculated. We present all these numbers together with the LSV-plot.

A given imaging system will then be locally laterally shift-invariant if the contours
are diagonal and if the amplitude variation among the maximum points is less than 1
dB. Then there is minimal geometric distortion (low P-MAE) and the scalloping loss
will not be visible for the observer (low A-MAE).

Figure III.2a presents such a LSV-plot for an imaging system using the DAS
beamformer with a beam spacing equal to (III.8). Dotted vertical lines indicate
position of transmit-receive beam pairs. The point scatterer response has been
simulated using Field II [23, 24] using a 96 element phased array with a 22 mm azimuth
aperture, which was excited with a 2.5 MHz and 1.5 cycles long pulse. Transmit focus
in azimuth and elevation were configured to be equal and the point scatterer was
moved through this point. The transmit focus is where the ultrasound beam is at its
narrowest; hence shift variance e↵ects will appear at this location first. The beam
density was calculated based on (III.8) with a speed of sound equal to 1540. We see
that the contours in Fig. III.2a are approximately diagonal (low P-MAE) and that
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the amplitude variation among the maximum points is minimal (low A-MAE). We
therefore conclude that the system is locally laterally shift-invariant.

In Fig. III.2b the beam density is reduced by a factor of two compared to Fig. III.2a.
The geometric distortion is now increased to a level where the contours are not
diagonal. The maximum scalloping loss is almost 4 dB. Hence, the imaging system is
no longer locally laterally shift-invariant. We observe that the maximum peak is both
geometrically distorted and attenuated when the point is located between two beams
and the distance between the beams is too high.

III.3 Local Lateral Shift-Invariance of the Capon
Beamformer

We will now investigate the local lateral shift-invariance of the Capon beamformer with
high resolution parameters [4, 18]. In Fig. III.3a the same point scatterer response as
presented in Fig. III.2a has been weighted with Capon weights calculated using (III.7)
with L = M/2 = 48, K = 1 and d = 1/100. We see how the signal cancellation caused
by the di↵erence between the signal propagation vector and the assumed steering
vector increases as the point moves away from a given transmit-receive beam. As a
consequence the scalloping loss is tremendous, and not far from the predicted value in
Fig. III.1.

The diagonal factor d and the e↵ective adaptive aperture size L can be used to
control the mainlobe width of the Capon beamformer. In the extreme cases, d � 1
and L = 1, the Capon beamformer becomes either a triangle or uniform-weighted
DAS beamformer respectively, and a beam spacing according to (III.8) would then be
su�cient. In Fig. III.3b we show how the scalloping loss is reduced when the amount
of diagonal loading is increased.

We observe that Fig. III.3b now contains a scaled version of the pattern presented in
Fig. III.2b. From Fig. III.3 it should be clear that Capon beamforming either requires
increased lateral sampling, or the resolution has to be reduced to the same level as
DAS to make the imaging system locally laterally shift-invariant. It would be unwise
to do all the computation involved with Capon beamforming with a high d value and
end up with a resolution equal to DAS. However, we see that diagonal loading can be
a useful tool if resolution has to be traded for the need of oversampling. The same is
true for the subarray length parameter.

III.4 Oversampling Methods

In this section, we will discuss di↵erent methods aimed at improving the local lateral
shift-invariance of the Capon beamformer. From the previous section, it should be
clear that we somehow need to increase the lateral sampling to make the Capon
imaging system locally laterally shift-invariant. In this section, we will investigate how
this oversampling should be conducted, how large it must be, and how the proposed
methods will a↵ect the acquisition frame rate and the processing complexity.
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Figure III.2: LSV-plots of delay-and-sum beamforming. If contours are diagonal and
the amplitude variation among the peak points (black dots) is small, the imaging
system is said to be locally laterally shift-invariant. Dotted vertical lines are plotted
where transmit-receive beams are located. a) Sampling density according to (III.8).
The system is locally laterally shift-invariant. b) Undersampling by a factor of two.
The system is no longer locally laterally shift-invariant.

92



Chapter III. Capon Beamforming and Moving Objects

P−MAE: 0.14 mm  A−MAE: 18.50 dB (max −24.14 dB)

−40 −20 0
Amplitude [dB]

−24

−24

−24

−24

−24

−24

−24

−24

−24

−24

−12

−12

−12

−12

−12

−6

−6

−6

−6

−6

−3

−3

−3

−3

−3

−2

−2

−2

−2

−2

−1

−1

−1

−1

Normal sampling  d = 0.01

Azimuth [mm]

P
o

in
t 

sc
a

tt
e

re
r 

d
is

p
la

ce
m

e
n

t 
[m

m
]

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

P−MAE: 0.17 mm  A−MAE: 3.61 dB (max −8.22 dB)

−10 −5 0
Amplitude [dB]

−24

−24

−
2
4

−
2
4

−
1
2

−12

−12

−12

−1
2

−6

−6

−6

−6

−6

−3

−3

−3

−3

−3

−2

−2

−2

−2

−2

−1

−1

−1

−1

−1

Normal sampling  d = 1.00

Azimuth [mm]

P
o

in
t 

sc
a

tt
e

re
r 

d
is

p
la

ce
m

e
n

t 
[m

m
]

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

Figure III.3: LSV-plots of Capon beamforming with L = M/2 = 48 and K = 1, and
with sampling corresponding to (III.8). a) Capon beamforming with d = 1/100 as
diagonal loading. The system is not locally laterally shift-invariant. b) The diagonal
loading factor d is increased to 1. The scalloping loss is reduced, but the system is
still not locally laterally shift-invariant.
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III.4.1 Oversampling on Transmit

A straightforward way of obtaining su�cient sampling in an active imaging system
with an equal number of transmit (tx) and receive (rx) beams is to increasing the
number of tx-beams until the system is locally laterally shift-invariant. In Fig. III.4a
and Fig. III.4b we have increased the tx-beam density by q-factors of 4 and 16
respectively. As expected, the geometric distortion and scalloping loss decrease with
increased lateral sampling. Note that Fig. III.4b is zoomed-in compared to Fig. III.3
to better see the beam-to-beam variation.

From Fig. III.4b, we see that 16 times oversampling reduces the scalloping loss
significantly. Even though high-frequency variations are reduced, the maximum is
still larger than 1 dB. An even higher level of oversampling is therefore required to
have a completely local lateral shift-invariant Capon beamformer when a moving point
scatterer is simulated without noise and with the same parameters as in Fig. III.3. Note
that a diagonal loading factor of 1/100 will introduce a white noise component in the
sample covariance matrix 20 dB lower than the signal present. Hence, the covariance
has been estimated from data which appeared to have an SNR of 20 dB.

Even though increasing the number of transmits improves the lateral shift-
invariance, it will also reduce the acquisition frame rate with a factor equal to the
oversampling factor. The processing complexity will also increase equally. For these
two reasons, oversampling on transmit is something which is desirable to avoid in real
time ultrasound applications, and therefore we will not discuss this method further.

III.4.2 Oversampling by Parallel Receive Beamforming

Parallel receive beamforming (PRB) means that multiple narrow receive beams (rx-
beams) are constructed from one broad tx-beam. Then, by reducing the number
of tx-beams and relying on multiple rx-beams to get su�cient sampling on receive,
it is possible to achieve high frame rate imaging. However, PRB also introduces
geometrical distortion which, to some degree, can be compensated for by using, e.g.,
synthetic transmit beamforming (STB) [22, 25]. In [26], it is shown that STB works
well with Capon beamforming, something which is also verified in [18]. In the following
discussion, we consider corrected PRB as being equal to oversampling on transmit
when it comes to image quality. The LSV-plots for PRB are therefore not included.

In cardiac ultrasound imaging, PRB is typically used to keep the number of
rx-beams high while the number of tx-beams are reduced. When using PRB for
oversampling, we would like to maintain the same number of tx-beams while the
number of rx-beams are increased. The acquisition frame rate will then not be a↵ected.
On the other hand, more rx-beams will increase the number of covariance matrices
and thereby the number of matrix-inversions with a factor equal to the number of
parallel receive lines. The processing times reported in [18] will then also increase
with the same factor. Because more than 16 times oversampling is required to achieve
lateral-shift-invariant and high-resolution imaging of a moving point scatterer, none
of the implementations described in [18] would be possible in real time. We therefore
need a di↵erent way of oversampling our imaging sector.
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Figure III.4: Capon beamforming as described in Fig. III.3 with oversampling on
transmit. The figure is zoomed-in compared with Fig. III.3 to better see the beam-to-
beam variation. a) 4 times oversampling (q = 4). b) 16 times oversampling (q = 16).
The maximum scalloping loss is reduced, but it is still too high for the system to be
locally laterally shift invariant.
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III.4.3 Oversampling by Phase Rotation

The Capon beamformer formula in (III.7) gives a direct opportunity for oversampling
using phase rotation. The steering vector a has in previous work been set to 1 because
ultrasound data must be pre-delayed. However, the steering vector can also, as in
narrow band applications, be varied over a set of predefined vectors. In a narrow band
setting, the beam can make a sweep across the whole imaging sector through phase
steering. This is also possible in broadband applications as long as the phase rotation
is less than one pulse length (See coarse-fine beamforming in [27] and its references).
The maximal steering angle is approximately given by

✓max = 2↵�✓, (III.9)

where ↵ is the pulse length in terms of �, and 2 and �✓ is the oversampling factor and
beam spacing from (III.8). For our simulations ✓max = 3�✓. It is therefore possible
to make a sweep based on phase rotation between a given beam and half-way to its
two nearest neighbours without introducing large errors. Phase rotation is actually
what the Capon beamformer uses internally to micro-steer away from bright point
scatterers and to enhance edges.

For a uniform linear array located along the x-axis the steering vector a✓ should
be calculated as

a✓ =

2

66664

e�j 2⇡
�c

x0 sin(✓)

e�j 2⇡
�c

x1 sin(✓)

...

e�j 2⇡
�c

xL�1 sin(✓)

3

77775
(III.10)

where xi is the element position and ✓ is swept from ��✓/2 to �✓/2. Note that the
steering vector must be calculated for an L element symmetric subarray, even though
the full array has M elements. This subarray should have the same element pitch,
|xi � xi�1|, as the full array.

The steering angles can be spread out in many di↵erent ways. If the number of
steering angles is N✓ we have selected a uniform distribution of ✓ with N✓/2 angles on
each side of the original steering direction when N✓ is even.

Figure III.5 shows the phase rotation method applied on the same scan sequence
as in Fig. III.3 with 4 and 16 times oversampling (q-factor) on receive respectively.
Note that the figure is zoomed-in compared with Fig. III.3. As with oversampling
on transmit, there is some variation when the point moves in and out of focus. The
maximum scalloping loss is therefore large. The extreme local variations are, however,
reduced significantly. Comparing Fig. III.4 with Fig. III.5, the errors introduced by
the phase rotation method are best seen in sidelobes.

Since the phase rotation method operates on the same channel data as in Fig. III.3a,
there will be no reduction in the acquisition frame rate by applying this method. In
addition, since the same number of covariance matrices are constructed and inverted,
there also is no extra cost involved. The only additional cost will be the multiplication
of the extra steering vectors with the inverted covariance matrix. If the equation R̂a =

96



Chapter III. Capon Beamforming and Moving Objects

b, as in [18], is solved using the Gauss-Jordan algorithm, we can solve the problem
for all steering vectors at once by row reducing the matrix [R̂,a✓1 ,a✓2 , · · ·a✓N✓

] to

the form [I,b✓1 ,b✓2 , · · ·b✓N✓
]. This is an O(L3) operation as long as N✓ is not much

greater than L.

III.5 In Vitro Phantom Data

In Fig. III.6 we present the result of applying the Capon beamformer on in vitro data
with and without oversampling by phase rotation. The data was acquired using a
modified Vivid E9 high-end cardiac ultrasound scanner (GE Vingmed Ultrasound,
Horten, Norway) equipped with a M5S-D phased transducer operating in harmonic
mode at 3.34 MHz. The transmit beam density was set to match (III.8) based on this
frequency, and 111 tx-beams where therefore distributed on a 65�sector. Transmit
focus was located at 8 cm range. Note that in harmonic imaging, the generated
transmit beam at the harmonic frequency will be wider and have lower sidelobes than
the beam resulting from transmitting at the harmonic frequency [28]. The lateral
sampling is therefore increased compared with our simulations. A tissue mimicking
phantom containing wire targets and anechoic cysts was imaged, and the data was
acquired while the probe was moved across the phantom manually. Fig. III.6a shows
the first frame out of 14 in the acquired loop processed with DAS beamforming.

One point scatterer in Fig. III.6a has been selected [white box], and then used to
generate LSV-plots. The point scatterer is located close to the transmit focus. Figure
III.6b shows the resulting LSV-plot when using the DAS beamformer. The scalloping
loss is less than 1 dB, and the system is by that locally laterally shift-invariant. As a
consequence point scatterers have a consistent appearance when subjected to motion
[Media Movie 1].

Figure III.6c shows the same point scatterer response processed with the Capon
beamformer without oversampling. For the frame where the point scatterer is at -
6 degrees the receive beam direction is very close to the signal propagation vector.
Hence, we see a high amplitude value at this location. In almost all the other frames
the signal loss is massive (at most 10 dB). The result is blinking point scatterers when
subjected to motion [Media Movie 2].

Figure III.6d presents the result of applying sixteen times oversampling by phase
rotation. We observe how the amplitude of the point scatterer is better preserved in
all frames, and the scalloping loss is not far from our 1 dB threshold. Note that the
oscillation along the diagonal does not indicate shift-variance. It is a result of lack of
control when the probe was manually dragged across the phantom. To get a diagonal
without peaks the probe has to be dragged across the phantom with a speed which
matches the acquisition frame rate. In addition, because of the increase in lateral
resolution, the Capon beamformer requires smaller frame-to-frame movements than
DAS. Looking at the video of Capon beamforming with sixteen times oversampling
by phase rotation [Media Movie 3] the blinking is now highly reduced. The same
can be seen from Fig. III.7 where point scatterers appear brighter in the image with
oversampling by phase rotation.
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Figure III.5: Capon beamforming as described in Fig. III.3 with oversampling based
on phase rotation. The figure is zoomed-in compared with Fig. III.3 to better see the
beam-to-beam variation. a) 4 times oversampling on receive (q = 4). b) 16 times
oversampling on receive (q = 16).
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Figure III.6: LSV-plots generated from in vitro phantom data where the probe has
been manually dragged across the phantom. See the supplementary material for videos
of the whole loop processed with the di↵erent beamformers. Capon beamforming has
been performed with the same settings as in Fig. III.3a. P-MAE is not shown due
to a lack of probe movement control. a) First frame in the recorded loop processed
with delay-and-sum beamforming [Media Movie 1]. A white box indicates the
point scatterer used to construct the LSV-plots. b) LSV-plot for delay-and-sum
beamforming. c) LSV-plot for Capon beamforming without oversampling. d) LSV-
plot for Capon beamforming with sixteen times oversampling using phase rotation.

III.6 Discussion

Faced with an imaging scene containing bright point scatterers or sharp edges, one
could wonder how large the oversampling factor needs to be to avoid visible scalloping
losses. In his seminal paper, Cox [15] derives the required beam density for a given
output SNR. For instance 47 dB requires a beam density for the Capon beamformer
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(a)

(b)

Figure III.7: First frame from Fig. III.6a processed with Capon beamforming. a)
Without oversampling [Media Movie 2]. b) With sixteen times oversampling using
phase rotation [Media Movie 3]. Notice how the point scatterers appear brighter in
the image with oversampling.

ten times the one given by (III.8) [with q = 1/2]. Since resolution for the Capon
beamformer depends on SNR we would recommend to first use the dynamic range in
the image as guidance. The amount of diagonal loading will also dictate the maximal
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achievable resolution since 10 log d can be interpreted as the maximal input SNR seen
by the Capon beamformer. Fig. III.1 shows that 25 times oversampling is required for
a d-value of 1/100. When in vitro data contains additional noise this oversampling
requirement is reduced.

Relating the presented phase rotation method to earlier work we find that it is
similar to a steering vector uncertainty set. However, where these set-based methods
typically have a criterion for selecting the best output after applying all the steering
vectors contained in the set, oversampling by phase rotation outputs all. It can also be
thought of as a narrowband approach to parallel receive beamforming where Capon’s
method is applied on all receive beams.

Oversampling by phase rotation can therefore introduce similar block artifacts as
parallel receive beamforming (PRB). To remove these artifacts we could distribute our
steering vectors in an overlapping scheme [like rx-beams are spread out for STB]. We
then get a phase rotation version of STB where e.g. eight phase rotated beams are
averaged into four. Whether the geometric distortion, or stripes, seen at the bottom
of the sector in the video with 16 times oversampling [Media Movie 3] is removed
by such technique is left for future work.

When oversampling is applied it becomes evident that the high-resolution settings
used in this paper might be too extreme, both with respect to the level of
required oversampling and the point scatterer’s appearance. Traditionally in medical
ultrasound imaging, the point spread function is always wider laterally than in range.
With the Capon beamformer this is now changed. A more symmetric point spread
function while preserving speckle statistics is obtained with the parameters L = M/4
and K = 0 [14]. The level of required oversampling and the computational complexity
are also reduced. Note that oversampling is not only essential to keep the amplitude
level of moving point scatterers. It should also help to improve contrast and edge
definitions. If oversampling is not applied, homogeneous speckle regions could get a
too-low average value and the edge delineation of a moving object will fluctuate in the
same way as a moving point scatterer would have sparkled.

Finally, we want to stress the fact that this demand for oversampling does not
only a↵ect the Capon [or minimum variance beamformer]. Other methods claiming
super resolution, like the Eigenspace method, low complexity beamformer etc. [29–
32], would also require oversampling when improved lateral resolution is obtained.
The same applies for high resolution spectral estimation [33].

III.7 Conclusion

In this paper we have investigated the lateral shift-invariance property of the Capon
beamformer when imaging moving objects. It was shown that Capon beamforming
with the same beam density as required for delay-and-sum beforming results in blinking
point scatterers when the system is subjected to motion. We then discussed and
investigated di↵erent methods based on oversampling on transmit and receive to
reduced this e↵ect. Finally, we showed that the local lateral shift-invariance could be
improved by oversampling based on phase rotation on receive. This without a↵ecting
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the acquisition frame rate and with a minor change in processing complexity. In
simulations, this method reduced the maximum scalloping loss by 16 dB. On in vitro
data, the reduction was around 7 dB and the point scatterer blinking was highly
reduced.
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Jon Petter Åsen1, Erik Steen2, Gabriel Kiss3,4, Anders Thorstensen1,5,
Stein Inge Rabben2

1Medical Imaging Lab (MI-Lab), Norwegian University of Science and Technology,
Trondheim, Norway
2 GE Vingmed Ultrasound, Horten, Norway
3 Norwegian University of Science and Technology, ISB - Department of Circulation
and Medical Imaging, Trondheim, Norway
4 St. Olavs Hospital, Trondheim, Norway
5 Department of Cardiology, St. Olavs Hospital, Trondheim, Norway

Proc. SPIE Medical Imaging 2012, vol. 8320, pp. 832008.

107



IV.1. Introduction

In this paper we introduce and investigate an adaptive direct volume rendering
(DVR) method for real-time visualization of cardiac 3D ultrasound. DVR is
commonly used in cardiac ultrasound to visualize interfaces between tissue
and blood. However, this is particularly challenging with ultrasound images
due to variability of the signal within tissue as well as variability of noise
signal within the blood pool. Standard DVR involves a global mapping of
sample values to opacity by an opacity transfer function (OTF). While a
global OTF may represent the interface correctly in one part of the image,
it may result in tissue dropouts, or even artificial interfaces within the
blood pool in other parts of the image. In order to increase correctness
of the rendered image, the presented method utilizes blood pool statistics
to do regional adjustments of the OTF. The regional adaptive OTF was
compared with a global OTF in a dataset of apical recordings from 18 subjects.
For each recording, three renderings from standard views (apical 4-chamber
(A4C), inverted A4C (IA4C) and mitral valve (MV)) were generated for both
methods, and each rendering was tuned to the best visual appearance by
a physician echocardiographer. For each rendering we measured the mean
absolute error (MAE) between the rendering depth bu↵er and a validated left
ventricular segmentation. The di↵erence d in MAE between the global and
regional method was calculated and t-test results are reported with significant
improvements for the regional adaptive method (d̄A4C = 1.5 ± 0.3 mm,
d̄IA4C = 2.5 ± 0.4 mm, d̄MV = 1.7 ± 0.2 mm, d.f. = 17, all p < 0.001).
This improvement by the regional adaptive method was confirmed through
qualitative visual assessment by an experienced physician echocardiographer
who concluded that the regional adaptive method produced rendered images
with fewer tissue dropouts and less spurious structures inside the blood pool
in the vast majority of the renderings. The algorithm has been implemented
on a GPU, running an average of 16 fps with a resolution of 512x512x100
samples (Nvidia GTX460).

IV.1 Introduction

Direct volume rendering (DVR)[1] is commonly used in cardiac ultrasound to visualize
interfaces between tissue and blood[2–4]. DVR has the advantage over other methods
like 2D-slicing that it presents a large part of the volumetric data in a single view.
Figure IV.1a presents such a volume rendering of a high quality cardiac ultrasound
volume. Anatomical structures of special interest are highlighted; the left ventricle
(LV), the mitral valve which separates LV from the left atrium (LA), and the
interventricular septum which separates the LV from the right ventricle (RV). As
can be seen, interpreting cardiac ultrasound data is di�cult and requires a lot of
training. Clear tissue-blood boundaries are therefore of great importance. However,
this is challenging to achieve with ultrasound images due to variability of the signal
within tissue as well as variability of noise signal within the blood pool.

At the core of DVR, optical properties (colour and opacity) are derived from a
transfer function and integrated along rays of light. One ray for each pixel in the final
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Interventricular septum

Mitral valve

LV

RA

(a) (b)

Figure IV.1: a). An example of direct volume rendering (DVR) of cardiac ultrasound.
Highlighted anatomical structures are: The left ventricle (LV), the right atrium (RA),
mitral valve and the interventricular septum. b). Shows two opacity transfer functions
(OTF) with a fuzzy transition between voxels excluded from (values below ⌧) or
included in the rendering (values above ⌧). Adjusting ⌧ (blue arrow) will either include
or exclude more data.

image. Applying the transfer function is also known as classification since features
are visually separated through assignment of di↵erent colours and opacities. On the
other hand, selecting a transfer function with low classification error is considered a
challenge and will always be related to the data at hand [5]. Figure IV.1b shows an
example of a monotonically increasing opacity transfer function (OTF) for cardiac
ultrasound DVR. Unlike other medical imaging modalities like CT and MR, cardiac
ultrasound data are assumed to consist of only two classes; tissue and the blood pool
signal. Tissue is expected to have higher intensity than blood, but in practice the two
class-distributions overlap. The OTF in Figure IV.1b is therefore designed to give a
fuzzy threshold between samples excluded from and samples included in the rendering.
Selecting the right threshold, as for transfer functions design in general, is therefore a
challenge in cardiac ultrasound visualization.

There are several reasons for the overlap between tissue and blood pool signal
in ultrasound images. Sidelobes of the ultrasound beam results in signal from o↵-
beam structures (clutter noise). Speckle pattern, caused by interference between
point scatterers results in high signal variance in homogeneous regions. Multiple
reflections between tissue structures (reverberations) causes false echoes. Distortion of
the ultrasound wave front caused by varying speed of sound in inhomogeneous tissue
(aberrations) reduce the signal amplitude. Interfaces of high reflectivity (lungs, ribs
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and calcifications) and how tissue layers are aligned with the ultrasound beam result in
drop-outs and varying tissue signal. Attenuation of the ultrasound signal with depth
gives high variation in tissue intensity across the volume. While an optimal global
OTF may represent the tissue-blood interface correctly in one part of the image, the
high variation in tissue intensities may result in tissue dropouts, or even artificial
interfaces within the blood pool in other parts of the image. The latter artefact is
visible in the upper part of LV in Figure IV.1a. Figure IV.1a also shows a large
dropout in the lateral wall. These problems are to some extent solved by clipping, but
standard clipping also has its limitations due to planar geometry. The curved shape
of cardiac chambers calls either for other clipping geometries or a way to better assign
high opacity to voxels associated with tissue and low opacity otherwise[6].

A lot of work has been done in the visualization community to improve the results
given by standard DVR. Special attention has been devoted to the problem of selecting
the right transfer function[7–13] and exploration of illustrative or non-photorealistic
techniques to bring important information into focus[14–18]. Recently, Marchesin et al.
[19] introduced a relevance function for feature enhancement in volume rendering. The
paper di↵ers from earlier contributions by also suggesting how to derive a relevance
map without having any prior knowledge of voxel priorities. However, the use of
local gradients as relevance indicators together with the per-ray constant opacity,
yielding transparent renderings, makes it unsuitable for cardiac ultrasound. In our
approach we adapt the ideas given by Marchesin et al. on how to do local opacity
modulations, but with a relevance map better suited for cardiac ultrasound. For
medical applications many adaptive and semi-adaptive DVR-like techniques have been
proposed for enhancing anatomical structures[20–23]. For ultrasound, Hönigmann et
al.[24] proposed how to design a global adaptive OTF used to visualize volumetric fetal
images. They also discussed the possibility of calculating one OFT for di↵erent regions
in the rendering. Such a regional OTF can be derived from e.g. local edge detection or
histograms. The method proposed in this paper regionally adapts the OTF by utilizing
blood pool statistics derived from a real-time LV endocardial tracking algorithm[25].
The purpose is to increase the correctness of the rendered image by reducing artificial
tissue dropouts and spurious structures inside the blood pool.

IV.2 Methods

IV.2.1 Blood pool based regional adaptive opacity transfer
function

Selecting the correct global OTF for cardiac ultrasound visualization can be viewed
as a global thresholding problem. Therefore we define the opacity threshold ⌧ for a
monotonically increasing OTF ↵ as the highest sample value v where all samples with
lower value than v will get zero opacity, ⌧ = maxi(vi), ↵(vj) = 0 8 j < i, hence they
will be rendered transparent. As OTF we use a truncated polynomial:

↵(v) =

⇢
0, v < ⌧,

min(a(v � ⌧)� , k), v � ⌧.
(IV.1)
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Global transparency is controlled by a 2 [0,1i, and in this paper a = 80 has been
selected to give a steep OTF. The truncation and gamma value are set to k = 0.5 and
� = 2 respectively. A second order polynomial has been selected instead of a standard
linear OTF to increase the transparency of values near the opacity threshold. These
values have a higher probability for being noise, and we let the opacity reflect this.

Since the global distributions of tissue and blood pool voxels usually overlap,
adjusting ⌧ will always involve a tradeo↵ between the number of true-positive and
false-positive tissue voxels. If the opacity threshold is set too high, tissue surfaces will
start to fall apart. However, if set too low, low level noise will get high opacity and
the rendering will end before the actual tissue border is reached. Figure IV.2a depicts
the problem of having a global OTF (in orange). If rays ri and rj have noise (nr)
and tissue (sr) levels given by ni, si, nj , sj , with ni < si < nj < sj , there are two
obvious choices for ⌧ . The global opacity threshold ⌧ can be selected as ni < ⌧ < si
or nj < ⌧ < sj . The first choice makes nj occlude sj , however the second choice will
render si transparent. This will result in an artificial hole in the final rendering along
ri. With our regional adaptive OTF, the idea is to let the opacity threshold ⌧ vary
across the framebu↵er, making us able to define individual opacity thresholds for ri
and rj (shown in green in Figure IV.2a).

In optical character recognition there has been a long tradition to utilize adaptive
thresholding schemes to deal with variable background levels in 2D images[26], thus
maximizing the amount of foreground output. One simple adaptive method is based
on estimates of regional statistics. The local image threshold ⌧x,y is calculated as

⌧x,y = µx,y + c�x,y, (IV.2)

where c is a constant, and µx,y and �x,y are mean and standard deviation estimates
calculated in a window w around (x,y). This yields what is known as a thresholding
surface, where the method assumes that the foreground has higher expected value than
the background inside w. Hence, foreground pixels are located above the thresholding
surface.

To address our problem with high variability in tissue intensity in ultrasound
images, we have designed a regional adaptive OTF by estimating the regional means
and standard deviations of Equation IV.2 from the blood pool of the LV. The
blood pool was delineated by a state-estimation algorithm capable of tracking the
LV endocardium in real-time[25]. The temporal state of the LV is returned by the
framework as a time series of polygon meshes. How we utilize this information to
do regional opacity adjustments is depicted in Figure IV.2b. For a given frame we
estimate the signal mean and standard deviation, µr and �r, along rendering ray r.
Note that only the blood pool, the intersection between r and the given LV delineation,
is used to estimate µr and �r. The estimates are then used to calculate a regional
opacity threshold ⌧r given as

⌧r = µr + c�r, (IV.3)

where c is a global constant adjusting ⌧r around µr with a certain number of standard
deviations. The local threshold ⌧r together with Equation IV.1 form our blood pool
based regional adaptive OTF. Rays that do not intersect the given LV delineation are
rendered using a global OTF.
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(a)

(b)

Figure IV.2: a) Shows ideal bimodal histograms of two density evolutions along ray
ri and rj . If we apply a global OTF (orange) on the given case we must select one ray
were we want to separate tissue from blood. However, with a regional adapted OTF
(green) we can find individual thresholds ⌧r that minimizes the amount of misclassified
samples along both rays. b) Estimated values of mean µr and standard deviation �r

inside the blood pool are used to regionally adjust the OTF. The regional opacity
threshold ⌧r = µr+ c�r is calculated for each ray r intersecting a given left ventricular
delineation.
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IV.2.2 Parameter space

The proposed method in Equation IV.3 introduces a parameter c, which controls how
many standard deviations we want ⌧r to deviate from the per-ray blood pool mean µr.
This parameter is clearly a substitution for the global opacity threshold, and adjusting
c will in the same way control the level of data visible in the rendered image. Setting
c = 0 will render approximately 50% of the blood pool samples transparent. Since
we have a robust estimate of blood pool statistics, tissue signals are expected to have
µtissue > µr and c > 0 should be used.

The shape of the OTF is of great importance for the final appearance of a volume
rendering. An OTF with a gentle slope will for instance result in a transparent look.
In the proposed method we are more interested in the opacity threshold than the
actual shape of the OTF, therefore we use the simple shifted and truncated second
degree polynomial from Equation IV.1 as a basis for the local OTF. Because it is a
simple closed form expression, it can be used to quickly calculate on-the-fly opacity
values.

For thresholding 2D images, the adaptive method in Equation IV.2 requires a
window size that is directly related to the size of foreground objects. In our method,
this window size depends on the ray-blood-pool intersection, and ideally no foreground
(tissue) is included in the estimates. The regional opacity threshold ⌧r is used along
the full length of r, not just the intersection. Intersections with too few samples to
give reliable statistics are rendered using a global OTF.

IV.2.3 Spatial and temporal regularization

Introducing adaptive visualization has some negative side e↵ects. We trade spatial
and temporal coherence in the presentation of anatomical structures for a better
presentation of endocardial tissue. This does not pose any problems as long as the
structure of interest along a given ray is associated with a value larger than the
blood pool mean. Otherwise we risk rendering this structure transparent. The latter
situation will often arise if e.g. the endocardium, mitral valve or papillary muscles
are included in the estimated statistics. Given the properties of the real-time tracking
framework, the two last structures, will to some extent, always be included. To exclude
the endocardium we highly depend on a successful LV endocardial tracking. All
segmentation algorithms will be prone to errors and two regularization schemes have
therefore been tested. First, we do spatial smoothing of estimates across neighbouring
rays. This will constrain the regional adaptivity. Second, we do temporal smoothing
over successive frames to reduce the per-frame adaptivity and potential flickering[27].
The smoothing has been implemented as averaging filters on the framebu↵er containing
regional statistics. All regional adaptive renderings and statistics have been produced
without any regularization in this paper. However the regularization schemes have
been tested, and we will comment on how they perform.
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Apical 4-chamber Inverted apical 4-chamber Mitral valve

d̄ 1.5± 0.3 mm 2.5± 0.4 mm 1.7± 0.2 mm

Table IV.1: Statistics showing a significant improvement (p < 0.001, d.f. = 17) in
mean absolute error (MAE) for the proposed regional adaptive method in three views.
The variable d̄ is the average di↵erence plus-minus standard error between MAEglobal

and MAEregional in 18 subjects. All renderings are from end-diastole and were tuned
to the best visual appearance by a physician echocardiographer.

IV.2.4 Rendering setup

All renderings have been produced with Phong lighting and the data have been pre-
smoothed with anisotropic di↵usion[28, 29]. For ray-casting it is normal to stop
integrating when no significant transparency is left (known as early-ray-termination).
We have chosen to terminate each ray when only 5% transparency is left. The
rendering resolution has been set to 512x512x100.

IV.2.5 Measuring rendering accuracy

As a measure of rendering accuracy, we have calculated the mean absolute error
(MAE) between the rendering depth bu↵er (given by early-ray-termination) and a
validated left ventrical segmentation. The reference segmentation was performed by an
experienced physician echocardiographer using the AutoLVQ tool from GE Vingmed
Ultrasound. The MAE measure will increase if the rendering contains tissue dropouts,
or if spurious structures occlude endocardial tissue. A minimal MAE therefore exists
when a majority of rays end their traversal near the tissue-blood border depicted by
the reference segmentation. A view-aligned clipping plane has been applied to produce
standard long-axis and mitral valve views, clipping away half of both the ventricle and
the reference segmentation. Clipping of the volume from behind has also been applied
to reduce the impact of non-terminated rays versus rays terminated by clutter noise.

IV.3 Results

IV.3.1 Quantitative evaluation

The global and regional adaptive methods were compared using a dataset of apical
recordings from 18 subjects. The dataset consisted of 8 healthy volunteers and 10
subjects with recent myocardial infarctions and were acquired using the GE Vivid
7 Dimensions system (GE Vingmed, Horten, Norway) and a 2.5MHz matrix array
transducer (GE Vingmed, Horten, Norway), with the subjects in the left lateral
decubitus position. Scans were taken from the apical imaging window, in harmonic
mode, from 4 up to 6 QRS triggered sub-volumes, during an end-expiratory breath-
hold. The depth and angle of the ultrasound sector were adjusted such that the entire
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Apical 4-chamber Inverted apical 4-chamber Mitral valve

Better 17 17 12
Equal 1 1 4
Worse 0 0 2

Table IV.2: Ratings given by an experienced physician echocardiographer when
comparing the blood pool based regional adaptive OTF with a global OTF in three
views.

LV was covered.
For each recording, three renderings from standard views (apical 4-chamber (A4C),

inverted A4C and mitral valve (MV)) were generated for both the global and regional
adaptive methods. Each rendering was then tuned to the best visual appearance by
a physician echocardiographer. For each rendering we measured the MAE between
the rendering depth bu↵er and a validated LV segmentation. The results of these
measurements are reported in Table IV.1. The null hypothesis that d̄ is less than or
equal to zero, i.e. MAEglobal  MAEregional, can be rejected (p < 0.001) for all views
using t-statistics with d.f. = 17.

The algorithm has been implemented on a GPU using CUDA. It runs at an average
speed of 16 fps with an Nvidia GTX 460 graphics card. Note that this card has half
the texture performance in CUDA compared to Direct3D. To estimate statistics we
need to add a second pass through the volume to the rendering pipeline, reducing
performance from 26 fps for a global OTF to 16 fps. As mentioned the rendering
resolution is 512x512x100.

IV.3.2 Qualitative evaluation

For each pair of renderings, an experienced physician echocardiographer was asked
to answer the following questions regarding image quality: Does the blood pool based
regional adaptive OTF produce a rendered image with less tissue dropouts and spurious
structures inside the blood pool compared with the global OTF?. This qualitative
evaluation is summarized in Table IV.2. As seen, he concluded that the regional
adaptive method performed better in 46 of the 56 renderings, and only worse in two.

IV.3.3 Examples

Figures IV.3a, b and c show three renderings of the same apical 4-chamber view of one
subject. With a low opacity threshold (Figure IV.3a), a lot of clutter noise is picked up
in the apex of the LV (circle). With a threshold corresponding to the minimumMAE in
Figure IV.3d, the clutter noise is removed (Figure IV.3b), but a tissue dropout (circle)
has now increased in size. With the blood-pool based method (Figure IV.3c) clutter
noise inside the LV is suppressed, giving a clear view of the endocardial tissue and a
papillary muscle (arrow) without reducing the thickness of the mitral valve (square).
The extent of the mentioned dropout is also reduced (circle). In Figure IV.3d we
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Figure IV.3: a) Global OTF with a low opacity threshold ⌧ . A lot of noise is visible
inside the LV (circle). b) Global OTF with ⌧ corresponding to the lowest MAE in
Figure d. The image contains less noise, but also a large tissue dropout (circle). c)
Blood pool based regional adaptive OTF with c=0.5 which is close to the minimum
in d. The papillary muscle is now more visible (arrow) and the tissue dropout (circle)
is smaller without pruning the mitral valve (sqare). d) Parameter exploration in the
view shown in a, b and c. MAE is plotted versus the c-value. For comparison, the
global OTF has been converted into a function of c using the global mean and standard
deviation.
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present a parameter exploration of the c-value introduced with the regional adaptive
OTF. For comparison the global opacity threshold is substituted with a function of c,
global mean and standard deviation. The figure shows that for a given view the MAE
measure has a local minimum for both the global and regional methods, and that the
regional OTF has a smaller MAE than the global OTF for all c.

IV.4 Discussion

A regional adaptive OTF based on blood-pool statistics has been proposed. The
purpose was to better handle the high variation of signal within tissue as well as
variability of noise signal inside the blood pool. Both quantitative and qualitative
results reported in Section IV.3 shows that this has been accomplished.

We believe that the significant reduction in MAE for the regional adaptive method
in Table IV.1 is caused by a reduced amount of rendering outliers. By outliers we
mean rendering rays that stop far away from the endocardial boundary depicted by
the reference segmentation, thus having a high absolute error. We observe that the
di↵erence in MAE in millimetre is small, between 1.5 and 2.5 mm for the three views
in Table IV.1, compared to normal average end-diastole myocardial thickness (around
10mm). However, regional improvements in order of centimetres can be observed
in Figure IV.3c (circle). These large improvements are smoothed out by the MAE
measure, but remains as a significant statistical improvement (p < 0.001) in MAE-
di↵erence between the regional and global adaptive method in all three views (Table
IV.1).

Table IV.2 shows that in 46 pair of renderings the regional adaptive OTF based
on blood pool statistics provided renderings with less tissue dropouts and spurious
structures inside the blood pool. However, Table IV.2 also shows that the regional
adaptive method was ranked worse in the MV view for two subjects, and in four MV-
views the two methods were equal. On the other hand, the MV statistics in Table IV.1
are the most significant among the three views. One explanation to these diverging
results is: When doing the qualitative assessment the physician echocardiographer
watched the whole cardiac cycle, where the statistics in Table IV.1 are calculated
from a single end-diastolic frame. In end-diastole the mitral valve is closed, which
means that the MV is outside our tracking model and therefore not included in the
blood pool statistics. When the MV is inside the tracking model, thus included in
the estimates, visual artefacts can occur since the MV will be treated as being a
part of the blood pool and might get rendered transparent. Another explanation is
that all the recordings are from an apical imaging view. From this view the MV is
normal to the ultrasound beam. The MV has because of this better image quality
than e.g. the LV endocardium and thus less variation is observed in the MV-view
statistics than for the long-axis views (Table IV.1). When the image quality is good it
is hard to make any regional improvement compared with a global OTF. Opposite, the
endocardial boundary has usually lower image quality than the MV from the apical
imaging window. For the two 4-chamber views the statistics therefore has higher
variation and for the inverted 4-chamber, that had large acoustic dropouts in many of
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the recordings, the improvement is much larger.

The images in Figure IV.3 demonstrate that our regional adaptation of the OTF
provides a better trado↵ between artificial tissue dropouts and spurious structures
compared with a global OTF. In Figure IV.3d this improvement is quantified as
MAEglobal(c) > MAEregional(c), 8c 2 [�1.5, 1.5]. This illustrate our findings that
the global OTF did not produce a smaller MAE than the regional OTF in any
pair of renderings if both methods where tuned to the lowest MAE. The gentle
slope of MAEregional(c) in Figure IV.3d is another important observation. This
indicates that the proposed method is less sensitive to changes in c, and therefore
less tuning is often required. This observation was also done by the physician
echocardiographer. The rendering in Figure IV.3c has a c-value corresponding to
the minimum of MAEregional(c) in Figure IV.3d. We have often found the c-value
at the local minimum of the MAE measure to be approximately the same c-value as
both we and the physician echocradiographer would have selected in a given view. A
fully automatic method could therefore iterate towards the local minimum by steepest
descent, removing the need for manual tuning of c. It should be kept in mind that
the success of this approach highly depends on a correct segmentation of the LV. This
approach will also not be real-time, since an accurate segmentation of the LV usually
involves manual adjustments and processing times in the order of seconds. One option
is to use the real-time acquired LV delineation, used to estimate blood pool statistics,
to measure rendering accuracy as well. A di↵erent endocardial detection scheme should
then be used to estimate blood-pool statistics, to avoid a too close coupling between
the LV delineation used for estimation and validation.

As mentioned, no spatial regularization was applied to the results in Section IV.3.
However, spatial smoothing will decrease the variation in ⌧r across the image, and
with increased filter kernels the results will become equivalent to applying an OTF
with a global adaptive opacity threshold ⌧g based on the whole blood pool. With
increased spatial smoothing less visual artefacts have been observed at the cost of a
higher MAE. As no flickering has been observed, temporal smoothing had no positive
e↵ect. E.g. the rapid movement of the mitral valve caused artificial dropouts in all
views when temporal smoothing was applied.

IV.4.1 Limitations

The choice of using a deformable model to indicate the blood pool location imposes
some limitations for the proposed method. As mentioned, some important cardiac
structures are included in the depicted blood pool and might result in visual artefacts.
However, how the LV endocardial boundary is derived is not relevant for the result in
this paper. Local edge detectors combined with regularization may work equally well
for limiting the regional estimation of means and standard deviations to the blood
pool.
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IV.5 Conclusion

In this paper we have introduced and investigated an adaptive DVR method for real-
time visualization of cardiac 3D ultrasound. Compared to a global OTF we have
shown, both with quantitative and qualitative results, that the regional adaptive
method, based on blood pool statistics, is capable of reducing tissue dropouts and
spurious structures inside the blood pool. The need for manual tuning is reduced by
adapting the OTF to the data at hand, potentially leading to a fully automatic and
data-dependent OTF.
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V.1. Introduction

The introduction of graphics processing unit (GPU) computing has made it
possible to speed up computationally demanding algorithms. One of these
algorithms is the calculation of pressure fields from acoustic transducers.
Here, the execution time often limits the number of elements and field points
we can select in order to get results back in finite time.
In this paper we present a simple GPU-based simulator capable of simulating
high resolution pressure fields at interactive frame rates. The simulator is
based on the same principle as the Ultrasim toolbox, where responses from
several point sources are accumulated in a set of observation points, hence
solving the Rayleigh-Sommerfeld integral. The cumulative sum for each
observation point is independent of all other observation points, making the
problem perfect for GPU processing. For the simulator we provide both a
Paint-like interface for interactive drawing of uniform linear arrays and free-
hand shapes, and a Matlab interface for precise scripting of element positions
and observation points.
The presented GPU simulator was compared both with a multi threaded C-
version, Ultrasim, and Field II. Compared with Ultrasim we report a 400
times speedup when simulating a varying number of source points on a 150 K
points observation grid. The test system consisted of a low-end GPU (Nvidia
Quadro 600) and an Intel i7-870 2.93 GHz quad-core CPU.

V.1 Introduction

Software for simulation of pressure fields from ultrasound transducers is an important
tool for gaining knowledge on how a transducer performs. This brings both great
insight to researchers and helps lowering production costs. A downside is that
calculating large fields is often found to be time consuming, and the number of field
points and the level of transducer approximation have to be adjusted low enough to
have the result back in finite time. The introduction of graphics processing unit (GPU)
computing has made it possible to speed up computationally demanding algorithms.
In this paper we present a simple GPU-based simulator capable of simulating high
resolution pressure fields at interactive frame rates.

Today there exist a vast collection of ultrasound simulators. There is Field II
by Jensen[1], considered the gold standard of ultrasound simulation. However, there
are also simulators that provides di↵erent functionality and perform di↵erent trade-
o↵s than Field II. One example is the Ultrasim toolbox[2]. As for Field II, this is
also a Matlab plugin. However, where Field II is mostly used to simulate ultrasound
images and beams, Ultrasim can only simulate snapshots of transducer transmit fields.
Another di↵erence, is the way these toolboxes are organized. Field II is a collection
of functions that makes it easy to run large batched simulations where di↵erent
acquisition setups are to be investigated. Ultrasim, on the other hand, is an interactive
tool with a graphical user interface controlling all simulation parameters. Ultrasim is
therefore more accessible if one only need to simulate transducer transmit pressure.
Field II and Ultrasim are based on two di↵erent concepts, the spatial impulse response
and Huygens’ principle respectively. In addition there are also simulators based on the
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Figure V.1: Huygens’ principle showing the superposition of spherical waves from
many point sources.

angular spectrum method [3] capable of simulating 3D harmonic fields. And lately,
simulators, capable of simulating 3D ultrasound images in orders of seconds have also
been introduced [4].

Like Ultrasim, the presented simulator, Huygens on Speed (HOS), is based on
Huygens’ principle [5] as depicted in Fig. V.1. Hence, solving the Rayleight-
Sommerfeld integral[2]:

� =
1

2⇡

Z

S

un(r0, t� r/c)

r
dS. (V.1)

where un, the normal velocity, is integrated over the transducer surface S weighted
with the reciprocal of distance from the field point to the transducer.

We easily see that each calculation at a given field point is independent of the result
at all other field points. The problem is therefore perfect for GPU computing, since
one thread on the GPU can process one field point independent of all other threads.
The only inputs needed are the field point and source point properties. Examples of
other simulators implemented using GPU computing includes [6] and [7]. The first
simulates 3D pressure fields at high speeds using a fast near field method, and the
latter is capable of simulating ultrasound images in real time using convolution and
an assumption of a shift-invariant imaging system.

The simulator presented in this paper is designed to be an interactive tool for
drawing and exploring di↵erent array geometries. It is our belief that the simulator
can be used both in research and academic teaching, as a neat way of demonstrating
array beamforming principles.

V.2 Method

The presented simulator works by discretizing the surface S found in the Rayleigh-
Sommerfeld integral into a set of point sources, {Si}N�1

i=0 . As shown in Fig V.1, the
total field pressure, p, at position x can then be found as the coherent sum of N
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Figure V.2: Implementation of Huygens’ principle on the GPU. One thread is launched
per observation point, here presented as an azimuth plane. Each thread then reads the
corresponding observation point, and collaborates on loading source point properties
to near-core memory. From near-core memory, source properties are broadcast to
registers when the kernel iterates over the set of sources. Note the coalesced memory
layout of x and S in global memory. The figure reflects the notation used in Section
V.2.

monochromatic spherical waves:

p(x) =
N�1X

i=0

Ai

ri
e2⇡jfiti . (V.2)

Here, Ai is the source amplitude or apodization, fi is the source frequency, ri is the
distance from x to Si, and ti is the wave travelling time given by ti = ri/c�t+tSi+�i,
where c is the speed of sound, t is the snap shot time stamp, tSi

is the source time
stamp, and �i is the steering and focusing delay. Hence, a simple simulator based
on (V.2) works by rendering the contribution from a set of point sources with their
corresponding properties in a set of observation points. How the source and observation
points are positioned and what they represent is left for the user to decide.

V.3 Design

From (V.2) we see that field energy at a given observation point, x, can be found
independently from all other locations in space, and just as important, the result for
each observation point is written to di↵erent bits of memory. Such a problem is perfect
considering the GPU’s ability of processing hundreds of pixels/threads in parallel. The
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implementation of (V.2) used in the presented simulator is depicted in Fig V.2. One
thread is launched per observation point. The reason for using this level of granularity
is that the number of observation points is usually large compare to the number of
source points. We also end up with enough instructions per thread to hide memory and
instruction latency. On the other hand, if we have more source points than observation
points, we should parallelize across source points instead. However, the result from
each source point has to be written to equal positions in memory, making barriers that
would significantly lower the method’s throughput. Continuing the discussion of Fig.
V.2, the threads inside a given block work together to load all source points and their
corresponding properties to near-core memory. Since all threads inside a block work
on the same source simultaneously, we make use of broadcasting to feed one source to
all threads in a single read per property. Note also how observation and source points
are organized in global memory for coalesced reads, and by that maximizing global
memory throughput.

As front-end to the presented simulator we provide both a Matlab scripting
environment and a Paint-like user interface for interactive drawing of arrays and
freehand shapes. The Matlab interface is minimal but highly flexible. The functional
interface takes as arguments the values listed in global memory in Fig. V.2, and returns
the calculated pressure for each observation point. Constructing and discretizing
transducer arrays into points and calculating delays etc. is left for the user. However,
an example script of how this could be done is provided.

After increased speed, the main contributions in this work is how the user interface
has been composed to make an interactive and interesting experience out of exploring
acoustical arrays and their properties. The user interface works like a paint program,
where point sources are added based on mouse interaction. There are several supported
modes of interaction, and extensions to more advanced modes are obviously possible.
However, when selecting modes of drawing, precision in source point positions have
not been our focus. For that, one have the Matlab interface. Supported modes include
click-and-drag of n�-spaced arrays and freehand drawing. For both these modes there
exist both pulsed and continuous wave modes.

In click-and-drag mode, equidistant point sources are created along a straight line
from where the left mouse button was clicked to where it is released using the specified
�-spacing. The result is an array with one point source per element. Hence, there
is no element directivity. In freehand drawing, a new point source is added for each
mouse-moved event that occurs when the left mouse button is down, just like freehand
drawing in Paint.

After point sources have been added, they can all be focused in a common field point
by right-click-and-drag. This can be used e.g. to illustrate how ultrasound arrays are
able to sweep the beam in space, and how the beam can be focused at di↵erent depths.
In pulsed-wave mode this can be used to illustrate how a pulse evolves when moving
through the focus. Other concepts that can be interactively visualized both in pulsed
and continuous wave mode include among other; frequency dependent resolution and
depth of field, the e↵ect of apodization, grating lobes and side lobes, near- and far-field
transitions, and multiple focus zones.
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Figure V.3: Benchmark of HOS and Ultrasim. Test setup consisted of 150 K
observation points.Note that execution times for the presented simulator are in order of
milliseconds whereas execution times for Ultrasim are reported in seconds. The target
platform was a low-end Nvidia GPU (Quadro 600, 96 cores GPU) and a high-end Intel
quad-core CPU (i7-870, 2.93 GHz).

V.4 Results and Discussion

Implementing Huygens’ principle on the GPU results in a significant speedup, that
again allows for interactive simulations of dense pressure fields from acoustical arrays.
We show this in Fig. V.3 by presenting a benchmark made between HOS and Ultrasim.
Note that execution times are reported in seconds for Ultrasim and milliseconds for
HOS. Thus the average speedup is 400x in favour of HOS across the selected range of
source points.

Fig. V.4a shows the in-focus (at 80mm) lateral pressure from a 2.5MHz, 64 element
(32� wide and 10� high, 5 azimuth ⇥ 20 elevation points/subelements per aperture)
uniform linear array calculated with HOS, Field II and Ultrasim. The beam profiles
are strikingly similar. In Fig. V.4b we also see that all three simulators yield the same
result along an axial cut through focus. The continuous pressure field calculated with
Field II was found by taking the fourier transform of the total transmit beam energy
at the center frequency.

Fig. V.5 shows the azimuth pressure field calculated using HOS (a) and Ultrasim
(b). The resolution is 5.6 observation points per mm for both, hence 250K observation
points in total. HOS and Ultrasim used 2 seconds and 3 minutes 40 seconds
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Figure V.4: Profiles of pressure generated by HOS, Ultrasim and Field II. The
simulated array has 64 elements, a center frequency of 2.5 MHz, �/2 pitch, and �/2
wide and 10� high elements. Uniform apodization is used and the array is focused at
8 cm depth. 5 source points (mathematical elements in Field II) were used in azimuth
and 20 in elevation.

respectively in order to generate the image, hence a 110x speedup. The hardware
used in this comparison was an Nvidia GT520, 48 cores GPU, and a i7-870 Intel
quad-core CPU. A multi threaded C-version of the presented simulator used 1 minute
and 45 seconds to generate the same image. Field II used 2 minutes 51 seconds.
Note that Field II has to calculate the spatial impulse response for all observation
points, and is therefore not directly comparable to Ultrasim’s snap-shot-mode. The
spatial impulse response can be calculated using HOS by iterating in time. Using
the available low-end GPU and high-end CPU, the presented simulator and Field II
are equally fast on this operation (without using streams on the GPU). However, for
massive parallel calculation of the spatial impulse response one might want to apply a
di↵erent parallelization scheme and level of granularity than what is described in this
paper.

Fig. V.6 shows how arrays of any shape can be interactively drawn using the
provided user interface. A video of how the interactive user interface works can be
found at [8].

The simulator can be downloaded from the same site [8]. The source code has been
made available at github [9]. Contributions are welcome.
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V.4. Results and Discussion

(a) HOS (b) Ultrasim

Figure V.5: Azimuth pressure field in dB generated by the presented simulator and
Ultrasim for the same array simulated in Figure V.4. The resolution is 5.6 observation
points per mm for both (250K observation points in total).

Figure V.6: Free hand drawing of source points using the interactive user interface.
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