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Algoritmer for sanntids fremstilling av blodstrøm
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Bakgrunn:
Ultralyd fargedoppler er en medisinsk avbildningsmodalitet som viser blodets hastighet
og retning i et to- eller tredimensjonalt omr̊ade i kroppen, hvor unormal blodsstrøm kan
oppdages og undersøkes. Metoden har vist seg svært nyttig ved diagnose av sykdom
som manifesterer seg i hjerte- og karsystemet, for eksempel ved deteksjon og gradering
av hjerteklafflekkasjer, eller ved gradering av forsnevringer i arterier grunnet plakk og
avleiringer. Begrensninger i dagens dopplerbaserte metoder gjør at informasjonen som
fremstilles kan være vanskelig tilgjengelig og up̊alitelig.
I denne avhandlingen undersøkes det om mer avanserte signalbehandlingsmetoder
kan benyttes for å oppn̊a en mer nøyaktig og brukervennlig fargedoppleravbildning,
med et overordnet mål om en økt diagnostisk sikkerhet i klinikk ved bruk av denne
avbildningsmodaliteten.

Resultater:
En viktig del av databehandlingen i fargedoppler best̊ar av å skille det svake
blodsignalet fra omliggende vevssignal. En ny algoritme er i denne avhandlingen
beskrevet for å adaptivt skille ut blodstrømssignalet selv i vanskelige forhold med
kraftig vevsbevegelse. Algoritmen kan taes i bruk i dagens systemer, og vil for eksempel
kunne bedre ikke-invasive undersøkelser av blodstrøm i kransarterier.
Videre er et simuleringsstudium utført, hvor en alternativ metode for estimering av
blodstrømshastighet basert p̊a statistisk modellering er undersøkt. Det vises her at slik
modellbasert estimering vil kunne gi mer nøyaktige m̊alinger av blodstrømshastighet,
spesielt n̊ar hastigheten er lav som ved avbildning av små blodkar.
Dagens dopplerbaserte metoder er begrenset til bare å kunne m̊ale blodets hastighet-
skomponent langs ultralydstr̊alen. En ny metode for sanntids visualisering av blodets
bevegelse i en vilk̊arlig retning i ultralydbildet er her beskrevet. Den nye metoden kan
gi en mer riktig og intuitiv fremstilling av de faktiske blodstrømsforhold. Den kliniske
nytten av den nye metoden er videre undersøkt i fire forskjellige kliniske applikasjoner,
hvor det vises at den mer detaljerte retningsinformasjonen som er tilgjengelig kan gi
en økt diagnostisk sikkerhet sammenliknet med tradisjonell fargedoppler.

Overnevnte avhandling er funnet verdig til å forsvares offentlig for graden philosophiae
doctor (PhD). Disputas finner sted i auditoriet, medisinsk teknisk forskningssenter,
mandag 19. februar 2007, kl. 12:15





Abstract

Ultrasound Color Flow Imaging (CFI) has become a valuable tool in a wide range
of medical applications where information about blood flow can be related to the
diagnosis of disease, as for instance in the cardiovascular system. The modality
provides a map of blood velocity and direction in a two- or three-dimensional region
of interest, where abnormal blood flow patterns can be detected and investigated.

The work presented in this thesis is devoted to the development of CFI signal
processing for improved estimation and visualization of blood velocity. The thesis
consists of three technical contributions, and one chapter describing preliminary
clinical and experimental results of using one of the methods described. The different
contributions are written in article form and can be read individually. A thorough
background chapter is also included to introduce the unfamiliar reader to concepts
and challenges present in ultrasound imaging and CFI specifically.

Two thesis chapters address the problem of separating the weak signal from blood
in CFI, typically dominated by signal from surrounding tissue. In chapter three,
an adaptive filter approach for the removal of this clutter signal prior to velocity
estimation is described. An adaptive filter algorithm suitable for real-time performance
is developed, and shown to provide satisfactory results even in excessive tissue clutter
conditions. In chapter four, a different approach for dealing with the clutter signal
is described. Assuming the statistical properties of the clutter signal known, we
analyze the properties of maximum likelihood estimation (MLE) of blood velocity,
compared to conventional methods. We further address issues related to the practical
implementation of this model-based estimation scheme.

A technique for the visualization of the two-dimensional blood velocity vector has
previously been introduced. In chapter five, the real-time implementation of this
technique, called Blood Flow Imaging (BFI), is described and evaluated. The method
is not limited by angle-dependency or velocity aliasing as conventional CFI, and is
shown to have potential within different imaging contexts. Finally in chapter six,
clinical and experimental pilot studies are described where the potential of the BFI
modality has been investigated. It is shown that BFI can provide a more detailed
and intuitive image of flow conditions, that can be beneficial in both vascular and
cardiac applications when the blood flow direction plays a major role. Through
the investigations, practical restrictions and potential improvements of the current
implementation have also been mapped.
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Chapter 1

Introduction
Lasse Løvstakken
Dept. Circulation and Medical Imaging, NTNU

The concept of diagnostic ultrasound imaging is about the use of ultrasonic pressure
waves to image the human interior for diagnostic purposes. Today’s ultrasound
imaging systems provide physicians with valuable tools for investigating abnormalities
related to the human anatomy, physiology, and hemodynamics, and are used routinely
in diagnosis in a range of clinical contexts [1, 2]. Ultrasound imaging is a non-invasive
technique without any known harmful effects [3–5], and provides images of both soft
tissue and blood flow at a high imaging frame rate.

Systematic investigations of using ultrasound for imaging began in the late
forties [6, 7], and many research teams have since then been involved in the technical
development leading to today’s real-time imaging equipment. Important fundamental
research have been performed in areas of acoustics, piezo-electric material technology
and transducer design, electronic circuits and digital technology, and statistical signal
processing [8–12]. Engineers have worked in close collaboration with clinicians, who
have adopted the new experimental techniques for clinical use [13–16]. It is this
combined effort of extensive research in both the technical and clinical community
that has pushed the development to where we are today.

One of the most important developments since the beginning of ultrasound imaging
research, has been the introduction of Doppler ultrasound systems for measuring
blood flow velocity. The first systems appeared in the sixties and through the
seventies [17–21], and the clinical foundation rationalizing its use as a noninvasive
diagnostic tool was established by the late seventies and early eighties [22–27]. Since its
introduction, a continuous development has extended the functionality of ultrasound
Doppler instruments. One of the most successful technologies to appear has been color
flow imaging (CFI) systems. The CFI modality allows for the investigation of blood
flow velocity and direction in a distributed region of interest [28, 29], and is today
used in a wide range of clinical applications where information about blood flow can
be related to the diagnosis of disease. Estimated blood flow velocities and directions
are encoded in different colors and superimposed on a B-mode image of the anatomy,
where areas of abnormal flow related to pathology can be located and investigated.

Real-time systems offering CFI were introduced in the mid-eighties [30, 31].
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1.1. Motivation and problem formulation

Data acquisition Blood signal 
separation

Blood signal
parameter 
estimation

Blood signal
parameter 

visualization

Figure 1.1: Building blocks of CFI processing.

Since then, general developments in ultrasound technology and research efforts have
improved the modality in terms of an increased sensitivity and frame rate, and with
regards to signal processing algorithms. However, the estimation of blood velocity in
CFI is a challenging task. Issues related to conventional estimation schemes [31] limits
the diagnostic value of CFI in many clinical contexts. Further, although quantitative
Doppler measurements are obtained, the use of CFI is arguably qualitative, used
mostly for the visual detection and evaluation of abnormal flow patterns. Improved
CFI performance may be gained by using more sophisticated signal processing, which
could increase the diagnostic confidence in clinical evaluations and also the quantitative
use of CFI in the future. Due to the rapid increase of computational power in recent
years, this goal should now also be feasible while retaining the real-time operation
associated with ultrasound imaging.

The thesis work presented in upcoming chapters is dedicated to the task
of improving CFI algorithms for blood flow detection, velocity estimation, and
visualization. In the following sections the motivation behind the thesis work will
be given in more detail, the aims of the study will be formalized, and summaries
of the thesis contributions will be presented. A certain degree of knowledge
about ultrasound imaging and specifically CFI is assumed. However, more detailed
background information of these concepts and references for further reading is included
in Chapter 2.

1.1 Motivation and problem formulation

In color flow imaging the velocity and direction of blood flow is estimated in a
distributed region of interest, i.e., for multiple range gates in depth and in several
beam directions. The CFI acquisition is based on a pulsed-wave approach, and the
information available for processing is the received Doppler-signal sampled through
several pulse emissions. It is not practical to estimate the complete Doppler spectrum
for each spatial position, and parameters reflecting the properties of the spectrum are
instead estimated from the received signal and encoded in colors on display. Typically,
the mean signal power, and the mean frequency and bandwidth of the Doppler signal
is estimated. To obtain a frame rate sufficient for following the dynamics of the flow
in the cardiovascular system, few temporal samples (8-16) are available for processing.
This fact makes the detection of blood and estimation of blood velocity a challenge.

The building blocks of CFI processing is shown Fig. 1.1. After data acquisition,
8-16 temporal samples are available for each range gate. These signal vectors are first

12



Chapter 1. Introduction

processed to isolate the signal from blood, before the blood signal spectrum parameters
are estimated and further visualized using a color scheme on display. Several aspects
of this processing scheme needs to be addressed.

At the signal separation stage, the temporal signal vectors received at each range
gate are high-pass filtered to remove the dominating signal from surrounding tissue,
present due to reverberations and beam sidelobes [32, 33]. Conventional filters may not
provide a sufficient separation when the tissue velocity approaches the blood velocity
range of interest. This could happen due to excessive muscle contractions such as for
the myocardium, due to the movement of the vessel wall in response to an incoming
flow pressure pulse, and due to a relative movement of the ultrasound probe and
patient. When imaging peripheral vessels with low velocity blood flow, this problem
may become severe. An inadequate separation of the blood signal will add a signal
dependent bias to subsequent velocity estimates, and may cause visible artifacts in the
image from falsely colored tissue regions.

At the blood velocity estimation stage, an autocorrelation approach is usually
employed to estimate the mean signal power, and the mean frequency and bandwidth
of the Doppler signal [31]. The autocorrelation method (ACM) is limited in several
aspects. The method is based on phase-shift information, and aliasing artifacts will
occur when the movement of blood scatterers between pulse acquisitions correspond to
a phase-shift of more than ±π radians. This problem frequently obscures the velocity
information in CFI. The autocorrelation approach does further not utilize the full
bandwidth information available in the received signal. By exploiting the wideband
nature of ultrasound pulsed-wave imaging, velocity estimates with a lower variance and
beyond the Nyquist limit may be obtained [34–37]. The autocorrelation method can
also only estimate the axial velocity component of blood, leading to angle-dependent
estimates where the actual blood direction must be interpreted based on a priori
information of the angle between the ultrasound beam and vessel of interest. Despite
that alternative estimation schemes have been proposed, the autocorrelation method
has remained the algorithm of choice in commercial CFI systems. This is partly due
to its low computational demands and robustness in poor signal-to-noise conditions.

At the visualization stage, the Doppler spectrum parameters are encoded using a
color table for display. Due to the limitations of the velocity estimation algorithm
used, the parametric color image may be prone to misinterpretation due to angle-
dependencies and aliasing artifacts. Further, for each image point a decision is made
if the gray-scaled tissue image or colored flow image is to be displayed. This arbitration
approach is usually necessary to cover for artifacts resulting from an inadequate signal
separation, but may also limit the visualization of low-velocity flow in smaller vessels.

A more in-depth review of the limitations in conventional CFI processing from a
method perspective is given in Chapter 2. From the user point of view, the main
artifacts encountered in CFI as a result from its limitations are flashing artifacts,
angle-dependency artifacts, aliasing artifacts, and color blooming. These artifacts are
best described through an example. A color flow image of the carotid bifurcation is
shown in Fig. 1.2, taken at the time of the systole. Blood flow from the common carotid
artery divides into two branches, one branch supplying blood flow to the brain called
the internal carotid artery, and one branch supplying blood flow to the face called

13
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Aliasing artifacts

Angle-dependency
33
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Common carotid
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Color blooming 6

Figure 1.2: A color flow image of the carotid bifurcation, taken at the time of the
systole. Different artifacts caused by limitations of the conventional CFI algorithms
have been indicated to the left of the image.

the external carotid artery. The color scale in the upper right corner of the image
indicates that blood flow directed upwards, towards the transducer, is represented by
colors from red to yellow for an increasing velocity magnitude, while flow directed
downwards, away from the transducer, is represented by colors from blue to cyan.
The color image is displayed on top of a gray-scaled image of the anatomy. Artifacts
present due to the limitations of the conventional algorithm are indicated to the left
of the image. In the following, a brief explanation of the different artifacts and their
consequences for the example in Fig. 1.2 will be given.

Flashing artifacts: These artifacts may occur due to an inadequate attenuation of
the tissue clutter signal when separating the blood flow signal. Clutter signal
present after filtering may then be falsely colored in the resulting image. The
term flashing artifacts is used because the artifacts appear suddenly, and are
typically only present in parts of the cardiac cycle. Flashing artifacts may
confuse the physician, and may also conceal important flow information. In
Fig. 1.2, these artifacts can be observed in the area marked 1, and are in this
case introduced when the vessel wall moves in response to the incoming flow
pressure pulse.

Angle-dependency artifacts: These artifacts occur because the current estimation
algorithm only measure the axial blood velocity component. This leads to color
images that are prone to misinterpretation, and that may conceal important
information about the presence of eddies and turbulence. In Fig. 1.2, the impact
of angle-dependency artifacts is visible in several areas of the flow image. In
the area marked 2, flow in the external (upper) branch of the carotid artery
changes direction compared to the ultrasound beam. The corresponding change
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in the sign of the axial velocity component measured then also changes the color
displayed in the image. The absence of lateral flow information is further visible
in the area marked 3, a smaller branch of the artery. Although colored in blue
indicating a direction downwards, it is difficult to see how the vessel itself is
angled compared to the ultrasound beam, and therefore some uncertainty as to
what direction the blood actually flows. Even further, there is a stenosis at the
beginning of the internal (lower) branch of the example carotid artery, just right
to the area marked 4. This stenosis induces a flow eddie not clearly visualized
by the axial velocity component alone. For the given example, the color region
of the flow eddie might equally well be interpreted as an aliasing artifact.

Aliasing artifacts: These artifacts occur when the velocity of the blood scatterers
are above the maximum limit determined by the sampling rate of the Doppler
signal, i.e., the pulse repetition frequency. Velocity magnitudes above the
maximum measurable will wrap around the velocity scale and be visualized with
a false velocity value. In Fig. 1.2, aliasing artifacts can be observed in the
area marked 5, in the flow going to the external (upper) branch of the carotid.
This flow region is colored in both red and blue colors indicating different flow
directions, although one uniform direction of flow is present. Comparing the
aliasing region to the flow eddie region in 4, one can observe the confusion
aliasing artifacts can make.

Color blooming artifacts: These artifacts occur due to the limited spatial resolu-
tion of ultrasound imaging, which leads to a fundamental overlap between blood
and tissue signal in certain areas of the image. This problem is further aggravated
when the spatial resolution in the flow image is reduced to achieve a sufficient
sensitivity. When the flow and tissue images are combined, the color image may
cover immediate tissue such as vessel walls. In Fig. 1.2, color blooming can be
observed in the area marked 6.

In summary, current limitations in conventional CFI may lessen its diagnostic value
and complicate its use in the clinic.

1.2 Aims of study

The aims of this thesis work will now be presented and formalized. Starting in general
terms, the overall aim of this work is to address shortcomings of the conventional color
flow imaging modality, and to look for solutions to make the modality more accurate
and accessible with less demands for image interpretation. Further, a secondary aim
is to focus on solutions suitable for real-time performance. Refering to the CFI block
diagram in Fig. 1.1, improvements can certainly be conceived at all processing stages
shown. In this work, the scope has been restricted to the latter three stages covering
blood signal separation, and blood velocity estimation and visualization. Several
important topics of research are therefore not pursued in this work. Two examples of
improved data acquisition in CFI could be the development of new pulsing strategies
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for increased frame rate, and the use of coded excitation for increased sensitivity while
retaining spatial resolution when imaging peripheral vessels. Such improvements would
in general be beneficial for subsequent signal processing.

Important progress have been made in the signal separation stage in recent years,
where the use of adaptive signal processing have received increased attention. Adaptive
clutter filters have shown potential for more properly removing the tissue clutter signal
even in excessive clutter conditions [38, 39]. This work is continued here, and is
considered as one of the main topics of the thesis. At the velocity estimation stage,
several new estimators have been proposed since the presentation of the original real-
time autocorrelation algorithm. Both improved axial one-dimensional as well as two-
dimensional velocity vector estimators have been proposed [34–37, 40–42]. In this
study, we investigate the topic of improved axial velocity estimation as well as two-
dimensional velocity estimation and visualization. The latter is considered the second
main topic of the thesis. The final formalized aims of the thesis study now becomes:

Aim 1: Address current limitations of blood signal separation in color flow imaging,
and specifically the use of adaptive signal processing for this purpose.

Aim 2: Address limitations of blood velocity estimation in color flow imaging, and
specifically solutions for the determination and visualization of the full velocity
vector.

Aim 3: Address solutions suitable for real-time performance.

1.3 Summary of presented work

In the following subsections, a summary of the original contributions of the thesis
work will be presented. The thesis consists of four original contributions as listed in
Table 1.1, three technical papers and a chapter containing preliminary results from
clinical collaborations. Of the technical papers, two have been published, and one
is in press for publication in an international peer-reviewed journal. The clinical
collaboration work includes a series of pilot studies performed to investigate the
clinical value of the new real-time blood flow imaging technique described in one of
the technical papers included (Chapter 5). The results from the clinical collaborations
will be submitted for publication in peer reviewed clinical journals in the near future.
Extended abstracts of each thesis contribution will now be given.

Contribution no. 1: (chapter 3)
Real-time adaptive clutter rejection filtering in color flow imaging using
power method iterations
Lasse Løvstakken1, Steinar Bjærum2, Kjell Kristoffersen2, Rune Haaverstad1, and Hans Torp1

1 Dept. Circulation and Medical Imaging, NTNU
2 GE Vingmed Ultrasound, Horten, Norway

The received ultrasound signal from blood flow is dominated by a clutter signal
component from surrounding tissue. This clutter signal is present in vessel lumens due
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Table 1.1: Original contributions in thesis

# Chapter Contribution title Topic Publication
status

1 3 Real-time adaptive clutter rejec-
tion in color flow imaging using
power method iterations

Blood signal
separation

Published
Sept. 2006

2 4 Optimal velocity estimation in
color flow imaging in presence of
clutter

Blood signal
separation

Accepted for
publication
Oct. 2006

3 5 Blood Flow Imaging - A new
real-time 2-D flow imaging tech-
nique

Blood velocity
estimation and
visualization

Published
Feb. 2006

4 6 Clinical applications of BFI Blood velocity
estimation and
visualization

Unpublished
work

to reverberations, beam sidelobes, and also the thickness of the ultrasound imaging
plane. The clutter signal can be as high as 50-80 dB in signal power compared to that
of blood flow, and must be accounted for to be able to properly estimate the blood
flow parameters such as blood signal power, velocity, and velocity spread. Otherwise,
a false detection of blood flow and biased flow parameter estimates will result. The art
of removing the tissue clutter signal is referred to as clutter rejection, and is in normal
cases of tissue movement removed from the received signal by a conventional finite
impulse response (FIR), infinite impulse response (IIR), or polynomial regression high-
pass filter prior to velocity estimation [32, 33]. However, when the tissue movement
becomes excessive such as when imaging the beating heart, conventional high-pass
filtering does not provide sufficient clutter attenuation. It may also be desired to image
the slowly moving flow present in peripheral vessels. When the tissue velocity becomes
comparable to that of blood flow however, it becomes more difficult to separate the
blood flow signal using conventional filters. More advanced clutter filtering algorithms
are therefore needed that can remove the clutter signal component in normal as well
as more excessive cases of tissue movement.

In this paper we propose a new algorithm for real-time adaptive clutter rejection
filtering in ultrasound color flow imaging. The algorithm is based on regression filtering
using eigenvectors of the estimated signal correlation matrix as a basis for representing
the clutter signal. This method has previously been proposed by other authors [38, 39],
but has been considered to suffer from drawbacks that lessen its practical value. It
has been considered too computationally demanding for real-time processing in general
CFI applications, and further not been considered sufficiently robust with regards to
filtering the various mixtures of blood and tissue signal present throughout the image.

We show that it is feasible to implement the algorithm using today’s desktop
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computers by the iterative power method for eigenvector estimation. We further
introduce a new adaptive algorithm for selecting the proper order of the filter, needed
to make the technique sufficiently robust in all image regions. Background theory of
the method and the filter algorithm is presented in detail, and the filter algorithm
performance and computational demands is compared to that of FIR, IIR, and
polynomial regression filtering. Examples are also included which confirms that by
adapting the clutter rejection filter to estimates of the clutter signal statistics, an
improved attenuation of the clutter signal can be achieved in normal as well as more
excessive cases of tissue movement.

This paper was published in the IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, vol. 52, no. 9, Sept. 2006. It is presented in its original
form.

Contribution no. 2: (chapter 4)
Optimal velocity estimation in ultrasound color flow imaging in presence
of clutter

Lasse Løvstakken1, Steinar Bjærum2, and Hans Torp1

1 Dept. Circulation and Medical Imaging, NTNU
2 GE Vingmed Ultrasound, Horten, Norway

In color flow imaging (CFI), the rejection of tissue clutter signal has been treated
separately from blood velocity estimation, by high-pass filtering the received Doppler
signal. However, the small number of temporal samples available results in high-pass
clutter filters with a long transition band in order to achieve sufficient stop band
attenuation. The complete suppression of the clutter signal is therefore difficult to
achieve without affecting the subsequent velocity estimates, and this often leads to
suboptimal performance [32]. The aim of this work is to provide new insight into the
potential of using more advanced estimation schemes, and specifically more advanced
methods of dealing with the tissue clutter signal. A different approach to velocity
estimation is investigated based on statistical modeling.

Simulations were setup to investigate how a maximum likelihood estimation (MLE)
scheme including statistical models of both clutter and blood compared to the
conventional technique of clutter filtering before using the autocorrelation method
(ACM) for blood velocity estimation. Based on simplified models of the signal from
clutter and blood, an analytic expression for the Cramer-Rao lower bound (CRLB)
was found, and used to determine the existence of an efficient maximum likelihood
estimator of blood velocity in CFI when assuming full knowledge of the clutter
statistics. We further simulated and compared the performance of the MLE to that
of the ACM using finite impulse response (FIR) and polynomial regression clutter
filters. Two signal scenarios were simulated, representing realistic signals received
when imaging a central and peripheral vessel respectively.

Simulations showed that an efficient MLE did not exist for practically usable packet
sizes (< 16). However, by including 3-9 independent spatial points, the MLE variance
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approached the CRLB in both scenarios. On the other hand, using an equal amount
of averaging, the ACM was approximately unbiased only for the central scenario, and
then only in the clutter filter pass band with a variance of up to four times the CRLB.
The ACM suffered from a severe bias in the filter transition region in both scenarios,
and a significant performance gain was here achieved using the MLE.

For practical use, the clutter signal properties needs to be estimated from the
received signal. We finally replaced the known clutter statistics with an estimate
obtained from low-rank approximations of the sample correlation matrix. Used in the
model-based framework, this method came close to the performance of the MLE, and
may be an important step towards a practical model-based estimator including tissue
clutter with optimal performance.

This paper has been accepted for publication in the IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, Oct. 2006. It is presented in its original form.

Contribution no. 3: (chapter 5)
Blood Flow Imaging - A new real-time 2-D flow imaging technique

Lasse Løvstakken1, Steinar Bjærum2, Ditlef Martens2, and Hans Torp1

1 Dept. Circulation and Medical Imaging, NTNU
2 GE Vingmed Ultrasound, Horten, Norway

One of the major shortcomings of conventional color flow velocity estimation
schemes is the limitation of only being able to measure the axial velocity component.
The lateral component of the flow may contain important information about the
hemodynamics of the flow, for instance of turbulence and eddie formation. By not
giving the complete picture of the flow conditions, the display of current color flow
imaging is therefore lacking and prone to misinterpretation. Quite some research have
been put into finding alternative methods capable of determining the full velocity
vector, but none have yet proved sufficiently robust for clinical use, and are still
considered experimental.

In this work a new method that successfully visualize both the axial and lateral flow
velocity component in real-time is presented. Due to its ability to portrait the complete
image of the actual flow in a non-parametric way, the method has been named Blood
Flow Imaging (BFI). The BFI modality relies on the preservation and display of the
speckle pattern originating from the blood scatterers. The movement of this speckle
pattern is correlated to the movement of the blood scatterers for short time periods.
By using beam interleaving techniques, smaller sub-images are acquired at a frame
rate equal to the pulse repetition frequency (PRF), capturing the speckle movement.
The blood signal speckle pattern images are produced by B-mode processing high-
pass filtered signal packets from a given sample volume. An amplitude normalization
procedure is needed to compensate for the mean power variation between packets. By
displaying subsequent speckle pattern images acquired at the PRF in slow motion, the
blood flow can be visually tracked from frame to frame.

BFI is a qualitative technique, as no attempt is made to measure the full velocity
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vector. However, BFI has been combined with conventional CFI, offering both
quantitative axial Doppler measurements and qualitative velocity vector visualization.
The combined display modality has several advantages compared to conventional CFI.
The presentation of blood flow is more intuitive, requiring less interpretation, and also
provides new information of flow direction not present in conventional CFI. The speckle
pattern movement is further not limited by aliasing as the CFI velocity estimates, and
therefore visualizes a higher dynamic range of blood velocities.

The method was first introduced in the thesis work of Bjærum [43]. Since then,
the method has been implemented in real-time on a commercial scanner system and
optimized for different clinical applications. The method especially has potential in
vascular imaging, but also shows potential in other clinical applications.

This paper was published in the IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, vol. 53, no. 2, Feb. 2006. It is presented in its original form.

Contribution no. 4: (chapter 6)
Clinical applications of BFI

Lasse Løvstakken et al.

Dept. Circulation and Medical Imaging, NTNU

The limitations of conventional color flow imaging (CFI) related to angle-
dependency and velocity aliasing may often obscure information about the true blood
flow direction and velocity. A new real-time flow mapping technique called Blood
Flow Imaging (BFI) has been introduced, able to visualize the two-dimensional vector
flow direction, not limited by aliasing. The method also presents flow at an increased
frame rate compared to CFI. In a series of clinical pilot studies, we evaluated potential
benefits of the new method in cardiovascular and neurovascular surgery, in pediatric
cardiology, and in peripheral vascular imaging. The studies were made possible with
the help of many dedicated technical and clinical researchers at St.Olavs University
Hospital and at Sintef Health Research, in Trondheim, Norway.

In cardiovascular surgery, the potential of BFI was evaluated as a tool for intra-
operative quality control of flow in coronary anastomoses. In a porcine model,
technically perfect as well as pathological left internal mammary artery (LIMA) to left
anterior descending (LAD) coronary artery anastomoses were created. A study was
setup where independent observers rated both modalities in aspects related to blood
direction and velocity magnitude. Results indicated that BFI could more properly
portrait the complex flow conditions, and required less interpretation than CFI.

In neurovascular surgery, the visualization of blood flow is challenging due to
the complex vascular architecture. The potential of BFI combined with navigation
technology was evaluated for intra-operative flow visualization in cerebral aneurisms
and arteriovenous malformations (AVM). The directional information provided by
BFI showed potential for increasing the certainty in separating feeding arteries from
draining veins in AVMs, and to in general reduce the amount of interpretation needed
for identifying vessels of interest in the complex vasculature.
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The flow across atrial septal defects (ASD) may be difficult to detect due to
overlapping B-mode and color images, caused by trade-offs between spatial resolution
and frame rate. A study was setup to investigate if the increased frame rate and
directional information provided by the speckle pattern movement in BFI could
increase the certainty of ASD evaluations in children. Results indicated this to be
the case by more properly visualizing the movement of blood across the septum, and
for separating true flow across the septum from color artifacts.

When imaging vessels on a sub-millimeter scale, conventional tissue-flow arbitra-
tion may obscure flow due to strong clutter components and low blood velocities. A
new transparent mixing technique replacing arbitration has been introduced with BFI.
We evaluated the technique in treatment of tendinosis, requiring ultrasound imaging
of small vessels (< 1mm) for guiding needle incisions. Using the new technique, no
flow information was lost due to arbitration, and flashing artifacts were less intrusive.
The speckle movement also helped highlight actual flow in the surrounding noise floor.

Unpublished work. Clinical papers are in progress, and the results presented will be
taken from these pending papers.

1.4 Publication list

During the course of the thesis work, both written and oral contributions have
been made to national and international conferences and journals. Some of these
contributions have been included in the thesis, while some have not. The following is
a list of all published material produced during the course of the thesis between Jan.
2003 and Dec. 2007.

Peer reviewed papers

1. L. Løvstakken, S. Bjærum, and H. Torp, ”Optimal Velocity Estimation in Color
Flow Imaging in Presence of Clutter Noise”, Accepted for publication in the IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Oct. 2006

2. L. Løvstakken, S. Bjærum, K. Kristoffersen, and H. Torp, ”Real-Time Adaptive
Clutter Rejection Filtering in Color Flow Imaging Using Power Method
Iterations”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 53, no. 9, pp. 1597-1608, Sept. 2006

3. L. Løvstakken, S. Bjærum, D. Martens, and H. Torp, ”Blood Flow Imaging
- A New Real-Time, 2-D Flow Imaging Technique”, IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 2, pp. 289-299,
2006

4. K. S. Ibrahim, L. Løvstakken, I. Kirkeby-Garstad, H. Torp, H. Vik-Mo, N.
Vitale, R. Mårvik, and R. Haaverstad, ”Effect of the cardiac cycle on the LIMA-
LAD anastomosis assessed by ultrasound”, Accepted for publication in Asian
Cardiovascular and Thoracic Annals, Sept. 2006
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Conference proceeding papers

1. L. Løvstakken, T. A. Tangen, S. Bjærum, and H. Torp, ”Optimal velocity
estimation in Color Flow Imaging in presence of clutter”, Proceedings of the
IEEE International Ultrasonics Symposium, Oct. 2006

2. L. Løvstakken, S. Bjærum, D. Martens, and H. Torp, ”Real-time Blood Motion
Imaging - A 2D Blood Flow Visualization Technique”, Proceedings of the IEEE
International Ultrasonics Symposium, vol. 1, pp. 602-605, 2004

3. L. Løvstakken, R. Haaverstad, P. Aadahl, S. Bjærum, S. Samstad, and H. Torp,
”Quality Control of Off-Pump Coronary Heart Surgery using Ultrasound Color
Flow Imaging with Adaptive Clutter Rejection Filters”, Proceedings of the IEEE
International Ultrasonics Symposium, vol. 2, pp. 1602-1605, 2003

Abstracts

1. L. Løvstakken and H. Torp, ”Blood Flow Imaging (BFI) En ny metode
for visualisering av 2D blodstrømsforhold med ultralyd”, Årsmøte for Norsk
Forening for Ultralyddiagnostikk (NFUD), 2006

2. L. Løvstakken, S. Bjærum, K. Kristoffersen, R. Haaverstad, and H. Torp, ”Real-
time Adaptive Clutter Rejection Filtering in Color Flow Imaging Using Power
Method Iterations”, IEEE International Ultrasonics Symposium - Abstracts,
2005

3. B. Amundsen, L. Løvstakken, S. Samstad, H. Torp, and S. Slørdahl, ”Blood
Flow Imaging by ultrasound improved visualisation of flow direction in carotid
stenoses using speckle tracking”, European Heart Journal Abstract Supplement,
2005

4. B. Amundsen, L. Løvstakken, S. Samstad, H. Torp, and S. Slrdahl, ”Ny
ultralydmetode for bedre framstilling av flowretning i carotis-stenoser: Blood
Flow Imaging (BFI)”, Hjerteforum, nr. 3, 2005

5. H. Torp and L. Løvstakken, ”Decomposition of flow signals into basis functions:
Performance advantages, disadvantages, and computational complexity”, IEEE
International Ultrasonics Symposium - Abstracts, 2004

6. K. S. Ibrahim, L. Løvstakken, I. Kirkeby-Gaarstad, H. Torp, R. Mårvik, and
R. Haaverstad, ”Effect of the cardiac cycle and ultrasonic mode on the LIMA-
LAD anastomosis in epicardial imaging”, Scandinavian Society for Research in
Cardiothoracic Surgery meeting, 2004

7. K. S. Ibrahim, L. Løvstakken, I. Kirkeby-Gaarstad, H. Torp, H. Vik-Mo, and
R. Haaverstad, ”Cardiac cycle and ultrasound mode does not influence the
intraoperative epicardial assessment of the LIMA-LAD anastomosis”, First
Conference of Arab Faculties of Medicine Society and first Conference of
Jordanian Faculties of Medicine, 2004
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1.5 Concluding remarks

This thesis work is a contribution to the research performed in recent years with the
aim of improving the color flow imaging modality. Due to the continuing advances in
computing power, advanced signal processing can now be performed while retaining
the real-time operation that has become one of the trademarks of ultrasound imaging.
The goal of achieving an even more accurate and accessible real-time CFI modality is
therefore considered feasible.

The thesis work have addressed the topics of clutter rejection and two-dimensional
velocity vector determination and visualization. Results on the topic of clutter
rejection include a new real-time adaptive algorithm, that is able to reject the clutter
signal and retain the blood signal even in excessive cases of tissue motion. Further,
a simulation study analyzing the potential of model-based estimation including both
the blood and clutter component has been described, which shows that much can be
gained by algorithms which combine velocity estimation and clutter rejection.

In the topic of two-dimensional velocity vector determination and visualization, a
new real-time flow imaging modality has been described that successfully visualizes
both the axial and lateral component of flow. The new technique is qualitative, but has
been combined with conventional CFI to also provide parametric Doppler information.
The combined modality provides a more intuitive display of blood flow, and also
provides information of the true flow conditions not previously available. The new
modality has been evaluated through four different clinical pilot studies, where it has
shown potential in vascular as well as cardiac applications.

Technological advances are often made through several individual research efforts
that contribute to a common solution. Hopefully, the thesis work will also be useful for
further research by others. Through the use of advanced signal processing techniques,
the role of ultrasound color flow imaging is expected to be further increased in the
future clinic, by offering a more efficient evaluation of flow conditions, and an increased
diagnostic confidence.

Future work

The thesis work should be further developed. A short list of future work is included
here. For an in-depth discussion please refer to the individual chapters.

The proposed adaptive clutter rejection algorithm should be further evaluated in-
vivo, and the limitations of eigenvector regression should be analyzed in more detail,
especially for low-velocity blood flow conditions. Model-based estimation including
both the clutter and blood signal component may increase the estimation accuracy
in CFI. Practical and computationally feasible methods of such estimation schemes
should be further investigated.

Regarding BFI, more work should be done to investigate the use of long, high-
bandwidth pulses such as the chirp excitation. This could help increase penetration
while retaining fine-grained speckle images. The real-time BFI modality should also
be evaluated in adult cardiac applications using a transesophagel probe, where it
is possible to come close to the heart. In the near future, an increase in parallel
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receive beamforming is expected which may increase the performance of BFI when
imaging deeper vessels and in cardiac applications. Work should then be performed
to investigate new potential applications of BFI. The extension to 3-D BFI may
then also become feasible. Finally, work should be done to investigate potential
misinterpretations of the speckle pattern movement.

The future of ultrasound imaging in general and specifically of CFI is continually
evolving. Current trends in real-time 3-D ultrasound imaging is at the moment is
pushing the technology forward, and will also offer new possibilities for improved 2-
D imaging. Also, new techniques and applications will be available on continually
smaller instruments due to advances in miniaturization of electronic circuits and
digital technology. This will open up a market of new users in point-of-care (POC)
applications. As these users will be non-experts, more accessible and intuitive
modalities and applications will be important.

1.6 Thesis outline

The thesis is organized as follows. In in chapter 2, a thorough background of ultrasound
imaging and specifically color flow imaging is given. This foundation should put the
unfamiliar reader capable of understanding the problems and work presented in the
following chapters. In chapter 3-5 the technical thesis papers are presented. The
papers are included as originally published, but have been adapted to the book layout.
In chapter 6, four preliminary clinical and experimental studies are described, where
the value of the new real-time BFI modality is evaluated.
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Chapter 2

Background
Lasse Løvstakken
Dept. Circulation and Medical Imaging, NTNU

The following chapter contains information that is included to give the
unfamilar reader a short introduction to diagnostic ultrasound imaging and
conventional methods and terms used in this context. It also includes more in-
depth information about the concept of color flow imaging (CFI), the modality
under investigation in this thesis work. An overview of conventional methods
is given, and current challenges and limitations are reviewed. A review is
finally given on previous work in the two main topics of the thesis work, that
of two-dimensional velocity estimation and adaptive clutter filtering in CFI.

2.1 Diagnostic ultrasound imaging

2.1.1 Background

The history of diagnostic ultrasound traces back to the 1940s, when the concept of
using ultrasound to image the human interior was conceived based on knowledge of
pulse-echo imaging from SONAR and technology from ultrasonic metal flaw detectors
available at the time. This emerging technology matured during the forties, and by the
end of the decade systematic research into its diagnostic use began in several research
groups over the world. Some of the first descriptions of diagnostic ultrasound imaging
was reported in the early fifties through the pioneering work of Wild and Reid, Howry
and Bliss, and Edler and Hertz [1–3]. An important foundation for the use of this
technology in medicine was the discovery of new piezoelectric materials in the mid-
forties, which allowed for the generation of short high frequency pulses in the MHz
range.

As a diagnostic tool, ultrasound was first conceived as a tool for tissue
characterization, i.e. with the ability to differentiate between different types of tissue
such as cancerous and normal tissue. Although research in this area is still ongoing,
this goal has arguably still not been reached today [4, 5]. Demonstrations of ultrasound
imaging equipment were presented in the fifties. However, it was not until the advent of
transistor technology that equipment could be made that would allow for mainstream
use. The first commercial B-mode (brightness mode) instruments became available in
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the early sixties, offering static images of the human interior based on the received
signal envelope. Further advances in transistor technology lead to the first real-time
B-mode scanners in the late sixties and through the seventies [6–8].

From the late fifties, effort was also put into registering movement with ultrasound
through the Doppler shift of the received signal. The first effort is usually attributed
to Satumora in 1957 [9]. The first commercial Doppler instruments appeared in the
sixties based on the continuous wave (CW) approach, which did not include any depth
information. Pulsed wave (PW) Doppler instruments for measuring blood flow velocity
at specific depths was described in the late sixties [10–12]. The development of the scan
converter further allowed for duplex operation of both Doppler and B-mode imaging in
the late seventies, while real-time two-dimensional Doppler mapping became feasible in
the mid-eighties. A formidable development has taken place due to dedicated research
in both the technical and clinical community [13, 14].

Ultrasound imaging is today used in a wide range of clinical contexts. Perhaps
the most well known application is that in obstetrics and fetal medicine [15], where
ultrasound examinations are used to investigate the health of the fetus during
pregnancies. Clinical research in this area has been extensive since the late sixties, and
ultrasound examinations can today reveal many potential health risks, reducing the
morbidity and mortality of newborns. Due to its high imaging frame rate, ultrasound
has also found particular use in the diagnosis of cardiovascular decease, where the
dynamics of the heart muscle and the blood flow in the heart and arteries are important
measures. The development of Doppler ultrasound for measuring blood flow and
tissue velocities, has provided physicians with a valuable tool for diagnosis in the
cardiovascular system [16, 17]. Ultrasound imaging is further used in many other
areas of medicine, such as the screening for breast cancer in women, detection of
abnormalities and cancer in the internal organs. It is also used intraoperatively in for
instance heart- and neurosurgery as a tool for quality control. For a more complete
description of ultrasound imaging techniques and applications in medicine, please refer
to one of the many textbooks available, such as [18–21].

In the following subsections, a brief look at the basic principles of ultrasound
imaging, and at the design of modern ultrasound imaging systems will be given.

2.1.2 Basic principles of ultrasound imaging

Ultrasound is defined as pressure waves with frequencies above the human audible
range of 20 kHz. Pressure waves propagate through a medium. In diagnostic
ultrasound imaging, longitudinal pressure wave pulses with center frequencies in the
range of 2-15 MHz are transmitted into the human tissue. As the pressure wave
propagate, it interacts with different tissue characteristics through scattering and
attenuation processes. This fundamental mechanism is the foundation of ultrasound
imaging. The pressure amplitude of the backscattered ultrasound can be registered
and used to form an image of the different tissue media present.

The properties of a tissue medium can be described by a given density ρ and
compressibility κ. It is the local differences in density and compressibility that causes
the scattering of ultrasound. The basic equation governing pressure wave propagation
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Figure 2.1: The concept of pulse-echo ultrasound imaging. An ultrasound pulse is
emitted into the tissue, and is scattered at interfaces between different types of tissue
Z1, Z2, and Z3. The backscattered signal is received by the same transducer and form
the basis for the ultrasound image.

can be derived by considering the conservation of mass and momentum. Assuming
a homogenous medium, and linear propagation where the displacement of scattering
volumes is linearly proportional to the change in pressure, the basic equation governing
the propagation of a pressure wave p(r, t) is given by [22]

∇2p(r, t)− 1
c2

∂2p(r, t)
∂t2

= 0, (2.1)

where r is a spatial position vector, t is time, and c = 1√
ρκ is the speed of sound in the

medium. The speed of sound in human tissue has been measured to be 1540 m/s on
average, with only a small range for different types of soft tissue [23]. The assumption
of a constant value for the speed of sound is fundamental in conventional ultrasound
imaging, and allows for a simple conversion between imaging depth and receive time
in pulse-echo operation.

The ultrasonic waves are attenuated as they travel through the tissue due to
power absorptions, scattering losses, and the geometric spreading of the ultrasound
beam [22]. This attenuation limit the penetration depth in ultrasound imaging.
Because the spatial resolution of an ultrasound image is proportional to the frequency
of the transmitted pulse, one would in principle use higher frequencies. Unfortunately
the attenuation of ultrasonic waves is frequency dependent, and the optimal working
frequency is a compromise between resolution and penetration. The attenuation in
human soft tissue is usually approximated to be 0.5 dB/cmMHz one way [24].

Conventional ultrasound imaging is pulse-echo imaging, a concept illustrated in
Fig. 2.7. An ultrasound transducer transfers pressure waves into the tissue, and also
receives the backscattered signal produced as the wave encounters differences in tissue
properties across its path. The backscattered signal is a measure of the different
tissue properties and can be used to form an image. Scattering objects can be divided
into three basic types. An object large compared to the wavelength of the transmitted
pulse will reflect the ultrasound wave in a specular way. Scattering objects comparable
to the wavelength will scatter the ultrasound wave directionally. Finally, scattering
objects small compared to the wavelength will scatter the incoming ultrasound wave
in an omnidirectional way, so-called Rayleigh scattering. As an example, specular
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Figure 2.2: The beam profile of a plane unfocused (upper) and focused transducer
(lower). The course of the unfocused beam can be divided in to a near field and far
field region. In the near field diffraction effects are prominent and cause a convergence
of the beam known as diffraction focusing. By focusing, a narrow beam width can be
achieved in the near field over a limited depth region.

reflectors could be structures such as bone or vessel walls, while Rayleigh scattering
results when the ultrasound beam encounters the small red blood cells. Combinations
of these scattering processes are typically present throughout an ultrasound image.

Beam formation

When the wavelength of the transmitted pressure wave becomes small compared to the
transmitting aperture, the sound beam generated will become directional. This is the
case for the unfocused ultrasound beam illustrated in the upper schematic of Fig. 2.2.
It is useful to divide the course of the sound beam into specific regions in depth, the
near and far field. In the near field diffraction effects are prominent. These effects
are present due to the limited aperture used, and will cause the beam to converge, a
phenomenon called diffraction focusing. The extreme near field is often defined as the
region where the beam is a close replica in width to that of the aperture used. The
far field is defined as the region where the pressure wave amplitude fall off at a fixed
rate. The transition between the near and far field is for a plane circular transducer
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given by

zfar =
D2

2λ
, (2.2)

where D is the diameter of the aperture, and λ is the wavelength of the emitted pulse.
The one way beam width is usually defined as the -12 dB drop in signal power. As
an example, consider a transducer with an aperture diameter of 2 cm and a center
frequency of 2.5 MHz. The start of the far field region is then given by

zfar =
0.022 · 2.5e6

2 · 1540
cm = 32 cm (2.3)

In other words, ultrasound image formation is made in the near field of the transducer.
The beam can be focused by curving the aperture, by using a lens, or by using

transducer arrays and electronic delays between the different array elements. When
focusing the far field is effectively brought into the near field, and a narrow beam
width can then be achieved at a specific depth in a limited region. In order to achieve
efficient focusing, the focus point must lie in the near field of the beam as defined for a
circular transducer in (2.2). A focused beam profile is shown in the lower schematic of
Fig. 2.2. The beam width DF determines the lateral resolution of the imaging system,
and is for a focused transducer given by (-3 dB beam width)

DF =
λ

D
F = F#λ, (2.4)

where F is the distance to the focus point, D is the aperture diameter, λ is the
wavelength. F# is the focus distance measured in apertures, the F-number of the
imaging system. The focal depth LF of the beam defines the effective depth region of
uniform beam width as given at the focus depth. The (-1 dB) focal depth is given by

LF = 4 · λF 2
#. (2.5)

For a transducer aperture of 2 cm with a center frequency emission of 2.5 MHz, focused
at 7 cm, the beam width and focus depth is equal to

DF =
0.07 · 1540
0.02 · 2.5e6

cm = 0.22 cm, LF = 4 · 0.072 · 1540
0.022 · 2.5e6

cm = 3.0 cm (2.6)

The F-number defines the lateral resolution in focus as given by (2.4), and is
therefore desired to be low to achieve a narrow beam width. However as seen in (2.5),
the depth of focus is proportional to the F-number squared. Using too low F-numbers
may therefore concentrate the sound energy in a small region along the beam axis, and
the appropriate F-number must therefore be optimized according to a given transducer
design and application.

The beam shape can be further optimized using apodization, dynamic aperture,
and dynamic focus. The concept of apodization is to weight the individual elements
according to a window function. This will reduce the beam sidelobe level at the
expense of a broader mainlobe. Dynamic aperture is further used to create a more
uniform beam width in depth, by reducing the aperture size used at closer depths on
receive to keep the F-number as constant as possible. The concept of dynamic focus
is to sweep the focus electronically on receive according to depth.
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Transducer

Sector scanning Linear scanning

Transducer

Figure 2.3: Two common ultrasound scanning modes, the sector and linear scan.

Image formation

Image formation is done by sweeping the ultrasound beam over a region of interest,
and registering the backscattered signal in each direction. The sweeping of the beam
is today typically done electronically using transducer arrays, but is also still done
mechanically in certain applications, for instance in high frequency imaging systems.
Sweeping the beam electronically can be done in different ways. Two standard
techniques are depicted in Fig. 2.3. The sector scan uses transmission delays on the
array elements to not only focus the beam, but also to steer the beam in a desired
direction. This is called phased array imaging, and is most widely used in cardiac
applications where the acoustic window between the ribs is limited. To be able to
steer the beam at larger angles, the array elements must be small compared to the
wavelength in order to achieve efficient focusing and to avoid grating lobes. Grating
lobes are repetitions of the mainlobe in space due to the division of the aperture into
elements. A common design criteria is to require an element size of a = λ/2, which in
theory allows for efficient steering in a sector of 90 degrees without grating lobes.

Another type of sweeping is the linear scan. A larger aperture is typically
used, with larger elements of size ∼ 1.5λ as steering requirements are limited. A
smaller subaperture is used to form a beam at a given offset from the center of the
transducer. This subaperture is swept over the aperture to produce a rectangular
image region. Linear scans are used in vascular and abdominal applications. In
abdominal applications it is also common to curve the transducer aperture to achieve
a broader field of view and a better contact with the abdomen, so-called curvilinear
arrays.

Display modes

Several different display modes have been introduced since the beginning of ultrasound
imaging. The most basic display modality today is the B-mode modality, which
shows a two-dimensional image of tissue in gray scale. Images are made based on the
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B-mode (brightness mode) M-mode (motion mode)

Figure 2.4: The B-mode and M-mode imaging of a healthy human heart.

received signal envelope. Due to the high dynamic range of the received signal from
different tissue structures, the signal is logarithmically compressed before display to
show both weak and strong echoes simultaneously. In B-mode, a high spatial resolution
is important in order to resolve close targets. A high frame rate is also desired in many
clinical applications to investigate the dynamics of structures.

Another common modality is the M-mode (motion mode), which displays the
envelope of the acquired signal along a specific beam direction over time. This
one-dimensional modality has a very high imaging frame rate and is suitable for
investigating rapid movements of tissue structures, for instance the movement of the
heart valves. M-mode images along curved lines, called curved M-mode, is also used
based on two-dimensional acquisitions. In Fig. 2.4, a standard B-mode and M-mode
image of a healthy human heart is shown.

In addition to the two major tissue imaging modalities described, a number of
Doppler related modalities have been introduced. Continuous wave (CW) and pulsed
wave (PW) spectral Doppler is used to investigate the blood flow distribution in the
heart and arteries. Two-dimensional Doppler mapping, or color flow imaging (CFI),
became a standard modality in the early nineties, and shows the distribution of flow
velocities in a region of interest. Duplex operation of both B-mode and spectral
Doppler or CFI, and triplex modalities of all three is also available on modern systems.

Static and electrocardiogram-gated 3-D images have been available for some time
for abdominal imaging using mechanically steered transducers. In recent years,
dynamic three-dimensional imaging has also become available. Using 2-D array
technology, real-time 3-D images of the heart anatomy and blood flow can be obtained.
The new information available can for instance be beneficial in the diagnosis of the
heart valve disease.
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Figure 2.5: An example of a modern high-end ultrasound scanner, the GE Vivid 7
ultrasound system (image courtesy of GE Healthcare). The different parts of the
system has been labeled.
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Figure 2.6: Block diagram of a modern generic ultrasound system.

2.1.3 Building blocks of an ultrasound imaging system

A modern high-end scanner is shown in Fig. 2.5. These systems contain a user interface
and display, probe connectors, an optical storage unit, ECG and other auxiliary input
connectors, a thermal printer, and often units for supporting old recordings such as
a VCR. Modern systems are designed to be portable within hospital buildings, but
laptop size systems are now also available which includes most of the functionality of
high-end scanners. The basic building blocks and signal chain of a modern ultrasound
imaging system is shown in Fig. 2.6, and will be described in the following subsections.
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Transducer

The transducer is an indispensable part of the ultrasound imaging system, responsible
for the transmission and reception of ultrasonic pressure waves. A typical transducer
today consists of an array of piezoelectric elements. On transmission, these
piezoelectric elements vibrate in response to an external electric field, creating
ultrasonic waves. On receive, the piezoelectric elements vibrate in response to an
external pressure, producing an electrical signal. Ultrasound pulse emission timing
and array element apodization can be controlled electronically, and allows for flexible
beam shaping and electronic focusing and steering of the beam. Transducers come in
different shapes and sizes designed for specific clinical applications. Also, due to the
limited frequency bandwidth of the currently available piezoelectric ceramic materials,
transducers also have to be designed to work in a specific frequency range, based on
the demands of penetration in a given clinical application. For instance, a transducer
designed for cardiac imaging has to be small enough to fit between the human ribs,
and might operate in a frequency range from 2-4 MHz in order to achieve sufficient
penetration to cover the heart. A transducer for imaging peripheral vessels on the other
hand, can be considerably larger and might operate at frequencies of 7-14 MHz due to
shallow penetration depths. The subject of transducer design is comprehensive, and
out of scope for this introductory chapter. For more information on the subject please
refer to [22]. Challenges for the future include the design of two-dimensional arrays for
high-quality 3-D imaging, and broadband designs for multi-frequency operation and
non-linear imaging.

Front-end

The front-end of the ultrasound system consists of dedicated hardware for controlling
the transmission and reception of ultrasonic waves. The delays needed to focus the
ultrasound beam in a given direction are calculated and used to transmit ultrasound
pulses in directions according to the given scanning mode. After transmission, the
system enters receive mode. Depth dependent preamplification is needed to exploit
the full dynamic range of the A/D convertors. The received signal from the transducer
elements are then beamformed in a given direction by a delay-and-sum procedure. A
receive filter matched to the bandwidth of the received signal is applied to maximize
the signal-to-noise ratio. Since the attenuation of ultrasound is frequency dependent,
the receive filter is often swept to follow the changes in frequency content over
depth. Echoes from deeper structures are attenuated more than echoes from shallow
structures, and to image both near and far echoes simultaneously, a depth dependent
amplification is applied to the signal, called time-gain compensation. The beamformed
signal finally goes through a complex demodulator, where the RF-signal is transferred
to baseband, and downsampled to reduce the amount of data for later processing.
Much of the signal processing has in modern systems been moved to the back-end of
the system, however it is also common to used dedicated hardware for this purpose in
the front-end.
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Back-end

In modern systems the back end of an ultrasound system typically consists of a
conventional desktop computer, and is responsible for tasks such as user interfacing,
signal processing, image preparation and scan conversion, and archive storage of
ultrasound recordings. In modern systems, the back end tasks are performed in
software running on a real-time aware operating system. User interface tasks are
typically first administered by the back end. For instance, the selection of a specific
image modality by the user, will first be administered by the back end computer,
which further communicates with and sets up the front-end for new operation.
The rapid development of computer technology has moved increasingly more tasks
to the back-end of the system. Processing tasks such as image filtering, Doppler
processing, and scan conversion are now feasible to do in software, which is much more
flexible and cost effective than previous hardware solutions. The development of high
performance graphics cards in recent years, have also made real-time rendering of 3-D
ultrasound images feasible at a low cost. Systems for research are now available where
beamforming can be done in software. In the long run, even real-time beamforming
in software will most likely become feasible.

2.1.4 Ultrasound image quality

Spatial resolution

The spatial resolution is defined as the minimum spacing between targets that still can
be distinguished by the imaging system. In ultrasound imaging the spatial resolution
is theoretically given by the center frequency and bandwidth of the emitted pulse, the
aperture diameter, and the focus depth. The theoretical radial resolution is related to
the temporal length of the emitted pulse through the following relation:

∆r =
c · Tpulse

2
=

c

2 ·Bpulse
, (2.7)

where Bpulse is the pulse bandwidth. The radial resolution is at first hand limited by
the transducer bandwidth, and is further degraded by frequency dependent attenuation
which shifts the frequency contents of the received pulse towards zero. In B-mode
imaging the radial resolution is in the range of wavelengths, while in Doppler modes
it is increased to achieve sufficient sensitivity to the weaker blood signal level. The
lateral resolution is given by a beam width measure as defined in (2.4), and is therefore
dependent on the ratio between the focus depth and aperture (the F-number), and the
wavelength of the emitted pulse. The lateral image resolution is broadened outside of
the beam axis focus.

The total imaging system resolution can be described through the point spread
function (PSF), which is defined as the image of an infinitely small point. In Fig. 2.7,
the pulse-echo point spread function for pulse center frequency of 2.5 MHz with a
relative bandwidth of 60%, using a F-number of 2 on both transmit and receive is
shown. As can be observed in the figure, the ultrasound imaging system has a limited
region of support in the Fourier space. In the lateral direction, the imaging system
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Figure 2.7: Example of a two-way point spread function (PSF) of an ultrasound
imaging system. The PSF is given in focus of a transducer using an F-number of
2 on both transmit and receive. A pulse with center frequency of 2.5 MHz with a
relative bandwidth of 60% was used.

exhibits a low-pass character, while in the axial direction a bandpass character is given.
It is this bandpass character that gives the speckle pattern and anisotropic properties
of the ultrasound images [25].

Contrast resolution

The contrast resolution is defined as the ability of the imaging system to differentiate
between two regions of different scattering properties. In ultrasound imaging these
scattering properties are given by local changes in compressibility and density. The
contrast resolution in ultrasound imaging is degraded by beam sidelobes and by
acoustic noise such as reverberations and phase front aberrations. The contrast
resolution is a local characteristic, and depends both on system design and the imaging
object through the inferred acoustic noise. It is therefore difficult to give an absolute
measure of this property for ultrasound imaging.

Factors corrupting image quality

Several factors limit the quality in ultrasound images. These are related to both
fundamental physical phenomenons and to system design.

Reverberations: Conventional ultrasound imaging operates in the Born approxi-
mation regime, where only one scattering process is assumed before the wave
is received at the receiving transducer. In reality, the ultrasound wave may
be scattered multiple times across its path, called reverberations. Due to
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reverberations, signal from specific scatterers are received multiple times, and
ghost images are then produced which degrade the contrast resolution of the
image.

Phase front aberrations: In conventional ultrasound imaging, the tissue medium
is assumed homogenous, and the speed of sound therefore assumed constant. In
reality, different types of tissue are present with varying speeds of sound. When
different parts of the beam wavefront travel through different types of tissue, the
varying speed of sound will cause the wavefront to be distorted. This is termed
phase front aberration. Phase front aberration infers a less efficient focusing,
which result in a degradation in lateral resolution due to a broadened mainlobe,
and in contrast resolution due to an increased sidelobe level.

Frequency dependent attenuation: Due to the frequency dependent characteris-
tics of the attenuation of ultrasound in tissue, the received signal center frequency
will shift towards lower frequencies during propagation. This center frequency
shift results in a degradation of the spatial resolution and penetration which is
aggravated for increasing depths.

Beam sidelobes: Due to the finite aperture used when imaging, beam sidelobes will
be present. Scatterers present in the beam side lobes will be registered on receive,
and in effect degrades the contrast resolution of the image. By using apodization
of the individual elements on the transducer array, it is possible to trade a wider
mainlobe for a lower sidelobe level.

Grating lobes: Due to the division of the aperture in array elements the beam
pattern will be reproduced periodically in space. The angle between the grating
lobes and the mainlobe is determined by the size of the individual array elements,
called the pitch. Grating lobes may infer visible image artifacts, and degrade
the contrast resolution as for beam sidelobes.

2.1.5 Ultrasound Doppler imaging

When a transmitted ultrasound wave is reflected from a moving scatterer, the wave
will experience a shift in frequency. This is termed the Doppler effect, named after
Christian Doppler who first described the phenomenon [26]. The Doppler effect plays
with our sense of time by contracting or expanding the timescale of waves as they are
emitted from a moving source or reflected of a moving target. In ultrasound pulse-echo
imaging both of these cases occur. The scaling of the temporal axis can then be shown
to be given by [27]

α =
c + v cos θ

c− v cos θ
≈ (1 +

2v cos θ

c
), (2.8)

where θ is the angle between the scatterer velocity vector and the ultrasound beam
direction, and v cos θ is the axial component of the scatterer velocity, defined as positive
towards the ultrasound transducer. The corresponding shift in frequency is then given
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by:

fd = αf0 − f0 = 2f0
v cos θ

c
, (2.9)

where, fd is termed the Doppler shift, and f0 is the emitted frequency. The equation
is valid as long as v cos θ � c.

The Doppler principle can be used to measure the velocity of both tissue and blood
with ultrasound. Tissue velocities are typically quite low compared to blood flow, but
with some exceptions. The contractions of the myocardium can for instance be in the
range around 10 cm/s, while the movement of the heart valves can have velocities as
high as 50 cm/s. For blood flow the velocities range up to 1 m/s for normal flow, while
stenotic and valve insufficiency flow can reach as high as 6 m/s. Imaging with a pulse
center frequency of 2.5 MHz, this means that Doppler shifts can range up to 19500
kHz. In diagnostic ultrasound, the Doppler shifts are hence in the human audible
range.

For blood the received signal from an insonified sample volume is a sum of
contributions from a large number of scatterers, each producing a Doppler shift
according to their given velocity and direction. The received signal is therefore made
up of a spectrum of different velocities. Further, as each scatterer is observed in a
finite time interval, a non-zero bandwidth is given for each velocity. This is termed
the transit time effect.

The velocity spectrum within a sample volume can be investigated by spectral
analysis of the received signal. As the Doppler shift is in the audible range, it is also
common to generate sound through a set of speakers for the physicians to interpret.
This was in fact how the early Doppler instruments strictly operated, before real-time
spectral analysis became computationally feasible. An increasing scatterer velocity
causes an increasing Doppler shift and therefore a higher pitch of the sound. Two
different Doppler modalities have become standard, based on either a continuous wave
(CW) excitation, or a pulsed wave (PW) excitation approach. A brief description will
now be given. For a more thorough description please refer to [21, 22, 27, 28].

Continuous-wave Doppler

In continuous-wave Doppler (CW-Doppler), a single frequency signal is continuously
transmitted into the tissue, while the backscattered signal is simultaneously received,
typically by a different part on the same transducer aperture. The sample volume in
CW-Doppler is given by the overlap between the transmit and receive beam. Doppler
shifts from all scatterers moving in this large region of overlap are therefore observed,
and in practice no range resolution is available in CW-Doppler. The main advantage
of the CW approach is that it is not limited by a maximum measurable velocity, as a
continuous recording of the Doppler signal is obtained.

The magnitude and sign of the Doppler frequency can be obtained by quadrature
demodulation. Consider the CW emission given by

e(t) = cos(2πf0t) = Re
{
ei2πf0t

}
, (2.10)
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where f0 is the emitted sinusoidal frequency. Assuming the received signal at time t
to be a delayed, scaled, and Doppler shifted version of the emitted signal at time t0,
we get:

r(t) = A
(
α(t− t0)

)
· e

(
α(t− t0)

)
= A

(
α(t− t0)

)
· cos

(
2πf0α(t− t0)

)
. (2.11)

The complex analytic signal can be obtained through the Hilbert transform, and is
given by:

r̃(t) = Ã
(
α(t− t0)

)
· ei2παf0(t−t0) (2.12)

Mixing the received analytic signal with the quadrature reference signal e−i2πf0t then
yields:

rIQ(t) = Ã
(
α(t− t0)

)
· ei2παf0(t−t0) · e−i2πf0t

= Ã
(
α(t− t0)

)
· ei2π(αf0−f0)t−i2παf0t0 = Ã

(
α(t− t0)

)
· ei2πfdt+iφ0 ,

(2.13)

revealing the complex Doppler signal.

Pulsed-wave Doppler

In pulsed-wave Doppler (PW-Doppler), a series of pulses are emitted into the tissue
at a constant pulse repetition frequency (PRF), phase-coherent with respect to
the transmission carrier frequency f0, and range-gated on receive to achieve range
resolution as in regular pulse-echo imaging. As the pulses interact with moving
scatterers, they are reflected and shifted in frequency according to (2.9). In PW-
Doppler, the pulse length need to be shorter than TP = 1/PRF in order to achieve
range resolution. This requirement and the fact that the change in pulse bandwidth
due to attenuation can be large compared to the Doppler shift itself, makes it difficult
to measure the Doppler shift directly as in CW-Doppler [27]. Instead, an approach
based on analyzing the difference in subsequently emitted pulses is taken. Due to the
axial movement of the scatterer, the received signal from consecutive emissions will
be delayed an amount proportional to the axial velocity. A simplified example for a
single scatterer will illustrate this. The emitted pulse typically consist of a burst of
sinusoidal oscillations, as given in complex form by

e(t) = g(t)ei2πf0t, (2.14)

where g(t) is the complex envelope of the pulse and f0 is the pulse carrier frequency.
Given a single scatterer at depth r0 with velocity v and angle θ compared to the
ultrasound beam. Pulses are emitted at intervals of TP seconds. The received complex
signal from a pulse emitted at time t can then be described by

rm(t) = e
(
α(t− tm)

)
, (2.15)

where α is the time compression factor given in (2.8), and tm is the relative time from
pulse emission to reception for pulse number m, given by

tm =
2r0

c
+

2v cos θmTP

c
= t0 + mτ. (2.16)
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The relation between two consecutive pulses then becomes

rm(t) = e
(
α(t− tm)

)
= e

(
α(t− t0 −

2v cos θmTP

c
)
)

= rm−1(t− τ), (2.17)

which in this ideal case is a delayed version of the previous pulse, given by the
displacement of the scatterer in the axial direction. The velocity of the scatterer
can be found either by trying to estimate τ directly from consecutive RF-signals, or
by sampling the resulting change in phase compared to the carrier frequency between
consecutive pulses. Conventional PW-Doppler uses the latter method. Inserting (2.14)
into the expression for rm(t) gives

rm(t) = g
(
α(t− tm)

)
ei2πf0α(t−t0−mτ) = g(α(t− tm))ei2πf0α(t−t0)eiφ(m), (2.18)

where the additional phase function φ(m) is given by

φ(m) = 2πf0α
2v cos θTP

c
m. (2.19)

The frequency of this phase function then becomes

fφ =
1
2π

φ(m)− φ(m− 1)
TP

= 2f0α
v cos θ

c
≈ fd, (2.20)

where the instantaneous frequency is approximated by a discrete derivative. As seen,
the instantaneous Doppler shift is actually an artifact in pulsed Doppler systems. The
equation is valid for v cos θ � c. This signal is termed the complex Doppler signal,
or simply the Doppler signal. In practical systems, the complex Doppler signal is
obtained by removing the carrier frequency through complex demodulation. The sign
of the Doppler shift can be obtained by inspecting the phase relationship between the
in-phase and quadrature components [20, 21].

2.2 Color Flow Imaging

2.2.1 Background

Color flow imaging (CFI) is a modality that provides an image of flow velocity and
direction in a two- or three-dimensional region of interest. In this way, the distributed
flow presence throughout an image region can be observed, abnormal flow patterns can
be detected and investigated, and quantitative measurements of flow velocities can be
combined with area estimates to produce volume flow. The information acquired by
CFI is encoded in a color image, hence its name, and is combined with B-mode imaging
of tissue to provide an image of both the tissue anatomy and flow conditions. The
modality has been given different names, and other well used synonyms and acronyms
include color flow mapping (CFM) and color-Doppler imaging (CDI), the latter is most
often used in the clinical community.

In today’s high-end ultrasound systems, the CFI modality is integrated along with
B-mode and M-mode imaging, and also PW- and CW-Doppler modes. Duplex and

43



2.2. Color Flow Imaging

triplex imaging where combinations of the modalities are also available. The CFI
modality both alone and in combination with spectral Doppler has proven valuable
in many different clinical contexts, such as in cardiology, obstetrics and gynecology,
pediatrics, vascular surgery, and more [18, 19]. The method has perhaps found
particular use in the diagnosis of the cardiovascular system, where it for instance
is used to locate and evaluate heart valve insufficiencies, septum defects, and artery
plaque stenosis.

Color flow imaging provides quantitative measurements of the axial velocity and
direction of blood flow. However, the method is despite of this mostly used in a
qualitative way for the visual detection of areas of abnormal blood flow patterns.
These areas are then further examined using the more detailed spectral display of
CW- and PW-Doppler. The reason for the non-quantitative use can be related to
basic limitations in temporal resolution of the velocity measurements compared to
the spectral Doppler techniques, but can also be attributed to limitations of current
estimation schemes with regards to velocity aliasing and angle-dependencies.

The history of ultrasound CFI began in the late seventies, when multi range gate
(MRG) PW systems were introduced to estimate the flow velocity along several range
gates in depth [29]. This allowed for the measurement of velocity profiles. The concept
of color flow imaging emerged as a natural extension of these MRG PW instruments,
by also estimating the flow velocity along several beams directions. The first two-
dimensional color flow images were produced by processing data from MRG Doppler
system scanned over a region of interest [30, 31].

The estimation of the complete Doppler spectrum in each range gate is an
unpractical solution in CFI, and research efforts were put into finding efficient and
accurate algorithms for estimating representative spectral parameters such as the mean
Doppler frequency. This approach had previously been abandoned in the context of
PW-Doppler systems when real-time spectral processing became feasible [32], but
was once again a relevant issue for MRG Doppler and CFI methods. In CFI the
estimation procedure is particulary challenging due to short ensemble lengths available
for processing. Time-domain algorithms became the practical solution, and several
estimators were proposed for real-time estimation of the first three spectral moments,
signal power, mean frequency, and frequency spread in the CFI context [32–35].

The first real-time CFI systems were introduced in the mid-eighties. They were
based on the autocorrelation approach introduced to the ultrasound community by
Namekawa and Kasai [36, 37]. The method had earlier been described and used
in the weather radar community [38–40], where real-time color-Doppler imaging was
demonstrated as early as the mid-seventies [41]. The autocorrelation estimator has
prevailed, and is today the standard algorithm used in most commercial scanner
systems. Since the first real-time systems, the modality has been improved in different
aspects. The first commericial system was actually based on electronic scanning
using phased-array transducers. However, the potential of electronic scanning could
not be fully exploited for CFI at this time, and mechanically scanned transducer
systems were soon after introduced with better performance. It was first by the
advent of digital front-end technology that the advantages of electronic scanning really
could be utilized through beam interleaving and parallel beamforming techniques,
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Figure 2.8: Block diagram of basic CFI processing.

increasing the flexibility and frame rate. Digital systems have further eased the
implementation of new algorithms, for instance the implementation and evaluation of
more advanced clutter rejection filtering, which has received much attention due to its
major influence on the resulting images. The computational power of today’s desktop
computers are now at a stage where the CFI processing can be done in software, which
further increases the flexibility. The latest technology to appear is real-time dynamic
three-dimensional color flow imaging based on data acquired using 2-D phased-array
transducers. This modality take full advantage of the increased processing power of
current CPUs, and also the massive development in graphic card performance that
has taken place in recent years, making it possible to do real-time three-dimensional
rendering of image volumes.

In the following subsections, a detailed look at the inner workings of CFI systems
will be given, and some aspects not covered in the thesis papers will also be included.
An in-depth description of CFI systems and algorithms has also been given by
Jensen [27], Angelsen and Torp [42], Wells [43], and Ferarra [44]. Detailed descriptions
of clinical applications of CFI can for instance be found in [18, 19, 21].

2.2.2 Building blocks of ultrasound CFI

A block diagram illustrating the basic signal processing blocks of CFI is given in
Fig. 2.8. At each processing stage in the figure, a number of subtopics are listed
which will be explained in coming sections. The processing described is based on the
assumption of using transducer arrays, where the ultrasound beam can be steered
and focused electronically in the desired directions. In this way subsequent beams
has discrete positions in space, which is contrary to mechanical transducers where
the beam is swept continuously over the image region of interest. After the data
acquisition of a complete CFI frame, NP discrete number of temporal samples is
available for processing for each sample bin in the image. This temporal signal vector
x is first processed to remove the clutter signal from tissue structures, which is referred
to as the blood signal separation stage. After the separation of the blood flow signal,
the estimation of parameters reflecting properties of the flow is performed. Typically,
the mean velocity of blood scatterers, the blood signal power, and also the blood
velocity spread within the sample volume is estimated. The estimated parameters
are conventionally encoded in different colors and visualized superimposed on a gray-
scaled B-mode image of the tissue anatomy. The CFI processing will now be described
in more detail.
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2.2.3 Data acquisition

The data acquisition in CFI is based on a pulsed wave approach. The ultrasonic beam
is scanned over the region to be imaged, and a series of NP pulses are transmitted
and received in each beam direction. This acquisition scheme is referred to as packet
acquisition, and the number of pulses NP is called the packet size. There are several
challenges in CFI acquisition. Blood flow parameters are estimated for every range
gate along the beam. To investigate local changes in the two-dimensional velocity
distribution, a high spatial resolution and therefore the use of high-bandwidth pulses
is desired. However, assuming the pulse energy constant, the signal-to-noise ratio of the
received signal from blood can be shown to be inversely proportional to the bandwidth
of the emitted pulse [45], and to achieve a sufficient sensitivity, longer pulses must most
often be used. This compromises the spatial resolution, and also requires a separate
acquisition of B-mode images. If the acoustic energy of the emitted pulse is limited
by restrictions set on the emitted pulse amplitude, one way to retain both a high
spatial resolution and sufficient sensitivity could be to use coded excitation [46, 47].
For instance, a longer pulse with high bandwidth such as the chirp excitation could
be transmitted, and deconvolved on receive for pulse compression.

Another challenge is that of frame rate. In order to achieve a good separation
of the blood flow signal component and high quality velocity estimates, it is desired
to have a high packet size. However, in order to follow the dynamics of the flow, a
high imaging frame rate is required. This restricts the packet size to typically 8-16
samples depending on the clinical application. The frame rate can be increased by
reducing the lateral beam sampling, however this will reduce the spatial resolution
and therefore the quality of the image, and a compromise is again made. In modern
scanner systems, multi-line acquisition (MLA) is often available, where several receive
beams are generated per transmit beam, increasing the frame rate at the expense of
more beamforming hardware [48, 49]. With the introduction of real-time 3-D color flow
imaging using 2-D arrays, the problem of frame rate has become even more critical.
More MLA could be performed, but these methods also introduces image artifacts.
The number of MLA is also limited by demands of sensitivity, as a broader transmit
beam must be used.

The received signal along each beam is sampled throughout the image depth at a
high sampling rate (∼ 50 MHz) and is referred to as the fast-time signal. For a given
range depth, the signal formed from subsequent beam acquisitions is referred to as
the slow-time signal. This concept is shown in Fig. 2.9, illustrating the received and
beamformed signal along a direction containing a strong stationary scatterer at z0, a
moving scatterer around z1, and a thermal noise component. Combined, the fast-time
and slow-time signal from a given range gate form the complete signal foundation of
CFI velocity estimators. The corresponding Fourier space content is shown to the right.
As can be seen, the blood flow signal of interest is spread in two frequency dimensions.
The angle φ is related to the velocity of the scatterers through the Doppler equation.

The rate of subsequent pulse transmissions, the pulse repetition frequency (PRF),
determines the sampling rate of the slow-time signal. The slow-time signal variation
must therefore lie below PRF/2, the Nyquist rate, in order to be properly represented.
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Figure 2.9: An illustration of the input signal foundation in CFI. In the example
a strong stationary tissue scatterer is positioned at z0 and a weaker moving blood
scatterer is positioned around z1. The signal along the ultrasound beam is termed the
fast-time signal, while the signal from subsequent beams at a specific range is termed
the slow-time signal. To the right the two-dimensional Fourier content and frequency
spread of the different signal components is illustrated.

For velocity estimators utilizing the slow-time signal only, the PRF used is therefore
proportional to the maximum velocity measurable before aliasing occurs. The depth
of the image scan determines the maximum PRF available before ambiguities as to
where the signal is obtained is introduced. Although this constraint is sometimes
disregarded in high-PRF Doppler modalities, it is avoided in conventional CFI by
waiting the appropriate time before firing a new pulse. By decreasing the PRF with a
factor k, there is time to acquire data in k−1 other beam directions before transmitting
the next pulse in the initial direction. This technique is termed beam interleaving [50].
The k number of beams is called the interleave group size (IGS) and together form an
interleave group (IG). The interleave group size (IGS) can be expressed by

IGS =
⌊

PRFmax

PRF

⌋
·MLA, (2.21)

where MLA is the number of parallel receive beams acquired, and b·c means rounding
off to the nearest integer towards −∞. Beam interleaving is used to maximize the
overall frame rate for a given user chosen PRF, set according to the blood velocity
range of interest.

After beamforming and complex demodulation of the received signal has been
performed, the signal-to-noise ratio (SNR) of the received signal is maximized by a
filter matched to the received signal bandwidth. It has been shown that using a receive
filter with a rectangular impulse response with length equal to the emitted pulse is
close to optimal for this purpose [45].
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2.2.4 Signal model

General signal model

After data acquisition, a two-dimensional signal matrix is in general given, consisting
of sampled data in both fast-time and slow-time respectively, as illustrated in Fig. 2.9.
In this thesis work, only the slow-time signal is considered, which means that the
signal from each range gate is processed separately. The resulting received signal then
reduces to a complex signal vector of NP slow-time samples, x = [x1, x2, ... , xNP

]T .
The received slow-time signal from an insonified sample volume is in our general

model assumed to consist of three signal components. A clutter component c
originating from sound scattered from tissue and acoustic noise sources such as
reverberation and beam sidelobes, a blood signal component b originating from sound
scattered from the moving blood cells, and an electrical/thermal noise component n.
The general signal model is then given by

x = c + b + n. (2.22)

The blood and clutter signal components originate from different scattering sources
at different spatial locations, and are therefore considered statistically independent.
As the bandwidth of the thermal noise after receiver filtering is large compared to the
sampling frequency of the Doppler signal (PRF), it is modeled as white noise.

Assuming a zero-mean complex Gaussian process for the received signal from both
blood and tissue as rationalized in the upcoming subsections, the probability density
function (PDF) of the received signal vector is given by

px(x) =
1

πN |Rx|
e−x∗T R−1

x x. (2.23)

Being Gaussian, the signal is completely characterized statistically by its second order
moments. The second order moment information is then contained in the signal
correlation matrix given by [51]

Rx = E{xx∗T }, (2.24)

where E denotes the expectation operator. Assuming statistical independence this can
further be written as

Rx = Rc + Rb + Rn = Rc + Rb + σ2
nI, (2.25)

where Rc is the clutter correlation matrix, Rb is the blood signal correlation matrix,
σ2

n is the thermal noise variance, and I is the identity matrix. In this framework we
do not assume stationarity.

Blood signal model

Blood is a medium consisting of several types of cells suspended in a fluid medium
known as plasma. The main cell concentration is made up of red blood cells (RBCs),
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or erythrocytes. The scattering medium in the blood plasma is mainly these red
blood cells, which have a diameter of about 6 − 8µm [52]. As the scattering size is
much smaller than the wavelength used in medical ultrasound imaging, the scattering
properties will exhibit Rayleigh characteristics. This means that the sound scattered
from blood follows a frequency dependency law for the scattering power of f4.

There are two main approaches for modeling the blood medium and its ultrasound
scattering characteristics. One approach models the blood as a large collection of
particle objects [53, 54]. The main advantage of this approach is that the principle of
superposition can be applied to sum the backscattered wavelets from each individual
RBC. Another approach models the blood as a random continuum, where the insonified
scattering volume is assumed to consist of many scattering RBCs, which together form
a continuum whose density ρ and compressibility κ change due to fluctuations in blood
cell concentration, causing the scattering of incoming ultrasound pressure waves [52,
55]. The two models can explain different properties known to exist for the scattering of
blood, but neither are consistent with measurements of the backscattering coefficient in
presence of phenomena such as turbulence, shear rate, and varying hematocrit [56, 57].
A unified approach where a hybrid of the two models have also been proposed to
provide a higher level of accuracy [58]. A more thorough review of the different models
proposed is also given here. There is a general agreement in both models, that the
scattering of ultrasound from blood can be described as a zero-mean Gaussian process
due to the large number of scattering red blood cells within an ultrasound resolution
cell. Considering the complex demodulated signal, a corresponding complex Gaussian
process is given.

The Doppler signal received from blood flow depends on the direction and velocity
relative to the ultrasound beam of all scatterers in the ensemble present within a
resolution cell. Each scatterer contributes to the total receive signal with a Doppler
shift, and a finite Doppler bandwidth due to the limited observation time related to
the movement through the sample volume. Turbulent behavior of flow will increase
the Doppler signal bandwidth.

By assuming rectilinear motion, and Gaussian shaped beam profiles constant over
the pulse shape, the received Doppler spectrum can also be shown to be Gaussian
shaped [59].

Tissue signal model

Tissue consist of different types of scatterers of varying size compared to the
wavelength of the transmitted ultrasound pulse, and therefore exhibit different
scattering characteristics. The scattering properties may further also vary with the
angle of insonification. Such anisotropy can be observed for instance when imaging
muscle fibers in the ventricle septum of the heart [25, 60]. Tissue characterization
based on analysis of the backscattered pressure waves from ultrasound has been an area
of research since the birth of diagnostic ultrasound imaging [5], but is still considered
experimental.

A simplified view is taken in this work. It is well known, that when the ultrasound
field insonifies a volume containing a large amount of randomly distributed scatterers,
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Figure 2.10: The tissue signal histogram from two different regions in the myocardium
wall of a pig. As can be observed, when looking at smaller regions, the distribution of
the tissue signal approaches a Gaussian shape. The data was acquired using an i13L
linear array (GE Healthcare, WI, USA) with a pulse frequency of 14 MHz.

a Gaussian distributed signal results [61]. This results in what is called fully developed
speckle in the ultrasound images. In parts of this thesis work where a tissue model
is applied, we assume this to be the case. When considering larger regions with non-
uniform scattering, a non-Gaussian distribution of the received tissue signal is typically
given due to large differences in scattering strengths. It can be justified however, that
when looking smaller regions in an image where a close to uniform medium is given,
the distribution of the received signal from tissue approaches a Gaussian shape. An
example of this is shown in Fig. 2.10, where the myocardium wall of a pig is imaged
using an i13L linear array probe (GE Healthcare, WI, USA) operating at 14MHz. As
can be observed, when looking at smaller sections of an image, the distribution of the
tissue signal does in fact approach a Gaussian shape.

The Doppler signal from tissue results from tissue movement due to muscle
contractions, and muscle vibrations in the operator holding the ultrasound probe and
the patient. There may also be a relative motion of the probe against the patient
skinline. The muscle contractions are typically cyclic, and are therefore accelerated.
This acceleration will increase the bandwidth of the tissue Doppler spectrum. Tissue
muscle vibrations were analyzed in [62], where it was modeled as a zero-mean Gaussian
process, and shown to set a lower bound on the measurable Doppler shifts from blood.

2.2.5 Blood signal separation

Blood flow signal separation remains an important topic in CFI. Due to beam sidelobes
and reverberations, signal from surrounding tissue is also present inside the vessel
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lumens and the ventricles of the heart. This tissue clutter signal dominates the received
signal, and is a major source of bias in subsequent estimation of blood flow parameters.
Regardless of parameter estimation technique, the clutter signal must be accounted for.
A similar problem exist in RADAR, where fixed target canceling (FTC) is performed to
remove the stationary ground clutter component by simply subtracting subsequently
acquired beams, a simple high-pass filter. In diagnostic ultrasound imaging, this
problem is more elaborate. The tissue clutter can exhibit a substantial movement
during the heart cycle, which complicates matters by increasing the center frequency
and bandwidth of the tissue Doppler signal spectrum.

In conventional CFI algorithms, the clutter signal is removed by high-pass filtering
in the slow-time domain. Due to the discrete acquisition of subsequent beams, the
slow-time signal vectors must be filtered separately for each beam direction. The
clutter filter in CFI should have a sufficient stop-band attenuation for removing the
clutter component, and a short transition region to minimize removal of the Doppler
signal from blood. For most cases a stop band damping of 80 dB would be sufficient.

For clutter filtering purposes in CFI both finite impulse response (FIR), infinite
impulse response (IIR) high-pass filters, and also polynomial regression filters have
been used [63–66].

FIR filters

FIR filters can be described by an impulse response function h(n), n = 0, . . . ,M − 1,
where M−1 is denoted the filter order. With an input signal x(n), n = 0, . . . , NP −1,
the output signal y(n) is the convolution sum given by

y(n) =
M−1∑
k=0

h(k)x(n− k), (2.26)

where the first M − 1 output samples are invalid and discarded. FIR filters have
the advantage of being time invariant and easy to implement with low computational
demands. On the negative end, initializing filter samples have to be discarded, leaving
fewer samples for velocity estimation. As the following correlation estimates are not
dependent on the phase response, improved FIR filters for CFI can be achieved by
designing a minimum-phase filter [64]. A decreased variance in subsequent estimation
can then also be achieved by averaging estimates achieved after filtering in both the
forward and backward direction.

IIR filters

An infinite impulse (IIR) filter can be described by the difference equation

y(n) = −
M∑

k=1

aky(n− k) +
M∑

k=0

bkx(n− k), (2.27)

where M is denoted the filter order. This is a recursive equation, and the output
samples y(n) are dependent on present and past input samples as well as past output
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values. Due to the small number of samples available, the transient response of the
IIR filter must be reduced on the expence of a sharp steady-state filter response. The
initialization of the IIR filter therefore becomes important. Several methods have been
described for the initialization of IIR filters [66–68]. It has been shown that projection
initialization, where the transient vector subspace is removed from the output signal
by projection is superior for CFI applications [64].

Regression filters

Polynomial regression filters models the clutter signal by a set of orthonormal slowly
varying polynomial basis functions [63, 65]. Typically, the Legendre polynomials have
been used. The filter output is given as the projection of the input signal vector x
onto the complement of the clutter signal basis given by

y =
(
I−

M−1∑
k=0

bkb∗Tk

)
x = Ax, (2.28)

where bk are orthonormal basis vectors spanning the clutter signal subspace, I is the
identity matrix and A is a projection matrix. The filter order is given by M − 1.
Polynomial regression filters have a high stop band attenuation, and an attractive
transition region compared to FIR and IIR filters. Another specific advantage of
regression filters is that no samples need to be discarded after filtering, reducing the
variance in subsequent flow parameter estimation. A disadvantage of the polynomial
regression filter approach is that it is not time-invariant. This causes a severe frequency
distortion in the transition region of the filter [63].

In Fig. 2.11, the frequency response of the three different types of filters are shown for
comparison. The main challenge of using high-pass filters to remove clutter in CFI is
to achieve filters with sufficient stop-band attenuation and at the same time a sharp
transition region for the short ensemble lengths available (see Section 2.2.3). Due to
the resulting non-ideal frequency response of the filters, they have a negative impact
on subsequent estimator accuracy [63, 64]. An insufficient stop-band attenuation for
removing the clutter component will lead to a negative bias towards zero frequency for
mean-frequency estimators. A long transition region of the clutter filter may remove
parts of the blood flow component, causing a positive bias. Also, the white noise
component becomes correlated after filtering, and contributes to a positive bias [69, 70].

2.2.6 Blood signal parameter estimation

In color flow imaging, the scatterer velocity is estimated by exploiting the change
in the RF or baseband signal due to scatterer movement over several pulse emissions.
Different approaches exist to accomplish this. The estimation of the Doppler spectrum
as in PW-Doppler is not a practical solution. Few temporal samples are available and
would lead to poor spectrum estimates, and the sheer amount of information would
in any case be difficult to visualize properly. Instead, parameters reflecting properties
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Figure 2.11: Comparison between three different types of high-pass clutter filters, a
fourth order polynomial regression filter, a projection initialized Chebychev IIR filter,
and a minimum-phase FIR filter. The figure is taken from [64].

of the Doppler spectrum is estimated. This process is done separately for each range
bin for several beams in a region of interest.

Conventional parameters of interest in CFI are the blood flow signal power P
indicating the presence of blood flow, the mean frequency of the Doppler spectrum
ω̄d, and also the frequency bandwidth of the Doppler spectrum B, which relates to flow
disturbance. These parameters are directly related to the first three central moments
of the Doppler spectrum, which for a discrete process is given by [32, 42]

P =
∫ π

−π

G(ω)dω, ω̄d =
1
P

∫ π

−π

ωG(ω)dω, B2 =
1
P

∫ π

−π

(ω − ω̄)2G(ω)dω. (2.29)

Estimation of spectral moments from short ensemble lengths is a challenging task.
Much work on the subject was performed in the weather-radar community in the late
seventies and early eighties parallel to the development in ultrasound imaging [40, 71],
where a similar problem and data acquisition is given. Implementation wise, spectral
parameter estimation can be done in the frequency or time-domain. In the frequency
domain an estimate of the power spectrum Ĝ(ω) is replaced for G(ω) in (2.29). This is
however not a practical solution in CFI due to computational demands. Time-domain
estimators obtain spectral parameters directly from the signal samples or through
correlation analysis, and can have low computational demands.

The estimators are further characterized based on the signal information they
employ. Referring to Fig. 2.9, the slow-time signal only or both the slow- and fast-
time signal can be utilized. The estimators are also characterized as being either
narrow or wideband estimators, based on the validity and assumption of input signal
bandwidth. Narrowband estimators are in principle valid for single frequency signals,
or may degrade in presence of wideband pulses, while wideband methods are valid for
general wideband pulse emissions.
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2.2. Color Flow Imaging

Phase-shift estimation is based on the fact that a displacement of the blood
scatterers between pulse emissions can be related to a change in phase of the received
signal compared to the demodulation frequency. Phase-shift estimation is limited by
aliasing when the displacement of scatterers correspond to a phase-shift of more than
±π. Basic phase-shift estimation utilize the slow-time signal only and are typically
narrowband. Phase-shift techniques have low computational demands, and can also
be done efficiently in the baseband.

Time-shift estimation is based on estimating the time delay of the received echoes
due to the displacement of scatterers, tracking the scatterer movement in the received
RF-signal. Methods include cross-correlation of subsequent pulse emissions, and
Fourier based methods implemented in time domain. Model-based methods have also
been proposed. Time-shift estimation techniques exploit both the slow- and fast-time
information, and may therefore produce estimates with a lower bias and variance, and
also above the aliasing limit. The improved performance may become marginal when
longer pulse lengths are needed to achieve sufficient penetration. Time-shift estimation
algorithms are in general much more computationally demanding than phase-shift
algorithms. Also, when based on RF-data this complexity is further increased.

Several specific estimators have been proposed for the estimation of blood flow
velocity in CFI. In the following subsections, a brief review of some of the most
important velocity estimators will be presented. The techniques described here deals
with the estimation of the axial velocity component. Experimental methods that also
estimate the lateral velocity component have been given a specific review in Section 2.4.

The autocorrelation estimator

The autocorrelation estimator was the one used to first demonstrate the feasibility
of real-time two-dimensional ultrasound color flow imaging. It was introduced by
Nakemawa and Kasai for diagnostic ultrasound applications in the mid-eighties [36,
37], but was earlier described in the context of weather radar by several authors [38–
40], where it eventually was named the correlated pulse-pair estimator.

The autocorrelation approach estimates the three spectral parameters P , ω̄d and
B from the slow-time correlation function Rx(m) at lag zero and one, given by

P̂ = R̂x(0), ŵd = ∠R̂x(1), B̂ =

√
1− |R̂x(1)|

R̂x(0)
(2.30)

A simple view of of the autocorrelation mean frequency estimator can be given as
follows. The correlation function Rx(m) is related to the inverse Fourier transform of
the Doppler spectrum through the Wiener-Kinchin theorem, which for m = 1 is given
by

Rx(1) =
1
2π

∫ π

−π

G(ω)eiωdω =
eiω̄d

2π

∫ π

−π

G(ω)ei(ω−ω̄d)dω. (2.31)

As can be seen, the mean Doppler frequency ω̄d can be estimated from the phase angle
of Rx(1) if the imaginary part of the last integral in (2.31) is zero. This is the case
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for spectra that are symmetric around the mean frequency [40], but is also a good
approximation for narrowband spectra.

In practise, the autocorrelation function of lag one is estimated from the received
signal sequence, R̂x(1). The mean axial velocity of blood is further obtained by a
scaling factor

v̂z =
c · PRF

4πf0
∠R̂x(1) (2.32)

The properties of the autocorrelation estimator have been examined by several authors,
both in the weather radar community [38–40], and in the context of ultrasound blood
velocity estimation [35, 59, 72]. The autocorrelation estimator has been shown to be
an unbiased estimator of the mean spectral frequency for symmetric spectra, and in
presence of white noise, and can further estimate the mean frequency over the whole
frequency range from −π to π. When utilizing spatial averaging the autocorrelation
estimate has been shown to improve substantially [72]. The autocorrelation approach
has also been extended to also use the fast-time signal through the simultaneous
estimation of the mean fast-time frequency [73], which was shown to reduce the
variance of the velocity estimates.

The cross-correlation estimator

The cross-correlation estimator has also received much attention for blood flow velocity
estimation in diagnostic ultrasound. The concept of cross-correlation estimation of
blood flow velocity is in principle quite simple. As shown in Section 2.1.5, the received
signal from subsequent beam emissions is delayed a given time τ due to the scatterer
movement, given by

τ =
2∆z

c
=

2v cos θTP

c
. (2.33)

This time delay can be estimated by finding the point of maximum correlation between
subsequent pulses r1 and r2 in a range segment, given by

τ̂max = arg maxR12, (2.34)

where the cross-correlation for a specific range segment in the RF-signal is estimated
discretely by [27]

R̂12(m) =
1

NS

NS−1∑
k=0

r1(k)r2(k + m), (2.35)

where NS is the number of range samples in a given range segment. Knowing the time
between pulse emissions TP , the axial velocity estimate can be calculated from

v̂z =
c

2
τ̂max

TP
. (2.36)

As the velocity estimate produced by the cross-correlation technique is related to
the lag of maximum correlation, it is the dominant scatterer movement that is being
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2.2. Color Flow Imaging

tracked. The method can therefore not in general be related to the mean velocity of
the ensemble insonified as the autocorrelation technique.

The cross-correlation technique applied for ultrasound blood flow velocity
estimation, was described amongst others by Bonnefous [74], Foster [75], and Embree
and O’Brian [76], and has been validated both in-vitro and in-vivo. The influence
of different imaging system parameters on the delay estimate was described in [75].
The technique can achieve a lower variance estimate of the axial blood velocity
compared to the autocorrelation approach, and is in theory not limited by aliasing.
However, signal decorrelation sources will degrade the performance. The increased
performance compared to the autocorrelation method is reduced when longer pulses
must be used to obtained sufficient sensitivity. When also utilizing radial averaging
in the autocorrelation technique, the performance of the two has been shown to be
comparable in certain contexts [77].

Other estimators

Other estimators have been proposed since the introduction of real-time color flow
imaging. Ferrara and Algazi proposed a wideband maximum likelihood estimator [78],
based on a model of a slowly fluctuation range-spread target. In this approach
the received signal is matched filtered to a model of the received signal of varying
parameters, and parameter estimates are determined from the best match. Other
wideband tracking techniques have been also proposed by Wilson [79] and Kaisar and
Parker [80]. A different approach was taken by Vaitkus who proposed using a root-
MUSIC estimator in CFI [81]. This estimator is based on the modeling of the blood
and clutter signal components as a number of eigenvectors of the estimated signal
correlation matrix. Similarly, AR modeling of the Doppler signal in CFI has also be
proposed [82]. The choice of correct model order is then crucial for performance.

Although shown to have potential for velocity estimation in CFI, these methods
described have not been fully validated in-vivo, and are still considered experimental.

2.2.7 Blood flow parameter visualization

Arbitration

Before display, the parametric information in CFI is combined with the tissue B-mode
image for duplex operation. For each image pixel, a decision it made wether tissue
of flow information is to be displayed. This hard arbitration mechanism is a way to
combine the two sources of information, but it is also necessary to reduce the amount
of artifacts related to the limitations of the current CFI processing. The decision is
typically based on comparisons of the power and frequency estimates of the Doppler
signal. An example of arbitration rule could be that higher mean frequencies indicate
blood signal, but simultaneously high power estimates may indicate flashing artifacts.
For this image point the tissue image should be displayed. However, such simple
threshold decisions are prone to error, and artifacts therefore occur.
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Visualization

The visualization of the estimated blood flow velocity parameters is based on color
encoding [30, 43]. The most basic visualization is to encode only the mean Doppler
frequency magnitude and direction. In this one-dimensional color scheme, the axial
direction of flow directed towards the away from the transducer is typically encoded
in different colors, while the velocity magnitude is encoded in an increased color
intensity. By further using a two-dimensional color scheme where the power estimates
also control the intensity of the color, a better delineation of the vessel walls can be
given. In cardiac imaging, it is common to use a two-dimensional colormap based
on flow velocity and bandwidth. In this mode areas of high bandwidth indicating
turbulence are highlighted in green color.

Another type of CFI visualization relies only on the Doppler signal power estimate
and has been named power-Doppler [83, 84]. This method is often combined with
a high degree of temporal averaging to produce angiography-like images suitable for
imaging of smaller vessels and low flow rates in stationary tissue, such as in abdominal
imaging.

Due to the spatial extents of the point spread function in ultrasound imaging, the
tissue and flow information will inherently overlap when close to one another, and
lead to color blooming artifacts where the flow image may cover areas of tissue. The
immediate vessel wall can for instance often be covered by the color image. This
problem is further aggravated when the spatial resolution for the flow image must be
reduced in order to achieve a sufficient sensitivity.

2.3 Adaptive clutter rejection in CFI

2.3.1 Filter bank approach

One approach to adaptive clutter filtering has been to select an appropriate fixed-
response clutter filter for each range gate based on estimated clutter Doppler signal
characteristics, such as for instance the clutter mean velocity and power. A method for
iteratively selecting the appropriate cut-off frequency of polynomial regression filters
has been described [85], and a method for selecting the appropriate filter from a
predefined set of high-pass filters has been proposed [86].

One drawback of these methods is the ad-hoc nature of optimizing the appropriate
filters for different mixtures of clutter and blood signal. Further, since the methods
depend on the estimated mean frequency of the clutter signal, errors will be induced
when these estimates are inaccurate. This may for instance occur inside the vessel
lumen of larger arteries, where the clutter and blood signal power may become
comparable. This will lead to a bias in the estimate of the mean clutter Doppler
frequency. Also, accelerated clutter movement will increase the bandwidth of the
clutter Doppler signal, and may also be a source of bias and variance when estimating
the mean frequency of the clutter signal.
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Figure 2.12: An illustration of the downmixing approach to adaptive clutter filtering.
The received Doppler signal is downmixed using an estimate of the mean or varying
clutter Doppler frequency.

2.3.2 Downmixing approach

Another adaptive filtering approach has been to process the received signal from
each sample volume prior filtering. A Doppler signal downmixing technique was
first proposed in [87, 88] for color flow imaging applications, and was given further
elaboration in [89]. In this method, the complex slow-time Doppler signal is
downmixed using a phase-function φ(n) based on estimates of the clutter Doppler
frequency content, followed by a conventional non-adaptive high-pass filter. The
concept is illustrated in Fig. 2.12. If successful, the clutter signal is moved to zero
Doppler frequency, and a lower order clutter filter may then be used to remove the
clutter component in varying conditions. This is beneficial for imaging both low and
high velocities.

Estimates of the clutter Doppler frequency has been obtained using the
autocorrelation approach as described in Section 2.2.6. The most simple technique
performs downmixing using the estimates mean clutter Doppler frequency. The phase-
function φ(n) used is then given by

φmf (n) = ω̂cn = ∠
[NP−2∑

k=1

Rx(k, 1)
]
n (2.37)

In this way adaptation to the tissue clutter velocity is achieved. This may be
satisfactory when considering the relative movement between the transducer and
patient. However, as rationalized in Section 2.2.4, the tissue movement also exhibits
accelerated movement. The downmixing approach can be extended to adapt to
acceleration by downmixing with a varying frequency obtained from the cumulative
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phase of the correlation function of lag one. In this approach, the phase-function can
be given by [89]

φvf (n) =

{
0 if n = 0∑n

k=1 ∠R̂x(k, 1) if x = 1, . . . , N − 2
(2.38)

To ensure the adaptation to the clutter signal, the autocorrelation estimates R̂x(1) are
averaged over a spatial region with similar characteristics.

As shown by Bjærum [89], the varying frequency approach is the most efficient of
the two variants. However, the varying frequency approach must be used with caution
as it may cause complications for subsequent velocity estimation. The mixing process
with a varying frequency may cause artifacts in the resulting Doppler spectrum [90].
This does not occur for the constant mean frequency downmxing. A combined
approach could be to use the varying frequency for power estimates, and the mean
frequency downmixing for velocity estimates. By further doing arbitration based on
the power estimates, flashing artifacts may be reduced. This has been proposed in a
recent patent application by Germond-Rouet et al [90].

2.3.3 Eigenvector regression approach

A third approach to adaptive clutter rejection has been to design the clutter
filter adaptively based on the received signal statistics. One such approach is
eigenvector regression filtering. In this approach, the clutter signal is modeled as
a linear combination of orthonormal basis vectors, obtained through the eigenvector
decomposition of the signal correlation matrix. This approach to data representation
and analysis has different origins and names, including principal component analysis
(PCA), the Hotelling transform, and the (discrete) Karhunen-Loève transform
(DKLT) [51]. Using the DKLT formulation, the received signal vector is expanded
into the basis given by

x =
NP∑
i=1

κiei, E{κiκ
∗
j} =

{
λi i = j
0 i 6= j

(2.39)

where x is a slow-time sample vector, and ei and λi are the eigenvectors and
eigenvalues of the correlation matrix defined in (2.24). The expansion in (2.39) is
sorted on decreasing eigenvalues λi, a measure of the variance or energy represented
by an eigenvector ei. The DKLT follows when looking for an orthonormal basis
expansion with statistically orthogonal expansion coefficients κi [51]. It can be shown
that this is the most efficient representation of a random process in the mean-square
sense, when the expansion is truncated to use fewer than NP terms.

In the practical case, an estimated correlation matrix at a given point is obtained
by averaging in a surrounding spatial region. The sample correlation matrix estimate
is given by

R̂x =
1
K

K∑
k=1

xkx∗Tk , (2.40)
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where K number of sample vectors that are used to form the estimate. The correlation
matrix is in general Hermitian symmetric and positive semidefinite, and a complete
(full rank) set of eigenvectors and orthonormal eigenvalues can be estimated if the
number of independent sample vectors K in (4.19) is at least equal to the packet size
NP [91]. The eigenvectors then span the complete signal vector space. In the context of
clutter filtering, a subset of these eigenvectors are selected for representing the clutter
signal component, and removed through projection filtering. The final clutter filter
can be formulated as a matrix-vector multiplication as for the polynomial regression
filter, given by

y =
(
I−

M∑
i=1

êiê
∗T
i

)
x = Ax, (2.41)

where I is the identity matrix and êi are the estimated eigenvectors selected for clutter
representation. The filter order is defined as M−1, i.e., a zero order filter includes one
eigenvector. As the method relies on estimation of the correlation matrix based on
spatial averaging of signal vectors, the eigenvectors will represent signal components
based on the average of the estimated signal statistics. Uniform statistics is therefore
assumed in the averaging region. When few sample vectors are used in the averaging
process, the variance of the correlation matrix estimate might also be a source of error
in clutter representation.

The question remains as to how to select the proper eigenvectors for clutter
representation. This aspect is crucial for the success of the algorithm. If the chosen
basis does not represent most of the clutter signal, it may not be properly attenuated,
and a bias in subsequent velocity estimation is inferred. Further, if eigenvectors also
representing the blood signal component is included, a substantial part of the blood
signal may be lost. The information available for selection of the proper basis is given
by the eigenvalues and eigenvectors. The eigenvalues has information about the signal
energy or variance represented by the eigenvector basis vector. A dominant signal
component that constitute a large part of the total signal variance, will therefore be
represented by eigenvectors with large corresponding eigenvalues. Due to the dominant
and low-bandwidth nature of the clutter Doppler signal, the clutter signal energy is
mostly contained in the signal subspace represented by a smaller set of eigenvectors
with large corresponding eigenvalues [89]. This has been the criteria used in prior
investigations [89, 92], where a fixed number of eigenvectors has been selected from
the NP eigenvectors with the most dominant eigenvalues. This method follows the
truncated DKLT formulation. Among alternative basis representations used for clutter
filtering, such as the Legendre polynomial basis, it is optimal in removing the most of
the clutter signal for a given filter order. The approach assumes that the blood signal
energy is low compared to that of clutter signal. As the mixture of clutter and blood
signal varies throughout an image region, the appropriate filter order also varies, and
should be chosen adaptively. The filter order can be selected based on the eigenvalue
spectrum information, for instance by adaptive thresholding of the eigenvalue spectrum
or the eigenvalue spectrum slope.

As an alternative or extension to this approach, one can also conceive estimating
the frequency content of the individual eigenvectors, and base a decision on the fact
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Figure 2.13: The eigenvalue spectrum from a region containing tissue signal only, and
a region containing both tissue clutter and blood signal. The spectrum is sorted on
increasing frequency content of the eigenvectors. As can be seen, when blood signal
is introduced, it is represented by a different set of eigenvectors than that of tissue
signal. The data was acquired from a beating pig myocardium using an i13L linear
array (GE Healthcare, WI, USA) with a pulse center frequency of 10 MHz.

that the clutter signal typically has a lower frequency content than the signal from
blood. The mean frequency of each eigenvector can for instance be estimated using
the autocorrelation approach as described in Section 2.2.6. Aspects of both filter
order selection schemes can be observed in Fig. 2.13. The example is based on data
obtained from the beating heart of a pig, using an i13L linear array (GE Healthcare,
WI, USA) with a pulse center frequency of 10 MHz. The eigenvalues have been sorted
on the estimated mean frequency of each eigenvector. The clutter signal is in this
example mostly represented by the first three eigenvectors. The blood signal is mostly
represented by a different part of the spectrum with a higher frequency content. As
can be observed by careful inspection of this example, using only the signal energy as
a criteria for selecting eigenvectors would also have removed a substantial part of the
blood signal if the three most dominating eigenvectors had been chosen.

An advantage of the eigenvector regression approach compared to conventional
clutter filters is the fact that it can adapt to nonstationary movement. As described
in Section 2.2.4, the tissue clutter signal is typically accelerated, and the received
clutter signal thus exhibits this nonstationary behavior. The potential performance
gain obtained from this property in a practical setting remains to be investigated.
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2.4. Vector velocity imaging in CFI

2.3.4 Independent component analysis

Some efforts have been made to analyze and remove the clutter signal component
by independent component analysis (ICA) [93, 94], based on the JADE algorithm
described by Cardoso [95]. This is a blind signal separation approach based on the
non-Gaussian characteristics of the signal components of interest. In the case of CFI,
the Gaussian assumption for the blood signal component is well rationalized. For the
tissue component, the different scattering characteristics throughout an image region
may lead to an averaged non-Gaussian distribution. As the estimation of statistics
for the signal components must be based on the assumption of uniform statistics
in a region of interest, small averaging regions must be employed. As discussed in
Section 2.2.4, the distribution of the tissue signal then typically approaches a Gaussian
shape. Using ICA and higher-order statistics are therefore not expected to give an
increase in performance compared to using a second-order Gaussian approach. The
methods are therefore not properly justified for the task of clutter rejection.

2.4 Vector velocity imaging in CFI

2.4.1 Compound Doppler and related techniques

Compound Doppler approach

By utilizing several Doppler measurements from different beam angles, an estimate of
the blood flow velocity vector can be obtained. This compound Doppler approach has
been a area of research in over 30 years, and an excellent review for both PW-Doppler
and CFI systems is given by Dunmire [96]. Two main approaches have been used for
compound Doppler in CFI. Either combining two or three regular CFI acquisitions
steered in different directions [97], or to simultaneously use separate subapertures
on the same transducer array for transmit and receive [98–100]. For use in CFI the
most practical approach is to transmit in one direction, and to receive and beamform
from two directions in parallel using separate subapertures. This particular setup is
illustrated in Fig. 2.14. In this way using parallel receive beamforming, only one frame
acquisition is needed, critical for following the dynamics of the flow. The axial and
lateral velocity component in this two-dimensional setup is then given by [96]

vlat =
c · (fl − fr)
2f0 · sin θ

, vax =
c · (fl + fr)

2f0 · (1 + cos θ)
, (2.42)

where fl and fr is the Doppler shift received from the left and right subaperture
respectively, and θ is the angle between the receive and transmit directions. This
angle can be kept constant in depth by beam steering and by gradually sliding the
receive subapertures from the middle towards the ends of the transducer for increasing
depths.

Limitations of the compound Doppler approach is mainly related to the problem
of achieving a sufficient angle of separation between the beam directions to obtain a
sufficient accuracy in velocity measurements for increasing depths. Also, for transducer
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Figure 2.14: A compound Doppler approach for CFI utilizing one transmit aperture
and two receive apertures beamformed in parallel.

subarray approaches, the receive apertures will be reduced in size, compromising the
sensitivity. Although the compound Doppler approach has been validated to give
reasonable accurate results in different vascular contexts, no mainstream system is
available, and clinical studies rationalizing the use of the method are still limited [96].

Lateral modulation approach

Another approach related to the compound Doppler technique has been proposed by
Jensen and Munk [101] and Anderson [102]. The methods are based on producing a
modulation in the lateral direction of the received ultrasound field, using complex
apodization schemes. A scatterer movement in the lateral direction can then be
registered using a phase-shift technique as in the radial direction.

The approach taken by Anderson has been called spatial quadrature, and relies on
the use of a complex apodization scheme on receive to create the lateral modulation.
Using odd and even apodization functions related by a Hilbert operator, an in-phase
and quadrature PSF can be produced using parallel beamforming on receive. The two
different receive signals are added and subtracted to produce a signal from a left and
right receive subaperture, respectively, as defined by the distance between the peaks
of the apodization functions.

The approach by Jensen and Munk has been named transverse oscillation. Two
sinc-shaped receive apertures placed a distance apart have been used to create the
lateral modulation on receive. To have a spatial modulation that only depends on
the receive field, a near uniform beam is transmitted using a Gaussian transmit
apodization. The in-phase and quadrature signal from the lateral modulation is
directly sampled by steering two receive beams one quarter of a wavelength apart
symmetrically around the transmit beam direction. This can be done by parallel
beamforming in one frame acquisition.
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2.4. Vector velocity imaging in CFI

In both methods the lateral modulation is approximated to be given through the
Fraunhofer approximation as the Fourier transform of two point sources placed a
distance apart. This results in a sinusoidal modulation given by

rlat(x) = cos(2π
D

zλ
x) = cos(2πflatx), (2.43)

where D is the distance between the two point sources, z is the depth of interest, and
λ is the wavelength of the emitted pulse.

Compared to the compound Doppler approach described above, the lateral
modulation approaches uses complex apodization schemes to obtain the signal from
two separated subapertures on receive. Using a Hilbert transform as in the spatial
quadrature approach, is in theory identical to the compound Doppler method
described. This relation was also indicated by Anderson [103]. The transverse
oscillation method on the other hand, uses a narrowband approximation to the Hilbert
transform, and this method is therefore at best equal to the other two.

2.4.2 Doppler bandwidth method

The bandwidth of the received composite Doppler signal is dependent on the spread of
velocities of the scatterers present. It is further also dependent on the finite observation
time of individual scatterers given as they travel through the sample volume [104, 105].
This is termed the transit-time broadening effect. Several authors have proposed
models of the Doppler bandwidth variation [106–108], and the idea of estimating the
lateral flow component based on the estimated Doppler bandwidth [109–111]. To
obtain a bandwidth dependency independent of different beam-to-vessel angles, the
methods has been based on shaping the Doppler sample volume spherically [107]. As
nonstationary behavior will also contribute to the doppler spectral bandwidth, the
methods are based on stationary flow assumptions.

The main challenge of this method is perhaps to obtain a robust estimate of the true
Doppler signal bandwidth in a realistic setting. This can be in general be problematic
in low signal-to-noise conditions. The clutter signal will also be a problem if not
properly removed. This could especially be problematic in the systole part of the
cardiac cycle at the time of the incoming flow pulse. The clutter rejection filter
will further cause problems when the flow direction approaches a transverse direction
compared to the beam, as a major part of the Doppler signal from blood may then be
removed. These confounding factors has kept the Doppler bandwidth method at an
experimental stage.

2.4.3 Speckle tracking techniques

The lateral velocity components of blood will move the blood scatterers out of the axial
beam direction. As an extension to the 1-D axial cross-correlation technique, one can
conceive searching for the maximum signal correlation between image acquisitions in
the two-dimensional image plane, or even the three-dimensional image volume. The
velocity vector can then be in principle measured based on the distance to the point of
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Figure 2.15: An illustration of the speckle tracking concept. The best match of a given
kernel region is searched for in a larger search area of a subsequent acquisition. The
velocity can be calculated based on the estimated displacement and the time between
image acquisitions.

maximum correlation and the time between image acquisitions. Due to computational
demands of two- or three-dimensional cross-correlation, this is difficult to do in real-
time at present. However, methods have been proposed that approximate the true
correlation function with similar measures. To further reduce the complexity, the
methods also operate on the signal envelope rather than the RF-signal. By matching
speckle pattern regions in subsequent frames an estimate of the displacement and
velocity of the given pattern is given by the position of the best match. This concept,
referred to as speckle tracking, is shown in Fig. 2.15 for the two-dimensional case.

Common correlation measures include the sum of absolute differences (SAD), or
the sum of squared differences (SSD) of image patterns. Considering X0 as the kernel
region and X1 to be region in a search area in a subsequent image acquisition, the
SAD formula can be written as [112]:

ε(α, β) =
K∑

k=1

L∑
l=1

|X0(k, l)−X1(k − α, l − β)|, (2.44)

where the quantity ε is termed the SAD coefficient, K and L defines the lateral and
axial size of the kernel region, and α and β defines the offset compared to the center
in the search region. Pushed by the demands of multimedia video compression,
SAD calculations are now an integral part of the multimedia instruction sets on
modern CPUs [113], which can substantially increase the efficiency of an SAD tracking
implementation.

The concept of ultrasound speckle tracking for flow velocity vector estimation was
proposed at Duke University [114, 115]. This group also developed a system capable
of producing approximatively 800 velocity vector estimates in real-time [116], which
was analyzed in-vitro and in-vivo in a series of papers [117, 118]. Their efforts were

65



2.4. Vector velocity imaging in CFI

summarized in [112]. In general, a good correlation in velocity vector estimates was
reported for regular lateral flow and high signal-to-noise ratios. Axial flow components
severely decreased the accuracy of the method. Clinical in-vivo studies have not been
performed.

The main limitations of the speckle tracking approach for blood flow velocity vector
estimation are related to clutter filtering and speckle pattern decorrelation. To achieve
a sufficient attenuation of the clutter signal while retaining the signal from blood,
the imaging frame rate of the two- or three-dimensional search region must be high
compared to the Doppler shifts produced by the movement of tissue. Also, when the
direction of flow approaches a pure lateral direction, the Doppler shifts approaches
zero, and a large part of the blood signal will be removed using traditional clutter
rejection filters. Due to the lateral bandwidth of the imaging system, some blood
signal will typically remain after filtering. As shown in [119], a bandpass signal is then
produced, inferring an amplitude modulation in the remaining speckle pattern.

The blood flow speckle pattern rapidly decorrelates due to sources such as non-
laminar flow patterns, flow velocity gradients, and out-of-plane movement in two-
dimensional velocity estimation. This speckle decorrelation can severely degrade the
performance of the speckle tracking procedure. Due to the bandpass nature and higher
spatial frequency content in the axial direction, the decorrelation is more prominent
when a substantial axial velocity component is present [120].

The high imaging frame rate of lateral subregions needed may be obtained by
using beam interleaving techniques as described in Section 2.2.3. Smaller subimages
are then obtained at a frame rate equal to the pulse repetition frequency. As there is
no correlation of the speckle pattern between interleave groups, the speckle tracking
algorithm must be performed within one group. Also, as the interleave group width
shrink for increasing scan depths, so will the width of the search regions. Another
approach is to track the speckle signal within groups of receive lines acquired using
multiple-line acquisition (MLA) [121, 122]. In this way, very small subregions can be
acquired simultaneously at a very high frame rate. Two or four times MLA is today
common in high-end scanners, but this is will be further increased due to the demands
of frame rate imposed by dynamic three-dimensional imaging.

Another challenge in speckle tracking is related to spatial sampling and
interpolation. The movement of scatterers as estimated using speckle tracking is
limited to a displacement of an integer number of beam and range samples. To ensure
a sufficient overall frame rate for following the flow dynamics, the lateral sampling
is limited, and interpolation methods then becomes crucial in order to estimate the
movement of the scatterers with good accuracy.

In summary, although efforts have shown that speckle tracking of blood is feasible,
the lack of robustness for irregular flow patterns and the challenge of clutter filtering
has kept the method at an experimental stage.
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2.5 Future directions of CFI systems

Future CFI systems has more to offer. Current trends of real-time 3-D ultrasound
imaging is at the moment pushing the technology forward, and also offer new
possibilities for improved 2-D imaging. Transducer, transmitter, and beamforming
technology is becoming increasingly more sophisticated, and the continuing increase
in computational power of standard CPUs and graphic card GPUs, opens up for the
use of more advanced real-time signal processing that can be more easily implemented
and evaluated.

An improved separation of flow through adaptive signal processing can be expected
to improve the estimation of low-velocity flow in peripheral vessels, and to provide a
better image of coronary flow in transthoracic imaging. High-frequency imaging of the
microcirculation such as for the detection of angiogenesis in cancer diagnosis might
also be possible in combination with more advanced clutter rejection in the future.

High-frequency imaging in the 20-80 MHz range has for practical purposes
conventionally been done using mechanically steered transducers, and the CFI
performance is then more challenging then for transducer arrays [123]. Current
research efforts are however producing increasingly robust high-frequency arrays [124],
which may increase the performance of high-frequency microcirculation imaging.

Real-time dynamic three-dimensional color flow imaging is now available, and is
expected to increase the certainty of diagnosis of cardiac abnormalities such as the
quantification of valve leakage area. One of the challenges of this modality is to
achieve a sufficient frame rate. Currently, ECG triggering over several heart cycles is
needed to obtain a sufficiently large imaging volume sector at tolerable frame rates. An
increased frame rate can be expected by the use of more parallel receive beamforming,
however, the number of parallel receive beams is ultimately limited by demands of
penetration, as the transmit beam must be broad enough to cover all receive beams.
Adaptive clutter rejection techniques may further be used to lower the packet size in
CFI to achieve a higher frame rate [90].

Two- and three-dimensional vector velocity estimation has been a continuing area
of research. At the moment, compound Doppler techniques and speckle tracking are
perhaps the most liable candidates for accomplishing this task in the near future. Real-
time operation of both these methods is today considered feasible. In high-frequency
flow imaging the use of speckle tracking becomes more attractive as the signal power
of blood then becomes comparable to that of tissue, and can then be tracked with less
demands of clutter filtering [125].

67



2.5. Future directions of CFI systems

68



References

[1] J. Wild and J. Reid, “Application of echo-ranging techniques to the
determination of structure of biological tissues,” Science, vol. 115, pp. 226–230,
1952.

[2] D. Howry and W. Bliss, “Ultrasonic visualization of soft tissue structures of the
body,” J. Lab. Clin. Med., vol. 40, pp. 579–592, 1952.

[3] I. Edler and C. Hertz, “The use of ultrasonic reflectoscope for the continuous
recording of the movements of heart walls. 1954,” Clin Physiol Funct Imaging,
vol. 24, pp. 118–136, 2004.

[4] P. Wells, “Ultrasound imaging,” Phys. Med. Biol., vol. 51, pp. R83–R98, 2006.

[5] K. Taylor and P. Wells, “Tissue characterisation,” Ultrasound Med. Biol., vol. 15,
pp. 421–428, 1989.

[6] J. Somer, “Electronic sector scanning for ultrasonic diagnosis,” Ultrasonics,
vol. 6, pp. 153–159, 1968.

[7] J. Griffith and W. Henry, “A sector scanner for real time two-dimensional
echocardiography,” Circulation, vol. 49, pp. 1147–1152, 1974.

[8] O. Ramm and F. Thurstone, “Cardiac imaging using a phased array ultrasound
system. i. system design,” Circulation, vol. 53, pp. 258–262, 1976.

[9] S. Satomura, “Ultrasonic doppler method for the inspection of cardiac
functions,” J. Acoust. Soc. Am., vol. 29, pp. 1181–1185, 1957.

[10] P. Peronneau and F. Leger, “Doppler ultrasonic pulsed blood flowmeter,” Proc.
8th Int. Conf. Med. Biol. Eng., pp. 10–11, 1969.

[11] P. Wells, “A range-gated ultrasonic doppler system,” Med. Biol. Eng., vol. 7,
pp. 641–652, 1969.

[12] D. Baker, “Pulsed ultrasonic doppler blood-flow sensing,” IEEE Trans. Sonics
Ultrason., vol. 17, pp. 170–185, 1970.

69



References

[13] B. Goldberg, R. Gramiak, and A. Freimanis, “Early history of diagnostic
ultrasound: the role of american radiologists,” AJR. Am. J. Roentgenol.,
vol. 160, pp. 189–194, 1993.

[14] K. Beach, “1975-2000: a quarter century of ultrasound technology,” Ultrasound
Med. Biol., vol. 18, pp. 377–388, 1992.

[15] P. Callen, Ultrasonography in obstetrics and gynecology, 4th edition.
Philadelphia: Elsevier/Saunders Publishing Company, 2000.

[16] A. Weyman, Principles and Practice of Echocardiography. Philadelphia:
Lippincott Williams & Wilkins, 1993.

[17] M. Hennerici, D. Neuerburg-Heusler, M. Daffertshofer, T. Karasch, and
S. Meairs, Vascular Diagnosis With Ultrasound: Clinical References With Case
Studies, 2nd edition. New York: Thieme Medical Publishers, 2006.

[18] C. Rumack, S. Wilson, and J. Charboneau, Diagnostic ultrasound. St. Louis:
Elsevier Mosby, 2005.

[19] H. Feigenbaum, W. Armstrong, and T. Ryan, Feigenbaum’s echocardiography,
6th edition. Philadelphia: Lippincott Williams & Wilkins, 2005.

[20] W. McDicken, Diagnostic ultrasonics: principles and use of instruments.
Edinburgh: Churchill Livingstone, 1991.

[21] D. Evans and W. McDicken, Doppler ultrasound: physics, instrumentation and
clinical applications, 2nd edition. Chichester: John Wiley & Sons, 2000.

[22] B. Angelsen, Ultrasound imaging: waves, signals, and signal processing.
Trondheim: Emantec AS, 2000.

[23] G. Ludwig, “The velocity of sound through tissues and the acoustic impedance
of tissues,” J. Acoust. Soc. Am., vol. 22, pp. 862–866, 1950.

[24] F. Duck, Physical properties of tissue: a comprehensive reference book. London:
Academic Press, 1990.

[25] R. Lerner and R. Waag, “Wave space interpretation of scattered ultrasound,”
Ultrasound Med. Biol., vol. 14, pp. 97–102, 1988.

[26] A. Roguin, “Christian johann doppler: the man behind the effect,” Br. J.
Radiol., vol. 75, pp. 615–619, 2002.

[27] J. Jensen, Estimation of Blood Velocities Using Ultrasound - A Signal Processing
Approach. New York: Cambridge University Press, 1996.

[28] P. Atkinson and J. Woodcock, Doppler ultrasound and its use in clinical
measurement. London: Academic Press, 1982.

70



References

[29] M. Brandestini, “Topoflow-a digital full range doppler velocity meter,” IEEE
Trans. Sonics Ultrason., vol. 25, pp. 287–292, 1978.

[30] M. Eyer, M. Brandestini, D. Phillips, and D. Baker, “Color digital echo/doppler
image presentation,” Ultrasound Med. Biol., vol. 7, pp. 21–31, 1981.

[31] J. Reid and M. Spencer, “Ultrasonic doppler technique for imaging blood
vessels,” Science, vol. 176, pp. 1235–1236, 1972.

[32] K. Kristoffersen and B. Angelsen, “A comparison between mean frequency
estimators for multigated doppler systems with serial signal processing,” IEEE
Trans. Biomed. Eng., vol. 32, pp. 645–657, 1985.

[33] B. Angelsen and K. Kristoffersen, “Discrete time estimation of the mean doppler
frequency in ultrasonic blood velocity measurements,” IEEE Trans. Biomed.
Eng., vol. 30, pp. 207–214, 1983.

[34] W. Barber, J. Eberhard, and S. Karr, “A new time domain technique for velocity
measurements using doppler ultrasound,” IEEE Trans. Biomed. Eng., vol. 32,
pp. 213–229, 1985.

[35] K. Kristoffersen, “Time-domain estimation of the center frequency and spread
of doppler spectra in diagnostic ultrasound,” IEEE Trans. Ultrason., Ferroelec.,
Freq. Contr., vol. 35, pp. 484–497, 1988.

[36] C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional
blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics
Ultrason., vol. 32, pp. 458–464, 1985.

[37] K. Namekawa, C. Kasai, M. Tsukamoto, and A. Koyano, “Realtime bloodflow
imaging system utilizing auto-correlation techniques,” Ultrasound Med. Biol.,
vol. Suppl 2, pp. 203–208, 1983.

[38] K. Miller and M. Rochwarger, “A covariance approach to spectral moment
estimation,” IEEE Trans. Informat. Theor., vol. 18, pp. 588–596, 1972.

[39] D. Sirmans and B. Bumgarner, “Numerical comparison of five mean frequency
estimators,” J. Appl. Meteorol., vol. 14, pp. 991–1003, 1975.

[40] D. Zrnic, “Spectral moment estimates from correlated pulsed pair,” IEEE Trans.
Aerosp. Electron., vol. 13, pp. 344–354, 1977.

[41] G. Gray, R. Serafin, D. Atlas, R. Rineheart, and J. Boyajian, “Real-time
color doppler radar display,” American Meteorological Society Bulletin, vol. 56,
pp. 580–588, 1975.

[42] H. Torp and B. Angelsen, Estimation of blood velocities from Doppler signals.
Ultrasound imaging, Waves, Signals, and Signal Processing vol. 2. Trondheim:
Emantec AS, 2000.

71



References

[43] P. Wells, “Ultrasonic colour flow imaging,” Phys. Med. Biol., vol. 39, pp. 2113–
2145, 1994.

[44] K. Ferrara and G. DeAngelis, “Color flow mapping,” Ultrasound in Medicine &
Biology, vol. 23, pp. 321–345, 1997.

[45] K. Kristoffersen, “Optimal receiver filtering in pulsed doppler ultrasound blood
velocity measurements,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 33,
pp. 51–58, 1986.

[46] B. Haider, P. Lewin, and K. Thomenius, “Pulse elongation and deconvolution
filtering for medical ultrasonic imaging,” IEEE Trans. Ultrason., Ferroelect.,
Freq. Contr., vol. 45, pp. 98–113, 1998.

[47] T. Misaridis, K. Gammelmark, C. Jorgensen, N. Lindberg, A. Thomsen,
M. Pedersen, and J. Jensen, “Potential of coded excitation in medical ultrasound
imaging,” Ultrasonics, vol. 38, pp. 183–189, 2000.

[48] D. Shattuck, M. Weinshenker, S. Smith, and O. Ramm, “Explososcan: A parallel
processing technique for high speed ultrasound imaging with linear phased
arrays,” J. Acoust. Soc. Am., vol. 75, pp. 1273–1282, 1984.

[49] K. Thomenius, “Evolution of ultrasound beamformers,” Proceedings of the IEEE
Ultrasonics Symposium, 1996, vol. 2, pp. 1615–1622 vol2, 1996.

[50] R. Chesarek, “Ultrasound imaging system for relatively low-velocity blood flow
at relatively high frame rates,” US Patent 4888694, Quantum Medical Systems,
Inc., 1989.

[51] C. Therrien, Discrete Random Signals and Statistical Signal Processing. Upper
Saddle River, USA: Prentice Hall Inc., 1992.

[52] B. Angelsen, “A theoretical study of the scattering of ultrasound from blood,”
IEEE Trans. Biomed. Eng., vol. BME-27, pp. 61–67, 1980.

[53] R. Albright, “Relationship of doppler ultrasonic scattered signal characteristics
to flow and beam parameters,” The Journal of the Acoustical Society of America,
vol. 59, pp. 786–789, 1976.

[54] L. Mo and R. Cobbold, “A stochastic model of the backscattered doppler
ultrasound from blood,” IEEE Trans. Biomed. Eng., vol. 33, pp. 20–27, 1986.

[55] P. Atkinson and M. Berry, “Random noise in ultrasonic echoes diffracted by
blood,” Journal of Physics A: Mathematical, Nuclear and General, vol. 7,
pp. 1293–1302, 1974.

[56] K. Shung, G. Cloutier, and C. Lim, “The effects of hematocrit, shear rate, and
turbulence on ultrasonic doppler spectrum from blood,” IEEE Trans. Biomed.
Eng., vol. 39, pp. 462–469, 1992.

72



References

[57] S. Wang and K. Shung, “In vivo measurements of ultrasonic backscattering in
blood,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 48, pp. 425–431,
2001.

[58] L. Mo and R. Cobbold, “A unified approach to modeling the backscattered
doppler ultrasound from blood,” IEEE Trans. Biomed. Eng., vol. 39, pp. 450–
461, 1992.

[59] H. Torp, K. Kristoffersen, and B. Angelsen, “Autocorrelation technique in color
flow imaging, signal model and statistical properties of the autocorrelation
estimates,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 41, pp. 604–
612, 1994.

[60] M. Aygen and R. Popp, “Influence of the orientation of myocardial fibers on
echocardiographic images,” Am. J. Cardiol., vol. 60, pp. 147–152, 1987.

[61] R. Wagner, S. Smith, J. Sandrik, and H. Lopez, “Statistics of speckle in
ultrasound b-scans,” IEEE Trans. Sonics Ultrason., vol. 30, pp. 156–163, 1983.

[62] A. Heimdal and H. Torp, “Ultrasound doppler measurements of low velocity
blood flow: limitations due to clutter signals from vibrating muscles,” IEEE
Trans., Ultrason., Ferroelec., Freq. Contr., vol. 44, pp. 873–881, 1997.

[63] H. Torp, “Clutter rejection filters in color flow imaging: A theoretical approach,”
IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 44, pp. 417–424, 1997.

[64] S. Bjaerum, H. Torp, and K. Kristoffersen, “Clutter filter design for ultrasound
color flow imaging,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 49,
pp. 204–216, 2002.

[65] A. Hoeks, J. Vandevorst, A. Dabekaussen, P. Brands, and R. Reneman, “An
efficient algorithm to remove low-frequency doppler signals in digital doppler
systems,” Ultrason. Imaging, vol. 13, pp. 135–144, 1991.

[66] A. Kadi and T. Loupas, “On the performance of regression and step-initialized
iir clutter filters for color doppler systems in diagnostic medical ultrasound,”
IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 42, pp. 927–937, 1995.

[67] R. Fletcher and D. Burlage, “Initialization technique for improved mti
performance in phased-array radars,” Proceed. IEEE, vol. 60, pp. 1551–1552,
1972.

[68] E. Chornoboy, “Initialization for improved iir filter performance,” IEEE Trans.
Signal Process., vol. 40, pp. 543–550, 1992.

[69] J. Willemetz, A. Nowicki, J. Meister, F. D. Palma, and G. Pante, “Bias and
variance in the estimate of the doppler frequency induced by a wall motion
filter,” Ultrason. Imaging, vol. 11, pp. 215–225, 1989.

73



References

[70] J. Rajaonah, B. Dousse, and J. Meister, “Compensation of the bias caused by the
wall filter on the mean doppler frequency,” IEEE Trans. Ultrason., Ferroelec.,
Freq. Contr., vol. 41, pp. 812–819, 1994.

[71] R. Doviak and D. Zrnic, “Practical algorithms for mean velocity estimation in
pulse doppler weather radars using a small number of samples,” IEEE Trans.
Geosci. Remote Sensing, vol. 21, pp. 491–501, 1983.

[72] H. Torp, K. Kristoffersen, and A. Angelsen, “On the joint probability density
function for the autocorrelation estimates in ultrasound color flow imaging,”
IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 42, pp. 899–906, 1995.

[73] T. Loupas, J. Powers, and R. Gill, “An axial velocity estimator for ultrasound
blood flow imaging, based on a full evaluation of the doppler equation by
means of a two-dimensional autocorrelation approach,” IEEE Trans., Ultrason.,
Ferroelec., Freq. Contr., vol. 42, pp. 672–688, 1995.

[74] O. Bonnefous and P. Pesque, “Time domain formulation of pulse-doppler
ultrasound and blood velocity estimation by cross correlation,” Ultrason.
Imaging, vol. 8, pp. 73–85, 1986.

[75] S. Foster, P. Embree, and W. O’Brien, “Flow velocity profile via time-domain
correlation: error analysis and computer simulation,” IEEE Trans., Ultrason.,
Ferroelec., Freq. Contr., vol. 37, pp. 164–175, 1990.

[76] P. Embree and W. O’Brien, “The accurate ultrasonic measurement of the volume
flow of blood by time domain correlation,” Ultrasonics Symposium, IEEE 1985,
pp. 963–966, 1985.

[77] H. Torp, X. Lai, and K. Kristoffersen, “Comparison between cross-correlation
and auto-correlation technique in color flow imaging,” Ultrasonics Symposium,
1993 Proceedings, IEEE 1993, pp. 1039–1042 vol2, 1993.

[78] K. Ferrara and V. Algazi, “A new wideband spread target maximum likelihood
estimator for blood velocity estimation. i. theory,” IEEE Trans. Ultrason.,
Ferroelec., Freq. Contr., vol. 38, pp. 1–16, 1991.

[79] L. Wilson, “Description of broad-band pulsed doppler ultrasound processing
using the two-dimensional fourier transform,” Ultrason. Imaging, vol. 13,
pp. 301–315, 1991.

[80] S. Alam and K. Parker, “The butterfly search technique for estimation of blood
velocity,” Ultrasound in Medicine & Biology, vol. 21, pp. 657–670, 1995.

[81] P. Vaitkus and R. Cobbold, “A new time-domain narrowband velocity estimation
technique for doppler ultrasound flow imaging. i. theory,” IEEE Trans. Ultrason.,
Ferroelec., Freq. Contr., vol. 45, pp. 939–954, 1998.

74



References

[82] Y. Ahn and S. Park, “Estimation of mean frequency and variance of ultrasonic
doppler signal by using second-order autoregressive model,” IEEE Trans.
Ultrason., Ferroelec., Freq. Contr., vol. 38, pp. 172–182, 1991.

[83] S. Jain, P. Fan, E. Philpot, N. Nanda, K. Aggarwal, S. Moos, and A. Yoganathan,
“Influence of various instrument settings on the flow information derived from
the power mode,” Ultrasound Med. Biol., vol. 17, pp. 49–54, 1991.

[84] J. Rubin, R. Bude, P. Carson, R. Bree, and R. Adler, “Power doppler us:
a potentially useful alternative to mean frequency-based color doppler us,”
Radiology, vol. 190, pp. 853–856, 1994.

[85] S. Bjærum, H. Torp, T. Bakke, and K. Kristoffersen, Detection and visualization
of moving targets in medical ultrasound imaging, paper E: Automatic selection of
the clutter filter cut-off frequency in ultrasound color flow imaging, pp. E1–E14.
Trondheim, Norway: Norwegian University of Science and Technology, 2001.

[86] Y. Yoo, R. Managuli, and Y. Kim, “Adaptive clutter filtering for ultrasound
color flow imaging,” Ultrasound Med. Biol., vol. 29, pp. 1311–1320, 2003.

[87] L. Thomas and A. Hall, “An improved wall filter for flow imaging of low velocity
flow,” Proceedings of the IEEE Ultrasonics Symposium, vol. 3, pp. 1701–1704,
1994.

[88] P. Brands, A. Hoeks, and R. Reneman, “The effect of echo suppression on the
mean velocity estimation range of the rf cross-correlation model estimator,”
Ultrasound Med. Biol., vol. 21, pp. 945–959, 1995.

[89] S. Bjaerum, H. Torp, and K. Kristoffersen, “Clutter filters adapted to tissue
motion in ultrasound color flow imaging,” IEEE Trans. Ultrason., Ferroelec.,
Freq. Contr., vol. 49, pp. 693–704, 2002.

[90] L. Germond-Rouet, L. Thanasis, and O. Bonnefous, “Clutter filtering with
small ensemble lengths in ultrasound imaging,” International Patent no. WO
2005/033737 A1, Philips Electronics N.V, 2005.

[91] G. Golub and C. V. Loan, Matrix Computations. Johns Hopkins University
Press, 1996.

[92] D. Kruse and K. Ferrara, “A new high resolution color flow system using an
eigendecomposition-based adaptive filter for clutter rejection,” IEEE Trans.
Ultrason., Ferroelect., Freq. Contr., vol. 49, pp. 1384–1399, 2002.

[93] C. Gallippi and G. Trahey, “Adaptive clutter filtering via blind source separation
for two-dimensional ultrasonic blood velocity measurement,” Ultrason. Imaging,
vol. 24, pp. 193–214, 2002.

[94] C. Gallippi, K. Nightingale, and G. Trahey, “Bss-based filtering of physiological
and arfi-induced tissue and blood motion,” Ultrasound Med. Biol., vol. 29,
pp. 1583–1592, 2003.

75



References

[95] J. Cardoso and A. Souloumiac, “Blind beamforming for non-gaussian signals,”
Radar and Signal Processing, IEE Proceedings F, vol. 140, pp. 362–370, 1993.

[96] B. Dunmire, K. Beach, K. Labs, M. Plett, and D. Strandness, “Cross-
beam vector doppler ultrasound for angle-independent velocity measurements,”
Ultrasound Med. Biol., vol. 26, pp. 1213–1235, 2000.

[97] D. Fei, C. Fu, W. Brewer, and K. Kraft, “Angle independent doppler color
imaging: Determination of accuracy and a method of display,” Ultrasound in
Medicine & Biology, vol. 20, pp. 147–155, 1994.

[98] E. Papadofrangakis, W. Engeler, and J. Fakiris, “Measurement of true blood
velocity by an ultrasound system,” US Patent no. 4,265,126, General Electric
Company, 1981.

[99] A. Hall and R. Bernandi, “Method for detecting two-dimensional flow for
ultrasound color flow imaging,” US Patent No. 5,398,216, General Electric
Company, 1995.

[100] P. Phillips, A. Kadi, and O. von Ramm, “Feasibility study for a two-dimensional
diagnostic ultrasound velocity mapping system,” Ultrasound in Medicine &
Biology, vol. 21, pp. 217–229, 1995.

[101] J. Jensen and P. Munk, “A new method for estimation of velocity vectors,” IEEE
Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp. 837–851, 1998.

[102] M. Anderson, “Multi-dimensional velocity estimation with ultrasound using
spatial quadrature,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 45,
pp. 852–861, 1998.

[103] M. Anderson, “Vector flow estimator isomorphism and wall filter requirements,”
Medical Imaging 2001: Ultrasonic Imaging and Signal Processing, vol. 4325,
pp. 215–226, 2001.

[104] J. Griffith, W. Brody, and L. Goodman, “Resolution performance of doppler
ultrasound flowmeters,” The Journal of the Acoustical Society of America,
vol. 60, pp. 607–610, 1976.

[105] V. Newhouse, P. Bendick, and L. Varner, “Analysis of transit time effects on
doppler flow measurement,” IEEE Trans. Biomed. Eng., vol. 23, pp. 381–386,
1976.

[106] Y. Kim and S. Park, “Modeling of doppler signal considering sample volume and
field distribution,” Ultrason. Imaging, vol. 11, pp. 175–196, 1989.

[107] A. McArdle and V. Newhouse, “Doppler bandwidth dependence on beam to flow
angle,” The Journal of the Acoustical Society of America, vol. 99, pp. 1767–1778,
1996.

76



References

[108] A. Yu, A. Steinman, and R. Cobbold, “Transit-time broadening in pulsed
doppler ultrasound: a generalized amplitude modulation model,” IEEE Trans.,
Ultrason., Ferroelec., Freq. Contr., vol. 53, pp. 530–541, 2006.

[109] V. Newhouse, D. Censor, T. Vontz, J. Cisneros, and B. Goldberg, “Ultrasound
doppler probing of flows transverse with respect to beam axis,” IEEE Trans.
Biomed. Eng., vol. 34, pp. 779–789, 1987.

[110] P. Tortoli, G. Guidi, L. Mantovani, and V. Newhouse, “Velocity magnitude
estimation with linear arrays using doppler bandwidth,” Ultrasonics, vol. 39,
pp. 157–161, 2001.

[111] K.-W. Yeung, “Angle-insensitive flow measurement using doppler bandwidth,”
IEEE Trans., Ultrason., Ferroelec., Freq. Contr., vol. 45, pp. 574–580, 1998.

[112] L. Bohs, B. Geiman, M. Anderson, S. Gebhart, and G. Trahey, “Speckle tracking
for multi-dimensional flow estimation,” Ultrasonics, vol. 38, pp. 369–375, 2000.

[113] D. Boggs, A. Baktha, J. Hawkins, D. Marr, J. Miller, P. Roussel, R. Singhai,
B. Toll, and K. Venkatraman, “The microarchitecture of the intel pentium 4
processor on 90nm technology,” Intel technology journal, vol. 8, pp. 1–17, 2004.

[114] G. Trahey, J. Allison, and O. von Ramm, “Angle independent ultrasonic
detection of blood flow,” IEEE Trans. Biomed. Eng., vol. 34, pp. 965–967, 1987.

[115] L. Bohs and G. Trahey, “A novel method for angle independent ultrasonic
imaging of blood flow and tissue motion,” IEEE Trans. Biomed. Eng., vol. 38,
pp. 280–286, 1991.

[116] L. Bohs, B. Friemel, B. McDermott, and G. Trahey, “A real time system
for quantifying and displaying two-dimensional velocities using ultrasound,”
Ultrasound Med. Biol., vol. 19, pp. 751–761, 1993.

[117] L. Bohs, B. Friemel, and G. Trahey, “Experimental velocity profiles and
volumetric flow via two-dimensional speckle tracking,” Ultrasound Med. Biol.,
vol. 21, pp. 885–898, 1995.

[118] L. Bohs, B. Friemel, J. Kisslo, D. Harfe, K. Nightingale, and G. Trahey, “Three-
dimensional flow images by reconstruction from two-dimensional vector velocity
maps,” J. Am. Soc. Echocardiogr., vol. 8, pp. 915–923, 1995.

[119] S. Bjærum, Detection and visualization of moving targets in medical ultrasound
imaging, paper H: Blood Motion Imaging: A new blood flow imaging technique.
Trondheim, Norway: NTNU, 2001.

[120] B. Friemel, L. Bohs, K. Nightingale, and G. Trahey, “Speckle decorrelation due
to two-dimensional flow gradients,” IEEE Trans., Ultrason., Ferroelec., Freq.
Contr., vol. 45, pp. 317–327, 1998.

77



References

[121] L. Bohs, S. Gebhart, M. Anderson, B. Geiman, and G. Trahey, “2-d motion
estimation using two parallel receive beams,” IEEE Trans. Ultrason., Ferroelect.,
Freq. Contr., vol. 48, pp. 392–408, 2001.

[122] L. Bohs, B. Geiman, M. Anderson, S. Breit, and G. Trahey, “Ensemble tracking
for 2d vector velocity measurement: Experimental and initial clinical results,”
IEEE Trans., Ultrason., Ferroelec., Freq. Contr., vol. 45, pp. 912–924, 1998.

[123] D. Goertz, J. Yu, R. Kerbel, P. Burns, and F. Foster, “High-frequency 3-d color-
flow imaging of the microcirculation,” Ultrasound in Medicine & Biology, vol. 29,
pp. 39–51, 2003.

[124] J. Brown, F. Foster, E. Cherin, and G. Lockwood, “A 40 mhz linear array
based on a 2-2 composite with geometric elevation focussing,” IEEE Ultrasonics
Symposium Proceedings, 2006.

[125] W. Aoudi, H. Liebgott, A. Needles, V. Yang, F. Foster, and D. Vray, “Estimation
methods for flow imaging with high frequency ultrasound,” In Press, Ultrasonics,
2006.

78



Chapter 3

Real-time adaptive clutter
rejection in ultrasound color
flow imaging using power
method iterations

Lasse Løvstakken1, Steinar Bjærum2, Kjell Kristoffersen2, Rune Haaverstad1,
and Hans Torp1

1 Dept. Circulation and Medical Imaging, NTNU
2 GE Vingmed Ultrasound, Horten, Norway

We propose a new algorithm for real-time, adaptive clutter rejection filtering
in ultrasound color flow imaging (CFI) and related techniques. The algorithm
is based on regression filtering using eigenvectors of the signal correlation
matrix as a basis for representing clutter, a method that previously has
been considered too computationally demanding for real-time processing
in general CFI applications. The data acquisition and processing scheme
introduced allows for a more localized sampling of the clutter statistics
and, therefore, an improved clutter attenuation for lower filter orders.
By using the iterative power method technique, the dominant eigenvalues
and corresponding eigenvectors of the correlation matrix can be estimated
efficiently, rendering real-time operation feasible on desktop computers. A
new adaptive filter order algorithm is proposed that successfully estimates the
proper dimension of the clutter basis, previously one of the major drawbacks
of this clutter-rejection technique. The filter algorithm performance and
computational demands has been compared to that of conventional clutter
filters. Examples have been included which confirms that, by adapting the
clutter-rejection filter to estimates of the clutter-signal statistics, improved
attenuation of the clutter signal can be achieved in normal as well as more
excessive cases of tissue movement and acceleration.
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3.1 Introduction

Current color flow imaging (CFI) techniques can indicate the presence and velocity
distribution of blood flow in a two-dimensional (2-D) ultrasound image in real time.
These methods have become valued tools for clinicians, as they have proven to be
highly useful for locating abnormal blood flow related to pathology [1, 2]. In order
for CFI techniques to work properly, signals from stationary and slowly moving tissue
must be removed before any attempt is made to estimate blood flow parameters. This
clutter component can have a signal power of as much as 60-80 dB higher than that
of blood flow, and it can infer a false detection of blood flow and biased flow velocity
estimates if not sufficiently attenuated. To achieve a frame rate sufficient for following
the dynamic behavior of arterial or intracardiac blood flow, few temporal samples are
available for processing in CFI (typically 8-16); therefore, the task of clutter-rejection
filtering is a challenge. The task has conventionally been performed by high-pass
filtering the temporal samples available for each sample bin in the image. Both finite
impulse response (FIR) and infinite impulse response (IIR) high-pass filters, as well as
time domain polynomial regression filters have been used [3–6]. These filters have in
common a fixed filter frequency response in which the filter cut-off frequency typically
is adjusted according to the flow velocity range of interest in a given clinical setting.

The fixed response clutter filters can achieve sufficient clutter suppression in
circumstances in which the tissue is near stationary. However, when the velocity
and acceleration of the tissue movement is high, or when the tissue velocity becomes
comparable to the blood flow velocities of interest, better filters are needed to properly
attenuate the clutter signal component. Examples of clinical situations in which this is
the case could be when imaging slow peripheral flow, or when there is excessive clutter
movement, such as when imaging the coronary arteries of the beating heart. In general
there also is a relative movement between the transducer and the patient that may
cause problems for conventional filters. By estimating the statistical properties of
the clutter from the received data, adaptive filters can be made that more accurately
removes the clutter component in normal as well as more excessive cases of tissue
movement. Such adaptive clutter rejection filters are the subject for this work.

Other authors have published work in this area for diagnostic ultrasound
applications. One approach has been to select the most suitable, conventional,
nonadaptive clutter filter from a bank of filters, based on estimated clutter
characteristics [7]. Another approach introduced by Thomas and Hall [8], and given
further elaboration by Bjærum et al. [9], relies on down-mixing the received Doppler
signal with the estimated clutter Doppler frequency prior to clutter filtering using
conventional, nonadaptive filters. A third approach, which also is the focus of this
work, has been to seek an optimal clutter basis for regression filtering by using the
eigenvectors of the estimated signal correlation matrix. This method was introduced
for ultrasound applications by Bjærum et al. in [9], in which it was shown to be
superior to the downmixing approach, but also to suffer from practical limitations.
The method was further analyzed for high-frequency ultrasound applications by Kruse
and Ferrara [10]. Assuming Gaussian signals, the method provides an optimal basis
for regression, in maximizing the amount of clutter energy in the least amount of basis
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functions. Using higher order statistics for finding optimal, independent basis functions
was explored by Gallippi and Trahey [11]. Such methods of independent component
analysis (ICA) may yield a more correct clutter signal basis if the Gaussian signal
assumption is invalid, but they are computationally more demanding and still not
properly justified.

This paper presents a new algorithm for real-time, adaptive clutter rejection
filtering in CFI-related techniques, based on clutter representation by the eigenvectors
of the signal correlation matrix. The method previously was shown to be superior
to conventional, nonadaptive filters [9, 10, 12], but it has been considered too
computationally demanding for real-time processing and has not been robust when
filtering in areas containing substantial signals from blood flow as well as tissue
structures. We suggest solutions to overcome these limitations by introducing a
new processing and filter order selection scheme, and by using the power method for
efficiently estimating the eigenvector clutter basis. A prototype of the new algorithm
has been implemented and evaluated on a GE Vingmed Vivid 7 (GE Vingmed
Ultrasound, Horten, Norway) ultrasound system in which filtering results show the
superiority of the adaptive algorithm for the detection of blood flow in nonstationary
tissue structures.

The paper has been organized as follows. In Section 3.2 some background theory
is given, describing the signal model used and the theoretical views of the filter and
its performance. In Section 3.3, the methods used to implement the filter and to
analyze its performance are presented. In Section 3.4, results of filter analysis and
filter performance compared to conventional fixed response filters are given. These
results are discussed in Section 3.5. In Section 3.6, conclusions and potential future
work are presented.

3.2 Theory

3.2.1 Signal model

The signal model used for the development and analysis of the algorithm follows that
of Torp et al. [13]. The received signal in a given direction after beamformation is
originally modeled as a zero-mean, 2-D complex Gaussian process x(t, n), where t is
the elapsed time after pulse transmission k, corresponding to a depth range r = ct/2,
and n is the pulse number in the sequence of pulses emitted. The Gaussian assumption
is justified by the central limiting theorem in the fact that the total received signal is
a sum of contributions from a large number of independent scatterers. A 1-D clutter
filter operating in the pulse-to-pulse dimension is to be developed, and the filter input
signal is a sampled signal vector x consisting of N temporal samples from a single
sample volume, with a probability density function given by:

px(x) =
1

πN |Rx|
e−x∗T R−1

x x. (3.1)

The received signal is assumed to consist of a clutter component c originating from
sound scattered from tissue and acoustic noise sources, such as reverberation, an
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electrical/thermal noise component n, and a blood signal component b originating
from sound scattered from the moving red blood cells. The general signal model then
is given by:

x = c + n + b. (3.2)

The three signal components originate from fundamentally different sources and are
statistically independent. As the bandwidth of the thermal noise is much larger than
the sampling frequency of the Doppler signal (PRF), it is modeled as white noise.
Being Gaussian, the signal is completely characterized statistically by its second order
moments. We do not assume stationarity, and the second order moment information
then is contained in the signal correlation matrix given by [14]:

Rx = E{xx∗T }, (3.3)

which in our case can further be written as:

Rx = Rc + Rn + Rb = Rc + σ2
nI + Rb, (3.4)

where Rc is the clutter correlation matrix, Rb is the blood signal correlation matrix,
σ2

n is the thermal noise variance, and I is the identity matrix.

3.2.2 General filter model

The general filter model used for analysis is formulated as a linear transformation in
the N dimensional complex vector space CN . This mapping can be represented by a
matrix-vector multiplication as given by:

y = Ax, (3.5)

where x is the input signal vector, A is the filter matrix, and y is the filtered signal
vector. This formulation is general enough to include all conventional clutter filters
such as FIR and IIR high-pass filters with linear initialization, as well as time-domain
regression filters [5, 15]. The filter matrix may have complex entries, in which case a
nonsymmetric filter frequency response is given.

The filter given in (3.5) is not necessarily time invariant; therefore, the frequency
response cannot always be given as the Fourier transform of an impulse response.
However, the frequency response can be obtained as the power of the output when
the input is a complex harmonic signal, which can be shown to result in the following
expression [5]:

Hm(ω2) =
1

|N −m|
∑

k

Ak(−ω2)∗Ak+m(−ω2)e−imω2 , (3.6)

where m is the temporal lag in the signal correlation function, k is the row number of
the filter matrix, and ω2 is the temporal frequency variable in the beam-to-beam data
dimension. Ak(ω2) is the Fourier transform of row number k of the filter matrix given
in (3.5), defined by:

Ak(ω2) =
∑

n

a(k, n)e−inω2 . (3.7)
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For time invariant filters, it can be shown that the transfer functions for all lags, as
given in (3.6), becomes equal to |H(ω2)|2 [5]. The phase of the correlation function
estimates thus is not affected by such filters.

The focus of this paper is on regression filters. The output signal then can be
given as the projection of the input signal into a vector subspace, which in our case
represents the complement of the subspace containing the clutter signal. The filter
projection matrix for this operation is formed by [6]:

A = I−
K∑

k=1

bkb∗Tk , (3.8)

where A is the projection matrix, I is the identity matrix, and bk is basis vector k
in a set of orthonormal basis vectors spanning the clutter signal subspace. The filter
order is defined as K − 1, i.e., a zero order filter includes one basis vector.

The Legendre polynomials are one set of orthonormal basis vectors that can be
used for clutter suppression [3–5]. The resulting polynomial regression filter has been
shown to have a superior frequency response compared to FIR and IIR filters for clutter
filtering in CFI [6]; therefore it will be used as the main reference when comparing the
efficiency of the adaptive filter algorithm developed.

3.2.3 Eigenvector filter basis

A more proper basis for regression filtering can be found by adapting the basis
functions to the actual signal statistics. As described by Bjærum et al. [9], it is
advantageous to form the clutter signal basis from a subset of the eigenvectors of the
signal correlation matrix. This form of data representation and analysis has different
origins and names, including principal component analysis (PCA), the Hotelling
transform, and the (discrete) Karhunen-Loève transform (DKLT) [14]. Following the
formulation of Karhunen and Loève, the received signal vector x in (3.2) is expanded
into the orthogonal basis given by

x =
N∑

i=1

κiei, E{κiκ
∗
j} =

{
λi i = j
0 i 6= j

(3.9)

where x is the input signal vector from a given sample bin, and λi and ei are
the eigenvalues and eigenvectors of the correlation matrix ordered by decreasing
eigenvalue, λ1 ≥ λ2 ≥ ... ≥ λN . The total energy of the signal equals the sum of the
eigenvalues λi. This representation is optimal in the sense that, among all expansion
in orthonormal basis vectors, it provides the best mean-square approximation of the
received signal vector x if the expansion is truncated to use K < N basis vectors [9, 14].

The clutter subspace basis is chosen to consist of the K first terms in (3.9).
The rationale for this decision is that the signal variation inferred by the clutter
movement is different and of higher energy than that of blood flow. Consequently,
the clutter signal will be concentrated in a smaller set of eigenvectors with the largest
corresponding eigenvalues [9, 10]. An illustration of a typical eigenvalue spectrum that
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Figure 3.1: An illustration of the distribution of signal component energy over the
basis given by the eigenvectors of the signal correlation matrix. Observe that the
clutter signal energy is mostly distributed over the first K eigenvectors with a large
corresponding eigenvalue.

shows the distribution of signal components over basis functions is given in Fig. 3.1.
As illustrated in the figure, most of the clutter energy is located in the directions of
the first K eigenvectors, and it can be removed by projecting the received signal onto
the complement of this basis. If the proper clutter subspace dimension K is selected,
this approach will remove a maximum amount of signal from clutter while a minimum
amount of signal from blood flow is lost. The resulting filter is in general complex
valued; therefore, it has a nonsymmetric frequency response. In Fig. 3.2 the filter
frequency response of a third order polynomial and eigenvector regression filter based
on real data from moving myocardium is shown for comparison.

As emphasized in [9] and [10], selecting the proper clutter subspace basis dimension
K is critical for the success of the filter. Earlier methods of selecting this dimension has
been based on thresholding the eigenvalues. However, this will lead only to satisfactory
results if the signal vector is dominated by clutter signal. As shown in Section 3.3, this
is not always the case, and a substantial part of the blood flow signal also could be
removed. We propose a new adaptive method for selecting the proper subspace basis
based on the gradient of the eigenvalue spectrum, as further described in Section 3.2.4.

The correlation matrix is Hermitian symmetric and positive semidefinite [14];
therefore, it is possible to find N real and nonnegative eigenvalues and corresponding
eigenvectors. Several methods exist for estimating the eigenvalues and eigenvectors for
such matrices, where the most efficient and numerically robust methods usually are
based on the singular value decomposition (SVD) or the matrix QR decomposition [16].
However, due to the small size of the correlation matrix for the given application, and
because only a few of the eigenvectors with the largest eigenvalues are needed to
represent the clutter signal, a different and simpler iterative method called the power
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Figure 3.2: The filter frequency response of a third order polynomial and eigenvector
regression filter. The adaptive eigenbasis was calculated from real data from an area of
moving myocardium. Observe that the eigenvector regression filter has nonsymmetric
frequency response, indicating clutter movement.

method [16] has been chosen for the estimation of the eigenvector basis. This method
is highly efficient in our case, and it provides a method for directly selecting the proper
clutter subspace basis. The following section describes this method in more detail.

3.2.4 Power method iterations

The power method is an iterative method for estimating the dominant eigenvalue and
corresponding eigenvector of a matrix. It is a relatively simple method that is suited
for situations in which there is a large difference between the most dominant and
second most dominant eigenvalue [16]. Fortunately, this is the case in our situation
in which the received signal typically consists of strong signal components from tissue
in addition to signal components from blood flow and thermal noise. As only some of
the eigenvectors with a large corresponding eigenvalue are needed for clutter filtering,
the method also becomes computationally efficient. The method can be derived as
follows.

Let x ∈ CN be a Gaussian distributed random vector with signal correlation matrix
Rx as given in Section 4.2.1, and let v0 be an arbitrary vector in CN . The vector v0

can be written as:

v0 =
N∑

i=1

αiei, (3.10)

a linear combination of the eigenvectors ei of Rx, an orthonormal basis in CN . Further
write

vk = Rk
xv0 = Rk

x

N∑
i=1

αiei =
N∑

i=1

αiRk
xei, (3.11)
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where Rk
x is Rx raised to the power of k. Because ei are eigenvectors of Rx, we have

the relation:

Rk
xei = λk

i ei, (3.12)

and (3.11) can therefore further be written as:

vk =
N∑

i=1

αiλ
k
i ei = λk

1(α1e1 +
N∑

i=2

(
λi

λ1
)kαiei). (3.13)

In the limit of large k and if λ1 � λi for i = 2 . . . N , the expression under summation
in (3.13) approaches zero, and vk then becomes equal to:

lim
k→∞

vk = lim
k→∞

λk
1(α1e1 +

N∑
i=2

(
λi

λ1
)kαiei) = λk

1α1e1, (3.14)

a constant times the eigenvector corresponding to the most dominant eigenvalue.
Normalizing this vector produces the eigenvector of interest. The eigenvalue can be
estimated from the Rayleigh quotient given by:

λ1 =
e∗T1 Rxe1

e∗T1 e1
. (3.15)

In this way, the most dominant eigenvalue and corresponding eigenvector can be found.
The second most dominant eigenvalue and corresponding eigenvector can be found by
repeating the estimation procedure after deflating Rx according to:

Rx = Rx − λ1e1e
∗T
1 , (3.16)

which corresponds to setting the current most dominant eigenvalue equal to zero.
The power method converges if the modulus of the most dominant eigenvalue

is unique, i.e., if |λ1| > |λ2| ≥ ... ≥ |λN |, and if the initial eigenvector guess is not
orthogonal to the actual eigenvector. The eigenvector iterations then converge linearly
at a rate proportional to (λ2/λ1)k, and the eigenvalue iterations as calculated from
the Rayleigh quotient converge linearly at a rate given by (λ2/λ1)2k [16, 17]. These
properties can be used to estimate the proper dimension of the clutter subspace. A
closer inspection of the eigenspectrum for different mixtures of clutter and blood flow
signal reveals that the ratio between the second and the most dominating eigenvalue
is substantially small only as long as clutter is present. Using the convergence rate of
the power method as a measure of this property, the eigenvector iteration procedure is
stopped when the rate drops below a given threshold, indicating that all or most clutter
is represented by the basis thus far estimated. More details on the implementation
of this method, and results of using the algorithm are given in Section 3.3.3 and
Section 3.4.2, respectively.
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Figure 3.3: An illustration of the averaging grid used in the algorithm. The lateral (x)
grid sizes coincide with the interleave group size as indicated. As can be observed, the
different averaging regions may contain different mixtures of flow and tissue signal.

3.3 Method

3.3.1 Data acquisition

The data acquisition scheme used to implement the algorithm is packet acquisition as
used in conventional CFI systems. The ultrasonic beam is scanned over the flow region
to be imaged, and a series of N pulses (typically 8-16) are transmitted in each beam
direction. In each depth bin in the image, a complex signal vector of N samples is
formed and used for further blood flow detection and velocity estimation. The number
of pulses N is referred to as the packet size. For each flow image, a tissue B-mode
scan is performed, and the flow and B-mode images are combined for simultaneous
visualization of both blood flow and tissue structures. A parametric color display
is typically used to encode the flow information. The packet acquisition scheme is
combined with interleaving techniques [18], a procedure performed to maximize the
frame rate for a chosen PRF. If the PRF is chosen smaller than the maximum possible
for a given imaging situation, there is time to transmit in the neighboring directions.
In this way, smaller parts of the total image are acquired separately, in interleave
groups. Neighboring beams within interleave groups are acquired subsequently in
time at the maximum PRF available. This temporal transmit scheme is advantageous
when estimating the signal statistics by averaging laterally as well as radially in the
image.
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3.3.2 Estimation of second order statistics

Estimates of the correlation matrix are obtained by averaging signal vectors both
laterally and radially in the image. To ensure that a maximum amount of clutter is
isolated by as few eigenvectors as possible, the clutter statistics should be uniform
in the averaging regions. This has been accomplished by processing separately in
small regions given by a rectangular grid as shown in Fig. 3.3. A unique filter is
adapted to the statistics of every grid square. For sufficiently fine grids, uniform
clutter statistics is approximately given in the averaging regions, and the clutter can
therefore more efficiently be represented by eigenvectors. To form a correlation matrix
of full rank, the number of signal vectors averaged has to at least equal the packet
size, and this is considered a lower bound for the number of signal vectors in a grid
region. As shown in Fig. 3.3, the different regions may consist of signals from different
mixtures of clutter and flow of varying degrees. This will affect the estimates of the
correlation matrix and eigenvector basis. To ensure that the flow signal is preserved
when filtering, an adaptive filter order selection algorithm is introduced, as described
further in Section 3.3.3.

The formula used to estimate the correlation matrix is given by:

R̂x =
1
K

K∑
k=1

xkx∗Tk , (3.17)

where xk is one sample vector from a spatial averaging region as illustrated in Fig. 3.3.
The resulting correlation matrix is not restricted to a Toeplitz structure, and, therefore,
may represent nonstationary processes. Imposing a Toeplitz structure would greatly
reduce the number of computations necessary to form the estimate, but is not favorable
as the clutter movement may be accelerated and, therefore, nonstationary. This also
was emphasized in [9] and [10].

3.3.3 Adaptive filter algorithm

In Fig. 3.4, a flowchart is shown that illustrates the main steps of the filter algorithm,
as well as giving an in-depth view at how power method iterations are used to estimate
the proper clutter signal subspace. The complex signal vectors from a grid square are
used to estimate the signal correlation matrix. This matrix is the input of the power
method in which the K number of eigenvectors with the most dominant eigenvalues are
estimated, as illustrated in Fig. 3.1. Two main loops control the sequence of events in
this algorithm. An outer loop controls the filter order, which is limited by a maximum
value set as a precaution if the adaptive selection algorithm should fail. An inner loop
iterates over each eigenvector estimate until the power method converges with sufficient
accuracy ε. However, if a maximum number of iterations set has been reached, the
power method has failed to converge in sufficient time, and the algorithm will end. This
fail-safe is in fact the adaptive order selection mechanism which ensures that mostly
clutter is represented by the final filter basis. The convergence rate of the power
method is related to the rate between the most dominant and second most dominant
eigenvalue. This means that the method continues to estimate new eigenvectors for
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Figure 3.4: A flowchart illustrating the filter algorithm in concept. The power method
iteration algorithm for estimating the eigenvectors and the filter order is shown in
depth on the right-hand side. The eigenbasis estimation procedure ends if either a
maximum filter order set is reached, or if the power method fails to converge to an
eigenvector in a given number of iterations.

clutter representation until the eigenvalue spectrum, ordered by decreasing value,
has become sufficiently flattened. The final filter projection matrix can be formed
using (3.8), and the output of the main algorithm is the filtered signal vectors from
the grid square in process. The procedure is repeated for every grid square. Please
refer to [16] for thorough elaborations on the general power method algorithm.

The performance of general projection filters are dependent on the validity of the
basis functions in representing the true clutter signal at a given spatial location. If
the true clutter signal has components not contained in the signal subspace spanned
by the estimated clutter basis functions, the attenuation of clutter will be degraded.
This infers a poorer detection of blood flow, and it may severely affect the estimates
of flow velocity and bandwidth as used in CFI algorithms. The geometric concept is
illustrated in Fig. 3.5 for the case of one basis vector. If the clutter signal vector is
represented by ec, and the filter basis function is given by êc, the filter output is the
projection onto the complement of êc. This residual signal vector has sin2 θ1 times
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Figure 3.5: A geometric illustration of the error that may result from using an
inaccurate basis vector to represent clutter. ec represents the actual clutter signal
vector, and êc represents the estimated basis vector. The residual signal vector after
projection has sin2(θ) times the energy of the clutter signal vector ec.

the energy contained in the direction of ec, where θ1 is the angle between the actual
clutter signal vector and basis vector approximation.

When representing the clutter signal by eigenvectors as estimated by the proposed
algorithm, the misrepresentation of the clutter signal can be related to the estimation
of the signal statistics, i.e., the correlation matrix, and to the estimation of the
eigenvectors by the power method. When averaging, it is assumed that all sample
vectors in a given region are realizations of the same process. This is not necessarily
the case as different mixtures of tissue and flow signals may be present for a given
region, and the estimated basis then will represent an average of this mixture. Also, as
relatively few sample vectors are averaged to form the correlation matrix, the variance
of the estimate also may contribute to an error. In general, the power method will
converge to the dominant eigenvector. However, because the number of iterations
used is limited, the estimate will not be accurate. Assuming that the error between
eigenvector iterates are monotonically decreasing, the stopping criteria ε has been
chosen so that the projection error due to the difference between the current and the
previous iterate lies below a given threshold for every basis vector. This error is in
decibels given by:

∆Qk = 10 log10(sin
2(θk)) ≈ 10 log10(||êk − êk−1||2), (3.18)

where θk = cos−1(êk · êk−1) is the angle between the eigenvector estimates, which for
small angles can be approximated to the norm of the vector differences. As long as the
attenuation error ∆Qk lies below the maximum difference in blood flow to clutter signal
power, the detection error due to the difference in vector angle is assumed negligible.
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Figure 3.6: The basis vector attenuation error due to inaccuracies as given by ε =
||ek − êk−1||. The threshold ε is used to ensure sufficient basis vector estimation
accuracy. As can be observed, an ε of 10−4 corresponds to at least -80 dB attenuation,
which in principle should be sufficient for clutter attenuation.

This is a conservative measure, as the projection error due to one eigenvector typically
is partially removed by another. In Fig. 3.6, the lower bound on attenuation for a given
ε is shown. As seen in Fig. 3.6, an ε of 10−4 results in at least 80 dB clutter attenuation.

The effects of the error in basis vector representation of clutter for conventional
CFI velocity estimation techniques [19], can be analyzed by using the filter frequency
transfer functions as given by (3.6) and (3.7). Due to time variant filter impulse
responses, the estimates of different lags of the correlation function for the Doppler
signal are affected by different filter frequency transfer functions. The equations,
introduced by Torp in [5], are valid for single frequency signals, and approximatively
so for narrowband signals. To analyze the filter influence on the bias in mean Doppler
frequency and bandwidth estimates as used in the conventional autocorrelation
technique [20], only lag zero and one are needed. The bias in frequency and bandwidth
due to the clutter filter then is given by:

∆fd =
∠H1(w)

2π
, ∆B =

√
1−

∣∣∣H1(w)
H0(w)

∣∣∣ (3.19)

3.3.4 Real-time implementation

The proposed algorithm consists of three main parts, the estimation of the correlation
matrix, the eigenvector basis estimation, and the clutter projection filtering. The
estimation of the correlation matrix is a time-consuming part of the algorithm due
to the large amount of matrix outer products needed. However, by exploiting the
Hermitian symmetry of the correlation matrix, the number of complex multiplications
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and additions is almost halved. It is further possible to save computations by reducing
the number of signal vectors used in the correlation matrix estimate in both the
radial and lateral direction of the image. We will in subsequent sections refer to
this procedure as (spatial) downsampling. As indicated in Section 5.5, the amount of
downsampling that can be used before the filter characteristics is affected severely, is
sufficient to substantially reduce the computation time of the algorithm.

The eigenvector estimation varies in computational demands, dependent on the
adaptive order and the convergence rate of the power method, which determines
the number of iterations performed to produce each eigenvector. This procedure is
performed for every grid region; therefore, the number of regions has a major impact
on performance. Projection filtering using a complex basis, requires approximately
two times the work of that using a real basis such as the Legendre polynomials, and
it is a time-consuming part of the algorithm, depending on the basis dimension. The
projection filter matrix is actually not calculated, as for lower order filters it is faster
to do projection straight forward, one basis vector at a time.

The implementation is in general CPU cache sensitive, and loop unrolling is
incorporated through the C++ compiler (Microsoft Visual C++ v7.0, Microsoft
Corporation, Redmond, WA). Due to the small correlation matrix size, no special
purpose data structure or linear algebra library was incorporated. The algorithm is
dominated by multiplication and addition operations. Assuming a fixed-filter basis
dimension P , the total algorithm flop count then can be calculated by counting the
number of real multiplications and additions needed to produce a filtered frame of
data.When including all higher order and product terms in packet size N and filter
basis dimension P , this is given by:

Ftot ' 4/kdwn ·N2 · nvects)︸ ︷︷ ︸
Fcorr

+(14NP · nvects)︸ ︷︷ ︸
Fproj

+ (26N2P − 10N2 + 18NP ) · navg︸ ︷︷ ︸
Feig

,
(3.20)

where nvects is the total number of signal vectors, navg is the number of averaging
regions used, and kdwn is the downsampling factor used when estimating the
correlation matrix. The contribution of the three main parts of the algorithm has
been indicated by underbracing. It is important to note that flop counting is a crude
approach of measuring algorithm efficiency because it ignores overheads and aspects
like subscripting and memory traffic. A listing of relevant flop counts for modern
desktop CPUs is given in Table 3.1 [21]. The peak flop count is the theoretical
maximum flop count for a given CPU, and the L100 and L1000 flop counts result
from the more descriptive LINPACK benchmarks [22]. These benchmarks show the
performance when using the optimized LINPACK library to solve the general matrix
problem Ax = b with a matrix size of 100x100 and 1000x1000, respectively. This is a
relevant measure of performance in our case, as a similar algorithmic problem exists,
dominated by multiplication and addition.
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Table 3.1: Flop counts for modern processors in GFlops

Processor Clock rate Peak L100 L1000

Intel Pentium 3 0.9 GHz 0.9 0.2 0.5
IBM/Apple PowerPC G4 1.0 GHz 2.0 0.3 1.0

AMD Opteron 2.2 GHz 4.3 1.3 3.1
Intel Pentium 41 3.0 GHz 6.0 1.6 3.2

IBM/Apple PowerPC 970/G5 2.2 GHz 8.8 1.7 3.8
Intel Xeon 3.6 GHz 7.2 1.8 4.2

1 The CPU used for the implementation of the real-time algorithm.

Table 3.2: Acquisition parameters used in the clinical examples

Parameter Intraoperative Vascular

Clinical object Coronary artery Carotid artery
Probe GE i13L GE 7L

Probe type Linear array Linear array
Center frequency 10 MHz 6.7 MHz

Pulse length 0.2 µs 0.6 µs
F# transmit / receive 1.4 / 1.1 2.5 / 1.4

Beam overlap 60 % 20 %
PRF 2.5 kHz 1.0 kHz

Packet size 10 12
vNyquist 9.6 cm/s 5.8 cm/s

3.4 Results

In this section, results from the evaluation of the adaptive filter algorithm will be given,
including examples of filtering on clinical data. Most of the clinical examples used
have been acquired from pig experiments, in which coronary artery bypass grafting
(CABG) surgery was performed on the beating heart, as described in [23]. Imaging the
flow in the bypass anastomosis represents a major challenge for conventional clutter
rejection filters due to the excessive movement of the myocardium, and it can help show
the potential of adaptive filters. All data was acquired using a GE Vingmed Vivid
7 ultrasound system (GE Vingmed Ultrasound, Horten, Norway), with linear array
probes suitable for the different clinical contexts. Relevant acquisition parameters for
the clinical examples are given in Table 3.2.
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Figure 3.7: The influence of differences in filter basis due to downsampling when
estimating the correlation matrix, for a case of highly nonuniform and nonstationary
statistics. As can be observed, the filter characteristics change, but they are
approximately the same for small downsampling factors.

3.4.1 Estimation of second order statistics

When reducing the number of sample vectors used in the estimate of the correlation
matrix by downsampling, the variance of the estimate will increase. To see what
might happen to the filter performance in such cases, the filter frequency response was
calculated for different downsampling factors in an area containing highly, nonuniform
and nonstationary statistics. In Fig. 3.7, the effect on the filter frequency response
for a second order filter is shown in which the reference response is the fully sampled
estimate. As can be seen, downsampling with factors of two in the radial and lateral
direction only has small effects on the estimate.

The averaging grid size used has a major influence on how well the filter algorithm
performs. This can be seen in Fig. 3.8, in which filter output using different grid
sizes are shown, compared to polynomial regression filtering as a reference. The
example shows coronary flow in a left internal mammary artery (LIMA) to left anterior
descending (LAD) anastomosis in the early part of the diastole. First order filters are
used, and the filter output is shown with a dynamic range of 40 dB. As can be observed,
more effective filtering is given for finer grids. Furthermore, blocking effects due to
different filter orders for different regions may become visible, as seen in the lower left
image. The extreme case of using just enough samples to form a correlation matrix of
full rank is given in the lower right image. As can be observed, near perfect detection
can be obtained, even for the case of imaging coronary arteries in highly moving tissue
structures.
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Figure 3.8: Filtering using different averaging grids (rows x cols) compared to
polynomial regression filtering. The filter order is 1, and the filter output is shown
with a dynamic range of 40 dB. A finer grid results in better attenuation of clutter.
However, block artifacts may appear where neighboring regions have different signal
characteristics.

3.4.2 Adaptive filter results

The success of the filter order selection mechanism is critical for the success of the
filter algorithm. Two clinical examples used to evaluate this mechanism are given in
Fig. 3.9. The images were filtered using a fine grid while allowing the dimension of
the filter basis to vary freely. The parametric images to the right shows the filter basis
dimension chosen for the different grid regions. In the reference images to the left,
actual areas of flow have been illustrated. Comparing the reference images with the
parametric images, one can observe that areas containing tissue and areas in which one
would expect increased tissue movement get a higher filter order than areas containing
blood flow signal. Also, areas containing large amounts of blood flow and little clutter,
as in the vessel lumen, are given lower order filters. This shows that the filter algorithm
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Figure 3.9: Results of the adaptive order algorithm. The filter basis dimension varies
without restrictions for two different clinical examples. The parametric images to the
right show the filter basis dimension chosen for each averaging region. As can be seen,
the filter basis dimension is chosen to be smaller in areas of flow and reduced clutter.

is able to retain the blood flow signal while properly suppressing clutter.
Three filtering examples using data from coronary artery bypass surgery on the

beating heart and from the carotid artery are shown in Fig. 3.10. The coronary images
in the first two rows are from the early diastole and systole, respectively, and contain
excessive tissue movement that represents a challenge for conventional, nonadaptive
clutter filters. A carotid artery example image from the systole has been included in
the bottom row to show how the adaptive filter order mechanism can help retain the
blood flow signal for higher order filters. As a reference, the Legendre polynomial basis
filter has been used. This filter has the highest stop band attenuation and steepest
transition regions among the conventional fixed order filters, and it also is implemented
by projection as described in Section 3.2.2. As can be seen in the coronary examples
in the first two rows, the eigenvector basis is superior to the Legendre basis. This is
typically the case for low-order filters (∼3rd order). However, as can be seen, using a
fixed order eigenvector basis may remove parts of the blood flow components in some
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areas. Looking at the rightmost images, the adaptive order eigenvector basis preserves
the blood flow components in these areas and provides a better filling of the vessel
lumen. In the bottom row, examples showing the carotid artery and jugular vein, a
high filter order was chosen on purpose. As evident, the polynomial basis outperforms
the fixed order eigenvector basis. However, by using an adaptive eigenvector basis
order, superior filtering is obtained.

In Fig. 3.11, examples of typical, filter-induced bias in mean frequency and
bandwidth estimators as used in the conventional autocorrelation technique are given.
The bias in mean frequency and bandwidth was calculated, using the expressions
in (3.19), and compared for filtering, using the eigenvector and Legendre polynomial
basis. Two different contexts were investigated: filtering an area containing tissue only,
and filtering an area containing both tissue and flow. The acquisition parameters for
the two cases are the same as for the coronary examples. As can be seen, the bias
in both mean frequency and bandwidth for the proposed filter are comparable to the
Legendre polynomial basis for low filter orders, and are mainly given in the filter
transition and stop band. As can be observed in the second context, including flow
eigenvectors in the filter basis as for the second and third order filters, will induce a
severe bias in both mean frequency and bandwidth.

3.4.3 Real-time performance

The average and worst case theoretical flop count of the new algorithm has been
compared to that of FIR filtering, IIR filtering, and polynomial regression filtering.
Projection initialized IIR filters were shown in [6] to be the only type of IIR filters with
sufficient stop band attenuation for clutter rejection filtering with limited temporal
samples available as in CFI; therefore, it has been used in the comparison. The total
flop count of the new algorithm is a function of the amount of sample vectors, the filter
order, the packet size, the degree of downsampling in correlation estimates, and the
number of averaging regions used. In Fig. 3.12, the flop counts for the different filters
are given when varying some of these parameters. The default values of the respective
parameters are indicated by the dashed vertical line in each plot. The average case flop
count for the new algorithm corresponds to an average filter order of two compared
to three for the other filters. This is considered a fair estimate when many averaging
areas contain uniform clutter movement or blood flow. The time spent processing per
frame in milliseconds using the L100 benchmark for a Pentium 4 class CPU is given
in the rightmost y-axis. Quite high theoretical frame rates can be achieved, even for
fine grids, ignoring overhead associated with further processing and display. As also
can be seen, downsampling when estimating the correlation matrix may substantially
decrease the processing time per frame.

3.5 Discussion

Several aspects regarding the proposed adaptive filter algorithm and filter-order
selection mechanism needs to be discussed. The main aspects that have an impact
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Figure 3.10: Results of filtering clinical data using the adaptive filter algorithm.
The first column of images was obtained using the Legendre polynomial basis, the
middle column was obtained using a fixed order eigenvector basis, and the rightmost
column was obtained using eigenvector basis with adaptive order. As can be observed,
improved clutter attenuation and flow preservation is achieved using the proposed
algorithm.

on the filter performance are the estimation of the correlation matrix, the estimation
of the eigenvectors, the selection of filter order, and the projection step performed to
separate the clutter component.

The estimate of the correlation matrix is dependent on how the signal vectors are
acquired and averaged. By also averaging in the lateral direction, the amount of radial
averaging can be reduced, and more localized sampling of the clutter statistics can be
achieved. This corresponds to lower filter order demands for representing the clutter
in that area. As described in Section 3.3.1, when the user chosen PRF is less then the
maximum given by the depth of the ultrasound scan, beam interleaving can be used
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Figure 3.11: Bias in mean frequency and bandwidth estimates as calculated using
(3.19) for the proposed adaptive filter basis compared to that of using a fixed Legendre
polynomial basis. Two cases are presented; for data containing clutter only, and for
data containing both clutter and blood flow. It can be observed that the bias is
comparable as long as the filter basis does not include eigenvectors representing blood
flow components. Furthermore, the bias is located in the transition and stop band of
both filters.

to maximize the frame rate. This also is advantageous in our case as shorter time
intervals are given between the acquisition of neighboring beams. Improved estimates
then can be achieved when averaging in the lateral direction. The proper choice of
averaging regions needs further elaboration. As seen in Fig. 3.8, smaller averaging
regions amounts to improved attenuation of clutter, as the clutter statistics then are
more uniform for each grid region. However as seen in Fig. 3.12, the computational
demands for large numbers of averaging regions can be quite substantial. Using larger
grid regions may lead to blocking artifacts as seen in the lower left image in Fig. 3.8.
The artifacts result because different filter orders have been chosen for neighboring
regions. This is especially visible when the grid regions cover both the vessel wall and
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Figure 3.12: The flop count for the proposed algorithm compared to FIR filtering,
IIR filtering with projection initialization, and polynomial regression filtering. Upper
left, flop count versus packet size; lower left, flop count versus downsampling factor;
lower right, flop count versus number of averaging regions. The default values of the
respective parameters are indicated by the dashed vertical line in each plot.

lumen. The artifacts can be removed by tissue/flow arbitration as used in conventional
algorithms, but this is not an optimal solution. Another approach could be to use a
2-D sliding window average, centered around each signal vector. However, as real-time
operation then would be hard to obtain, this has not been considered in this work.

Downsampling amounts to an increase in variance of the correlation matrix
estimate, and it may alter the filter characteristics as shown in Fig. 3.7. However,
the first major eigenvectors are little affected for smaller downsampling factors and
still may be used to represent the clutter. This may be due to the relatively slow
movement and small bandwidth of the clutter signal. The results are by no means
general, but they may indicate the validity of using small downsampling factors of 2-4
to decrease the processing time per frame. As shown in Fig. 3.12, the time used to
process one frame can be substantially decreased, even for these factors.

The power method was chosen for the estimation of eigenvectors because of the
small correlation matrix size and the knowledge that only a few major eigenvectors are
needed. Also, if clutter signal is present, the convergence rate is rapid, using less then
10 iterations to converge with sufficient accuracy. The convergence rate of the method
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can be increased further by introducing shifts as in the Rayleigh quotient method [16].
However, this method is more computationally demanding per iteration, and it will
not decrease the total computation time for our case. Alternatively, a SVD could
be performed. This method has good numerical properties and saves computation
time by working directly on the data matrix. Although effective algorithms exist for
performing the SVD [16], the small matrix size and Hermitian symmetry still favors
the power method for our case.

The success of the filter order selection mechanism is crucial for the success of the
filter in different mixtures of tissue and blood flow. Given an accuracy threshold ε,
a maximum number of iterations can be set that decides when the clutter is already
given by the basis estimated thus far. For the different flow and tissue signal mixture
examples investigated in this work, a value of 10 iterations has proven robust when
using an accuracy threshold ε of 10−4 as indicated. The value could be lowered to
remove less flow and raised to remove more clutter if needed. The method of selecting
clutter subspace eigenvectors by ordering on decreasing eigenvalue works as long as
the clutter to flow signal ratio is relatively high. When the signal power of blood
flow becomes comparable to that of tissue, the flow signal may be represented by
one of the first major eigenvectors and, consequently, may be removed by the filter.
Furthermore, if the first eigenvectors correspond to blood flow, the algorithm may end
without including any eigenvectors at all. Both cases result in reduced attenuation of
clutter and biased velocity estimates. The problem may appear inside vessel lumens or
in the heart ventricle for higher imaging frequencies, i.e., when the Rayleigh scattering
from blood flow becomes prominent.

The filter performance examples in Fig. 3.10 shows that the proposed algorithm can
provide sufficient attenuation of the clutter signal, even in nonstationary environments,
and use lower order filters where needed to retain the blood flow signal. As shown
in Fig. 3.11, the bias in velocity and bandwidth estimates induced by the filter
is comparable to that of polynomial regression filtering as long as eigenvectors
representing blood flow are not included in the filter basis. The bias due to the
filter then is located mainly in the stop band of the filter; therefore, it is important
that the clutter signal in the filter stop band is attenuated substantially below that of
the blood flow signal. Contrary to Legendre polynomial filters, the eigenvector filters
need not have infinite suppression of the mean value as shown in Fig. 3.2. To ensure
that stationary tissue signal and reverberations are removed, one also could include
the first Legendre basis vector in the basis set representing clutter.

Fig. 3.12 shows that, in order to keep the computation time per frame as low as
possible, it will be beneficial to work with smaller packet sizes, and to reduce the
number of averaging regions. The packet size is limited by the frame rate needed to
follow the dynamics of the blood flow; otherwise, it should be as high as possible to
achieve a proper separation of clutter and lower variance in velocity estimates (typically
8-16). However, by introducing adaptive averaging regions that remain large in areas
of uniform statistics, and that are divided into smaller regions in nonuniform areas,
computation time potentially can be saved. There should not be large abrupt changes
in filter order between neighboring regions, and the initial presence of such could be
used to iteratively divide an area into finer averaging regions.
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3.6 Conclusion

Adaptive clutter filtering based on the eigenvector decomposition of the signal
correlation matrix is feasible for real-time CFI applications using todays desktop
computers. A new filter order selection algorithm has been introduced that works
satisfactorily in different clutter and flow signal mixtures. By adapting unique filters
to regions in a fine averaging grid, improved suppression of clutter is achieved in normal
as well as in highly nonstationary tissue environments. Further work needs to be done
on optimizing the averaging grid, and to investigate the influence of the algorithm on
velocity estimates in more detail.
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Optimal velocity estimation in
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In color flow imaging (CFI), the rejection of tissue clutter signal is treated
separately from blood velocity estimation, by high-pass filtering the received
Doppler signal. The complete suppression of clutter is then difficult to achieve
without affecting the subsequent velocity estimates. In this work a different
approach to velocity estimation is investigated, based on a statistical model
of the signal from both clutter and blood.
An analytic expression for the Cramer-Rao lower bound (CRLB) is developed,
and used to determine the existence of an efficient maximum likelihood
estimator (MLE) of blood velocity in CFI when assuming full knowledge of
the clutter statistics. We further simulate and compare the performance of
the MLE to that of the autocorrelation method (ACM) using finite impulse
response (FIR) and polynomial regression clutter filters. Two signal scenarios
are simulated, representing a central and peripheral vessel.
Simulations showed that by including 3-9 (independent) spatial points, the
MLE variance approached the CRLB in both scenarios. The ACM was
approximately unbiased only for the central scenario in the clutter filter pass
band, then with a variance of up to four times the CRLB. The ACM suffered
from a severe bias in the filter transition region, and a significant performance
gain was here achieved using the MLE.
For practical use, the clutter properties must be estimated. We finally
replaced the known clutter statistics with an estimate obtained from low-rank
approximations of the received sample correlation matrix. Used in the model-
based framework, this method came close to the performance of the MLE, and
may be an important step towards a practical model-based estimator including
tissue clutter with optimal performance.
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4.1 Introduction

Ultrasound imaging of blood flow is an important tool for the diagnosis of the human
circulatory system [1, 2]. One particular modality referred to as color flow mapping
or imaging (CFI), has proven useful by providing a two-dimensional (2-D) map of
flow velocities in real-time, where areas of abnormal flow related to pathology can be
detected and further investigated [3, 4]. To achieve a sufficient frame rate for following
the dynamics of the flow in the heart and arteries, few temporal samples are available
for processing in each sample bin in the image, typically 8-16 samples. Such short
ensemble lengths make detection of blood flow and estimation of blood flow velocity
a challenge.

Real-time CFI became feasible in the mid-eighties with the introduction of the
autocorrelation method (ACM) [5], previously used in weather radar applications [6, 7].
The method estimates the mean Doppler frequency of the received slow-time signal
using the phase of the estimated correlation function at lag one. Being a phase-
shift estimator, the method suffers from aliasing artifacts. Alternative estimators
based on 2-D signal models have been proposed to estimate the mean scatterer
velocity with less bias and variance, and beyond the Nyquist limit. Cross-correlation
methods have been proposed [8], wideband maximum likelihood estimation [9], a
2-D extension of the autocorrelation technique [10], and the 2-D butterfly search
technique [11]. Experimental methods for estimating the lateral as well as the
axial velocity component have also been proposed [12–14]. However, due to its
low computational complexity, and its adequate performance even in poor signal-
to-noise conditions, the autocorrelation approach is still the most commonly used CFI
velocity estimation algorithm. The method has further been shown to come close
in performance to the cross-correlation technique when averaging over several range
gates [15]. In this work a one-dimensional (1-D) signal model estimator is developed
and compared to the ACM. For a more in-depth review of common CFI velocity
estimators, please refer to [3, 4].

Signal from surrounding tissue is a potential source of estimator bias in all flow
estimators proposed. This clutter signal can have a signal power as high as 80 dB
compared to that of blood flow, and must be dealt with before the flow velocity
and velocity spread can be properly estimated [16]. This issue is conventionally
treated separately by high-pass filtering the Doppler signal prior to velocity estimation.
FIR, initialized IIR, and polynomial regression type filters have been used for this
purpose [16–19]. More advanced adaptive clutter filter techniques have also been
proposed [20–23], where the clutter filters are adapted to the tissue movement.
However, the small number of temporal samples available results in clutter filters
with a long transition band in order to achieve sufficient stop band attenuation. The
complete suppression of the clutter signal is therefore difficult without affecting the
flow velocity estimates, and often leads to suboptimal performance [16, 19]. The
use of estimation schemes that incorporates a clutter signal model, may yield an
improvement in estimator accuracy. Such alternative methods of dealing with the
clutter have previously been proposed based on auto-regressive and signal subspace
based methods [24–26].
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In this work we investigate the performance of maximum likelihood estimation of
blood velocity, based on a 1-D statistical model of the received Doppler signal from
both tissue clutter and blood flow. We first develop an analytic expression for the
Cramer-Rao lower bound (CRLB) on estimator variance, and use this as a reference
for estimator performance. We then simulate and compare the performance of a
maximum likelihood estimator assuming full knowledge of the clutter statistics, to
that of the autocorrelation method. Finally, we replace the known clutter statistics
with estimates from the received signal. This approximative MLE will be compared to
the MLE having full knowledge of the clutter statistics and the ACM. All investigations
are carried out by simulations.

Related work on maximum likelihood estimation include that of Ferrara and
Algazi [9], who developed a wideband MLE for use in CFI based on a 2-D signal
model. This estimator was extended to include a prior knowledge from fluid physics
in [27]. A simpler MLE for the CFI setting was described in [28]. A similar small-
sample problem exists for weather radar applications, and optimal maximum likelihood
estimation have been analyzed among others by Chornoboy [29]. Common to these
investigations however is the lack of clutter in the signal model. To the authors
knowledge this has not previously been pursued in the literature.

The paper is organized as follows. In Section 4.2, the signal model and the
development of the CRLB and estimators are given. Further in Section 4.3, the
simulation method and setup is described. The results of the simulation study is
given in Section 4.4, and discussed in Section 4.5. Finally in Section 4.6, conclusions
are drawn based on the results obtained.

4.2 Theory

4.2.1 Blood signal model

The signal model for blood used in this simulation study follows that of Torp [30],
which is based on a random continuum model of the blood scatterers [31]. A sequence
of pulses are fired at intervals of Tp, and the received signals are complex demodulated
and sampled at intervals of Ts. The pulse sequence can described as a two-dimensional
complex Gaussian process x(n, m), where n is the sampled signal corresponding to a
depth range r = c·nTs

2 , and m is the pulse number in the sequence. The Gaussian
assumption is justified by the central limiting theorem in the fact that the received
signal is a sum of contributions from a large number of independent scatterers.
Assuming the pulse and Gaussian shaped lateral beam profiles constant over the
sample volume, and assuming rectilinear scatterer movement, the autocorrelation
function of the received Doppler signal can be shown to be Gaussian shaped and
given by [30]

R(n, m) = R(0, 0)e−
1
2 Q(n,m)eiωdm, (4.1)
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where ωd = 2πfd is the received Doppler frequency. Q(n, m) is a transit time
expression which determines the bandwidth of the Doppler signal, and is given by

Q(n, m) = (
n

σ1
)2 + 2ρ

n

σ1

m

σ2
+ (

m

σ2
)2, (4.2)

where σ1 and σ2 are the correlation lengths in the radial and temporal direction
respectively, and ρ is a cross-correlation coefficient that describes to what extent the
same scatterers are imaged by consecutive pulses. These variables are related to the
transit times of the scatterers through the insonified sample volume as [30]

σ1 =
L√

3 · Ts

, σ2 =
ρ√

3 · Tp

,

ρ =
( 1

T 2
r

+
1

T 2
a

+
1

T 2
e

)− 1
2
.

(4.3)

Tr, Ta and Te are the transit times in the radial, azimuth, and elevation direction
respectively, L is the temporal pulse length, and Tp is the pulse repetition time. The
transit times are given by imaging system variables as well as the velocity and direction
of the scatterers:

Tr =
L

v cos θ
, Ta =

Da

v sin θ cos φ
, Te =

De

v sin θ sinφ
, (4.4)

where Da and De are the beam widths in the azimuth and elevation direction, and
θ and φ is the scatterer angle of movement compared to the ultrasound beam and
azimuthal plane respectively. We further simplify the model by only considering the
slow-time signal x(t0,m) acquired from the pulse sequence at a given radial depth of
interest r0 = ct0/2. The final simplified form of the autocorrelation function is then
given by

Rb(m) = Rb(0)e−
1
2 ( m

σ2
)2eiωdm. (4.5)

The power spectrum of the signal model is determined by the Fourier transform of
R(m). When neglecting aliasing artifacts this is analytically given by

Gb(ω) = Rb(0)
√

2πσ2e
− 1

2 (w−wd)2σ2
2 , (4.6)

where the center frequency is given by the Doppler frequency wd, and bandwidth is
given by the transit time expression defined by σ2 in (4.3).

4.2.2 Clutter signal model

Tissue clutter signal is present in the received signal from blood due to beam
sidelobes and reverberations from tissue structures. The clutter signal may therefore
originate from different regions consisting of tissue with different scattering properties
and motion patterns. It can be shown that when the number of scatterers within
one resolution cell is large and the phases of the scattered waves are uniformly
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distributed, the amplitude of the resulting received complex signal is complex Gaussian
distributed [32]. This produces what is called fully developed speckle in ultrasound
B-mode images, and occurs in regions of tissue with near homogenous properties. To
simplify, we assume this to be the case in our simulations.

In general the velocity of a specific tissue structure is low compared to the pulse
repetition frequency (PRF), and will therefore have a narrow Doppler bandwidth.
Transit time effects are less prominent than for blood flow, but the bandwidth is
increased by the accelerated movement over the heart cycle, and by the vibration
of muscle both in the operator holding the probe and inside the patient itself [33].
Because the clutter signal may consist of signal from different tissue regions with
different motion patterns, the total clutter Doppler spectrum can be regarded as the
sum of the contributions from the different regions, with a given center frequency and
bandwidth that varies over the heart cycle. For exact parametric modeling of clutter,
this variation should be taken into account. However, to simplify we assume in our
examples the clutter signal to be stationary with a Gaussian shaped power spectrum,
centered around zero Doppler frequency as given by

Gc(w) = Gc(0)e−
1
2 (w/Bc)

2
, (4.7)

where Bc is the clutter signal bandwidth. The discrete correlation function for the
clutter component is then given on the form

Rc(m) = Rc(0)e−
1
2 (m/σc)

2
, (4.8)

where Rc(0) is the clutter signal power, and σc = 1
Bc

is the temporal correlation
length of the composite clutter signal. The relation between Rc(0) and Gc(0) is given
through the Fourier transform of (4.8) as Gc(0) = Rc(0)

√
2πσc. The signal power and

bandwidth of the clutter signal are set empirically to match realistic signal scenarios.

4.2.3 Imaging context

The general imaging context is illustrated in Fig. 4.1. A vessel is located at a depth
z0, at angles θ compared to the ultrasound beam, and φ compared to the azimuthal
imaging plane. In this vessel, stationary and rectilinear blood flow is assumed. A
number of NP consecutive pulses are fired in a given beam direction, insonifying a
sample volume within the vessel, where NP is referred to as the packet size. The
packet size typically consists of 8-16 samples. The received signal information can be
regarded as being two-dimensional, consisting of both a signal along a given range
gate, and a signal from a specific range between pulse emissions. This is referred to
as the fast-time and slow-time signal respectively. In this work, the slow-time signal
from each range gate is processed separately.

The resulting received complex signal vector x = [x1, x2, ... , xNP
]T is assumed to

consist of three components. A clutter component c originating from sound scattered
from tissue and acoustic noise sources such as reverberation, an electrical/thermal
noise component η modeled as white noise, and a blood signal component b originating
from sound scattered from the red blood cells. As the clutter and blood signal
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Figure 4.1: Illustration of the imaging context. A vessel is positioned in the tissue
at a depth z0, and at angles θ and φ relative to the ultrasound beam and azimuthal
imaging plane. The flow in the vessel is assumed rectilinear within the insonified
sample volume.

components originate from fundamentally different scatterers at different spatial
positions, we consider them statistically independent. The general signal component
model is then given by

x = c + η + b, (4.9)

which is governed by a multivariate complex Gaussian probability density function
(PDF) given by

px(x) =
1

πNP |Rx|
e−x∗T R−1

x x. (4.10)

The signal correlation matrix Rx = E
{
xx∗T

}
is in general parameterized by

acquisition parameters related to the ultrasound pulse and beam shape, the tissue
and flow scatterer movement, and the tissue and flow signal-to-noise ratios. In our
simplified treatment however, we consider only the blood flow velocity magnitude
v unknown. This ideal case allows us to develop tractable solutions for the MLE
and CRLB, and still allows us to make some interesting observations and estimator
comparisons. Assuming independent components, the signal correlation matrix can
be written as

Rx(v) = Rc + Rη + Rb(v) = Rc + σ2
ηI + Rb(v), (4.11)

where Rc is the clutter correlation matrix, Rb(v) is the blood signal correlation
matrix parameterized by v, σ2

η is the thermal noise level, and I is the identity matrix.
The signal correlation matrix is in general Hermitian symmetric. When stationary

110



Chapter 4. Optimal velocity estimation in CFI in presence of clutter

conditions are given it also exhibits a Toeplitz structure, and is then completely
defined by the signal correlation function of different lags. We assume stationary
signal components with known properties, and the correlation matrix Rx(v) is then
for a given noise power σ2

η determined by (4.5) and (4.8).

4.2.4 Cramer-Rao lower bound

The Cramer-Rao lower bound (CRLB) defines the lower bound of the variance of an
unbiased estimator, and is in general given by

var(ξ̂) ≥ [I(ξ)]−1 (4.12)

where I(ξ) is the Fisher information matrix, and ξ is a general vector of parameters.
For a complex Gaussian signal model with real parameters, an exact expression exists
for the Fisher information matrix, which for a zero-mean process is given by [34]

I(ξ) = tr(R−1
x

∂Rx

∂ξ
R−1

x

∂Rx

∂ξ
). (4.13)

By inserting our expression for Rx in (4.11), we obtain the following simplified and
scalar expression for the Fisher information matrix:

I(v) = tr(R−1
x

∂Rb

∂v
R−1

x

∂Rb

∂v
). (4.14)

The derivative of Rb(v) with respect to the scalar parameter v is defined as the
derivative of each individual matrix element. Assuming stationary conditions these
are completely defined by the derivative of Rb(m; v), the blood flow signal correlation
function. Using the simplified model in (4.5), this can be calculated analytically and
shown to be given by

∂Rb

∂v
=

1
v
(iwdm− (

m

σ2
)2)Rb. (4.15)

When an estimator is unbiased with variance equal to the CRLB, it is called an
efficient estimator, and is then by definition optimal in the minimum variance unbiased
(MVU) sense. The analytic expression for the CRLB will be used as a reference for
finding an approximatively efficient maximum likelihood estimator.

4.2.5 Maximum likelihood estimator

Maximum likelihood estimation is a standard technique in statistical estimation theory.
The likelihood function l(x; ξ) determines how likely it is that a given signal vector
realization x originates from a signal model parameterized by a given ξ. It is considered
a function of the parameters. The maximum likelihood estimator (MLE) is the
parameter values that maximizes the likelihood function. The likelihood function
is in our case derived using (4.10) and (4.11) [34], and is a function of the flow velocity
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v only. It is often practical to evaluate the (negative) log-likelihood function, which
for our case is given by

− L(x; v) = x∗T R−1
x (v)x + ln |Rx(v)|+ NP lnπ. (4.16)

The MLE is then the value of v that minimizes −L(x; v), defined as

v̂ml = arg min
v
−L(x; v). (4.17)

The MLE is asymptotically optimal in the MVU sense, becoming unbiased with
variance equal to the CRLB for large data records [34]. The optimal MLE is however
not necessarily given for the small-sample restrictions imposed in CFI. By expanding
the MLE to include several sample vector realizations, an improved estimate can
be achieved. This can in practise be done by including several spatial points in
the estimator design. In this work we approximate this scenario by using several
independent sample vector realizations, drawn from the same statistical model of
clutter and blood. This approximation is valid when one sample is obtained per
resolution cell. It is shown in the appendix (Section 4.7) that when expanding the
estimator to include K independent sample vectors, the (negative) log-likelihood
function is given by

−LK(x; v) = K
[
tr(R−1

x (v)R̂K)

+ ln |Rx(v)|+ NP lnπ
]
,

(4.18)

where tr indicates the matrix trace operator, and R̂K is the sample correlation matrix
estimate given by

R̂K =
1
K

K∑
k=1

xkx∗Tk . (4.19)

Although an exact expression exist for the derivative of the log-likelihood function
for a complex Gaussian process with real parameters [34], we could not find an explicit
expression for v̂ml in our case. We therefore had to resort to numerical procedures to
find the maximum likelihood estimate.

4.2.6 Autocorrelation estimator

The real-time autocorrelation algorithm was first described for use in diagnostic
ultrasound in [5], where the mean Doppler frequency is estimated using the phase of
the autocorrelation function of lag one. As shown in [35], the performance of the ACM
is improved considerably by averaging the correlation function estimate over several
spatial positions. The estimate of the autocorrelation function at lag one is obtained
by averaging NP − 1 correlation terms for each packet, over K spatial positions. This
results in the expression

R̂(1) =
1

NP − 1

NP−1∑
n=1

[
R̂K

]
n+1,n

, (4.20)
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where
[
R̂K

]
n+1,n

is the second lower diagonal of the sample correlation matrix defined
in (4.19). The mean velocity estimate is obtained by appropriate scaling of ω̂d =
∠R̂(1), given by

v̂AC =
c · PRF

4πf0 cos θ
∠R̂(1), (4.21)

where PRF = 1/TP is the pulse repetition frequency, f0 the received signal center
frequency, and c is the speed of sound. We assume the angle of flow known, and
therefore angle correct the estimates with the term cos(θ) to obtain the full velocity
magnitude. The ACM estimate can be shown to be equivalent to a first order
autoregressive estimate of the mean velocity [36].

To achieve unbiased velocity estimates in presence of clutter, the ACM incorporates
a clutter filter. In this work, conventional high-pass FIR and polynomial regression
clutter filters are used. FIR filters can be described by an impulse response function
h(n), n = 0, . . . ,M − 1, where M − 1 is denoted the filter order. With an input signal
x(n), n = 0, . . . , NP − 1, the output signal y(n) is the convolution sum given by

y(n) =
M−1∑
k=0

h(k)x(n− k), (4.22)

where the first M − 1 output samples are invalid and discarded. The polynomial
regression filter models the clutter signal by a set of orthonormal slowly varying
polynomial basis functions. Typically, the Legendre polynomials have been used. The
filter output is given as the projection of the input signal vector x onto the complement
of the clutter signal basis given by

y =
(
I −

M−1∑
k=0

bkb∗Tk

)
x = Ax, (4.23)

where bk are orthonormal basis vectors spanning the clutter signal subspace, and A is
a projection matrix. The filter order is given by M−1. For a more in-depth description
of conventional clutter filters in CFI, please refer to [16, 19].

4.2.7 Low-rank maximum likelihood estimator

The complex origin and motion pattern of the clutter signal may be difficult to model
statistically in practise. Also, as the number of total unknown model parameters
is increased, it will become more difficult to numerically produce robust maximum
likelihood estimates. As an alternative we investigate if the clutter correlation matrix
can be estimated directly from the received signal, alleviating the need for complex
clutter correlation models. Several authors have proposed the idea of clutter signal
representation through eigenanalysis of the received signal correlation matrix. This
concept has previously been used in model-based estimation [26, 37], as well as for
designing adaptive clutter filters [21, 22]. Due to the dominant and low-bandwidth
nature of the clutter Doppler signal, the clutter signal energy is mostly contained in the
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signal subspace represented by a smaller set of eigenvectors with large corresponding
eigenvalues [21].

We propose to estimate the clutter correlation matrix as a low-rank approximation
of the sample correlation matrix for the same reasons. In general, the correlation
matrix can be expressed by its eigenvalues and corresponding orthonormal eigenvec-
tors [38], given by

Rx =
NP∑
k=1

λkeke∗Tk , (4.24)

where λk and ek are the eigenvalues and corresponding eigenvectors of Rx. By
truncating (4.24) to use the NLR < NP eigenvectors with the largest corresponding
eigenvalues, an estimate of the clutter correlation matrix is obtained. This estimate
is given by

R̂c = R̂lr =
NLR<NP∑

k=1

λ̂kêkê∗Tk , (4.25)

where NLR is the desired rank of the estimated clutter correlation matrix, and λ̂k

and êk are the estimated eigenvalues and corresponding eigenvectors of the sample
correlation matrix in (4.19) sorted on decreasing eigenvalues, λ̂1 ≥ λ̂2 ... ≥ λ̂NP

.
To see how it will affect the performance of a model-based estimator, we replace the

clutter correlation matrix Rc in the MLE framework with the low-rank estimate R̂lr in
(4.25). We will in subsequent sections refer to this estimator as the low-rank MLE. In
this work we use a fixed rank for the estimated clutter correlation matrix. In general
the tissue movement and signal power will vary in space and time, and the optimal
choice of rank will therefore also vary. Methods of rank selection have previously
been proposed by thresholding the eigenvalue spectrum [19, 22] and the eigenvalue
spectrum slope [39]. To achieve a sample correlation matrix of full rank, the number
of independent signal vectors K used to form the estimate in (4.19) needs to at least
be equal to the packet size NP . The variance of the sample correlation matrix estimate
can be reduced by including more spatial sample vectors when averaging, increasing the
accuracy of the low-rank clutter correlation matrix estimate. In a practical situation
however, the number of sample vectors one can include is limited in space by varying
tissue signal properties and tissue movement.

4.3 Method

4.3.1 Simulation setup

The simulation setup was divided into two different imaging cases, empirically based
on clutter, blood, and noise signal conditions that may occur in realistic settings. Case
1 represents the imaging of a central vessel such as the carotid artery. The imaging
object is here located some distance into the tissue (2-4 cm), and a moderate blood-
to-noise signal ratio (BNR) and clutter-to-noise signal ratio (CNR) is given. Case 2
represents the imaging of a peripheral vessel such as the radial artery. It is located
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Table 4.1: Default simulation parameters for different cases

Parameter Case 1 Case 2

Clinical object Central vessel Peripheral vessel
Center frequency 5 MHz 10 MHz
Pulse duration 0.8 µs 0.2 µs

F# transmit / receive 2.0 / 1.4 2.0 / 1.4
PRF 4.0 kHz 0.5 kHz

Packet size, NP 12 12
CNR, BNR 50dB, 20dB 50dB, 5dB

Clutter BW, cbw 0.10·vNyquist 0.15·vNyquist

Clutter rank, NLR 3 4
θblood 45 deg 45 deg

vNyquist 30.8 cm/s 1.93 cm/s
Nsim 5000 5000

at shallow depths (< 1 cm), and a low BNR and high clutter-to-blood signal ratio is
present. In both cases the maximum clutter velocity was set to be in the high end
of the velocity range for the given scenario, typically when the vessel wall moves in
response to the incoming flow pulse.

The simulation parameters for the two cases are listed in Table 4.3.1. For simplicity
we assume the angle compared to the azimuthal imaging plane φ = 0. The one-way
beam widths used in the simulations are given by the Rayleigh criterion F# ·λ, where
F# is the one-way F-number and λ is the wavelength of the emitted pulse.

The power spectrum of the different signal components in the two simulation cases
are illustrated in Fig. 4.2, together with the FIR and polynomial regression clutter
filters used in conjunction with the ACM. As clutter filters we chose the polynomial
regression filter order that produced the best results for a given case, and further
adapted the FIR filter frequency response to match this response, while keeping the
FIR filter order as low as possible. To be able to match the steep transition band of the
polynomial regression filters, an order of 8 was needed, leaving 4 samples for velocity
estimation after discarding initializing samples. The FIR filters were designed using
the minimum-phase method described in [19]. As a reference in the result figures,
we define a clutter bandwidth measure as the velocity at which the clutter power
spectrum crosses the white noise level, illustrated by cbw in Fig. 4.2. By solving for
the frequency argument ω after setting the expression for the clutter power spectrum
in (4.7) equal to the white noise level σ2

η, we get the following bandwidth measure
(scaled to velocity):

vcbw =

√
2B2

c ln
(Gc(0)

σ2
η

)
· PRF · c

4πf0
, (4.26)

where Gc(0) =
√

2πσcRc(0), and σc = 1/Bc.
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Figure 4.2: The two different simulation cases used for evaluating estimator
performance. Case 1 represents signal conditions from a central vessel such as the
common carotid artery, while case 2 represents conditions from a peripheral vessel
such as the radial artery. The clutter filters used for the given cases are indicated
together with the power spectrum for the clutter, blood flow, and thermal noise signal
components.

4.3.2 Simulation method

Both the tissue and blood flow signal component was simulated using the Gaussian
parametric power spectrum model given by (4.6) and (4.7) respectively. The thermal
noise component was assumed white. A signal vector realization was generated by
a FFT-based method valid for stationary processes. A sequence of 512 complex
Gaussian white noise samples was generated, and then shaped using the total power
spectrum of the signal components in (4.9). The resulting time domain signal was
obtained by selecting the first NP samples after calculating the discrete inverse Fourier
transform. The number of sample vectors realizations Nsim used in the simulations
were determined by increasing the number until no qualitative difference was observed
in the results. A value of Nsim = 5000 proved sufficient. The maximum likelihood
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estimate was found using a golden section search algorithm as described in [40].
This algorithm is based solely on function value evaluations, and avoids the lack
of robustness often encountered with iterative methods such as Newton or Fisher
scoring algorithms. This was feasible due to the simplified scalar parameter estimation
problem given, assuming only the velocity magnitude unknown. As the direction
of the flow was assumed known, we performed one-sided comparisons, limiting the
signal simulation range from zero to the Nyquist velocity. To avoid aliasing artifacts
influencing the estimator comparisons, the ACM estimate was always corrected by
phase-unwrapping using the known blood velocity. Similarly, the search range of the
MLE was kept one-sided, but extended the simulation range by 10 percent of the
Nyquist velocity to each side to avoid bias at the ends of the simulation range.

4.4 Results

In the following subsections the simulation results is presented. For each plot we
simulated 100 velocities ranging from zero to the Nyquist velocity. The scaling of
the figure axes have been adapted to the data to allow a detailed inspection of the
results. The same scale have been applied to plots in different figures that are natural
to compare. The values on all figure axes are given in percent of the Nyquist velocity,
and the clutter bandwidth measure as defined in Section 4.3.1 is shown as a dashed
vertical line at velocity cbw as a reference in all plots. To enhance the qualitative
features in the results, the resulting graphs were smoothed using a seventh order
Savinsky-Golay FIR filter with a polynomial order of one [40].

4.4.1 The optimal estimator

The optimal property of the MLE is not necessarily given for as small ensemble lengths
as that available in CFI. To investigate this asymptotic behavior we first evaluated
the MLE performance for an increasing packet size. The more challenging case 2 as
shown in Fig 4.2, was used in the evaluation. In the two larger plots in Fig. 4.3, the
bias and standard deviation of the MLE using a packet size of 12 and 96 is shown
respectively. It can be observed that the MLE is in fact not unbiased for any velocities
when using a packet size of 12 for this scenario, and is therefore not the optimal MVU
estimator for this example. For a packet size as large as 96 however, the MLE is
approximately efficient, and therefore approximately the optimal MVU estimator. In
the rightmost smaller plots in Fig. 4.3, the convergence towards the MVU estimator
for increasing packet size is shown for two different velocities, 1

3vNyquist and 2
3vNyquist.

As can be seen, the MLE estimator does not become efficient for any applicable packet
size (< 16), but is approximately so for packet sizes larger than 72.

As mentioned in Section 4.2.5, another way to increase the performance of the
MLE is to include several spatial points in the estimator design. As an approximation
to this scenario, we evaluated the MLE performance using several independent sample
vectors. The effect of such spatial averaging on the performance of the MLE is shown in
Fig. 4.4. As can be observed in the two larger plots, the MLE becomes approximately
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Figure 4.3: The bias and standard deviation of the MLE for case 2, when increasing
the packet size. The larger plots show the MLE performance for a packet size of 12
and 96 for all velocities. The smaller plots show the development towards the optimal
estimator for two different velocities. As can be observed, the MLE is asymptotically
efficient only for large ensemble lengths.

efficient and therefore MVU for only 9 points. The convergence towards the MVU
estimator can be followed in the smaller plots to the right as in Fig. 4.3. We may
conclude that an near optimal MVU estimator exists for practical packet sizes when
including at least 9 independent spatial points in the estimator design for this example.
In further estimator comparisons, this amount of spatial averaging will be used in all
estimators. For the ACM the averaging is done directly on the autocorrelation function
estimates as described in Section 4.2.6.

4.4.2 Estimator comparisons

We now compare the performance of the three estimators presented in Section 4.2, the
MLE assuming full knowledge of the clutter statistics, the conventional ACM using
polynomial regression and FIR clutter filters, and the low-rank MLE using direct
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Figure 4.4: The bias and standard deviation of the MLE for case 2, when including
several spatial points in the estimator design. The larger plots show the MLE
performance for an averaging ROI consisting of 1 and 9 points. The smaller plots
show the development towards the optimal estimator for two different velocities. As
can be observed, the MLE rapidly becomes efficient when using several points in the
estimator design.

estimates of the clutter correlation matrix. The estimator comparisons for case 1 and
2 are shown in Fig. 4.5 and Fig. 4.6. As can be seen, the MLE assuming full knowledge
of the clutter statistics is efficient for both cases when the flow velocity is above the
clutter bandwidth measure cbw. A MLE variance below the CRLB can be explained
by the presence of a negligible but non-zero bias. For case 1 the ACM is biased in the
transition band of both clutter filters, with a maximum bias of 2.5 and 7.5 percent
of the Nyquist velocity for the FIR and polynomial regression filter respectively. The
method becomes approximately unbiased above 50 percent of the Nyquist velocity for
both filters. In the unbiased range, the mean standard deviation is 3.0 and 2.4 percent
of the Nyquist velocity for the FIR and polynomial regression filters, compared to 1.5
percent for the CRLB. For case 2 the ACM suffers from a severe bias in the clutter
filter transition band. It also has a moderate bias even in the pass band of the filters,
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Figure 4.5: The bias and standard deviation of the ACM compared to the optimal
and low-rank MLE for case 1. A 2nd order polynomial regression filter and 8th order
FIR filter was used, and 9 spatial points were averaged for all estimators. As can be
observed the ACM performs adequately compared to the optimal MLE in the filter
pass band. In the transition region however, the ACM becomes inferior compared to
the ideal and low-rank MLE.

with a mean value of 3.9 and 7.5 percent of the Nyquist velocity for the FIR and
polynomial regression filter respectively. The standard deviation in this region has
a mean value of 6.3 percent of the Nyquist velocity for FIR and 4.1 percent for the
polynomial regression filter, compared to 2.9 percent for the CRLB.

The performance of the low-rank MLE described in Section 4.2.7 is given by the
dotted lines in Fig. 4.5 and 4.6. The results were obtained using the minimal amount of
averaging signal vectors K = NP necessary to ensure a correlation matrix of full rank.
As can be seen, the bias is improved compared to the ACM in the filter transition
regions in both cases. However, a mean negative bias of 1.25 percent compared to the
Nyquist velocity for case 1 and 2.8 percent for case 2 is present across the velocity
spectrum. The standard deviation of the low-rank MLE is superior in the transition
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Figure 4.6: The bias and standard deviation of the ACM compared to the optimal
and low-rank MLE for case 2. A 3rd order polynomial regression filter and 8th order
FIR filter was used, and 9 spatial points were averaged for all estimators. As can be
observed the ACM has a severe bias in the clutter filter transition region, and much
can here be gained by the model-based estimators.

region, and comes close to the performance of the ACM in the pass band of both cases.
The low-rank MLE results can be improved by expanding the averaging ROI used

to estimate the signal correlation matrix. In Fig. 4.7, the results of increasing the
averaging ROI for case 2 are shown. In the two larger plots the bias and standard
deviation is given for an averaging ROI consisting of 12 and 30 points. As can be seen,
the standard deviation of the low-rank MLE using 30 spatial averaging points now has
near equal performance as that of the optimal MLE. However, an overall negative bias
of 1.0 percent compared to the Nyquist velocity still remains. In the smaller plots,
the development of the low-rank MLE performance can be followed for two different
velocities, 1

3vNyquist and 2
3vNyquist. The performance quickly converges to its final

value. In fact, for case 2 the best performance is achieved using less than 25 averaging
points.
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Figure 4.7: The bias and standard deviation of the low-rank MLE for an increasing
amount of independent averaging points. The two larger plots show the performance
for an averaging ROI of 12 and 30 points. The smaller plots show the development
towards the optimal MLE for two different velocities. As can be observed, the low-rank
MLE quickly approach the optimal MLE, although a negative bias remains.

4.5 Discussion

This work investigates if optimal methods of velocity estimation exist in CFI in
presence of clutter. The simulation study was based on simplified models of the
received signal from both clutter and blood, which allowed us to develop an analytical
expression for the CRLB, and a tractable simulation setup for maximum likelihood
estimation. We assumed only the flow velocity magnitude as unknown.

Stationary and rectilinear movement of the blood scatterers were assumed, which
is a fair approximation only for very limited spatial extents and very short periods of
time. The tissue signal was assumed to be centered around zero Doppler frequency
with a given bandwidth. In reality, the tissue may move considerably in the radial
direction and its Doppler spectrum may therefore be shifted away from the center.
Also, the tissue movement is in general cyclic and therefore accelerated, and the tissue
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Doppler bandwidth will then increase and vary with time. For proper parametric
modeling of the clutter Doppler spectrum, a varying Doppler shift as well as a varying
bandwidth should be taken into account.

Further simplifications made in the signal models would in reality influence
the received Doppler signal. Frequency dependent scattering and attenuation were
assumed included in the model for the received signal, but must in a practical estimator
be estimated from the received signal. As shown by Ferrara [41], this factor affected
the results of their MLE as well as the conventional ACM. In a practical model-
based estimator, frequency dependent scattering and attenuation should be included.
We further assumed Gaussian shaped beam profiles, and neglected beam sidelobes.
Gaussian shaped main beam lobes are approximately given when using rectangular
apodization, and even more so for smooth apodization functions. Also, as shown in
an example in [30], 94 percent of the signal power from blood can be considered to
originate from within the −6 dB mainlobe of the beam, and helps to rationalize the
approximation of neglecting sidelobes.

The results show that we were able to produce an optimal MVU velocity
estimator for CFI, even in presence of a severe clutter signal, by using several
(independent) spatial points in the estimator design. The MVU estimator for case
2 was approximately ensured for 9 spatial points. However, for the less challenging
case 1, using 3 spatial points in the estimator design would have been sufficient. In
the estimator comparisons in Fig. 4.5 and 4.6, the FIR filters are less biased than
polynomial regression filters for both cases. To achieve comparable filter frequency
responses, we had to use an 8th order FIR filter, and only 4 samples were available for
velocity estimation. FIR filters therefore exhibited a higher variance than polynomial
regression filters. These results have also previously been reported [16, 21]. The
negative bias seen for the ACM for low velocities in the filter transition region of
Fig. 4.5 can be explained by small remains of clutter signal present after filtering, that
become prominent when the blood signal is increasingly attenuated. For asymmetric
FIR filters such as the minimum-phase filter used in this work, the standard deviation
could be improved by filtering in both the forward and backward direction as described
in [21]. For case 2 there is a moderate positive bias even in the pass-band of the clutter
filters. This is caused by the high-pass filtering of the thermal noise component, which
pulls the mean frequency towards the Nyquist velocity. This problem and a possible
solution has been described in [42]. Compared to the MLE assuming full knowledge
of the clutter statistics, the ACM averaging 9 correlation function estimates performs
quite adequately in the clutter filter pass band for case 1. And although the method
is biased for case 2, it still has a low standard deviation in the filter pass band when
using a polynomial regression filter. However, in the clutter filter transition regions
there is much to be gained compared to the CRLB in both cases.

We investigated the performance of the MLE when incorporating direct estimates
of the clutter correlation matrix from the received signal. This concept has several
advantages. The clutter Doppler parameters such as mean frequency and bandwidth
does not need to be modeled explicitly, and the method will also adapt to variations
of these parameters over the heart cycle. The concept can be taken further. The
signal variation represented by the remaining eigenvectors not included in the clutter
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correlation matrix estimate, may be used for estimating parameters related to the
blood and thermal noise component, to further reduce the number of unknowns.
Estimation of the blood signal power could be attempted, and it is common to
estimate the white noise signal power using the smallest eigenvalues. In our context the
noise component can also be estimated from the received signal when turning off the
transmitter. These aspects are not pursued in this work, however they may represent
further important steps towards a practical model-based blood velocity estimator in
presence of clutter. As seen in Fig. 4.5 and 4.6, the low-rank MLE outperforms the
ACM in the clutter filter transition region, and is close in performance in the filter
pass bands. Further, the results approach that of the MLE when averaging the signal
correlation matrix over just a marginally larger area than the minimal required to
form a full rank correlation matrix estimate. The same statistical process is assumed
when averaging, and in reality the averaging ROI used will be limited by varying
signal characteristics over the ultrasound image. The negative bias present for the
low-rank MLE can be explained by a deviation in the low-rank estimate of the clutter
correlation matrix compared to the actual one. This misrepresentation is perhaps the
most serious source of errors in such modeling. The correct choice of clutter signal
rank is crucial for the success of method, and must in practise be chosen adaptively
due to the time varying characteristics of the clutter and blood signal mixtures.

In this work, we have not explored computationally efficient methods for the
implementation of the MLE. However, in [39] we demonstrated a method for real-time
eigenanalysis in adaptive clutter filter design. We also proposed a method for selecting
the proper clutter rank adaptively based on the slope of the eigenvalue spectrum, and
demonstrated its potential through in-vivo examples. This method should also be
applicable for estimating the clutter correlation matrix in model-based estimation.

4.6 Conclusion

Optimal estimation of blood velocity in CFI was investigated based on simplified
models of both clutter and blood. An efficient maximum likelihood estimator of
blood velocity was shown to exist in the CFI setting only when including several
(independent) spatial points in the estimator design. However, even for severe
clutter conditions no more than 3-9 points were needed in our simulations. The
ACM was approximately unbiased only for a moderate clutter signal scenario, then
only in the clutter filter pass band, and with a variance of up to four times the
CRLB. The ACM suffered from a severe bias in the filter transition region, and a
significant performance gain was here achieved using the MLE. Adaptive modeling of
the clutter signal statistics using low-rank estimates of the signal correlation matrix
was investigated, and came close in performance to the MLE assuming full knowledge
of the clutter statistics. This may be an important step towards a practical model-
based estimator that also includes the clutter signal, and more work should be done
to explore computationally efficient approaches to such an estimation scheme.
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4.7 Appendix: Derivation of log-likelihood function
for K independent complex Gaussian signal
vectors

The joint likelihood function for K independent complex Gaussian signal vectors is
given by

p(x1,x2, · · ·,xK ; v) =
K∏

k=1

px(xk; v)

=
( 1

πNP |Rx(v)|

)K

e−
∑K

k=1 x∗T
k Rx(v)xk .

(4.27)

Taking the natural logarithm of (4.27) then yields

LK(x; v) = ln
( 1

πNP |Rx(v)|

)K

−
K∑

k=1

x∗Tk Rx(v)xk. (4.28)

The sum of quadratic expressions x∗Tk Rxxk can be simplified by invoking the vector
algebra rule (a∗T b) = tr(ba∗T ) [34], where tr is the matrix trace operator. Setting
b = Rxxk and a = xk, we get

LK(x; v) = ln
( 1

πNP |Rx(v)|

)K

−
K∑

k=1

tr
(
Rx(v)xkx∗Tk

)
. (4.29)

Since the sum of matrix traces is equal to the trace of the sum of matrices, we can
further write

LK(x; v) = ln
( 1

πNP |Rx(v)

)K

− tr(Rx(v)
K∑

k=1

xkx∗Tk ). (4.30)

By using the expression for the sample correlation marix in (4.19), and writing out
every expression, we get the final (negative) log-likelihood function:

−LK(x; v) = K
[
tr(R−1

x (v)R̂K)

+ ln |Rx(v)|+ NP lnπ
]
.

(4.31)
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Chapter 5

Blood Flow Imaging - A new
real-time 2-D flow imaging
technique

Lasse Løvstakken1, Steinar Bjærum2, Ditlef Martens2, and Hans Torp1
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2 GE Vingmed Ultrasound, Horten, Norway

This paper presents a new method for the visualization of two-dimensional (2-
D) blood flow in ultrasound imaging systems called blood flow imaging (BFI).
Conventional methods of color flow imaging (CFI) and power Doppler (PD)
techniques are limited as the velocity component transversal to the ultrasound
beam cannot be estimated from the received Doppler signal. The BFI relies
on the preservation and display of the speckle pattern originating from the
blood flow scatterer signal, and it provides qualitative information of the blood
flow distribution and movement in any direction of the image. By displaying
speckle pattern images acquired with a high frame rate in slow motion, the
blood flow movement can be visually tracked from frame to frame. The BFI
is easily combined with conventional CFI and PD methods, and the resulting
display modes have been shown to have several advantages compared to CFI
or PD methods alone. Two different display modes have been implemented:
one combining BFI with conventional CFI, and one combining BFI with PD.
Initial clinical trials have been performed to assess the clinical usefulness of
BFI. The method especially has potential in vascular imaging, but it also
shows potential in other clinical applications.

131



5.1. Introduction

5.1 Introduction

Conventional ultrasound imaging of blood flow is based on the detection and estimation
of the Doppler shift caused by blood scatterer movement. The Doppler shift is used
to discriminate signal from blood flow scatterer to that of slowly moving muscular
tissue. It also is used to quantify the actual blood flow velocity. Unfortunately, this
Doppler shift measuring technique is only sensitive to the velocity component along the
ultrasonic beam, and potential velocity components transversal to the beam cannot be
estimated. This issue is common to all the established Doppler techniques existing in
current scanner systems, such as pulsed and continuous wave Doppler (PW, CW), color
flow imaging (CFI), and power Doppler (PD). Although these methods have proved to
be highly useful clinically in locating abnormal blood flow related to pathology [1, 2],
the angle dependency typically leads to an underestimation of the true blood flow
velocity, and erroneous results may be displayed.

Several authors have proposed methods for measuring both the axial and lateral
flow velocity components using ultrasound. Compound Doppler scanning has been
attempted [3, 4], in which several beams from different directions overlap in a region
of interest at which a velocity vector is constructed. The beams may originate from
different transducers, or from subapertures on a single transducer. The accuracy of
the method depends on the angle between the emitted beams, and it can be difficult
to get a wide enough angle for sufficient accuracy. When using several transducers, it
also can be difficult to get the necessary acoustic windows for beam overlap.

Two-dimensional speckle pattern tracking techniques also have been proposed [5,
6]. These methods rely on correlation techniques to track the displacement of the
speckle pattern in small regions from image to image. The velocity is found using the
estimated displacement and the time between image acquisitions. The decorrelation
of the speckle pattern in a region over time degrades the accuracy of the method;
therefore, it can be difficult to get proper estimates in the presence of out-of-plane
movement, flow gradients, and turbulence.

Another way of estimating the lateral flow velocity component by using lateral
coherent processing was introduced for ultrasound applications by Anderson [7] and
Jensen [8]. By using more advanced aperture apodization and focusing schemes, the
lateral beam pattern can be modulated. Quadrature sampling and processing of
the received signal in the lateral direction then can be used to estimate the lateral
flow velocity. Issues exist limiting the usability of the methods, including a reduced
sensitivity due to a high degree of aperture apodization, a relatively poor lateral
resolution, and a measurement accuracy that decreases when both axial and lateral
flow is present due to axial-lateral inter-modulation.

Common to all methods mentioned is that they are still experimental, and relatively
few or no publications showing the potential clinical use of the methods exist. A new
method for visualizing blood flow with ultrasound that has reached clinical use is the
B-flow technique introduced by Chiao et al [9]. The method uses coded excitation
and temporal high-pass filtering to simultaneously show B-mode images of tissue and
flow based on the same data without using overlays. Using coded excitation, a high
resolution can be achieved while retaining sensitivity, and the display mode better
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indicates the vessel wall to flow borderline compared to established methods. The
method also may indicate hemodynamic properties and the lateral direction of flow
through speckle pattern movement. However, a low imaging frame rate compared to
the flow movement limits the perception of the true blood flow direction.

This paper describes a new method for visualizing both the axial and lateral
blood flow, called blood flow imaging (BFI), which is a technique that relies on
the preservation and display of the speckle pattern originating from the blood flow
signal. By using a slow motion display of speckle pattern imaged at a very high
frame rate, it is possible to visually track the speckle movement from frame to frame
in any direction. The speckle movement and distribution correlates with that of the
corresponding blood scatterer for short time periods, providing qualitative information
of the hemodynamics. The method is most comparable to B-flow, as both methods
are using B-mode processing for the imaging of flow, and neither method attempts to
estimate the actual flow velocity. However, BFI has been combined with conventional
Doppler techniques to also provide quantitative flow velocity information. As will be
shown, this combined modality differs in several aspects compared to conventional
CFI, PD, and B-flow that may be advantageous clinically.

The method described in this paper was first introduced by Bjærum [10], and
some of the material and figures used have been taken from his work. The method has
further been described in two proceeding papers [11, 12]. Since the original method
description, a real-time implementation has been made. Based on this experience, the
method has been further optimized and evaluated for different clinical settings. The
aim of this paper is to present the BFI data acquisition, signal processing, and display
modes. And further, to compare the new display modes to conventional CFI and B-
flow. These aspects are described in Sections II, III, and IV, respectively. Results of
basic BFI processing and an initial evaluation of a real-time implementation of BFI
with examples of potential clinical use are included in Section V. In Section VI, the
current status of the BFI modality is discussed. And in Section VII, initial conclusions
are drawn.

5.2 Data acquisition

The data acquisition in BFI is basically the same as in conventional CFI and PD
modalities. The ultrasonic beam is scanned over the flow region to be imaged, and a
series of N pulses (typically 8-16) are transmitted in each beam direction, which forms
the basis for further blood flow detection and velocity estimation. This acquisition
scheme is referred to as packet acquisition, and the number of pulses N as the packet
size. For each flow image, one tissue B-mode scan is performed, and the flow and B-
mode images are combined to visualize both the blood flow and the tissue structures
simultaneously. The data acquisition in BFI is restricted by the same model for
ensuring the safety of patients as in conventional CFI and meets all requirements
set by the FDA in these regards.

In BFI the goal is to ensure a good visual perception of the flow movement in axial
and lateral directions using images of the speckle pattern. There are some concerns
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regarding the data acquisition for this to succeed. One concern deals with frame rate
requirements. As the decorrelation of the speckle pattern from blood flow scatterer is
rapid, a high frame rate is needed to be able to capture the speckle pattern movement.
This frame rate requirement can be attained using packet acquisition as in conventional
methods as described above, in which the frame rate for speckle pattern imaging then is
the pulse repetition frequency (PRF) used during acquisition. It also is important that
the time between the acquisition of neighboring beams is small compared to the PRF,
so that snapshots of the speckle movement are acquired. This means that the beam
sweep velocity must be much higher than the flow velocity. In B-Flow imaging [9], this
is not the case, and the flow velocity is often comparable to the sweep velocity of the
imaging system. The speckle movement then will not be apparent between images. In
BFI, a high sweep rate compared to the flow velocity is made possible by using beam
interleaving techniques [13] that can be described as follows. The ultrasonic pulse
needs to propagate a distance equal to twice the image depth dmax before a new pulse
can be transmitted. The maximum possible PRF is thus given by:

PRFmax =
1
T

=
c

2dmax
, (5.1)

where c is the sound velocity. By decreasing the PRF with a factor k, there is time to
acquire data in k − 1 other beam directions before transmitting the next pulse in the
initial direction. These k beams form an interleave group (IG), and the number k is
called the interleave group size (IGS) which can be expressed by:

IGS =
⌊

PRFmax

PRF

⌋
·MLA, (5.2)

where MLA is the number of parallel beams acquired, and b·c means rounding off to
the nearest integer towards −∞. The number of interleave groups NIG in one image
is given by:

NIG =
Nbeams

IGS
, (5.3)

where Nbeams is the number of beams determined by the image width and the lateral
resolution. The principle of beam interleaving is illustrated in Fig. 5.1, where the
numbers in the different beam directions indicate the timing of the transmitted pulses.

Another concern that needs to be addressed is the requirement for spatial
resolution. To ensure a proper perception of movement, the speckle pattern needs
to be fine-grained in both the axial and lateral direction of the image. In the axial
direction this is given if the pulse bandwidth is sufficiently high, which for conventional
pulses corresponds to a short pulse length during acquisition. In the lateral direction
of the image this property is ultimately given if the beam width achieved during
acquisition is sufficiently narrow and the beam overlap is sufficiently high. Compared
to typical CFI and PD applications both the axial and lateral resolution often has to
be improved for BFI to work properly.

The timing of pulse transmissions compared to the generation of image samples
for conventional CFI / PD and BFI is shown in Fig. 5.2. In conventional CFI and PD,

134



Chapter 5. Blood Flow Imaging - a new real-time 2-D flow imaging technique

� �� �

� �� �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1

3

5

7

2

4

6

8

9

11

13

15

10

12

14

16

17

19

21

23

18

20

22

24

1

4

7

10

2

5

8

11

3

6

9

12

13

16

19

22

14

17

20

23

15

18

21

24

1

7

13

19

2

8

14

20

3

9

15

21

4

10

16

22

5

11

17

23

6

12

18

24

PRF = PRFmax

NIG = 6

IGS = 1

PRF = PRFmax/2

NIG = 3

IGS = 2

PRF = PRFmax/3

NIG = 2

IGS = 3

PRF = PRFmax/6

NIG = 1

IGS = 6

(a) (b)

(c) (d)

Figure 5.1: Beam interleaving in 2-D Doppler acquisition with 6 beam directions and
packet size N = 4. The numbers indicate the sequence of the 24 pulses.

one image sample is generated for each packet acquired. In BFI each packet sample
corresponds to one speckle image sample; therefore, several images are generated for
each packet frame acquired. These speckle images are displayed uniformly in time
during the capture of one complete packet frame, and the frame rate in BFI is thus
increased compared to conventional CFI or PD methods. This BFI frame rate is
approximatively given by

BFIFR = CFIFR ·NBFI ≈
PRFmax

Nb ·N
· (N −NF), (5.4)

where CFIFR is the frame rate using CFI / PD methods, NBFI is the number of BFI
frames calculated for each packet of data, N is the packet size, Nb is the number of
beams used during acquisition, and PRFmax is the maximum PRF available. NF is
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Figure 5.2: The timing of pulse transmissions vs. image samples. During the time
Tframe, packet data in all beam directions as well as tissue B-mode data are acquired.
In conventional CFI/PD methods, one image sample is calculated per packet of data.
In BFI, several image samples are calculated per packet of data, providing a higher
imaging frame rate.

the number of samples lost due to clutter filtering. Using a finite impulse response
filter (FIR) as described in Section 5.3 this number equals the filter order (typically
3-5 samples). The time it takes to capture a separate tissue B-mode image has been
neglected in the equation.

As the speckle images are acquired with a frame rate equal to the PRF of the
system and displayed uniformly during the capture of one entire packet frame, the
speckle pattern movement is displayed in slow motion. This is necessary to allow the
human eye to perceive the movement. A slow motion factor can be calculated, showing
how fast the speckle pattern and hence blood flow scatterer are moving during display
compared to its actual velocity, and is given by

nSM =
BFIFR

PRF
· 100%. (5.5)

Typical values for the slow motion factor nSM are about 5-10% of the actual speckle
image velocity.

Following acquisition the input data available for processing are complex
demodulated and time-gain compensated IQ signals arranged in packets. Each packet
of data corresponds to time samples from one sample volume in the image, sampled at
the PRF of the system. These time samples form a complex valued signal vector with
dimension equal to the packet size N , where the samples have a zero-mean complex
Gaussian probability density function (PDF). In Section 5.3, the signal processing
performed on the input data will be described.
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Figure 5.3: A diagram showing the basic signal processing blocks used in BFI and how
the BFI processing can be combined with conventional CFI or PD methods.

5.3 Signal processing

A block diagram showing the basic form of BFI processing is given in Fig. 5.3. Using
this block diagram as a reference, the signal processing in BFI will be described in the
following subsections.

5.3.1 Basic processing

As seen in block 1-4 in Fig. 5.3, the basic signal processing in BFI is similar to
conventional B-mode processing. However, in BFI the speckle pattern from the blood
flow signal is to be displayed, and for this to be possible it is necessary to filter
out signal from stationary or slow-moving tissue. Therefore, the first stage in BFI
processing is clutter filtering. This can be done by high-pass filtering the signal
vector obtained from a given sample volume. The result of such an operation is
shown in Fig. 5.4, where B-mode image processing has been performed on image
data of the carotid artery before and after high-pass filtering. Potential clutter
filters include FIR filters, infinite impulse response (IIR) filters with different types of
initialization [14, 15], and polynomial regression filters [16–18]. Polynomial regression
filters and IIR filters using initialization are not time invariant. As BFI performance
depends on the similarity of the speckle pattern in subsequent images, the processing
should be the same for all signal vectors. Thus, FIR filters have been preferred being
the only filters that are time invariant for signals of finite length [19]. Using a FIR
filter will ensure that the visual perception of movement from image to image is not
degraded by the clutter filtering operation.

A FIR filter can be described by an impulse response function h(n), n = 0, . . . , L−1
, where L − 1 is the filter order. With an input signal x(n), n = 0, . . . , N − 1, the
output signal y(n) is the convolution sum given by

y(n) =
L−1∑
k=0

h(k)x(n− k). (5.6)

This means that each output sample y(n) is a weighted sum of the previous L input
samples x(n), . . . , x(n − L + 1). The first output sample that does not depend on
any x(n) for n < 0 is y(L − 1), which implies that the first L − 1 output samples
needs to be discarded. With a packet size equal to N , the number of samples after
the high-pass filtering process is reduced to M = N − (L− 1). This reduction in the
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(a) (b)

Figure 5.4: Carotid artery. (a) Tissue B-mode image. (b) Tissue B-mode image
calculated from temporally high-pass filtered data.

number of speckle images calculated per packet frame may degrade the perception
of movement. Not removing the clutter signal properly results in stationary speckle
signal present in areas of blood flow. However, FIR filters of order 3-5 have been made
that sufficiently separate the blood flow speckle pattern, while ensuring that enough
samples are available for giving the perception of movement. Examples of such FIR
filters are given in [19], and the magnitude response of the particular fourth order filter
used to generate the examples in this paper is shown in Fig. 5.5.

As shown in block 3 in Fig. 5.3, envelope detection is the next stage in the
BFI processing. Having the complex envelope available, this can be accomplished
by calculating the squared magnitude |y(n)|2 of the complex signal samples. This
detection procedure produces the power envelope of the signal, which form the basis for
the speckle image to be displayed. The expected value of |y(n)|2 is the mean power of
the signal, and is equal to the autocorrelation function at lag zero, R(0) = E{|y(n)|2}.
When taking the magnitude squared of the signal, the phase information is discarded,
and therefore not used during image formation. The advantages of designing a FIR
filter with a minimum-phase response can thus be used. This property is useful as
a better stop-band attenuation for a given filter order then can be achieved [19]. It
also can be important if a combination of the CFI autocorrelation method with BFI
is made based on the same clutter filtered signal vectors, as the CFI processing is very
dependent of effective clutter filtering in order to obtain unbiased velocity estimates.

The final step in basic BFI processing is dynamic compression, performed to reduce
the dynamic range to a level at which both weak and strong echoes can be visualized
simultaneously.

5.3.2 Amplitude normalization

As shown in Fig. 5.2 there is a gap in time between the acquisition of signal data
packets. This time gap produces discontinuities in the signal and causes visible flashing
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Figure 5.5: The magnitude response of a fourth order minimum phase FIR filter that
would work for BFI purposes.

artifacts in the speckle images. The squared magnitude of the high-pass filtered signal
from a representative sample volume is shown in Fig. 5.6, where it can be seen that
the mean power varies significantly from packet to packet. To get a smooth temporal
display, this fluctuation in the mean power needs to be compensated for.

The IQ signal is a stochastic signal with a zero mean complex Gaussian probability
distribution. As the high-pass FIR filtering operation is linear, the signal y(n) at the
filter output is also a zero mean complex Gaussian process, given by:

y(n) = u(n) + iv(n), (5.7)

where u(n) and v(n) are zero mean real Gaussian processes that are statistically
independent [20]. The expected mean square value is given by:

E
{
|y(n)|2

}
=E

{
u(n)2

}
+ E

{
v(n)2

}
=σ2

u + σ2
v = 2σ2

u = 2σ2
v ,

(5.8)

where σ2
u = σ2

v are the variances of u(n) and v(n) respectively. Normalizing the
squared magnitude by the mean we get:

z(n) =
|y(n)|2

E{|y(n)|2}
=

1
2

(
u(n)2

σ2
u

+
v(n)2

σ2
v

)
. (5.9)

The random variable 2z(n) is χ2-distributed with 2 degrees of freedom since it is the
sum of the square of two independent Gaussian variables with zero mean and variance
equal to one [21]. In decibel-scale, the normalized signal becomes:

w(n) = g(z(n)) = 10 log(z(n))

= 10 log(|y(n)|2)− 10 log
(
E{|y(n)|2}

)
.

(5.10)
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Figure 5.6: The squared magnitude of the original (top) and normalized (bottom)
signal in decibel scale. The original signal was normalized by subtracting the sample
mean in the log-domain.

The inverse of this transformation is given by z(n) = h(w(n)) = 10w(n)/10, and the
PDF of w(n) can then be found by [21]:

fW (w) =|h′(w)| · fU (h(w)) (5.11)
ln(10)

10
10w/10e−10w/10

.

Knowing the actual PDF of the normalized signal allows us to determine the dynamic
range needed to capture a desired amount of variation in the signal.

The normalization method corresponding to (5.10) is done by subtracting the mean
power estimated by:

R̂(0) =
1
M

M−1∑
m=0

|x(m)|2, (5.12)

from the speckle signal in the log domain. This procedure is shown in Fig. 5.6.
The estimates then are interpolated to match the number of speckle image samples,
smoothed, and limited to a maximum value set by the desired dynamic range for
display. The final BFI signal is obtained by adding the normalized speckle signal to
the processed mean power estimates. The mean power processing and the final BFI
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Figure 5.7: The upper plot illustrates the interpolation and smoothing performed on
the mean power estimates. The horizontal line indicates the limiting value for these
estimates. The lower plot shows the final BFI signal obtained by adding the normalized
signal to the processed mean power estimates.

signal is illustrated in Fig. 5.7. Compared to the non-normalized signal in Fig. 5.6 the
BFI signal has less variation in mean power while retaining the signal fluctuations.

5.4 Display modes

The most basic form of BFI display is a simple mixture of the B-mode tissue image
with the BFI speckle image. This modality is in itself interesting, providing blood
flow detection and 2-D directional information. However, more powerful modalities
emerge when the BFI speckle signal is combined with the output of conventional CFI
or PD techniques. In addition to the processing described in Section. 5.3, it is possible
to use the same data acquired to perform conventional autocorrelation techniques [22]
in parallel. These methods typically estimate the mean power and frequency of the
received Doppler signal, which can be modified by the BFI speckle data in a way that
allows for both display modes simultaneously. The most apparent combination has
been to modify the mean power estimates, which typically represents the brightness
of the color display. The processed mean power estimates shown in Fig. 5.7 then are
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equal to the mean power estimates from CFI or PD processing.

Two different display modalities have been developed and implemented in real time
for evaluation: one combining BFI with CFI, and one combining BFI with PD. All
properties of conventional CFI and PD are present, in addition to the information
offered by BFI. A mixing parameter can be used to control the amount of speckle
pattern that is mixed with the power estimates of CFI or PD. This allows the operator
to adjust the display mode to show as much speckle as needed for optimal perception
of movement. Setting the mixing parameter to zero would mean that a regular CFI
or PD display is shown.

To get satisfactory performance when combining the tissue and flow images, a
decision needs to be made whether a certain pixel represents flow or tissue. Without
such an arbitration scheme the final image would suffer from flashing artifacts due
to ineffective clutter filtering. Normally, a decision is made resulting in a pixel
representing either tissue or flow. An alternative to arbitration is to mix the two
images together according to amounts given by mixing rules for the red, green, and
blue color components. In this way, a transparent view of flow on top of the B-mode
image can be made, allowing for both flow and tissue pixels to be shown simultaneously.
One example of how the RGB-components can be calculated is given by:

R = 4× BFI + 2× tissue,
G = BFI + 4× tissue,
B = 4× tissue

(5.13)

giving a high contrast between blood flow and the surrounding tissue. A new display
mode combining BFI with PD using the new additive arbitration scheme has been
implemented, which may have advantages when imaging slow flow, or when imaging
in poor signal-to-noise ratio conditions.

5.5 Results

In the following subsections, results showing the performance of the BFI display modes
will be given, including a look at the potential advantages of BFI in different clinical
settings. When presenting the BFI display, it is natural to compare the results to the
performance of existing modalities. The relevant modalities for comparison includes
CFI, PD, and B-flow, which are typically targeted for the same clinical applications.
For the initial clinical results, all images were acquired in real time using a Vivid
7 scanner (GE Vingmed Ultrasound, Horten, Norway) system. The BFI is now
commercially available as a vascular imaging modality for this system. The probes
used during imaging were standard probes normally used for the given application. All
recordings were done within FDA limits for thermal and mechanical aspects related
to patient safety.
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Figure 5.8: The PDF fW (w) together with a histogram of the data from a representable
image frame. The close agreement indicates the validity of the analysis in Section 5.3.2

5.5.1 Amplitude normalization

Results of the normalization analysis in Section 5.3.2 is given in Fig. 5.8, in which
the PDF in (5.11) is shown together with a histogram of the transformed data
from a representable image frame. The figure shows a close agreement between the
experimental data and the theoretical PDF, indicating the validity of the analysis.
The benefit of using amplitude normalization can be observed in Fig. 5.9, where gray
scaled M-mode images generated from high-pass filtered data from a healthy carotid
artery is shown. The upper M-mode image was normalized by the procedure given in
Section 5.3.2 prior to display; the lower was not. It can be observed that the variation
in brightness, corresponding to the signal power level, is reduced between packets as
expected.

5.5.2 Display modes

The differences between the real-time BFI display modes developed and the
comparable modalities CFI and B-flow, can be seen in Fig. 5.10. In Fig. 5.10,
images for all the comparable modalities were generated from the same data set of
a healthy brachial vein. To simulate the B-flow modality, the method described
in [9] was followed, in which the coded excitation acquisition scheme was replaced
by conventional imaging using high bandwidth pulses. This was justified by the fact
that the signal-to-noise ratio was not an issue for the case used in the comparisons.

The information offered by BFI has several advantages compared to conventional
CFI, PD, or B-flow. A more intuitive and detailed view of the blood flow distribution
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Figure 5.9: M-mode images of high pass filtered data from a healthy carotid artery.
The upper image has been normalized prior to display, but the lower image has not.
Notice how this procedure removes the variation in mean power level between packets.

and movement is given. Both lateral and axial flow is presented, and at a higher frame
rate. Artifacts in conventional CFI or PD such as the coloring of vessel walls are
more easily identified. Because the speckle is stationary in these areas, the separation
between the vessel wall and blood flow is more visible. Also, the higher frame rate
has positive implications in applications requiring a high spatial resolution, as more
visual feedback is available.

5.5.3 Clinical applications

In this subsection, clinical BFI examples are given for vascular, cardiac, and abdominal
applications. The data was acquired using a GE Vingmed Vivid 7 ultrasound scanner,
and standard probes were used for the given application. The probes and acquisition
parameters used to generate BFI images for the different clinical examples are given
in Table 5.1 as a reference.

Vascular imaging

BFI has been successfully applied in vascular imaging. The 2-D directional information
not available with regular CFI or PD methods may be valuable in many contexts, and
in general a more intuitive view of the blood flow is presented. The real channel of the
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(a) BFI + CFI (b) BFI + PD

(c) CFI (d) B-Flow

Figure 5.10: The two real-time BFI display modes compared to CFI and B-flow.
The images were generated from the same data acquired of a healthy brachial vein
bifurcation.

flow across a stenosis, or the flow along a thrombus, can for example be visualized with
more detail. Also, disturbed flow patterns may be more easily detected than they are
with CFI because both the color and speckle pattern are altered. Fig. 5.11 shows an
example of a carotid artery bifurcation in which a stenosis has occurred in the external
carotid artery branch. It was imaged in real time using a GE M12L 1.25D linear array
probe (GE Healthcare, Waukesha, WI), designed for high resolution vascular imaging.
The complex flow in the branching, and across and after the stenosis, can be observed.
The turbulence occurring after the stenosis causes eddies that can be observed in the
speckle pattern movement.

Cardiac imaging

The blood flow inside the heart is more complicated than the flow in peripheral vessels.
Flow transversal to the imaging plane, a reduced PRF due to the large imaging depth,
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Table 5.1: Acquisition parameters used in clinical BFI examples

Parameter Vascular Cardiac Abdominal

Clinical object Carotid artery Heart Kidney
Probe GE M12L GE 3S GE 3.5C

Probe type Linear array Phased array Curvilinear array
Center frequency 5.7 MHz 2.5 MHz 3.6 MHz
Sample volume 0.4 mm 1.0 mm 0.6 mm

F# transmit / receive 1.7 / 1.4 3.0 / 1.3 2.0 / 1.2
Beam overlap 60 % 60 % 65 %

PRF 2.0 kHz 4.5 kHz 1.0 kHz
Packet size 12 10 12

FIR clutter filter order fourth fourth fourth

Turbulence

eddie
Stenosis

External carotid

Internal carotid

Figure 5.11: BFI used for vascular imaging of the carotid artery branch, with a stenosis
in the internal carotid artery. The complex flow pattern in the branching and across
and after the stenosis is more detailed in the BFI images compared to CFI.
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Aortic insufficiencyAortic insufficiency

Jet flow

Figure 5.12: BFI used for cardiac imaging of jet due to aortic insufficiency. The speckle
fluctuations enhance areas with complex flow dynamics.

and a small interleave group size increase the decorrelation of the speckle pattern from
frame to frame. Therefore, it is hard to visually track the speckle pattern when imaging
flow inside the heart. However, there will be an even stronger speckle decorrelation
in regions with disturbed flow resulting from valve stenosis or insufficiencies than in
regions with more regular flow. This increase in speckle fluctuations might ease the
detection of small jets. Fig. 5.12 shows an example of imaging a patient with an aortic
insufficiency. The image data was acquired using a GE 3S phased array probe (GE
Healthcare), designed for cardiac imaging. It is not possible to see detailed blood flow
directions at all times during the heart cycle. However, the complex flow dynamics
causes fluctuations in the speckle pattern that enhances these areas in the image.

Other possibilities may be present for transesophageal or pediatric imaging. The
probe may be placed closer to the heart, allowing for a higher spatial resolution during
imaging. Therefore, a more detailed speckle pattern may be visualized, revealing more
information about the complex 2-D flow pattern inside the heart. With the improved
ability of BFI to visualize disturbed flow, we hope that it can ease the detection of
shunts and other abnormalities in pediatric imaging.

Abdominal imaging

Abdominal imaging with BFI has been tried out briefly on healthy subjects. An
example is given in Fig. 5.13 in which an image of a healthy kidney is shown. For
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The renal cortex

Main flow

directions

Figure 5.13: BFI used for abdominal imaging of a healthy kidney. The main directions
of the kidney arterial blood flow can be observed as it ripples out in the renal cortex.

this example, the speckle images have been combined with PD techniques. The data
was acquired using a GE 3.5C curvilinear array probe (GE Healthcare), designed
for standard abdominal imaging. Although the flow details are not perceptible, it is
possible to observe the main directions of the renal blood flow as it ripples outward in
the renal cortex.

Other applications

BFI has been tried out in intraoperative imaging during off-pump heart surgery,
in which the complex flow in coronary artery bypass grafts is a challenge for the
conventional CFI modality. The 2-D directional information offered by BFI can in
this case more accurately uncover what actually happens during the heart cycle.
This may provide a better quality control of the bypass grafts and a more complete
understanding of the physiology of the flow dynamics after surgery.

5.6 Discussion

The BFI technique relies upon the human eye perceiving movement in the speckle
pattern images displayed. These speckle pattern images are generated by processing
the temporally high-pass filtered signal packets, and the movement between images is
correlated to the blood flow scatterer movement and distribution for short periods of
time. Attempts have been made to quantify this movement by tracking the speckle
pattern using image pattern matching techniques as described in [5, 6]. However,
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the success of this approach has not yet been sufficient to qualify for clinical use.
The approach taken in BFI is qualitative, as no attempt is made to estimate the 2-D
velocity vector of the blood flow. The method relies upon the human eye to do the
tracking, and many factors are involved for this to work properly.

First, the degree of decorrelation of the speckle pattern between frames needs to
be limited. The amount of decorrelation is mainly given by the complexity of the
flow dynamics and the degree of out-of-plane movement. Therefore, the direction of
movement may be harder to observe when imaging flow with large spatial velocity
gradients or a high degree of turbulence. However, the speckle pattern fluctuations
which arise in these situations emphasize these areas in the image, and, therefore, may
still offer valuable information in detecting abnormal flow.

Second, the ability to capture the speckle pattern movement requires a high imaging
frame rate and a short acquisition time between neighboring beams compared to the
PRF. This has been solved by using conventional packet acquisition and interleaving
techniques as described in Section 5.2. The amount of correlated speckle pattern
displayed is related to the number of neighboring beams acquired rapidly in succession.
This number is given by the size of the IGS and decreases according to depth and PRF
values as given by (5.1) and (5.2) in Section 5.2. As the IGS decrease, the amount of
uncorrelated speckle pattern displayed increase. Therefore, a small interleave group
size may cause problems for the perception of speckle movement. As seen by the
equations, the IGS is larger for smaller depths and for lower PRF values, and, therefore,
the method works best when imaging peripheral flow. In cardiac imaging, the large
imaging depths and the high PRF needed to avoid aliasing results in a small IGS,
making it hard to perceive the speckle movement from blood flow inside the heart. As
mentioned in Section 5.2, the success of BFI is dependent on the slow-motion display
of the speckle movement. The human eye would not be capable of recognizing any
movement if the speckle images were displayed as fast as acquired. This is an important
difference between the B-flow and BFI technique. In B-flow the slow motion factor
would equal 100%, meaning that the images are displayed as fast as acquired. Even
if the speckle movement initially was captured with the B-flow acquisition, it still is
displayed too fast for any perception of motion in the images.

In addition to the limiting properties of the human eye, the exact display rate
needed to ensure a proper perception of movement is dependent on several other
factors. The flow velocity and the amount of decorrelation of the speckle pattern from
image to image are two limiting factors. Therefore, rapid, complex, or pulsatile flow
seems to require a lower display rate than slow, stationary, or laminar flow. As seen by
(5.4) and (5.5) in Section 5.2, several parameters affect the display rate of the speckle
pattern images in BFI. Empirically, the display rate obtained using default parameters
for most vascular applications allows for the perception of movement during real-time
scanning. In addition, the PRF also can be used to slow down or speed up the real-
time display rate to some extent. In replay mode, it is possible to slow down the
display of speckle images by lowering the overall system frame rate to a level at which
the speckle movement becomes apparent in the cineloop.

In general, BFI has similar characteristics and demands for spatial resolution
and lateral sampling as B-mode imaging. To ensure a proper perception of speckle
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movement, the PSF of the imaging system must be small enough to give defined
speckle structures within the dimensions of the flow area of interest. This granularity
of the speckle pattern is given by the bandwidth of the imaging pulse; therefore, short
pulses are preferred. Unfortunately, using short pulses also may reduce the sensitivity
to below that needed in clinical settings. However, pulse lengths commonly used in
conventional CFI has successfully been used in vascular imaging of vessels as deep as
the carotid artery, with proper perception of speckle movement. When imaging vessels
lying deeper in the tissue, it may not always be possible to get the desired sensitivity
and sufficiently short pulse for BFI to work properly. One way to solve this problem
would be to use coded excitation [23]. Chirp pulses can, for example, be long while
at the same time having a large bandwidth. By deconvolution filtering at reception,
sufficient resolution and sensitivity may be achieved simultaneously. This is a subject
for further work.

The two different display modes implemented have different advantages. Com-
bining speckle images with CFI gives Doppler velocity estimates and 2-D directional
information. A drawback may be that a fluctuating color display sometimes can
confuse and degrade the perception of movement. This problem does not exist with
the PD combination. Furthermore, using the PD display mode with the new additive
arbitration technique, more sensitivity to low blood flow and a less obstructive view of
the color overlay may be achieved. The BFI processing and display techniques can be
applied in all combinations of imaging modalities in which conventional color flow is
used. Examples are M-mode and spectrum Doppler. The combination with spectrum
Doppler is of special interest because accurate angle correction is easier to perform
when the lateral blood flow is visualized.

The major limitations of the traditional Doppler methods are related to angle
dependence and aliasing. The BFI method also is dependent on Doppler information
for separating the blood flow signal. However, the method still works for perpendicular
flow as parts of the flow signal is retained after filtering due to the lateral bandwidth
of the imaging system. Although altered by the bandwidth reduction caused by the
clutter filtering, the speckle pattern still can be followed from frame to frame. Aliasing
does not seem to have any effect on the perception of the speckle pattern movement.

The BFI seems to have potential in different clinical settings as shown in
Section 5.5. In vascular applications BFI can show the flow channel along a stenosis
or a thrombus with more detail, and combined with PW-Doppler more correct angle
correction can be made. The method is currently being evaluated to find out more
about the potential in vascular applications. In cardiac imaging, the speckle pattern
fluctuations may enhance jets and abnormal blood flow patterns; however, more work
needs to be done to verify this hypothesis. The same goes for abdominal imaging, for
which so far few attempts have been made to map the clinical value of BFI.

5.7 Conclusion

A new method for 2-D blood flow visualization with ultrasound has been introduced.
The method preserves, enhances, and visualizes the speckle pattern movement
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originating from the red blood cell movement and distribution, and it is sensitive to
flow in all directions. The method is qualitative, as no attempt is made to estimate the
2-D velocity component. The BFI provides a more intuitive and detailed display of the
flow direction in peripheral vessels. However, the method also may ease the detection
of disturbed flow in cardiac and abdominal applications. A real-time implementation
offering two different display modes has been made in which conventional CFI and PD
has been extended to also display speckle images. Clinical trials are currently being
performed to map the potential of real-time BFI in vascular applications. Further
work is currently in process to find the degree and implications of speckle pattern
decorrelation in BFI as a function of imaging system parameters and factors related
to hemodynamics and the geometry of vessel to probe placement.
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Chapter 6

Clinical applications of BFI
Lasse Løvstakken et al
Dept. Circulation and Medical Imaging, NTNU

The limitations of conventional color flow imaging (CFI) related to angle-
dependency and velocity aliasing may often obscure information about the
true blood flow. A new real-time flow mapping technique called Blood Flow
Imaging (BFI) has been introduced, able to visualize the two-dimensional
vector flow direction, not limited by aliasing. In three clinical and one
experimental pilot study, we evaluated potential benefits of the new method.
In cardiovascular surgery, the BFI potential was evaluated as a tool
for intraoperative quality control of flow in coronary anastomoses in an
experimental setting. In a porcine model, technically patent as well as
pathological anastomoses were created. BFI was shown to more properly
portrait the complex flow conditions, and to require less interpretation than
CFI.
In neurovascular surgery, the potential of BFI combined with navigation
technology was evaluated for intra-operative flow visualization in cerebral
aneurisms and arteriovenous malformations (AVM). The directional
information provided by BFI was shown to increase certainty in separating
arteries from veins in AVMs, and to reduce the amount of interpretation
needed for identifying vessels of interest in the complex vascular architecture.
The flow through atrial septal defects (ASD) in children may be difficult
to detect due to overlapping B-mode and color images, caused by trade-
offs between spatial resolution and frame rate. The increased frame rate
and directional information provided by the speckle pattern movement in
BFI showned potential for increasing the certainty of these evaluations, by
more properly visualizing the movement of blood across the septum, and for
separating true flow across the septum from color artifacts.
In treatment of tendinosis, imaging of vessels on a scale of millimetres is
needed to guide needle incisions. Conventional tissue-flow arbitration may
then potentially obscure flow due to strong clutter components and low blood
velocities. A new transparent arbitration technique combined with the BFI
speckle movement was shown to more properly visualize the small vessels.

155



6.1. Enhanced visualization of blood flow patterns in coronary anastomoses

6.1 Application no. 1:

Blood Flow Imaging - A new 2-D ultrasound modality
for enhanced intraoperative visualization of blood
flow patterns in coronary anastomoses

Lasse Løvstakken1, Khalid S. Ibrahim1,2, Nicola Vitale1,2, Siren Torsvik
Henriksen1, Idar Kirkeby-Garstad1,3, Hans Torp1, and Rune Haaverstad1,2

1 Dept. of Circulation and Medical Imaging, NTNU, Trondheim, Norway
2 Dept. of Cardiothoracic Surgery, Trondheim University Hospital, Norway
3 Dept. of Anaesthesia, Trondheim University Hospital, Norway

6.1.1 Introduction

Coronary artery disease (CAD) occurs when atherosclerotic plaques line the wall of the
arteries that provide blood supply to the heart. This atherosclerotic process may cause
a significant narrowing in one or more coronary arteries, leading to an inadequate blood
supply to areas of the myocardium. Untreated CAD generally results in progressive
angina, myocardial infarction, left ventricular dysfunction, and ultimately death.

Of all patients diagnosed with CAD about 10% are candidates for revascularization
using coronary artery bypass grafting (CABG) surgery [1], which in 2003 amounted to
about one half of a million cases in the United States alone [2]. The long term survival
of these patients after CABG surgery, is directly related to the patency of distal
anastomoses [3]. Modern coronary bypass series report perioperative graft occlusion
rates as high as 11 percent [3, 4], especially in off-pump CABG where grafting is
technically more demanding [4]. The construction of a technically perfect anastomosis
at the time of surgery is therefore an important determinant of graft patency. Technical
errors in bypass graft construction by the operating surgeon are primarily responsible
for early failures. However, there is currently no standard approach for identifying
these errors using any form of intraoperative graft assessment (i.e. angiography,
ultrasound Doppler scanning, transit-time flowmetry), and it is not routine clinical
practice in most centers.

Epicardial imaging with ultrasound is a reliable and simple method of intra-
operative assessment of coronary grafts and anastomoses [5]. High-frequency B-
mode imaging provides images of sufficient quality for measuring dimensions and for
identifying abnormalities related to the anatomy. Another indicator of graft patency
is the blood flow fields in the anastomosis. Ultrasound color flow imaging (CFI) has
previously been used for mapping these flow fields [6, 7]. However, due to the complex
vessel geometry and small vessel dimensions the flow fields in the anastomosis are
complex, and Doppler images produced by CFI may then require a great deal of
interpretation [8]. The new real-time blood flow imaging (BFI) modality can provide
angle-independent directional flow information which is not limited by aliasing [9],
and may overcome these limitations. With this in mind, the aim of the present study
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was to evaluate the application of BFI versus CFI for the assessment of blood flow in
the left internal mammary artery (LIMA) to left anterior descending (LAD) coronary
anastomosis in a pig model.

6.1.2 Materials and methods

Pig model

A total of nine pigs (weight 60-85 kg) underwent off-pump grafting of LIMA-LAD
under general anaesthesia. All operations were carried out by the same senior surgeon
(RH). The coronary surgery was aimed at creating patent anastomoses without
technical failures. Animals received humane care in accordance with the European
convention on Animal care and the Norwegian national regulations; the Norwegian
Ethics Committee on animal research approved the protocol.

In all nine pigs epicardial ultrasound assessment of the anastomosis was carried
out with the LAD snared proximally from the anastomotic site, with the intention
to simulate the standard condition of a graft anastomosis placed below a significant
stenosis. Furthermore, in three pigs, after the assessment in the standard condition was
completed, one untoward situation that might occur in clinical practice was created in
each pig: 1) the LAD was unsnared in one pig, mimicking an anastomosis constructed
below a non-significant stenosis; 2) by placing an extra deep stitch at the toe of the
anastomosis, a failed severely stenotic anastomosis occurred in the second pig; 3) the
LAD was snared distally to the anastomotic site in the third pig, as to reproduce
an anastomosis placed proximally to a significant stenosis. These three different
experimental settings are referred to as special case 1, 2 and 3, respectively.

Data acquisition and processing

The imaging setup is shown in Fig. 6.1. The epicardial ultrasound images of the LIMA-
LAD anastomoses were acquired using a GE Vingmed Vivid 7 ultrasound scanner
(GE Vingmed, Horten, Norway) equipped with a GE i13L linear array probe (GE
Healthcare, Waukesha, USA), operating at frequencies of 7-14 MHz. For each B-mode
recording, CFI and BFI data were also stored. Recordings of transit-time LIMA flow
was obtained using a MediStim Butterfly unit (MediStim ASA, Oslo, Norway).

Cineloops from the two different flow modalities were generated off-line from the
same data recordings. The color images were therefore the same for both modalities
which allowed proper comparisons. An example of the B-mode image quality obtained
is given in Fig. 6.2, where also dimensions used to validate the quality of the
anastomosis is indicated [7]. The images were rated good when the LIMA-LAD
anastomosis and the LAD proximal and distal run-off could be well visualized by
the B-mode and CFI in the longitudinal plane. The anastomoses were assessed by the
following measurements: length of the anastomosis proper (DA), diameter of the LAD
at the toe of the anastomosis (D1) and 5 mm distally to the anastomosis (D2). D2

was defined as the reference diameter and the ratio D1/D2, was calculated; a D1/D2

value around 1 indicates no anastomotic stricture at the toe [7].
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GE Vingmed Vivid 7 
ultrasound scanner

GE i13L linear array (7 - 14 MHz) Ultrasound image acqui-
sition of the LIMA-LAD 
anastomosis

Figure 6.1: The ultrasound imaging setup. A stabilized area around the LIMA-LAD
anastomosis is imaged using a GE Vingmed Vivid7 ultrasound scanner (GE Vingmed
Ultrasound, Horten, Norway) and a high-frequency i13L linear array (GE Healthcare,
Waukesha, USA).

Figure 6.2: B-mode image of the left internal mammary artery (LIMA) to left
anterior descending (LAD) coronary anastomosis as obtained in the study. Diameter
measurements indicated were used to determine the quality of the anastomosis. DA,
the length of the anastomosis proper; D1, the diameter of the anastomosis toe; D2, the
diameter 5 mm distally to the anastomosis; and D3, the diameter of the anastomosis
heel.
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Data analysis

Cineloops from the two modalities were assessed by three independent observers all
familiar with CFI. The cineloops were presented to the observers in random order,
and different aspects related to flow direction and velocity magnitude were evaluated.
The following questions were asked:

Question 1: Based on the flow information presented, to what degree of certainty
can you assess the direction of flow:

a) from the LIMA to the distal part of the LAD?

b) from the LIMA to the proximal part of the LAD?

Question 2: Based on the flow information presented, to what degree of certainty
can you assess competitive flow in the anastomosis?

Question 3: Based on the flow information presented, to what degree of certainty
are you able to assess flow pulsatility?

Question 4: Based on the flow information presented, to what degree are you
influenced by velocity aliasing in assessing:

a) flow direction?

b) flow velocity?

The observer evaluations was scored from 0-100. For question 4a and 4b, the scale was
reversed so that the method least influenced by aliasing scored higher. To quantify
the visual evaluation of the observers a visual analogue scale (VAS) was employed.

Statistical analysis

The general null hypothesis for the different evaluations was that there is no difference
in the assessment of a specific flow aspect when using the information provided by
either CFI or BFI respectively. Statistical analysis was performed using the exact
two-sided Wilcoxon signed rank test of paired measurements. The outcome of the
evaluations was displayed in dot-plots. The statistical analysis and plotting was
performed using the numerical MATLAB software with the statistical toolbox (The
MathWorks, Natick, MA).

6.1.3 Results

All nine anastomoses were rated good and patent by B-mode ultrasound measurements
as described in Section 6.1.2. Mean transit-time flow of LIMA grafts was 34.7 ± 4.2
ml/min, at a mean arterial blood pressure of 76 ± 6.3 mmHg. In special case 3, the
mean measurements of the purposely failed anastomosis were as follows: DA = 2.2mm;
D1 = 1.8mm; D2 = 2.7mm. The D1/D2 ratio was equal to 0.67, indicating a severe
stenosis at the anastomotic toe.
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Modality comparisons

In Fig. 6.3, the standard case of a technically perfect anastomosis is imaged with CFI
and BFI, respectively. In this case, a significant occlusion is induced proximally in the
LAD by snaring. Artifacts in the color image of this example, relating to the Doppler
limitations of angle-dependency and velocity aliasing, are indicated by arrows in the
CFI (upper) image. The dashed arrows in the BFI (lower) image indicate the observed
movement of the speckle pattern.

Special case 1: Unsnared anastomosis

Imaging of an anastomosis without proximal snaring of the LAD using BFI is shown
in Fig. 6.4. This case was produced to mimic the clinical situation where the graft
is constructed below a non-significant stenosis, causing flow competition between the
LIMA and LAD. Complex flow patterns resulting from this competition is observed
within the anastomosis.

Special case 2: Stenosed anastomosis

Imaging of a stenosed anastomosis using BFI is shown in Fig. 6.5. This case was
produced to mimic the clinical situation of technical error where the stitch is placed
too deep, causing a stenosis in the toe of the anastomosis. An increased amount of
flow from the LIMA proximally into the LAD, and jet-like post-stenotic flow patterns
can be observed.

Special case 3: Distally snared anastomosis

Imaging of a distally snared anastomosis using BFI is shown in Fig. 6.5. This case
was produced to mimic the clinical situation where the graft is placed proximally to
a significant stenosis. A substantial increase in the amount of flow from the LIMA
proximally into the LAD can be observed.

Observer evaluations

The results from the three observers evaluations are presented in Fig. 6.7. The
corresponding p-values. A difference in favor of BFI can be observed for most aspects
with regards to median and range of VAS scores. A non-significant result was found
only for observer 2 in the assessment of flow from the LIMA directed to the distal part
of the LAD.

6.1.4 Discussion

With the exception of coronary artery bypass surgery, virtually all other interventions
on the heart, including cardiac valve repair and coronary stenting, are usually
accompanied by diagnostic imaging on completion to ensure a satisfactory result.
There is currently no standard imaging method for intraoperative identification of
technical errors in coronary surgery.
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Figure 6.3: The standard imaging case of a technically perfect and fully patent LIMA-
LAD anastomosis imaged with CFI and BFI respectively. Artifacts present in the
Doppler image relating to angle-dependency and velocity aliasing are indicated by the
arrows in the CFI (upper) image. The dashed arrows in the BFI (lower) image indicate
the observed direction of the speckle movement.
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Figure 6.4: An unsnared LIMA-LAD anastomosis imaged with BFI. As no significant
stenosis exists neither proximally or distally in the LAD, competitive downstream flow
can be observed.
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Figure 6.5: A stenosed LIMA-LAD anastomosis imaged with BFI. As shown here in
the diastolic phase of the cardiac cycle, jet flow through the stenosis in the toe of the
anastomosis as well as flow turbulence and eddies distally to the anastomosis can be
observed (post-stenotic flow patterns). In the systole, an increased amount of flow
was seen proximally into the LAD caused by the increased resistance in the stenosis
(pre-stenotic flow patterns).
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Figure 6.6: A distally snared LIMA-LAD anastomosis imaged with BFI. Due to the
distal occlusion, an increased amount of flow from the LIMA directed proximally into
the LAD can be observed (indicated by dashed arrows).

Intraoperative ultrasound has shown potential for clinical use in coronary bypass
surgery [5, 7]. In addition to the evaluation of the anastomosis geometry, the evaluation
of flow patterns inside the anastomosis is important. Ideally, when the anastomosis
is correctly placed distal to a significant stenosis, the blood should run from the
graft through the anastomosis and then into the distal and proximal coronary artery,
providing adequate blood supply to the ischemic myocardium. The small dimensions
of the vessels involved (1 to 2 mm) coupled with the dynamic changes in the cardiac
cycle increases the complexity of the flow fields, and requires both a high spatial
resolution and a high frame rate for adequate imaging.

In this study we compared the conventional CFI modality with Doppler
measurements of axial flow velocity and direction, to the BFI modality that in addition
provides a qualitative visualization of the movement of blood that is not affected by
the Doppler limitations of angle-dependency and velocity aliasing. For intraoperative
assessment, one can argue that the use of information presented in the color images
is mainly qualitative, i.e. to get an impression of the overall flow conditions in the
anastomosis. In this respect, the BFI modality can provide a more intuitive and
detailed image, with less demands of image interpretation. Based on the independent
observer evaluations of different aspects related to the imaging of flow direction and
velocity dynamics, our findings indicate this to be the case. The new modality more
adequately portrayed the complex flow in the anastomosis, and may therefore increase
the certainty and efficiency of flow evaluation in the operating room.

The evaluation of flow direction in the anastomosis is important to validate a
satisfactory transportation of blood from the graft to the ischemic areas of the
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Figure 6.7: Dot plots showing the observer’s visual analogue score assessments of
BFI versus CFI for the assessment of flow in the standard case (perfect) LIMA-LAD
anastomosis (N=9). The corresponding p-values for each individual observer has been
indicated for each evaluation.
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myocardium. The near transverse angle and tortuous nature of the coronary artery
compared to the ultrasound beam may lead to unreliable Doppler measurements, and
an image that is prone to interpretation due to angle-dependencies. We asked the
observers to evaluate the modalities with respect to imaging of flow directed from the
LIMA distally and proximally into the LAD, and with respect to competitive flow
in the anastomosis. As evident from Fig. 6.7, the BFI modality was generally rated
higher than CFI with regards to these aspects. All results were statistically significant,
with the exception of one observation in the evaluation of the distal flow direction.

The impression of the dynamics of flow velocity magnitude is important to detect
the occurrence of stenoses, turbulence, and flow pulsatility due to abnormal changes in
flow resistance. Pulsatility measurements has previously been used as an indicator for
the evaluation of flow conditions [10]. Although the speckle visualization technique
provided by BFI is not based on quantified blood velocities, relative velocities in
different parts of an image and throughout the cardiac cycle are properly visualized.
In fact, all observers rated BFI as superior in the assessment of flow pulsatility, which
indicates that the speckle movement in BFI provide a display with a higher dynamic
range of velocities. This has potential benefits when assessing highly dynamic flow as
present in the coronary arteries.

Due to the high dynamics of the flow through the anastomosis, aliasing artifacts
obscured the Doppler information in all clips in some parts of the cardiac cycle.
Different pulse repetition frequencies (PRF) were used in the image recordings shown
to the observers, and the Doppler velocity range and amount of aliasing present in the
images therefore varied. As the color images were identical for both CFI and BFI in
the clips generated offline, an equal amount of aliasing was present for both modalities.
When asked how influenced they were with aliasing when assessing flow direction and
velocity, the observer evaluations was consistently less influenced when the BFI speckle
movement was included. This advantage of BFI may reduce the need to adapt the
velocity scale during the intraoperative evaluation of the flow in the coronary arteries
and anastomoses.

In ultrasound imaging the demands of frame rate often compromise the image
quality. This becomes particulary relevant when imaging the coronary arteries due
to their small dimensions and the high dynamics of flow. In our BFI application,
eight speckle images were generated for each color image. This eightfold increase in
frame rate provided more information of the flow in the LIMA-LAD anastomosis,
and an increase in spatial resolution was also confirmed applicable while retaining a
sufficiently smooth display of flow information.

The results from the observer evaluation of flow conditions in the standard case
are expected to also be applicable clinically. To investigate the clinical application,
the properties of BFI was further examined in three special cases where realistic
abnormalities had been induced. In the unsnared anastomosis, flow from the proximal
parts of the LAD can be observed mixing with the LIMA flow. Such competitive
flow patterns might be an indication of technical error in the placement of the graft.
In the stenosed case, an increased flow into the proximal LAD in the systole, and
an accelerated stenotic flow in the diastole was clearly visualized. Further, in the
post-stenotic flow, jet-like flow qualities and flow turbulence can be observed. For the
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distally snared anastomosis, the directional flow information provided by BFI clearly
visualized an increased amount of blood moving from the LIMA proximally into the
LAD.

Limitations of study

As no gold standard is available to provide a reference regarding flow conditions, the
evaluations were based upon expert opinions, and the results must be viewed in light
of this. Although all observers were experts in interpreting color flow images, they
had different professional backgrounds which may have influenced the results.

6.1.5 Conclusion

The BFI modality offers new information about flow conditions in the LIMA-LAD
anastomosis not readily available with conventional CFI. Being more intuitive, a more
instant appreciation of the flow condition can be obtained in the operating room.
As the conventional Doppler information is also present, we conclude that the BFI
modality may replace CFI in the evaluation of anastomosis flow in the future. The
BFI modality may also have potential for improved imaging of flow in other areas
of cardiothoracic surgery, as for instance in the evaluation of flow through prosthetic
heart valves and for interpretation of blood flow in patients with aortic dissection.
Further investigations should be performed to establish this potential.
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Blood Flow Imaging - A new angle-independent
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6.2.1 Introduction

The imaging of blood flow in neurosurgery is important to avoid the damage of
important blood vessels, and for quality control in neurovascular interventions. Ideally,
the surgeon would like to steer the surgical instruments in the context of a high-
resolution three-dimensional (3-D) navigation scene that properly portrait not only
the vessel geometry but also flow velocity and direction. However, due to the complex
neurovascular architecture, this is a challenging task. Furthermore, while navigation
technology has revolutionized many aspects of neurosurgery, brain shifts occuring
when opening the patient skull and during resection remains a serious limitation [1].
Intraoperative imaging is therefore important to allow for navigation using updated
data, and to offer the possibility of observing the immediate effects of surgery for
quality control.

Multi-slice CT, high-field MRI, 3-D rotational angiography and high-quality 3D
ultrasound are all relatively new achievements potentially important for the future
of intraoperative imaging [2–5]. Of these, many currently consider intraoperative
MRI to be the gold standard in neurosurgery. However, intraoperative MRI requires
high investments and is logistically challenging. Intraoperative ultrasound imaging
is a cost-effective, time-efficient, and user-friendly alternative for most neurosurgical
departments, especially when integrated with navigation technology and preoperative
MRI data for overview, interpretation and brain shift visualization [6, 7]. Brain shift
compensation of the high-resolution preoperative MR images is further possible using
3-D ultrasound [8–11], which further makes the combination of the two modalities an
attractive solution.

Knowing the vascular anatomy in detail is of great importance for a neurosurgeon.
It is crucial to know the exact location of important vessels relative to the surgical
instruments at all times in order to perform a safe radical resection. This is important
for instance during tumor surgery, where intraoperative 3-D ultrasound in combination
with navigation technology has been shown to be a powerful tool [12]. In other
contexts, not only the presence but also the velocity and direction of blood flow can
provide important information. This is for instance the case for intracranial aneurysms
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and arteriovenous malformations. An intracranial aneurysm is an abnormal dilatation
of a blood vessel caused by a weakening of the vessel wall, that may infer serious
consequences if ruptured. The main goals in aneurysm treatment is the occlusion of
the lesion and to maintain a sufficient blood flow in the parent and branching vessels.
This goal is however not always achieved [13], and intraoperative flow imaging for
immediate correctional surgery is valuable [14]. An arteriovenous malformation (AVM)
is an abnormal cluster of blood vessels with direct arterial to venous connections, that
when ruptured can cause an intracranial hemorrhage. The goal when treating an
AVM is to completely close off the abnormal vessel supply (also called the feeding
vessels/arteries) to relieve flow pressure prior to resection of the nidus. Surgery is the
mainstay of treatment for many cases, and it is then important to obtain information
about the nidus configuration, its relationship to surrounding vessels, and the location
of feeding arteries and draining veins.

Current methods of real-time ultrasound flow imaging in neurosurgery include
spectral-Doppler, power-Doppler (PD), and color flow imaging (CFI) methods, and
have previously been used to investigate the hemodynamics in intracranial aneurysms
and AVMs [15–20]. The CFI and PD modality both provide an image of the presence of
blood flow in a distributed region of interest, and are preferred for the visual assessment
of blood flow. The CFI modality also provides Doppler measurements of blood velocity.
Spectral-Doppler methods can further provide the visualization of the full velocity
spectrum within smaller parts of this region. The CFI modality is inherently limited
by an angle-dependency in only being able to measure the axial velocity component of
blood flow. Due to the complex neurovascular architecture, the resulting images may
then be difficult to interpret. Two-dimensional contrast enhanced ultrasound imaging
has been proposed to offer a more detailed evaluation of flow conditions in cerebral
aneurysms [15]. In this way the blood flow patterns inside the aneurysm sack could
be properly visualized, and also quantified offline [21]. However, this imaging method
increases the time and cost needed to perform an investigation.

Blood Flow Imaging (BFI) is a new two-dimensional (2-D) ultrasound modality
that in addition to Doppler measurements offers an angle-independent visualization of
flow that could be beneficial in the neurosurgical setting [22]. When further integrated
with 3-D navigation technology, this modality may be a step towards the ideal
visualization for surgical needs. The aim of this preliminary study is to investigate the
clinical applicability of intraoperative BFI for flow assessment in cerebral aneurysms
and AVMs. We explore the clinical usefulness of the modality, state our preliminary
results, and discuss various features important for the future use of the proposed
technique.

6.2.2 Materials and Methods

Patient material

Six patients undergoing cerebrovascular surgery, three media aneurysms and three
AVMs, were investigated. In two of the AVM cases, navigational information was not
available. Informed consent was given by each patient before the treatment.
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Equipment and experimental setup

The experimental setup used in the operating room can be seen in Fig. 6.8. The
illustration shows how key personnel and equipment were located relative to each
other as well as the main connections that were used between the systems. As can be
seen, only the tracking and display hardware of the ultrasound-based neuronavigation
system SonoWand [6] (MISON AS, Trondheim, Norway) was used. The built-in
ultrasound scanner was replaced by a stand-alone GE Vingmed Vivid 7 system (GE
Vingmed Ultrasound, Horten, Norway), equipped with a GE 10S phased array probe
(GE Healthcare, Waukesha, USA). The probe had a pre-calibrated tracking frame
attached [23]. Furthermore, the built-in navigational computer was replaced by a
stand-alone laptop (PowerBook G4, Apple Computer Inc., Cupertino, USA), running
an in-house navigation software capable of presenting an integrated 3D navigation
scene to the surgeon. A standard RS-232 cable connected the optical tracking system
(Polaris, NDI, Canada) to the navigation laptop, and real-time ultrasound data was
obtained from the Vivid 7 scanner using a S-video cable connected to a Firewire-based
frame-grabber.

Two computer screens were presented to the surgeon in an adjustable and
convenient manner. The left screen contained the integrated navigation scene
visualizing the preoperative MR-images and the position of the real-time 2-D
ultrasound image planes (for overview), and the right screen duplicated the ultrasound
scanner BFI display (for details). The technical assistant used the laptop screen and
the scanner monitor for optimizing the navigation display and ultrasound acquisition
settings respectively.

Data acquisition and processing

Preoperative: Magnetic resonance angio (MRA) scanning of the patients were
obtained one day before surgery using a 1.5T MR scanner (Siemens, Erlangen,
Germany). Prior to MR scanning, five skin fiducials were attached to the
patient’s head for later image to patient registration. The MRA data was loaded
into the in-house navigation system software, and the fiducials were localized
and marked in the dataset. Also, the cerebrovascular tree was obtained by
segmenting the MRA data using a region growing technique, from which a surface
model of the vessels around the lesion was generated using the marching cubes
algorithm. The whole image registration and segmentation step took from 5 to
30 minutes depending on the complexity of the vessels surrounding the lesion.

Intraoperative: The patient head position was fixed and the navigation system
was calibrated to match using the skin fiducials. After the opening of the
dura, navigated 2-D ultrasound scans were first performed to give an updated
image of the aneurysm or AVM position, and to detect the degree of brain-shift
occuring. Ultrasound flow images were further obtained of the aneurysm or
AVM throughout the procedure. For each recording, B-mode and both CFI and
BFI raw data was stored. Synchronized video recordings of the 3-D scene that
matched the ultrasound acquisitions were also obtained. The ultrasound images
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Figure 6.8: Technical and clinical setup in the OR. A) Surgeon’s view. The main
connections between the systems used are shown in red. B) Researchers view. The
two systems (the US scanner and the navigation laptop) controlled by the researcher
are shown. C) Top view. The relative locations between key personal and equipment
are shown.
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were acquired using the Vivid 7 ultrasound system (GE Vingmed Ultrasound,
Horten, Norway) using the 10S phased array probe operating at frequencies from
5 to 10 MHz (GE Healthcare, Waukesha, USA).

Postoperative: Post surgery, cineloops for both the CFI and BFI modality were
generated from the same data recording. This allowed for proper comparisons
between the different modalities. The recorded video of the 3-D scene were
matched to corresponding ultrasound acquisitions for offline evaluation.

6.2.3 Results

Imaging modality comparison

A comparison of the different image modalities in question is shown imaging an
AVM in Fig. 6.9. In the upper left image, a three-dimensional MR-angio image is
shown, providing a larger view of the AVM distribution, including the nidus and
communicating vessels. Identified feeding arteries and draining veins are indicated
by solid arrows. The flow directions in the different vessel branches as observed by
the speckle movement in the BFI images have further been indicated by the dashed
arrows. In the upper right image, a CFI view of a smaller part of the AVM is shown,
which includes Doppler measurements of the mean axial flow velocity inside the AVM
vessels. Some apparent artifacts present in the color image due to Doppler method
limitations have been indicated by arrows. As can be observed, the Doppler image
alone does not portrait the complete picture of the flow conditions. In the lower
corresponding images, two different BFI modalities are shown. The lower left BFI
modality extends conventional CFI with speckle pattern movement, while the lower
right extends the power-Doppler modality with speckle pattern movement. The latter
modality was preferred by the surgeon, and will be used as the main BFI modality in
further examples. In the BFI images, the flow directions observed from the speckle
pattern movement have been indicated by the dashed arrows.

Imaging of cerebral aneurysms

An example of a middle cerebral artery aneurysm imaged with BFI is shown in
Fig. 6.10. In the upper image (A), the aneurysm region is imaged before clipping
of the aneurysm sack, and in the lower image (B), the aneurysm region is imaged after
clipping. In addition to the BFI image, the corresponding CFI and the composite 3-D
scene are given in the smaller upper right and left views respectively.

Before clipping, the flow direction can be observed from the speckle pattern
movement in the median artery as well as the aneurysm sack and the distal branches.
In the aneurysm sack, the flow direction can be observed to be of circular form. The
velocity magnitude in the middle cerebral artery (M1 segment) can be observed to be
substantially higher than in the distal branches (M2 segments) and in the aneurysm
sack. After clipping, a clear flow direction was observed only in the middle cerebral
artery and its distal branches.
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Figure 6.9: Image modality comparisons. Upper left: MR-angio image of AVM with
feeding arteries and draining veins indicated by arrows. The dashed arrows further
indicate the observed flow directions with BFI. Upper right: Image produced by the
CFI modality. Lower left: The BFI modality combined with Doppler velocity and
power estimates. Lower right: The BFI modality combined with Doppler power
estimates only. The speckle movement in BFI is indicated by the dashed arrows.
As can be observed, the color information provided by Doppler measurements do not
satisfactory portrait the complete flow picture.

Imaging of arteriovenous malformations

An example of an arteriovenous malformation imaged with BFI is shown in Fig. 6.11.
In the upper image (A), a region covering parts of the AVM nidus and connected
vessels is shown. The corresponding CFI image is given in the upper right view, and
the composite 3-D scene is shown in the upper left view. The direction of flow and
other flow characteristics such as velocity magnitude and pulsatility can be assessed
from the speckle movement. In the lower image (B), a region covering parts of the
AVM nidus and a feeding vessel is shown. As can be observed in the corresponding
CFI view, the true directions of flow can be difficult to interpret based on the Doppler
information alone.
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Figure 6.10: Imaging of a cerebral aneurysm. A: Before clipping, and B: After clipping
of the aneurysm sack. The dashed arrows indicate the direction of speckle movement
in the BFI images. The corresponding CFI image and synchronized navigation scene
is shown in the upper right and left corner respectively.
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Figure 6.11: Two different image views of the same arteriovenous malformation. A:
A view that covers parts of the nidus and surrounding vessels can be observed. The
speckle movement observed is indicated by the dashed arrows. B: A view that covers
parts of the nidus and a feeding artery. As can be observed in the corresponding CFI
view, the true directions of flow can be difficult to interpret based on the Doppler
information alone.
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6.2.4 Discussion

The preliminary results from this study indicate that BFI can provide important
information in the neurosurgical context, information that is not readily available
using conventional CFI. The flow direction in the neurovascular vessels was properly
visualized in all cases using BFI, and the use of navigation technology further allowed
for identification of vessels of interest despite the presence of potential brain shift.
Further, the surgeon found BFI to give a more intuitive image of the flow conditions
compared to conventional CFI methods, requiring less interpretation. This is an
important aspect in the operating room.

The flow conditions in the aneurysm and its surrounding vascular tree was properly
visualized in all three cases, both before and after clipping. This allowed for quality
control of sufficient flow in all distal arteries. Compared to CFI, having full two-
dimensional directional information available made it easier to discern the true distal
branches from nearby vessels. The speckle movement in the aneurysm branch was in
two cases more difficult to perceive after clipping. This could be due to the more rigid
vessel geometry and more complex flow conditions resulting from the clip placement.
It could also be due to distortion effects of the reflected ultrasonic waves from the
metallic clip.

The flow characteristics observed through the BFI speckle movement in the middle
cerebral artery, the aneurysm sack, and the distal branches, correlated well to that
described in previous studies using pulsed wave (PW) Doppler [16], contrast agent
enhanced ultrasound imaging [15], and from computational and in-vitro studies [21,
24, 25]. In the aneurysm sack it could be observed that the flow was quite regular and
non-turbulent. Also, a circular flow movement around the aneurysm sack could be
observed. In the middle cerebral artery the flow velocity was observed to be of higher
magnitude compared to the distal branches.

Work has previously been done to estimate how the flow pressure is distributed in
saccular aneurysms using computer and in-vitro models [21, 25], to investigate where
rupture is most probable to first occur. The speckle information provided by BFI can
portrait local changes in the flow velocity in any direction of the image plane, and may
therefore indicate areas where the flow pushes against the vessel wall. This subject has
however not been investigated, and remains to be established. In [15], the movement
of contrast microbubbles in the B-mode ultrasound images was tracked offline using
digital particle image velocimetry (DPIV) methods, and quantified measurements of
the flow velocity field in aneurysms could therefore be obtained. Speckle tracking
procedures have previously been proposed to quantify flow velocity non-invasively in
ultrasound [26]. These methods could be applicable for imaging the flow in saccular
aneurysms, and should be further explored. As the flow movement is inherently three-
dimensional, a tracking method should ideally be applied on 3-D ultrasound image
acquisitions. This is an approach currently receiving research attention for the tracking
of tissue using ultrasound [27–29].

When imaging arteriovenous malformations, the two-dimensional directional
information provided by BFI has a clear clinical value. The aim is to identify the
feeding vessels of the nidus, which is indicated directly by the flow direction. Navigated
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BFI properly visualized the flow conditions in the nidus and the direction of flow in the
complex vessel architecture connected to the AVM. This made it possible to discern
between feeding arteries and draining veins with an increased confidence compared
to CFI, and to control the complete nidus resection. Different flow characteristics
could be observed in the nidus and connected vessels. In the nidus, a slow and more
regular flow could be observed from the speckle movement. In the feeding vessels, a
substantially increased velocity magnitude could further be seen.

The visualization of two-dimensional ultrasound image planes in the three-
dimensional MR-angio scene made the two-dimensional ultrasonic flow assessment
more easy and certain. Although brain shift complicated the assessment, the vessels
surrounding the nidus and the aneurysm and corresponding vessels could still be
identified and imaged using the navigated ultrasound modality. The segmentation
algorithms used when processing the preoperative MR images sometimes missed
smaller vessels of interest connected to the AVM. An update using three-dimensional
intraoperative imaging with ultrasound could then have provided the additional
information needed, as well as compensate for brain shift [2, 30]. The accuracy of
the proposed method of navigated BFI was evaluated in a water bath, where the 3-D
error was found to be on the order of 1 mm. The main error source was attributed
to the ultrasound probe calibration [23, 31]. In addition, the tracking system is also
associated with a small error. The main error sources associated with the MR model of
the vascular tree, as depicted by the mismatch with corresponding vessels seen in the
ultrasound image compared to the navigation scene, are related to patient registration
and brain shift.

The navigated two-dimensional flow imaging modality proposed cannot replace
the need for intraoperative three-dimensional imaging, but is considered very useful
on its own, and should also be an option in future systems. As a surgical imaging tool
the modality is based on simultaneous imaging and navigation. This increases the
operating complexity compared to three-dimensional imaging, where the navigation
can be performed after the image acquisition. An extension of the BFI modality to
three dimensions is challenging due to the high frame rate demands of the speckle
pattern image acquisition [22]. However, with future ultrasound technology, sufficient
parallel receive beamforming may provide the means for approaching this concept.

Although indications are given of the usefulness of BFI in the neurosurgical context,
a larger patient material is needed to properly establish the clinical value of the
method. Vascular abnormalities located deep in the brain tissue have not yet been
investigated using BFI. As the method’s performance degrade with an increasing scan
depth [22], it may not provide a suitable visualization for all patient cases. This subject
should be further explored.

6.2.5 Conclusion

BFI seems to be a promising modality for flow visualization, which combined with
navigated image acquisitions can portrait the true flow direction in cerebral aneurysms
and AVMs, visualized in an intuitive manner. This property may provide the surgeon
with a valuable tool for intraoperative quality control and safer interventions in
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vascular neurosurgery. However, further work is needed to establish the clinical
usefulness of the proposed imaging setup.
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6.3 Application no. 3:

Blood Flow Imaging - A new angle-independent
ultrasound modality for the visualization of flow in
atrial septal defects in children

Siri Ann Nyrnes1, Lasse Løvstakken2, Hans Torp2, and Bjørn Olav Haugen2

1 Dept. of Pediatrics,University Hospital of Trondheim, Norway
2 Dept. of Circulation and Medical Imaging, NTNU, Norway

6.3.1 Introduction

An atrial septal defect (ASD) is an abnormal hole in the septum between the right and
left atria of the heart. Oxygenated blood from the left atrium passes through the hole
and mixes with deoxygenated blood in the right atrium. This results in an increased
blood flow to the right ventricle and lungs. An ASD is a congenital heart anomaly,
accounting for approximately 7-12 percent of all congenital heart disorders [1, 2].
The defect is often asymptomatic until adulthood, and is one of the most common
congenital cardiac anomalies in adults [3].

The functional consequences of the defect are related to the anatomic location, its
size, and the presence or absence of other cardiac anomalies. Potential complications
include pulmonary hypertension, right ventricular failure, paradoxical embolization,
cerebral abscess, and atrial arrhythmias [1, 3]. Approximately 70 percent of all
ASDs are secundum defects, which may close spontaneously, remain unchanged or
enlarge as the child grows [4–6]. When ASDs are clinically significant, follow up with
echocardiography is mandatory to follow the hemodynamic consequences, to ensure
that closure can be done at an optimal time, or to confirm spontaneous closure.

Transthoracic echocardiography (TTE) combined with color flow imaging (CFI)
is diagnostic in the majority of patients with ASD [7], providing dynamic images of
the atrial septum anatomy and flow conditions in multiple planes. Transesophageal
echocardiography (TEE) provide better images of the interatrial septum compared to
TTE [8, 9]. But TEE applicability is limited by the need for general anesthesia
in children, and is mostly used to guide catheter closure. Recent studies have
also presented real-time 3-D echocardiography [10] and magnetic resonance imaging
(MRI) [11, 12] as useful imaging modalities. But the need for sedation and the fact
that these modalities are time consuming limits the use of these methods in daily
clinical practice. Despite of all new modalities for ASD-visualization, 2-D TTE still is
the most cost-effective and commonly used technique for ASD imaging.

To obtain a sure diagnosis of ASD with TTE, one often have to rely on the flow
images provided by CFI. However, due to a false coloring of the interatrial septum
from overlapping color and B-mode images (color blooming artifacts), the flow through
atrial septal defects are not always easy to determine, especially when 2-D images are
suboptimal and when defects are small. Also, Doppler-shift techniques are only able to
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measure velocities along the ultrasound beam, and are thus angle dependent. Often a
priori knowledge of the anatomy and ultrasound beam angle is required to interpret the
information presented. Further, when the Nyquist limit for blood velocity is reached,
aliasing artifacts will obscure the true velocity and the direction of flow [13].

The Blood Flow Imaging (BFI) modality provides, in addition to quantitative
Doppler measurements, angle-independent directional flow information not limited by
aliasing, at a higher frame rate than CFI [14]. In this study we investigate if BFI can
more properly portrait the ASD flow, and thereby increase the certainty of diagnosis
of ASD in children.

6.3.2 Materials and methods

Patient material

This pilot study was performed at the Pediatric Department, University Hospital of
Trondheim, Norway. A total of 13 children with the diagnosis of ASD were evaluated
between March and August 2006. The inclusion criterion was ASD sized 4 mm or more
at the time of diagnosis. Patients were recruited in the outpatient clinics and from
the hospital ward, and both newly diagnosed and previously diagnosed patients were
included. The reason for referral to a pediatric cardiologist in most of the patients was
the presence of a heart murmur. In one patient, hemiparesis and cerebral infarction
led to further investigation with echocardiography. One patient previously diagnosed
having ASD was excluded due to late closure of the defect discovered at the time of
study inclusion.

An ethical committee approval was obtained, and the parents of all study subjects
provided written informed consent for participation in the study.

Data acquisition and processing

The blood flow through the atrial septal defects was first studied in a conventional
TEE examination using CFI, establishing the presence and size of the ASD. We further
supplemented with BFI as a part of the same examination. A pediatric cardiologist
and an accompanying ultrasound technician performed the scans. Subcostal views
were utilized because this imaging plane has been shown to be most sensitive [15].
All the TTEs were performed using a GE Vingmed Vivid 7 (GE Vingmed, Horten,
Norway) with a GE M4S cardiac probe (GE Healthcare, Waukesha, USA). An example
of B-mode image quality obtained is given in Fig. 6.12.

When all patient data had been collected, CFI and BFI cineloops for each patient
were prepared offline based on the same data obtained in the BFI recording for side-
by-side comparisons. The color image information presented was therefore identical
in both modalities.

Two different cineloops were prepared for review for each modality. In one cineloop
the color images were first optimized for best possible visualization of the flow through
the ASD for a given case. In a second cineloop, the amount of flow gain was increased
to simulate color blooming artifacts often present when using CFI. This concept
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Figure 6.12: Ultrasound B-mode image quality obtained. The anatomy of and the
atrial septal defect has been indicated. Oxygen rich flow from the systemic left side
flows across the ASD to the pulmonary system, decreasing the overall function of the
heart.

was introduced in order to evaluate the potential of BFI when the CFI images were
suboptimal.

Data analysis

The cineloops were independently reviewed by two pediatric cardiologists, one adult
cardiologist and one physician with ultrasound research experience, who all were
otherwise uninvolved in the study. The two pediatric cardiologists had no previous
experience with BFI, but were introduced to the concept prior to evaluation. The
other observers were familiar with the technique from vascular applications.

The images from the two modalities were presented to the observers in random
order, and they were asked to review the image information by answering the following
question:

Question: Based on the flow information presented, how certain are you that there
is flow going between the atria?

The observer certainty was scored from 0-100. To quantify the visual evaluation of
the observers a visual analogue scale (VAS) was employed, which previously have
been used in evaluations subjective matters such as image quality. The four observer
evaluations were analyzed separately.
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Statistical analysis

The null hypothesis was formulated:

H0 : There is no difference between CFI and BFI for the assessment of interatrial flow.

The recorded scores for the two image modalities were compared using the exact two-
tailed Wilcoxon signed-rank test for paired samples [16]. The level of significance
was chosen at p < 0.05. The analysis was done independently for the two cases of
optimal and suboptimal color images. The statistical analysis and plotting was done
in the numerical MATLAB software with the statistics toolbox (The MathWorks Inc.,
Natick, USA).

6.3.3 Results

Patient Characteristics

The patient material is described in Table 6.1. One patient had a primum ASD and
the others had secundum defects. The ASD size ranged from 2-9 mm. Two of the
patients had two defects. One patient had a bidirectional shunt, the others had left-
to-right shunting across the ASD. In one patient the recordings with BFI revealed two
ASDs and not one as first suspected in the prior CFI recording. Eight of the patients
were girls. Seven patients had additional cardiac anomalies. One of the patients had
total atrioventricular (AV) block, while the others had sinusrythm. Three patients had
significant right ventricular volume overload. The 12 months old girl had experienced
stroke, and had a 5 mm secundum ASD.

ASD flow imaging

All ASDs visualized using CFI in the examinations were confirmed using BFI. In one
patient the recordings with BFI revealed two ASDs and not one as first suspected in
the prior CFI recording. BFI imaging prolonged the echocardiographic examination
with approximately five minutes. No children needed sedation during the ultrasound
examination.

Example 1 - double ASD: In one patient, a double ASD was present which had
not detected in a previous examination using TTE with CFI. Using BFI however, it
was more clearly visualized. An optimized image of using CFI and BFI of this case is
shown in Fig. 6.13. The ASDs are indicated in the CFI image to the left. The arrows
in the BFI image to the right indicate the direction of flow as visualized by the speckle
pattern movement in BFI. As in many cases, the atrial septum anatomy in the frame
shown is almost completely covered by the color image.

Example 2 - 9mm ASD: In this case, a relatively large ASD was present. An
optimized CFI and BFI image is shown in Fig. 6.14. As can be seen, again the color
image covers the septum almost completely. The extra information provided by the
speckle movement in BFI, may here offer an increased certainty that apparent flow
across the atrial septum is not due to color artifacts.
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Table 6.1: Patient characteristics

# Age Diagnosis ASD size Other cardiac anomalies

1 9 years Secundum 7 mm Small patent ductus arteriosus

2 12 months Secundum 5 mm

3 22 months Secundum 4 and 2 mm Pulmonary hypertension

4 4 months Primum 6 mm Atrioventricular septal defect

5 1 month Secundum 4 mm Muscular ventricular septum defect

6 13 months Secundum 3 mm Pulmonary valve stenosis

7 19 months Secundum 4 mm Pulmonary valve stenosis

8 2 weeks Secundum 4 mm Perimembranous VSD

9 2 months Secundum 3 mm

10 3 years Secundum 9 mm

11 21 months Secundum 6 and 3 mm

12 5 days Secundum 4 mm Grade III atrioventricular block

13 6 weeks Secundum 4 mm

Observer evaluations

The four observer evaluations are presented in Fig. 6.15. When the color image was
optimized for each clip, the certainty of interatrial flow was significantly higher for
two of the observers (p-values are given in the figure). When the color images were
suboptimal with regards to color blooming, the p-values decreased in the favor of BFI
for all observers, and the certainty that interatrial flow was present became significantly
higher for three of the observers.

6.3.4 Discussion

This study is to the authors knowledge the first to evaluate BFI in cardiac imaging.
The results obtained indicate that the new angle-independent BFI modality may
improve the visualization of blood flow trough the atrial septum in children compared
to the conventional CFI method.

As BFI adds the speckle images to the Doppler images available with CFI, all
information available in previous examinations using CFI is still provided. The added
speckle movement information provided by BFI may have several advantages when
imaging ASD flow. As the ASD flow only occurs during a limited time interval
of the cardiac cycle, the frame rate should be high in order to properly capture
these events. The limited frame rate in CFI may then be insufficient. The speckle
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Figure 6.13: Imaging of a double ASD with CFI (left) and BFI (right) respectively.
The two ASDs are indicated by the dashed arrows in the CFI image. The arrows
in the BFI image indicate the direction of flow as visualized by the speckle pattern
movement.
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Figure 6.14: Imaging of a 9 mm ASD with CFI (left) and BFI (right) respectively.
As can be observed, the color image almost covers the complete atrial septum. The
dashed arrows in the BFI image indicate the direction of flow as visualized by the
speckle pattern movement.
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Figure 6.15: Dot plots showing the observer assessments of BFI versus CFI for the
imaging of ASD flow. The corresponding p-values are indicated in the plots. Random
noise was added to enhance the visual quality.

movement provided by BFI has an increased frame rate compared to the color images.
This increased amount of information is especially important when imaging children,
due to their higher heart rates compared to adults. Further, BFI is able to provide
information of flow in any direction of the image plane, and therefore provide more
detailed information of interatrial blood flow than CFI alone. This may increase the
certainty of ASD diagnosis, especially when the color images are suboptimal. In one
particular patient in this study, BFI imaging revealed two ASDs and not one defect as
first suspected in a prior CFI examination. This is important information for instance
when planning catheter based device closure.

Several aspects make the visualization of speckle movement more challenging
in cardiac imaging. As the BFI technique relies on human perception of speckle
movement between images, it is dependent on a degree of similarity between the
speckle images. These similarities are degraded by flow accelerations and out-of-plane
flow movement, and the speckle movement of blood flow inside the heart may therefore
be harder to perceive than in peripheral vessels [14]. The BFI speckle visualization
is further dependent on beam interleaving techniques for obtaining sub-images of the
speckle pattern at a high frame rate [14]. The sub-image width then decrease with an
increasing scan depth, and with an increasing velocity scale as determined by the pulse
repetition frequency. In adult TTE imaging, the width of the sub-images may become
too small for the perception of the lateral speckle movement. In pediatric imaging, the
ultrasound transducer is positioned closer to the heart, and we found that both the
axial and lateral speckle pattern movement of flow in the atria could be visualized.

Several investigators have used CFI to estimate the size of the ASD [7, 17]. But
even if the CFI jet-visualization width give an indication of ASD size, reliability of
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using color images for predicting size is limited by variability in gain settings and
alignment of the scanning plane relative to the shunt [1]. In addition, estimation
of the jet-width diameter does not take into account shunt flow due to associated
anomalous pulmonary connections. We do not know if the use of BFI may improve
the sizing of ASDs, but this study indicates that a better visualization of blood flow
is obtained, especially when there are color blooming artifacts.

2D-TTE-CFI has limitations in detecting small secundum ASD, sinus venosus
defects and associated anomalous pulmonary venous return. TEE is superior to TTE
for imaging these types of ASDs in adults [9]. In children, routine transthoracic studies
are generally adequate for diagnosis, but TEE may be used in patients with poor
image quality. Also, TEE imaging of the entire heart is the preferred modality during
guidance of catheter-based treatments of atrial septal defects in children [18]. The use
of TEE and BFI may provide an improved visualization of blood flow. As the probe is
then placed even closer to the heart, a more detailed speckle pattern movement may
then also be visualized. To establish this, further studies are necessary.

The images in this study were presented to three experienced cardiologists and
one physician with cardiac ultrasound experience from research. The four observers
were otherwise uninvolved in the study, and should therefore be objective in their
evaluation. When the color images were suboptimal (i.e. color blooming artifacts
were created), the rating differences between BFI and CFI were enlarged in favor of
BFI for all the tree cardiologists. This finding indicates that BFI may be especially
useful in situations with suboptimal images such as in presence of color blooming
artifacts, which often occurs in daily clinical practice.

Limitations of the study

A limitation of the study was that the images that were presented for the observers
did not include a control group without ASD. We therefore do not know if false
positive findings may occur when using BFI. Previous studies with CFI have not
indicated problems with false positive findings. On the contrary, false negative results
in the detection of ASD have been reported [9], and BFI may help further reduce the
amount of false negative findings. No patients in our study had sinus venosus defect or
coronary sinus defect, and further investigations remains to find out if the use of BFI
may simplify the diagnosis of these defects. BFI is promising in the visualization of
known ASD, but the applicability of BFI during routine screening echocardiography
remains to be evaluated. Further investigation is necessary to study the sensitivity
and specificity of the method. To accomplish this, BFI should be compared to the gold
standard of ASD visualization which at present is balloon sizing during catheterization.

6.3.5 Conclusion

Using BFI to visualize ASD flow in children can be done as part of an ordinary 2D-TTE
examination. The images can be done quickly with no need for post processing offline
and without sedation. This pilot study indicates that BFI gives a better visualization
of blood flow through the atrial septum than conventional CFI, and we believe the
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method could be a useful supplement to CFI in the diagnosis and follow up of children
with ASD.
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Chapter 6. Clinical applications of BFI

6.4 Application no. 4:

Blood Flow Imaging - Enhanced visualization of low-
velocity peripheral flow for treatment of tendinosis

Agnar Tegnander1, Lasse Løvstakken2, and Hans Torp2

1 Dept. of Orthopedics,University Hospital of Trondheim, Norway
2 Dept. of Circulation and Medical Imaging, NTNU, Norway

6.4.1 Introduction

The treatment of tendinopathies has changed during the past years as a result of new
knowledge of the pathophysiology. In 1995, Åström and Rausing reported histological
findings from 163 operated patients with chronic Achilles tendinopathy [1]. The most
important features were a lack of inflammatory cells and a poor healing response.
They found however degenerative changes (tendinosis) characterized by abnormal
fiber structure, focal hypercellularity, and vascular proliferation. It has also been
suggested that this more accurately should be described as failed healing response due
to mechanical overload. This process decreases tendon strength and leaves it less able
to tolerate load and thus, vulnerable to further injury [2].

In 1998, Alfredson and co-workers reported good results after heavy-loaded
eccentric calf muscle training for the treatment of chronic Achilles tendinosis [3].
They found later that in all patients with a painful nodular thickening of the Achilles
tendon, blood vessels (neovascularisation) were seen in close relation to the widened
part of the tendon [4]. In normal controls, no such blood vessels could be identified.
Furthermore they showed with a microdialysis technique a significant increase of the
neurotransmitter glutamate in Achilles tendinopathy suggesting formation of new
nerves. Based on these studies Öhberg and Alfredson started with ultrasound-guided
sclerosis of these neovessels, and documented good effect in 8 out of 10 patients [5].
Later several authors have shown neovascularisation in other tendons [6–10].

The detection of neovascularization and needle navigation has been based on flow
visualization using ultrasound color flow imaging (CFI). This method has potential
disadvantages when used in this context. When imaging peripheral flow the velocity
of the surrounding tissue and flow may become comparable, resulting in disturbing
flashing artifacts. Further, the current arbitration method used for mixing tissue and
flow information in CFI may further conceal vessels of interest. In the Blood Flow
Imaging (BFI) modality [11], a new transparent mixing technique is available, in which
no flow information is lost. In this preliminary study we investigate the potential
advantages of BFI compared to CFI for the visualization of neovascularisation and
needle navigation in the treatment of tendinosis.
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6.4.2 Materials and methods

Patient material

Nineteen patients with tendinopathy a mean duration of 40 months were asked to
participate in this pilot study. The location and duration of symptoms were registered,
and any earlier treatment was also noted. Patients with neovascularisation were also
asked to participate in the sclerosing treatment with Polidocanol (Aethoxysklerol 1%
from Kreussler Pharma, Germany). A written consent explaining the procedure and
imaging technique was signed by all patients.

Data acquisition and processing

The ultrasound acquisition was performed using a GE Vivid 7 ultrasound scanner
(GE Vingmed Ultrasound, Horten, Norway), with a M12L linear array probe (GE
Healthcare, Waukesha, USA). Images and cineloops for both CFI and BFI were
produced offline from the same data recording for comparisons.

6.4.3 Results

Thirteen men and 6 women were examined with both methods. They have had
symptoms from 2 to 156 months (mean 40 months), and their mean age was 32 years
(range 17-50). Ten of the patients had symptoms from the Patellar tendon (Jumper’s
knee), 8 from the Achilles tendon and 1 patient had symptoms from the origin of
the extensor tendons of the forearm (tennis elbow). In 15 patients (79%) we found
neovascularisation of the tendon with both CFI and BFI, and 4 (21%) did not show
any in either method.

Case 1

Male alpine skier with symptoms of jumper’s knee for 6 months. He reported pain
in the proximal part of the Patella tendon with exercise and on palpation. He had
earlier been treated with non-steroid anti-inflammatory drugs, acupuncture, friction
massage, concentric and eccentric training programs including stretching. Fig. 6.16
shows images using CFI and BFI before, during, and immediate after first sclerosing
therapy. Vessels details were more accurately portrayed using BFI, and flashing
artifacts were less disturbing compared to CFI.

Case 2

Highly ranked Swedish male orienteering runner with Achilles tendinosis for 2 months.
Treated with eccentric and concentric training programs, but still pain near the
insertion of the tendon to the heel bone. Fig. 6.17 shows images using CFI and
BFI before, during, and after an injection. Flashing artifacts occurred repeatedly
during the probe navigation, needle guidance, and during injection. Imaging with BFI
increased the certainty of blood vessel removal after of the procedure.
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CFI - before injection BFI - before injection

CFI - during injection BFI - during injection

CFI - after injection BFI - after injection
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Figure 6.16: The intervention and imaging of a patella tendon before, during, and after
the injection of sclerotic medium. In the top images, observe the spatial smearing of
the color images in CFI compared to BFI. In the middle images, observe the difference
in appearance of flashing artifacts for the two modalities. In the lower image, observe
the appearance of the noise level in CFI compared to the transparent view in BFI.

197



6.4. Enhanced visualization of peripheral flow for treatment of tendinosis
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Figure 6.17: The intervention and imaging of an Achilles tendon before, during, and
after the injection of sclerotic medium. Observer how the flashing artifacts may
influence the detection of small vessels differently in CFI and BFI respectively. In
BFI the tissue is still visible underneath the false coloring artifacts.
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6.4.4 Discussion

Recent studies have shown promising results of sclerosing therapy in the treatment
tendinosis in jumper’s knee, Achilles, and tennis elbow conditions [6, 10, 12, 13],
all studies reporting a satisfactory treatment of approximately 80% of the cases. In
patients with unsatisfactory results, remaining neovascularisation has been reported [5,
12], even after as many as five sclerosing treatments. One reason for this could be due
to limitations in the imaging of the low-flow neovessels, which prohibits a proper
detection and needle guidance.

In our investigations, both CFI and BFI could be used to successfully image the
small vessels using a high-frequency transducer operating at 7-14 MHz. One of the
main imaging challenges was that small movements of the probe could potentially shift
the tiny vessels in or out of the imaging plane. Due to the movement of the patient
and challenges related to simultaneous imaging and needle guidance, a high degree of
probe navigation was required during the investigation. Further, in order to be able
to detect the low Doppler shifts, the imaging pulse repetition frequency (PRF) was
set low (< 500 Hz). This made the imaging very susceptible to flashing artifacts from
the relative tissue and probe movement, and also from the movement of the needle.

While CFI strictly visualized either flow or tissue information in a given image
point, a transparent mixing of both was available in BFI. This transparent view helped
reduce the impact of the flashing artifacts compared to CFI. Being able to view the
underlying tissue, artifacts could more easily be identified, and areas of flow otherwise
concealed could be observed. The artifacts further appeared less dramatic than with
CFI, and it was possible to more properly navigate the needle tip while imaging.

The arbitration rules in CFI may further fail, and conceal areas of actual flow in
favor of tissue, especially when imaging small vessels barely visible in the tissue B-
mode image. In BFI, all flow information is present at all times, and this limitation is
not present. Another advantage of the transparent view in BFI is that the flow gain
can be increased until the noise level is apparent. The smooth appearance of noise did
not influence the imaging, while further ensuring that no flow information was missed.

An advantage of the CFI display, is that a high contrast between tissue and
flow information is given. The color visualization used for CFI was based on the
mean Doppler frequency only, arguably the default mode on most commercial scanner
systems. By also encoding the color using the Doppler power estimates, image noise
can be shown in darker colors, and its appearance may then be reduced.

The BFI visualization used was based on the power-Doppler modality, and did not
include any quantitative measurements of flow velocity or direction. Although angle-
independent speckle pattern movement was also available, this had a limited value
as it was often hard to perceive the speckle movement in the small vessels. It did
however help discern real flow from artifacts, as the speckle movement in actual flow
had a distinct direction, compared to a random movement for noise. A transparent
modality including Doppler frequency information could be useful, and should be
explored.
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6.4.5 Conclusion

Both CFI and BFI could be used to image the small vessels in the treatment of
tendinosis. The transparent view of flow and tissue information available in BFI is
less influenced by flashing artifacts, and more properly allows for simultaneous imaging
and needle guidance compared to CFI. As the flow information acquired is always
visualized, the method further adds an increased confidence to a successful procedure.
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