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Abbreviations and definitions:

A: Atrial filling phase – atrial systole
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AVPD: Atrio ventricular plane descent (= MAE)
DTI: Doppler Tissue Imaging – Tissue Doppler

cDTI: Colour Tissue Doppler
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Dec-T: Deceleration time of early mitral flow
ε : Lagrangian strain (Mathematical)
E: " (Mathematical)
LS: " (Acronym)
ε’: Natural strain (Mathematical)
E’: " (Mathematical)
NS: " (Acronym)

ε
.

and ε’
.

 : Strain rate (Mathematical)
SR:         " (Acronym)
To differentiate, SR can be used as the name for the strain rate estimator.

EF: Ejection fraction = 
LVEDV - LVESV

LVESV  

IVR: Isovolumic relaxation time
LVEDV: Left Ventricular End Diastolic Volume
LVESV: Left Ventricular End Systolic Volume
MAE: Mitral annulus excursion (total motion of the base of the heart)
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PSRe: Peak strain rate of early filling
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PVFe: Propagation velocity of flow in early diastole
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W: Wall thickness (instantaneous)

Wd Diastolic wall thickness
Ws Systolic wall thickness.

WMS: Wall Motion Score

WMSI: Wall motion Score Index = 
ΣWMS

Number of evaluated segments 
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1. Introduction:

1.1. The concept of strain.
Strain, in daily language means, “stretching”. In scientific usage, the definition is extended to

mean “deformation”. The concept of strain is complex, but linear strain can be defined by the

Lagrangian formula:

1) ε  = 
L - L0

L0
  = 

∆L
L0

 

Where ε is strain, L0 = baseline length and L is the instantaneous length at the time of

measurement. Thus strain is deformation of an object, relative to its original length. By this

definition, strain is a dimensionless ratio, and is often expressed in percent. By definition,

positive strain is lengthening or stretching, in accordance with the everyday usage of the term,

negative strain is shortening or compression. The Lagrangian formula does only describe

strain in one dimension as shown in fig. 1a). In two dimensions, strain has four components,

two normal strains and two shear strains as shown in Fig. 1b). In three dimensions, there are

nine components, three normal and six shear strains.

In an incompressible object, however, it is important to realise that the different strain

components are simultaneous. In general, strain has to be balanced by inverse strain in one or

more normal directions, due to the conservation of volume (not mass), as illustrated in fig 2.

Incompressibility means that the mass conserves its volume, i.e. the volume is constant, and

the sum of strain in three directions will be zero under the assumption that there is no shear

strain. (This may serve as a definition of incompressibility):

2) ε x + εy + ε z = 0

Mirsky and Parmley (1) originally introduced the concept of myocardial strain, to describe

myocardial deformation. Traditionally, the three directions of the heart have been defined as

transmural (radial), longitudinal (meridional) and circumferential, for instance in the

description of wall stress (2), instead of the right-angled Cartesian coordinate system. This is

illustrated in Fig. 3. In relation to the ultrasound plane of 2D echocardiography, still another

set of directions can be defined: axial (or radial!), transverse (or lateral!) and elevation (out of

plane) (3).

In M-mode echocardiography, wall thickening is a measure of contraction. Wall thickening is

the relative increase in thickness during systole, defined as:

3) WT = 
Wd -Ws

Wd
  = 

∆W
Wd

 ,

in other words the transmural strain of the wall. From this formula, it follows that transmural

strain is positive during systole, negative during diastole.
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Fig. 1. Deformation of an object.

a) One-dimensional deformation. Strain is deformation relative to its original length,

ε = 
L-L0

L0
  = 

∆L
L0

 , the figure shows positive strain (lengthening).

b) Two-dimensional deformation. Deformation in two dimensions can be described by four components:

Two normal strains (normal or perpendicular to the surface), lengthening and shortening along the x and

y axis: εx = 
∆x
x

  and εx = 
∆y
y

 , and two shear strains, characterised by the displacement of one border

relative to the other:

εxy  =  
∆x
y

  and εyx = 
∆y
x

 or angles of deformation, αx and αy , where it is obvious from the figure that εxy  =

tan (αx ) and εyx = tan (αy).
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Fig. 2. Strain in three dimensions. The cylinder shows strain, which can be described as Lagrangian strain from L0
to L. However, the figure also shows simultaneous thickening or expansion in the two transverse directions. If the
cylinder is incompressible, the sum of the longitudinal and the two transverse strains will be zero; εx + εy  + εz = 0,
and the volume remains constant.

Fig. 3. The three main directions of the left ventricle: Longitudinal or meridional (L), transverse / transmural or
radial (T) and circumferential (C). The term “transmural” should probably be preferred, as radial has another
interpretation when applied to the ultrasound beam, and transverse when applied to the 2D-picture. The
circumferential axis is local, perpendicular to the two others, and tangential to the wall in each point. The axes are
compared to the Cartesian coordinate system of  x, y and z.
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1.2. Longitudinal motion of the heart
It has previously been shown that the base of the heart descends toward the apex during

systole (4, 5, 6, 7, 8, 9, 10). The apex remains virtually stationary throughout the heart cycle

moving a few millimetres in the same direction as the base (6), as known from the clinical

experience of the apex beat as a systolic event, and demonstrated by apexcardiography and

echocardiography. The descent of the base is 1.2 – 1.5 cm in healthy subjects (4, 7, 8, 9) and

both the magnitude of the motion and the peak velocity is correlated to ejection fraction (7, 8,

9,10) and thus also to prognosis after myocardial infarction (11). During the diastolic phases

of early filling (E) and atrial systole (A), the base of the heart returns to the original position

(12, 13, 14). The descent of the base (mitral annulus excursion or MAE), is a measure of the

systolic shortening of the ventricle. Shortening of the ventricle is measured in absolute values,

but the relative change in length is the longitudinal strain. Longitudinal strain is thus negative

during systole and positive during diastole.

Thus the relation between longitudinal and transmural strain is inverse, in the same manner as

illustrated in fig. 4, i.e. as the ventricle shortens, the wall thickens, as the ventricle elongates,

the wall thins. As well as being an empirical fact, demonstrated by echocardiography, it also

follows from the incompressibility of muscle.

The relation to circumferential strain is not well established. As the chamber dilates during

diastole, and narrows during systole, the circumferential strain has to be negative during

systole, positive during diastole. But as the outer contour of the left ventricle is relatively

unchanged during the heart cycle (4), depending on where the strain is measured (epicardial,

midwall or endocardial), the circumferential strain can be near zero during the whole heart

cycle, chamber dilation being mainly a function of wall thinning. In that case, the main strains

of the ventricle are the longitudinal and transverse.  The circumferential fibre function will

then mainly be the balancing of the internal pressure (4). In addition, MR has demonstrated

shear strain in the form of systolic “twisting” and diastolic “untwisting”, i.e. torsion of the

whole heart (15). MR can measure all strain components simultaneously, and may be the

reference method.

And finally, as the fibre architecture of the heart is complex, as well as rearranging during the

heart cycle, the relation to actual fibre strain is even more complex.
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Fig. 4 Illustration of the incompressibility of the myocardium. As the wall stretches in diastole, it thins, as it
shortens in systole, it thickens, showing the inverse relation of longitudinal and transverse strain.

Fig. 5. The differential velocities of the left ventricle. While the apex is stationary, the annular plane moves as
indicated by the longitudinal M-mode curves below the 4-chamber picture. The decreasing systolic velocities at the
different levels is illustrated by the arrows, and by the same time shown by the pulsed tissue Doppler curves to the
sides. Thus the ventricle has longitudinal velocity gradients.
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1.3 Strain rate
The strain rate is the instantaneous strain (or change in strain) per time unit.

4) ε
.

 = 
∆ε
∆t

 

The unit of strain rate is cm/s/cm, or s-1. The strain rate has the same direction as the strain,

i.e. negative strain rate during shortening, positive strain during elongation.

1.4. The velocity gradient
The concept of velocity gradient was introduced by Fleming et al (16). The velocity gradient

is defined as the slope of the linear regression of the myocardial velocities along the M-mode

line across the myocardial wall. This is equal to the difference in endocardial and epicardial

velocities, divided by the instantaneous wall thickness (W).

5) VG = 
vendo - vepi

W   = 
∆v
W 

The definition was extended by Uematsu et al (17) to include the transmural velocity gradient

across the parts of the wall where the scanline is not perpendicular to the wall, by the cosine

correction of the velocities. The velocity gradient measured in this way, was transmural or

radial.

As transmural strain rate is the rate of change in wall thickness, the strain rate is the

6) ε
.

= 
∆W/Wd

∆t
  ≈ 

∆W/∆t
W   = 

∆v
W 

In other words, the velocity gradient is an estimator of the transmural strain rate, strain per

time unit approximates velocity per length unit. (The reason this is an approximation, is that

W is the instantaneous thickness, corresponding to L in formula 1), while L0 is constant,

corresponding to f.i. Wd. This is discussed in more detail in appendix A.)

As the moving base descends toward the stationary apex, the tissue velocities have to increase

from the apex to the base (fig. 5). This has also been established previously (18). During

diastole, and especially the two main filling phases of early filling, (E) and atrial systole (A),

the base reverts to its original position (12, 13, 14). The diastolic velocities decrease from the

base to the apex as well, and the ventricle thus has longitudinal velocity gradients.

The definition of the velocity gradient can thus be generalised further:

7) VG = 
(v2 - v1)

r   = 
∆v
r  ,

where r is the distance between the points of velocity measurements. In this definition, it can

be applied to longitudinal as well as transmural strain.
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1.5 Strain rate Imaging by Ultrasound
The longitudinal velocities of the myocardium can be sampled simultaneously in all points of

a plane during the heart cycle by colour Doppler Tissue Imaging (DTI) from the apical view.

In colour Doppler, the simultaneous velocities are stored as colour coding, but the actual

values can be extracted off-line (18).

The algorithm in 7) is simple enough to be implemented in real-time processing or post-

processing of tissue colour Doppler. (In fact, this is an approximation, in reality both

velocities and strain rates are measured by autocorrelation of the phase shift). The method is

termed Strain Rate Imaging (SRI) (19) and estimates strain rate by the velocity gradients:

8) SR = 
v(x) - v(x + ∆x)

∆x
  = 

∆v
∆x

  = 
(v2 - v1)

r   = VG ≈ ε
.

,

as shown in Fig. 6.

Fig. 6. The figure illustrates the longitudinal strain rate estimation by the velocities of two points of the
myocardium with the distance ∆x. The offset distance is exaggerated for clarity. The points of velocity
measurements are points in space, not in the myocardium, as illustrated in this picture, vhere v2 is measured at the
point x, i.e. v(x), while v1  is measured  along the same line, at a point v(x+∆x) i.e at the distance ∆x from x. This
means that as the muscle segment along ∆x shortens, in the next frame there will be a new muscle segment with

the unchanged length ∆x, and the estimator SR = 
v(x) - v(x + ∆x)

∆x
  is not the same as the velocity gradient as

originally defined. It can be shown, however, that the ratio is exactly equal to the velocity gradient. (Appendix A).
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Analogous to colour Doppler, the resulting strain rate values / velocity gradients can be colour

mapped or extracted as numerical values and curves. The temporal resolution of the post-

processed M-mode is equal to the frame rate in 2D recording, up to 130 FPS when acquiring

colour DTI images of the whole left ventricle. As the intention is to visualise presence and

magnitude as well as direction of wall deformation, we have chosen a three-colour map,

where cyan to blue colours are positive strain rate, and yellow to red are negative strain rate.

Green represents periods and areas of no strain, i.e. below the low rate reject limit. The colour

map is reproduced at its best in paper 3, fig. 4, while strain rate and strain curves are shown in

Fig. 7.

a) b)

Fig 7.
a) Velocity data from septum of a normal ventricle. The velocity curves to the left are from the base, midwall

and apical levels. To the right of each velocity curve are post-processed integral curves of the velocity,
showing the motion of the same points. Characteristic of velocity and motion curves are the reduction of
amplitude from the base to the apex (18). AC: aortic closure. MO: mitral opening.

b) Strain rate data. The curves are post processed strain rate from the velocity data of fig. 18a), i.e. the same data
set, from the basal, midwall and apical level of the septum. The strain rate curves shows the local rate of
deformation. To the left of each curve is shown the integral curve, showing the strain, or local deformation of
the same length. Characteristic of strain rate curves is the constant amplitude of all phases, showing that the
velocity decreases evenly from base to apex. AC: aortic closure. The closure is at the end of the positive spike
representing the protodiastolic lengthening (43). MO: Mitral opening. E: Elongation during early filling, A:
Elongation during atrial systole. It is more evident than from velocity data that the E-and A- phases are
delayed at the apex relative to the base, propagating along the wall. Finally is seen the positive spikes of the
return of the  waves, Er and Ar, probably due to the waves from the opposite wall.
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For technical reasons, the method is best suited to studies of the longitudinal strain rate.

Firstly, the noise sensitivity (noise to signal ratio) increases as the offset distance ∆x between

the points of velocity measurements decrease, giving a practical lower limit of spatial

resolution of SRI of about 5 – 10 mm. Secondly, the points of measurement remains fixed in

space, giving false measurements if the myocardium moves in and out of the sample length,

which is more likely to happen in the transverse measurement. The background for this is

discussed in detail in 5.6.3 and 5.6.5, but the whole study is limited to longitudinal

measurements.

The systolic velocity in any point in the myocardium is the resultant of the rate of shortening

(longitudinal strain rate) from that point to the apex. The strain rate curve is similar to an

inverted velocity curve as shown in comparing Fig. 7a and b. In SRI, the algorithm subtracts

the velocity apical to the segment measured, i.e. the influence of the shortening of the more

apical segments, so SRI measures the local shortening. In addition, this method will subtract

velocities due to translation of the whole heart. Thus quantitative SRI will gives measurement

of local deformation rates and their time curves during the heart cycle. On the other hand,

colour mapping gives semi-quantitative information of local strain rates, as well as

quantitative information about the spatial-temporal relations between events in the ventricle

during the heart cycle.

By summing the strain rate values of all frames times the sampling interval from each frame,

the strain value in each pixel can be estimated:

9) Σ(SR * ∆t) = Σ






∆ε

∆t
 * ∆t   = Σ∆ε = ε 

The integrated strain curve is shown in Fig. 7. Analogous to myocardial velocity and strain,

the motion of a point can be seen as the resultant of the strain of all segments from the apex,

and the strain curve is similar to an inverted motion curve integrated from velocity data or an

M-mode curve of the annulus.

Early model experiments did show a good agreement between the measured strain rate by this

method and the strain rate generated by the model (20).
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Aims of the study:

General aim of this thesis
The main hypothesis is that strain rate imaging measures the local deformation of the

ventricular wall, by the arguments above. The partial aims of each study are:

Specific aims of the studies
c) To demonstrate that the method of Strain Rate Imaging is feasible in a clinical setting,

and to evaluate whether the method could document differences between normal and

pathological regional function in a pilot study.

d) To compare regional wall function assessed by SRI with regional wall motion assessed by

2D-echocardiography in a patient group with reduced regional function (myocardial

infarction). A reasonable correspondence between the two methods will constitute

validation of findings by SRI as regional wall function assessment in a clinical setting.

e) 

a) To compare wall motion by SRI and by 2D echo against an external reference

(coronary angiography) to compare sensitivity and specificity of each method as well

as of the two methods combined for the detection of significant changes in regional

wall function.

b) As wall motion scoring by 2D is wall thickening, and Strain Rate Imaging is wall

shortening, to compare the information from the two methods.

c) To assess the precision of quantitative Strain Rate measurement against an external

reference.

f) To study the strain rate of the early filling phase, to compare with tissue Doppler data of

the same phase and to study the difference between normal subjects and patients with

delayed relaxation.

g) The filling phases seen with colour strain rate reveals that wall stretching propagates from

the base to the apex in a manner similar to flow propagation. The aim of the study in

paper 5 is to compare the propagation of strain rate with the propagation of flow, over a

wide range of values, both in normal subjects and in patients with delayed relaxation.
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3. Material and methods:

3.1 Study subjects:
The normal subjects group consists of persons without any evidence of heart disease and with

normal echocardiographic findings. In general the normal subjects were colleagues and staff

at the hospital and at the institute of physiology and biomedical engineering. All were

professionally acquainted with the procedure of echocardiography and gave informed consent

to the examination. Files were anonymised.

The patients belonged to two different groups. The infarction patients for the validation and

study of regional systolic function all had their first myocardial infarction, and were examined

during their first hospital stay, in general during the first week. The examination was a

normal, scheduled echocardiography examination for routine clinical indications. A clinical

echocardiography report was given back to the ward as normal procedure. The recorded

echocardiography files were then transmitted to a computer, and stored on CD for off-line

analysis. Additional strain rate and tissue Doppler cine-loops were obtained during the

examination, prolonging the examination by 3 to 5 minutes. Informed consent for the use of

examination data for research purposes was obtained from all patients. The patients included

in the study of SRI versus coronary angiography were included because angiography was

decided for clinical indications. Inclusion and echocardiography was performed after

angiography was decided. Of the patients in paper 2, five had a coronary angiography during

hospital stay. They were included in the study in paper 3 as well, the subsequent 15 patients in

paper 3 were new. No patients had coronary angiography for study purposes alone. The

patient characteristics of the patients in paper 3 are summarised in table 1.

The hypertension patients, for the study of diastolic function were recruited from the LIFE

echo substudy (21). The national ethical committee approved this study. The patients were

recruited in a primary centre on the basis of hypertension plus criteria for left ventricular

hypertrophy on the ECG, and entered a treatment schedule comparing losartan and atenolol in

a randomised, blinded design, with additional antihypertensive treatment administered as

needed. All medical treatment was administered at the primary centre. The patients in the

echocardiography substudy were referred from the primary centre. The substudy consisted of

yearly visits during five years, echocardiography done at each visit, recorded on video and

sent to the core laboratory (Cornell University). The data obtained for the studies in paper 4

and 5 were all recorded during their visits after one to two years of treatment. The patients

then had normal blood pressure on treatment, normal ejection fraction, minimal hypertrophy

and moderately prolonged deceleration time and isovolumic relaxation time, indicative of

delayed relaxation (22). The echocardiographer was blinded to all treatment. The patient
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characteristics of the hypertension patients and normal subjects in paper 4 are summarised in

table 2. As the study in paper 4 progressed, it became evident that the strain rate had a

propagation pattern and normal values similar to that previously reported for flow propagation

(23). The relation between these became an object of interest. The flow propagation data for

study 5 were obtained during the second part of the first study. The subjects in the study in

paper 5 are the 25 last (12 controls and 13 patients) of those in the study in paper 4, but the

inclusion was done consecutively, without bias once the registration of colour flow was

started. The strain rate measurements are the same data as in paper 4. The differences in

diastolic function between controls and patients remained significant, although the numbers

were reduced by the selection (table 3).

It is important that in all studies, once inclusion was decided, no study subjects were excluded

for poor echo quality. The study population will therefore resemble a normal patient

population in clinical practice where quality of echo data is concerned, and the precision

given is clinically relevant.

Table 1: Patient characteristics of infarction patients (16 m., 4 f.) of
paper 3:

Age

(years)

Peak ASAT

(ECG: 12 ant. 8 inf.):

EF %

(Simpson)

AMI age
(days)
at echo

AMI age
(days)
at echo

Median: 56 406 41 4 5

Maximum: 77 1419 54 30 29

Minimum: 37 100 22 1 0

EF: Ejection fraction. AMI: myocardial infarction.
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Table 2: Subject characteristics in the study in paper 4. Group averages with

standard deviations in parentheses and P values for differences:

Age

(years)

EF

%

HR BP

mmHg

IVSd

mm

LVD

mm

Dec-t

ms

IVR

ms

MVE

cm/s

MVA

cm/s

Controls 40

(14)

56

(6)

63

(11)

125/77

(14/14)

8

(1)

57

(5)

183

(32)

77

(15)

74

(13)

53

(14)

Patients 65

(6)

55

(6)

61

(14)

153/85

(18/6)

10

(2)

53

(11)

252

(48)

103

(19)

70

(20)

74

(19)

P: <0.001 NS NS <0.01 <0.001 NS <0.001 <0.001 NS <0.001

Table 3: Subject characteristics of the subgroup in paper 5.
Age

Years

HR BP

mmHg

EF

% IVSd

mm

LVD

mm

DTIe

cm/s

Dec-t

ms

IVR

ms

E/A

Control 46 65 133/79 57 7 57 12.8 191 73 1.74

Patient 65 60 154/85 54 10 54 8.7 238 99 1.02

P: <0.001 NS <0.01 NS <0.005 NS <0.005 <0.005 <0.002 0.05

HR: heart rate. BP: blood pressure. IVSd: septum thickness in diastole. LVDd: left

ventricular diameter in diastole. DTIe : peak early diastolic mitral annulus velocity by tissue

Doppler. Dec-t: Deceleration time of mitral flow E-wave. IVR: Isovolumic relaxation. MVE:

peak flow velocity of mitral E-wave. MVA: peak flow velocity of mitral A-wave. E/A: Ratio

of the two.

3.2 Echocardiography:
All recordings in this study were obtained with a Vingmed System FiVe scanner with a 2.5

MHz phased array transducer. Ordinary echocardiography recordings of 2D cine-loops of five

standard planes, transverse M-mode recordings, pulsed wave Doppler and colour Doppler

flow as well as pulsed wave Tissue Doppler of the mitral ring were transferred to a Macintosh

computer for off-line analysis in EchoPAC (GE Vingmed Ultrasound, Horten, Norway). All

2D and M-mode recordings were done in the second harmonic mode. Pulsed Doppler

recordings of mitral inflow velocity curves were obtained with the sample volume between

the tips of the mitral leaflets. Isovolumic relaxation time was measured with the sample

volume between aortic and mitral annulus, so that the valve click of aortic closure as well as

the start of mitral flow was seen. Pulsed tissue Doppler recordings of the mitral annulus

velocities were obtained from four points of the mitral ring: Septal and lateral in the four-

chamber plane and anterior and posterior in the two-chamber plane. Average values of peak

systolic and peak early and late diastolic velocities were computed.
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Both 2D, colour Doppler and Strain rate cine-loops were of the three standard apical planes

(4-chamber, 2-chamber and long axis). Ejection fraction was measured by endocardial

tracings from 4-chamber and long axis planes, and calculated by modified Simpson’s method.

In paper 2 and 3, wall motion was scored in a 4-level scale (Wall Motion Score, WMS):

1. Normal

2. Hypokinetic

3. Akinetic

4. Dyskinetic

in the standard 16 segment model of the left ventricle (24) illustrated in fig. 8.

Pathological finding (dyssynergy) was all levels above 1. Further levels of 5: Scar or 6:

aneurysm was not used, as these are anatomical and not functional terms. Wall motion score

index (WMSI) was calculated in the usual way (25), as the average wall motion score of the

number (N) of evaluable segments (WMSI = 
ΣWMS

N  ).

An expert stress echocardiographer (Bjørnstad) who was blinded to patient data of infarct

location assessed wall motion score in 2D recordings. Emphasis was placed on wall

thickening, not endocardial excursion, to minimise the effects of tethering.

3.3 Strain rate measurements:
On-line strain rate recordings were obtained by special programming. During the pilot study

in the first paper, the first recordings were obtained as RF-data, transferred and post-

processed to colour tissue velocity as well as colour strain rate recordings. In the last four

subjects of the first study, the online application was used. In the rest of the studies, online

strain data was obtained by processing colour tissue Doppler data as described previously

either by recording SRI cine-loops directly on the scanner, or by recording colour DTI and

processing SRI data by off-line processing. The Strain Rate application was specially

programmed on the scanner. The settings of the scanner were set to maximum lateral

averaging, to minimise noise. This also means that strain rate would be averaged over the

whole thickness of the wall, so lateral placement of M-mode lines or sample volumes were of

little consequence. On the other hand, no comparisons of different levels across the wall were

possible. The offset length (∆x) in the studies was 5-7 mm; making radial resolution equal to

the offset plus the pulse length. The frame rate was around 70 with online SRI, and up to 132
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Fig. 8. The 16 segment model of the left ventricle (18). The relation to the different arterial beds is shown (19).
The relation to the coronary anatomy is superimposed, making it possible to relate echocardiographic segments to
coronary anatomy. The wall motion score (WMS), is the assessment of the four functional levels of wall function.
Wall motion score index (WMSI) is the average WMS of all evaluable segments.
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with DTI (and hence, off-line SRI). The high frame rate was due to the reduction in the

number of tissue scanlines, as temporal resolution is considered the main objective in tissue

Doppler. The difference in frame rate between strain rate and DTI was a matter of scanner

presets in the experimental stage. At that point in time, it was uncertain whether additional

tissue information or temporal resolution was most important. The theoretical limit for frame

rate in online SRI is the same as for colour DTI, and scanner presets can be adjusted

accordingly. The low strain reject limit was in all studies between ± 0.1 and 0.3 s-1. Cine-

loops were transferred to a PC computer and analysed in a dedicated software application, and

colour cine-loops were analysed in the curved M-mode (26) with wall motion score, in papers

2 and 3. The actual acquisition of the three SRI loops, was a matter of less than one minute,

the transfer to computer (by FTP) about the same, while the segmental analysis is time

consuming, but comparable to segmental analysis of 2D cine-loops.

Colour SRI is semi-quantitative, as is wall motion assessment. That makes the two methods

more directly comparable than proceeding directly to quantitative strain rate measurement.

Wall shortening could then be graded as Wall Motion Score in a similar 4-level scale as wall

thickening. The colour scale for WMS by SRI is reproduced in paper 3. Wall motion score by

SRI was primarily assessed by me, unblinded to infarct location, but blinded to angiography

findings in paper 3. Systolic wall function was scored by the four-level scale in all 16

segments in papers 2 and 3 and WMSI calculated in the same way as for 2D echo. Støylen

and Skjærpe did the intra- and interobserver studies of colour SRI. Støylen had during the

studies acquired the most experience with colour SRI, while Skjærpe had a very wide general

experience with echocardiography. Støylen did repeated readings with an interval of 4 – 12

months. Skjærpe did the first five patients in paper 2 as learning, the last 10 as evaluation,

twice in a short interval, but with scrambled order the second time. In paper three, the last 15

were available for interobserver study.

When findings by SRI had been validated against 2D echocardiography in papers 2 and 3,

quantitative strain rate measurement became an object of interest in paper 3. In this study both

semi-quantitative assessment (wall motion score) and quantitative measurement of peak strain

rate was done in all 16 standard segments. No repeatability study of quantitative strain rate

measurement was done, as the study did show a low precision in quantitative measurement,

with considerable overlap between segments with different wall motion score and

angiography status.

In paper 4 and 5, peak strain rates of systole, early and late relaxation are measured in all 16

segments. In paper 3, regional systolic strain rate is compared to wall motion and coronary

angiography. In paper 4 and 5, global average of peak strain rates is computed.

Propagation of the stretch wave of early relaxation was measured in a straight line M-mode

for reasons discussed in 5.2.3. The results, however, seem to indicate that the curved M-mode
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would give the correct measurements, if a standardised way of tracing it could be

implemented.

Flow propagation velocity is measured by straight line tracing of the front of the aliased

velocity, in colour M-mode as discussed in paper 5. The M-mode line was placed in mid-

ventricle.

3.4 Coronary angiography.
This was done in the routine angiography laboratory. Indications for coronary angiography

were clinical; either to do rescue PTCA after failed thrombolysis (in four patients) or because

of persistent unstable angina after myocardial infarction. The patients were included in the

study in paper 3 because the angiography was decided. No angiography was performed for

study reasons. In all cases standard technique was employed. Infarct related artery (IRA) with

culprit lesion was localised by comparing the angiogram with the ECG at admittance.

Coronary artery stenosis was calculated by quantitative angiography. A diameter stenosis of

50 % or more was considered significant.

The bull’s eye map in fig. 8 is used in paper 3 to establish a relation between coronary and

echocardiographic anatomy in accordance with general convention (24, 25). This relation is

used both ways. By analysis of echocardiographic and SRI images, the infarct related artery

was identified (blinded to the angiogram), and compared with the angiographic diagnosis. In

the reverse analysis, the culprit lesion by comparing with the bull’s eye map, could predict

which segments were affected by the lesion, i.e. those assumed to be partly infarcted. They

are called angiography positive or at-risk segments, the rest angiography negative.

This prediction however, neither takes into account the salvage effect of reperfusion resulting

in normally functioning segments within affected areas, nor the effects of collaterals or

affected neighbouring segments due to variations in smaller artery branches. In this study,

only 4 patients had TIMI 0-1 flow at the time of echocardiography, the rest had 2-3 (27) after

thrombolysis or rescue PTCA. The main point, however, was to establish an external

reference for the comparison of the two ultrasound methods.

3.5 Statistics.
Both parametric and non-parametric statistics are used.

Comparison as well as repeatability of ordinal wall motion score assessment are by kappa and

weighted kappa statistics. By kappa statistics, a κ-value of: < 0.20 is considered poor, 0.21 to

0.40 fair, 0.41 – 0.60 moderate, 0.61 – 0.80 good (28).

Repeatability of quantitative measurements is by Bland Altman statistics  (95% confidence

interval = limits of agreement = average of difference repeated measurements ± 2SD of

differences between them) (29).
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Significance of differences between groups is by two-tailed students T-test. All significant

differences were also tested significant by Wilcoxon’s two-sample rank sum test. In paper 3,

significance of differences between groups of segments is by ANOVA analysis.

Correlations in papers 2 and 3 (where correlation between WMSI and EF is a relatively minor

point) is by Pearson’s R, in paper 5 where correlations are the main objective, both Pearson’s

and Spearman’s coefficients are given.

In paper 5, univariate and multivariate linear regression is used.
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4. Summary of papers

4.1. Paper 1: Real-time Strain Rate Imaging.

Method, feasibility and pilot study.
This study is the pilot study, to see if Strain Rate Imaging was feasible in a clinical setting,

and to see if the method could identify walls with segments with reduced systolic function.

The theory behind strain rate measurements and the practical application, as well as some of

the limitations of the method is discussed. Six patients with acute myocardial infarction, and

six normal subjects without evidence of heart disease were studied. The first four in each

group were studied by the off-line RF method, the last 2 with the real-time application. Wall

motion in all infarcted walls was seen as either hypo- or akinetic by colour. In the normal

subjects, a similar number of walls were analysed. No hypo- or akinesia was seen. The actual

strain rate values were assessed by the colour legend, giving a normal systolic strain rate of

about  -1.3 s-1. In this study, we concluded that Strain Rate Imaging i was and that it seemed

to be able to differentiate between normal and pathological wall function.

In this paper Andreas Heimdal defined the strain rate concept, the description of the strain rate

imaging technique and the discussion on the technical limitations. He also made figures 1 and

2, and the general revision of the whole paper. Asbjørn Støylen performed the patient study,

including the actual ultrasound examination as well as the evaluation of findings in relation to

the clinical data. He also wrote the discussion on the clinical application of the technique and

made figs. 3 and 4 from actual ultrasound recordings.
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4.2. Paper 2: Strain Rate Imaging in regional dysfunction.

Validation against 2D echocardiography in myocardial infarction.
In this study, 15 patients with myocardial infarction were examined. Systolic wall motion

score (WMS) by longitudinal colour SRI and by 2D echo was compared. Of a total of 236

segments, 235 segments were analyzable by 2D echo and 218 by SRI. Wall Motion Score

Index (WMSI) is a global parameter for left ventricular function, calculated as the average of

segmental function. WMSI is used in the assessment of infarction and coronary artery disease.

Both the number of dyssynergic segments and the degree of dyssynergy will contribute to the

reduction in global function, and as a result a negative correlation of WMSI to Ejection

Fraction can be expected. Correlation of WMSI with EF by biplane Simpson’s method was -

0.84 (95% CI -0.78 to -0.88, p<0,01) by 2D and  -0.92 (95% CI -0.89 to -0.94, p<0,01) by

SRI. 114 segments had equal score by the two methods, 51 segments differed by one degree

and 14 by two, kappa value 0.45 (95% CI: 0.33 - 0.56). Intra- and interobserver agreement

was also studied. Observer A had a κ-coefficient of intraobserver agreement of 0.51 (95%CI

0.41 – 0.63). Observer B, had a κ – coefficient for intraobserver agreement of 0.61 (0.50 –

0.72). The interobserver agreement of A and B was κ = 0.32 (0.10 – 0.36), and between B and

2D echo was κ =0.24 (0.20 – 0.45). In conclusion, the agreement between 2D echo and SRI

was fair to good. The precision of agreement is in the same order of magnitude as the

precision for repeated measurements. In conclusion of this study, SRI seems to evaluate

regional wall function.
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 4.3. Paper 3: Strain Rate Imaging in coronary diagnosis.

Comparison to 2D echocardiography and validation against coronary
angiography in an infarction population.
In this study, 20 patients with acute myocardial infarction who underwent coronary

angiography for clinical reasons were examined with SRI and standard echocardiography.

Wall motion was graded by colour SRI and separately by wall thickening as in the previous

study. SRI and 2D agreed well. The κ-coefficient of correspondence between methods, is 0.52

(95% CI 0.41 – 0.64), weighted κ 0.64. The variation between methods is of the same order of

magnitude as the variability within methods. The study confirms the finding in the previous

study, that SRI shows regional wall function.

The correlation coefficient (Pearson’s R) of WMSI from 2D echo with EF was -0.83 (95% CI

=  -0.77 – -0.88), and from SRI with EF -0.82 (95% CI = -0.76 – -0.87). Culprit lesion and,

hence, infarct-related artery (IRA) was identified from angiograms combined with ECG on

admission. Both methods identified IRA in 19 possible cases and had equal sensitivity and

specificity for at-risk wall segments. Combining the information from both methods did not

change the accuracy. This can be taken to mean that the one method does not convey any

additional information, in other words semiquantitative assessment of wall thickening and

wall shortening are equivalent.

Peak systolic strain rate is measured in all accessible segments.  Differences between the

different groups of segments, is highly significant (p<0.001) by ANOVA analysis. The

difference between angiography positive and negative segments is significant as well,

P<0.001.The correlation of mean Peak Systolic Strain Rate with EF was -0.80 (-0.73 – -0.86).

In conclusion, the study does show the feasibility and correspondence of quantitative

measurement of peak strain rate as measurement of regional function. The wide standard

deviations, as well as the overlap between measurements in both wall motion score groups

and angio groups, however, indicates that peak strain rate in this application does not have

sufficient precision for clinical utility.
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4.4. Paper 4: Strain Rate Imaging in diastolic function.
Previous experience with SRI had shown that the early and late filling phase consisted of a

wave of positive strain (elongation or stretch wave), propagating from the base to the apex.

That finding was actually dependent upon resolving the velocities into velocity gradients. In

this paper 26 hypertensive patients from the LIFE study and 28 normal controls were studied.

Patients did show a significant reduction of peak systolic (9.5 vs. 7.5 cm/s, p< 0.001) and

peak early diastolic (13.1 vs. 8.2 cm/s, p < 0.001) tissue velocity of the mitral annulus

compared to controls. This is in accordance with other findings (30, 31).

Peak systolic strain rate (1.40 vs. 1.15 s-1, p < 0.001), early diastolic strain rate (2.22 vs. 1.46

s-1, p < 0.001) and propagation velocity of early diastolic strain rate (60.0 vs. 31.6 cm/s, p <

0.001) were reduced in the patient group. As in paper 3, peak strain rate measurements did

show a rather low precision with wide standard deviations.

The findings by SRI are consistent with the DTI findings. Reduction in annular peak tissue

velocity is a resultant of both reduced peak strain rate, as well as loss of simultaneity due to

the slower propagation. Dividing the patients by heart rate did not show any indication of

drug-specific effects. Dividing the controls by age did show a tendency to reduced diastolic

function with increasing age, but still significant differences between the patients and the

oldest controls.

In conclusion, the study does show that the diastolic function of the myocardium can be

further analysed by the components of peak strain rate and propagation velocity of strain rate,

and in delayed relaxation, both are reduced.
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4.5. Paper 5: Strain rate propagation vs. flow propagation.
As the study in paper 4 progressed, it became evident that the propagation velocity of strain

rate was reduced in delayed relaxation, as has been reported previously for flow propagation.

(32, 33). In addition, the normal value for strain rate propagation was close to some reported

for flow propagation (23). The relation between the two measurements became an object of

interest. During the last half of the study, colour M-mode was recorded, and flow propagation

velocity was measured. The strain rate data in this study are thus the same as the last 25 of the

previous study. 12 normal subjects and 13 patients were studied. Early diastolic strain rate

propagation velocity was reduced in the patient group (66.6 vs. 29.6 cm/s, p<0.001). Early

flow propagation velocity was increased in the patient group (69.9 vs. 54.8 cm/s, p<0.002). In

accordance with this, there was a negative correlation (Pearson’s R = -0.57, 95% CI; -0.15 – -

0.75, p<0.005, Spearman’s R = -0.54, p<0.005) between strain rate propagation and flow

propagation velocity. There was also a negative correlation between strain rate propagation

and deceleration time of the mitral flow E-wave (Pearson’s R = -0.51, 95% CI -0.15 – -0.75, p

< 0.05, Spearman’s R = -0.48, p<0.05). No significant relation is found between flow

propagation velocity and peak annular early diastolic velocity, left ventricular diastolic

diameter, peak early diastolic strain rate, deceleration time of early mitral flow, isovolumic

relaxation, HR, EF or age, in either univariate or multivariate analysis. Strain rate propagation

velocity is significant in both univariate (p=0.003) and multivariate (p < 0.001) analysis. Peak

mitral flow velocity is not significant in univariate analysis, only in multivariate (p = 0.014),

showing interaction with strain rate propagation velocity. In support of this, there is a

significant correlation between the ratio: peak early mitral flow velocity / strain rate

propagation (MVmax/PVSe) and flow propagation velocity, PVFe. Pearson’s R: 0.67, 95%

CI 0.37 to 0.84, p < 0.001, Spearman’s R: 0.58, p < 0.002.

The conclusion of this study is that flow propagation seems to have more determinants that

relaxation alone. Interaction between strain rate propagation and flow velocity may be of

importance. Flow propagation is not a simple index of diastolic function in delayed

relaxation. Both strain rate propagation and flow propagation does show a very limited

precision, indicating a limited clinical utility at its present level.
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 5.  Discussion

5.1. Study subjects.
No patients or normal controls were excluded for poor echo quality. This means that the study

population resembles that of everyday clinical practice, so the precision limits are the level of

precision to be expected in a clinical setting. One reviewer expressed surprise over the

relatively low κ- coefficients in paper 3, reproduced in table 4. The limited precision of all

methods is probably due to this.

All patients in the study in paper 3 had an angiography during the in-hospital phase. Of these,

16 had TIMI flow 2-3 (27), indicating reperfusion in the acute stage, while 4 had grade 0-1,

and had a PTCA in relation to the angiography. (Also patients with grade 2-3 had PTCA in

many instances, but this was to improve stenosis, not for salvaging myocardium.) Only two

patients were examined by echo before very early PTCA, and both of these had TIMI grade 2-

3. In reality, this means that all patients had reperfusion. This has probably resulted in a

certain percentage of salvaged myocardium with normal function in some at-risk-segments by

angiography. This will give an apparent reduction in the sensitivity of echocardiography and

SRI for at-risk segments. It will not, however affect the comparison of the two methods.

In the studies in paper 4 and 5, there is a significant difference in age between patients and

controls. As diastolic Tissue Doppler measurements are age-dependent (30), SRI data should

bee as well. Thus, some of the differences may be due to age. The separation of the control

group into age intervals does show this, strain rate and strain rate propagation are all reduced

with increasing age. The differences between the oldest controls and the patients are still

significant, though. The main point however, of this study, is the study of the strain rate of

diastolic function per se, regardless of causes. The age differences, although hardly significant

due to the small groups, tend to support the main findings, that in decreased diastolic function,

both strain rate and strain rate propagation during early filling is reduced.

The patients in paper 4 and 5 were on treatment during the examinations. The medication may

have influenced the findings. As half of them were on losartan, the other half on atenolol,

segregating them by heart rate as was done in paper 4, should increase the proportion of

β−blocker treatment in the low heart rate group, and losartan in the high heart rate group. Any

drug-specific effects would presumably have shown up as differences between those groups.

None did, however, indicating that the findings are more probably related to diastolic function

than to medication. One significant difference, the increase in peak strain rate during atrial

systole, can be attributed to longer diastole rather than drug effects (other than on heart rate).

Considering the number of measurements examined, the difference may even not be
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significant. Applying Bonferoni’s correction of the p value for the number of variables, it is

not. The main differences in annulus velocities, peak early diastolic strain rate and

propagation velocity, remains significant event with this.

Studies in isolated heart muscle (34, 35) have shown the velocity of contraction / relaxation to

be load-dependent. Examining patients on treatment, with normalised blood pressure,

supposedly would normalise the afterload, and reduce the impact of blood pressure. This

would make the study “cleaner” regarding delayed relaxation per se. Tissue velocity data have

been shown to be load- (preload) dependent to some degree (31, 36). Then strain rate

measurements would be expected to be too. A recent study seems to confirm this with regard

to strain rate propagation (37). At present, there is no specific data on the effect of afterload

on strain rate measurements. As there were statistically significant differences in blood

pressure, this may to some extent have influenced the results. Further studies both of patients

with different load condition, as well as invasive animal experiments may be indicated.

5.2. Methods.

5.2.1. Validation
The relation between longitudinal velocity gradient and “true” strain rate is discussed in more

detail in appendix A. In a clinical setting, this is of minor importance. Measurements are

method dependent in any case. The main objective of this study has been to validate findings

rather than actual measurements. Subsequent studies have validated integrated strain against

microsonometry (38) and found a good correspondence. The validation in patients, however,

still poses some problems. As discussed previously, the annulus velocity may be seen as the

sum of all strain rates along the wall from the base to the apex. If peak strain rates are

reasonably simultaneous, and colour SRI seems to indicate that they are, a peak systolic strain

rate of 1.4 s-1 should, in a normal ventricle of about 9,5 cm give an annular systolic velocity of

13.3 cm/s.  This exceeds reported normal values (10, 30) as well as the findings in paper 4.

The explanation for this may be that the peak is less simultaneous than apparent from colour.

In addition, the peak strain rate may be overestimated due to noise artefacts. When identifying

the peak systolic strain rate, the chosen value will often include a high noise component,

contributing to the peak value. True peak strain rate value may therefore be lower than the

measured strain rate. When strain is concerned, however, this does not apply. The peak strain

is the end resultant of wall shortening, i.e. the end systolic shortening, regardless of the timing

of peak strain rate or velocity. This means that the peak strain should be end-systolic, and

hence, simultaneous. In addition, when adding the instantaneous strain rate values as in

equation 4, the effect of random noise will theoretically cancel out. As the noise is random

there will on the average be as much noise subtracting from the true strain rate value, as there
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will be noise adding to it. In a recent study (39), the normal value is reported as 16%

shortening. In a normal ventricle this will amount to about 1.5 cm shortening of the ventricle,

very close to the normal systolic annular displacement (4, 5, 6, 7, 8, 9).

In comparing strain rate imaging to 2D echocardiography, it is important to note that the 2D

recordings were optimised, both in using second harmonic, as well as using an expert reader.

This means that in paper 2 and 3 the reference method is as optimised as it can get. In

contrast, using the tissue picture from the SRI cine loops is not optimal. The tissue picture

underlying the colour SRI or DTI recordings has substantially reduced the number of lines in

order to achieve higher frame rate. In analysing Doppler data, frame rate is the main priority,

but the spatial resolution of the tissue picture has to be sacrificed. In a recent study (39) this

resulted in a reduced accuracy of 2D echo compared to SRI and to the accuracy in paper 3,

but the precision of SRI was similar to the one in paper 3.

The studies in paper 2 and 3 does show the main findings of reduced segmental function by

echocardiography and SRI to give a moderate to good correspondence (28), in addition to

performing similarly in relation to angiography. The moderate correspondence, however,

seems to be mainly the result of the inherent precision of either method. The intra method

variation is as great as the between method variation, as shown in table 4.

Table 4: Inter and intra method variability:
Comparison κ– coefficient 95%

confidence interval

weighted

κ–coefficient

SRI vs. 2D - echo 0.52 0.41 - 0.64 0.64

2D-echo intraobserver 0.58 0.47 - 0.69 0.70

2D-echo interobserver 0.64 0.54 - 0.74 0.74

SRI intraobserver 0.66 0.56 - 0.76 0.75

SRI interobserver 0.47 0.35 – 0.58 0.60

The interobserver study of SRI is with the same two observers as in paper 2. In the first study

after 5 learning cases, it was 0.32 (0.1 – 0.36), weighted 0.49, in this study with the previous

15 as learning cases, it was 0.47 (0.35 – 0.58), weighted 0.60. The improvement, may be

taken as an indication of a learning curve for SRI.

Combining the results from paper 2 and 3 gives 30 patients. Of 451 segments, 336 had the

same WMS by both methods, 92 differed by one degree, and 20 by two degrees:
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Table 5: Segmental comparison between 2D echo and SRI:
SRI

WMS 1 2 3 4 Sum

1 266 25 9 300

2D Echo 2 24 39 11 3 77

3 8 25 34 6 73

4 1 1

Sum 298 89 55 9 451

 This gives a κ = 0.50 (0.38 – 0.61), weighted 0.63 (0.52 – 0.74).

5.2.2. Applicability
In general, Doppler shift is considered more robust than tissue echo, giving fewer dropouts. In

the combined population in papers 2 and 3 however, a total of 30 patients with a possible

yield of 480 segments, 473 were evaluable by 2D, 454 by SRI. In this preliminary work, no

segments were evaluated that did not show either tissue lines or the propagation of strain rate

during atrial systole. The intention of this, was to reduce the false interpretation of dropouts as

akinesia. This rather restrictive practice was due to the method being new, with caution as

well as lack of experience, as we were still learning the new method. On the other hand, some

of the readings by 2D echo may be subconscious extrapolations of neighbouring segments,

based on the considerable experience of the reader. What the studies seem to show, though, is

that 2D echo performs well with state of the art imaging technique and with experience.

The analysis in this study was limited to the 16-segment model, and the 4-grade scale to be

able to compare with 2D echo. Actually he temporal and spatial resolution of colour M-mode

is better than 2D-echo, so the heterogeneity of systolic function within segments is better

visualised. This may give hope of better sensitivity for minimal function, i.e. for viability.

This however, needs further research.

Peak systolic strain rate was measurable in 1012 of 1184 (85%) of the possible segments in

papers 3 and 4.

5.2.3. M-mode measurements
In measuring strain rate propagation, a straight line M-mode was used, rather than the curved.

In placing a curved M-mode, the curvature and hence, the length, is subjective. In accordance

with this, the curved M-mode in the software application did not calculate distances, although

it could be made to by some trickery. To avoid the subjectivity, the straight line M-mode was

chosen. To compensate for the difference between the curved wall and the straight M-mode



Støylen: Strain rate imaging page 34

line, the propagation velocity was measured in the basal half of the walls, where the wall was

reasonably straight. However, the findings in paper 4, that the propagation velocity was

apparently increased in the wall showing increased curvature in the base, indicates that a

curved M-mode that follows the wall closely, would be the most correct, if there was a

method to standardise, as discussed in 5.3.2. The measurement of apical delay of relaxation,

as proposed recently (37), might solve this. Being a measure of the time interval only, it is

curvature independent. However, this delay is level (base-midwall-apex) dependent, and the

level of measurement need to be standardised instead. This method, however, poses additional

problems. In the first case, the isovolumic relaxation of the apex may be misinterpreted as the

relaxation during early filling. In the second case, if the delay is measured too near the apex,

the angle dependency may be the limiting factor, as strain rate approaches zero as the angle

increases (5.6.6).

The propagation velocity measurement has assumed the propagation velocity to be constant,

as the measurement is linear. There are no actual data in the studies to support this, except for

the visual impression.

Strain rate propagation has limited precision, the intraobserver limits of agreement in paper 4

were (-29.4; 32.5 cm/s) and interobserver limits of agreement are (-24.2; 36.6 cm/s).

5.2.4. Flow propagation measurement
The actual value of flow propagation velocity depends on whether front velocity (black-to-

colour transition (32)), front of aliasing velocity (41, 42) or main direction of aliased flow

(23) is chosen. In addition, measurements are dependent on scanner settings: Black-to-colour

transition depends on the level of low velocity rejection, the aliasing contour on PRF.

Comparing different studies is therefore difficult, as shown by the variety of normal values

given (23, 32, 33). Flow propagation was measured in the same files with an interval of one

year, by the same investigator. The intraobserver limits of agreement was (-33.3; 52.1 cm/s),

showing a rather low precision. The difference between patients and controls, and the

negative correlation with strain rate propagation velocity, however, remained significant. To

see if the method of measurement of flow propagation velocity would change the findings,

both black-to colour and main direction of aliased velocity was measured as well. The

comparison is shown in table 6. It is obvious from the table that the other methods of

measurements have even less precision. In black to colour analysis, the differences between

patients and controls, as well as the negative correlation between flow propagation velocity

and strain rate propagation velocity are still significant. In main direction of aliased velocity

measurements, neither difference nor correlation is significant, but the tendency is in the same

direction. It is to be emphasised that flow analysis is limited to the linear measurements of the

column flow. Neither delay of filling at the apex (43), nor eigenvector analysis (23) are done.
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Table 6. Comparison of flow propagation by three methods.
Front of aliased

velocity

Black to colour

transition

Main aliased velocity

Patients 54.8 55.5 72.1

SE: 1.59 5.11 11.72

Controls 69.9 144.1 137.2

SE: 3.75 30.60 32.18

P: < 0.002 < 0.02 0.08 (NS)

R: (95% CI) -0.57

(-0.79 – -0.23)

-0.43

(-0.7 – -0.04)

-0.19

(-0.54 – 0.22)

SE: Standard error of the mean. P: significance of the differences between the two groups.

5.3. Findings

5.3.1 The normal strain rate pattern:
From colour M-mode of the normals, a typical pattern is apparent:

Isovolumic contraction period is apparent as a simultaneous shortening. No propagation due

to the electromechanical delay is apparent. Systolic shortening in the ejection phase starts

virtually simultaneous in all levels, although the peak strain rate may be less simultaneous, as

discussed in 5.2.1. In comparison with the tissue velocities, it is apparent that while the

velocities decrease from the base to the apex (17) as shown in fig. 5 and 7a), that the peak

strain rate is the same at all levels as seen in fig. 7b).

At end ejection there is an elongation wave starting at the midwall level. This has been taken

as an indication of the isovolumic relaxation. In a recent study, however, we have shown that

this wave occurs before closing of the aortic valve by phonocardiography (44). This

corresponds to the established finding of protodiastolic filling (45) which again corresponds

with the short period of reverse flow in the aorta before aortic valve closure as demonstrated

by Doppler measurement (46). The finding that the elongation starts at the midwall level,

however, must not be taken as an indication that relaxation starts here. MR has shown the

initial diastolic deformation to be an “untwisting”, starting in the apex (15). This rotational

movement will not show up in he longitudinal strain rate measurement, unless resulting in a

visible elongation of the ventricle. This will be more apparent in the midwall part, where the

shape of the ventricle is more cylindrical. The finding may therefore only represent the first

visible  diastolic deformation by longitudinal strain rate.

In diastole, unlike the early and late diastolic peak tissue velocities, the peak strain rates of the

two phases do not decrease from the base to the apex. On the other hand, while peak early and

late velocities are simultaneous at the different levels, the peak strain rates are delayed from

the base to the apex as shown in fig. 7b). This is also shown in the colour M-mode as a wave
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of elongation. The propagation velocity of these waves is the same in all walls, in the

normals. As the mitral valve opens, the part of the walls closest to the valve are the first to

move. The propagation of the wall elongation may then be similar to a queue of cars starting

to drive. While the cars moves forward, the starting of the cars is a wave propagating

backwards. In the colour M-mode in paper 4 and in the curve sequences in fig 7b) is seen that

the elongation waves return from the apex, this can also be discerned as a small oscillation of

the mitral ring when studied by pulsed tissue Doppler. The returning wave is of low

amplitude, and may be difficult to discern from the noise in the strain rate curves. The

returning wave may be either a reflection, or, as the apex is dome shaped and retreating from

the chest wall during this phase, more probably the continuation of the wave from the

opposite wall. The diastasis is a period of no deformation, and finally atrial systole is a new

wave of elongation propagating from the base to the apex and returning to the base. As the

atrium in the late diastole actually pulls on the mitral ring, the propagation from the base to

the apex can be easily explained.

5.3.2 Systolic function
The comparison between 2D echo and Colour SRI does confirm that SRI shows regional

deformation of the myocardium.

The studies in normal subjects, and the symmetric ventricles of the hypertensive patients do

all show the same peak systolic strain rate in all levels of the ventricle i.e. basal, midwall and

apical. This means that the longitudinal systolic velocity gradient is constant along the

ventricle, if the peak strain rate is simultaneous, which is not proven, but may seem

reasonable from experience.

Another implication of the results in paper 3, is that wall thickening and wall shortening

seems to convey the same information, i.e. to be interchangeable. This means that they are

inversely related, as is hypothesised in fig. 2 and 4. In other words, as the wall shortens it

thickens, as it stretches, it thins, confirming the conservation of volume, to a certain extent.

There are no established normal values in for longitudinal strain rate so far. The normal

values in this study, compared to the hypertrophic and infarcted patients are given in table 7.



Støylen: Strain rate imaging page 37

Table 7. Mean peak systolic strain rate of normal subjects,
hypertensive patients and myocardial infarction grouped according
to Wall motion score by 2D echo.
Subjects:

(Number of patients/Number of segments)

Peak systolic strain rate (s -1)

(Standard deviations)

Normal controls (N = 28) 1.43 (0.21)

Hypertensive patients (N = 26) 1.15 (0.17)

Myocardial infarctions (N = 20) 1.00 (0.56)

WMS = 1 (N = 200) 1.21 (0.42)

WMS = 2 (N = 44) 0.77 (0.51)

WMS = 3 (N = 49) 0.38 (0.53)

WMS = 4 (N = 1) 0.00 (NA)

5.3.2. Diastolic function
Peak diastolic strain rate may be an assessment of the rate of relaxation. The finding of the

propagation waves of the wall elongation during the filling phases, however, adds information

about the physiology of diastole.  When the fact that wall thinning and stretching are inversely

related is coupled to the finding of the propagation of the elongation, this may also be seen as

a wave of chamber dilation as illustrated in fig. 9. The propagation velocity of the chamber

dilation is the strain rate propagation velocity of early diastole (PVSe). This is the rate of

chamber expansion as well, and thus, related to the rate of filling. In delayed relaxation, both

peak strain rate and the propagation velocity of strain rate in early relaxation is reduced. The

tissue velocity of the mitral annulus is reduced as a consequence of both. Reduced peak strain

rate will result in a direct reduction of peak velocity. Reduced propagation of peak strain rate

will result in increased temporal dispersion of peak strain rates, resulting in a lower and wider

velocity curve, with reduced peak. Propagation velocity of strain rate is the same in all six

walls of the standard apical planes in the normals. An implication of the documented non-

simultaneity is that the diastolic strain is non-uniform at any specific time along the wall, even

if the peak values are equal.
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Fig. 9. The wall stretching in early filling propagates from the base to the apex. A wall stretching implies wall
thinning, this means that the chamber expansion due to wall thinning propagates from the base to the apex as well.
The propagation velocity in this diagram is the slope of the thin line crossing the three phases of early filling. It
corresponds to the propagation velocity of strain rate.

Table 8. Peak systolic and diastolic strain rate at different levels in
normals:
Level: PSRS

(s -1)

PSRE

(s -1)

PSRA

(s -1)

Apical 1.44 2.43 1.37

Midwall 1.42 2.13 1.29

Basal 1.42 2.39 1.47

Global 1.43 2.30 1.38

PSRS: Peak strain rate in systole, PSRE: Peak strain rate of early filling, PSRA: Peak strain

rate of early relaxation.
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Table 9: Peak systolic and diastolic strain rate, and diastolic strain
rate propagation velocity in different walls of normals:
Wall PSRS

(s -1)

PSRE

(s -1)

PSRA

(s -1)

PVSE

(cm/s)

PVSA

(cm/s)

Septal 1.46 2.29 1.69 60.6 90.6

Anteroseptal 1.37 2.10 1.56 56.8 88.2

Anterior 1.42 2.29 1.47 59.3 92.7

Lateral 1.38 2.30 1.44 63.1 98.7

Inferolateral 1.50 2.32 1.38 60.0 93.6

Inferior 1.37 2.27 1.38 59.2 102.1

PVSE: Strain rate propagation velocity of early filling. PVSA: Strain rate propagation velocity

of atrial systole.

Differences between the walls were not significant by ANOVA analysis, showing normal

systolic and diastolic function to be symmetric.

The finding of increased propagation velocity in the anterior septum of the patient group is

probably due to an artefact, as the hypertrophic wall is s-shaped, increasing the difference

between the wall length and the straight line M-mode line. This gives an apparently reduced

wall length, and thus an apparently increased velocity. Global peak mitral annulus velocities,

peak strain rates and propagation velocities of strain rate in early and late diastole are given in

table 10, for both controls and patients.

As both tissue Doppler measurements (31, 36) and strain rate propagation velocities (37) have

been shown to be preload dependent, invasive studies to establish the relation between the

separate components and load is indicated.



Støylen: Strain rate imaging page 40

Table 10. Peak annulus velocity, peak Strain Rate and peak strain
rate propagation velocity of early and late filling. (Standard
deviations.)

DTIe

(cm/s)

DTIa

(cm/s)

PSRe

(s -1)

PSRa

(s -1)

PVSe

(cm/s)

PVSa

(cm/s)

Controls 13.1 (2.8) 10.2 (1.8) 2.22 (0.49) 1.49 (0.48) 60.0 (12.9) 94.0 (22.1)

Patients 8.2 (1.5) 11.0 (1.8) 1.46 (0.25) 1.66 (0.37) 31.6 (9.3) 72.0 (16.2)

P: <0.001 NS <0.001 NS <0.001 <0.001

DTI: peak annulus velocity by pulsed Doppler of E – and A – wave. PSR: peak strain rate of

E – and A – wave. PVS: propagation velocity of strain rate of E – and A – wave.

5.3.3 Flow measurements
As discussed in the previous paragraph, the strain rate propagation velocity may be a measure

of the rate of chamber expansion, and hence, filling. As strain rate propagation is reduced or

delayed, an increase in the filling time is to be expected. The finding of an inverse relation

between strain rate propagation and deceleration time of mitral flow as shown in fig. 10

supports this, as deceleration time of early mitral flow is a measure of the filling time of early

diastole. Strain rate propagation shows similar values in normals as previously reported for

flow propagation (23). In paper 5, the strain rate propagation and flow propagation velocity

are similar in the normal subjects as well.

Fig. 10. Scatterdiagram of the relation between strain rate propagation velocity and deceleration time of mitral
flow. As the chamber dilation propagates slower, it means that the rate of chamber expansion decreases and the
filling time increases. An inverse relation between the two is expected.
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On the basis of this, a model of normal filling as in fig. 11 can be proposed. In-flowing blood

is deflected from the front of the flow wave to fill the void created by the chamber expansion.

The flow front propagates backwards in the inflowing blood column and thus the propagation

velocity is less than the flow velocity. In delayed relaxation, it could be expected from this

model that both strain rate propagation and flow propagation velocity would be reduced. This

would also be in accordance with previous studies (23, 32, 33, 41, 42, 43).

Fig. 11. Proposed sequence of events during normal filling. As the ventricle widens, the foremost part of the flow
column is deflected to fill the expanding chamber. This means that the velocity front propagates backward relative
to the in-flowing blood column, and with a lower velocity than the flow velocity. The flow propagation is
illustrated by the propagation of the foremost arrow (1 – 2 – 3), while the flow velocity is represented by the
propagation of arrow no 3. The diastolic motion of the base of the heart deflects the blood further, resulting in
vortex formation (not shown in figure).

The finding of the opposite relationship was surprising. The most robust finding is that the

flow propagation velocity was increased in a population with delayed relaxation. In

accordance with this, there was a negative correlation between flow propagation and strain

rate propagation velocity in the whole study group as seen in fig. 12. From the scattergram, it

is also obvious that this is not due to clustering of the results, as measurements are spread out

over the whole range. We had to consider the differences between the study population and

those of previous studies.
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Fig. 12. Scatterdiagram of the relation between strain rate propagation velocity and flow propagation  velocity,
showing the inverse relation.

In a previous model experiment, Steen & Steen (47) does show that flow propagation velocity

is partly a function of the annulus / chamber diameter ratio. These model experiments,

however, did not take into account the dynamic nature of left ventricular deformation during

early diastole. In our study, there was no significant difference in end diastolic diameter

between patients and controls. But when early filling phase is seen as a dynamic event, there

are transient differences in diameter as shown by the delayed strain propagation. Slowing of

strain rate propagation means that the ventricle remains narrow for a longer time during early

filling. Many of the previous studies do not report the systolic function or the ventricular

diameter. Animal studies may be confounded by the change in left ventricular geometry

induced by the open chest procedure.

In a recent study of flow propagation in hypertrophic cardiomyopathy, however, flow

propagation is reduced (48). No ventricular diameters are reported, but the ventricles are

described as hyperdynamic. A recent MR study of flow in normal subjects reports decreasing

velocity propagation with increasing age (49). In none of these populations is there any reason

to assume any chamber dilation. The findings in the present study are not in accordance with

the findings in those studies.
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The patient group has delayed relaxation, as evidenced by the prolonged deceleration time

and IVR (22) as well as reduced early diastolic mitral annulus velocity by tissue Doppler (31).

On this background, peak mitral flow velocity and E/A ratio of mitral flow is higher than

expected in a group with delayed relaxation. There is no significant reduction in peak mitral

flow velocity, and although there is a significant reduction in E/A ratio of mitral flow

velocity, it is about 1.0. The flow and strain rate findings are summarised in table 11.

There is no reason to assume that this finding of a high mitral flow velocity is due to increase

in filling pressure with pseudonormalisation. Firstly, there is no evidence of

pseudonormalisation in the patient characteristics. As the deceleration time and IVR is

prolonged and the average MVmax/DTIe (E/Ea) ratio in the patient group is 8.0 (50), there is

no reason to assume increased filling pressure and pseudonormalisation, but rather very

moderate pathology. Secondly, flow propagation has previously been reported to be load-

independent (48, 51), so preload alterations should not explain the flow propagation increase

in any case.

Table 11: Mean strain rate and flow measurements. (95%
Confidence intervals)

PSRE

(s -1)

PVSE

(cm/s)

PVFE

(cm/s)

MVmax

(cm/s)

Controls 2.21

 (1.91 – 2.50)

66.6

(59.9 – 73.4)

54.8

(51.6 – 57.9)

73,6

(63.6 – 83.9)

Patients 1.51

 (1.38 – 1.63)

29.6

(24.3 – 34.8)

69.9

(62.6 – 77.3)

64.9

(56.1 – 73.7)

P: <0.001 <0.001 <0.002 NS

PSRE: Peak Strain Rate during early filling, PVSE: propagation velocity of strain rate during

early filling, PVFE: propagation velocity of flow during early filling and MVmax: peak early

transmitral flow velocity.

In table 11, it is evident that there is a high mitral flow velocity and a very similar flow

propagation velocity in the patient group. Coupled to the finding of a reduced strain rate

propagation velocity, a model of filling as shown in fig 13 could be proposed. As the inflow

velocity is higher than the propagation of camber dilation, the inflow will be forced forward,

as shown. The flow propagation may then be equal to, or even exceed (by convergence) the

flow velocity at the inflow. At the same time, the relaxation is shown to have begun at the

apex, giving a gradient for direct flow into apex (15).
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Fig. 13. Proposed sequence of events during early filling in patients to account for the findings. In delayed
relaxation,. strain rate is shown to propagate at a lower velocity, resulting in less deflection of blood from the
column front, and hence, a flow propagation velocity that approaches the inflow velocity.

Assuming a decrease in peak inflow velocity, the proposed sequence of events in fig 12 might

reverse. With a reduced inflow velocity, the chamber expansion would keep up with the flow

velocity (filling rate), and the sequence of events in fig 11 may again dominate at a slower

rate. In this case, flow propagation and strain rate propagation will synchronise again.

By this model, flow propagation should be a function of both inflow velocity and strain rate

propagation. This is supported both by the multivariate analysis showing the interaction

between mitral flow velocity and strain rate propagation as determinants for flow propagation

(table 12), as well as the correlation between MVmax/PVSe and flow propagation velocity

(fig 14). When diastolic diameter, however, it should be considered that there is a narrow

range of variation, within normal limits.

Further research will be needed to examine this interrelationship over a wide range of values.

Flow propagation alone may have too many determinants to be a simple index of diastolic

function. Neither strain rate propagation nor flow propagation velocities do at present show

the precision necessary for clinical use.
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Fig.  14. Diagram of the relation between flow propagation and the ratio between mitral flow velocity and strain
rate propagation. The low R2 indicates that the relationship in not linear, however.

Table 12. P values for relation by linear regression.  PVFe as
dependent variable.

All LVDd DTIe Dec-t IVR PSRe PVSe MVE

Univariate — NS NS NS NS NS 0.003 NS

Multivariate

(all)

0.016 NS NS NS NS NS 0.004 0.017

Multivariate

PVSe, MVE

0.001 — — — — — <0.001 0.014
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5.4.   Limitations of the studies
The study has not validated strain rate imaging as true strain / strain rate, as would be the case

in model experiments or direct comparison with MR, but as assessment of regional wall

function in a clinical setting. The limitations this gives in the validity of measured values may

be more theoretical than of clinical relevance, however. On the other hand, if the

measurements in this study incorporates a high noise component, the results may not be

representative for measurements if SRI is improved concerning noise.

As discussed in 5.2.1, in paper 2 and 3, two imprecise methods are compared as validation.

The correspondence between methods and thus, the actual validation is limited. Only semi-

quantitative strain rate is in fact validated, but this is due to the chosen reference method

being semi-quantitative as well. In paper 2, no attempt is done to quantify the measurements,

and in paper 3, only peak systolic strain rate and not strain is measured. This means that the

actual precision of peak strain, as well as the applicability (by the number of measurable

segments) can not be estimated.

The precise relation of longitudinal vs. transverse strain is subject to mathematical analysis

and dependent on the presence of shear strain as well as the magnitude of circumferential

strain. The relation that has been established in this study is only semi-quantitative.

The actual method of measurement of strain rate propagation velocity is open to question. The

propagation velocity may not be constant, and thus the equation not linear as assumed, as

discussed in section 5.2.4.

The low numbers limit the study of flow propagation velocity. Even though there is

significance, other determining factors for flow propagation may be found as not significant

because of small variations in the limited population.

5.5. Advantages of the strain rate imaging method
Strain rate imaging is the first method for true quantitation of regional function by ultrasound.

Velocity measurements are influenced both by translation of the whole heart and the tethering

effect of the neighbouring segments. The tethering is in fact the mechanism for the gradual

increase in velocities from apex to base. But tethering means that even akinetic segments may

have velocities, as shown in papers 2 and 3. Annular velocities may even be normal, as

contracting segments may be hyperkinetic. By utilising velocity differences, both tethering

and translational velocities are simply subtracted.

Even though echocardiography and SRI seem to yield the same information in the studies in

papers 2 and 3, there are some advantages of colour SRI:

Even though the two methods do seem to give equivalent information, colour assessment is a

completely different way of visualising the data. With SRI, both colour and motion



Støylen: Strain rate imaging page 47

information is accessible; at least if double loops are recorded as in papers 2 and 3. This

means that the information in cases of uncertainty, the interpretation may be easier, especially

to less experienced. The learning curve of colour strain discussed in 5.2.1. may be an

indication of this.

In grey-scale assessment, correct interpretation is dependent on correct mid-chamber plane or

else the wall motion and thickening may be exaggerated as shown in fig. 15. The deviation in

strain rate measured from the apex is less, if the plane deviates from mid-chamber, as the

deviation is perpendicular to the tissue velocities.

Fig. 15. Illustration of the geometric distortion of 2D echo. The filled circle is the myocardium in diastole. The

broken line is the endocardium in systole. To the right is the projection of a correct mid-chamber plane, giving the

correct wall thickness, thickening and chamber diameter. To the left is the projection of an eccentric plane,

showing how this leads to an overestimation of wall thickness, wall thickening and chamber shortening.

A study of interpretation of computer generated delayed onset of segmental contraction in 2D

echo cine-loops, has shown that the detection of delayed onset contraction is reliable only if it

is more than 100 ms, and is definitely unreliable below 80 ms. (52). In SRI this delay can be

measured directly in the M-mode with time resolution up to the maximum frame rate.

Post-systolic shortening is shown to be a very early marker in acute myocardial ischemia (53).

The demonstration of post-systolic shortening may increase the sensitivity as well as the

precision of stress echo, beyond mere measurement of regional systolic contractility. Both
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presence and location of post-systolic shortening is easy to demonstrate with SRI. Its

universality in myocardial infarction however, leaves open to discussion whether it really is a

viability marker (54).

The main advantage of strain rate imaging is its potential availability. With capacity for

colour DTI, the algorithm is so simple that it can be implemented in real-time processing

without the need for any additional processing capacity. Thus, it can be available bedside, in

contrast to MR and complicated post-processing.

Strain rate imaging has today a high temporal resolution, with a frame rate of up to 130 FPS,

i.e. a temporal resolution of 8 ms. This may be close to what is needed to study the short

duration of the isovolumic phases, as well as arrhythmias and conduction disturbances.

5.6. Limitations of the strain rate imaging method

5.6.1. Aliasing
If one of the velocities used to calculate strain rate is aliasing, the resultant strain rate is also

false. Theoretically, if v1 is aliased, the resulting velocity difference should increase. If v2 is

aliased, the resulting velocity difference should decrease or reverse. If both velocities aliase,

however, the velocity difference remains unchanged, and no aliasing of strain rate occurs. In

practice, aliasing in most instances results from noise added to velocity measurements, so it is

still open to question whether there is less aliasing in SRI than in DTI. Typical aliasing in

strain rate and strain curves is shown in fig. 16 c) and d), and in colour strain in paper 3, fig.

9. If the M-mode line is not within the wall, velocities and turbulence of blood may give high

strain rates with aliasing as well.

5.6.2. Reverberations
Reverberations may also give rise to false inverted colours, as strain rate is calculated in

relation to apparent immobile echoes. It will ordinarily show up in the M-mode as a

horizontal line of inverted colour.

5.6.3. Noise
The strain rate method has serious noise problems. This is illustrated in Fig. 16. The

numerical derivation of the gradient is noise sensitive. As strain rate is based on the difference

between two velocities, while the error is the sum of the errors of the two velocity

measurements. The noise to signal ratio is thus far more unfavourable than for velocity

measurements alone. In quantitative strain rate imaging the noise may give too high peak

values as previously discussed (5.2.1). The low accuracy seen in paper 3 is due to this. In

addition to temporal smoothing of the curve, smoothing can be achieved by different means.
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A method of decreasing noise is to increase offset length. As the noise is considered random,

increasing offset length will increase the velocity difference and the distance in equation 7).

The velocity difference will increase, and the noise-to signal will decrease, in proportion to

the increase in ∆x. The velocity gradient will remain unchanged as both the velocity

difference and the offset length increase in the same proportion. Increasing the offset length

will in fact give a (temporal) smoothing of the strain rate, but on the cost of reduced spatial

resolution (fig. 16c). If the 16 segment model is used, however, where only the segmental

function need to be considered, a radial resolution of 1.5 cm (to avoid the angle problems at

the base and the apex) may be sufficient. The studying of transmural strain, however, will be

limited by the noise. Ideally, the offset should be equal to the minimum wall thickness, (5-7

mm). As the wall moves, however, it will have to be even less, to keep the whole offset length

within the wall during the whole heart cycle. It may be feasible in the posterior wall, but the

motion of the septum may demand an offset length that may be prohibitive because of noise.

The high noise components may account for some reports showing very high strain rate

values, even in akinetic segments (55).

Another way of temporal smoothing is to integrate the strain rate to cumulated strain (fig. 16

d). As noise is random the integration will tend to eliminate the noise by evening out as

discussed in 5.2.1. Integrated strain may thus be a method of using shorter offset lengths.
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Fig 16. Noise sensitivity of strain rate measurements. All measurements are from the same clip.
A. Velocity curve from the point indicated on the 2D image.
B. Strain rate curve from the same area. The offset distance (∆x) is 5 mm. Both the area and the offset length is

indicated on the 2D picture.
C. The effect of increasing the offset length to 15 mm. The length is show on the 2D picture, indicating the loss

of spatial resolution. The curve is much less noisy, although a spike is seen at end ejection which is aliasing
due to noise.

D. Integrating the strain rate curve of C to strain will smooth the curve further. The aliasing artefact is still
visible, though. The temporal smoothing gives loss of time resolution.
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5.6.4.  Frame rate:
The frame rate of SRI in most of the studies has been around 70. In the early experimental

stages, it was uncertain whether the tissue information was important for the interpretation.

Colour DTI can achieve a framerate of 130 when the whole ventricle is kept in the sector, and

off-line SRI from DTI has the same. The same framerate can be applied in online SRI, but on

the cost of tissue resolution. Personal experience indicates that the high framerate will reduce

noise, probably due to the increased number of points on the strain rate curve, indicating that

the maximal obtainable frame rate is the optimal. If tissue resolution is an issue, the answer

will then be to acquire two sets of data, 2D second harmonic as well as tissue Doppler or

strain rate. In the future, both velocity / strain rate data and tissue information may be

calculated from RF data, with no trade off between the methods. It should then be possible to

contain all information in the same loop.

5.6.5. Spatial resolution
The minimum distance, over which the strain rate can be measured, the offset distance (∆x in

fig. 6) is limited by the accuracy of velocity measurements. The random error in the strain rate

estimate is inversely proportional to the offset distance. Thus, the offset distance is a

compromise between accuracy and spatial resolution. In the studies, offset distance of 5 to 7

mm, has been used. There may be different optima for different purposes, as discussed above.

In any case, the spatial resolution is less than in DTI, as long as strain rate is measured over

finite distances.

The lateral resolution is equal to the beam width, plus the amount of averaging. The lateral

averaging was maximised, also to decrease noise, but reducing the possibility of measuring

differences across the wall and thus changes in shear strain.

5.6.6. Insonation angle:
The strain rate is measured along the ultrasound beam, not along the direction of longitudinal

strain. In velocity measurement, the measured velocity is reduced in proportion to the cosine

of the angle between the velocity vector and the ultrasound beam α, with zero velocity at an

angle of 90º. In strain rate imaging, this problem is accentuated. The velocity gradient is

reduced by the cosine of the angle between the velocity vector and the ultrasound beam as

velocity measurements. In addition, in an incompressible heart muscle, there is transverse

strain in the opposite direction due to the conservation of volume, further detracting from the

numerical value of strain rate. This is proportional to the cosine of the transverse angle, β,

(the angle between the ultrasound beam and the transverse strain). It can be shown (appendix)

that the measured strain rate (SRm) is

9) SRm = SR (cos2 α – sin2 α).
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where α is the angle between the ultrasound beam and the wall (the principal strain direction)

when analysed in two dimensions. Strain rate is thus reduced to zero at an insonation angle of

45º as illustrated in fig 17. In three dimensions this will be already at an angle of 30º if the

strain is equally distributed along the three directions (56). This, however, is dependent on the

relation between the longitudinal and transverse strain to the circumferential. If

circumferential strain is close to zero, as discussed in 1.2, the insonation angle with zero strain

really will be 45º.

Fig. 17. Angle dependency of strain rate measurement. The dotted line illustrates the ultrasound beam, α is the
angle between the ultrasound beam and the longitudinal axis, b is the angle between the ultrasound beam and the
transverse axis. A illustrates an incompressible object, where the strain rates are simultaneous and with opposite
values. The arrows indicate the longitudinal and transverse strain. It is evident that the longitudinal strain is
reduced by the angle in the same way as the longitudinal velocity. In addition the transverse strain, being opposite,
will detract further from the measured strain, so the angle detracts more from strain rate measurement than from
velocity measurement. B illustrates that the measured velocity difference ∆v is the sum of the longitudinal and
transverse velocity component along the ultrasound beam, and the distance ∆x is the projection of the offset
distance along the ultrasound beam. It is shown in the appendix that the measured strain rate SRm is related to the
longitudinal (SR l) and transverse (SR t) strain rate: SRm = SRl * cos2 α + SRt * cos2 α.
Due to the incompressibility shown in a, the transverse strain is opposite, so SR l + SRt = 0. Then the strain rate is:
SRm = SRl (cos2 α – sin2 α). At an angle of 45º, the measured strain rate is zero.

The angle dependency may constitute a problem in the apical and basal segments. However,

in our experience the basal parts of the apical segments and the apical half of the basal

segments are parallel enough to measure strain rate with sufficient precision, as shown by the
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unchanged peak strain rate at all levels. Another problem may be in septal hypertrophy in

advanced age and hypertension, where the septum assumes a s-shape and the ultrasound beam

may be almost transverse to the septum resulting in apparent a- or dyskinesia. This is mainly

visible in the long axis view, not in the four-chamber view, and constitutes a serious pitfall in

interpretation. The areas of greatest angle to the ultrasound beam are shown in fig 18. The

right ventricle being more curved than the left in the long axis view may be even more prone

to angular distortion.

Fig. 18. Areas of the heart where the wall deviates most from the ultrasound beam, the apex, the base and the
septum where it is S-shaped due to hypertrophy. The thin lines illustrate ultrasound beams, while the thick arrows
indicate the transverse direction, where systolic thickening will be more parallel to the ultrasound beams, and thus
give apparently inverted strain values.

5.6.7. One-dimensional measurement
Strain Rate Imaging allows measurements in one dimension at a time only, while strain has at

least three, possibly up to nine components. As discussed in 1.2, in an incompressible body,

strain in one direction has to be balanced by inverse strain in transverse directions. Thus the

assumption of incompressibility (conservation of volume) makes it possible to extrapolate

from one component to two. The findings in paper 3 supports this. If two strain components

could be measured simultaneously, the third could likewise be inferred. On the other hand, the

shear strain components are so far not accessible. The “twisting – untwisting” demonstrated

by MR (15) is an example of this.
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5.6.8. Strain  is wall deformation
Finally, it has to be kept clear, that strain is a measure of deformation, not muscle function.

The muscle contraction (sarcomere shortening) results in both shortening of the muscle fibres

and wall segments and tension in the fibres / wall segments. In order to fully characterise

muscle functions, the stress / strain relations would have to be measured analogous to the

pressure / volume curves of global function. The local stress, however is not only dependent

on local pressure and radius. The longitudinal load of a muscle segment is also a result of the

contraction of the neighbouring segment. In regional dyssynergy, this mechanism alone may

be responsible for reducing or delaying contraction, and even to the stretching of non-

contracting segments, i.e. dyssynergy. This interrelation between the deformation of

neighbouring segments is most easily visualised by colour SRI and this may introduce a new

dimension in load considerations, regional pressure/strain loops may be a rather crude

approximation.

Thus when deformations are described as contraction and relaxation, this is imprecise, as no

load is considered. This means that strain measurements can not differentiate between

contraction and recoil, between passive stretching and relaxation without additional

information. When the action of neighbouring segments as well as the phase inn the heart

cycle is taken into account, this may be interpreted to some extent.

5.7. Strain rate or Strain?
It is important to realise that strain rate and strain measures different things. The rate of

contraction may be slowed, but prolonging the contraction may compensate this, so the strain

rate may be reduced while the total strain is not. Typically this is seen in the post-systolic

shortening of acute ischemia (53), where the systolic strain during the ejection phase is

reduced, followed by shortening after the closure (resulting in no useful work, though) after

aortic valve closure. In increased heart rate, the strain rate may increase in response, but with

shortening of systole the total strain may not, resulting in no increase in stroke volume. For

assessing the total information, both strain rate and strain should be evaluated.

As discussed in 5.2.1 and 5.6.3, integrating the strain rate to strain will result in a smoothing

of the time-curve and reduction in noise.  As a result, the peak, or end-systolic strain should

be both more robust and more precise measure of regional systolic function. The better

correspondence between strain and annulus motion (39) than between strain rate and annulus

velocity (5.2.1) may seem to confirm that. On the other hand, no direct comparison of

reproducibility has been shown so far. In addition, the strain curves are prone to drifting of the

baseline, due to various causes such as poor frame rate with missing of peak values,

inhomogeneous strain within the sample volume, angle changes in the cardiac cycle or bias

(3). The data has to be reassessed, with a direct comparison of the repeatability of strain rate
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and strain, as well as the diagnostic accuracy before strain measurement can be proved more

precise than strain rate.

Another drawback of integrated strain is the loss of temporal resolution. It may lead to the

loss of sensitivity for post-systolic shortening as a marker of ischemia, and hence to loss in

sensitivity in general. Only further examination of the data as well as prospective studies in

stress echo will clarify that. For the timing of events in the heart cycle, strain rate is most

appropriate, with time resolution equal to the frame rate. For timing purposes, quantitative

strain rate measurements are not as necessary, so the noise is of less consequence, and colour

strain rate will be the most appropriate, giving quantitative measurements of timing and

depth.

5.8. SRI vs. DTI
The relation between colour SRI and colour DTI has been discussed previously (5.5). In

addition, as already discussed, SRI is more sensitive to noise (5.6.3) and to angular distortion

(5.6.6). In regional wall function assessment, i.e. in coronary disease, SRI gives more direct

information of regional function than the corresponding velocity measurement, at least when

the noise is acceptable.

For global function, however, the pulsed DTI is quick, easy and reliable. It is conceivable that

the peak systolic velocity of the mitral ring, sampled from four points, will give comparable

information about global systolic function (10) as the average strain rate sampled from 16

segments. When diastolic function is considered, the same applies to ventricles with

symmetric function. The annulus diastolic velocities (14, 30, 31) incorporates the information

about both peak strain rate and strain rate propagation in one measurement, and is quicker and

much less cumbersome in daily clinical practice. On the other hand, the strain rate gives much

more information about the spatio-temporal sequences in the ventricle, as discussed in 5.3.2.

This information is at present mainly physiological, and the clinical value remains to be seen.

Comparison of tissue velocities and strain rate curves is shown in fig. 8a) and b).

When regional function is considered, Tissue Doppler at one point of the mitral ring has been

supposed to measure the function of one sector, and give regional information of dyssynergy

of one wall. In a recent study (57), this is not confirmed. The variation between points on the

mitral ring is not greater in infarction patients than in normal subjects. The reason for this is

that the different vascular beds do overlap in different walls. This is shown by the loss of

regional differences when the strain rates of all levels in each wall are summed. This leaves

strain rate imaging to be the only true regional method.



Støylen: Strain rate imaging page 56

5.9. Potential of SRI and future developments
Further research will determine whether strain rate imaging in its present form will suffice to

give true quantitative stress echo. Greater precision may be achieved by various smoothing

adjustments as well as optimising frame rate.

The temporal resolution of SRI is of interest in studying arrhythmias and conduction

disturbances. Non-invasive location of start of both extrasystoles and pre-excitation may be

feasible, and could prove useful in relation to ablation therapy.

The temporal resolution of SRI will give new, physiological information about the isovolumic

phases. The clinical utility of this remains to be determined.

During most of diastole, the ventricular myocardium is passive. This means that mechanical

events are a function of the load changes and the material properties of relaxed myocardium.

The atrial systole is perhaps the most important, but experience has already shown that the

deformation wave of the early filling phase continues or is reflected back toward the base

during the first part of diastasis (paper 4). SRI may give new information of the material

properties of the myocardium.

Combining strain rate imaging with longitudinal M-mode has revealed new information about

the physiology and pathophysiology of diastole. It is conceivable that the combination of SRI

with one of the three-dimensional techniques will increase the amount of spatio-temporal

information.

The method may be improved by increased processing power. In the original paper, strain rate

was computed from RF-data, in an off-line application. With acquisition of RF data, both

tissue data, velocity and velocity gradients could be computed from the same data set, with

optimal frame rate. Whether this will result in reduction of noise, remains to be seen.
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6. Conclusions

The study demonstrates that Strain Rate Imaging, by obtaining longitudinal velocity

gradients, gives information about regional function of the left ventricle. It is feasible during

an ordinary echocardiographic examination. In semi-quantitative assessment of wall motion

score, it is comparable to 2D echo in diagnostic accuracy, but with superior temporal

resolution. The study has demonstrated that systolic wall thickening and longitudinal wall

shortening are equivalent. By corollary, wall thinning and wall elongation during diastole

must be related too.

In addition, Strain Rate Imaging gives quantitative measurements of strain rate or strain. Peak

systolic strain or strain rate may thus be a method for quantitative stress echo. The accuracy is

to limited for clinical use at present. The method can also give quantitative measurement of

spatio-temporal relations between the different phases and parts of the ventricle.

The study shows new information of diastolic deformation of the ventricle. Diastolic, annular

velocities are a function of both magnitude of relaxation rate, as well as the temporal

sequence in the ventricle. The filling phases consist of waves of stretching propagation from

the base to the apex. Peak strain rate and the propagation velocity of strain rate can describe

the two main diastolic events, early and late filling. In reduced diastolic function both are

reduced. The velocities of the mitral ring are the result of the combination of this. This adds

information about the physiology and pathophysiology of diastole, even though pulsed tissue

Doppler is quicker for clinical use. From the information that wall stretching propagates from

the base to the apex, as well as the inverse relation between wall thickness and length, a

hypothesis of the filling event as a longitudinal process of wall thinning propagation can be

established, describing the rate of chamber expansion.

Strain rate propagation in diastole can be seen as a measure of chamber expansion. The

decrease in delayed relaxation is consistent with the increased filling time.

Comparing strain rate propagation velocity to flow propagation velocity, flow propagation is

not confirmed as a measure of diastolic function, having more determinants than relaxation

alone. A relation between flow propagation velocity, flow velocity and, strain rate

propagation is conceivable.

Strain Rate Imaging is shown to be more sensitive to both noise and angular distortion than

velocity measurement by Doppler tissue imaging.
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Appendix: Mathematics of strain and strain rate:

Strain and strain rate:
One-dimensional strain of a body is defined as:

1a) Lagrangian strain: ε = 
L - L0

L0
  = 

∆L
L0

 

1b) Natural strain: ε’ = ln 






L

L0
 

Where L0 is the length at time t0 (t0 = 0), and L is the length at time t (L = L(t)). It follows

from the definitions that strain is dimensionless, but also that positive strain is lengthening or

stretching, negative strain is shortening or compression. But from this:

2a) ln (ε) = ln 
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2b) ln (ε + 1) = ln 






L
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And thus:

3a) ε = e ε’ – 1

3b) ε’ = ln (ε + 1)

Strain rate, the rate of change, is strain per time unit:

4) ε
.

 = 
dε
dt

 

From the formula, it is evident that the unit of strain rate, is s-1. The instantaneous change in

strain (strain increment or decrement is:

For Lagrangian strain: as ε = 
L-L0

L0
  = 

L
L0

  - 
L0

L0
  = 

L
L0

 – 1, then

dε
dL

 = 
1
L0

 and thus

5a) dε = 
dL
L0

 

For Natural strain: as ε’ = ln 






L

L0
  = ln(L) – ln(L0) and L0 is constant, so is

ln(L0). Then
dε '
dL

 = 
1
L

  and thus

5b) dε’ = 
dL
L
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Thus Lagrangian strain change uses original length as a reference, while natural strain change

uses instantaneous length, in other words the reference length changes as a function of time.

Natural strain is independent of the definition of the reference length.

The instantaneous change in length is:

6) dL = L(t+dt)-L(t)

for both Lagrangian and natural strain.

The velocity gradient.
For an object undergoing strain, the length change is related to the velocity gradient. The

myocardial velocity gradient means velocity difference per length unit. It was originally

defined as the velocity gradient across the wall (15):

7) VG = - 
dr/dt

r
  = - 

∆v
r

 

where r is the instantaneous wall thickness. The unit of the velocity gradient is cm/s/cm,

which is equal to s-1. The gradient was found as the slope of the linear regression of the tissue

velocities. (The linear regression assumes that the velocity distribution is homogenous.) The

velocity gradient is thus equal to:

8) VG = - 
∆v
r

  = - 
(v1 - v2)

r
  = 

(v2 - v1)
r

 ,

under the assumption that the velocity gradient is constant over the length r (spatially

homogenous). In fact, by this assumption, the velocity gradient can be obtained by the

endocardial and epicardial traces which gives the thickness r, as well as the velocities by

derivation. The velocity regression, however, is less noise sensitive. For an object undergoing

longitudinal strain, we can replace r with L, where L is the instantaneous length of the object.

By this, the longitudinal velocity gradient is:

9a) VG = 
(v2 - v1)

L
 = 

dL/dt
L

 

9b) dL = (v1 – v2) dt

This gives:

10a) dε = 
dL
L0

 = 
(v2 - v1)

L0
  dt

10b) dε’ = 
dL
L

 = 
(v2 - v1)

L
  dt

And thus:

11a) ε
.

= 
(v2 - v1)

L0
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11b) ε’
.

 = 
(v2 - v1)

L
 

In other words, the natural strain rate is equal to the velocity gradient.

Strain by integrated strain rate.
For an object undergoing strain from t0 to t or alternatively from L0 to L, this means, that

strain can be described as the integral of strain rate. By integrating equations 10a) and 10b):

12a) ε = ⌡⌠
t0

t
dε  =⌡


⌠

t0

t
dL
L0

    = ⌡

⌠

t0

t
(v2-v1)

L0
  dt

12b) ε’ = ⌡⌠
t0

t
dε '  =⌡


⌠

t0

t
dL
L

   = ⌡

⌠

t0

t
(v2-v1)

L
  dt

Strain and strain rate by tissue Doppler.
In colour tissue Doppler, the velocities of all pixels are sampled simultaneously. The strain

rate is sampled as the velocity gradient with a fixed offset distance ∆x. As there is no tracking

of the endpoints of the initial length (object), neither the velocities nor the distance relates

directly to the strain of a defined object. We do not measure the instantaneous length change,

nor the velocities at the endpoints. The strain rate estimator is thus (fig. 6):

13) SR = 
v(x) - v(x + ∆x)

∆x
 

If the instantaneous length L at a certain time coincides with ∆x, v(x) = v2 and v(x + ∆x) = v1.

Then SR equals natural strain rate ( ε’
.

) in equation 11b). Usually, however, L will differ

from ∆x, for most frames and objects, and the velocities will hence differ too. Under the

assumption that the strain is equally distributed over the length of the object (spatially

constant), SR will still be equal to natural strain rate. Strain being spatially constant means

that the velocity increases linearly along the length as shown in the diagram:
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x

v

v2-v1L
∆x

v(x)-v(x+∆x)

L

v2-v1

For any L that is different from ∆x, v2 – v1 will be greater or smaller than v(x) – v(x + ∆x) by

the same ratio. In the figure, this is evident, as the slope of the curve is the same wherever it is

measured. As v1 and v2 are the velocities of the end points of L, the ratio in equation 13) will

always be the same as the ratio in 11b):

SR = ε’
.

It is also evident that as L0 is constant, the ratio in equation in 11a) will only be equal to 13)

when ∆x = L0, and this will always change from one frame to next. Thus:

SR ≠ ε
.

.

The argument and equation 13) is simplified in relation to the algorithm implemented in the

computer. Velocities are measured by the autocorrelation method, by analysing the phase

shifts of the reflected signals. The online strain rate is measured directly by autocorrelation as

well, as discussed by Heimdal (56).

The integral of SR will then give natural strain:

15) ε’ = ⌡⌠
t0

t
SR dt

Lagrangian strain can then be estimated by

16) ε = e ε’ – 1 = exp








⌡⌠
t0

t
SR dt  - 1

which can be implemented in the processing software.

5. Strain in more than one dimension:
The discussion above is limited to one-dimensional strain. In two dimensions (Fig. 2), there

are four strain components. Two normal strains:

17) ε x = 
∆x
x   and εy = 

∆y
y  

and two shear strains:
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18) ε xy = 
∆x
y   and εyx = 

∆y
x  

From Fig. 2, it is also obvious that

19) ε xy = tan αx and εyx = tan αy

All strain components can be written in a matrix, the strain tensor:

20) ε x ε xy

εyx εy

For a homogenous, isotropic and incompressible object, ε xy = εyx.

In three dimensions, three normal and six shear strains can be defined:

ε x ε xy ε xz

21) εyx εy εyz

ε zx ε zy ε z

But as illustrated in fig. 2, the components are interrelated by incompressibility.

6. Angle dependency of strain and strain rate measurement
This is illustrated in fig. 17. ∆v is measured along the ultrasound beam. The measured

longitudinal velocity is reduced by the cosine of the angle α between the longitudinal velocity

vector and the ultrasound beam, ∆vl m = ∆vl * cos(α). In addition there is a transverse velocity

difference, where ∆vtm = ∆vt * cos(β) when measured along the same ultrasound beam. The

total measured velocity difference is thus the sum of the two:

22) ∆vm = ∆vl * cos(α) + ∆vt * cos(β)

The offset distance, however, is measured as the length of the projection along the ultrasound

beam as well, and this increases by the cosine of α:

23) ∆xm = 
∆xl

cos(α)
  = 

∆xt

cos(β)
 

The measured strain rate is thus (cos(β) = sin(α)):

24) SRm =  
∆vm

 ∆xm
  =  

∆vl

 ∆xl
  * cos2(α) + 

∆vt

 ∆xt
  * cos2(β)

25) SRm =  SRl * cos2(α) + SRt * cos2(β) =  SRl * cos2(α) + SRt * sin2(α)

The incompressibility of heart muscle (conservation of volume) means in two dimensions:

26) SRl + SRt = 0 ⇔ SRl = – SRt

Thus:

27) SRm = SRl * (cos2(α) - sin2(α))


