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Abstract 

This thesis, containing an introduction and ten separate papers, is a contribution to 
the field of medical ultrasound imaging. Specifically, the thesis contains theoretical 
development and experimental evaluation of algorithms that improve the detection 
and visualization of moving targets in medical ultrasound imaging. 

When a wave is reflected from a moving scatterer, the frequency of the reflected 
signal is changed compared to the frequency of the incident signal. By utilizing this 
Doppler effect, ultrasound can be used to measure the velocity of moving scatterers 
inside the human body. The scattered echoes from the red blood cells are used to 
measure blood flow velocities, and the signal from scatterers in the heart muscle are 
used to measure the velocities of contractions and relaxations of the heart muscle. 

The signal scattered from blood is corrupted by signals scattered from stationary 
and slowly moving tissue such as vessel walls. Such clutter signals are typically 40-
lOOdB stronger than the signal from blood. Without sufficient clutter suppression, 
the detection of low velocity blood flow will be poor, and the velocity estimates will 
have a large bias. The signal scattered by the rapidly moving blood cells has a larger 
Doppler shift than the signal reflected from slowly moving tissue. A high-pass filter 
can therefore be used to separate the signals from blood and the clutter signals. In 
Papers A-E the goal is to improve this clutter filtering. A broad range of clutter filters 
are analyzed, and we use statistical theory to evaluate the blood detection performance 
of different filters. We also propose new algorithms to improve the clutter rejection. 
These algorithms are described theoretically, and tested on experimental data. These 
papers provide a theoretical foundation, as well as practical algorithms that have the 
potential to improve the image quality in color flow imaging. 

In Paper F we present and analyze an acquisition technique that improves the tem
poral resolution in color flow imaging by using a combination of beam interleaving 
and transmission of pulses with double repetition frequency. A typical example gives 
a 70% increase in frame rate when the blood flow through the heart valves is imaged 
with the probe in the apical position. This acquisition technique is used in the clinical 
study presented in Paper G. In patients with atrial fibrillation, there are significant 
variations in the duration of the heart beats. Because of this variation, it is impossible 
to reconstruct flow patterns based on data from several heart beats. To get a correct 
"snap-shot" of the cross-sectional velocity profile in the left ventricular outlet tract 
in patients with atrial fibrillation, around lOOframesjsecond are necessary. The study 
showed no significant difference between two heartbeats of different lengths, and veloc
ity time integrals from heartbeats of different lengths can also be averaged in patients 
with atrial fibrillation. 

The blood motion imaging (BMI) technique presented in Paper H provides a more 
intuitive display of blood flow than that provided by conventional color flow imaging. 
As opposed to conventional color flow imaging, BMI preserves and enhances the speckle 
pattern. The speckle pattern can be visually tracked from frame to frame, giving the 
user a correct perception of the blood flow direction and magnitude. BMI is also useful 



to separate true blood flow from wall motion artifacts. The technique has been tested 
by post-processing of recorded ultrasound data. The best results are obtained when 
imaging the blood flow in peripheral vessels. The lateral velocity component is then 
clearly visualized, and we get an impression of the parabolic velocity profile across the 
vessel. BMI processing can be applied both to continuously acquired data which are 
uniformly sampled in time, and to data acquired using conventional color flow "packet" 
acquisition. Continuous acquisition results in a very high temporal resolution, but the 
width of the image sector is limited. 

The continuous acquisition technique developed for BMI is also applied to tissue 
Doppler imaging (TDI) and strain rate imaging (SRI). The temporal resolution is 
improved by calculating the Doppler-based images from the same pulse transmissions 
as the tissue B-mode images. In Paper I we show that when imaging a heart wall, 
i.e. the interventricular septum, frame rates above 300frames/second are possible with 
a lateral resolution equal to a conventional B-mode image. Tissue velocity estimates 
calculated from these data suffer from a lot of aliasing, but a robust technique is 
presented that corrects the aliased velocities. A significant advantage is the continuous 
stream of data with constant sampling intervals. Doppler spectra and sound signals 
can thus be calculated at arbitrary points in the 2D image. This acquisition technique 
is used in the clinical study presented in Paper J, where the spatial-temporal events 
in the interventricular septum are studied with a temporal and spatial resolution not 
previously available in tissue Doppler techniques. 
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Introduction 

This thesis is divided into two parts. The first part contains an introduction with five 
sections. A brief introduction to ultrasound imaging and Doppler measurements is 
given in sections one and two. Section three discusses factors affecting the quality of 
ultrasound color flow imaging. Based on the discussion in section three, section four 
summarizes the contribution of the papers in part two of the thesis. The introduction 
ends with concluding remarks and directions for future studies. The second part of 
the thesis consists of ten separate papers. The papers are self-contained and complete 
with abstracts and references. 

The journal papers, conference articles, and conference abstracts produced during 
this work are listed in the References [12, 14-21, 37, 60, 61, 67, 68, 73]. 

1 Ultrasound Imaging 

The first use of ultrasound in medical applications were reported in the early 1950s 
[27, 41, 82]. The basic principles of an ultrasound imaging system are as follows: 
A voltage signal consisting of a few oscillations with frequency in the MHz range is 
applied to a piezo-electric transducer which converts the applied voltage to a vibration 
of the transducer surface. When this vibrating surface is put in contact with the body, 
an ultrasonic pulse is transmitted into the tissue. The pulse propagates through the 
tissue and is partly reflected and scattered by changes in density and compressibility 
of the tissue. When the back-scattered sound wave impinges on the transducer, the 
vibrations are converted back to an electric signal which is processed and displayed. 

A sound wave that is reflected by a tissue structure at depth r, travels a total 
distance 2r before it reaches back to the transducer. With sound propagation velocity 
c, the depth r is related to the time after pulse transmission t by 

2r 
t =- (1) 

c 

The sound wave is attenuated when it propagates through the tissue, and the atten
uation increases with propagation distance. To compensate for this attenuation, the 
signal is amplified with a gain that increases with time. This amplifier is termed a 
time gain compensation (TGC) amplifier. The envelope of the signal is found, and the 
amplitude undergoes a logarithmic compression in order to display the large dynamic 
range of the ultrasound signal. The received signal can be displayed in several ways. 
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Figure 1: A digital ultrasound imaging system using an electronically steered 
and focused transducer array with N elements. 

The first systems showed the received signal as a trace on an oscilloscope. This 
technique is called Amplitude-mode or A-mode. A better perception of motion was 
obtained by converting the amplitude to gray-scale values, and displaying the signal 
from consecutive pulse transmissions side by side on a computer screen. This technique 
is called Motion-mode or M-mode, since the motion of the tissue structure along the 
beam direction is easily perceived. 

Brightness-mode or B-mode systems provide two-dimensional images of tissue struc
tures. The main building blocks of a B-mode system are shown in Figure 1. A number 
of A-mode lines are collected by sweeping the ultrasound beam over the region of in
terest. The sweeping is done either mechanically or with a multi-element transducer. 
Figure 1 illustrates a system using a transducer with N elements. The transmitter 
imposes different delays of the voltage pulse applied to each individual transducer el
ement in order to focus and steer the ultrasound beam in the desired direction. On 
receive, the beam former similarly delays the received signal from each element before 
the signals are summed. Advanced systems use beam formers capable of dynamically 
changing the focus as the pulse propagates deeper into the body. The band-pass filter 
in Figure 1 is tuned to the bandwidth of the pulse in order to improve the signal-to
noise ratio. Recently it was discovered that the image quality is improved by using the 
frequency band around the double of the transmitted ultrasound frequency [24, 69]. 
Second harmonic frequency components are generated by non-linear wave propagation, 
and the second harmonic generation increases with wave amplitude and propagation 
distance. The most severe reverberation noise is generated while the pulse propagates 
through the body wall. The propagation distance from the probe to the reverberating 
layers in the body wall is, however, so small that the second harmonic signal level is 
low, and the reverberation noise is lower than when the fundamental frequency band is 
used. The second harmonic image also has better lateral resolution since the sidelobe 
power level is not high enough to generate second harmonic frequency components. 
Such second harmonic imaging is achieved by doubling the center frequency of the 
band-pass filter in Figure 1. 

When a complete scan is performed, the scan converter maps the data to a rect-
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Figure 2: Ultrasound B-mode image of a young boy's heart. 
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angular display grid, and the data are displayed as a gray-scale image. In cardiac 
applications, typically 50frames/seconds are obtained. A B-mode image of a young 
boy's heart is shown in Figure 2. 

2 Ultrasound Doppler Measurements 

When a wave is reflected from a moving scatterer, the frequency of the reflected signal 
is changed compared to the frequency of the incident signal. By utilizing this Doppler 
effect, ultrasound can be used to measure the velocity of moving scatterers inside 
the human body. The scattered echoes from the red blood cells are used to measure 
blood flow velocities, and the signals from scatterers in the heart muscle are used 
to measure the velocities of contractions and relaxations of the heart muscle. In this 
section we develop mathematical expressions for the Doppler shift, then discuss systems 
for ultrasound Doppler measurements. 

2.1 The Doppler Effect 

An ultrasonic signal is transmitted at timet = 0. The received signal from a stationary 
point scatterer at depth r0 in the far field of the transducer can be written as 

( 2ro) Yro ( t) = X t - ----;; (2) 

where c is the speed of sound, and 2r0 / c is the time needed for the ultrasound pulse 
to travel back and forth to the depth ro. To simplify the development, we assume that 
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Figure 3: A scatterer moving towards the probe. 

the shape of the received signal x does not vary for small displacements of the point 
scatterer around ro. A scatterer moving with a velocity v is illustrated in Figure 3. 
The signal that is received at time t was reflected from the scatterer at depth 

r = ro + Vz (t- ~) (3) 

where r0 is the depth when the pulse was transmitted at t = 0, Vz is the component of 
the velocity along the ultrasound beam, and t - r / c is the time of interaction between 
the scatterer and the ultrasound pulse. Reorganizing Equation 3, the depth r can be 
written 

ro + Vzt 
r = --=----';--

1 + Vz/C 
(4) 

Inserting this expression for r in Equation 2 gives 

y(t)=x -- t---(
C-Vz ( 2ro )) 
c + Vz C- Vz 

(5) 

where we see that the received signal is a delayed and compressed version of the signal 
that is received from a stationary scatterer. When a sinusoidal signal with frequency 
fo is transmitted, the received signal from a stationary scatterer is given by 

(6) 

For a moving scatterer, the received signal becomes 

y(t) =cos 2nfo-- t- --( c - Vz ( 2ro ) ) 
c + Vz C- Vz 

(7) 

The change in frequency of the received signal compared to the transmitted signal is 

c- Vz 2vz 2vz 
!d = fo--- fo =---foR::: --fo 

C + Vz C + Vz C 
(8) 

and is termed the Doppler shift. The velocity of the scatterer is related to the Doppler 
shift by the Doppler equation 

(9) 
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Figure 4: Continuous wave Doppler system. 

and can be calculated from estimates of the Doppler shift. In the following sections, 
several methods that use the Doppler shift to measure blood velocities are discussed. 
A thorough treatment of Doppler ultrasound can be found in [9, 28, 42]. 

2.2 Continuous Wave Doppler 

The first use of continuous wave (CW) Doppler for the measurement of blood velocities 
was reported in [63]. Figure 4 shows a block diagram of a simple CW Doppler instru
ment. Separate transducers are used for transmit and receive, but they are usually 
mounted in the same housing. The instrument is sensitive to red blood cells travelling 
in the interception of the transmit and receive beams. This region is called the sample 
volume. Each blood cell thus produces a signal as in Equation 7, but of finite time 
duration and thus non-zero bandwidth. This phenomenon is called the transit-time 
effect. At any time instant, the received signal is a sum of the contributions from a 
large number of blood cells within the sample volume, and is therefore modelled as a 
Gaussian random process [8]. Velocity gradients within the sample volume result in 
different Doppler shifts from the different blood cells, and broaden the power spec
trum of the received signal. If the transit time effect is neglected, and the sample 
volume is uniformly insonified, the power spectrum of the received signal corresponds 
directly to the axial component of the velocity distribution within the sample volume 
[8]. The constant of proportionality between velocity and the Doppler shift is given by 
the Doppler equation. It is therefore common to use spectral analysis to extract the 
velocity information from the received signal. Since the blood velocity is much smaller 
than the speed of sound, the Doppler shift is much smaller than the transmitted ul
trasound frequency. The received signal e(t) in Figure 4 is thus a band-pass signal, 
and it is convenient to perform the signal analysis after demodulating the signal to 
base-band. The band-pass signal e(t) can be written as [38] 

e(t) = Re { x(t)ej21rfot} = ~ (x(t)eJ27rfot + x*(t)e-j2Kfot) (10) 

where* denotes complex conjugation and x(t) is the complex envelope of the received 
signal. Multiplication with 2e-J27rfot in Figure 4 gives x(t) + x*(t)e-J27r 2fot, and the 
term centered around -2fo is removed by the low-pass filter (LP). The transmitted 
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Figure 5: CW Doppler spectrum from a patient with aortic valve leakage. 

frequency fo is known, and all the information is contained in the complex envelope 
x(t) which is termed the Doppler signal. 

The Doppler signal from blood is obscured by high-intensity echoes from tissue and 
vessel walls. These clutter signals can be 80-lOOdB stronger than the signal from blood. 
However, tissue structures move more slowly than blood, and the clutter signals can 
therefore be removed by the high-pass filter (HP) in Figure 4. This filter is a critical 
part of the system, since the clutter signal from tissue should be removed without also 
removing the signal from slowly moving blood. 

The Doppler shift is in the audible range for the ultrasound frequencies commonly 
used, and by listening to Re{x(t)} or Im{x(t)} the operator can detect the presence of 
a Doppler signal and qualitatively evaluate the center frequency and bandwidth of the 
signal. Directional information can be obtained by separating positive and negative 
Doppler shifts, and feeding the resulting signals to the left and right channel in a 
stereo system. For visual display and quantitative measurements, frequency spectra 
from subsequent time windows are stacked side by side and displayed as shown in 
Figure 5. The Doppler spectrum in Figure 5 is from a patient with aortic valve leakage 
with reverse flow velocities up to 4m/s. 

2.3 Pulsed Wave Doppler 

A CW Doppler instrument is sensitive to flow throughout the region where the transmit 
and receive beams overlap, and therefore provides no range resolution. Pulsed wave 
(PW) Doppler instruments solve this problem and were first reported by Baker and 
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Figure 6: A digital pulsed wave Doppler system with N transducer elements. 

Watkins [11]. The velocity can not be estimated from the Doppler shift of a single 
pulse since the frequency spectrum of the signal is changed considerably more by the 
frequency dependent attenuation than it is by the Doppler shift. The blood velocity is 
therefore estimated from the change in phase and/ or delay of the signals received from 
several pulse transmissions. A pulsed wave Doppler system is schematically illustrated 
in Figure 6. The same transducer is used for both transmission and reception. When a 
sinusoidal soundburst with center frequency fo is transmitted, the received signal from 
a stationary point scatterer at depth r0 is given by 

x(t) = a(t) cos ( 21r fo (t- 2: 0 )) (11) 

where a(t) is the pulse envelope. By using Equation 5, the received signal from a 
moving scatterer following the transmission of such a pulse is given by 

( C-Vz ( 2ro )) ( c-vz ( 2ro )) x(t) =a -- t- -- cos 27rfo-- t- --
c + Vz C- Vz C + Vz C- Vz 

(12) 

where r0 is the position of the scatterer when the pulse is transmitted at t = 0. 
Pulses are transmitted with time interval T8 , and between two pulse transmissions the 
scatterer has moved a distance VzT8 • The received signal from pulse n is thus given 
by 

x(t, n) = 

a (c- Vz (t _ 2(ro + Vz(n -1)Ts))) cos ( 27rfo c- Vz (t _ 2(ro + Vz(n -1)Ts))) 
C + Vz C- Vz C + Vz C- Vz 

(13) 

If the signal is sampled at the time corresponding to the depth r 8 we get 

(14) 
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where a= c-vz ( 2r, + 2 (vz~,-rol), ¢ = 27rfoa, and fd =- 2vz fo is recognized as 
c+vz C C Vz c+vz 

the Doppler shift. The frequency fs equals 1/Ts and is termed the pulse repetition 
frequency (PRF). To avoid aliasing, the Nyquist theorem tells us that the maximum 
Doppler shift is limited by 

1 
I!J,maxl < 2Js 

The corresponding limit on the velocity is given by 

(15) 

(16) 

and is termed the Nyquist velocity. To avoid spurious sample volumes between the 
transducer and the depth r8 , the PRF is limited by 

c 
f <-s- 2 

rs 

and the unambiguous range-velocity product is limited by 

c2 

rsVz S: Sfo 

(17) 

(18) 

Increasing the PRF above the limit in Equation 17 creates an extra sample volume 
closer to the transducer, giving ambiguity in range of where the velocity is measured. 
It is often possible, however, to position the transducer so that there is little or no 
blood flow in the extra sample volume, and the high PRF (HPRF) technique can be 
used to measure high blood velocities [36]. 

With pulse-length Tp, a sample of the received signal at a time Td after pulse 
transmission originates from a localized sample volume extending from cTd/2 to c(Td
Tp)/2. The receiver filter in Figure 6 increases the radial length of the sample volume. 
The purpose of the receiver filter in Figure 6 is to maximize the signal-to-noise ratio 
(SNR), but it also increases the radial length of the sample volume. It has been 
shown that a receiver filter with a rectangular impulse response with duration equal 
to the pulse length is close to maximizing the SNR [4 7]. Several techniques have been 
proposed to avoid aliasing of high velocities in PW Doppler [7 4, 84]. Common to these 
techniques are wideband pulses and the use of samples from several depth ranges to 
estimate the velocity. 

The PW spectrum in Figure 7 shows normal blood velocities through the mitral 
valve. Compared to Figure 5, the spectrum is narrower since the velocity is measured 
at a localized position resulting in a smaller velocity spread. 

2.4 Color Flow Imaging 

Real-time color flow imaging was first reported by Namekawa et al. [52] and Kasai et 
al. [45]. A PW Doppler system can be extended to estimate the velocities at several 
depths along the ultrasound beam. This technique is called multigated Doppler [58]. 
A further extension is to scan the beam over a two-dimensional region, and measure 
the velocity at several depths along each beam direction. 
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Figure 7: PW Doppler spectrum. 

Several parameters describing the blood flow are calculated for each sample volume, 
and encoded in a color. The resulting color image is combined with a tissue B-mode 
image, and a two-dimensional map of the blood flow is obtained. A color flow imaging 
system is schematically illustrated in Figure 8. The flow parameters that are calculated 
are commonly the mean velocity, signal power, and bandwidth. Velocities towards the 
transducer are usually encoded in different shades of red depending on the magnitude 
of the velocity. Velocities away from the probe are usually encoded in different shades 
of blue. The signal power determines the intensity of the color. The mapping of 
bandwidth is motivated by the fact that in regions with disturbed flow, there are large 
velocity gradients in the sample volume and correspondingly, a large bandwidth of the 
Doppler spectrum. Sample volumes where a large bandwidth is measured are assigned 
a green color. In addition to determine the color, the parameters are used in the 
tissue/flow arbitration block in Figure 8b which for each pixel determines whether a 
B-mode or color value should be shown. An example of a color flow image is shown in 
Figure 9, where the reverse flow jet through a leaky aortic valve is visualized with red 
and green. 

To get adequate frame rates, typically only 8-16 pulses are transmitted in each 
beam direction. With so few samples available, the suppression of clutter signals from 
stationary and slowly moving tissue is a difficult task, but crucial for the image quality. 

Parameter estimation techniques can be divided into narrowband and wideband 
techniques [29]. Narrowband techniques use relatively long pulses, and estimate the 
velocity based on samples from one range gate. Examples of narrowband techniques are 
the "autocorrelation" technique [45], Fourier-based techniques, and techniques based 
on autoregressive (AR) modelling [1]. Wideband techniques use a train of short pulses 
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Figure 8: (a) Acquisition and processing of data for one beam direction in a 
color flow image. (b) Combination of tissue and color flow data to 
display one image frame. 

to track a group of red blood cells using the intensity of their echoes. This tracking is 
achieved by using samples from several range gates. Examples of wide band techniques 
are the crosscorrelation technique [23], the sum-absolute-difference technique [22], and 
the wideband maximum likelihood estimator [30]. 

2.5 Tissue Doppler Imaging 

PW Doppler can be used to measure the velocity of contraction and expansion at 
discrete sample volumes in the heart muscle. To ease the assessment of regional my
ocardial function, the two-dimensional color flow imaging technique was adapted to 
measure tissue velocities [51]. An example of a tissue Doppler image of the left ven
tricle is shown Figure 10. Additional information can be obtained by imaging the rate 
of deformation of the myocardium which is termed strain rate imaging (SRI) in [39]. 
SRI is a "local" measure of the elongation/ contraction of the myocardium, and may 
ease the differentiation of active elongation/contraction from passive motion induced 
by elongation/ contraction in other parts of the myocardium [39]. 

2.6 Clinical Applications of Doppler Ultrasound 

Ultrasound Doppler instruments have proven to be of clinical importance for non
invasive assessment of blood flow. Color flow imaging is used qualitatively to get an 
overview of the flow and to ease the detection of abnormal flow patterns. Spectral 
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Doppler techniques are then commonly used to quantitatively evaluate the severity
of valvular stenoses, leakages, etc. Some important clinical applications of Doppler
ultrasound are listed below.

• Cardiology. Detection and assessment of valvular stenoses, regurgitations, shunts,
and similar defects that give disturbed flow patterns in the heart.

• Peripheral vascular disease. Detection and assessment of stenoses and aneurysms.

• Radiology. Assessment of malignancy of tumors based on the blood flow.

• Fetal medicine. Early detection of abnormal flow patterns related to high blood
pressure in the fetus.

3 Factors Affecting the Quality of Color Flow Imag-
ing

The most basic task of a color flow system is to detect if blood is present or not in
a given sample volume. The next task is to calculate unbiased estimates with low
variance of the blood velocity and the signal bandwidth. This thesis deals mainly with
color flow systems, and in this section we discuss factors that affect the ability of the
system to fulfill these goals.

3.1 Noise

There are mainly two forms of noise that corrupt the Doppler signal from blood. Ther-
mal noise in the transducer and front-end electronics limit the lowest Doppler signal
strength that can be detected. Thermal noise is modeled as a white Gaussian random
process, which means that two different noise samples are statistically independent
with a Gaussian probability density function [70]. The second type of noise is the
signal from stationary and slowly moving tissue structures, including reverberations
caused by multiple reflections. This clutter signal can be 80-100dB stronger than the
Doppler signal. The tissue moves more slowly than the blood, thus giving a smaller
Doppler shift, and the clutter signal can be removed with a high-pass filter.

Thermal Noise

The received signal is passed through a filter to minimize the noise bandwidth in order
to maximize the sensitivity of the instrument. A matched filter maximizes the peak
SNR for a known signal in white noise [46]. In ultrasound imaging, the shape of
the received signal is, however, not known, and conventional matched filtering is not
applicable. Even though the shape of the received signal is unknown, it is shown in
[47] that a receiver filter with a rectangular impulse response with duration equal to
the pulse length is close to maximizing the signal-to-noise (thermal noise) ratio (SNR).

The SNR can be improved by transmission of pulses with higher power. There are,
however, safety limitations on the acoustic intensity [6]. In Doppler applications, the
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limiting factor is usually the spatial peak of the time averaged intensity, IsPTA· When 
the PRF is kept constant, IsPTA is proportional to the energy in the transmitted pulse. 
As long as the sample volume is smaller than the blood vessel, the received signal 
power is proportional to the pulse energy which is bounded by IsPTA, but the SNR can 
be increased by decreasing the noise bandwidth. The SNR is therefore improved by 
decreasing the bandwidth of the pulse; this is equivalent to increasing the pulse length. 
The improvement in SNR stops when the pulse length is increased to a point where the 
sample volume becomes larger than the blood vessel. However, for large blood vessels 
there is a trade-off between sensitivity and radial resolution. 

In an acquisition technique called coded excitation, long pulses with high bandwidth 
are transmitted, but the spatial resolution is retained by deconvolution of the received 
signal [35]. Since Doppler techniques are limited by the pulse energy, coded excitation 
will not improve the SNR, but may improve the spatial resolution. 

The sensitivity can be improved by injecting ultrasound contrast agents into the 
blood [55, 65]. This increases the back-scattered power, and thus improves the SNR, 
but does not reduce the noise power. 

Clutter Noise 

It is difficult to detect if blood is present in regions with a large clutter-to-signal 
ratio (CSR), especially when the blood moves with a velocity comparable to the tissue 
velocity. In this situation, there is a small difference in the Doppler shift from blood and 
tissue, and the signals are not easily separated with a high-pass filter. Typically only 
6-16 pulses, referred to as the packet size, are transmitted in each beam direction when 
the flow data are acquired. This means that clutter filtering and velocity estimation is 
performed on only 6-16 samples. 

Commonly used filter types for clutter filtering include finite impulse response (FIR) 
filters [56], infinite impulse response (IIR) filters [56], and polynomial regression filters 
[40, 44, 72]. Due to the small number of samples, it is important that IIR filters 
are properly initialized. Such initialization techniques are developed in [26, 32], and 
applied to color flow imaging in [57, 66]. 

Tissue motion may lead to "flashing" artifacts in the image. In the periods of the 
heart cycle with largest tissue motion, the signal from tissue passes through the clutter 
filter and obscures the display of the blood flow. There are three main sources of 
tissue motion: The beating of the heart results in large movement of the heart muscle 
and pulsating vessel walls. Respiration causes movement of the organs both in the 
chest and abdomen. Finally, the operator may move the probe in search for small 
blood vessels resulting in movement of the tissue relative to the probe. To improve the 
clutter rejection when the tissue is moving, it has been suggested that the mean tissue 
Doppler shift frequency be estimated, and the signal mixed down with this frequency 
prior to conventional high-pass filtering [71]. 

Contrast agents increase the strength of the signal from blood, thus reducing the 
demands of the clutter filter. One of the main applications of contrast imaging is thus 
to improve the clutter-to-signal ratio to be able to measure blood perfusion [64]. 
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3.2 Bias of Velocity Estimates 

There are many algorithms for velocity estimation in color flow imaging, and many 
of these are discussed by Jensen [42] and Ferrara and DeAngelis [29]. Common to 
all these algorithms are that the combination of thermal noise, clutter noise, and the 
clutter filter may lead to bias in the velocity estimate. Unless sufficiently attenuated 
by the clutter filter, the clutter signal will produce a bias towards zero velocity. On 
the other hand, high-pass filtered white noise produces a bias towards larger velocities 
[54, 83]. An algorithm to compensate for this effect has been proposed by Rajaonah et 
al. [59]. For low blood velocities, the frequency spectrum of the signal may be severely 
distorted by the clutter filter. Attenuation of the lowest frequencies results in bias 
towards larger velocities. The clutter filter itself might also introduce bias regardless 
of the blood velocity and the presence of noise [72, 77]. 

Direction of arrival processing is a well developed field in array processing used 
in passive radar and sonar. The similarity between direction of arrival estimation 
and color flow imaging has been noted in [4, 5], where high resolution estimates are 
adapted to color flow imaging. It has been proposed that these algorithms be used 
to estimate several velocity components within the sample volume, and for combined 
velocity estimation and clutter rejection. However, no clinical results are available with 
this technique. 

3.3 Variance of Velocity Estimates 

The variance of the parameter estimates decreases when the number of observations is 
increased and when the SNR is increased. This means that the variance decreases with 
increasing packet size. Spatial averaging also reduces the variance [75]. There is thus 
a trade-off between estimator variance and both temporal and spatial resolution. It is 
also important that the clutter filter does not reduce the number of samples available 
to parameter estimation. Advanced algorithms that use samples from several depth 
ranges to reduce variance are presented by Vaitkus and Cobbold [79, 80]. 

3.4 Aliasing of Velocity Estimates 

Velocity estimation algorithms that are based on transmitting a relatively long pulse 
and estimating the phase shift from pulse to pulse are referred to as narrowband al
gorithms [29]. Common to these techniques are that they suffer from aliasing, i.e. a 
positive velocity is interpreted as a negative velocity and vice versa. The relatively 
long pulses mean that the SNR is relatively high for these methods. Narrowband ve
locity estimation can be performed both in the time domain [48] and in the frequency 
domain [78, 81]. The commonly used "autocorrelation" algorithm [45] is an example 
of a narrowband algorithm. This mean velocity estimator is equivalent to a first order 
autoregressive estimate of the mean frequency. A second order autoregressive model 
for the signal from blood was proposed in [50]. It has also been proposed to use one 
pole for the clutter signal, and one pole for the signal from blood [1]. However, since 
the clutter signal is much stronger than the signal from blood, the blood signal pole is 
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shifted toward lower frequencies. Better results were obtained when AR modeling was 
performed subsequent to a clutter filter. 

To avoid aliasing artifacts, several wideband techniques have been proposed [29]. 
Common to these techniques are that relatively short pulses are transmitted, and that 
samples from several depth ranges are used in the velocity estimation. Examples of 
such techniques are the cross-correlation technique [23, 33], speckle tracking [22], the 
wideband maximum likelihood estimator [30, 31], the butterfly search technique [2, 3], 
and the extended autocorrelation method [49]. Since short pulses are used, the SNR 
are poorer compared to the narrowband techniques. Decorrelation due to the presence 
of velocity gradients and lateral movement as well as the poor SNR may lead to similar 
effects as aliasing, e.g. the wrong peak is picked in the cross-correlation technique. 
The wideband techniques have larger computational complexity than the narrowband 
techniques, and it seems to be difficult to achieve robust non-aliased velocity estimates. 
The narrowband "autocorrelation" method is thus the most commonly used algorithm 
in commercial instruments. 

3.5 Measuring Only One Velocity Component 

Velocity estimation algorithms based on the Doppler shift or the time delay from pulse 
to pulse only measure the velocity component along the ultrasound beam. The instru
ment thus provides incomplete information about the flow pattern. This limitation may 
also lead to a non-intuitive visualization of the flow, i.e. in bent vessels, there will be an 
abrupt change in color at the point where the vessel is parallel to the transducer sur
face. Several techniques have been proposed to solve this problem: Compound scanning 
from two different positions gives velocity components along two different directions 
[34]. Measurement of the transit-time through the ultrasound beam, which is reflected 
in an increased bandwidth of the Doppler signal, can be used to find the lateral velocity 
component [53]. Two-dimensional speckle tracking methods based on frame-to-frame 
correlation analysis provide both the radial and lateral velocity component [76]. Co
herent processing of two sub-apertures of the transducer to create lateral oscillations in 
the received beam pattern provide quantitative lateral velocity information, including 
the sign [7, 43]. A common assumption in all these techniques is a uniform velocity 
field over a large spatial region. None of these algorithms for estimation of two velocity 
components have yet been implemented on commercial scanners. 

3.6 Spatial Resolution 

The spatial resolution in ultrasound imaging improves with increasing ultrasound fre
quency. However, the attenuation also increases with the frequency, and there is there
fore a trade-off between spatial resolution and penetration. The length of the transmit
ted pulse determines the radial resolution, and there is thus a trade-off between radial 
resolution and sensitivity. With a specified radial resolution there is also a trade-off 
how the resolution should be divided between the pulse length and spatial filtering. 
The lateral resolution is determined by the beam density. There is thus a trade-off 
between image width, lateral resolution, and temporal resolution. Less spatial aver-
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aging is required when the estimator variance is small. The spatial resolution is thus 
indirectly affected by the estimation algorithm, and the potential reduction of available 
samples after the clutter filter. 

3. 7 Temporal Resolution 

Cardiac hemodynamics demand high temporal resolution; due to the accelerations and 
decelerations during the cardiac cycle, the temporal resolution in the velocity estimates 
should be around 10ms [36]. This means that in cardiac applications, the maximum 
difference in time between two velocity estimates in the same flow image should ide
ally be less than 10ms. Neglecting the time needed for the B-mode acquisition, this 
corresponds to a frame rate of 100frames/s. Such a high temporal resolution is hard 
to achieve in color flow imaging. To correctly measure velocity profiles across valve 
openings in the heart, it has been necessary to combine measurements from several 
heart cycles [62]. Another application where high temporal resolution is important 
is in volume flow measurements using three-dimensional color flow data, where the 
accuracy improves with increasing frame rate [13]. 

The total acquisition time equals the sum of the acquisition times for the B-mode 
image and the flow image. By increasing the width of the transmit beam, and by 
performing receive beam forming in parallel, several beams can be calculated from one 
pulse transmission. Parallel beam forming thus reduces the acquisition time for both 
the B-mode and flow data. The depth and number of beams in the B-mode image 
determine the acquisition time for this image. The lateral resolution of the B-mode 
image is commonly reduced to increase the frame rate in color flow imaging. 

Several pulses must be transmitted in each beam direction during acquisition of 
the flow data. The flow acquisition time is therefore much longer than the B-mode 
acquisition time. To achieve a sufficient frame rate, the lateral resolution is therefore 
reduced in the flow image compared to the resolution in the B-mode image. 

Clutter rejection is harder with a small packet size, and the estimator variance is 
increased since the estimate is based on fewer samples. To obtain satisfying image 
quality in "difficult" patients, it is therefore often necessary to increase the packet size, 
and thus reduce the temporal resolution. 

The maximum pulse repetition frequency (PRF) is determined by the image depth. 
When measuring low velocities it is desirable to reduce the PRF. Without proper 
action, this may significantly reduce the frame rate. However, if the PRF is reduced by 
an integer factor k, it is possible to acquire data in k- 1 other beam direction before 
returning to the same direction. With this beam interleaving technique, the PRF can 
be reduced without decreasing the temporal resolution. 

3.8 Visualization 

The velocity, power and bandwidth of the Doppler signal is combined into a color and 
superimposed on the B-mode image. The color-map should be designed to ease the 
visual detection of disturbed flow. The attention of the operator should be drawn to 
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even small jets. To achieve this, disturbed flow may be visualized with a high contrast 
color, e.g. green as seen in Figure 9 [10]. 

Another important part of the display system is the algorithm used to decide if 
flow or tissue should be displayed in a given pixel. This tissue/flow arbitration is 
closely related to the clutter filtering. The overall impression of the image quality is 
degraded if false flow pixels are scattered around in a tissue region. The perceived 
image quality is also improved if there are smooth transitions between flow and tissue 
at vessel boundaries without "bleeding" into the tissue. 

3.9 Tissue Doppler Imaging 

Tissue Doppler imaging differs from color flow imaging in several ways. The signal 
from tissue is the desired signal in tissue Doppler imaging and is not suppressed with 
a clutter filter. However, in patients with strong stationary reverberation noise, a 
high-pass filter with narrow stop-band may improve the image quality. The scattered 
signal from tissue is much stronger than the signal from blood. The SNR in tissue 
Doppler imaging is therefore significantly higher than the SNR in color flow imaging. 
A larger pulse bandwidth and thus better spatial resolution is therefore possible in 
tissue Doppler imaging. To maximize the information on the spatial-temporal relations 
between the events in the heart muscle during the heart cycle, both high temporal and 
spatial resolution is desired. High temporal resolution is important to correctly capture 
the rapid contractions and expansions of the cardiac muscle. High spatial resolution is 
important when, for example, differences in the velocity across a heart wall is measured. 

4 Summary of Papers 

This section first gives an overview of how the results in the papers in this thesis 
contribute toward improving the quality of color flow imaging. After this overview, 
abstracts of each paper are presented. 

Design and Evaluation of Clutter Filters 

Papers A-E deal with different aspects of clutter filtering in color flow imaging. The 
most basic task of a color flow system is to detect if blood is present or not in a given 
sample volume, and the clutter filter is an important part of this detection. 

In Paper A we review and analyze different types of filters suited for high-pass 
filtering of the short signal sequences that are available in color flow imaging. The 
study is limited to one-dimensional filters operating on the samples at a fixed depth 
from subsequent pulse transmissions. The analysis includes finite impulse response 
(FIR) filters with and without a linear phase response, infinite impulse response (IIR) 
filters with different types of initialization, and polynomial regression filters. We believe 
that Paper A is more detailed, and provides analysis of more filter types than previous 
papers. Paper A thus provides a good theoretical basis when designing clutter filters 
for color flow imaging. 
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Paper B presents algorithms to improve the clutter rejection when there is signifi
cant movement of the tissue. Examples of this are the moving heart muscle when the 
coronary arteries are being imaged, or when the operator moves the probe in search 
for small blood vessels. Previous methods adapt to the tissue movement by mixing 
down the signal with the estimated mean Doppler shift frequency from tissue[71]. This 
is most efficient for tissue movements with constant velocity. In Paper B we present 
algorithms that adapt to accelerated tissue movements, and show that the algorithms 
improve the clutter rejection in practical imaging situations. The best results were ob
tained by mixing down the signal with non-constant phase increments estimated from 
the signal. Subsequent to this down-mixing, the signal can be filtered with any of the 
high-pass filters analyzed in Paper A. This algorithm has computational complexity 
suited for real-time processing on an ultrasound scanner. 

In Paper C, the detection of blood is formulated as a problem in statistical detection 
theory. This is an approach commonly used in radar theory. The optimal detector 
compares the power at the output of a clutter filter to a threshold. The optimal 
detector structure is thus similar to standard color flow systems, but with a filter that 
depends on both the clutter and blood signal statistics. In a practical imaging situation, 
the blood signal statistics are unknown. However, when designing clutter filters it is 
useful to compare the detection performance to the optimal detector. Such a statistical 
evaluation is performed in Paper D, where the blood detection performance of several 
commonly used clutter filters are compared. 

In Paper E we present an algorithm that automatically selects the cut-off frequency 
of polynomial regression filters. There are variable demands on the cut-off frequency in 
both space and time during the heart cycle, and an adaptive cut-off frequency improves 
the image quality. In addition, the user interface of the scanner is simplified, since it is 
not necessary for the user to adjust the cut-off frequency. A simplified version of the 
algorithm was implemented for real-time processing on the GE Vingmed Ultrasound 
System Five scanner. The simplification was necessary due to limitations in hardware 
and available processing time. As a result, there was no significant improvement in 
the image quality, but the simplification of the user interface was achieved. As more 
computational power becomes available, the algorithms in Paper B and E could be 
combined. 

A High PRF Technique to Increase the Frame Rate 

In Paper F we present and analyze an acquisition technique that improves the temporal 
resolution in color flow imaging. At the expense of a slight increase in the clutter level, 
we achieved an increase in the frame rate of 70% when imaging the blood flow through 
the heart valves with the probe in the apical position. A clinical application of this 
technique is presented in Paper G. The instantaneous cross sectional velocity profile 
variability in the left ventricular outlet tract in patients with atrial fibrillation was 
studied. The study showed no significant difference between two heartbeats of different 
lengths in patients with atrial fibrillation, and velocity time integrals from heartbeats 
of different lengths can be averaged also in these patients. 
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Visualization of Blood Flow Direction 

In Paper H we present new signal processing algorithms for visualization of blood flow 
in ultrasound imaging systems. The technique is called blood motion imaging (BMI). 
As opposed to conventional color flow imaging, the speckle pattern from the moving 
blood cells is preserved and enhanced, enabling the user to visually track the blood 
motion from frame to frame. The technique is applicable both to data acquired us
ing conventional color flow packet acquisition, and to continuously acquired data with 
uniform time intervals between the samples. The approach is similar to a technique 
called B-flow that has recently been patented [25]. Both techniques enhance the speckle 
pattern movement, which is related to the blood cell movement in the blood vessels. 
However, as opposed to B-flow, BMI calculates several images per packet, giving an 
improved temporal resolution. BMI can also be combined with conventional color flow 
velocity estimation. Sliding window processing of the continuously acquired data is 
unique to BMI. Speckle pattern movement gives the user a correct perception of the 
blood flow direction and magnitude, and is also useful in separating true blood flow 
from wall motion artifacts. No attempt was made to measure the lateral velocity com
ponent, but BMI may indirectly give the lateral velocity component by combining an 
angle measurement derived from the speckle motion with the radial velocity component 
obtained from the Doppler frequency shift. 

Increasing the Frame Rate in Tissue Doppler Imaging 

The continuous acquisition technique for BMI presented in Paper H, is applied to tis
sue Doppler imaging (TDI) and strain rate imaging (SRI) in Paper I. Previously, the 
Doppler and tissue B-mode images have been calculated from different pulse transmis
sions. The temporal resolution is improved by calculating the Doppler based images 
from the same pulse transmissions as the tissue B-mode images. This acquisition 
scheme also reduces the reverberation noise which limits the accuracy of the velocity 
estimates. When imaging a heart wall, i.e. the interventricular septum, frame rates 
above 300 frames/second is possible with a lateral resolution equal to a conventional 
B-mode image. Tissue velocity estimates calculated from these data suffers from a lot 
of aliasing, but a robust technique is presented that corrects the aliased velocities. A 
significant advantage is the continuous stream of data with constant sampling intervals. 
Doppler spectra and sound signals can thus be calculated at arbitrary points in the 2D 
image. 

Paper J presents a clinical study using the acquisition technique presented in Pa
per I. The spatial-temporal events in the interventricular septum were studied with a 
temporal and spatial resolution not previously available in tissue Doppler techniques. 

Below are the abstracts of the papers in Part 2 of the thesis. 
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Paper A - Clutter Filter Design for Ultrasound Color Flow Imag
mg 

To get ultrasound color flow images of high quality, it is important to sufficiently sup
press the clutter signals originating from stationary and slowly moving tissue. Without 
sufficient clutter rejection, low velocity blood flow can not be measured, and estimates 
of higher velocities will have a large bias. The small number of samples available (8-16) 
makes clutter filtering in color flow imaging a challenging problem. In this paper we 
review and analyze three classes of filters: FIR, IIR, and regression filters. The quality 
of the filters was assessed based on the frequency response, as well as on the bias and 
variance of a mean blood velocity estimator using an autocorrelation technique. With 
the FIR filters, the frequency response was improved by allowing a non-linear phase 
response. By estimating the mean blood flow velocity from two vectors filtered in the 
forward and backward direction, respectively, the standard deviation was significantly 
lower with a minimum phase filter than with a linear phase filter. For IIR filters ap
plied to short signals, the transient part of the output signal is important. We analyzed 
zero, step, and projection initialization, and found that projection initialization gave 
the best filters. For regression filters, polynomial basis functions provide effective clut
ter suppression. The best filters from each of the three classes gave comparable bias 
and variance of the mean blood velocity estimates. However, polynomial regression fil
ters and projection initialized IIR filters had a slightly better frequency response than 
could be obtained with FIR filters. 

Paper B - Clutter Filters Adapted to Tissue Motion m Ultra
sound Color Flow Imaging 

The quality of ultrasound color flow images is highly dependent on sufficient attenuation 
of the clutter signals originating from stationary and slowly moving tissue. Without 
sufficient clutter rejection, the detection of low velocity blood flow will be poor, and 
the velocity estimates will have a large bias. In some situations, e.g. when imaging the 
coronary arteries or when the operator moves the probe in search for small vessels, there 
is considerable movement of tissue. It has been suggested that clutter rejection can be 
improved by mixing down the signal with an estimate of the mean frequency prior to 
high-pass filtering. In this paper we compare this algorithm with several other adaptive 
clutter filtering algorithms using both experimental data and simulations. We found 
that even a slight acceleration of the tissue has a large effect on the clutter rejection. 
The best results were obtained by mixing down the signal with non-constant phase 
increments estimated from the signal. This adapted the filter to a possibly accelerated 
tissue motion, and gave a significant improvement in clutter rejection. 

Paper C - Blood Detection Performance in Moving Tissue 

A method for evaluating the blood detection performance of general linear clutter 
filters is described. The detector performance is characterized by a receiver operating 
characteristic (ROC) which is a plot of the probability of detection, PD, versus the 
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probability of false alarm, Pp. With a Gaussian signal model, the optimal detector 
compares the power at the output of a clutter filter to a threshold. The optimal 
detector structure is thus similar to standard color flow systems, but with a filter 
matrix that depends on both the clutter and blood signal statistics. It is not possible 
to implement such a detector, but it gives the performance limit for practical detectors. 
The performance of a practically realizable adaptive clutter filter is evaluated. This 
filter compensates for the tissue movement by estimating the correlation matrix of 
the clutter signal by spatial averaging, and uses the eigenvectors corresponding to the 
largest eigenvalues as a basis for the clutter space in a regression filter. This basis gives 
maximum clutter attenuation for a given filter order. Digital RF data from the carotid 
artery was recorded, and a theoretical model for the blood signal was used to compare 
the detectors. With large tissue movement, the adaptive filter had almost optimum 
performance, and was significantly better than the polynomial regression filter. 

Paper D - Statistical Evaluation of Clutter Filters in Color Flow 
Imaging 

The filter used to separate blood signals from the tissue clutter signal is an important 
part of a color flow system. In this paper, statistical detection theory is used to 
evaluate the quality of the most commonly used clutter filters. The probability offalsely 
classifying a sample volume as containing blood is kept below a specified threshold. 
With this constraint, the probability of correctly detecting blood is calculated for all 
the filters. Using a measured clutter signal, we found that polynomial regression filters 
and projection-initialized IIR filters are best among the commonly used filters. The 
probability of correctly detecting blood with velocity 10.1 cm/s was 0.32 for both these 
filters. The corresponding value for the optimal detector was 0.81, whereas a regression 
filter that depends on the clutter signal statistics achieved a blood detection probability 
of 0.72. 

Paper E - Automatic Selection of the Clutter Filter Cut-off Fre
quency in Ultrasound Color Flow Imaging 

Unless properly attenuated, the clutter signals originating from stationary and slowly 
moving tissue cause severe artifacts in ultrasound color flow images. There are varying 
demands on the cut-off frequency of the clutter filter in both space and time during 
the heart cycle. In addition, there is a need for user input to set a proper cut-off 
frequency. To solve these problems, this paper presents an algorithm that automat
ically chooses the cut-off frequency for each sample volume. The algorithm has low 
computational complexity, and has been implemented for real-time processing on the 
GE Vingmed Ultrasound System Five scanner. Filtering with regression filters can be 
done iteratively, resulting in an increased cut-off frequency for each step in the iter
ation. Color flow parameter estimates are calculated for each step in the iteration, 
and are used to determine if sufficient clutter attenuation is obtained. With spatial 
averaging of the flow parameters in each step, the clutter was sufficiently attenuated, 
and the blood flow signal was better preserved than with a fixed cut-off filter. Due to 
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limitations in hardware and available processing time, this spatial averaging was not 
possible in the real time implementation, and the minimum cut-off frequency had to 
be increased to get sufficient clutter rejection. As a result, the image quality was not 
significantly improved. However, an important improvement was that the clutter filter 
was automatically adapted to the signal, with no need for the user to adjust the cut-off 
frequency. 

Paper F - High Frame Rate Color Flow Imaging 

This paper presents an acquisition technique that improves the temporal resolution in 
ultrasound color flow imaging. When the region of interest (ROI) in the color flow 
image is limited in the depth direction, and is positioned sufficiently deep in the body, 
it is possible to reduce the acquisition time for the color flow data by 50%. The 
technique uses a combination of beam interleaving and transmission of pulses with 
double repetition frequency. After a pulse is transmitted in a first direction, there 
is time available to receive from a second direction and transmit a new pulse in this 
direction while waiting for the echo from the first pulse to arrive. The technique is 
well suited for imaging the blood flow through the heart valves with the probe in 
the apical position. For this application, an increase in the frame rate of 70% was 
obtained. The transducer is focused for reception in the first direction, but the beam 
side lobes will pick up unwanted echoes from the pulse propagating in the second 
direction. A simulation using the Field II program showed that for scatterers of equal 
strength, the minimum difference in energy between the desired and undesired signal 
was 8.9dB for cardiac imaging from the apical position. However, for patients with 
strong reverberation noise from the body wall, the undesired signal can be considerably 
stronger. Without sufficient clutter filtering, this reverberation noise gives unreliable 
velocity estimates, so the technique should be used with care. 

Paper G - A New Method Describing Cross-Sectional Blood 
Flow Velocity Profiles in the Left Ventricular Outflow Tract of 
Patients with Atrial Fibrillation with the Use of High Frame
Rate 2-Dimensional Color Flow Imaging 

A new Doppler method was developed to evaluate the instantaneous cross-sectional 
velocity profile variability in the left ventricular outlet tract in patients with atrial 
fibrillation. Blood flow velocities acquired at a high frame rate(> 90 frames/s) from a 
single heart cycle were used to display the velocity profile. In 9 patients, 2 heart cycles 
with different R-R interval lengths were recorded in color flow mode in a transthoracic 
apical 5-chamber and long-axis view. Raw digital ultrasound data were analyzed with 
an external personal computer. The data indicated a variable skew in the profiles 
with the highest velocities and velocity-time integral (VTI) most often located in the 
center and toward the septum. The maximum VTI overestimated the mean VTI by 
approximately 40%. No significant difference existed between the two heartbeats. Thus 
the VTI can be averaged from heartbeats of different R-R lengths in atrial fibrillation. 
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Paper H - Blood Motion Imaging: A New Blood Flow Imaging 
Technique 

In this paper we present new signal processing algorithms for visualization of blood flow 
in ultrasound imaging systems. As opposed to with conventional color flow imaging, 
the speckle pattern from the moving blood cells is preserved and enhanced, enabling the 
user to visually track the blood motion from frame to frame. In conventional color flow 
imaging, one image is produced from a packet of typically 5-15 pulses transmitted along 
each scan line in the image. The Doppler shift produced by slowly moving muscular 
tissue is lower than the Doppler shift produced by the blood flow, and efficient clutter 
filters are designed to attenuate the clutter signal down to a level much lower than 
the signal from blood. The signal power after clutter filtering is used to detect points 
in the image where blood is present. Alternatively, in the power Doppler mode, the 
signal power is displayed as an image to visualize blood vessels. In order to get reliable 
detection, substantial temporal and spatial averaging is used, thus limiting the dynamic 
variation, as well as spatial resolution. This averaging process suppresses the spatial 
speckle pattern in the signal amplitude. In addition to preserving the speckle pattern, 
the algorithms described in this paper compute several image frames per packet of pulse 
transmissions. The perception of movement is further improved if the scatterers in a 
large spatial region are imaged almost simultaneously. This is obtained by increasing 
the time between pulse transmissions in the same beam direction, and using a technique 
called beam interleaving. After transmitting a pulse in a first direction, there is time 
available to acquire data in several other beam directions before transmitting the next 
pulse in the first direction. Visualization of the speckle pattern movement gives the 
user a correct perception of the blood flow direction and magnitude, and is also useful 
in separating true blood flow from wall motion artifacts. 

Paper I - High Frame Rate Tissue Doppler and Strain Rate 
Imaging 

In tissue Doppler and strain rate imaging of the heart, a high frame rate is necessary 
to capture the rapid relaxations and contractions of the myocardium. Previously, the 
Doppler and tissue B-mode images have been calculated from different pulse trans
missions. To improve the temporal resolution, we present a new acquisition technique 
where the Doppler based images are calculated from the same pulse transmissions as 
the tissue B-mode images. By constructing the image from 10-15 transmit beams, 
frame rates above 300 frames/second are possible when imaging the heart. To get 
adequate spatial resolution, the small number of transmit beams limits the width of 
the image, but the image is wide enough to cover a heart wall, i.e. the interventricular 
septum. The Doppler pulse repetition frequency equals the frame rate and is rela
tively low. Tissue velocity estimates calculated from these data therefore suffer from 
aliasing. However, we present a robust technique that corrects the aliased velocities. 
A significant advantage of the new technique is the continuous stream of data with 
constant sampling intervals. Doppler spectra and sound signals can thus be calculated 
at arbitrary points in the 2D image. 
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Paper J- High Frame Rate Strain Rate Imaging of the Ventric
ular Septum in Healthy Subjects 

The regional function of the left ventricle can be visualized in real- time using the strain 
rate imaging method. Deformation or strain of a tissue segment occurs over time dur
ing the heart cycle. The rate of this deformation (the strain rate) is equivalent to 
the velocity gradient, and can be estimated using a tissue Doppler technique. In the 
present study in nine healthy subjects, we have assessed the feasibility of a new strain 
rate imaging method with a very high frame rate of around 300 frames per second 
(FPS). Digital radio-frequency (RF) data were acquired for a sector angle of 20°-30° 
using a high-end ultrasound scanner. The RF data were analyzed using a dedicated 
software package that displays strain rate images and profiles and calculates quanti
tative values. Since the ventricular septum is of crucial importance for the left and 
right ventricular function, we assessed changes in strain rate through the heart cycle 
of the ventricular septum with the new method. Mean peak systolic strain rate in the 
healthy subjects was -1.65 ± 0.13s- 1 . Mean peak diastolic strain rate during early 
filling was 3.14 ± 0.5os- 1 and mean peak diastolic strain rate during atrial systole 
was 0.99 ± 0.09s- 1 . With the new method, we were able to study events and spatial
temporal differences in the heart cycle with duration down to 3.5-3ms, including the 
pre-ejection period and the isovolumic relaxation period. We found individual differ
ences in the strain rate patterns, but in all subjects, the ventricular contraction started 
simultaneously in all parts of the septum. After the ejection period, the elongation 
started before aortic valve closure, in the midinferior septum and propagated towards 
the apex. In conclusion, high frame rate strain rate imaging makes it possible to study 
rapid deformation patterns in the heart. 

5 Conclusions 

Real-time color flow imaging has been available for fifteen years. During this time 
there has been a significant improvement in the image quality, and the technology is 
now relatively mature. In the beginning, the processing was performed in hardware. 
The processing could later be transferred to dedicated programmable digital signal 
processors. We are now at a point where general purpose computers are fast enough 
to perform the color flow processing in real time on an ultrasound scanner. This 
greatly improves the flexibility and eases the development and implementation of new 
algorithms. The algorithms for improved clutter rejection that are presented in this 
thesis, have the potential to improve the image quality in color flow imaging. With 
software based color flow processing, the cost of implementing the algorithms for real
time processing on the scanner should be relatively small. As the computational power 
increases further, more advanced algorithms can be implemented at a small cost. 

The blood motion imaging (BMI) technique is a step forward since it provides a 
more intuitive display of blood flow compared to conventional color flow imaging. As 
opposed to conventional color flow imaging, BMI preserves and enhances the speckle 
pattern. The speckle pattern can be visually tracked from frame to frame, giving the 
user a correct perception of the blood flow direction and magnitude. BMI is also useful 
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to separate true blood flow from wall motion artifacts. The best results are obtained 
when imaging the blood flow in peripheral vessels. The lateral movement is clearly 
visualized, and we get an impression of the parabolic velocity profile across the vessel. 
In addition to providing an intuitive flow visualization, BMI might ease the detection 
of abnormal flow pattern such as small jets. A real-time implementation is necessary 
for a thorough clinical evaluation of BMI. 

Assessment of the cardiac function based on ultrasound Doppler methods is a fast 
developing field. We have described a new method that reduces the noise, and improves 
the temporal resolution when imaging one heart wall at a time. An increased number 
of parallel beam forming channels could extend this technique to cover the whole left 
ventricle with an acceptable spatial resolution. Such a modality would be of great 
clinical value in, for example, stress-echo examinations. 

5.1 Future Directions in Ultrasound Imaging 

Ultrasound scanners using two-dimensional transducer arrays for real-time three
dimensional imaging have been available for some years, but the image quality has 
not been satisfactory. However, the feasible number of beam-forming channels is in
creasing, and more advanced beam-forming algorithms are being developed. High 
quality three-dimensional ultrasound imaging systems for both B-mode and color flow 
are therefore expected in the future. The availability of real-time three-dimensional 
data of high quality may lead to algorithms for calculating all the components in the 
three-dimensional blood velocity field. Real-time three-dimensional scanning is likely 
to be the next major breakthrough in ultrasound color flow imaging. 

The first hand-held ultrasound scanners are now commercially available. Such cheap 
and versatile instruments could bring ultrasound imaging to new fields of medicine 
such as emergency rescue units and general practitioners. As such markets evolve, 
we expect a rapid development of the functionality in hand-held instruments. The 
development might include new Doppler-based imaging modalities specially designed 
for the applications where handheld instruments are used. 

There is currently a rapid development of micromachined ultrasonic transducers 
built on the surface of a silicon wafer. This means that the transducer and front
end electronics can be integrated on the same silicon chip. Such an integration of the 
transducer and front-end electronics is interesting both with respect to two-dimensional 
transducer arrays, and with respect to the cost-effective miniaturization desired for 
handheld instruments. The development of such transducers might therefore indirectly 
lead to new and interesting applications of Doppler ultrasound. 
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Abstract 

To get ultrasound color flow images of high quality, it is important to suffi
ciently suppress the clutter signals originating from stationary and slowly moving 
tissue. Without sufficient clutter rejection, low velocity blood flow can not be 
measured, and estimates of higher velocities will have a large bias. The small 
number of samples available (8-16) makes clutter filtering in color flow imaging a 
challenging problem. In this paper we review and analyze three classes of filters: 
FIR, IIR, and regression filters. The quality of the filters was assessed based on 
the frequency response, as well as on the bias and variance of a mean blood veloc
ity estimator using an autocorrelation technique. For FIR filters, the frequency 
response was improved by allowing a non-linear phase response. By estimating 
the mean blood flow velocity from two vectors filtered in the forward and back
ward direction, respectively, the standard deviation was significantly lower with 
a minimum phase filter than with a linear phase filter. For IIR filters applied to 
short signals, the transient part of the output signal is important. We analyzed 
zero, step, and projection initialization, and found that projection initialization 
gave the best filters. For regression filters, polynomial basis functions provide 
effective clutter suppression. The best filters from each of the three classes gave 
comparable bias and variance of the mean blood velocity estimates. However, 
polynomial regression filters and projection initialized IIR filters had a slightly 
better frequency response than could be obtained with FIR filters. 

A shorter version of this paper is submitted to 

IEEE Trans. Ultras on., Ferroelect., Freq. Contr. 
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1 Introduction 

In ultrasound Doppler blood flow measurements, the signal scattered from blood is 
corrupted by signals scattered from muscular tissue such as vessel walls, etc. This 
clutter signal is typically 40-100dB stronger than the signal from blood. The signal 
scattered by the rapidly moving blood cells has a larger Doppler frequency shift than the 
signal reflected from slowly moving tissue. A high-pass filter can therefore be used to 
separate the signals from blood and tissue. To get adequate frame rates in 2D color flow 
imaging, only 8-16 samples are generally available for high-pass filtering. While there 
are many conventional filter design techniques, all these algorithms consider only the 
steady state frequency response. For the short signals available in color flow imaging, 
the transient response is significant, and the steady state response can not be used 
to compare the filters. In this paper we analyze IIR filters with various initialization 
techniques [1, 2, 4], FIR filters with and without a linear phase response [7], and 
regression filters [3, 4, 12] in order to determine which filter is best for clutter filtering 
in color flow imaging. The paper considers more filter types and goes deeper into the 
design procedure than previous papers have done [4, 8, 10]. 

It has been suggested to adapt the clutter filter to the tissue movement by down
mixing the signal with the estimated mean tissue frequency [11]. This paper does 
not consider such an adaptation to the tissue movement, but down-mixing can be done 
prior to all the filters considered. Paper [8] suggests initializing an IIR filter to suppress 
the transient from a complex exponential with frequency equal to the estimated mean 
frequency. This is called exponential initialization, and results in a non-linear filter and 
is not considered in this paper. The approach, however, seems similar to down-mixing 
with the mean frequency prior to a step-initialized IIR filter. 

The paper is organized as follows. General theory for linear clutter filters is pre
sented in Section 2. In Sections 3, 4, and 5, FIR, IIR, and regression filters are pre
sented, respectively. Different filters within each of the filter classes are analyzed and 
compared. The best filters from each class are compared in Section 6, while Section 7 
contains the final discussion and conclusions. 

2 General Linear Clutter Filters 

A 2D color flow imaging system scans the ultrasound beam over the region to be 
imaged, transmits N pulses in each direction, and estimates the blood flow velocities 
from the backscattered signals. The number of pulses N will be referred to as the 
packet size. A well established technique is to estimate the blood flow velocities based 
on the temporal samples of the complex demodulated signal from fixed positions in 
space. The clutter filter thus operates on a one-dimensional signal consisting of N 
temporal samples. 

It is convenient to organize the N samples of the complex demodulated Doppler 
signal in a vector x = [x(O), x(1), ... , x(N- 1)f. A general one-dimensional clutter 
rejection filter can be described mathematically as a transform on the N-dimensional 
complex vector space eN 0 Restricting the treatment to linear filters, a general linear 
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filtering operation can be expressed by the matrix multiplication 

y=Ax (1) 

where A is an M x N matrix, and the output vector y = [y(O), y(1), ... , y(M- 1)]T 
has dimension !vi. With the matrix element in row nand column k denoted by a(n, k), 
the elements of the output vector are given by 

N-1 

y(n) = L a(n,k)x(k), n = O, ... ,M -1 
k=O 

(2) 

The filter is linear, but not generally time invariant. It is therefore not possible to 
define the frequency response as the Fourier transform of an impulse response. For a 
general linear filter, the frequency response is defined as the power of the output signal 
when the input is a complex harmonic signal [12] with unit amplitude. A discrete-time 
complex exponential is defined by 

x(k) = ejkw, k = O, ... ,N -1 (3) 

where w E [-1r, 1r] is the normalized frequency, and j = J=l. With this input signal, 
the output becomes 

N-1 

Yw(n) = L a(n, k)ejkw =An( -w), n = 0, ... , M- 1 
k=O 

(4) 

where An ( w) is the Fourier transform of row n. The frequency response then becomes 

M-1 M-1 
1 ~ 2 1 ~ 2 

Ho(w) = M L.., IYw(n)l = M L.., IAn( -w)l 
n=O n=O 

(5) 

The parameters describing the frequency response of a high pass filter are illustrated in 
Figure 1. The stopband is limited by the stopband cut off frequency w8 , which should 
be large enough to remove the clutter signal. The deviation from zero in the stopband 
is given by d8 , which should be as small as possible to get sufficient clutter rejection. 
In the passband, all the frequencies should be passed through unaltered which means 
that dp should be minimized. Finally, the passband cut off frequency Wp should be as 
close as possible to w8 • This ensures that a maximal range of blood velocities can be 
measured. 

3 Finite Impulse Response (FIR) Filters 

As the name implies, the impulse response of an FIR filter is of finite length. The 
output of a (K -1)th order FIR filter can therefore be written as the finite convolution 
sum 

K-1 n 

y(n) = L h(k)x(n- k) = L h(n- k)x(k) (6) 
k=O k=n-K+1 
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Figure 1: Design parameters for a high pass filter. 

11: w 

A block diagram of an FIR filter of order K- 1 is shown in Figure 2. The output is 
not valid until all the filter registers are filled up with input data. With packet size 
N, and filter order K- 1, the number of valid output samples is N- K- 1. It can 
be shown that for FIR filters, the frequency response defined in Equation 5 becomes 
H0 (w) = IH(wW, where H(w) is the Fourier transform of the impulse response h(n). 

3.1 FIR Filters with Linear Phase 

A filter has linear phase if the frequency response can be written 

(7) 

where G(w) is a real function, and k1 and k2 are constants. The advantage of linear 
phase is that in the passband, the frequency response is H(w) rv ej(k1 +k2 w). For a 
signal x(n) consisting only of frequencies in the passband of the filter, the spectrum of 

----+-{+ y(n) 

Figure 2: FIR filter of order K - 1. 
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Type K -1 h(n) G(O) G(7r) Q(w) 
1 Even Symmetric Unconstrained Unconstrained 1 
2 Odd Symmetric Unconstrained Zero cos'§-
3 Even Antisymmetric Zero Zero sinw 
4 Odd Antisymmetric Zero Unconstrained sin~ 

Table 1: Properties of linear phase FIR filters. 

the filtered signal is Y(w) rv X(w)ej(k 1 +k2 w). This is just a constant phase shift and 
a time delay of the input signal, and the wave form is not distorted. An FIR filter 
with real coefficients has linear phase if the impulse response satisfies the symmetry 
constraint 

h(n) = ±h(K-n- 1) (8) 

resulting in four types of linear phase FIR filters with properties shown in Table 1 [7]. 
In the Z-plane, Equation 8 forces a zero at z = (1/r)eJ11 if there is a zero at z = reJ 0 . 

As we see in Table 1, a high pass filter has to be of type 1 or 4. Many design techniques 
exist for linear phase FIR filters [7], but we will only consider the design of equiripple 
filters using the McClellan-Parks algorithm. The amplitude of the frequency response 
of linear phase FIR filters can be written as 

K/2 

G(w) = Q(w) L ak cos(kw) = Q(w)G(w) (9) 
k=O 

where Q(w) is defined in Table 1. The specified stop and pass bands of the filter define 
a closed subset F of the closed interval 0 -<::: w -<::: 1r. By specifying a desired function 
D(w) and a weighting function W(w) on :F, the error becomes 

E(w) = W(w)(D(w)- G(w)) = W(w)Q(w)(D(w)/Q(w)- G(w)) (10) 

The McClellan-Parks algorithm finds the coefficients ak that minimize 

maxiE(w)l 
wE:F 

(11) 

Since the maximum error is minimized, the error is evenly distributed in F and the 
McClellan-Parks algorithm produces equiripple filters [7]. 

3.2 FIR Filters with Minimum Phase 

Linear phase imposes a symmetry constraint on the impulse response as shown in 
Equation 8. Without any phase constraints, the required order to obtain a specified 
amplitude response is expected to be reduced. An FIR filter of order (K- 1) with 
optimum amplitude response can be designed as described in [ 6]. When the phase is 
neglected, it is equivalent to optimize the squared magnitude of the frequency response 
which can be written [7, p. 112] 

K-l 

IH(wW = L ak cos(kw) (12) 
k=O 
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First a linear phase filter of order 2(K - 1) is designed using the McClellan-Parks 
algorithm. The resulting amplitude response function can be made non-negative by 
adding a constant value equal to the stopband ripple, and is the magnitude squared 
frequency response of the desired filter. The next step is thus to factorize this function, 
which has double zeros on the unit circle corresponding to the stopband zeros, while 
the zeros determining the passband have mirror symmetry about the unit circle. By 
picking one of each of the double zeros on the unit circle, and one of each of the 
symmetric passband zeros, we find the (K- 1)th order filter with optimum amplitude 
response in the sense specified in Equation 11. By choosing the zeros that are inside 
the unit circle, we get the minimum phase filter, i.e. the filter with smallest time delay. 
The minimum phase filter also maximizes the partial energy E(n) = L~=O lh(k)l 2 of 
the impulse response [9], and therefore has the most asymmetric impulse response. 

Blood flow parameters are commonly estimated from an estimate of the autocorre
lation function of the filtered signal [5]. For an FIR filter, the autocorrelation function 
of the output signal y is given by 

(13) 

when the input signal x has power spectrum Sx(w). Since Ry(m) is independent of the 
phase response of the filter, it is safe to disregard the phase response when designing 
FIR clutter filters for use together with autocorrelation estimates. The minimum phase 
filter has a highly asymmetric impulse response function, and the input samples are 
weighted differently if the impulse response is reversed. The variance might therefore 
be reduced if the autocorrelation estimate is calculated from two output vectors filtered 
in the forward and backward direction, respectively. This is investigated in Section 6. 

The optimum FIR amplitude response can be compared to the general frequency 
response defined in Section 2 by writing Equation 5 as 

Ha(w) 
M-1 M-1 N-1 ;I L IAn(-w)l 2 =:ILL bnkcos(kw) 

n=O n=O k=O 

1 N-1 M-1 N-1 

M L L bnk cos(kw) = L Ck cos(kw) (14) 
k=O n=O k=O 

where bnk are constants given by the filter matrix, and Ck = 2..::~~1 bnk· Comparing 
Equations 12 and 14 we see that the optimum linear clutter filter for packet size N 
has a frequency response equal to an optimum (N- 1)th order FIR filter when the 
optimization criterion is as specified in Equation 11. This response can not be obtained 
with an FIR filter, since at least two output samples are necessary to estimate the blood 
flow velocity. The optimal response is of value however, since it can be used as a quality 
measure for other types of filters. 



Clutter Filter Design for Ultrasound Color Flow Imaging 

Min. phase 
0.497r 
-87dB 

Lin. phase 
0.587r 
-91dB 

Table 2: Optimum linear and minimum phase FIR filters of order 5. Design 
parameters: minimum W 8 = 0.027r, maximum dp = 0.5dB, and mini
mum ds = -80dB. 

3.3 Comparison of Linear and Minimum Phase FIR Filters 

A-7 

When designing both linear- and minimum phase FIR filters, the following parameters 
defined in Figure 1 were specified: 

• Maximum filter order. 

• Minimum stopband cut off frequency, W 8 • 

• Maximum stopband ripple, d8 • 

• Maximum passband ripple, dp. 

With these parameters specified, the mmnnum passband cut off frequency Wp was 
calculated. When the minimum Wp was found, d8 was minimized without altering the 
other quantities. Table 2 shows an example of the filter parameters obtained for linear 
and minimum phase FIR filters of order 5. The corresponding frequency responses are 
shown in Figure 3, where we see that the passband cut-off frequency decreases from 
0.587r to 0.497r when a non-linear phase is allowed. Filters with minimum phase will 
therefore be used when FIR filters are compared to other filter classes. 
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Figure 3: Frequency responses for linear and minimum phase FIR filters of 
order 5. 
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Figure 4: Direct form II realization of IIR filter. 

4 Infinite Impulse Response (IIR) Filters 

A Kth order infinite impulse response (IIR) filter is described by the difference equation 

K K 

y(n) =- L,aky(n- k) + L,bkx(n- k) (15) 
k=l k=O 

where we see that each output sample depends on present and past input samples, as 
well as past output samples. A direct form II [9] realization of a general IIR filter is 
shown in Figure 4. The recursive part of the filter causes the response to an impulse 
input to endure forever, and is the reason why such filters are called IIR filters. 

4.1 Steady State and Transient Response 

We are interested in input signals of finite length, and will therefore use the one-sided 
Z-transform in analyzing the system [9]. Transforming Equation 15 gives 

(16) 

To analyze the transient response, we assume that x(n) has a rational Z-transform, 
and since it is causal, we may set x+(z) = X(z) = N(z)/Q(z). The filter has a 
rational transfer function H(z) = B(z)/A(z) resulting in the following expression for 
the output signal 

y+(z) = B(z) N(z) + N0 (z) 
A(z) Q(z) A(z) 

(17) 
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where No(z) =- L;f[=l akz-k L;~=l y( -n)zn depends on the initial values of the filter 
registers. Assuming no repeated roots in the polynomial A(z)Q(z) and no pole-zero 
cancellation, a partial fraction expansion gives 

(18) 

where Pk and qk are the roots of the polynomials A(z) and Q(z). The last term is due 
to the nonzero initial conditions. Inverse transformation of Equation 18 gives 

K K 

y(n) = 2)Ak + Dk)(Pk)nu(n) + L Qk(qk)nu(n) = Ytr(n) + Yss(n) (19) 
k=l k=l 

where u(n) denotes the unit step function. Assuming a stable filter we have IPkl < 1, 
and the first term vanishes as n ---+ oo. When the input signal is a sinusoid, the poles 
qk fall on the unit circle, and the response persists for all n ;::: 0. The output is thus 
divided in a transient part, Ytr(n), and a steady state part, Yss(n). The transient part is 
contained in a K-dimensional vector space spanned by the exponential functions (Pk)n. 
Both the transient due to the input signal, and the transient due to the non-zero initial 
conditions are contained in this subspace. 

There are many techniques for designing IIR filters based on the steady state mag
nitude response. Referring to Figure 1, the most common filter types have the following 
properties [13]: 

• Butterworth filters have a monotonic frequency response, and are maximally flat 
at w = 0 and at w = 1r. The first 2N- 1 derivatives of IH(w W are equal to zero 
at w = 0 and w = 1r. 

• Chebyshev type I filters have an equiripple passband and a monotonic stopband. 
The filter is optimal in the sense that among all all-pole filters of order N, this 
filter has the smallest dp for fixed W 8 , Wp, and d 8 • 

• Chebyshev type II filters have a monotonic passband and an equiripple stopband. 
The filter is optimal in the sense that among all all-pole filters of order N, this 
filter has the smallest ds for fixed W 8 , Wp, and dp. 

• Elliptic filters have both poles and zeros, and are equiripple in both the passband 
and the stopband. The filter is optimal in the sense that among all rational 
transfer functions of a given order, elliptic filters have the smallest dp for fixed 
W 8 , Wp, and d 8 • 

With an input signal of finite length, the transient response becomes important. Ex
amples of the transient signal for a sinusoidal signal input to Butterworth, Chebyshev, 
and Elliptic high pass filters of order 3 are shown in Figure 5. As is expected from 
Equation 19, the Butterworth filter has the smallest transient since among the three 
filter types, Butterworth filters have poles with the smallest magnitude. Butterworth 
filters have a wider transition region than the other filters, and there is thus a trade-off 
between transient duration and magnitude response. 
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Figure 5: Filter output (a) and transient signal (b) for the Butterworth, 
Chebyshev, and Elliptic filters shown in Figure 8. The input sig
nal was sin(mr/5 + 7l-j4). 

4.2 State Space Formulation 

To investigate different techniques for reducing the transient shown in Figure 5, a state 
space formulation [9] of the IIR filter will be convenient. In Figure 4, the state vector 
is defined by v(n) = [v1 (n) v2(n) ... vK(n)]T. The filter is then described by the 
following state space equations 

v(n + 1) = Fv(n) + qx(n) 

y(n) = gT v(n) + dx(n) 

where the elements ofF, q, g, and dare 

F ~ r : 
1 0 

n 0 1 

0 0 
l-aK -aK-l -aK-2 -a1J 

[ bK- boan l 
= bK-l- boaK-l 

d = bo g . ' 

b1 - boa1 

r~1 q= 

l~J 

(20) 

(21) 

(22) 

The state space description of the filter is illustrated in Figure 6. With initial state 
v(O), the state at n > 0 is given by 

n-l 
v(n) = Fnv(O) + L pn-l-kqx(k) 

k=O 

(23) 
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Figure 6: State-space description of IIR filter. 

and the filter output is given by 

+)----+ 
y(n) 

{ 
gT v(O) + dx(O), 

y(n) = gTFnv(O) + 2..:~:~ gTFn-1-kqx(k) + dx(n), 
n=O 

n>O 

A-ll 

(24) 

Let the input and output sequences be viewed as N x 1 vectors, 
x = [x(O) x(l) ... x(N- l)]r, and y = [y(O) y(l) ... y(N- l)]T. Equation 24 
can then be written as the matrix-vector equation 

y = Bv(O) + Cx (25) 

where 

r gT r d 

0 0 0 
gTF gTq d 0 0 

B= and C= (26) 

gT~N-1 gTF~-2q gTFN-3q gTq d 

We will now investigate different ways v(O) can be chosen to minimize the transient. 

4.3 Zero Initialization 

The initial filter state vector is set equal to the zero vector, v(O) = 0. This is equivalent 
to assuming that the input signal is identical to zero for n < 0. The filtering operation 
is equal to 

y= Cx (27) 

where C is given in Equation 26. 

4.4 Step Initialization 

The transient response depends on the input signal and can not be removed unless the 
input signal is completely known. However, the transient can be partially suppressed 
by using the a priori knowledge available about the input signal. In color flow imaging, 
the input signal is dominated by the low frequency clutter signal. The input signal 
is therefore assumed to have a constant value equal to the first signal sample x(O). 
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For a stable filter, the transient dies out with time, and for a step input, the filter 
registers converge to constant values. The transient can thus be suppressed by setting 
the initial filter state equal to the state an infinitely long time after the step is applied 
at the input. This initial filter state is found by utilizing the final value theorem of the 
one-sided Z-transform [9]. Transformation of Equation 20 gives 

(28) 

and inserting the Z-transform of the assumed input signal gives 

Vstep(O) = lim(z- 1)V+(z) 
Z--+ 1 

= lim(z -1) (z(zl- F)- 1v(O) + (zl- F)- 1qx(O)z) 
z--+1 Z - 1 

= x(O)(I- F)-1q (29) 

Inserting this in Equation 25 the filter with step initialization is given by 

y = x(O)B(I- F)-1q + Cx 

= (B(I- F)-1q1 +C) X 

=A8 x 

where 1 is the 1 x N vector [1 0 · · · 0]. 

4.5 Projection Initialization 

(30) 

From Equation 19 we see that the transient part of the output signal is of the same form 
as the response with just a zero input signal. We can further deduce from Equation 25 
that the transient is in the subspace spanned by the columns of the matrix B. The 
projection matrix PB = B(BTB)- 1BT is the projection into this transient subspace 
[1]. The component of the output signal in the transient subspace is removed by forcing 
P BY = 0. This is obtained by the following initial state vector 

(31) 

Inserting this in Equation 25 the filter with projection initialization is given by 

(32) 

4.6 Mirroring of the Input Sequence 

The transient decays with time, and the effect of the transient can be reduced by 
discarding some of the first output samples. This reduction in the number of output 
samples, however, increases the variance when estimating flow parameters. A better 
approach is to "increase" the input signal length based on the available samples and 
then discard the first output samples. One way to obtain this is to mirror the input 
vector around the first sample, producing the 2N- 1 dimensional vector Xm as shown 
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I 

:Mirror 

Figure 7: Mirroring of the input sequence around the first sample. 

in Figure 7. Mathematically, this mirroring is expressed by the (2N- 1) x N matrix 
M1: 

2 0 0 -1 
2 0 -1 0 

Xm = M1x, where M1 = 
2 -1 0 0 

(33) 
1 0 0 0 
0 1 0 0 

0 0 0 1 

The matrices in Equation 26 must be adjusted for an input vector of length 2N- 1, 
and give the output vector Ym· The initial state vector v(O) is calculated based on 
Xm. The final output vector y is the last N samples of Ym· This selection of samples 
is obtained by theN x (2N- 1) matrix M2: 

(34) 

The entire filter including this mirroring operation is given by 

(35) 

The matrix M 1B has dimensions N x N, while the matrix M 2B has dimensions N x K. 
The mirroring operation can be repeated several times, i.e. the mirrored input vector 
Xm can be mirrored to obtain a vector of length 4N- 3. 

4. 7 Comparison of Initialization Techniques 

Examples of frequency responses for Butterworth, Chebyshev, and elliptic filters with 
different initialization techniques are shown in Figure 8. In this figure we see that 
for packet size N = 8, zero initialization results in insufficient stopband rejection. 
The step initialized filters have a zero at zero frequency, but the stopband is very 
narrow. The projection initialized filters have a stopband width equal to the steady 
state response, but with a wider transition region. Frequency responses when the 
input vector is mirrored are shown in Figure 9. Comparing the responses in Figure 9 
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Figure 8: Frequency responses for Butterworth, Chebyshev, and elliptic filters 
with different initialization techniques. Packet size N = 8. 
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Butterworth filter, mirrored input vector 
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Figure 10: Projection initialized Chebyshev responses as a function of order 
and steady state cut-off frequency. Packet size N = 8. 

with those in Figure 8, we see an improvement for zero- and step initialization. For 
projection initialization, however, mirroring results in a degradation of the response. 
From Figures 8 and 9, we can conclude that projection initialization without any 
mirroring of the input vector is the preferred initialization technique for IIR filters. 
Among the different IIR responses, the Chebyshev response is a good choice since it 
has a steep transition region and a monotonic stopband. An IIR Chebyshev filter with 
projection initialization will therefore be used when comparing IIR filters to other filter 
classes. The stopband width of a projection initialized Chebyshev filter can be increased 
either by increasing the order or the cut-off frequency of the steady state response. It 
is, however, not possible to get a significant increase in the -80dB stopband width 
by increasing the cut-off frequency, the only result is an undesirable widening of the 
transition region. A better approach is to increase the filter order while keeping the cut
off frequency low. This is illustrated in Figure 10. The frequency responses were also 
relatively independent of the passband ripple specified for the steady state response. 
A peak-to-peak ripple of ldB was used in all the designs of IIR filters. 

No symmetry properties can be stated for the rows of an IIR filter matrix. As for 
minimum phase FIR filters, there is thus a potential reduction of estimator variance if 
flow parameters are estimated based on two output vectors filtered in the forward and 
backward direction, respectively. This is investigated in Section 6. 

5 Regression Filters 

A regression filter calculates the best least-square fit of the signal to a set of curve 
forms modeling the clutter signal, and subtracts this clutter approximation from the 
original signal. The curve forms span a subspace of the N-dimensional signal space 
which we call the clutter space. The best least-square fit is the projection of the signal 
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Figure 11: Projection interpretation of regression filters. 

into the clutter space, and the filter matrix is given by 

K-1 

A=I- LbkbkT (36) 
k=O 

where bk is a set of orthonormal basis vectors spanning the K-dimensional clutter 
space, and I is the identity matrix. This projection interpretation of regression filters 
is illustrated in Figure 11. The frequency response is 

K-1 

1 "'"""' 2 Ho(w) = 1- N ~ IBk(w)l (37) 
k=O 

where Bk(w) is the Fourier transform of basis vector k [12]. We see from Equation 37 
that to get a high pass filter, the basis vectors should be low-frequency functions. Con
ventional frequency analysis suggests using low-frequency sinusoids as basis vectors. 
The regression filter is then equivalent to calculating the Discrete Fourier Transform 
and then setting the low-frequency coefficients equal to zero prior to the inverse trans
form. An example of the obtained frequency response is shown in Figure 12a, where we 
see that this basis does not provide sufficient stopband attenuation. There is a large 
distance between the zeros in the frequency response, and small attenuation between 
them. A better frequency response is obtained by increasing the sinusoidal period be
yond the packet size. Figure 12b shows the frequency response when the period of the 
sinusoids is four times the packet size. The zeros come closer together with greater 
attenuation between them. In the limit, when the period of the sinusoids is increased, 
they become polynomials within the signal interval. An orthonormal basis is obtained 
by using the Legendre polynomials as basis vectors, and the resulting filter is called a 
polynomial regression filter [3, 4, 12]. Frequency responses for polynomial regression 
filters with different dimensions of the clutter space are shown in Figure 13a. The 
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Figure 12: Frequency responses for regression filters with sinusoidal basis vec
tors. (a) Sinusoidal period = N. (b) Sinusoidal period = 4N. 
Clutter space dimension K = 3, and packet size N = 8. 
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Figure 13: (a) Frequency responses for polynomial regression filters with 
packet size N = 8. The clutter space dimension is indicated on 
each curve. (b) Frequency responses for filters described in Equa
tion 38 with co = c1 = 1 and c2 equal to 0.25, 0.5 and 0.75 are 
plotted with dashed lines. 
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polynomial regression filters have a smooth and monotonic frequency response, and 
a polynomial basis for the clutter space will therefore be used when regression filters 
are compared to other filter classes. The frequency response of polynomial regression 
filters changes in discrete steps with clutter space dimension as seen in Figure 13a. The 
frequency response also varies with packet size. To obtain the same stopband width 
with a larger packet size, the clutter space dimension has to be increased. 

Frequency responses in between those shown in Figure 13a can be obtained by using 
the filter matrix 

K-l 

A=l- LCk-bkbkT 
k=O 

(38) 

where Ck are real constants. Examples of the resulting frequency responses are shown 
in Figure 13b for clutter space dimension equal to three, and c0 = c1 = 1 while c2 was 
0.25, 0.5 and 0.75 in the three examples shown. The -80dB stopband width is not 
significantly different from the regression filter with clutter space dimension equal to 
2. The transition region is, however, significantly wider, and the best performance is 
obtained with the conventional polynomial regression filter in Equation 36. 

The polynomial basis vectors bk are either odd or even symmetric, 
b( k) = ±b( N - 1 - k). Using this property in Equation 36, the filter matrix ele
ments satisfy a(n, k) = a(N- 1- n, N- 1- k). Therefore, a reversal of the input 
vector only results in a reversal of the output vector. Thus no reduction in estimator 
variance is obtained by filtering in both the forward and backward direction. 

6 Comparison of the Different Filter Classes 

In the previous sections, the filters with best frequency responses within the FIR, IIR, 
and regression filter classes were found. Examples of frequency responses for these 
three filter classes are shown in Figure 14a for packet size N = 8 and in Figure 14b for 
packet size N = 16. The filters were designed with the parameters given in Table 3. 
These parameters were chosen to achieve filters with comparable frequency responses. 
The polynomial regression filters have frequency responses almost identical to the pro
jection initialized IIR filters. This is expected since the output vector for both filters 
is projected into the orthogonal complement of a subspace with low frequency basis 
functions. The FIR filters have the widest transition regions, and is not the preferred 
choice based on the frequency response. Figure 14 also contains examples of the power 
spectra used in the simulations described later in this section. 

Blood flow parameters are estimated from the output signal of the clutter filter. It 
is therefore of interest to see how the clutter filter affects such estimates. A commonly 
used estimator for the mean velocity in color flow imaging is calculated from an estimate 
of the autocorrelation function with temporal lag m = 1 [5]. Mathematically, the 
estimator is expressed by 

v = 2loT · }b, where Jb = arg(R(1))/27r (39) 
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Figure 14: Comparison of frequency responses of polynomial regression filters, 
projection initialized IIR Chebyshev filters, and minimum phase 
FIR filters. (a) Packet size N = 8. (b) Packet size N = 16. The 
design parameters are given in Table 3. 

Packet size N = 8 Packet size N = 16 

Filter type Parameter Filter type Parameter 

Proj. init. IIR Order= 3 Proj. init. IIR Order= 5 
Chebyshev Wp = 0.27f Chebyshev Wp = Q.l7r 

dp = 0.5dB dp = 0.5dB 
Min. phase FIR Order= 5 Min. phase FIR Order= 8 

Minimum W8 = 0.027r Minimum W8 = 0.037r 
Maximum dp = 0.5dB Maximum dp = 0.5dB 
Minimum d8 = -80dB Minimum d8 = -80dB 
Achieved d8 = -87dB Achieved d8 = -92dB 
Achieved wp = 0.497r Achieved wp = 0.407r 

Pol. reg. Clut. space dim. = 3 Pol. reg. Clut. space dim. = 5 

Table 3: Filter design parameters. 
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Clutter signal 1 Clutter signal 2 
Clutter-to-flow-signal power ratio, CSR 
Clutter signal RMS Bandwidth, Be 
Clutter signal center frequency, fc 
Blood signal center frequency, fb 
Blood signal RMS Bandwidth, Bb 

40dB 
O.OlPRF 
0.0075PRF 
0 to 0.5PRF 
0.1fb 

50 dB 
0.015PRF 
0.0075PRF 
0 to 0.5PRF 
0.1fb 

Table 4: Parameters for the simulated spectra. Clutter signal 1 is plotted with 
a solid line in Figure 14, while Clutter signal 2 is plotted with a dashed 
line. 

where c is the sound velocity, fo is the ultrasound center frequency, T is the pulse 
repetition interval, R(1) is the autocorrelation estimate, and Jb is an estimate of the 
center frequency of the blood signal. The autocorrelation function can be estimated 
by the sample mean estimator 

A 1 
R(m) = M -m 

M-m-1 

L y*(k)y(k + m) 
k=O 

1 
M-m-1 N-1 N-1 

L L L a*(k,j)a(k + m, n)x*(j)x(n) 
k=O j=O n=O 

(40) 
M-m 

and we want to investigate how the filter matrix elements a(k, j) influence the mean 
frequency estimate Jb· A set of simulations with varying mean blood frequencies was 
performed with signals having power spectra of the form shown in Figure 14. Both 
the clutter and blood signal power spectra had a Gaussian shape with parameters 
given in Table 4. To model the transit time effect, the bandwidth of the blood signal 
was proportional to the center frequency. The synthetic blood signal was generated 
by first calculating the Discrete Fourier Transform of a signal consisting of 512 · N 
samples of complex white Gaussian noise. This signal was then multiplied by a mask 
corresponding to the power spectrum of the blood signal, and transformed back to the 
time domain. The clutter signal was calculated in a similar manner. Finally, the signal 
used in the simulations was the sum of these two signals and complex white Gaussian 
noise, giving a power spectrum as shown in Figure 14. Subdividing this signal into 
vectors of dimension N, we got 512 realizations of a signal with packet size N. This 
procedure was repeated 512 times giving a total of 262 144 realizations for each blood 
signal center frequency. When aliasing of the velocity estimates occurred, ±27r was 
added to arg(R(1)) in Equation 39 to ensure that the estimates were contained in the 
interval [fb - 0.5, fb + 0.5]. 

Figure 15 shows the bias and standard deviation of the mean frequency estimate 
with no clutter signal and a signal-to-noise ratio (SNR) of 30dB. The packet size is 
N = 8. The filters are designed to suppress signals with frequencies in the stopband, 
and therefore yield a large bias and standard deviation for Doppler frequencies within 
the stopband. The transition region should be as narrow as possible, and in this region 
we see that the polynomial regression filter yields a considerably larger bias than the 
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Figure 15: (a) Bias and (b) standard deviation of the mean frequency estimate 
for the three different filters in Figure 14a. The frequency of the 
polynomial regression filter is plotted to indicate the passbands of 
the filters. No clutter is present and the SNR is 30dB. The packet 
size is N = 8. 

other filters. The regression filter also yields bias for a larger range of frequencies. In 
the passband, however, all the filters yield a negligible bias. For the FIR filter, the 
standard deviation in the passband is reduced when the estimate is calculated from two 
vectors filtered in the forward and backward direction. The improvement is largest for 
high frequencies since the bandwidth of the blood signal is proportional to the center 
frequency. 

Figure 16 shows the results when the SNR is reduced to 6dB. Compared with 
the results for SNR=30dB, we see that the bias in the transition region and passband 
increases for all the filters. We also see that the regression filter has the largest bias. The 
difference in bias between the regression filter and the other filters is, however, much 
smaller for SNR=6dB which is a realistic signal-to-noise ratio. The standard deviation 
in the passband increases for all the filters, and the FIR filter yields a considerably 
higher standard deviation in the passband than the other filters. When the estimate 
is calculated from two vectors filtered in the forward and backward direction, the 
standard deviation within the passband is significantly reduced, and is comparable to 
the IIR and regression filter. For a linear phase FIR filter the standard deviation was 
approximately equal to the values obtained with a minimum phase filter applied only in 
the forward direction. For IIR filters there was no significant reduction of the standard 
deviation when filtering in both the forward and backward direction. 

To see how clutter affects the mean frequency estimate, we repeated the simulations 
including a clutter signal denoted Clutter signal 1. To study the decay in performance 
with increased clutter level, we also performed simulations with Clutter signal 2 where 
both the amplitude and bandwidth was increased. The detailed parameters for these 
two signals are given in Table 4. The results for Clutter signal 1 are shown in Figure 17 
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0.15 -

0.1 

0.2 0.3 
Input center frequency 

(a) (b) 

Figure 16: (a) Bias and (b) standard deviation of the mean frequency estimate 
for the three different filters in Figure 14a. The frequency of the 
polynomial regression filter is plotted to indicate the passbands of 
the filters. No clutter is present and the SNR. is 6dB. The packet 
size is N = 8. 
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where we see that they are very similar to the results with no clutter signal shown in 
Figure 16. This means that all the filters sufficiently suppress a clutter signal with 
this amplitude, bandwidth, and center frequency. 

' ' -0.05 ----------- -'------------ ~ 

-0.1 

-0.15 -------------------------

0 0.1 0.2 0.3 0.4 0.5 
Input center frequency 

(a) (b) 

Figure 17: (a) Bias and (b) standard deviation of the mean frequency estimate 
with Clutter signal1 for the three different filters in Figure 14a. The 
frequency of the polynomial regression filter is plotted to indicate 
the passbands of the filters. The SNR. is 6dB and the packet size 
is N = 8. 
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Figure 18: (a) Bias and (b) standard deviation of the mean frequency estimate 
with Clutter signal 2 for the three different filters in Figure 14a. The 
frequency of the polynomial regression filter is plotted to indicate 
the passbands of the filters. The SNR is 6dB and the packet size 
is N = 8. 

The results for Clutter signal 2 are shown in Figure 18 where we see that the 
mean frequency estimates are strongly affected by this clutter signal. When studying 
Figure 14a, we see that the power of Clutter signal 2 after filtering is above the thermal 
noise level. This low frequency signal component is an explanation for the significant 
negative bias in Figure 18a. The standard deviation within the passband is also large 
for Clutter signal 2. Based on the results in Figure 18 it can be concluded that none 
of the filters sufficiently suppress Clutter signal 2. The results also indicate that all 
the filters break down at approximately the same clutter power, bandwidth and center 
frequency. 

The influence of the packet size on the quality of the mean frequency estimator was 
investigated by increasing the packet size from 8 to 16. To maintain approximately the 
same stopband width, the dimension of the clutter space used in the regression filter 
was increased from 3 to 5. The other filter types were also redesigned with parameters 
given in Table 3 to get frequency responses similar to the regression filter as shown in 
Figure 14b. The results for Clutter signal 1 are shown in Figure 19. When comparing 
Figure 19a and Figure 17a, we see that the range of frequencies with considerable bias 
is reduced when the packet size is increased from 8 to 16. This effect is related to 
the narrower transition region of the filters used for N = 16. The standard deviation 
of the estimates decreases with packet size since the estimates are based on a larger 
number of samples. The relative advantage achieved by applying the FIR filter in both 
directions is the same for N = 8 and N = 16. 

The results for Clutter signal 2 are shown in Figure 20 where we see that all the 
filters have similar performance and yield a small negative bias for Doppler frequencies 
within the passband. We also see that the standard deviation is significantly increased 
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Input center frequency 

(a) (b) 

Figure 19: (a) Bias and (b) standard deviation of the mean frequency estimate 
with Clutter signal1 for the three different filters in Figure 14a. The 
frequency of the polynomial regression filter is plotted to indicate 
the passbands of the filters. The SNR is 6dB and the packet size 
is N = 16. 

0.2 0.3 0.5 0.2 0.3 
Input center frequency Input center frequency 
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Figure 20: (a) Bias and (b) standard deviation of the mean frequency estimate 
with Clutter signal 2 for the three different filters in Figure 14a. The 
frequency of the polynomial regression filter is plotted to indicate 
the passbands of the filters. The SNR is 6dB and the packet size 
is N = 16. 
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for the highest Doppler frequencies compared to the results for Clutter signal 1 shown 
in Figure 19. The filters do not completely suppress the clutter signal, but they perform 
significantly better than the filters used for packet size N = 8. An explanation for this 
is the wider stop bands of the filters used for N = 16. 

7 Discussion and Conclusions 

The frequency response of FIR filters is improved when a nonlinear phase response is 
allowed. The commonly used autocorrelation estimates do not depend on the phase 
response, so a filter with non-linear phase response can safely be chosen. A significant 
reduction of the variance of the mean frequency estimator was obtained by filtering 
with a minimum phase filter in both the forward and backward direction. Linear phase 
FIR filters have symmetric impulse responses, and nothing is gained by filtering in both 
the forward and backward direction. A large gain in performance can thus be obtained 
by using a minimum phase filter instead of a linear phase filter. 

For short signal lengths, the frequency response for IIR filters is highly dependent on 
the initialization technique. We found that the best frequency response for IIR filters 
is obtained when projection initialization is used. The other initialization techniques 
do not provide a sufficient stopband width for clutter rejection. 

Within the class of regression filters, polynomial basis functions were shown to pro
vide useful frequency responses. Polynomial regression filters and projection initialized 
IIR filters of the same order have almost identical properties. An explanation for this 
is that the output vector for both filters is projected into the orthogonal complement 
of a subspace with low frequency basis functions. 

Among the three filter classes, polynomial regression filters and projection initial
ized IIR filters have the best frequency response. For equal stopband width, the tran
sition regions were narrower than for FIR filters. An advantage of FIR filters is the 
greater flexibility in specifying the filter cut-off frequency, which is also independent 
of the packet size. To increase the stopband width for projection initialized IIR fil
ters, it was better to increase the filter order than to increase the steady state cut-off 
frequency. 

Simulations were performed to investigate how the bias and standard deviation of 
the mean frequency estimator were affected by the clutter filters. The simulations 
showed that for all the filter types, the frequency response is a reliable indicator of the 
range of blood velocities that can be measured with good quality. For Doppler frequen
cies within the passband, there was no significant differences in the bias produced by 
the different filters for realistic noise and clutter levels. The different filter types break 
down at approximately the same clutter level. IIR and regression filters provide a larger 
number of output samples than FIR filters provide. The simulations showed that this 
larger number of samples reduces the variance of the mean frequency estimator within 
the passband compared to FIR filters. By using a minimum phase FIR filter in both 
the forward and backward direction, there was, however, no significant difference in 
variance between the three filter classes. The simulations also showed that the relative 
performance between the filters did not change significantly with packet size. 
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When using projection initialization, IIR filters have a computational complexity 
similar to that of regression filters. The computational complexity is considerably 
smaller for FIR filters. However, if minimum estimator variance is desired, the FIR 
filter should be applied twice, and more computations are needed for the autocorrelation 
estimate. 
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Abstract 

The quality of ultrasound color flow images is highly dependent on sufficient 
attenuation of the clutter signals originating from stationary and slowly moving 
tissue. Without sufficient clutter rejection, the detection of low velocity blood 
flow will be poor, and the velocity estimates will have a large bias. In some sit
uations, e.g. when imaging the coronary arteries or when the operator moves the 
probe in search for small vessels, there is considerable movement of tissue. It has 
been suggested that clutter rejection can be improved by mixing down the signal 
with an estimate of the mean frequency prior to high-pass filtering. In this paper 
we compare this algorithm with several other adaptive clutter filtering algorithms 
using both experimental data and simulations. We found that even a slight ac
celeration of the tissue has a large effect on the clutter rejection. The best results 
were obtained by mixing down the signal with non-constant phase increments 
estimated from the signal. This adapted the filter to a possibly accelerated tissue 
motion, and gave a significant improvement in clutter rejection. 

Submitted to IEEE Trans. Ultras on., Ferroelect., Freq. Contr. 
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1 Introduction 

In ultrasound Doppler blood flow measurements, the signal scattered from blood is 
corrupted by signals scattered from stationary or slowly moving muscular tissue such as 
vessel walls, and by stationary reverberations. This clutter signal is typically 40-lOOdB 
stronger than the signal from blood. The signal scattered by the rapidly moving blood 
cells has a larger Doppler shift than the signal reflected from slowly moving tissue. A 
high-pass filter can therefore be used to separate the signals from blood and tissue. 
Blood velocities are commonly estimated using a mean frequency estimator [5], and 
to obtain unbiased blood velocity estimates, the clutter signal needs to be attenuated 
down to the thermal noise level. To get adequate frame rates in 2D color flow imaging, 
there are typically only 8-16 samples available for high-pass filtering, and efficient 
clutter filtering is thus a challenging problem. 

The signal scattered by moving tissue may have a non-zero mean frequency, and it 
has been shown that clutter filtering is improved by adapting the filter to the tissue 
movement [9]. Examples of situations where the tissue movement can be relatively large 
are imaging of the coronary arteries in the moving heart muscle, and when the operator 
moves the probe in search of small blood vessels. Adaptation to the tissue movement 
can be obtained by mixing down the signal with the estimated mean frequency of the 
clutter signal; this centers the clutter spectrum around zero frequency [9]. After this 
down-mixing, the clutter can be efficiently attenuated using a high-pass filter with a 
narrow stop-band, and a broader range of blood velocities can be measured than is 
possible with a non-adaptive filter. 

When imaging low velocity blood flow, the observation time is relatively long, and 
there might be a considerable acceleration of the tissue during the observation time. 
We have experienced that it is difficult to obtain sufficient clutter attenuation in such 
situations, even when down-mixing with the mean frequency is done prior to the high
pass filter. In this paper we propose several new algorithms to improve the clutter 
rejection when the tissue does not move with constant velocity. The algorithms are 
based on the fact that a time-varying velocity results in a clutter signal that is a non
stationary stochastic process. We compared the proposed algorithms to each other and 
to the mean frequency technique by using experimental data recorded while moving the 
probe in search for small blood vessels in the thyroid gland. To verify the experimental 
results, we also performed simulations using the Field II program [2]. 

The paper is organized as follows. First, a model of the Doppler signal is developed 
in Section 2. The different algorithms are presented in Section 3 before they are 
compared using experimental data in Section 4. The experimental results are verified 
by simulations using the Field II program in Section 5. The results are discussed in 
Section 6, and conclusions are drawn in Section 7. 

2 Signal Model 

The point scatterer response of an ultrasound imaging system, e(r, t), is defined as the 
electrical response in the receiver from a point scatterer at position r. The transducer 



Clutter Filters Adapted to Tissue Motion B-3 

is positioned at r = 0, and is excited with an electrical pulse at time t = 0. Let o(r, t) 
be the scattering amplitude which is related to the variation in density and compress
ibility of the object. To obtain the received signal x(t), the point scatterer response is 
multiplied with the scattering amplitude o(r, t) at the time when the transmitted pulse 
arrives at r, and the product is integrated over space giving 

x(t) = fv e(r, t)o (r, t- 1:1) dr + w(t) ~ fv e(r, t)o (r, ~) dr + w(t) (1) 

where c is the speed of sound, and w(t) is white thermal noise. The approximation 
is valid since the speed of sound is much higher than the scatterer velocity, and it is 
reasonable to neglect the scatterer movement during the interaction between the sound 
wave and the scatterer. 

The dimensions of the spatial variations in the acoustic parameters of human tissue 
are much smaller than the spatial resolution of an ultrasound imaging system. The 
received signal for each point in the image is thus an average of the contribution from a 
large number of scatterers which makes it convenient to model the scattering medium 
by a stochastic ensemble. The scattering amplitude function o(r, t) is thus modeled as 
a zero-mean random process in space and time, and important results can be obtained 
from the correlation function defined by 

R 0 (r, I, t, T) = E{ o(r, t)o(r + 1,t + T)} (2) 

where I and T are the lags in the spatial and temporal direction, respectively. 

A 2D Doppler imaging system scans the ultrasound beam over the region to be 
imaged, transmits N pulses in each direction with repetition timeT, and estimates the 
blood flow velocities from the back-scattered signals. For each beam direction there is 
therefore a two-dimensional signal x(t, n), where tis the time after a pulse transmission, 
and n is the pulse number. The received signal from pulse n is from Equation 1 equal 
to 

x(t, n) = i e(r, t)o(r, t/2 + nT)dr + w(t) (3) 

and using Equation 2, the autocorrelation function of x(t, n) is given by 

Rx(t, T, n, m) = E{x(t, n)x(t + T, n + m)} 

= J J e(r1, t)e(r2, t + T)R0 (r1, r2- r1, t/2 + nT, T /2 + mT)dr1dr2 + a!J(m, T) 

(4) 

where T is the lag in "fast" time corresponding to depth in the image, and m is the lag 
in "slow" time corresponding to the pulse number. The thermal noise is uncorrelated 
with the back-scattered signal, has variance a!, and is white, as indicated by the delta 
function J(m, T). 
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2.1 Building Blocks of the Point Scatterer Response 

The point scatterer response is a temporal convolution of the following terms [3]: 

• The electrical pulse p(t) applied to the transducer. 

• The coupling between the electrical signal and mechanical vibrations of the trans
ducer in the transmitting mode het(t), and in the receiving mode her(t). 

• The acoustical spatial impulse response of the transducer aperture in the trans
mitting mode hat(r, t), and in the receiving mode har(r, t). These functions 
depend on the spatial position of the scatterer, and account for the diffraction 
and frequency dependent attenuation. 

• A temporal filter accounting for the frequency dependent scattering character
istics, hs ( t). The frequency response of the scattering process is modeled to be 
independent of the spatial position. 

• A receive filter, hrec(t), matched to the received pulse bandwidth to optimize the 
signal-to-noise ratio. 

All the temporal signals can be combined into a single signal y(t), and the transmit 
and receive spatial impulse responses can be combined into a pulse-echo spatial impulse 
response, hve(r, t). The point scatterer response e(r, t) is then given by 

e(r, t) = hpe(r, t) * y(t) 
t 

(5) 

where y(t) = p(t) * het(t) * hs(t) * her(t) * hrec(t), and hpe(r, t) = hat(r, t) * har(r, t). t t t t t 
The receiver filter can be constructed from a low-pass prototype h£p(t) as shown in 
Figure la, where fo is the center frequency of the received signal. 

2.2 Statistical Model of a Uniform Scattering Medium with 
Short Correlation Length 

When the scattering amplitude function o(r, t) has a short spatial correlation length 
for a fixed time, the correlation function in Equation 2 can be approximated by 

R 0 (r, 1, t, 0) R::i O"~(r, t)6(1) (6) 

where O"~ (r, t) is the variance of the scattering amplitude function. The approximation 
is valid when the correlation function is non-zero only for spatial lags much shorter than 
the wavelength of the imaging system. In a region with uniform scattering properties in 
space and time, the variance of the scattering amplitude is constant, and the correlation 
function is further simplified to 

Ra(r, 1, t, 0) R::i 0"~6(1) (7) 
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Figure 1: (a) Band-pass receiver filter. (b) Complex demodulation combined 
with a low-pass receiver filter. The center frequency of the received 
signal is fo. 
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A displacement function d(r, t, T) is defined such that r + d(r, t, T) is the position 
at time t + T of the scatterer which at time t was at the position r. Inserting this 
displacement function into Equation 7 gives the simplified correlation function 

Ra(r, I, t, T) = a~6(I- d(r, t, T)) (8) 

which is valid both for tissue regions with uniform scattering properties and short 
spatial correlation length, and for blood. Inserting Equation 8 into Equation 4, the 
correlation function for the received signal becomes 

Rx(t, T, n, m) =a~ J e(r, t)e(r + d(r, t/2 + nT, T /2 + mT), t + T)dr + a!6(m, T) (9) 

Equation 9 is a great simplification compared to Equation 4, and this simple model of 
the scattering medium can be used to get important information about the imaging 
system. 

2.3 The Doppler Signal 

A well established technique in color flow imaging is to estimate the blood flow velocities 
based on the temporal samples of the complex demodulated signal from fixed positions 
in space [5]. Complex demodulation can be combined with the receiver filter as shown 
in Figure lb. The clutter filter thus operates on a one-dimensional signal consisting of 
samples from N consecutive pulse transmissions, and it is convenient to organize these 
N samples of the complex demodulated Doppler signal for each depth index k in an 
N -dimensional vector 

Xk = [x(2krs/ c, 0), x(2krs/ c, 1), ... , x(2krs/ c, N- l)]T (10) 

where r s is the distance between samples in the depth direction. Being a sum of the 
signals from a large number of independent scatterers, the Central Limit Theorem [7] 
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tells us that x(t, n) is a zero mean Gaussian random process. The vector Xk contains 
samples of x(t, n) subsequent to complex demodulation, and has a complex Gaussian 
probability density function (PDF) with zero mean given by 

(11) 

where x/t is the complex conjugated transpose of xk, and the correlation matrix Rx, 
is defined by 

(12) 

where E{-} denotes the expected value. Equation 11 shows that the PDF of Xk is 
completely characterized by the correlation matrix Rx, where element ( i, j) is given 
by 

(13) 

where Rx is calculated in Equation 4, or by the simplified expression in Equation 9. In 
addition to the signal scattered by the moving blood cells, there is a component from 
the much stronger tissue scatterers, and the signal is also corrupted by reverberations. 
The signal from tissue together with the reverberation noise will be denoted the clutter 
signal, and the signal vector is given by 

(14) 

where ck is the clutter signal, bk is the signal scattered back from the moving blood 
cells, wk is the thermal noise, and nk is the sum of the clutter and thermal noise. The 
three signal components originate from different sources and are statistically indepen
dent. The correlation matrix is then given by 

(15) 

where Rck is the clutter correlation matrix, Rb, is the blood correlation matrix, O"; is 
the noise variance, I is the identity matrix, and Rn, is the correlation matrix of the 
total noise signal. 

2.4 Signal Decomposition 

The expression for the correlation function in Equation 9 shows that a time-varying 
displacement function results in a non-stationary signal. To characterize the signal, 
we will therefore use the Discrete Karhunen-Loeve transform (DKLT) which provides 
a generalization of conventional Fourier analysis for non-stationary random processes 
[8]. 

The aim of clutter filters is to attenuate the clutter signal, and the DKLT will be 
developed for the clutter part of the signal. The DKLT is based on an eigenvector 
decomposition of the correlation matrix, where the eigenvectors ei and eigenvalues Ai 
are found by solving the equation 

(16) 
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The correlation matrix Rc is Hermitian symmetric and positive semidefinite [8], and it 
is possible to find N orthonormal eigenvectors e 1 , e 2 , ... , eN and a corresponding set 
of eigenvalues A1 , A2 , ... , AN which are all real and non-negative. In the following dis
cussion, the eigenvalues are ordered in decreasing magnitude, i.e. A1 2': A2 2': ... 2': AN. 
Defining the eigenvalue and eigenvector matrices by 

+l (17) 

the eigenvalue decomposition of the correlation matrix is given by 

(18) 

The DKLT is a decomposition of the signal along the orthogonal eigenvectors, and is 
defined by 

(19) 

The eigenvector matrix is unitary, i.e. E*TE = I, and the inverse transform is given by 

N 

c = E~>: = L r;,iei 

i=l 

(20) 

which is termed the Karhunen-Loeve expansion. The Karhunen-Loeve coefficients are 
uncorrelated, and related to the eigenvalues by 

Z=J 
i=Jj 

(21) 

The total energy in the signal is equal to the sum of the eigenvalues, and the eigenvalue 
distribution is thus a measure of the bandwidth of the signal. This is a generalization 
of the Fourier power spectrum which is only defined for stationary signals. 

The white noise signal has evenly distributed energy, and the eigenvalue decompo
sition of Rn is given by 

(22) 

where we see that the eigenvectors do not change when white noise is added, but the 
eigenvalues are guaranteed to be strictly positive and Rn is positive definite. 

An illustration of the eigenvalue spectrum for a typical Doppler signal is shown in 
Figure 2. The energy of the clutter signal from stationary and slowly moving tissue is 
concentrated in a few eigenvalues corresponding to low-frequency eigenvectors, while 
the white noise has equal energy along all the eigenvectors. Figure 2 also shows the 
energy distribution along the clutter eigenvectors for a typical blood signal. Compared 
to the clutter signal, the signal from the faster moving blood has most of the energy 
concentrated along eigenvectors with higher frequency content. 
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Figure 2: Energy spectrum of a typical Doppler signal. 

3 Adaptive Clutter Filters 

A general linear filtering operation can be expressed by the matrix multiplication 

y=Ax (23) 

where A is an M x N matrix, and the output vector y = [y(O), y(1), ... , y(M- 1)]T 
has dimension NI. The clutter attenuation can be improved by using a filter matrix 
that adapts to the clutter signal characteristics. Several such adaptive algorithms are 
presented in this section. 

3.1 Down-mixing with the Mean Doppler Frequency 

Using the well established "autocorrelation method" [5], an estimate of the mean fre
quency of the clutter signal at depth k0 is given by 

(24) 

where Rko (1) is an estimate of the autocorrelation function with lag equal to one in the 
temporal direction corresponding to pulse transmissions. This autocorrelation function 
can be estimated using the unbiased sample mean estimator given by 

A 1 1 K N-2 

Rk0 (1)= 2K+ 1 N_ 1 L l.:x*(ko+k,m)x(ko+k,m+1) (25) 
k=-K N=O 

where averaging is performed in both space and time. In large vessels, the signal 
from blood might be comparable in strength to the clutter signal, and to preserve this 
blood signal, it is important that the filter is not adapted to the blood motion. When 
spatial averaging with a large number of radial samples K is used, the tissue signal 
will dominate in the autocorrelation estimate, and adaptation to the tissue movement 
is ensured. The mixing signal 

(26) 
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Figure 3: Down-mixing signal with constant phase increments. 

is constructed from the estimated mean frequency, and is a phasor spinning round in 
the complex plane with constant frequency as illustrated in Figure 3. The filtering 
procedure is summarized in Figure 4, where several types of high-pass filters can be 
used, e.g. FIR-, IIR- or regression filters. Polynomial regression filters are used in this 
paper when the adaptive algorithms are compared to each other. The down-mixing is 
illustrated in the frequency domain in Figure 5 where we see that the clutter can be 
rejected with a narrower filter after the down-mixing. 

3.2 Whitening Filter 

The first step in many algorithms for detecting a signal embedded in noise, is to 
transform the noise signal to white noise [6]. The further optimal detector processing 
depends on the statistics of the desired signal which are difficult to estimate in our 
application. In addition to detecting the blood signal, we also want to estimate the 
mean frequency. Making the noise signal white without significantly altering the blood 
signal would produce unbiased mean frequency estimates. A filtering operation that 
whitens the noise is given by 

(27) 

where (A+ a~r)- 1 1 2 is diagonal with elements -Jl/(..\i +a;;_,). For a signal with an 
energy distribution shown in Figure 2, the output signal has an energy distribution as 

x(n)-----+{ y(n) 

Figure 4: Adaptive clutter filter. 
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Figure 5: Down-mixing with estimated mean clutter frequency fc· 
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Figure 6: The signal energy distribution after a whitening filter. 
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shown in Figure 6. The filter has whitened the noise component, but also altered the 
blood signal. The magnitude of the clutter eigenvalues determines the attenuation of 
the blood signal. The effect of the filter on the shape of the blood spectrum is small 
if the blood energy is concentrated along eigenvectors where the corresponding clutter 
eigenvalues are nearly constant. 

In a practical situation the signal statistics are unknown, but the clutter correlation 
matrix for the sample volume at depth k0r8 /c can be estimated by spatial averaging 

A 1 K 
R - """' x x*T 

Ck 0 - 2K + 1 ~ ko+k ko+k 
k=-K 

(28) 

where K is the number of sample volumes in the averaging. Stationarity is not assumed 
in the estimation of the correlation matrix, and the filter is therefore able to adapt to 
accelerated tissue movements. The averaging must be performed in an area where 
the statistical properties of the clutter signal are approximately constant. This is the 
case with a uniform tissue movement in the averaging area, e.g. probe movement. It is 
assumed that the power of the blood signal in the averaging region is so small compared 
to the clutter power that it has a negligible effect on the eigenvectors of the estimated 
correlation matrix. 

As seen in Equation 27, the whitening filter depends on both the eigenvectors and 
the eigenvalues. The power of the signal varies significantly in space due to speckle 
effects and the increased attenuation with depth. The clutter level is also lower inside 
blood vessels. There might therefore be a mismatch between the eigenvalues of the 
estimated correlation matrix and the power of the clutter signal in a specific sample 
volume. A filter that depends on only the eigenvectors is therefore desirable. 

3.3 Eigenvector Regression Filter 

A conventional regression filter fits the signal to a set of curve forms modeling the clutter 
signal. Filters where the curve forms are polynomials of increasing order are termed 
polynomial regression filters [1, 4, 10]. The filtered signal is obtained by subtracting 
this clutter approximation from the input signal. The curve forms span a subspace of 
the N-dimensional signal space which we call the clutter space, and a K-dimensional 
clutter approximation is given by 

(29) 

where bk is a set of orthonormal basis vectors spanning the clutter space. The coeffi
cients ak that minimize the least square error, i.e. ~n lc(n)- c(n)l 2 , are given by the 
projection of the signal into the clutter space, and the filtering operation is given by 

(30) 
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Figure 7: Eigenvector regression filter. 

A regression filter can be adapted to the clutter signal by using basis vectors for 
the clutter space that depend on the clutter statistics. Among all expansions using 
orthonormal basis functions, the Karhunen-Loeve expansion minimizes the mean square 
error if the expansion is truncated to use fewer than N orthonormal basis functions. 
This means that the clutter approximation 

K 

c = L "'iei 

i=l 

(31) 

minimizes the mean square error, i.e. E {Ln lc(n)- c(n)l 2 }. A maximum reduction 
of clutter energy, given the dimension K, is thus obtained by removing the component 
of the signal contained in the subspace spanned by e 1 , ... , e K. The filter is described 
by the projection 

Y = (1 -t eke/t) x 
k=l 

(32) 

and we will refer to it as an eigenvector regression filter. The effect of the eigenvector 
regression filter on a signal with energy distribution shown in Figure 2, is illustrated in 
Figure 7 where we see that the filter also removes the component of the blood signal 
contained in the clutter space. To maximize the range of detectable blood velocities, 
the clutter space dimension should be minimized. The eigenvector regression filter is 
optimal in this respect, since for a specified clutter space dimension it maximizes the 
clutter attenuation. 

The correlation matrix can be estimated by spatial averaging as given by Equa
tion 28. An advantage compared to the whitening filter is that the eigenvector regres
sion filter depends only on the shape of the eigenvectors and not the magnitude of the 
eigenvalues. 

3.4 Down-mixing with Varying Phase Increments 

Tissue movement with non-constant velocity results in a clutter signal with varying 
phase increments from sample to sample. Adaptation to such tissue movement is 
obtained by down-mixing the signal vector x with a unit amplitude complex vector 
with varying phase increments as illustrated in Figure 8. The phase increments used 
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Figure 8: Down-mixing signal for adaptation to an increasing tissue velocity. 

for down-mixing at depth ko can be found as follows. First estimate the non-stationary 
correlation function with lag equal to one in the temporal direction corresponding to 
pulse transmissions. An unbiased estimator for this correlation function is given by 

A 1 K 
Rk0 (n,1)= L x*(ko+k,n)x(ko+k,n+1), n=O, ... ,N-2 (33) 

2K + 1 k=-K 

where spatial averaging is performed to avoid adaptation to the blood movement. The 
phase signal used in the down-mixing in Figure 4 is then given by 

n=O 
n = 1, ... ,N- 2 (34) 

By defining the diagonal matrix Mq,n(n) with diagonal elements e-i¢R(n), the filter 
including down-mixing can be written as 

(35) 

For a first order filter, this algorithm is approximately equal to the eigenvector regres
sion filter described in the previous section. The expected value of the non-stationary 
correlation estimate is given by 

E{Rko (n, 1)} = L L E{K:kK:l}ek(n + 1)e[(n) 
k 

= L Akek(n + 1)eh,(n) R::: :X. 1e1 (n + 1)e;'(n) 
k 

(36) 

where we have used Equations 20 and 21. The phase of the dominant eigenvector 
vector is 

(37) 
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and from Equation 36 we have 

(38) 

For a small tissue movement, there will be small decorrelation of the clutter signal 
from sample to sample, and the magnitude of the samples in the dominant eigenvector 
remains approximately constant. Filtering with a first order eigenvector filter can then 
be written as approximately 

(39) 

where M_q,c(n) represents an up-mixing subsequent to the filter. Disregarding this 
up-mixing, and using the approximation in Equation 38, we see that for a first order 
filter, the polynomial regression filter with down-mixing using phase increments given in 
Equation 34 is approximately equal to the eigenvector regression filter. For adaptation 
to a varying tissue velocity, down-mixing with the phase of the dominant eigenvector 
is thus an alternative to down-mixing with the phase of the non-stationary correlation 
estimate. 

4 Experimental Results 

Digital RF data were recorded with a GE Vingmed Ultrasound System Five scanner 
using a linear array transducer in color flow modus. The center frequency of the 
transmitted pulse was 5. 7MHz, and the sampling frequency in the depth direction 
was 3.3MHz. There were 12 pulse transmissions in each beam direction, with a pulse 
repetition frequency of 1.5kHz. The digital data were stored as complex baseband 
signals where the in-phase and quadrature signal samples were represented as 16 bit 
integers. These data were transferred from the scanner and processed on a standard 
computer using MATLAB. To test the ability of the filters to adapt to the signal, the 
data were recorded while the probe was being moved in search for small blood vessels 
in the thyroid gland. 

Power Doppler images using the different algorithms are shown in Figure 9 with 
gain and dynamic range settings equal for all the images. The clutter space dimension 
is equal to 3 in all the filters, and samples spanning 2cm in the depth direction were 
used in the spatial averaging in Equations 25, 28, and 33. A small vessel (SV), a 
large vessel (LV), and a clutter region (C) are marked in all the images. The power in 
these three regions is tabulated in Table 1. The poorest image quality is obtained for 
the whitening filter. The gain could be increased to get a brightness level comparable 
to the other images, but we see that the blood signal to clutter ratio is much lower 
for this filter. The whitening filter is therefore not investigated in further detail. For 
this example image, there is no significant improvement by down-mixing with the mean 
frequency compared to the non-adaptive filter. The three other adaptive filters improve 
the clutter attenuation by 3dB, but the eigenvector regression filter removes more of the 
blood signal than the filters that mix down the signal with varying phase increments 
prior to a polynomial regression filter. The three algorithms which are able to adapt 
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Figure 9: Power Doppler images with a dynamic range of 30dB. The clutter 
space dimension is equal to 3 in all the filters. The three marked re
gions contain clutter (C), a small vessel (SV), and a large vessel (LV). 
(a) Non-adaptive filter. (b) Down-mixing with mean frequency. (c) 
Whitening filter. (d) Eigenvector regression filter. (e) Down-mixing 
with phase of dominant eigenvector. (f) Down-mixing with mean 
non-constant phase increments. 
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Large Small 
vessel vessel Clutter 

Non-adaptive polynomial regression filter 31.0 24.2 14.7 
Down-mixing with mean frequency 31.0 24.2 14.5 
Whitening filter 16.2 14.0 9.6 
Eigenvector regression filter 29.6 22.0 11.2 
Down-mixing with phase of dominant eigenvector 31.0 24.1 11.5 
Down-mixing with mean non-constant phase increments 31.0 24.1 11.5 

Table 1: Mean power of the Doppler signal in the three regions marked in 
Figure 9. 

to an accelerated tissue motion clearly visualize two small vessels to the left of the 
indicated clutter region. These two small vessels can not be distinguished from the 
clutter using the other filters. 

More detailed information can be obtained by investigating the filters for a repre
sentative sample volume. An example of a signal from a sample volume with moving 
tissue is shown in Figure 10, where we see that the signal closely follows a circular arc 
in the complex plane, but that the phase increment between the samples is increasing. 
This corresponds to an accelerated motion where the velocity increases from 0.13cm/s 
to 0.22cm/s during the time for the 12 pulse transmissions. The eigenvectors corre
sponding to the four largest eigenvalues of the correlation matrix estimated for this 
sample volume are shown in Figure 11, where we see the increasing frequency content 
of the eigenvectors. The energy spectrums of the signal for the different filters are 
shown in Figure 12a. For the eigenvector regression filter, Figure 12a shows the energy 
of the signal along the eigenvectors of the estimated correlation matrix. For the other 
filters, Figure 12a shows the energy along the polynomial basis vectors subsequent to 
the different down-mixing techniques. The energy left in the signal after filtering with 
increasing clutter space dimension is shown in Figure 12b. The eigenvector regression 
filter needs clutter space dimension K = 2 to get sufficient clutter attenuation. This 
increases to K = 3 when down-mixing with varying phase increments is used in com-

Im 

Re 

n=N-1o 

Figure 10: The signal from a representative sample volume. 
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Figure 11: The eigenvectors corresponding to the four largest eigenvalues of 
the correlation matrix estimated for filtering of the signal in Fig
ure 10. 
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Figure 12: (a) Energy spectrum for the signal in Figure 10. (b) Energy left 
after filtering with increased clutter space dimension. Spatial av
eraging is performed over 2cm in the depth direction in all the 
estimates. 



B-18 

Center freq. 
PRF 
Transducer excitation, p( t) 
Transducer impulse response, het(t) = her(t) 
Receiver filter bandwidth 
Transducer height 
Element pitch 
Element kerf 
Transmit aperture 
Receive aperture 
Transmit focus 
Receive focus 
Elevation focus 
Mathematical element size 
Sampling frequency 
Sound velocity 

5.7 MHz 
1.5 kHz 
3 period sinusoid 
Hamming weighted 2 period sinusoid 
2M Hz 
4mm 
200~tm 

20~tm 

18 mm 
12 mm 
50 mm 
20 mm 
18 mm 
45 x 50~tm 
200MHz 
1540m/s 

Table 2: Field II simulation parameters. 

bination with a polynomial regression filter. Down-mixing with the mean frequency 
does not reduce the necessary clutter space dimension compared to the clutter space 
dimension that is necessary with a non-adaptive filter. 

5 Simulation Results 

To verify the experimental results in the previous section, we simulated a similar imag
ing situation using the point scatterer response model in Equation 5. The received 
signal from scatterers moving along a straight line through the receive focus as shown 
in Figure 13 was calculated using the Field II program [2]. This corresponds to imaging 
just a single muscle fibre, but gives valuable information about the bandwidth of the 
clutter signal. The parameters used in the simulation are given in Table 2. The total 
temporal signal y(t) in Equation 5 is shown in both the time and frequency domain in 
Figure 14. The pulse-echo spatial impulse response function, hpe(r, t), in Equation 5 

20 mm 

Transducer 

Moving 
scatterers 

Figure 13: Simulation geometry. 
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Figure 14: (a) The temporal signal y(t) used in the simulations. (b) The 
frequency spectrum 1Y (.f) I of y( t). 
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was calculated using Field II, and Figure 15 shows hpe(r, t) for several points along 
the line in Figure 13. The signal in Figure 14 was convolved with each of the impulse 
responses in Figure 15 to get a point scatterer response, e(r, t), for each point along 
the line. The distance between the points was 0.67 f.Lm. The point scatterer responses 
were sampled at a time after pulse transmission corresponding to the receive focus 

Pulse-echo acoustical impulse responses 

Figure 15: Pulse-echo spatial impulse responses, hpe(r, t), for points along the 
line in Figure 13. The scatterer in the middle is at receive focus. 
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Figure 16: (a) Energy spectrum. (b) Energy left after filtering with increased 
clutter space dimension. Constant velocity of 0.3cm/s. 
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Figure 17: (a) Energy spectrum. (b) Energy left after filtering with in
creased clutter space dimension. The velocity increases linearly 
from 0.1cm/s to 0.3cm/s. 

depth. Due to numerical inaccuracies in the Field II calculations, these samples were 
low-pass filtered to remove high-frequency noise. The resulting data set was used to 
calculate the correlation function in Equation 13 for different displacement functions. 
The data were interpolated to get values at all the points resulting from the specified 
displacement. Since samples were calculated at 0.67 f-Lm increments, the interpolation 
was very accurate. The analysis was limited to a uniform displacement with constant 
acceleration along the line. White noise was added to the signal to get a signal-to-noise 
ratio of 80dB. 

The correlation matrix was calculated from the correlation function using Equa
tion 13, and was used to compare the clutter filters described in Section 3. The eigen
values of the correlation matrix used in the eigenvector regression filter, and the energy 
along each of the polynomial basis vectors used for the other filters, were calculated 
for different velocities and accelerations. We also calculated the energy left in the sig
nal after filtering with increasing clutter space dimension. The results for a constant 
velocity with radial component v = 0.3cm/s are shown in Figure 16, where we see that 
all the adaptive filters have equal performance and are significantly better than the 
non-adaptive polynomial regression filter. Figure 17 shows the results when the radial 
velocity component increases linearly from v = 0.1cm/s at the first pulse transmission 
to v = 0.3cm/s at the last pulse transmission. This is an acceleration corresponding to 
the signal in Figure 10. The results for the eigenvector regression filter show that there 
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is a slight decrease in the spread of the eigenvalues compared to the spread in Figure 16, 
but to attenuate the clutter down to the noise level, a clutter space dimension of K = 3 
is still needed. For the filters using down-mixing with varying phase increments, there 
is a slight increase in the spread of the energy, and K = 4 is necessary. The filter using 
down-mixing with the mean frequency needs clutter space dimension K = 5 which is 
equal to the necessary clutter space dimension for the non-adaptive filter. 

6 Discussion 

Down-mixing with the mean frequency results in a surprisingly small improvement in 
the clutter attenuation as seen by comparing Figure 9a and b. For the signal sample 
shown in Figure 12, this algorithm needs a filter with the same clutter space dimension 
as the non-adaptive filter to obtain sufficient clutter suppression. This result is verified 
by simulations of an accelerated tissue motion as shown in Figures 16 and 17. 

The attempt to use a whitening filter for clutter rejection was not successful. This 
may be explained by the rapid spatial variation in the clutter level. The clutter signal 
is weighted by the inverted eigenvalues of the estimated correlation matrix as seen in 
Equation 27. The sum of the eigenvalues equals the mean energy of the signal vectors 
in the region used to estimate the correlation matrix. In a practical situation, there 
might be a significant spatial variation in the power of the clutter signal. The clutter 
level is also lower in sample volumes inside blood vessels. This mismatch between 
the eigenvalues of the estimated correlation matrix, and the actual clutter power in a 
specific sample volume, results in too large attenuation of the blood signal as seen in 
Figure 9c. 

The eigenvector regression filter provides maximum reduction of the clutter power 
for a specified dimension of the clutter space. As opposed to the whitening filter, it 
depends only on the eigenvectors of the correlation matrix, and is not affected by the 
spatial variation in the clutter level. The filter adapts to clutter signals with both 
time-varying amplitude and velocity. It also adapts to clutter signals from scatterers 
moving with different velocity in different directions. The amount of the blood signal 
contained in the clutter space and thus removed, is determined by both the dimension 
of the clutter space, and the shape of the basis vectors spanning the clutter space. 
The eigenvector regression filter is optimal in the sense that it minimizes the clutter 
space dimension. However, the blood signal may have a considerable component in the 
clutter space even though the dimension is minimized. This is the case in the example 
in Figure 9d. For the eigenvector regression filter, there is a potential pitfall in choosing 
too high clutter space dimension. The filter might then adapt to and remove the blood 
signal. 

Filters using down-mixing with varying phase increments adapt to clutter signals 
originating from uniformly moving scatterers with time-varying velocity. Field II simu
lations showed that even for a small tissue acceleration, there is a large improvement in 
clutter rejection by using algorithms that adapts to such motions. For the image exam
ple in Figure 9, down-mixing with varying phase increments followed by a polynomial 
regression filter provides clutter rejection that is almost identical to the eigenvector 
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regression filter. The overall image quality is actually superior for the down-mixing 
algorithms compared to the eigenvector regression filter since the blood signals are 
better preserved. 

7 Conclusions 

Several algorithms for adapting the clutter filter in color flow imaging to the tissue 
movement have been presented and compared to each other using both experimental 
and simulated data. In situations with constant tissue velocity, down-mixing with the 
estimated mean frequency results in a significant improvement of the clutter rejection 
compared to a non-adaptive filter. Our results show, however, that even a slight 
acceleration of the tissue significantly degrades the efficiency of this algorithm. More 
sophisticated methods than mean frequency down-mixing are therefore necessary to 
get sufficient clutter rejection for realistic tissue movements. 

The optimum representation property of the Karhunen-Loeve transform was used 
to develop a filter that removes the maximum amount of clutter energy from the signal. 
This filter is a regression filter with an optimal signal-dependent set of basis vectors. 
However, our results show that it is difficult to use this filter without removing a non
negligible amount of the signal from blood. This filter also has a large computational 
complexity. 

The best approach is to mix down the signal with varying phase increments cal
culated from an estimate of the non-stationary correlation function. This adapts the 
filter to accelerated tissue movements, and is shown to give a significant improvement 
in the image quality. Considering the rapid development of available computational 
power, this algorithm has a feasible computational complexity which makes it suitable 
for real-time processing. 
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Abstract - A method for evaluating the blood de
tection performance of general linear clutter filters is 
described. The detector performance is characterized 
by a receiver operating characteristic (ROC) which is 
a plot of the probability of detection, Pn, versus the 
probability of false alarm, Pp. With a Gaussian sig
nal model, the optimal detector compares the power at 
the output of a clutter filter to a threshold. The opti
mal detector structure is thus similar to standard color 
flow systems, but with a filter matrix that depends on 
both the clutter and blood signal statistics. It is not 
possible to implement such a detector, but it gives the 
performance limit for practical detectors. The perfor
mance of a practically realizable adaptive clutter fil
ter is evaluated. This filter compensates for the tissue 
movement by estimating the correlation matrix of the 
clutter signal by spatial averaging, and uses the eigen
vectors corresponding to the largest eigenvalues as a 
basis for the clutter space in a regression filter. This 
basis gives maximum clutter attenuation for a given 
filter order. Digital RF data from the carotid artery 
was recorded, and a theoretical model for the blood 
signal was used to compare the detectors. With lMge 
tissue movement, the adaptive filter had almost opti
mum performance, and was significantly better than 
the polynomial regression filter. 

J. INTRODUCTION 

In color flow imaging, the blood signal is much 
weaker than the tissue signal, and it is difficult to de
tect low velocity blood flow when the Doppler shift 
from moving tissue is large. This problem occurs 
when imaging the coronary arteries in the moving 
heart muscle, and when the operator moves the probe 
in search for small blood vessels. It has been shown 
[1, 2, 3} that polynomial regression filtering is an effi
cient technique for removing the clutter signal. These 
filters approximate the clutter signal by a polynomial, 
determined by a least-squares regression analysis, and 
subtract this clutter estimate from the input signal. 

0-7803-4095-7/98/$10.00 © 1998 IEEE 

In [4] we presented an improved regression filter that 
adapts to the tissue movement by using a signal de
pendent basis for the clutter space. 

In this paper the optimal blood detector is de
veloped based on statistical detection theory. The 
assumptions are that the Doppler signal is a com
plex Gaussian process with independent clutter, white 
noise, and blood components, and that the signal 
statistics are known. The optimal detector is shown to 
consist of a matrix multiplication followed by a power 
calculation which is then compared to a threshold. 
Practical detectors have suboptimal clutter filters, but 
optimal structure. Theory for calculating the detec
tor performance for a general linear clutter filter is 
developed, and is used to compare the performance of 
a nonadaptive and adaptive regression filter with the 
optimal detector. 

This paper is organized as follows: The signal model 
is presented in Section II, followed by development 
of the detection theory in Section III. In Section IV 
the performance of the clutter filters is compared to 
the optimal detector by applying the theory to data 
recorded from the carotid artery. Further discussion 
and conclusions are presented in Section V. 

II. SIGNAL MODEL 

The signal vector x is the complex demodulated 
Doppler signal from a single sample volume and con
sists of N temporal samples. It is a zero mean complex 
Gaussian process with three independent components, 
clutter, white noise, and blood 

x=c+n+b (1) 

The signal is characterized by the correlation matrix 
Rx which is given by 

(2) 

where Rc is the clutter correlation matrix, a~ is the 
noise vaJ"iance, I is the identity matrix, and Rb is the 
blood correlation matrix. 
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III. DETECTION OF BLOOD 

In the blood detection problem a decision rule for 
each sample volume is sought to decide which of the 
hypotheses 

Ho : No blood is present 
H1 : Blood is present 

(3) 

is true. The observed vector has a complex Gaus
sian probability density function (PDF) under both 
hypotheses, but with different correlation matrices 

RxiHu = Rc + O'~I 
RxiH1 =Rc+O';I+Rb=RxiHu+Rb (4) 

The detector is characterized by the probability of 
false alarm, PF, and the probability of detection, PD, 
defined by 

PF = P(choose H1!Ho is true) 

PD = P(choose H1IH1 is true) (5) 

The performance of a detector is commonly sum
marized in a receiver operating characteristic (ROC) 
which is a plot of PD versus PF [5]. 

A. The Optimal Detector 

The assumption in this development is that the 
PDF of the observation vector, PxiH;o is known under 
both H 0 and H 1 . In this case the Neyman-Pearson 
lemma [5] tells that PD is maximized under the con
straint PF ::; a: by a likelihood ratio test (LRT) given 
by 

A(x) = Px1H1 (xjH1) ~ 'Y 
PxiHo(xiHo) Ho 

(6) 

The Bayes theory of hypothesis testing also leads to 
an LRT. By taking the logarithm and collecting terms, 
the LRT for the zero mean Gaussian case can be sim
plified to [5] 

where •T denotes the conjugate transpose. The LRT 
can be further simplified by solving the generalized 
eigenvalue problem 

(8) 

and using the eigenvector matrix E in the linear trans
formation y = E*T x. This linear transform consists 
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of a stage that whitens the noise, followed by a diago
nalization of the transformed blood signal correlation 
matrix [6]. The correlation matrices under the two 
hypotheses then become 

RyiHo =I 

RyiH, =I+A (9) 

In this new coordinate system, the LRT is simplified 
to 

N )... H, 
l(y) = y*T (I- (I+ A)-1) y = L ~jy;j2 ~ 11 

i=l + ~ Ho 

(10) 

where y; are the components of y and >..; are the ele
ments of the diagonal eigenvalue matrix A. 

The vector y = E*T xis a zero mean complex Gaus
sian vector since it is a linear transformation of the 
zero mean complex Gaussian vector x. The squared 
magnitude of a complex Gaussian variable is expo
nentially distributed. This means that under both 
hypotheses, l(y) is a sum of independent exponen
tially distributed variables with parameters equal to 
(1+>..;)/>..; under H0 and 1/>..; under H1 . The PDF of 
l(y) can thus be found by a convolution of N exponen
tial distributions with known parameters, resulting in 
the PDF's PqH,. The probabilities PF and PD can 
then be found by 

PF = lx' PtiHo(liHo)dl 

PD = l"' PliH1 (ljH1)dl 

where 11 is the threshold in (10). 

(11) 

Because of the noise term, the correlation matrix 
RxiHn in ( 4) is positive definite [6]. In this case it 
is shown in [7] that the generalized eigenvalues in (8) 
are real and that they have the same sign as the or
dinary eigenvalues of Rb. Since Rb is a correlation 
matrix, it is positive semidefinite which means that 
it has nonnegative eigenvalues. The .\;'s are therefore 
guaranteed to be nonnegative and the LRT can be 
written as 

l(x) = IIDE*Txll 2 ~ 11· 
Ho 

(12) 

where D is diagonal matrix with elements 
)>..,/(1 + >..;). Equation (12) shows that the op
timal detector passes the signal through the signal 
dependent linear filter DE*T and compares the re
sulting power to a threshold as shown in Fig. 1. This 



Fig. 1. The structure of the optimal detector. The optimal 
filter matrix is A = DE*T. 

is a simple structure, but in practice a suboptimal 
filter matrix is used since the signal statistics are not 
known. If the theoretical correlation matrices are 
replaced by estimates, the resulting test is called a 
generalized LRT [5]. An estimate of RxiHo can be 
found by spatial averaging 

, 1 M •T 
RxiHo = M L XiXi 

t=l 

(13) 

in a region containing M sample volumes with approx
imately constant clutter properties. The noise power, 
0"~, can be estimated by an average of the smallest 
eigenvalues of RxiHo· The detector also depends on 
Rb which is complicated to estimate because it de
pends on the signal to be detected. Despite its prac
tical limitations, the optimal detector has theoretical 
value since it gives the limit of obtainable performance 
with practical detectors. 

B. Practical Detectors 

We will now consider detectors with the structure 
shown in Fig. 1, but with practical filter matrices. The 
detector can be expressed mathematically as 

(14) 

where A is a general linear filter matrix [3]. The PDF 
for the test statistic t(x) under the two hypotheses is 
found by diagonalizing the correlation matrix of z = 
Ax. By similar arguments as for the optimal detector, 
t(z) is a sum of independent exponentially distributed 
variables, and the PDFs are found by convolution. 

The performance of the detector is determined by 
the filter matrix A in (14). The optimal detector is 
obtained by A = DE*T. Regression filters are a class 
of clutter filters where the filter matrix is given by 

A =1-P (15) 

where P is a projection matrix into a subspace called 
the clutter space. In polynomial regression filters 

[1, 2, 3], the K lowest order polynomials are used as 
a basis for the clutter space. A more effective clut
ter filter is obtained by using a filter matrix that de
pends on the clutter signal statistics [4]. In this filter 
the eigenvectors of Rx corresponding to the K largest 
eigenvalues are used as a basis for the clutter space. 
This filter is optimal in the sense that for a given order 
K, it removes the best mean square approximation of 
the clutter signal. 

IV. EXPERIME"TAL RESULTS 

A. Data Acquisition 

Digital RF data was recorded with a VingMed 
Sound System Five ultrasound scanner using a linear 
array transducer in color flow modus. The data was 
recorded with center frequency 5.7MHz, pulselength 
0.525J.1S, radial sampling frequency 2MHz, 9 temporal 
samples in each sample volume, and pulse repetition 
frequency 5kHz, giving a Nyquist velocity of 34cm/s. 
The digital data was stored as complex baseband sig
nals where the in-phase and quadrature signal sam
ples were represented as 16 bit integers. This data 
was transferred from the scanner and processed on a 
standard computer using MATLAB. 

B. Detection Performance 

To evaluate the detectors, data was recorded from 
the carotid artery with substantial probe movement 
during the recording. The matrix RxiHo in (4) was 
estimated by spatial averaging in a region with uni
form tissue movement as described in (13). The mean 
tissue movement was estimated to 0.5cm/s. The white 
noise power a~ was estimated by averaging the three 
smallest eigenvalues ofRxiHo resulting in an estimated 
clutter to white noise ratio of 52dB. The signal from 
blood was modeled as a single frequency signal, speci
fied by the blood velocity and power. The blood signal 
to white noise ratio was set to 6dB in all the calcula
tions. ROC's for the optimal detector together with 
detectors based on standard and adaptive regression 
filters are shown in Fig. 2 for blood velocity v=lOcm/s. 
The detector based on the adaptive regression filter 
is seen to be superior to the regression filter with a 
polynomial basis, and the performance is close to the 
optimal detector. ROC's for different blood velocities 
are shown in Fig. 3 for the adaptive filter using order 
3. As expected, the performance increases with ve
locity. Under these conditions, blood with a velocity 
of v=3.4cm/s can not be detected. Figure 4 shows 
Pv versus filter order for the adaptive and polyno-
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Fig. 2. ROC for the three different detectors. CNR=52dB, 
SNR=6dB, v=lOcm/s, and filter order 3. 

mial regression filters. The probability of false alarm 
PF is held constant at 0.05 and the blood velocity is 
lOcm/s. For this blood velocity, the filters have max
imum performance for the same filter order, and the 
adaptive filter is seen to be significantly better than 
the polynomial regression filter. 

V. DISCUSSION AND CONCLUSIONS 

Expressions for calculating the blood detection per
formance for general clutter filter matrices for a Gaus
sian signal model have been developed. The theory 
includes all linear clutter filters, and have been used 
to compare different regression filters to each other 

.o 

Fig. 3. ROC for the detector based on the adaptive clutter 
filter. Filter order 3, varying blood velocity. 
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• Adaptive 
Polynomial 

Fig. 4. Po versus filter order for the adaptive and polyno
mial regression filter. Pp=0.05 and v= lOcm/s. 

and to the optimal detector. The signal from blood 
was modeled as a single frequency signal, but a more 
realistic blood signal model can be used by modifying 
the blood correlation matrix. We have not considered 
spatial and temporal averaging which will improve the 
performance. It is however, expected that an ordering 
of the detectors by performance will be invariant to 
averaging. Using the theoretical expressions, we have 
shown that a considerable performance improvement 
can be obtained with an adaptive clutter filter when 
there is large tissue movement. 
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Statistical evaluation of clutter filters in color flow imaging 
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Abstract 

The filter used to separate blood signals from the tissue clutter signal is an important part of a color flow system. In this paper, 
statistical detection theory is used to evaluate the quality of the most commonly used clutter filters. The probability of falsely 
classifying a sample volume as containing blood is kept below a specified threshold. With this constraint, the probability of 
correctly detecting blood is calculated for all the filters. Using a measured clutter signal, we found that polynomial regression 
filters and projection-initialized IIR filters are best among the commonly used filters. The probability of correctly detecting blood 
with velocity 10.1 cm/s was 0.32 for both these filters. The corresponding value for the optimal detector was 0.81, whereas a 
regression filter that depends on the clutter signal statistics achieved a blood detection probability of 0.72. © 2000 Elsevier Science 
B.V. All rights reserved. 

Keyn-ords: Blood flow; Clutter filters; Doppler; Ultrasound 

1. Introduction 

In color flow imaging, the signal from blood is much 
weaker than the signal from tissue. It is therefore difficult 
to decide if blood is present or not in a given sample 
volume, especially when imaging small vessels in moving 
tissue. Commonly used clutter filters to reject the tissue 
signal are FIR filters, IIR filters with zero-, step-, and 
projection-initialization, and regression filters. With an 
efficient clutter filter, the color flow system will reliably 
detect sample volumes where blood is present. Statistical 
detection theory can be used to evaluate quantitatively 
the performance of the different clutter filters, and to 
find the optimal blood detector. The aim is to maximize 
the probability of blood detection given a value of the 
probability of false alarm. It can be shown that, with a 
Gaussian signal model, the optimal blood detector com
pares the power at the output of a clutter filter with a 
threshold. This is a common method used in color flow 
systems. The optimal clutter filter depends on both the 
clutter and blood signal statistics and is difficult to 
implement in practice. In this study we compare the 
blood detection performance of the different clutter 
filters with each other and with the optimal filter. In 
vivo digital RF data are used to calculate the statistics 

*Corresponding author. Fax: +47-735-98613. 
E-mail address: steinarb@medisin.ntnu.no (S. Bjaorum) 

for the tissue signal, and a theoretical signal model is 
used for the blood. In this way the performance of the 
different filters is evaluated in different imaging 
situations. 

2. Signal model 

The signal vector x is the complex demodulated 
Doppler signal from a single sample volume and consists 
of N temporal samples. It is a zero mean complex 
Gaussian process with three independent components: 
clutter, white noise, and blood. The signal is charac
terized by the correlation matrix R"' which is given by 

(I) 

where Rc is the clutter correlation matrix, u~ is the noise 
variance, I is the identity matrix, and Rb is the blood 
correlation matrix. 

3. Clutter filters 

A general linear filter is described by a matrix multi
plication of the signal vector, y=Ax. The matrix rows 
are a set of (possibly) different FIR filters for each time 
instant. With a time variant filter, a frequency response 
function Hiw) can be defined as the power of the 

0041-624X/OO/$- see front matter© 2000 Elsevier Science B.V. All rights reserved. 
PI!: S0041-624X(99)00153-5 
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output signal when the input is a complex harmonic 
signal: 

(2) 

where ew = [I ei"' --- ei<N -l>w]T is a vector of N samples of 
a complex sinusoid, and (Aew)*T means that the vector 
is complex conjugated and transposed. To get a well
defined frequency response for a real valued signal, an 
ensemble average over all possible phases is necessary, 
as described in Ref, [I], 

3,1, FIRfilters 

FIR filters are described by the transfer function 
H(z)="Li'!~o b,,z-k, where M is the filter order, It is 
possible for FIR filters to have a linear phase response 
by imposing symmetry constraints on the impulse 
response [2], but for the same order a better amplitude 
response can be obtained by discarding the phase. The 
linear phase FIR filters considered in this paper were 
designed using the McClellan-Parks algorithm [2]. The 
minimum phase FIR filters were designed by factoriza
tion of a linear phase filter of order 2M as described 
in Ref, [3]. 

The signal consists of N samples, but the first M 
output samples must be discarded since the output is 
not valid until the input data reach all the filter registers. 
This means that only N- M samples are available for 
estimating flow parameters, resulting in increased esti
mator variance. The FIR filter can be formulated as an 
(N- M) x N matrix with a time-shifted version of the 
impulse response in each row. For FIR filters, the 
frequency response defined in Eq, ( 2) is equal to the 
squared magnitude of the Fourier transform of 
the impulse response, Hiw) = IH(w)l2 . 

The frequency responses of linear- and minimum
phase FIR filters of order five in Fig. I show that the 

-20 
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Fig. I. Frequency responses of fifth-order FIR filters. The vertical line 
indicates the experimental clutter velocity. 

minimum phase filter has the steepest transition region. 
It is advantageous with a filter zero at zero frequency 
since this removes the mean value of the signal, and 
thus the signal from stationary tissue. This is accom
plished by a filter of odd order, 

3.2. IIRfilters 

IIR filters have both zeros and poles, and are 
described by the transfer function H(z) = "Lf~o b"z-k / 
"Lf~o akz-k, where K is the filter order, Because of the 
poles, the output consists of a transient signal in addition 
to the steady state signal. In Ref. [4] a matrix formula
tion of an II R filter is developed: 

y=Cv(O)+Dx, (3) 

where v(O) is a vector containing the initial values of 
the K filter registers. The goal of filter initialization is 
to choose a value of v(O) that minimizes the transient 
response. Three different initialization techniques are 
considered below. 

3.2.1. Zero initialization 
The filter registers are simply set to zero, v(O)=O. 

3.2.2. Step initialization 
The input signal is assumed to have a constant value 

equal to the first signal sample x(O). The transient for 
such a signal is suppressed by setting v(O)=x(O) 
v,tep( CJJ ), where v,ep( CJJ) is the filter state an infinitely 
long time after a unit step is applied at the input. 

3.2.3. Projection initialization 
By setting v(O)= -(CCC)- 1C"Dx, the output of the 

projection initialized IIR filter is given by 
y=[l-C(CrC)- 1C"]Dx. The matrix qcrC)- 1C" is 
recognized as the projection into the range of the matrix 
C, and thus into the K-dimensional subspace containing 
the transient response [ 4]. The output of the filter is 
thus the projection of the steady state response into the 
orthogonal complement of the transient subspace. In 
addition to removing the transient signal, the component 
of the steady state response in the transient subspace is 
removed. 

The frequency response of a fourth-order Chebyshev 
filter with the different initializations applied to a signal 
vector of length N = 9 is shown in Fig. 2 For this short 
signal length only the projection initialization results in 
a sufficient stopband width, but the transition band is 
much wider than expected from the steady state 
response. The transient dies out with time, but, for this 
short signal, no significant improvement was obtained 
by discarding the first samples. 
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Fig. 2. Frequency responses of a fourth-order Chebyshev filter with 
different initializations. The signal vector length is N ~ 9, and the I dB 
cut-off frequency of the steady state response is 0.1. The vertical line 
indicates the experimental clutter velocity. 

3.3. Regressionfilters 

A regression filter calculates the best least squares fit 
of the signal to a set of curveforms modeling the clutter 
space, and subtracts this clutter approximation from the 
original signal. The curveforms span a subspace of the 
N-dimensional signal space that we call the clutter space. 
The regression filter matrix is given by A =I- P, where 
P is a projection matrix into the clutter space. In a 
polynomial regression filter of order K, the polynomials 
of order zero to K are used as a basis for a 
K+ !-dimensional clutter space [5]. 

The output vector of both regression filters and 
projection-initialized II R filters is contained in a sub
space of the N-dimensional vector space. This results in 
very similar frequency responses, as observed by com
paring the response of the third-order polynomial regres
sion filter (four-dimensional clutter space) in Fig. 3 with 

-soo·!"-1----=o-'c_t------=-o'=.2------=-o.'=3------=-o.'-:-4-----;:o_s 
Frequency relative to PRF 

Fig. 3. Frequency responses of polynomial regression filters of order 
0-3 with signal vector length N ~ 9. The vertical line indicates the 
experimental clutter velocity. 

the response of the projection-initialized II R filter m 
Fig. 2. 

3.4. An adaptive regression filter 

A more efficient clutter filter is obtained by using a 
filter matrix that depends on the clutter signal statistics 
[6]. This filter is based on the discrete Karhunen-Loeve 
transform (DKLT) [7], which is a generalization of the 
discrete Fourier transform for random signals. The 
DKLT is a signal expansion using the eigenvectors of 
the correlation matrix as basis vectors. In the adaptive 
regression filter, the eigenvectors of Rc corresponding to 
the K largest eigenvalues are used as a basis for the 
clutter space. This filter is optimal in the sense that, for 
a given order K, it removes the best statistical mean 
square approximation of the clutter signal. 

4. Detection of blood 

In the blood detection problem a decision rule for 
each sample volume is sought to decide which of the 
hypotheses 

H0 : no blood is present H 1 : blood is present (4) 

is true. The observed vector is complex Gaussian under 
both hypotheses, but with different correlation matrices 

R xiH0 = Rc + (J~/ 

Rxiii, =Rc + cr~l + Rb =Rxiiio + Rb. (5) 

The detector is characterized by the probability of false 
alarm PF and the probability of detection P0 defined by 

PF=P(choose H1 IH0 is true) 

P 0 =P(choose H1 IH1 is true). (6) 

The assumption in the development of the optimal 
detector is that the probability density function of the 
observation vector, Pxiii,• is known under both H 0 and 
H 1. In this case the Neyman-Pearson lemma [8] tells us 
that P 0 is maximized under the constraint PF~':l by a 
likelihood ratio test [LRT, L(x)] given by 

P (xiH) II, 
L(x) = xiii, 1 z y. ( 7) 

Pxiii0 (xiHo) II0 

The Bayes theory of hypothesis testing also leads to the 
LRT in Eq. (8). In Ref. [9] the LRT is simplified to 

II, 

l(x)= II [/-(/+A)-t]ti2£*Txll2 z IJ, (8) 
IIo 

where l(x) is a sufficient statistic of the test in Eq. (7), 
and E and A solves the generalized eigenvalue problem 
RbE=RxiHoEA. Eq. (8) shows that the optimal detector 
passes the signal through a signal-dependent filter, and 
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compares the power of the filtered signal to a threshold. 
Conventional color flow systems have the same struc
ture, but with a suboptimal filter matrix. The probabili
ties of detection and false alarm can be calculated as 
described in Ref. [9] and used to compare the detector 
performance of the different filters. 

5. Experimental results 

5.1. Data acquisition 

To evaluate the detectors, digital RF data were 
recorded using aGE Vingmed Ultrasound System Five 
ultrasound scanner with a linear array transducer. The 
data were recorded from the thyroid gland with substan
tial probe movement during the recording. The scanner 
was set up with center frequency 5.7 MHz, pulse length 
0.525 I!S, radial sampling frequency 2 MHz, nine tempo
ral samples in each sample volume, and pulse repetition 
frequency 5 kHz, giving a Nyquist velocity of 34 cmjs. 
The digital data were stored as complex baseband signals 
where the in-phase and quadrature signal samples were 
represented as 16 bit integers. This data were transferred 
from the scanner and processed on a standard computer 
using MATLAB. 

An estimate of RxiHo was found by spatial averaging 
in a region with approximately constant clutter proper
ties. The white noise power <J~ was estimated by averag
ing the three smallest eigenvalues of Rxiiio' resulting in 
an estimated clutter to white noise ratio of 52 dB. The 
mean tissue movement was estimated to 1.0 cmjs. The 
signal from blood was modeled as a single frequency 
signal, specified by the blood velocity and power. The 
blood signal to white noise ratio was set to 6 dB in all 
the calculations. 

5.2. Filter performance 

The filter performances are summarized in Table I. 
The probability of false alarm is kept constant at 
PF=O.OS, and the probability of detection P0 is calcu-

Table I 

lated for the different filters and different blood veloci
ties. As expected, the performance improves with 
increased blood velocity for all the filters. For our clutter 
signal, the step-initialized IIR filter has poor perfor
mance for all the blood velocities. The clutter is not 
sufficiently rejected, as can be explained by the narrow 
stopband for step initialization seen in Fig. 2. There was 
no significant increase in the -40 dB stopband width 
for step initialization by increasing the steady state cut
off frequency and/or the filter order. An improvement 
is expected by increasing the number of signal samples, 
but even for 32 signal samples the stopband is very 
narrow, as shown in Ref. [4]. Only narrowband clutter 
signals can thus be sufficiently rejected by step-initialized 
IIR filters. The FIR filters have poor performance for 
low velocities. The polynomial regression filter and the 
projection-initialized IIR filter have similar perfor
mances and are best among the non-adaptive filters for 
low velocities. For higher velocities, the FIR filters are 
slightly better. For all the non-adaptive filters there is a 
slight variation in P0 for large velocities. This variation 
seems to coincide with the passband ripple. The adaptive 
regression filter has an overall higher P 0 than any of 
the non-adaptive filters, with a very large improvement 
for the lowest blood velocities. 

6. Conclusions 

Among the non-adaptive clutter filters, the projection 
initialized IIR and polynomial regression filters provide 
the largest overall probability of blood detection. FIR 
filters are inferior for low blood velocities, with a small 
improvement by allowing non-linear phase. For IIR 
filters, projection initialization was the only initialization 
scheme resulting in reliable blood detection with the 
measured clutter signal. However, owing to the initializa
tion, there is no longer any computational advantage in 
using an IIR filter compared with a regression filter. 
The adaptive regression filter is relatively close to the 
optimum detector. In the given clutter conditions it is 

Probability of detection P0 for different filters and blood velocities. The probability of false alarm is kept constant at PF ~ 0.05 

Velocity (cmjs) Po 

Optimal Adap. regression Poly. regression Proj. init. IIR Step init. IIR FIR min. phase FIR lin. phase 

6.8 0.50 0.34 0.07 0.07 0.05 0.06 0.06 
10.1 0.81 0.72 0.32 0.32 0.05 0.23 0.16 
13.5 0.88 0.81 0.65 0.65 0.05 0.57 0.49 
16.9 0.90 0.81 0.74 0.74 0.05 0.73 0.70 
20.3 0.92 0.82 0.73 0.72 0.05 0.77 0.77 
23.7 0.92 0.82 0.75 0.73 0.05 0.75 0.80 
27.0 0.92 0.82 0.75 0.74 0.05 0.72 0.79 
30.4 0.92 0.83 0.75 0.73 0.05 0.73 0.77 
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the only filter able to detect blood with velocity I 0 cm/s, 
but at a very high computational cost. 
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Abstract 

Unless properly attenuated, the clutter signals originating from stationary 
and slowly moving tissue cause severe artifacts in ultrasound color flow images. 
There are varying demands on the cut-off frequency of the clutter filter in both 
space and time during the heart cycle. In addition, there is a need for user 
input to set a proper cut-off frequency. To solve these problems, this paper 
presents an algorithm that automatically chooses the cut-off frequency for each 
sample volume. The algorithm has low computational complexity, and has been 
implemented for real-time processing on the GE Vingmed Ultrasound System 
Five scanner. Filtering with regression filters can be done iteratively, resulting in 
an increased cut-off frequency for each step in the iteration. Color flow parameter 
estimates are calculated for each step in the iteration, and are used to determine 
if sufficient clutter attenuation is obtained. With spatial averaging of the flow 
parameters in each step, the clutter was sufficiently attenuated, and the blood 
flow signal was better preserved than with a fixed cut-off filter. Due to limitations 
in hardware and available processing time, this spatial averaging was not possible 
in the real time implementation, and the minimum cut-off frequency had to be 
increased to get sufficient clutter rejection. As a result, the image quality was not 
significantly improved. However, an important improvement was that the clutter 
filter was automatically adapted to the signal, with no need for the user to adjust 
the cut-off frequency. 
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1 Introduction 

In ultrasound Doppler blood flow measurements, the signal scattered from blood is 
corrupted by signals scattered from stationary or slowly moving muscular tissue such 
as vessel walls, and by stationary reverberations etc. The signal scattered by the 
rapidly moving blood cells has a larger Doppler shift than the signal reflected from 
slowly moving tissue. Thus, a high-pass filter can be used to separate the signals 
from blood and tissue. The blood velocities are commonly estimated using a mean 
frequency estimator [4]. To obtain unbiased blood velocity estimates, the clutter signal 
needs to be attenuated down to the thermal noise level. To get adequate frame rates 
in 2D color flow imaging, there are typically only 8-16 samples available for high-pass 
filtering. The clutter signal is typically 40-lOOdB stronger than the signal from blood, 
and it is difficult to get sufficient clutter attenuation without also removing the signal 
from slow blood flow. The lower limit of measurable blood velocities increases with the 
clutter filter cut-off frequency which therefore should be kept as low as possible. 

There are varying demands on the cut-off frequency of the clutter filter in both 
space and time. For sample volumes inside small blood vessels, the beam side lobes 
pick up a strong signal from the surrounding tissue, resulting in a higher clutter level 
in the coronary arteries than in the ventricle. The temporal variability is caused by the 
changing tissue velocity during the heart cycle. With too low a cut-off frequency, the 
moving tissue is colored, giving a false indication of blood flow. With too high a cut-off 
frequency, the low velocity blood flow in small vessels is not detected. An algorithm 
that chooses a proper cut-off frequency based on the signal at hand would therefore be 
of great value. With such an adaptive filter, there would be fewer artifacts in the image. 
As an added benefit, the button controlling the cut-off frequency could be removed from 
the scanner. The image quality thus becomes less dependent on user skill. 

Polynomial regression filters are known to be efficient clutter filters for ultrasound 
color flow imaging [2, 3, 6]. In this paper we present an algorithm that automatically 
chooses the cut-off frequency for polynomial regression filters for each sample volume. 
The algorithm has low computational complexity, and has been implemented for real
time processing on the GE Vingmed Ultrasound System Five scanner. 

Section 2 contains a short review of the basics of color flow imaging. The adaptive 
algorithm is developed in Section 3, and a short description of the real-time imple
mentation is given in Section 4. Experimental data recorded during the imaging of a 
coronary artery were used to compare the adaptive algorithm to fixed cut-off filters. 
The results are presented and discussed in Section 5, and conclusions are drawn in 
Section 6. 

2 Signal Model and Parameter Estimation 

A 2D color flow imaging system scans the ultrasound beam over the region to be 
imaged, transmits N pulses in each direction, and estimates the blood flow velocities 
based on the back scattered signals. The number of pulses N will be referred to 
as the packet size. After sampling in the depth direction, a two-dimensional signal 
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x(k, n) is available for each beam direction, where k is the depth index, and n is the 
temporal index. A well established technique is to estimate the blood flow velocities 
from the temporal samples of the complex demodulated signal from each range gate 
[4]. The clutter filter thus operates separately on the signals from each depth k, and 
it is convenient to organize the N samples of the complex demodulated Doppler signal 
in an N -dimensional vector 

xk = [x(k, 0), x(k, 1), ... , x(k, N- 1)]T (1) 

Only the signal from a single depth is used when describing the algorithm, and the 
depth index k is dropped in the rest of the paper. A general linear filtering operation 
can be expressed by the matrix multiplication 

y=Ax (2) 

where A is an M x N matrix, and the output vector y = [y(O), y(1), ... , y(M- 1)jT 
has dimension M S: N. 

Color flow parameter estimates are commonly based on estimates of the autocor
relation function with temporal lag equal to zero and one [4]. These autocorrelation 
values can be estimated using the unbiased sample mean estimator given by 

A 1 
R(m) = M -m 

M-1-m 

L y*(n)y(n + m), 
n=O 

m=0,1 (3) 

The estimate of the signal power, R(O), is used to determine if blood is present in the 
sample volume, while an estimate of the velocity is found from R(1) by 

c A v = -f,- · arg(R(1)) 
47r 0T 

(4) 

where c is the sound velocity, fo is the center frequency of the ultrasound signal, and 
T is the time between pulse transmissions. To minimize the blood velocity estimation 
bias, it is important that the clutter filter does not remove more of the signal than 
strictly necessary. A clutter filter that automatically chooses the minimum stop-band 
width would therefore be convenient. 

3 Automatic Selection of the Clutter Filter Cut-off 
Frequency 

A regression filter calculates the best least-square fit of the signal to a set of curve 
forms modeling the clutter signal, and subtracts this clutter approximation from the 
original signal. The curve forms span a subspace of the N-dimensional signal space 
which we will call the clutter space. The best least-square fit to the clutter curve forms 
is the projection of the signal into the clutter space, and the filtering operation is given 
by 

(5) 
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Figure 1: Frequency response of a polynomial regression filter, together with 
the approximation in Equation 7. Packet size N = 10, and clutter 
space dimension K = 3. 

where bk is a set of orthonormal basis vectors spanning the K-dimensional clutter 
space, I is the identity matrix, and *T denotes complex conjugation and transposition. 
Polynomial regression filters use polynomials of increasing order as basis functions bk, 
and are shown in [2, 3, 6] to be efficient clutter filters. 

A frequency response for a general linear filter is in [6] defined as the power of the 
output signal when the input is a complex harmonic signal with unit amplitude. The 
-3dB cut-off frequency fco of polynomial regression filters increases with an increas
ing clutter space dimension K, and decreases with an increasing packet size N. A 
reasonable approximation for fco is therefore given by [5] 

K 
!coR::: a· N (6) 

where a is a constant that needs to be determined. The exact value of !co was calculated 
when K was varied from 1 to 4, and N from 8 to 12. From these values, the best 
least-square approximation was found to be a = 0.42. The steepness of polynomial 
regression filters below the cut-off frequency is approximately -6 · K dB per octave, 
and an approximation of the amplitude response of such filters is given by 

IJI < fco 

III :::: !co 
(7) 

A plot of IHappr(f) 1
2 together with the exact frequency response is shown in Figure 1 

for N = 10 and K = 3. As seen in Figure 1, the approximation is quite accurate, and 
the accuracy is similar for other values of K and N. 

With the basis vectors for the clutter space as a starting point, a complete set of 
N orthonormal basis vectors b1, ... , b N can be found and the signal vector x can be 
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written as 

N 

x = L bi:,T x · bk, where b:Tbj = { ~ 
k=l 

fori= j 
fori# j 

The filtered vector with clutter space dimension k can then be written as 

N 

Yk = L b~T X· bn = Yk-1 - b/:,T X· bk 
n=k+1 

E-5 

(8) 

(9) 

Because of the orthonormality of the basis vectors, b/:,T x · bk = b/:,T Yk-1 · bk, and the 
regression filtering can be done iteratively by 

Yo= X (10) 

Yk = Yk-1- b/:,TYk-1 · bk, k = 1, .. . ,K 

The cut-off frequency can be adapted to the signal by stopping the iteration when the 
output signal satisfies certain criteria. Such an algorithm is shown as Algorithm 1, 
and should be studied with reference to Figure 1. For an efficient implementation, the 
values of tan(27r f min) should be calculated in advance and put in an array indexed by 
the filter order. 

With large tissue movements, Kmax might be reached without sufficient clutter at
tenuation, and the sample volume might be colored giving a false indication of blood 
flow. In the line marked(*), the autocorrelation estimates R(O) and R(1) are given 
values ensuring that no flow is displayed in this sample volume. Such a removal of 
tissue motion artifacts can also be done when using a filter with a fixed cut-off fre
quency as shown in Algorithm 2. This algorithm ensures that no flow is indicated in 
sample volumes with too low velocity or too high power. When judging the power, 
the algorithm incorporates the attenuation caused by the clutter filter. Using such an 
algorithm is important to get a fair comparison between filters with fixed and variable 
cut-off frequencies. 

4 Real-time Implementation 

Algorithm 1 was implemented on the color flow processing board on the GE Vingmed 
Ultrasound System Five scanner. The color flow processing in this scanner is done on 
a board with several Texas Instruments TMS320C31 [1] digital signal processors oper
ating in parallel. There is a C-compiler for this processor, but to get the most effective 
code, the programming was done using the assembly language for the TMS320C31 
processor. 

5 Experimental Results 

To test the automatic cut-off frequency selection algorithm, and to compare it with 
images using fixed cut-off filters, digital RF-data were recorded for off-line processing. 
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Automatic selection of cut-off frequency 

Pmax Power threshold. Signals from blood must have power 
below this threshold. 

CXmin Velocity threshold. Signals from blood must have mean frequency 
above the frequency corresponding to this filter attenuation. 

Kmin Minimum clutter space dimension. 

Kmax Maximum clutter space dimension. 

Algorithm: 

k = Kmin 

Yk-1 = Ak-1X 
while k -<::: Kmax do 

end 

fco = 0.42 · ~ 
fmin = fco. 10min(amin+3,0)/20k 

Yk = Yk-1 - bk-1 b/:,T Yk 

R(O) = ~1 ~~=~1 Yk(n)yk(n) 
R(1) = Ml_ 1 ~~~~2 Yk(n)yk(n + 1) 
if ( R(O) > Pmax) OR ( 1Im{R(1)}1 < tan(27rfmin) · Re{R(1)}) 

k=k+1 
else 

return R(O) and R(1) 
end 

R(O) = 1, Re{R(1)} = 1, Jm{R(1)} = 0 

return R(O) and R(1) 

Algorithm 1: Automatic selection of cut-off frequency. 

The data were recorded while imaging a coronary artery using a phased array trans
ducer in color flow mode with acquisition parameters as shown in Table 1. Figure 2 
shows the region where the RF-data were recorded. The digital data were stored as 
complex base band signals where the in-phase and quadrature signal samples were rep
resented as 16 bit integers. These data were transferred from the scanner and processed 

Center freq. 
Radial sampling freq. 
Pulse repetition freq. 
Packet size 

3.3 MHz 
5 MHz 
2kHz 

10 

Table 1: Data acquisition parameters. 
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Tissue motion artifact removal 

Parameters: 

Pmax Power threshold. Signals from blood must have power 
below this threshold. 

CXmin Velocity threshold. Signals from blood must have mean frequency 
above the frequency corresponding to this filter attenuation. 

K Clutter space dimension. 

Algorithm: 

fco = 0.42 · ~ 
fmin = fco. 10min(amin+3,0)/20K 

f = argR(1)/27r 

if ( R(O) > Pmax ) OR ( IJI < fmin ) 

end 

OR ( ( IJI < fco ) AND ( R(O) > Pmax · (f / fco) 2K ) ) 

R(O) = 1, Re{R(1)} = 1, Jm{R(1)} = 0 

Algorithm 2: Tissue motion artifact removal. 

on a standard computer using MATLAB. 
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The off-line algorithms were identical to the real-time algorithms, but off-line pro
cessing is necessary to be able to test the different algorithms on the same data. 32-bit 
floating point numbers are used in the processing on the scanner, while 64-bit floating 
point numbers are used in the off-line processing. This difference should, however, have 
an equal effect on all the algorithms, and should not influence the comparison of the 
algorithms. 

Seven consecutive power Doppler images using polynomial regression filters with 
a fixed cut-off frequency are shown in Figures 3 to 6. Spatial averaging of R(O) and 
R(1) was done using three points in both the depth and lateral directions. The gain 
setting was equal, and the dynamic range was set to 30dB in all the power Doppler 
images. Comparing Figures 3 and 4, we see that a clutter space dimension of K = 4 
is necessary to get sufficient attenuation of the clutter signal. The difference in clutter 
rejection is clearly evident in the lower right corner of frame 1, and in the upper left 
part of frames 2-4. Frame 1 in Figures 5 and 6 shows that the signal from moving tissue 
was efficiently removed by Algorithm 2, where CXmin = -4dB was used. Unfortunately, 
the signal within the ventricle was also partly removed as is most clearly seen in frames 
4-6. 

The algorithm for automatic selection of cut-off frequency, shown as Algorithm 1 
was used with parameter values given in Table 2. Comparing the results in Figures 7 
and 8, we see a clear improvement when spatial averaging of R(O) and R(1) is done 
in the adaptive algorithm. Unfortunately, this is not possible in the real-time imple-
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Figure 2: Indication of the region where RF-data were recorded. The region 
contains a coronary artery in the myocardium. 

Figure 3: Filter with clutter space dimension equal to three. No tissue motion 
artifact removal. 

Figure 4: Filter with clutter space dimension equal to four. No tissue motion 
artifact removal. 
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Figure 5: Filter with clutter space dimension equal to three. Removal of tissue 
motion artifact. 

Figure 6: Filter with clutter space dimension equal to four. Removal of tissue 
motion artifact. 

Figure 7: Filtering with automatic cut-off frequency selection. 

Figure 8: Filtering with automatic cut-off frequency selection using 4 X 4 spa
tial averaging of R(O) and R(l) in the adaptive algorithm. 

E-9 
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85dB 

Table 2: Parameters used in the algorithm for automatic cut-off frequency se
lection. 

mentation of the algorithm due to the hardware architecture. To see how well the 
cut-off frequency is adapted to the signal, the selected clutter space dimension with 
and without spatial averaging is visualized in Figures 9 and 10, where the advantage 
of spatial averaging is clearly seen. Without spatial averaging, there are some sample 
volumes whose filter order is too low, as can be seen especially in the lower right corner 
of frame 1. This low filter order results in poor clutter rejection as seen in Figure 7. 
Figures 9 and 10 also show that the lowest filter order is generally correctly chosen 
inside the ventricle, and that a lower order is used inside the coronary artery than in 
other regions of the myocardium. Comparing the images in Figure 4 and 8, we see 
that the filter with a variable cut-off frequency provides clutter attenuation similar to 
that of the fixed filter, but preserves the flow in the ventricle considerably better since 
a lower cut-off frequency is used in these regions. This is most clearly seen in frames 
5-7. The clutter rejection of the adaptive filter without spatial averaging is improved 
by increasing the minimum order to Kmin = 3 as shown in Figure 11, where the image 
quality is comparable to the images with fixed K = 4 in Figure 4. However, the filter 
used in Figure 11 automatically adapts to the signal, and sufficient filtering is obtained 
without the need for the user to adjust the cut-off frequency. 

The signal and the effect of filtering for three different regions in the image are 
shown in Figure 12, where the different demands on clutter space dimension are clearly 
illustrated. A clutter space dimension of 4 is necessary in the myocardium, while this 
value results in an unnecessary high attenuation of the blood signal in the ventricle 
and the coronary artery, and also affects the velocity estimate. 
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Figure 9: Selected clutter space dimension. The gray scale value increases with 
an increase in clutter space dimension (from 1 to 5). 

Figure 10: Selected clutter space dimension using 4 x 4 spatial averaging of 
R(O) and R(1) in the adaptive algorithm. The gray scale value 
increases with an increase in clutter space dimension (from 1 to 5). 

Figure 11: Filtering with automatic cut-off frequency selection. Compared to 
Figure 7, Kmin is increased from 1 to 3. 
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Figure 12: Power and mean frequency of the signal after filtering with increas
ing clutter space dimension. Three different spatial locations: (a) 
Inside the blood pool in the ventricle. (b) Inside the myocardium. 
(c) Inside a coronary artery. 
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6 Conclusions 

An algorithm has been developed for automatic selection of the cut-off frequency when 
polynomial regression filters are used for clutter filtering in ultrasound color flow imag
ing. With regression filters, the filtering can be done iteratively with successively higher 
cut-off frequencies. By calculating color flow parameter estimates for each step in the 
iteration, the filtering can be terminated when these parameters indicate that sufficient 
clutter attenuation has been obtained. The algorithm has relatively low computational 
complexity, and has been implemented for real-time processing on the GE Vingmed 
Ultrasound System Five scanner. 

When spatial averaging of the autocorrelation estimates is done in the cut-off se
lection algorithm, the image quality is better than that which is obtained with fixed 
cut-off filters. The adaptive algorithm provides sufficient clutter attenuation while pre
serving the blood flow signal in areas with a low clutter level. This spatial averaging 
is unfortunately not possible in the real-time implementation of the algorithm where 
the minimum cut-off frequency needs to be increased to get sufficient clutter rejection. 
Without spatial averaging in the adaptive algorithm, the quality is comparable to fixed 
cut-off filters. However, an important advantage is that the clutter filter automatically 
adapts to the signal, and there is no need for the user to adjust the cut-off frequency. 
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Abstract 

This paper presents an acquisition technique that improves the temporal reso
lution in ultrasound color flow imaging. When the region of interest (ROI) in the 
color flow image is limited in the depth direction, and is positioned sufficiently 
deep in the body, it is possible to reduce the acquisition time for the color flow 
data by 50%. The technique uses a combination of beam interleaving and trans
mission of pulses with double repetition frequency. After a pulse is transmitted 
in a first direction, there is time available to receive from a second direction and 
transmit a new pulse in this direction while waiting for the echo from the first 
pulse to arrive. The technique is well suited for imaging the blood flow through 
the heart valves with the probe in the apical position. For this application, an 
increase in the frame rate of 70% was obtained. The transducer is focused for re
ception in the first direction, but the beam side lobes will pick up unwanted echoes 
from the pulse propagating in the second direction. A simulation using the Field 
II program showed that for scatterers of equal strength, the minimum difference 
in energy between the desired and undesired signal was 8.9dB for cardiac imaging 
from the apical position. However, for patients with strong reverberation noise 
from the body wall, the undesired signal can be considerably stronger. With
out sufficient clutter filtering, this reverberation noise gives unreliable velocity 
estimates, so the technique should be used with care. 
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1 Introduction 

When using ultrasound color flow imaging to measure blood flow in the heart, it is 
important to have high temporal resolution. This is especially so when investigating 
the details in the cross-sectional velocity distribution through the heart valves. The 
velocities across the valve opening should be measured as simultaneously as possible, 
and this velocity profile should be updated as often as possible to capture the rapid 
flow changes during the heart cycle. Previously, ECG triggered techniques have been 
used for such measurements [10]. Another application where high temporal resolution 
is desired is in volume flow measurements using three-dimensional color flow data [1]. 

In pulsed wave spectrum Doppler measurements, the maximum velocity that can be 
measured without aliasing is called the Nyquist velocity, and is determined by the pulse 
repetition frequency (PRF) together with the transmitted ultrasound frequency. The 
depth down to the sample volume determines the maximum PRF. Increasing the PRF 
above this limit will create an extra sample volume closer to the transducer, causing 
a range ambiguity concerning which range the sampled signal is coming from. It is 
often possible, however, to position the transducer so that there is little or no blood 
flow in the extra sample volume, and the high PRF (HPRF) technique can be used to 
measure high blood velocities [4]. The HPRF technique is an alternative to continuous 
wave (CW) Doppler for measuring high velocities. CW Doppler does not suffer from 
aliased velocities, but does not provide any range resolution of the measurements. 

A 2D Doppler imaging system scans the ultrasound beam over the region to be 
imaged, transmits a number of pulses in each direction, and estimates the blood flow 
velocities from the back scattered signals. When measuring low velocities, the PRF 
can be decreased from the maximum value given by the depth. If the PRF is decreased 
by a factor k, there is time to acquire data in k - 1 other beam directions before 
transmitting the next pulse in the first direction. This beam interleaving technique [2] 
maintains the frame rate even though the PRF is reduced. 

In this paper we use a combination of the HPRF technique and beam interleaving to 
reduce the acquisition time for the color flow image by a factor of two without altering 
the PRF of pulses transmitted in the same direction. The technique is applicable when 
the region of interest (ROI) is short in the depth direction, and is positioned sufficiently 
deep in the body. This means that the technique is well suited for imaging the blood 
flow through the heart valves with the probe in the apical position. The reduction in 
acquisition time is obtained by having two pulses propagating simultaneously. After a 
pulse is transmitted in a given direction, there is time available to receive echoes from 
another direction and transmit a new pulse in this direction while waiting for the echo 
from the first pulse to arrive back to the transducer. Since the acquisition time for the 
color flow data is halved, a substantial increase in the frame rate is achieved. 

The acquisition technique is described in Section 2 where we find the restrictions on 
the ROI, and work through an example showing the increase in frame rate. Having two 
pulses propagating simultaneously may lead to artifacts in the image, and in Section 3 
the interference between the two pulses are simulated using the Field II program [6]. 
Some examples of clinical applications are mentioned in Section 4 before the paper is 
concluded in Section 5. 
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Figure 1: Tissue B-mode and color flow image sectors. 

2 Data Acquisition 

The restrictions on the depth and length of the ROI for the high frame rate acquisition 
technique will be discussed based on the geometry shown in Figure 1, and the timing 
diagram shown in Figure 2. The pulse repetition time for each beam direction, TB, is 
determined by the desired maximum depth d2 of the flow ROI 

(1) 

where cis the sound velocity and TD2 is the delay between the end of reception and the 
transmission of a new pulse. The minimum TD 2 is determined by how fast the front
end electronics can switch between reception and transmission. It might, however, be 
desirable to use a longer TD 2 to ensure sufficient attenuation of the echoes from this 
pulse before a new pulse is transmitted. 

By increasing the start depth of the ROI, there is time available to receive and 
transmit in another direction as illustrated in Figure 2. The minimum depth d1 down 
to the ROI is given by 

d1 = c(TB/2 + Tp + Tm)/2 

= d2/2 + c(Tp + Tm + TD2/2)/2 
(2) 

where Equation 1 is inserted in the second step. 

Looking at Figure 2, we see that there are TB/2 seconds between the transmission of 
the pulses in beam direction 1 and 2. When the reception beam is focused in direction 
1, the pulse transmitted in direction 1 will be called the primary pulse, and the pulse 
transmitted in direction 2 will be called the secondary pulse. The difference in depth 
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Tp: Pulse length 
T11 : Start of reception in beam 1, T11 = 2dl/ c 
T21: End of reception in beam 1, T21 = 2d2 / c 
TB: Pulse repetition time, TB =1/PRF 
T12: Start of reception in beam 2 
T22: End of reception in beam 2 
Tv 1 : Delay between transmission and reception 
Tv 2 : Delay between reception and transmission 

Figure 2: Timing diagram. 
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Figure 3: Beam sequencing. Pulses propagate simultaneously in directions 1 
and 2, 3 and 4, and so on. 

to the primary pulse and secondary pulse is given by 

6.d = cTB/4 

= d2/2 + cTD2/4 
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(3) 

and is an important quantity when calculating the interference from the secondary 
pulse. The reception beam is focused to receive the echoes from the primary pulse 
in beam direction 1, but the beam side lobes will pick up echoes from the secondary 
pulse propagating in direction 2. The total signal is thus a sum of the primary and 
secondary signal as illustrated in Figure 2. To get the smallest possible interference 
from the secondary pulse, beam 1 and 2 should be separated to the maximum. The best 
scan sequence is shown in Figure 3, where pulses propagate simultaneously in directions 
1 and 2, 3 and 4, and so on. The directions of two simultaneously propagating pulses 
are separated by an angle o:/2 where a is the sector angle of the flow image. The 
interference between the two pulses is investigated in more detail in Section 3. 

Example: 

We will now work through an example to show the limitations of the ROI, and to 
demonstrate how much the frame rate is increased with the new acquisition technique 
for a setup suitable for imaging of the blood flow through either the mitral or aortic 
valve with the probe in the apical position. 

A pulse with three periods at 2.5MHz is suited for cardiac color flow imaging. With 
sound velocity c = 1540m/s, this gives a pulse length of Tp = l.2fLS. The ROI needs 
to extend down to a depth of d2 = 15cm, and setting Tv2 = 5.2fLs, gives a pulse 
repetition time of TB = 200f'LS. Assuming Tm = Tp, the minimum start depth of the 
ROI becomes d1 = 7.9cm. Fortunately, an ROI from 7.9cm to 15cm is sufficient when 
imaging the flow through the heart valves from the apical view in typical patients. The 
difference in depth down to the two pulses is D.d = 7.55cm. 

For conventional acquisition, the total acquisition time for one image frame is given 
by 

T T, T, Ntissue T NflowN PST 
Frame= tissue+ flow= ~ B,tissue + JVJ B,flow (4) 
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where Ntissue and Nflow are the number of beams in the tissue and flow image, TB,tissue 

and TB,flow are the beam acquisition times, NI is the number of parallel receive beam 
forming channels, and Nps is the number of pulse transmissions (packet size) in each 
beam direction to estimate the blood velocities. Parallel receive beam forming means 
that multiple receive beams are calculated per transmit beam. 

The number of beams in the image is determined by the image sector width and the 
beam density. Reasonable values of the beam densities can be found as follows: In the 
far-field, the angular beam pattern is equal to the Fourier transform of the aperture. 
Focusing brings the far-field to the focus, and the angular beam width in focus is 
determined by the main lobe width of the Fourier transform of the window function 
used for apodizing the aperture. With wave length..\, and aperture sizeD, the angular 
beam width is e = k ·(>./D), where k depends on the apodization and the definition of 
the beam width ( -3dB or -6dB). A 2cm aperture with Hamming apodization gives 
e-3dB = 2.3°. Nyquist sampling then corresponds to an angle increment between 
beams of a= 1.15°. To get a slight over-sampling, we choose one tissue B-mode beam 
per degree. Lower resolution is required for the flow image, where we choose 0.6 beams 
per degree. An image sector of 20° has a width of 4.1cm at 12cm depth. This is 
wide enough to cover the heart valves, but to ease the navigation, a 30° tissue B-mode 
sector is convenient. Blood velocity estimates of good accuracy can be obtained with 
N PS = 8 which will be used in our calculations. 

Assuming equal depth of the B-mode and flow images, and setting TB,tissue 

TB,flow = 200~ts, gives the following acquisition time for a 30° B-mode sector: 

30 
Ttissue = 2200~ts = 3.0ms 

The flow acquisitor time becomes: 

Tflow = 1 ~" 8 200~ts = 9.6ms 

Tflow = 1 ~" 8 200~ts = 14.4ms 

for a 20° flow sector 

for a 30° flow sector 

(5) 

(6) 

The new acquisition technique reduces Tflow by 50%, giving the improvement in frame 
rate shown in Table 1. The significant improvement in temporal resolution given in 
Table 1 is important when studying the details of the flow through the heart valves. 

Frame rates [frames/second] 
20° flow sector 30° flow sector 

Conventional I Improved Conventional I Improved 
79.4 I 128.2 57.5 I 98.0 

Table 1: Improvements in frame rate with the new acquisition technique. 
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Figure 4: Geometry of simultaneously propagating pulses. 
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3 Simulation of Artifacts Caused by the Acquisition 
Technique 

The geometry of the acquisition technique described in Section 2 is shown in Figure 4. 
Pulses are transmitted with fixed transmit focus, while dynamic focusing is used on 
reception. Transmit focusing is illustrated with dotted transducers in Figure 4, and 
receive focusing is illustrated with a solid transducer. The transducer is focused for 
reception of the primary signal in beam direction 1, but the beam side lobes will 
pick up echoes from the secondary pulse propagating in direction 2. To investigate 
the importance of this undesired secondary signal, simulations were performed using 
the Field II program [ 6]. This program uses the spatial impulse response technique 
to calculate acoustic fields. The simulation parameters are shown in Table 2. Using 
TB =1/PRF= 200J1S in Equation 3, the secondary pulse has propagated !J.d = 7.7cm 
shorter than the primary pulse, and the attenuation level becomes important when 
calculating the primary and secondary signals. An attenuation level of 0.5dB/MHz·cm 
is commonly used in ultrasound imaging. In this application, however, the difference 
in the propagation path between the primary and secondary pulse is mainly through 
the blood in the left ventricle. In [7, p. 30], the attenuation in blood is given as 
0.17-0.24dB/MHz·cm, and we made a conservative choice of 0.3dB/MHz·cm in our 
simulations. The attenuation was calculated based on the mean frequency of the pulse, 
without any shaping of the pulse frequency spectrum. 

In addition to the sector width, both the elevation and transmit focus will influence 
the relative strength between the primary and secondary signal. Tables 3-6 show the 
energy difference between the primary signal received from point scatterers located 
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Center frequency 
Transducer impulse response 
Transducer excitation 
Transducer height 
Element pitch (.A/2) 
Element kerf (.A/20) 
Number of elements 
Mathematical element size (.A/20) 
Sampling frequency 
Sound velocity 
Attenuation 
PRF 

2.5MHz 
Hanning weighted 2 period sinusoid 
3 period sinusoid 
13mm 
308f'Lm 
30.8f'Lm 
64 
30.8f'Lm 
100MHz 
1540m/s 
0.3dB/MHz·cm 
5kHz 

Table 2: Field II simulation parameters. 

at depths of 8-15cm, and the secondary signals from equal point scatterers at corre
sponding depths. From these results an elevation focus at Scm and a transmit focus 
at 16cm are good choices, and we see that a 30° image sector should be used since the 
secondary signal is considerably lower than the secondary signal in a 20° image sector. 
An increase in the sector width increases the angle a/2 in Figure 4, resulting in less 
interference from the secondary pulse. 

In addition to the results shown in Tables 3-6, we found a slight increase in the 
energy difference when the pulse length was increased to four periods. However, in
creasing the pulse length degrades the radial resolution. The tabulated values are for a 
primary pulse propagating in beam direction 5 in Figure 3, and for a secondary pulse 
propagating in beam direction 6. There was no significant change in the values when 
beam directions 1 and 2 were simulated; this means that the values are uniform in the 
lateral direction. 

Figure 5 shows the primary signal received from point scatterers located at depths 

Energy difference [dB] 
Transmit focus 

Depth [em] 8 10 12 14 16 

8 15.2 14.7 13.7 12.7 11.7 
9 11.3 11.6 11.1 10.4 9.8 

10 6.8 7.6 7.6 7.3 6.9 
11 0.0 1.3 1.9 2.3 2.3 
12 0.2 2.9 2.7 2.2 1.8 
13 -2.9 2.1 4.8 5.8 5.9 
14 -3.4 0.6 3.2 5.0 6.2 
15 -2.8 0.4 2.6 4.1 5.2 

Table 3: Energy differences between primary and secondary signals. Sector 
width 20° and elevation focus Scm. 
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Energy difference [dB] 
ilansmit focus 

Depth [em] 8 10 12 14 16 

8 15.1 14.6 13.7 12.6 11.7 
9 11.0 11.2 10.7 10.1 9.4 

10 8.8 9.6 9.6 9.3 8.9 
11 8.4 9.6 10.1 10.4 10.4 
12 7.6 10.5 10.4 10.0 9.5 
13 3.2 8.0 10.7 11.8 11.9 
14 1.7 5.6 8.2 10.0 11.2 
15 1.8 4.9 7.0 8.5 9.6 

Table 4: Energy differences between primary and secondary signals. Sector 
width 30° and elevation focus Scm. 

Energy difference [dB] 
ilansmit focus 

Depth [em] 8 10 12 14 16 

8 14.5 14.0 13.0 11.9 10.9 
9 9.9 10.2 9.7 9.1 8.4 

10 4.8 5.4 5.3 4.9 4.5 
11 -6.0 -4.6 -3.9 -3.5 -3.4 
12 -3.9 -1.3 -1.6 -2.0 -2.4 
13 -6.1 -1.1 1.6 2.6 2.7 
14 -6.0 -2.0 0.6 2.4 3.6 
15 -4.9 -1.7 0.4 1.9 3.0 

Table 5: Energy differences between primary and secondary signals. Sector 
width 20° and elevation focus 6cm. 

Energy difference [dB] 
ilansmit focus 

Depth [em] 8 10 12 14 16 

8 14.4 13.9 12.9 11.9 10.9 
9 9.3 9.5 9.1 8.4 7.8 

10 7.2 7.9 7.8 7.4 7.0 
11 2.6 3.8 4.5 4.7 4.8 
12 3.5 6.2 6.1 5.7 5.3 
13 0.1 4.9 7.6 8.6 8.8 
14 -0.7 3.1 5.7 7.5 8.7 
15 -0.3 2.8 4.8 6.3 7.4 

Table 6: Energy differences between primary and secondary signals. Sector 
width 30° and elevation focus 6cm. 
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105 

Primary depth~1 o.ocm. Secondary depth~2.3cm. 

110 115 120 130 131 132 133 134 135 136 137 
Time [~s[ Time [~s] 

(a) (b) 

Primary depth=12.0cm. Secondary depth=4.3cm. Primary depth=14.0cm. Secondary depth=6.3cm. 

156 157 158 159 160 161 162 182 183 184 185 186 

156 157 158 159 160 161 162 182 183 184 185 186 
Time [Its] Time [~s] 

(c) (d) 

Figure 5: Primary and secondary echoes for a 30° sector width. The elevation 
and transmit focus are at Scm and 14cm respectively. 

187 

187 

of 8-14cm, together with the secondary signals for a 30° sector width and elevation 
and transmit focus at Scm and 16cm respectively. For each depth, the signals are 
normalized relative to each other. 

Taking the strong scatterers in the body wall into consideration, the secondary 
signal might be considerably stronger than the primary signal for the smaller depths in 
the ROI. The clutter level can be significantly increased, and the stop band width of 
the clutter filter might have to be increased to get sufficient clutter attenuation. This 
means that low velocity blood flow may be difficult to measure. At depths where the 
secondary pulse has reached the ventricle, both pulses are scattered mainly by blood, 
and Table 4 shows that the primary signal is much stronger than the secondary signal. 
The secondary signal will not significantly influence the mean velocity estimates. 
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4 Clinical Applications 

The stroke volume can be calculated by integrating the blood flow velocities through 
either the mitral or aortic valve in space and time during the heart beat. Velocity time 
curves can be obtained using spectral Doppler measurements. Assuming a flat velocity 
distribution, an estimate of the stroke volume is found by integrating a representa
tive velocity time curve and multiplying the result with the estimated cross-sectional 
area [11]. The accuracy of the result depends on how well the cross-sectional velocity 
distribution fits the assumption. 

Spectral Doppler measurements of the flow through the mitral valve is used to assess 
the diastolic function of the left ventricle [3, p. 151-155]. With a non-uniform cross
sectional velocity distribution, such measurements will be sensitive to the placement 
of the sample volume. 

The examples mentioned above show that an efficient technique for investigating the 
cross-sectional velocity distribution through the heart valves is of clinical importance. 
Previously, ECG-triggered techniques have been used because of the limited temporal 
resolution in color flow imaging [10]. The acquisition technique described in this paper 
provides a temporal resolution that makes ECG-triggered techniques obsolete. The 
technique has been successfully used for investigations of both mitral [8, 9] and aortic 
[5] cross-sectional velocity distributions. 

A three-dimensional color flow technique has recently been presented for volume 
flow measurements [1]. The accuracy of the three-dimensional technique depends on 
the temporal resolution, and the acquisition technique described in this paper might 
improve the accuracy of the 3D flow estimates. 

5 Conclusions 

An acquisition technique giving improved temporal resolution in ultrasound color flow 
imaging has been presented. The technique is based on having two pulses propagating 
simultaneously in different directions, and is applicable when the flow ROI is positioned 
deep in the image and extends only up to roughly half the maximum ROI depth. After 
a pulse is transmitted in a first direction, there is time available to receive and transmit 
in a second direction while waiting for the echo from the first pulse to arrive back to 
the transducer. With such beam interleaving, the acquisition time for the flow image 
is reduced by 50%. A disadvantage of the technique is that the echo from the second 
pulse which is picked up by the side lobes of the receive beam focused in the first 
direction, interferes with the desired primary echo. 

Imaging of the blood flow through the heart valves with the probe in the apical 
position satisfies the ROI constraints. With a 30° tissue B-mode sector, and a 30° 
flow ROI extending from 7.9cm to 15cm, the frame rate was increased from 58 to 
98frames/second by using the new acquisition technique. Simulations of this imaging 
geometry showed that for equal scatterers, the energy difference between the primary 
and secondary signals varies slightly with depth within the ROI. The minimum value 
of 8.9dB indicates that the secondary signal has a small effect on the flow estimates. In 
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patients with strong reverberation noise from the body wall, the secondary signal might 
be considerably stronger. However, the reverberations vary slowly with time, and can 
be removed by a clutter filter. Due to the increased clutter level, the performance 
of the clutter filter becomes more critical when the proposed acquisition technique is 
used. 
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Abstract 

A new Doppler method was developed to evaluate the instantaneous cross
sectional velocity profile variability in the left ventricular outlet tract in patients 
with atrial fibrillation. Blood flow velocities acquired at a high frame rate (> 90 
frames/s) from a single heart cycle were used to display the velocity profile. In 9 
patients, 2 heart cycles with different R-R interval lengths were recorded in color 
flow mode in a transthoracic apical 5-chamber and long-axis view. Raw digital 
ultrasound data were analyzed with an external personal computer. The data 
indicated a variable skew in the profiles with the highest velocities and velocity
time integral (VTI) most often located in the center and toward the septum. 
The maximum VTI overestimated the mean VTI by approximately 40%. No 
significant difference existed between the two heartbeats. Thus the VTI can be 
averaged from heartbeats of different R-R lengths in atrial fibrillation. 

Journal of the American Society of Echocardiography, 14(1):50-56, Jan. 2001 
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1 Introduction 

Stroke volumes can be calculated from echocardiographic measurements of the velocity
time integral (VTI) in the left ventricular outflow tract (LVOT) and the subvalvular 
diameter, assuming a circular outflow tract and a flat velocity profile [5]. However, 
several reports have shown a nonuniform velocity profile in the LVOT in persons in 
sinus rhythm [1, 6, 7]. These studies assumed constant R-R intervals, and no beat-to
beat variability of the velocity profile. With these assumptions, one velocity profile was 
calculated by interpolation of color flow velocity samples from several heartbeats. The 
previous method cannot be used in patients with irregular heart rhythm, and to our 
knowledge, no data exist on the possible beat-to-beat variability of the velocity profile 
in the LVOT in such patients. To calculate cardiac output from echocardiographic 
measurements of stroke volume, the VTI must be averaged from 5 to 10 heartbeats to 
compensate for the variability in blood flow [5]. If the profile is skewed, and the skew 
changes from stroke to stroke in an unpredictable manner, another uncertainty and 
limitation is introduced in the pulsed wave Doppler technique. 

We have developed a new method that uses blood flow velocity estimates acquired 
at a high frame rate (~ 90 frames/s) from one heart cycle. A similar method has been 
applied in studies of the instantaneous cross-sectional velocity profile in the mitral 
blood flow of persons in sinus rhythm [3]. 

The purpose of our study was to develop a fast and easy method to study the 
instantaneous cross-sectional blood flow velocity profile in the LVOT in patients with 
atrial fibrillation. The method was applied to 9 patients, and velocity profiles from 2 
consecutive heartbeats of different R-R interval lengths were compared to assess any 
possible differences in the velocity profile. 

2 Methods 

Informed, written consent was obtained from each subject m accordance with the 
regional ethical committee on human research. 

2.1 Subjects 

Nine patients with atrial fibrillation and no significant heart valve disease or other 
structural heart disease were consecutively included before elective DC cardioversion 
at the department of cardiology, University hospital of Trondheim, Norway. The group 
comprised 7 men and 2 women (mean age 62 years, range 41 to 75). The mean heart 
rate was 88 bpm (range 65 to 110). 

2.2 Equipment 

A digital ultrasonographic scanner (System Five, GE Vingmed Ultrasound, Harten, 
Norway) with a 2.5-MHz phased-array transducer was used for all echocardiographic 
measurements. Digital image data were transferred to an external personal computer 
and analyzed with MATLAB (The Math Works, Inc, Natick, Mass) software. To obtain 
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the information needed from 1 heartbeat to construct the instantaneous cross-sectional
velocity profile, we used software developed for high frame-rate imaging as described
below.

2.3 Instrument Setting

Recordings of tissue images were obtained in second harmonic imaging mode with
a transducer transmittal frequency of 1.7 MHz. For color flow imaging, the center
frequency of the transmitted pulse was 2.5 MHz. The radial sample volume length was
0.8 mm.

2.4 Data Acquisition

The subjects were examined in the left lateral decubital position. To reduce cardiac
movement, the recordings were done in held end-expiration. Ultrasonographic data
were acquired in an apical 5-chamber view and an apical long-axis view. To get as
high a frame-rate as possible during recordings of aortic blood flow, a prototype data
acquisition technique was used, which provided an increased frame-rate with a mod-
erate decrease in spatial resolution. The sector angle was set to a minimum, and the
region of interest minimized to cover the LVOT to obtain a rate of ≥ 90 frames/s, and
a time delay less than 6 ms over the flow sector was achieved. Thus, from a single heart
beat, blood flow velocities from various positions within the LVOT were recorded with
a resolution better than 6 ms at each point.

We scrolled the replay memory in the digital ultrasonographic scanner to find the
longest R-R interval. The subsequent R-R interval was short. The digital image
data from the 3 subsequent heartbeats corresponding to these 2 R-R intervals were
transferred from the ultrasonographic scanner to an external personal computer.

2.5 Data Processing

For each sample volume, the flow information was encoded in a 16-bit “word”. This
data format ensures adequate resolution for both the power and velocity estimates. The
data were visualized and processed with the use of software written in the MATLAB
language. By performing angle correction, flow velocities perpendicular to arbitrary
lines in the image could be plotted as a function of time. Detection of large discontinu-
ities in the velocity estimates enabled correction for aliasing caused by high velocities.
This way, the color flow data could be used in the quantitative analysis of the flow
pattern through the aortic valve.

Tissue priority and flow gain were adjusted to make sure that the flow was within
the anatomic borders. The systolic periods from 2 subsequent heartbeats were studied.
Measurements were obtained for the R-R interval, defined as the time from the previous
heartbeat to the one studied. A line across the LVOT was drawn 0.5 to 1 cm proximal to
the insertion of the aortic valve (Figure 1), and cross-sectional velocities were extracted
from this line and visualized with color M-mode echocardiography (Figure 2). The line
was fixed and did not track the tissue during systole. Blood flow velocities from any
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Figure 1: A line across the LVOT was drawn 0.5 cm proximal to the insertion
of the aortic valve, and cross-sectional velocities were extracted from
this line.

Figure 2: Cross-sectional blood flow velocities encoded as color flow from the
left ventricular outflow tract obtained in a 5-chamber view in a pa-
tient with atrial fibrillation. The blue area limited by yellow lines
represents the systolic period. The green marker is located at the
septum. The yellow marker is located laterally. The pink marker is
located at the point of maximum velocity and represents the maxi-
mum velocity-time integral. The pink line represents the maximum
velocity-time integral.
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Figure 3: The instantaneous cross-sectional velocity profile in systole limited
by yellow lines in Figure 2. The red line crossing the picture along
the axis marked position represents time of maximum velocity. The
pink marker represents the maximum velocity. The red line along
the axis marked frame number represents the position of maximum
velocity-time integral.

given time interval (in our setting, during systole) were analyzed by extracting the data
as illustrated in Figure 2. The following heartbeat was treated in the same manner.

The instantaneous cross-sectional velocity profile was reconstructed by plotting
blood flow velocities against time and position along the diameter of the LVOT (Fig-
ure 3). Figure 4 shows the velocity profile from 2 heartbeats of different R-R interval
lengths (long and short). As a quantitative assessment of the velocity distribution, any
possible skew was described by comparing the ratio of the maximum VTI to the mean
velocity integral, and the maximum velocity to the mean velocity. Furthermore, the
position of the maximum velocity and the maximum VTI along the cross-sectional line
was noted. Finally, we calculated the part of the line that crossed the LVOT in which
values between the maximum VTI and maximum VTI−20% were detected (Figure 5).

2.6 Statistical Analysis

Data from 2 different heartbeats were compared with the paired t-test (null hypoth-
esis: there is no difference between the 2 heartbeats; alternate hypothesis: there is a
difference). The level of significance was chosen at P < .05.
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Systole 1 Systole 2

Figure 4: The instantaneous cross-sectional velocity profiles from 2 heartbeats
with different R-R interval lengths in a patient with atrial fibrillation.
Blood flow velocities are plotted against time and position along the
diameter of the left ventricular outflow tract. The highest blood flow
velocities are located toward the intraventricular septum.

(a) (b)

Figure 5: The relative length of (VTI max to VTI max−20%)/Total diameter.
Five-chamber view. The x-axis represents the line across the left
ventricular outflow tract. Point 0 is located at the septum and 1 at
the lateral end. The bold part of the curve is the interval VTI max to
VTI max−20%. a. Heartbeat 1. The relative length of (VTI max to
VTI max−20%)/Total diameter= 0.65. b. Heartbeat 2. The relative
length of (VTI max to VTI max−20%)/Total diameter= 0.69. VTI,
velocity-time integral.
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3 Results 

The data indicated a nonuniform velocity distribution with the highest velocities and 
VTI located in the center of the LVOT and toward the intraventricular septum. The 
maximum VTI overestimated the mean VTI by approximately 40% in both planes. At 
peak flow, the maximum velocity overestimated the mean velocity by approximately 
50% in the apical long-axis view and by about 60% in the 5-chamber view. The line 
from the septum to the middle part of the LVOT covered VTI values from maximum 
to 20% below maximum. 

No significant difference was found at the 5% level between the 2 heartbeats in any 
of the calculated variables, except the difference in R-R interval length. However, the 
ratios of maximum velocity /mean velocity recorded in the apical long-axis view showed 
a difference of P = .05, close to significance. 

Tables 1 through 4 present the data from the recordings of 2 different heartbeats 
obtained in 2 orthogonal planes, a 5-chamber view, and the apical long-axis view. The 
recordings were obtained at high frame-rate (mean 100 frames/s, range 90 to 115). The 
mean time resolution was 10 ms (range 8.7 to 11 ms). 

Heart Heart 95% CI difference P value 
beat 1 beat 2 In mean 

R.R. length ( s) 0.93 0.59 0.21 to 0.48 .0001 
Length of (VTI max to VTI max-20%) 

0.56 0.44 -0.03 to 0.25 .1 Total line 
Max VTI/mean VTI 1.38 1.49 -0.61 to 0.38 .62 
Max V/mean V 1.37 1.67 -0.59 to -0.01 .05 

Table 1: The recordings from two different heartbeats in 9 patients with atrial 
fibrillation (apical long-axis view). In calculations of the relative 
length of (VTI max to VTI max-20%)/Totalline, point 0 is located 
to the anterior, and 1 is located at the posterior end. RR, Time inter
val between two R. complexes in the electrocardiogram; VTI, velocity
time integral; V, velocity; max, maximum. 

Heart Heart 95% CI difference P value 
beat 1 beat 2 in mean 

R.R. length ( s) 0.94 0.61 0.18 to 0.47 .001 
Length of (VTI max to VTI max- 20%) 

0.56 0.63 -0.16 to 0.06 .07 Total line 
Max VTI/mean VTI 1.32 1.42 -0.06 to 0.24 .19 
Max V/mean V 1.8 1.32 -0.59 to 1.53 .33 

Table 2: The recordings from two different heartbeats in 9 patients with atrial 
fibrillation (5-chamber view). In calculations of the relative length 
of (VTI max to VTI max-20%)/Totalline, point 0 is located to the 
anterior, and 1 is located at the posterior end. RR, Time interval 
between two R. complexes in the electrocardiogram; VTI, velocity
time integral; V, velocity. 
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Relative position of the 
maximum velocity along Heart Heart 95% CI difference P value 
the line crossing the LVOT beat 1 beat 2 1n mean 
Five-chamber view 0.43 0.41 -0.26 to 0.19 .74 
Apical long-axis view 0.35 0.53 -0.09 to 0.33 .24 

Table 3: The recordings from two different heartbeats in 9 patients with atrial 
fibrillation. In the relative position of the maximum velocity, point 0 is 
located at the septal/anterior, and 1 is located at the lateral/posterior 
end. LVOT, Left ventricular outflow tract. 

Relative position of the 
maximum VTI along Heart Heart 95% CI difference P value 
the line crossing the LVOT beat 1 beat 2 1n mean 
Five-chamber view 0.44 0.47 -0.24 to 0.19 .76 
Apical long-axis view 0.34 0.44 -0.28 to 0.07 .22 

Table 4: The recordings from two different heartbeats in 9 patients with atrial 
fibrillation. In the relative position of the maximum VTI, point 0 is 
located at the septal/anterior, and 1 is located at the lateral/posterior 
end. LVOT, Left ventricular outflow tract; VTI, velocity-time integral 

4 Discussion 

In this study, we have presented a fast and easy method to describe instantaneous cross
sectional blood flow velocity profiles in the LVOT of patients with atrial fibrillation. 
At 90 frames/s and above, the time resolution was better than 11 ms. The influence 
of the sweep time delay was strongly reduced and therefore disregarded in our study. 
Thus, it was possible to display the instantaneous velocity profile from the recording 
of a single heart cycle. Because we compared 2 heartbeats, any possible influence 
in the skew caused by sweep time delay would influence both heartbeats. This was 
a more feasible method than previous methods in which color flow velocity samples 
from several heartbeats with regular R-R intervals were interpolated to construct the 
instantaneous cross-sectional velocity profile [1, 2, 4, 6, 7]. 

In conventional pulsed wave Doppler techniques, 5 to 10 heartbeats are averaged 
in patients with atrial fibrillation to ensure a reliable measure of cardiac output. We 
did not find any significant difference in the blood flow velocity profile in 2 consecutive 
heartbeats of different R-R interval lengths. One potential implication of this finding 
is that when measuring blood flow velocities with the pulsed Doppler technique, the 
sample volume can be fixed in the same position along the diameter of the LVOT during 
the recording. The maximum VTI has been described in 2 settings: the relative position 
of maximum VTI, and the part of the line that crosses the LVOT in which values 
between maximum VTI and maximum VTI - 20% were measured. The maximum VTI 
was a robust parameter as opposed to the mean VTI because of less dependence of 
the high pass filter limit. Furthermore, the maximum VTI was less sensitive to poor 
differentiation of tissue and blood flow velocities. The mean VTI was measured for 
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comparison with previous works. The Doppler sample volume is fixed during recording 
of blood flow velocities, but the heart is moving. 

The introduction of the parameter Length of (VTI max to VTI max-20%)/total 
line, illustrates that the acceptance of a potential variation of 20% in the calculation 
of stoke volume likely enables the sample volume to actually detect these velocities 
along the diameter. If this distance is short, it would be difficult to detect blood flow 
velocities within this range, and the estimate of the VTI would be less precise. As 
shown in Tables 1 and 2, the line from the septum to the middle part of LVOT covers 
VTI values from maximum to 20% below. The skew in the velocity profile has been 
described in patients in sinus rhythm as previously mentioned and must be kept in mind 
when sampling blood flow velocities with the use of the pulsed Doppler technique. 

5 Study Limitations 

The results describing the velocity profiles must be interpreted cautiously because a 
limited number of patients were included in this study. Each patient analysis was 
limited to 2 cardiac cycles. However, we scrolled the replay memory in the digital 
ultrasonographic scanner to find the longest R-R interval. The subsequent R-R interval 
was significantly shorter. Thus, the probability of detecting differences in the velocity 
profile was maximized. 

The cross-sectional velocity profile was recorded in 2 orthogonal planes; thus a 
complete 3-dimensional velocity profile was not studied. It is not possible to generalize 
our findings to all patients with atrial fibrillation, as they might represent a selected 
group. 

6 Conclusion 

We have developed a fast and easy method that enables the study of the instantaneous 
cross-sectional velocity profile in patients with atrial fibrillation. The velocity profiles 
were skewed with the maximum velocity and VTI most often located in the middle of 
the LVOT and toward the septum. The maximum VTI overestimated the mean VTI 
by approximately 40%. 

No differences existed in these measures in 2 consecutive heartbeats of different 
R-R interval lengths. Thus, according to our results, measurements from heartbeats of 
different R-R interval lengths can be averaged without moving the pulsed wave sample 
volume along the diameter of the LVOT. 
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Abstract 

In this paper we present new signal processing algorithms for visualization 
of blood flow in ultrasound imaging systems. As opposed to with conventional 
color flow imaging, the speckle pattern from the moving blood cells is preserved 
and enhanced, enabling the user to visually track the blood motion from frame to 
frame. In conventional color flow imaging, one image is produced from a packet of 
typically 5-15 pulses transmitted along each scan line in the image. The Doppler 
shift produced by slowly moving muscular tissue is lower than the Doppler shift 
produced by the blood flow, and efficient clutter filters are designed to attenuate 
the clutter signal down to a level much lower than the signal from blood. The 
signal power after clutter filtering is used to detect points in the image where 
blood is present. Alternatively, in the power Doppler mode, the signal power is 
displayed as an image to visualize blood vessels. In order to get reliable detection, 
substantial temporal and spatial averaging is used, thus limiting the dynamic vari
ation, as well as spatial resolution. This averaging process suppresses the spatial 
speckle pattern in the signal amplitude. In addition to preserving the speckle 
pattern, the algorithms described in this paper compute several image frames per 
packet of pulse transmissions. The perception of movement is further improved 
if the scatterers in a large spatial region are imaged almost simultaneously. This 
is obtained by increasing the time between pulse transmissions in the same beam 
direction, and using a technique called beam interleaving. After transmitting a 
pulse in a first direction, there is time available to acquire data in several other 
beam directions before transmitting the next pulse in the first direction. Visual
ization of the speckle pattern movement gives the user a correct perception of the 
blood flow direction and magnitude, and is also useful in separating true blood 
flow from wall motion artifacts. 
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1 Introduction 

Ultrasound blood flow imaging is based on detection and measurement of the Doppler 
shift created by moving scatterers. This Doppler shift is utilized to suppress the signal 
from slowly moving muscular tissue, in order to detect the presence of blood, and is 
also used to quantify the actual blood velocity in each point of an ultrasound image. 
Unfortunately, the Doppler frequency shift is only sensitive to the velocity component 
along the ultrasonic beam. Possible velocity components transversal to the beam are 
not detectable from the received Doppler signal. In standard color flow imaging, the 
Doppler shift is estimated from the received signal generated by a number of trans
mitted pulses, and visualized using a color scale. In some situations, the blood flow 
direction can be measured from the vessel geometry, but this is difficult to do automat
ically, especially when the vessel geometry is not clearly visible in the image. Standard 
color flow imaging often gives confusing blood velocity visualization, e.g. due to changes 
in the angle between the blood flow and the ultrasonic beam. Even though the velocity 
magnitude is constant in a curved blood vessel the Doppler shift, and therefore also the 
color, changes along the vessel. In the power Doppler mode this confusion is removed 
by discarding the measured Doppler shift from the display, but these images do not 
contain any directional information. 

There is a considerable interest in a possible measurement of the transversal velocity 
component in ultrasound flow imaging, and a number of methods have been proposed. 

1. Compound scanning from two different positions gives two velocity components. 
To get sufficient difference in the angle between the two velocity components, the 
distance between the two sub-apertures needs to be relatively large. However, 
in cardiac imaging the size of the transducer is limited by the space between 
the ribs. Additional problems with this technique is the time lag between the 
measurement of the two velocity components, and the limited field of view [7]. 

2. Measurement of transit-time through the ultrasound beam, which is reflected in 
an increased bandwidth of the Doppler signal. This method has very low accu
racy, does not yield flow direction, and will only work in regions with rectilinear 
and laminar flow [13]. 

3. Two-dimensional speckle tracking methods based on frame-to-frame correlation 
analysis has been proposed by several authors [18]. This method can be used 
both for the RF-signal and the amplitude detected signal. 

4. Coherent processing of two sub-apertures of the transducer to create lateral os
cillations in the received beam pattern. This method is described by two authors 
[1, 10], and gives quantitative lateral velocity information, including the sign. 
The main drawback of this method is poor lateral resolution, which limits its use 
for imaging. 

Although these techniques address the same problem, the solution presented in this 
paper is fundamentally different from the techniques above. Rather than trying to es
timate the lateral velocity component, we present algorithms for enhancing the speckle 
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pattern movement, which is related to the blood cell movement in the blood vessels. 
The approach is similar to a technique called B-flow that has recently been patented 
[4]. 

In ultrasound imaging, the returned echoes are processed coherently, and there are 
variations in the intensity due to constructive and destructive interference of the sound 
waves scattered back from a large number of scatterers. These variations in intensity 
are often termed the "speckle pattern" . When there is a slight displacement of the 
scatterers (the red blood cells), there will be a corresponding displacement of the speckle 
pattern. By preserving, enhancing, and visualizing the speckle pattern from moving 
scatterers and displaying a stream of such images, an intuitive display of the blood 
flow is obtained. This method will be referred to as "blood motion imaging" (BMI) 
and enables the operator to see the blood flowing in the image, although no attempt 
is made to measure the lateral velocity component. However, BMI may indirectly 
give the lateral velocity component by combining an angle measurement derived from 
the speckle motion with the radial velocity component obtained from the Doppler 
frequency shift. In addition to providing correct perception of the blood flow direction 
and magnitude, BMI is also useful in separating true blood flow from wall motion 
artifacts. 

BMI processing can be applied both to data which are uniformly sampled in time, 
and to data acquired using conventional color flow "packet" acquisition. Different pulse 
transmissions can be used for the tissue and BMI data, enabling different optimization 
of the tissue and flow pulses. The first stage in the BMI processing is temporal high
pass filtering to attenuate the signal from stationary and slowly moving scatterers. The 
high-pass filtered data can be processed by using conventional B-mode techniques, or, 
in order to accentuate the speckle pattern, more advanced processing such as amplitude 
normalization can be performed. It is also possible to combine BMI with conventional 
color flow velocity estimates. The tissue and flow images can be combined additively 
into either a gray scale or color image. Alternatively, a decision can be made for each 
pixel if it is a tissue or flow pixel. The uniformly sampled data are processed using 
a sliding window, and the frame rate becomes equal to the pulse repetition frequency 
(PRF). For the packet data, BMI processing produces several image frames per packet, 
whereas conventional color flow imaging produces only one image frame per packet. The 
time between each of the BMI frames from one packet equals the inverse of the PRF 
within the packet. In order to visualize the motion, the display frame rate must be 
reduced substantially, e.g. from 1kHz PRF to 30Hz frame rate. For real-time display, 
a lot of data must be discarded, but for slow motion replay, a larger fraction or all of 
the recorded frames can be used. 

As mentioned above, B-flow uses a similar approach as BMI for blood flow visualiza
tion. There are, however, several differences between B-flow and BMI regarding data 
acquisition and signal processing. In B-flow, one high-pass filtered sample is calculated 
by a weighted average over a packet of samples. The tissue structures are visualized 
by perturbing one of the filter weights. This adds the high-pass filtered data to the 
unfiltered data from one of the pulse transmissions within each packet. The resulting 
sample undergoes conventional B-mode processing. Since the tissue and flow images 
are calculated from the same pulse transmissions, it is not possible to use different 
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tissue and flow pulses. The main difference between B-flow and BMI is that in B-flow 
only one image per packet is produced. This means that there is a larger displacement 
between each frame, and thus a larger decorrelation of the speckle pattern which po
tentially makes it harder to follow the speckle movement from image to image. With 
only one image per packet, each packet can contain only a small number of samples to 
get an adequate frame rate. This makes it difficult to sufficiently attenuate the signal 
from slowly moving tissue. The B-flow patent does not mention any combination with 
color flow velocity estimates. 

This paper is organized as follows. The data acquisition and basic principles of BMI 
are described in Section 2. A more detailed description of the signal processing in BMI 
is given in Section 3, while clinical applications are discussed in Section 4. Possible 
improvements and new applications of BMI are discussed in Section 5 before the paper 
is concluded in Section 6. 

2 Data Acquisition 

The data used to calculate blood motion images are acquired in the same manner as 
data used for conventional color flow imaging. The ultrasound beam is scanned over 
the region to be imaged, and a series of N pulses are transmitted in each beam direction 
of the flow image. For each flow image, one tissue B-mode scan is performed, and the 
flow and B-mode data are combined to visualize both the blood flow and the tissue 
structures. 

The number N will be referred to as the packet size. The time T between two 
pulses within a packet is called the pulse repetition time, and the inverse of this time is 
called the pulse repetition frequency (PRF). The ultrasound pulse needs to propagate 
a distance equal to twice the image depth dmax before a new pulse can be transmitted. 
The maximum possible PRF is thus given by 

1 c 
PRFmax =- = -

T 2dmax 
(1) 

where cis the sound velocity. By decreasing the PRF with a factor k, it is possible to use 
a technique called beam interleaving [3]. After transmitting a pulse in a first direction, 
there is time to acquire data in k - 1 other beam directions before transmitting the 
next pulse in the first direction. These k beams are called an interleave group (IG), 
and the number k is called the interleave group size (IGS) and can be expressed by 

IGS = lPRFmaxJ 
PRF 

(2) 

where l·J means nearest integer towards -oo. The number of interleave groups NrG in 
one image is given by 

N _ Nbeams 
IG- IGS (3) 

where Nteams is the number of beams determined by the image width. The principle of 
beam interleaving is illustrated in Figure 1, where the numbers in the different beam 
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II II 
PRF=PRFmax PRF=PRF max/2 

Nrc= 6 Nrc= 3 

IGS=1 IGS=2 

1 5 9 13 17 21 1 2 9 10 17 18 

2 6 10 14 18 22 3 4 11 12 19 20 

3 7 11 15 19 23 5 6 13 14 21 22 

4 8 12 16 20 24 7 8 15 16 23 24 

(a) (b) 

II II 
PRF=PRF max/3 PRF=PRF max/6 

Nrc= 2 Nrc= 1 

IGS=3 IGS=6 

1 2 3 13 14 15 1 2 3 4 5 6 

4 5 6 16 17 18 7 8 9 10 11 12 

7 8 9 19 20 21 13 14 15 16 17 18 

10 11 12 22 23 24 19 20 21 22 23 24 
(c) (d) 

Figure 1: Beam interleaving in 2D Doppler acquisition with 6 beam directions 
and packet size N = 4. The numbers indicate the sequence of the 
24 pulses. 
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Pulse transmissions: T Tframe 

l<nage ~a~ 
Figure 2: The timing of pulse transmissions vs. image samples in one sample 

volume in conventional color flow imaging. One image sample is 
calculated per packet of pulse transmissions. 

directions indicate the timing of the transmitted pulses. Parts of the tissue B-mode 
image may be acquired between the different flow interleave groups, or the whole B
mode image is acquired after one entire flow image acquisition. Either way, there is one 
B-mode image recording per flow image (which consists of N pulses in each direction). 
With a low PRF, the image consists of just a few interleave groups. It is advantageous 
with a large IGS since there is a small time difference between neighboring beams 
within an IG. The scatterers in a spatial region with width determined by the IGS 
are imaged almost simultaneously, and the movement of the scatterers can be visually 
tracked from frame to frame. 

By using a relatively broad transmit beam, it is possible to have several receive 
beams per transmit beam by using simultaneous beamforming in slightly different 
directions. With k parallel beamforming channels, the frame rate is increased by a 
factor k for the same number of receive beams. 

The timing of pulse transmissions in one beam direction, together with the calcu
lated image data in conventional color flow imaging is shown in Figure 2. During the 
time Tframe in Figure 2, flow data are acquired in all the other beam directions, and 
the tissue B-mode data are also acquired. The corresponding timing for BMI is shown 
in Figure 3, where we see that several flow images are calculated for each signal packet. 
Only one B-mode scan is performed per flow packet, and interpolation is needed to 
obtain one B-mode image for each flow image. Alternatively, the B-mode image can be 
calculated from the same data as the flow image, resulting in a higher frame rate. The 
disadvantage of this approach is that the B-mode image can not be wider than the flow 

Pulse transmissions: T 

Image"~ 
Time 

Figure 3: The timing of pulse transmissions vs. image samples in one sam
ple volume in BMI packet acquisition. Several image samples are 
calculated per packet of pulse transmissions. 
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(a) (b) 

Figure 4: Overview ofBMI processing for packet data acquisition. (a) Separate 
tissue B-mode scan. (b) BMI and tissue B-mode from the same data. 
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image, and the B-mode resolution can not be higher than the flow image resolution. 
An overview of BMI systems using packet data acquisition is shown in Figure 4. 

The input data are the beamformed, complex demodulated, and time-gain compensated 
IQ signal packet containing samples in time from one sample volume with sampling 
frequency equal to the PRF. The signal packet forms a complex valued signal vector 
with dimension equal to the packet size N, where the samples have a zero mean complex 
Gaussian probability density function (PDF). The same processing is performed on the 
signal from all the sample volumes in the image. Several images (K > 1) per packet 
may be displayed, as opposed to conventional color flow imaging where only one image 
per packet is displayed. With separate tissue B-mode acquisition, the tissue data need 
to be interpolated in time to get one tissue frame for each flow frame as shown in 
Figure 4a. The number of BMI frames K might be smaller than the packet size N. 
When the B-mode images are calculated from the same data as the BMI images, the 
two data streams need to be synchronized to get matching BMI and tissue frames as 
shown in Figure 4b. 

2.1 Continuous Acquisition 

Combining a low PRF and small depth with a narrow image sector, it is possible with 
just one IG as illustrated in Figure ld, where we see that the entire flow image is 
scanned between two pulse transmissions in the same direction. After N flow pulses 
are transmitted in each beam direction, a B-mode scan is performed, and there is a 
time delay until the next N flow pulses are transmitted. Uniform sampling in time 
can be achieved in several ways. One possibility is to perform a B-mode scan for each 
flow scan. Another option is to skip the separate B-mode scan and generate the tissue 
B-mode image from the flow data. Acquisition schemes where there is a continuous 
stream of flow data with uniform sampling interval, will be called continuous acquisition 
as opposed to conventional color flow packet acquisition. With continuous acquisition, 
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Figure 5: The timing of pulse transmissions vs. image samples in one sam
ple volume for continuous BMI acquisition. The image samples are 
calculated using a sliding window approach. 

the PRF is equal to the frame rate. The timing of the pulse transmissions in one 
beam direction for continuous data acquisition is shown in Figure 5, where we see that 
the BMI images are calculated using a sliding window approach. BMI systems using 
continuous data acquisition are illustrated in Figure 6 where for each sample volume 
there is a continuous stream of data with uniform sampling interval. The scheme with 
separate B-mode acquisition shown in Figure 6b corresponds to packet acquisition with 
N=l. 

2.2 Coded Excitation 

In BMI it is important to have as high spatial resolution as possible, and a short 
pulse should be used. For patient safety reasons, there is a limit on the amplitude of 
the transmitted pulse. This means that the transmitted power decreases with pulse 
length, resulting in a poorer signal-to-noise ratio (SNR). However, several coded exci
tation techniques exist [8] to improve the SNR without increasing the amplitude of the 
transmitted pulse. BMI is ideally suited for coded excitation techniques, and the BMI 
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(a) (b) 

Figure 6: Overview of BMI processing for continuous data acquisition. (a) 
BMI and tissue B-mode images are calculated from the same data. 
(b) Separate tissue B-mode scan. 
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Figure 7: Basic BMI processing. 

processing described in the next section will not be not altered if the input signal is 
acquired using coded excitation techniques to improve the SNR. 

3 Signal Processing in BMI 

A block diagram of a basic form of the 'BMI processor' in Figure 4 is shown in Figure 7, 
and is recognized as tissue B-mode processing of the high-pass filtered data. In the 
following sections, we will investigate the high-pass filter in more detail, and present 
more advanced 'BMI processors' than the one shown in Figure 7. 

3.1 High-pass Filtering 

As seen in Figure 7, the first stage in the BMI processing is temporal high-pass filtering. 
Figure 8a shows a tissue B-mode image of the carotid artery. The corresponding 
B-mode image calculated from high-pass filtered data is shown in Figure 8b where 
the signal from the moving blood is significantly stronger than the signal from the 
surrounding tissue. 

Commonly used high-pass filters in color flow imaging are finite impulse response 
(FIR) filters, infinite impulse response (IIR) filters with different types of initialization 
[5, 6], and polynomial regression filters [9, 11, 17]. All these types of filters can be used 
in BMI. However, BMI depends on the similarity of the speckle pattern in subsequent 
images. The processing should be equal for subsequent images, and FIR filters are 
preferred since they are the only filters that are time invariant for signals of finite length. 
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(a) (b) 

Figure 8: Carotid artery. (a) Tissue B-mode image. (b) Tissue B-mode image 
calculated from temporally high-pass filtered data. 

An FIR filter is described by an impulse response function h(n), n = 0, ... , L- 1 , 
where L- 1 is the filter order. With input signal x(n), n = 0, ... , N- 1, the output 
signal y(n) is given by the convolution sum 

L-1 

y(n) = L h(k)x(n- k) (4) 
k=O 

Each output sample y( n) is a weighted sum of the previous L input samples 
x(n), ... , x(n - L + 1), and the output sample y(L - 1) is the first output sample 
that does not depend on any x(n) for n < 0. This means that the first L- 1 output 
samples, y(O), ... , y(L- 2), need to be discarded. With packet size N, the number of 
samples subsequent to the high-pass filter is reduced to l'vl = N- (L- 1) as indicated 
in Figure 7. 

Subsequent to the high-pass filter in Figure 7, the squared magnitude ly(n)l 2 is 
calculated. The expected value of I y( n) 12 is the mean power in the signal, and is also 
equal to the autocorrelation function at lag zero, R(O) = E{ly(n)l 2 }. We will later use 
estimates of the autocorrelation function at lag one to estimate the blood velocity and 
combine these estimates with BMI. The autocorrelation function of the output signal is 
related to the filter transfer function H ( w) and the power spectrum of the input signal 
Sx(w) by 

(5) 

where F-1 denotes the inverse Fourier transform. Equation 5 shows that the autocor
relation function does not depend on the phase response of the filter. In [2] we have 
shown the advantage of using FIR filters with a non-linear phase response compared to 
the more commonly used linear-phase FIR filters. The improvement in the frequency 
response with non-linear phase is illustrated in Figure 9 for fourth order equiripple FIR 
filters. Equiripple filters minimize the maximum error in the pass- and stop-band [14]. 
The pass-band width of the filters in Figure 9 was maximized within the constraints 
of at least 80dB attenuation in the stop-band from 0 to 0.005, and maximum 1dB 
peak-to-peak ripple in the pass-band. 
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Figure 9: FIR high-pass filters of order 4. 

3.2 High-pass Filter Effects on the Speckle Signal 

H-11 

High-pass filtering is necessary to remove the signal from stationary and slowly moving 
tissue scatterers. In this section we will investigate how the high-pass filter affects the 
desired speckle pattern from moving blood. 

A coordinate system for the imaging system is shown in Figure 10 where x, y, and z 
are the coordinates in the lateral, elevation and radial directions, respectively. Assume 
that a linear shift-invariant imaging system with point-spread function p( x, y, z) is used 
to image the object o(x, y, z, t). The image plane is positioned at y = 0, and the object 
is imaged with a time T between the image frames. For frame n at time nT the image 

X 

y z 

Figure 10: Imaging coordinate system. 
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Figure 11: Illustration of the Fourier spectrum of an ultrasound image prior 
to amplitude detection. 

operation is expressed by the convolution 

i(x, z, t 0 ) = p(x, y, z) * o(x, y, z, nT)Iy=O 
x,y,z 

Fourier-transformation of the spatial variables gives 

(6) 

(7) 

Such an image spectrum prior to amplitude detection is illustrated schematically in 
Figure 11. The band-pass nature of the signal in the kz-direction is due to the ultra
sound pulse which is a band-pass signal. With a velocity v = [vx, vy, vz], the object is 
translated a distance vT between image frames. The spectrum including the temporal 
angular frequency w becomes 

where 6 is the Dirac delta-function. The further analysis is simplified by assuming zero 
velocity transverse to the image plane, i.e. v = [vx, 0, vz]. The resulting spectrum can 
be written 

and is illustrated in Figure 12. Movement transverse to the image plane broadens the 
spectrum in both the kx and kz direction. 
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(J) 

Figure 12: Image spectrum with radial and lateral movement of the object. 

The images are sampled with sampling frequency 1/T in the temporal direction, and 
the spectrum in Figure 12 is therefore periodic with period 27r /T in the w-direction, 
although only one period is shown. The high-pass filter is a one-dimensional filter 
operating in the temporal direction, and with transfer function H ( w), the spectrum of 
the filtered images becomes 

The effect of the high-pass filter on the spectrum in Figure 12 is illustrated in Figure 13. 
The high-pass filter is represented by two planes that remove the part of the signal 
contained in the interval [-we, we]· Two-dimensional projections of the spectrum in 
Figure 13 are shown in Figure 14. As seen in Figure 14a, both the power and the 
bandwidth are decreased when the velocity is so small that parts of the signal spectrum 
are in the stop-band of the filter. The reduction in bandwidth means that the speckle 
is smeared out, and the speckle movement might be harder to perceive since the spatial 
dimensions of the speckle become large compared to the displacement from frame to 
frame. Due to aliasing, the high-pass filter also modifies the signal from scatterers 

Figure 13: The effect of the high-pass filter on the spectrum in Figure 12. 
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Figure 14: 2D projections of the 3D spectrum in Figure 13. 

moving with a velocity giving Doppler frequencies close to multiples of the sampling 
frequency. The signal is demodulated and amplitude detected before it is displayed. 
This centers the signal around zero frequency in the kz-direction, and is not included 
in the spectra shown above. 

3.3 Amplitude Normalization 

There is a time-gap between the IQ signal packets in Figure 7 which produces a discon
tinuity of the signal from packet to packet. The squared magnitude of the high-pass 
filtered signal from a representable sample volume is shown in Figure 15, where we 
see that the mean power varies significantly from packet to packet. To get a smooth 
temporal display, this fluctuation in the mean power needs to be compensated for. A 
method to solve this problem is described next. 

The IQ signal is a random signal with a zero mean complex Gaussian probability 

• " 
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Figure 15: The magnitude squared of the high-pass filtered signal. (a) Linear 
scale. (b) dB scale. 
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distribution. The high-pass filtering is a linear operation, and the signal y( n) at the 
filter output is also a zero mean complex Gaussian process that can be written 

y(n) = u(n) + iv(n) (11) 

where u(n) and v(n) are zero mean real Gaussian processes that are statistically inde
pendent [16]. The expected value, and the mean square value are given by 

E{y(n)} =E{u(n)} + iE{v(n)} = 0 (12) 

E {ly(nW} =E { u(n) 2} + E { v(n) 2} = 0'~ + 0'; = 20'~ = 20'; 

where 0'; = 0'~ are the variances of u(n) and v(n), respectively. Normalizing the 
squared magnitude by the mean we get 

z(n) = ly(n)l2 = ~ (u(n)2 + v(n)2) 
E{ly(n)l2} 2 0'~ 0'~ 

(13) 

The random variable 2z(n) is x2-distributed with 2 degrees of freedom since it is the 
sum of the square of two independent Gaussian variables with zero mean and variance 
equal to one [15]. This gives the following PDF of z(n) 

fz(z) = e-z (14) 

In dB-scale, the variable becomes 

w(n) = g(z(n)) = 10log(z(n)) = 10log(ly(n)l 2) -10log (E{Iy(n)l 2}) (15) 

and the inverse of this transformation is given by z(n) = h(w(n)) = lQw(n)/ 10 . The 
PDF of w(n) is then found by [15] 

fw(w) =lh'(w)l · fu(h(w)) 

ln(10) 10w/10e-10"'/10 

10 

(16) 

The PDF in Equation 16 is shown in Figure 16 together with a histogram of the 
transformed data from a representable image frame. Figure 16 shows close agreement 
between the experimental data and the theoretical PDF. 

A method for performing the normalization described above is shown in Figure 17, 
and the signal plotted in Figure 15 is used to illustrate the algorithm. The mean power 
is estimated for each packet by 

M-1 

R(O) = : 1 L lx(mW 
m=O 

(17) 

and subtracted from the speckle signal in the log-domain. The mean power in each 
packet is shown as the piece-wise constant signal in Figure 18. The normalized speckle 
signal corresponding to Equation 15 is obtained at point 3 in Figure 17, and is plotted 
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Figure 16: The PDF fw(w) together with a histogram of the data from a 
representable image frame. 
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Figure 17: BMI processing of packet data with amplitude normalization. 
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Figure 18: The piecewise constant signal is the mean power m each packet. 
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This is the signal at point 7 in Figure 17. The interpolated mean 
power signal with (point 9 in Figure 1 7) and without (point 8 in 
Figure 17) temporal smoothing is also shown. 
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Figure 19: The normalized signal at point 3 in Figure 17. 
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Figure 20: Limited mean power signal. 

in Figure 19. The PDF in Equation 16 is superimposed to the right in Figure 19, and 
the signal can be limited to lie within a certain confidence interval as illustrated by 
the dashed lines. This limited speckle signal corresponds to point 4 in Figure 17. The 
speckle signal can be visualized in the flow image display by modifying the color pixel 
value in the areas of the image where blood flow is detected. One way of obtaining this 
effect is to combine the mean signal power with the speckle signal into one value, which 
controls, for instance, the brightness of the pixel value. Since there is only one mean 
power sample for each packet, the mean power signal is interpolated in time to get 
the same number of mean power samples as speckle signal samples. The interpolated 
signal at point 8 in Figure 17 is plotted with a thick dotted line in Figure 18 which also 
shows the smoothed signal at point 9. The gain and dynamic range of the mean power 
signal may be adjusted as in conventional color flow imaging. The signal is limited to a 
maximum positive value given by the gain and dynamic range, but the negative signal 
values are not limited to zero. The interpolated, smoothed, and limited mean power 
signal at point 10 in Figure 17 is shown in Figure 20. The gain in this example is equal 
to -10dB, and the signal is limited to a dynamic range of 6dB as illustrated with the 
dashed lines in Figure 18. The speckle signal is added to the mean signal, and the 
negative values are set equal to zero. When the mean signal has maximum value, the 
total signal spans the dynamic range of the display. When the mean signal is less than 
maximum, the smallest part of the total signal is lost. This is the BMI signal at point 
5 in Figure 17, and is shown in Figure 21. Compared to Figure 15b, there is much less 
variation in the mean power, while the fluctuations are retained. 

A power normalization algorithm simpler than that described in Figure 17 is as 
follows. The speckle signal is calculated as in point 3 in Figure 17, and the BMI signal 
is calculated as the sum of this speckle signal and a low-pass filtered version of the 
original signal at point 2. In this way the interpolation is avoided. 
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Figure 21: BMI signal. 

3.4 BMI Combined with Velocity Estimates 

H-19 

In addition to the processing described above, it is possible to use the conventional 
autocorrelation algorithm [12] to estimate the radial velocity component. One estimate 
of the autocorrelation function at temporal lag equal to one is found for each packet 
using the unbiased sample mean estimator given by 

M-2 
A 1 ~ 

R(1) = M _ 1 L...- x*(m)x(m + 1) 
m=O 

(18) 

This complex valued autocorrelation estimate is interpolated in time to obtain one esti
mate for each BMI sample. The estimate of the radial velocity component is calculated 
from the phase of the autocorrelation values by 

c A v = ~T · arg(R(1)) 
47r JO 

(19) 

where c is the sound velocity, fo is the center frequency of the ultrasound signal, 
and T is the pulse repetition time. This velocity estimate is then combined with the 
BMI signal in the display subsystem. A block diagram illustrating the combination of 
velocity estimates and the BMI signal is shown in Figure 22. 

The interpolation of the autocorrelation estimates can be avoided by calculating 
instantaneous autocorrelation estimates by 

Rn(1) = x*(n)x(n + 1) (20) 

and then applying temporal averaging across packet boundaries to reduce the variance. 
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Figure 22: BMI with amplitude normalization, combined with velocity esti
mates. 
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3.5 Display Algorithms 

The first stage in the display system is to scanconvert the images. The scanconverter 
maps the data from beam-depth format to rectangular coordinates with correct spatial 
dimensions. The scanconverted tissue and BMI images are then combined into a single 
gray scale or color image. 

For the algorithms that do not incorporate velocity estimation, a simple additive 
combination of the BMI and tissue images is possible. One example of how the RGB
components can be calculated is given by 

R = 4 x BMI + 2 x tissue, G = BMI + 4 x tissue, B = 4 x tissue (21) 

which gives high contrast between the blood flow and the surrounding tissue. A com
bination producing a gray scale image is also possible. 

Another possibility is to make a decision for each pixel, whether tissue or flow 
should be displayed. This tissue/flow arbitration is based on the tissue, mean power, 
and velocity signal. The RGB values of the flow pixels are determined by the BMI and 
the velocity signal. The color is chosen based on the velocity, while the BMI signal 
determines the brightness of the color. 

Spatial averaging is necessary to reduce the variance in the velocity estimates. To
gether with the limited resolution of ultrasound imaging systems, blood flow might be 
visualized outside the anatomical borders of the blood vessels. A similar artifact result
ing from limited resolution and insufficient clutter attenuation, is that the estimated 
blood velocity does not approach zero towards the vessel boundary. The velocity is 
calculated in Equation 19, where we see that addition of a real quantity to R(1) re
duces the magnitude of arg(R(1)) and thus the velocity. The velocity can be forced 
towards zero at the vessel boundary by adding a fraction of a spatial averaged tissue 
image to R(1). The spatial averaging extends the vessel border inside the vessel, and 
the estimated velocities are reduced in this area. In the middle of the vessel, the tis
sue signal is weak, giving a small modification of arg(R(1)). However, with a strong 
reverberation signal inside the vessel, there might be an undesirable alteration of the 
velocity estimate. 

3.6 Temporal Processing 

Temporal averaging and/ or decimation may be done on the signal at point 1 in Fig
ure 17. Temporal averaging within a signal packet produces traces in the speckle along 
the direction of the blood flow. However, temporal averaging across packets destroys 
the speckle pattern. Since the averaging must be performed within each packet, the 
averaging filter needs to be initialized for each packet, and a number of samples equal 
to the averaging window length must be discarded in each packet. Further decimation 
may be necessary to get a frame rate suitable for real time display. By averaging over 
the entire packet, the result is one sample per packet. The only difference between the 
signals at 2 and 7 in Figure 17 is then the spatial averaging at 6. When the signal at 
point 3 in Figure 17 is used as the power signal in standard color flow imaging, stripes 
along the flow direction are visible in the color flow images. This processing is very 
similar to the processing in conventional color flow imaging. 
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Figure 23: Advanced BMI processing of data from continuos acquisition. 

3. 7 Continuous Acquisition 

The data from continuous acquisition are not divided into packets, and do not suffer 
from temporal discontinuities. This simplifies the processing, which can be performed 
with a sliding window as illustrated in Figure 5. The mean power of the signal varies 
during the heart cycle, and amplitude normalization can be performed inside a sliding 
window of length N as shown in Figure 23. A combination with velocity estimates is 
also possible with continuous acquisition as illustrated in Figure 23. 

4 Clinical Applications 

It is hard to get a correct impression of BMI from still images. We have therefore made 
a web page containing BMI loops for the clinical applications discussed in the following 
sections. The web page can be found at http: I /www. ifbt. ntnu. nor steinarb/bmi/. 

4.1 Peripheral Vessels 

BMI has been successfully applied to imaging of peripheral vessels using both packet 
and continuous acquisition. The vessels are located at relatively shallow depths so that 
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relatively large interleave group sizes with sufficient PRF are possible. 
The lateral velocity component is clearly visualized, and we get an impression of 

the parabolic velocity profile across the vessel. Compared to conventional color flow 
imaging, BMI provides a more intuitive display since the images contain a motion 
corresponding to the flow of the red blood cells. Disturbed flow patterns are more 
easily detected than they are with color flow since both the color and speckle pattern 
are altered. 

The benefit of the amplitude normalization algorithm is evident in the examples of 
the brachialis artery: The stepping artifact between the packets is reduced, and there 
is a more uniform amplitude during the heart cycle. The web page contains several 
examples of temporal averaging and decimation. 

4.2 Transthoracic Cardiac Imaging 

The blood flow inside the heart is more complicated than the flow in peripheral vessels. 
In cardiac applications there is more flow transversal to the imaging plane, and there 
will thus be more decorrelation of the speckle from frame to frame. The heart also 
lies deeper in the body, and the reduced PRF increases the decorrelation in addition 
to reducing the interleave group size. It is therefore hard to visually track the speckle 
pattern when imaging flow inside the heart. However, there will be an even stronger 
speckle decorrelation in regions with disturbed flow resulting from valve stenoses or 
insufficiencies, than in regions with more regular flow. The increase in speckle fluctu
ations might ease the detection of small jets. 

The web page contains two examples of aortic insufficiencies, one moderate and one 
small. The increased temporal variation of the speckle pattern in the jet areas is clearly 
seen. A sensation of the jet direction is also obtained. Using the algorithm described 
in Section 3.5, we have also obtained nice transitions between the flow and tissue. 

4.3 Transesophageal Cardiac Imaging 

In transesophageal imaging, the transducer is positioned closer to the flow in the heart, 
and a pulse with higher center frequency can be used. This gives higher spatial resolu
tion, which is important for BMI. The reduced depth also means that large interleave 
group sizes is possible when keeping the same PRF. However, the ability to visually 
follow the speckle movement is still limited by the decorrelation caused by out of plane 
movement. 

The web page contains several examples of cardiac blood flow imaged from the 
esophagus. Compared to the transthoracic images, the speckle pattern has smaller 
spatial dimensions due to the increased frequency. The speckle pattern is more "noisy" 
in the jet regions, and a nice visualization of the disturbed flow is obtained. 

4.4 Pediatrics 

Congenital heart diseases lead to complicated geometry and flow patterns. The small 
dimensions in the child's heart give the same advantages regarding BMI as trans-
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esophageal imaging. With the improved ability of BMI to visualize disturbed flow, we 
hope that it can ease the detection of shunts and other abnormalities. The web page 
contains some preliminary examples of BMI applied to cardiac flow measurements in 
a small baby. 

5 Discussion 

We have described processing of the beamformed, complex demodulated, and time
gain compensated IQ signal packets. Alternatively, the processing can be done on the 
real valued RF data without complex demodulation. In both alternatives, a band-pass 
filter can be used to filter out frequency bands around a desired multiple or fraction 
of the transmitted frequency. Such (sub )harmonic filtering is important when BMI is 
combined with ultrasound contrast agents. 

The speckle signal is calculated by amplitude detection of the high-pass filtered 
IQ-signal. More advanced processing could be done to increase the bandwidth of 
the speckle which might ease the perception of speckle movement. Spectral analysis 
similar to the analysis in Section 3.2 might be useful when developing improved speckle 
amplitude processing. 

Several forms of temporal averaging and decimation were described in Section 3.6, 
but we think that an improved display is possible with more advanced temporal pro
cessing, and further work should be done in this area. It could be possible to color 
code the "age" of the speckle to visualize both the direction and magnitude of the flow. 
Improved still image visualization should also be developed. 

The BMI processing and display techniques can be applied in all combinations of 
imaging modalities where conventional color flow is used. Examples are M-mode and 
spectrum Doppler. Combination with spectrum Doppler is especially interesting, since 
accurate angle correction is easier to perform when the lateral blood flow is visualized 
with BMI. 

BMI processing can be used in combination with ultrasound contrast imaging. The 
contrast agent enhances the scattering from blood, which increases the sensitivity and 
makes clutter filtering less critical. The BMI method may be used in combination with 
several methods for contrast enhancement using a sequence of transmit pulses per scan 
line, including fundamental and second harmonic power Doppler, the pulse-inversion 
technique, and coded excitation. Variations of the echo from pulse to pulse caused by 
movement and/ or destruction of the contrast particles create changes in the speckle 
pattern in the image, making visual detection of small concentrations of contrast agent 
easier. In intermittent imaging, which is often used for contrast imaging, the BMI 
method is of special importance. With BMI processing, several images are displayed 
for each recorded data set, giving a more continuous stream of images, where speckle 
fluctuations indicate the presence of contrast agent. 
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6 Conclusions 

BMI is a new variant of color flow imaging which preserves, enhances, and visualizes 
the speckle pattern movement resulting from the flowing red blood cells. The method 
is sensitive to flow in all directions, and provides a more intuitive display of the blood 
flow compared to conventional color flow imaging which is only sensitive to flow along 
the beam direction. Although the lateral velocity component is visualized, no attempt 
is made to measure this component qualitatively. However, BMI may indirectly give 
the lateral velocity component by combining an angle measurement derived from the 
speckle motion, with the radial velocity component obtained from the Doppler fre
quency shift. In addition to providing a more intuitive display of the flow in peripheral 
vessels, we hope that BMI will ease the detection of disturbed flow in cardiac appli
cations. In systems with software based flow processing, only small modifications are 
necessary since the data acquisition is the same as in color flow imaging. Such a real 
time implementation of the algorithms is necessary for a thorough clinical evaluation 
of the method. 

7 Acknowledgements 

This study was supported by the Research Council of Norway. We thank Nancy Lea 
Eik-Nes for revision of the paper. 

References 

1. M. E. Anderson. Multi-dimensional velocity estimation with ultrasound using 
spatial quadrature. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 45(3):852-
861, May 1998. 

2. S. Bj&rum, H. Torp, and K. Kristoffersen. Clutter filter design for ultrasound 
color flow imaging. Submitted to IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 
2000. 

3. R. H. Chesarek. Ultrasound imaging system for relatively low-velocity blood flow 
at relatively high frame rates. US Patent 4888694, Dec. 1989. Quantum Medical 
Systems, Inc., Issaquah, Wash. 

4. R. Y. Chiao, A. L. Hall, K. E. Thomenius, M. J. Washburn, and K. W. Rigby. 
Method and apparatus for enhanced flow imaging in B-Mode ultrasound. US 
Patent 6074348, June 2000. General Electric Company, Schenectady, N.Y. 

5. E. S. Chornoboy. Initialization for improved IIR filter performance. IEEE Trans. 
Signal Process., 40(3):543-550, Mar. 1992. 

6. R. H. Fletcher and D. W. Burlage. An initialization technique for improved MTI 
performance in phased array radars. Proc. IEEE, 60:1551-1552, Dec. 1972. 



H-26 

7. M. D. Fox. Multiple crossed-beam ultrasound Doppler velocimetry. IEEE Trans. 
Sanies Ultrason., 25(5):281-286, Sept. 1978. 

8. B. Haider, P. A. Lewin, and K. E. Thomenius. Pulse elongation and deconvolution 
filtering for medical ultrasonic imaging. IEEE Trans. Ultras on., Ferroelect., Freq. 
Contr., 45(1):98-113, Jan. 1998. 

9. A. P. G. Hoeks, J. J. W. van de Vorst, A. Dabekaussen, P. J. Brands, and R. S. 
Reneman. An efficient algorithm to remove low frequency Doppler signals in digital 
Doppler systems. Ultrason. !mag., 13(2):135-144, Apr. 1991. 

10. J. A. Jensen and P. Munk. A new method for estimation of velocity vectors. IEEE 
Trans. Ultrason., Ferroelect., Freq. Contr., 45(3):837-851, May 1998. 

11. A. P. Kadi and T. Loupas. On the performance of regression and step-initialized 
IIR clutter filters for color Doppler systems in diagnostic medical ultrasound. 
IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 42(5):927-937, Sept. 1995. 

12. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto. Real-time two-dimensional 
blood flow imaging using an autocorrelation technique. IEEE Trans. Sanies Ul
trason., 32(3):458-464, May 1985. 

13. V. L. Newhouse, D. Censor, T. Vontz, J. A. Cisneros, and B. B. Goldberg. Ul
trasound Doppler probing of flows transverse with respect to beam axis. IEEE 
Trans. Biomed. Eng., 34(10):779-789, Oct. 1987. 

14. A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-Time Signal Process
ing. Prentice Hall, Inc., second edition, 1999. 

15. A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw
Hill, Inc., third edition, 1991. 

16. C. W. Therrien. Discrete Random Signals and Statistical Signal Processing. Pren
tice Hall, Inc., 1992. 

17. H. Torp. Clutter rejection filters in color flow imaging: A theoretical approach. 
IEEE Trans. Ultrason ... Ferroelect., Freq. Contr., 44(2):417-424, Mar. 1997. 

18. G. E. Trahey, J. W. Allison, and 0. T. von Ramm. Angle independent ultrasonic 
detection of blood flow. IEEE Trans. Biomed. Eng., 34(12):965-967, Dec. 1987. 



Paper I 



High Frame Rate Tissue Doppler and 
Strain Rate Imaging 

Steinar Bj<Brum, Andreas Heimdal, Hans Torp, 
Brage H. Amundsen, Stig A. Sl0rdahl and Bj0rn Olstadt 

Department of Physiology and Biomedical Engineering, 

Norwegian University of Science and Technology, Trondheim, Norway 

i·Department of Computer and Information Science, 

Norwegian University of Science and Technology, Trondheim, Norway 

Abstract 

In tissue Doppler and strain rate imaging of the heart, a high frame rate is 
necessary to capture the rapid relaxations and contractions of the myocardium. 
Previously, the Doppler and tissue B-mode images have been calculated from 
different pulse transmissions. To improve the temporal resolution, we present a 
new acquisition technique where the Doppler based images are calculated from the 
same pulse transmissions as the tissue B-mode images. By constructing the image 
from 10-15 transmit beams, frame rates above 300 frames/second are possible 
when imaging the heart. To get adequate spatial resolution, the small number of 
transmit beams limits the width of the image, but the image is wide enough to 
cover a heart wall, i.e. the interventricular septum. The Doppler pulse repetition 
frequency equals the frame rate and is relatively low. Tissue velocity estimates 
calculated from these data therefore suffer from aliasing. However, we present 
a robust technique that corrects the aliased velocities. A significant advantage 
of the new technique is the continuous stream of data with constant sampling 
intervals. Doppler spectra and sound signals can thus be calculated at arbitrary 
points in the 2D image. 
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1 Introduction 

Ultrasound Doppler techniques have been used with success in two-dimensional imaging 
of blood flow velocities [1]. More recently, there has been a rapid development in using 
Doppler techniques in the assessment of myocardial function. Spectral Doppler can 
be used to measure the tissue velocity at discrete positions in the myocardium, but 
the sample volume needs to be moved around to assess the regional function. Two
dimensional tissue Doppler imaging (TDI) can be used to assess regional myocardial 
function [4], and has proven to be of significant clinical value. Additional information 
can be obtained by imaging the rate of deformation of the myocardium; this is called 
strain rate imaging (SRI) in [2]. SRI may ease the differentiation of active elongation 
or contraction from passive motion induced by elongation or contraction in other parts 
of the myocardium [2]. 

The rapid accelerations in the myocardium demand imaging systems with high 
temporal resolution. Conventional systems trade off temporal resolution with spatial 
resolution in the tissue B-mode and/or the Doppler image. In this paper we present a 
new acquisition technique which uses the same data for both tissue B-mode imaging, 
TDI, and SRI. For an image sector wide enough to cover a heart wall, this technique 
provides frame rates exceeding 300 frames/second with high spatial resolution for both 
the B-mode and Doppler image. As an added benefit, the technique also provides 
a continuous stream of data with constant sampling intervals. Doppler spectra and 
sound signals can therefore be calculated from the 2D data, thus avoiding separate 
data acquisitions for these modalities. 

Sections 2 and 3 present the basics of tissue Doppler and strain rate imaging, 
including how these quantities are estimated. Then the new acquisition method is 
described and compared to conventional 2D Doppler acquisition in Section 4. Section 5 
compares TDI/SRI calculated from the second harmonic and fundamental signal, and 
we find a significant quality improvement of SRI when the second harmonic signal 
is used. The tissue velocity estimates suffer from aliasing since the pulse repetition 
frequency is relatively low. A robust technique that corrects the aliased velocities is 
presented in Section 6. In Section 7, examples of Doppler spectra calculated from the 
2D data are shown, and in Section 8 we describe how tissue velocity and strain rate 
sound signals can be generated. Section 9 contains examples of clinical applications of 
high frame rate TDI/SRI. The paper is concluded in Section 10. 

2 Tissue Doppler Imaging 

In 2D ultrasound imaging, the ultrasound beam is scanned over the region to be imaged. 
For each image frame, the tissue velocities at points along each beam direction are 
estimated based on the received signals from a packet of N ::;> 2 pulse transmissions 
in this direction. The time T between two pulses within a packet is called the pulse 
repetition time. The time between two pulse packets in the same direction is equal 
to the time between two image frames, Tframe· After sampling the signal at depth 
increments r8 , there is a two-dimensional signal xz(k, n) for each frame and each beam 
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Time [s]0 0.75

Pos. velocity

Neg. velocity

Figure 1: Example of a tissue Doppler M-mode image. The velocities in the
septum of the heart during one heartbeat are visualized. The frame
rate is 266 frames/second.

direction, where l is the frame number, k is the depth index, and n is the temporal
index corresponding to pulse transmissions. A commonly used velocity estimator is
based on estimates of the autocorrelation function with temporal lag equal to one [3].
This autocorrelation value can be estimated at depth krs and time lTframe using the
unbiased sample mean estimator given by

R̂k,l(1) =
1

N − 1

N−2∑

n=0

x∗
l (k, n)xl(k, n + 1) (1)

where N is the number of pulses in each packet. Based on R̂k,l(1), an estimate of the
velocity component along the beam direction is calculated by

v̂(k, l) =
c

4πf0T
· arg(R̂k,l(1)) (2)

where c is the sound velocity, and f0 is the center frequency of the received ultrasound
signal. The phase angle arg(R̂k,l(1)) is contained in the interval [−π, π]. If the velocity
is so large that the phase shift from pulse to pulse is larger than π, aliasing occurs, i.e.
a positive velocity is interpreted as a negative velocity and vice versa. The maximum
unaliased velocity is called the Nyquist velocity and is given by

vNyq =
c

4f0T
(3)

The tissue velocities are encoded using colors, and superimposed on the tissue B-mode
image. A common colormap is to let red correspond to velocities towards the probe, and
let blue correspond to velocities away from the probe. The magnitude of the velocity
determines the hue and saturation of the color, while the tissue intensity determines
the intensity of the color. To get both temporal and spatial information in one image,
the velocities along a curved line following an anatomical structure in the 2D image
can be imaged versus time as shown in Figure 1. This is called a color M-mode image,
and in Figure 1 we see the velocities in the septum of the heart during one heartbeat.
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Figure 2: Illustration of the velocities used in the strain rate estimate in Equa-
tion 4.

3 Strain Rate Imaging

The strain rate (SR) is equivalent to the spatial gradient of the velocity [2]. Estimates
of the velocity component along the beam direction are available from tissue Doppler
imaging, and an approximation to the strain rate at depth krs and time lTFrame is
given by

SR(k, l) ≈ v(k, l) − v(k + ∆k, l)
∆k · rs

(4)

where ∆k · rs is a small radial lag as illustrated in Figure 2. Combining Equations 2
and 4, an estimator of strain rate suitable for real time implementation is given by

ŜR(k, l) =
c

4πf0T∆krs
· arg

(
K−1∑

m=0

R̂∗
k+m,l(1)R̂k+m+∆k,l(1)

)
(5)

where averaging is performed over K radial samples to reduce variance. Aliasing of the
strain rate estimates occurs if the mean difference between the phase angle of R̂k,l(1)
and R̂k+∆k,l(1) exceeds π.

Strain rate can be visualized using a color technique similar to TDI. A strain rate
M-mode of the septum is shown in Figure 3, where blue corresponds to local shorten-
ing (negative SR), red corresponds to local elongation, and green corresponds to zero
deformation.

4 Data Acquisition

When imaging down to a depth r, the minimum time between pulse transmissions
is Tmin = 2r/c. For the heart, the depth r is approximately 15cm, and with sound
velocity c = 1540m/s, the minimum time between pulse transmissions is Tmin ≈ 200µs.
With an ultrasound center frequency of 2MHz, this gives a Nyquist velocity of 96cm/s



High Frame Rate Tissue Doppler and Strain Rate Imaging I-5

Expansion

Contraction

Time [s]0 1.34

Figure 3: Example of a strain rate M-mode image. The strain rates in the
septum of the heart during one heartbeat are visualized. The frame
rate is 323 frames/second.

which is suitable for blood velocity imaging. The timing of the pulse transmissions
in one beam direction is illustrated in Figure 4 when N = 3 pulses are used for each
velocity estimate. During the time Tframe − NT , both the Doppler data in the other
beam directions and the tissue B-mode data are acquired. If the Nyquist velocity can
be reduced by a factor M , T can be increased by the same factor M . This means that
during the time T between two pulse transmissions in the same beam direction, there
is time to acquire data in M − 1 other beam directions. The tissue velocities are much
smaller than the blood velocities, and by allowing some aliasing, the Nyquist velocity
can be reduced by a factor M ∼ 10. By restricting the Doppler image to consist of only
M beams, the entire Doppler image can be scanned before two pulses are fired in the
same beam direction. If the velocities are estimated based on N pulse transmissions,
there are N Doppler scans between each tissue B-mode scan.

In 2D blood flow imaging, the optimal transmitted pulses for the tissue B-mode
and Doppler image are different. One reason for this is that to get a sufficient signal-
to-noise ratio (SNR), higher power has to be transmitted for Doppler imaging than
for tissue B-mode imaging. There are, however, safety limitations on the transmitted
pulse amplitude, so the power is increased by increasing the pulse length. Increasing
the pulse length also decreases the noise bandwidth, giving a further increase in the

�
Time

� � � � � � � � �
��T � �Tframe

︸ ︷︷ ︸
v(k, 1)

︸ ︷︷ ︸
v(k, 2)

︸ ︷︷ ︸
v(k, 3)

Figure 4: The timing of N = 3 pulses fired in the same beam direction for
conventional 2D Doppler imaging.
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v(k, 4)

��T

Figure 5: Sliding window velocity estimation of data with constant sampling
intervals.

SNR. B-mode images calculated from these long Doppler pulses would have reduced
radial resolution. Fortunately, when imaging tissue velocities, the signal-to-noise ratio
is much higher than it is for blood velocity imaging. Both the tissue B-mode and the
Doppler image can therefore be calculated from the same pulse transmissions without
any degradation of the image quality. If a small bandwidth is required in Doppler
algorithms, the signal can be band pass filtered and still have sufficient SNR. The
penalty for using the same pulses is that the tissue B-mode image sector is restricted
to be of equal size as the Doppler image sector.

Without a separate tissue B-mode scan, there is a continuous stream of data x(k, l)
with constant sampling intervals in the temporal direction. The autocorrelation esti-
mate can then be calculated using a sliding window technique given by

R̂k,l(1) =
1

N − 1

N−2∑

n=0

x∗(k, l + n)x(k, l + n + 1) (6)

One image is thus calculated for each Doppler scan, and the frame rate is 1/T as
illustrated in Figure 5. The conventional method needs M Doppler scans and one tissue
B-mode scan before a new image is calculated, and the frame rate is 1/(MT + Ttissue),
where Ttissue is the time needed for the tissue B-mode scan. The difference in the
timing of the velocity estimates obtained with the conventional and the new acquisition
technique is clearly seen by comparing Figures 4 and 5.

Another advantage of the new acquisition scheme is a potential reduction of rever-
beration artifacts. Figure 4 illustrates the pulse timing of the conventional acquisition
scheme, and we see that the scanning history is different for the different pulses in the
same beam direction. A time varying reverberation signal might therefore exist. In
the new acquisition scheme, the scanning history is equal for all the pulses, and the
reverberation signal is constant in time.

A disadvantage of the new acquisition scheme is the limited number of transmit
beams N ∼ 10 available. The distance between neighboring beams must be small
to get good lateral resolution for the tissue image, and this acquisition method is
therefore only suited for a narrow image sector. With a relatively wide transmit beam,
and receive beam-forming performed in parallel, several beams can be calculated from
one pulse transmission. Using two parallel beam-forming channels, around 20 beams
are available, which is sufficient for a 20 degree image sector. Fortunately, this is wide
enough to individually image the different walls of the heart with a spatial resolution
of the Doppler image that is equal to the tissue image resolution.

Digital ultrasound data were recorded using a GE Vingmed System Five scanner
to test the described acquisition scheme. The digital data were stored as complex base
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band signals where the in-phase and quadrature signal samples were represented as 16
bit integers. These data were transferred from the scanner and processed on a standard
computer using MATLAB.

5 Fundamental vs. Second Harmonic Imaging

The tissue image quality is improved when a band pass filter centered at twice the
transmitted frequency is applied to the received signal. A brief explanation of this is
as follows. Second harmonic frequency components are generated by non-linear wave
propagation, and the second harmonic generation increases with wave amplitude and
propagation distance. The most severe reverberation noise is generated while the pulse
propagates through the body wall. The propagation distance from the probe to the
reverberating layers in the body wall is, however, so small that the second harmonic
signal level is low, and the reverberation noise is reduced compared to the fundamental
frequency band. The second harmonic image also has better lateral resolution since
the sidelobe power level is not high enough to generate second harmonic frequency
components.

To test if the quality of TDI and SRI is improved by using the second harmonic
signal, we recorded data with acquisition parameters as shown in Table 1. By using
band pass filters centered around fTX and 2fTX, the fundamental and second harmonic
signals could be obtained from the same data. The tissue images were calculated using
the second harmonic signal, while TDI/SRI was tested on both the fundamental and
second harmonic signals. A comparison using this data is not completely fair since a
higher fTX is preferable for fundamental imaging, but the comparison provides valuable
information.

Examples of TDI and SRI M-modes using the two frequency bands are shown in
Figure 6 where we see that the velocity estimates are of good quality using either the
fundamental or second harmonic signal. There is, however, some aliasing due to the
low pulse repetition frequency. Because of a doubling of f0, the Nyquist velocity for
the second harmonic signal is half of the Nyquist velocity for the fundamental signal.
As seen in Figure 6, the strain rate estimates are considerably better when the second
harmonic signal is used instead of the fundamental signal. Since the strain rate values
are calculated as a difference between two velocity values, there are no severe aliasing
problems caused by using the second harmonic signal for SRI when the radial distance
∆krs in Figure 2 is small.

Transmit frequency, fTX 1.67MHz
No. of periods in pulse 1.5
Demodulation frequency 2.5MHz
Demodulation bandwidth 2MHz

Table 1: Wide band acquisition parameters.
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Figure 6: Example of M-modes using the fundamental and second harmonic
signal. (a) TDI. (b) SRI.
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Figure 7: Aliasing correction using two subbands.

6 Anti-aliasing Techniques for TDI

The aliasing artifacts of the TDI images can be corrected for by using a method similar
to the one described in [5]. Correcting aliased velocities is easier for tissue Doppler
imaging than for blood flow imaging since the signal-to-noise ratio is much higher.
In addition, the bandwidth of the Doppler signal is lower when tissue velocities are
measured than when blood flow is measured. All the tissue scatterer in one sample
volume moves with approximately the same velocity, while blood scatterers might move
in several different directions with different velocities resulting in a large bandwidth of
the Doppler signal.

The received signal has frequency content centered around f0, and can be filtered
with two narrow band filters centered at the frequencies f1 and f2 as illustrated in
Figure 7. Two autocorrelation estimates, R̂f1

k,l(1) and R̂f2
k,l(1), are calculated from these

two narrow band signals using Equation 6. The difference between the phase angle of
these two autocorrelation estimates can be found from Equation 2 and is equal to

arg(R̂f2
k,l(1)) − arg(R̂f1

k,l(1)) =
4πT

c
(f2 − f1) · v̂12(k, l) (7)

An estimator of the velocity based on the two subband signals is thus given by

v̂12(k, l) =
c

4π(f2 − f1)T
arg(R̂f1

k,l(1)∗R̂f2
k,l(1)) (8)

where the Nyquist velocity
v̂12
Nyq =

c

4(f2 − f1)T
(9)

is increased with a factor f0/(f2−f1) compared to Equation 3. The band pass filtering
used to obtain the subband signals unfortunately reduces the spatial resolution of the
velocity estimate. To regain spatial resolution, the velocity estimate v̂12 is used to
correct the velocity estimate based on the original wide band signal centered at f0. For
each (possibly aliased) velocity estimate, several candidate velocities are found as

v̂(k, l) =
c

4πf0T
(arg(R̂k,l(1)) + 2nπ), −Nmax ≤ n ≤ Nmax (10)

where Nmax ≤
⌊

f0
f2−f1

− 1
⌋
, and �·� means nearest integer towards −∞. Next, the

candidate velocity v̂(k, l) that is closest to the unaliased velocity estimate v̂12(k, l) is
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Figure 8: TDI M-modes and velocity traces before (a) and after aliasing cor-
rection (b).

chosen. The spatial resolution of the original velocity estimate is kept, while avoiding
the problem of aliasing.

The difference in Doppler shift increases with the distance between f1 and f2. Since
the thermal noise and estimator variance are independent of the values of f1 and f2,
best results were obtained when f1 and f2 was relatively far from each other. There
is thus a trade-off between the increase of the Nyquist velocity and the robustness of
the algorithm. We also obtained best results with a relatively small bandwidth B. A
small bandwidth results in a minimal overlap between the bands, and the noise in the
two bands becomes uncorrelated.

Examples of TDI M-modes and velocity curves before and after aliasing correction
are shown in Figure 8. The velocities are estimated from a second harmonic signal
centered at f0 = 3.3MHz with frame rate 323frames/second. The sampling frequency
after complex demodulation was 2MHz. The subband signals were obtained from
the baseband signal using 10th order Hamming weighted rectangular band-pass filters
with bandwidth B = 75kHz, and center frequencies corresponding to f1 = 2.9MHz and
f2 =3.7MHz respectively. Some velocities are aliased twice, but the described algorithm
provides a robust correction. The Nyquist velocities for the fundamental signal, the
second harmonic signal, and when the correction algorithm is used on the second
harmonic signal are shown in Table 2. Using the correction algorithm, the second
harmonic signal can be used for TDI without aliasing artifacts. This is important when
TDI and SRI are calculated from the same data, since Figure 6 shows an improvement
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Fundamental, fa = 1.67MHz 
Second harmonic, fa = 3.33MHz 
Sec. harm. with correction algo. h = 2.9MHz and h =3.7MHz 

Table 2: Nyquist velocities. 

VNyq 

7.5cm/s 
3.7cm/s 
15.5cm/s 
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in the quality of SRI when the second harmonic signal is used. The algorithm also 
corrects for the increase in aliasing artifacts when a wider sector, and thus a larger 
time T between pulse transmissions, is used. 

7 Calculating Doppler Spectra From the 2D Data 

The acquisition scheme provides a continuous stream of samples with constant sampling 
intervals as illustrated in Figure 5, and Doppler spectra can therefore be calculated 
from the 2D data. Compared to mean velocity curves, Doppler spectra visualize all the 
different velocities within the sample volume. Reverberations corrupt mean velocity 
estimates, but can be visually differentiated from true tissue velocities in a Doppler 
spectrum. The temporal resolution is poorer for Doppler spectra than for mean velocity 
curves since a larger number of temporal samples are needed to calculate a spectrum 
than to calculate a mean velocity value. 

Because of the low pulse repetition frequency, conventional Doppler spectra suffer 
from aliasing, but it is possible to extract the correct velocity by stacking several 
spectra on top of each other. A technique called Velocity-matched spectrum analysis, 
which suppresses aliasing artifacts, is described in [7]. The idea is to use several range 
samples, and track the movement of the scatterers for each velocity component in 
the spectrum. Examples of conventional and velocity-matched spectra are shown in 
Figure 9. Both techniques give good results, with slightly narrower spectra for the 
velocity-matched technique. The correct velocity waveform stands out more clearly in 
the velocity-matched technique, since the aliased spectra are smeared out compared to 
the correct spectrum. 

8 Making Sound from Tissue Velocity and Strain 
Rate Data 

In addition to calculating Doppler spectra, a sound signal can also be generated from 
the continuous stream of data. Doppler sound has been used for a long time in blood 
flow measurements, and gives a direct sensation of the blood flow velocity. This also 
applies to tissue velocities and strain rates. Below is a brief description of the signal 
processing necessary to generate a sound signal letting the clinician use his ears in 
addition to his eyes when measuring tissue velocities and strain rates. 
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Figure 9: Tissue Doppler spectra. (a) and (b): Conventional algorithm. (c) 
and (d): Velocity-matched algorithm. Spectra (a) and (c) are from 
the basal part of the septum, while spectra (b) and (d) are from the 
apical part as illustrated in the image to the left. 
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Tissue Doppler Sound 

Let y(k, l) = Rk,z(1), and let z(k, l) be the corresponding "aliasing corrected Rk,z(1)" 
given by 

z(k, l) = IRk,z( 1 )lej(arg(R,,~(1))+2mr)/(2Numx+l)7r (11) 

where n is chosen as described in relation to Equation 10. A phasor spinning around 
with frequency proportional to the mean velocity estimate is given by 

(12) 

and a sound signal can be generated based on s R(l) (k, l). Another option is to generate 

the sound directly from the complex base band signal x(k, l). An aliasing corrected 
version of x(k, l) can be calculated by 

sx(k, l) = x(k, l). e-j arg(y(k,l)) . ej arg(z(k,l)) (13) 

where the signal is mixed down with the aliased mean frequency and mixed up again 
with the aliasing corrected mean frequency. The velocity spread around the mean 
velocity is kept, and sound based on Sx is less "synthetic" than sound based on s R(l). 

The rest of the processing is the same regardless of the choice between s R(l) and sx, 
and the notation s will be used for both signal types. 

The temporal sampling frequency of s(k, l) is equal to the frame rate, and the signal 
needs to be interpolated to a higher sampling frequency, i.e. 8kHz. A typical blood 
velocity of 1m/s gives a Doppler shift of 3.90kHz for an ultrasound frequency of 3MHz, 
while a typical tissue velocity of 0.1m/s only gives a Doppler shift of 390Hz. A relative 
change in frequency !J.j / f is easy to detect for the human ear when f is large, and 
the Doppler signal from blood flow does not need any manipulation of the frequency. 
Changes in the tissue Doppler frequency are, however, difficult to detect without in
creasing the frequency. Following this interpolation, the instantaneous frequency is 
thus increased by a factor N f 

SNr(k, l) = ls(k, l)le)Nr·arg(s(k,l)) (14) 

where the constant Nf is chosen to increase the maximum frequency up to, but not 
exceeding, half the new sampling frequency. 

Velocities towards the probe give positive Doppler shifts, while velocities away from 
the probe give negative Doppler shifts. This directional information can be obtained 
from the complex base band signal by splitting the signal in one part containing the 
positive frequencies, and one part containing the negative frequencies. These two signal 
components can then be fed to the two channels in a stereo sound system. The splitting 
of the signal is obtained by 

Steft(k, l) = 7-i{Re(s(k, l))} + Im(s(k, l)) 

Sright(k, l) = 7-i{Im(s(k, l))} + Re(s(k, l)) 

(15) 

(16) 

where 7-{ { ·} denotes the Hilbert transform in the temporal direction, and Re and Im 
denote the real and imaginary part, respectively. 
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Strain Rate Sound 

We assume here that aliasing does not occur for the strain rate estimates. Referring 
to Equation 5, let u(k, l) = L.::::~ Rk+m,z(1)Rk+m+L'>k,z(1). A phasor spinning around 
with frequency proportional to the strain rate is then given by 

S§R(k, l) = vlu(k, l)lej·I::;,~-= arg(u(k,m)) (17) 

Since u(k, l) is the product of two correlation estimates, the square root is applied to 
get a dynamic range of the sound signal that is proportional to the amplitude of the 
signal x(k, l). It is also possible to generate a strain rate sound signal directly from the 
complex base band signal x(k, l) by calculating 

3 (kl)= x*(k,l)x(k+D.k,l) 
XSR l vlx*(k,l)x(k+D.k,l)l 

(18) 

The further processing is equal to that described above for the velocity sound signal, 
giving contraction and expansion signals in the two stereo channels. 

9 Clinical Applications 

The new acquisition scheme provides data that are ideally suited for investigating 
the relaxation and contraction patterns of the myocardium. The advantage of the 
improved temporal resolution is illustrated in Figure 10 where an SRI M-mode with 
323frames/second is decimated to 65 and 25frames/second. We see that, for instance, 
the precise position of the start of the relaxation can only be found with the highest 
frame rate. A clinical study using this acquisition technique to study the spatial
temporal patterns of the deformation events in the ventricle during the heart cycle is 
presented in [6]. 

In stress-echo examinations, there is limited time available for data acquisition, 
and the clinician concentrates on getting B-mode tissue images of high quality. Using 
the acquisition technique described in this paper, the clinician can optimize the tissue 
B-mode images when the data are recorded, and later obtain additional information, 
since both TDI/SRI, Doppler spectra, and Doppler sound can be calculated from the 
same data. 

Because of both the high temporal and spatial resolution, we believe that this imag
ing modality also can be a valuable tool when investigating the electrical conduction 
system in the heart. 

10 Conclusions 

A new acquisition scheme has been presented which provides TDI and SRI images with 
a higher temporal resolution (> 300framesjsecond) than has previously been available. 
The TDI/SRI images are calculated from the same data as the tissue B-mode images 
and has the same spatial resolution. The technique is limited to a small image sector, 
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323 frames/second

(a)

65 frames/second

(b)

25 frames/second

(c)

Figure 10: (a) SRI M-mode with 323 frames/second. (b) The M-mode in (a)
decimated to 65 frames/second. (c) The M-mode in (a) decimated
to 25 frames/second corresponding to video frame rate.
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but is ideally suited for studying the timing of the relaxations and contractions in the
rapidly moving myocardium.

The SRI quality was found to be significantly improved when second harmonic
imaging was used. The pulse repetition frequency is equal to the frame rate, and
is relatively low. This results in aliasing artifacts in TDI, especially when second
harmonic imaging is used. A method has been presented to correct for this aliasing,
and for a typical signal, the Nyquist limit was increased from 3.7cm/s to 15.5cm/s.
The algorithm was demonstrated to work robustly even for velocities that were aliased
several times.

The new acquisition technique provides a continuous stream of samples with con-
stant sampling intervals. Doppler spectra can thus be calculated from the 2D data,
and visualizes the velocity spread instead of just the mean velocity available from ve-
locity traces based on TDI. This is an advantage when reverberations are present,
because reverberations corrupt mean velocity estimates, but in a Doppler spectrum
they can visually be differentiated from true tissue velocities. A method to generate
tissue Doppler and strain rate sound signals at arbitrary points in the 2D image has
also been presented. However, the clinical benefit of such sound signals has not yet
been proven.
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Abstract 

The regional function of the left ventricle can be visualized in real-time using 
the strain rate imaging method. Deformation or strain of a tissue segment oc
curs over time during the heart cycle. The rate of this deformation (the strain 
rate) is equivalent to the velocity gradient, and can be estimated using a tis
sue Doppler technique. In the present study in nine healthy subjects, we have 
assessed the feasibility of a new strain rate imaging method with a very high 
frame rate of around 300 frames per second (FPS). Digital radio-frequency (RF) 
data were acquired for a sector angle of 20°-30° using a high-end ultrasound 
scanner. The RF data were analyzed using a dedicated software package that 
displays strain rate images and profiles and calculates quantitative values. Since 
the ventricular septum is of crucial importance for the left and right ventricular 
function, we assessed changes in strain rate through the heart cycle of the ventric
ular septum with the new method. Mean peak systolic strain rate in the healthy 
subjects was -1.65 ± 0.13s- 1 . Mean peak diastolic strain rate during early filling 
was 3.14 ± O.Sos- 1 and mean peak diastolic strain rate during atrial systole was 
0.99 ± 0.09s- 1 . With the new method, we were able to study events and spatial
temporal differences in the heart cycle with duration down to 3.5-3ms, including 
the pre-ejection period and the isovolumic relaxation period. We found individual 
differences in the strain rate patterns, but in all subjects, the ventricular contrac
tion started simultaneously in all parts of the septum. After the ejection period, 
the elongation started before aortic valve closure, in the midinferior septum and 
propagated towards the apex. In conclusion, high frame rate strain rate imaging 
makes it possible to study rapid deformation patterns in the heart. 

Submitted to European Journal of Ultrasound 
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1 Introduction 

The regional function of the left ventricle can be visualized in real- time using the strain 
rate imaging method [8]. Deformation or strain of a tissue segment changes with time 
during the heart cycle. The rate of this deformation (the strain rate) is equivalent to the 
velocity gradient, and can be estimated using tissue Doppler data. Strain rate imaging 
is a new ultrasound method for evaluating regional function and agrees fairly well 
with standard echocardiography in grading regional wall function [14] as well as with 
reference to coronary angiography [15]. Strain rate imaging provides both quantitative 
measurements of local deformation rates, and semi-quantitative information about the 
regional function. 

With magnetic resonance imaging it is possible to measure wall deformation in three 
dimensions [2], but the current frame rates of 20 FPS are too low to resolve myocardial 
mechanical events and peak velocities. An advantage of strain rate imaging is the high 
frame rate. With a decreased spatial resolution 130 FPS is possible when acquiring 
tissue Doppler images of the whole left ventricle. Ultrasound tissue Doppler techniques 
can thus be used to reveal the complex spatial-temporal patterns of the deformation 
events in the ventricle during the heart cycle. 

The longitudinal motion of the heart shows a descent of the base towards the apex 
during systole, with a reverse movement during the two main phases of diastole; i.e. 
early filling and atrial systole, while the apex remains almost stationary throughout the 
heart cycle [10]. Although longitudinally directed fibers comprise only a small portion 
of the myocardial mass, several studies have shown that the systolic displacement of 
the atrioventricular plane towards the apex is an important component of the pump 
function of the left ventricle [1, 13]. 

Strain rate imaging is best for studying longitudinal deformation of the left ventri
cle. This makes the method suitable for studying the time-course of mechanical events 
in the heart, as they generally progresses along the length of the ventricle. The ventric
ular septum regulates ventricular stroke volumes to maintain proper balance between 
systemic and pulmonic circulation [11]. The ventricular septum is therefore of crucial 
importance for both the left and right ventricular function. Endocardial mapping in 
humans in sinus rhythm with normal left ventricles has also shown that one out of two 
endocardial breakthroughs of the ventricular activation sequence is on the midinferior 
septum [6]. This means that the septum is of particular interest when the timing of 
events is studied. 

In order to study the complex patterns of events in the left ventricle during the 
heart cycle, the frame rate should be as high as possible. We have developed a new 
strain rate imaging method with frame rates around 300 FPS and spatial resolution 
equal to a tissue B-mode image of high quality. The aim of the current study was 
to evaluate the feasibility of this imaging technique to study timing and fast changes 
in regional function through both the systolic and diastolic phases of the heart cycle. 
Since the new method depends on a narrow image sector, we chose to study changes 
in strain rate in the ventricular septum, as this wall is the most readily accessible, as 
well as the most interesting from a physiological point of view. 
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v(r+Llr) 

Figure 1: Illustration of the velocities used in the strain rate estimate in Equa
tion 1. 

2 Materials and Methods 

Strain Rate Imaging 

J-3 

The strain rate (SR) is equivalent to the spatial gradient of the velocity. The strain 
rate is estimated from the velocity, v, at two points along the ultrasound beam, as 
described in Equation 1: 

SR ~ v(r) - v(r + ~r) 
~r 

(1) 

where r is the distance along the beam, and ~r is the small offset between the two 
points illustrated in Figure 1. In this study, the offset distance was 6mm. Negative 
strain rate corresponds to a shortening of the tissue segment, whereas positive strain 
rate corresponds to an elongation. The strain rate is visualized using a color scheme 
where red corresponds to negative and blue corresponds to positive strain rate values. 

Data Acquisition and Signal Processing 

To achieve frame rates above 300 FPS, a System Five scanner (GE Vingmed Ultra
sound, Harten, Norway) with customized software was used. Digital radio-frequency 
(RF) data were acquired for off-line processing. The digital data were stored as complex 
base band signals where the in-phase and quadrature signal samples were represented 
as 16 bit integers. These data were transferred from the scanner and processed on 
a standard personal computer using MATLAB (The MathWorks, Inc., Natick, Mas
sachusetts, USA) software. 

A new acquisition technique was used, where the strain rate images were calculated 
from the same RF-data as the tissue B-mode images. With this technique, the pulse 
repetition frequency (PRF) becomes equal to the B-mode frame rate. Two-dimensional 
images of the ventricular septum were obtained from a four-chamber apical view and 
the image sector was placed with the septum in the center giving a small angle between 
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Figure 2: Sliding window estimation of strain rate from data with constant 
sampling intervals. 

the septum and the ultrasound beam. An image sector of 20°- 30° was sufficient to cover 
the whole width of the septum, and frame rates above 300 FPS were obtained. Strain 
rate estimation involves calculation of a difference between two velocity estimates. An 
estimator described by Heimdal [7] ensures that aliasing of the strain rate estimates 
is avoided as long as the difference between the two velocities is below the Nyquist 
limit. Since the velocity difference is small for small offset distances, no severe aliasing 
artifacts in the strain rate images were experienced with frame rates exceeding 300 
FPS. 

Without separate pulse transmissions to acquire the strain rate and B-mode data, 
and by using second harmonic data acquisition, the reverberation noise was reduced 
compared to conventional strain rate data acquisition. Within the narrow image sector, 
we thus obtained high quality strain rate estimates with spatial resolution equal to the 
tissue B-mode image. 

From the continuous stream of data with constant sampling intervals, the strain rate 
estimates were calculated using a sliding window technique as illustrated in Figure 2. 
A continuous stream of data is very convenient for temporal processing, and also makes 
it possible to calculate Doppler spectra and sound signals at arbitrary points within 
the image sector. 

After signal processing in MATLAB, the data were written to files on the GE 
Vingmed EchoPac format, and analysed using a protoype software package from GE 
Vingmed (Horten, Norway). 

Study subjects 

Nine healthy and physically active male volunteers (mean body surface area 1.96m2 ) 

without any evidence of cardiac disorders were studied. All volunteers were in nor
mal sinus rhythm and gave informed consent to participate in the study. Standard 
phonocardiogram was used to determine the aortic valve closure and standard two
dimensional echocardiography was used to visualize and detect mitral valve opening 
since the anterior mitral valve leaflet was seen in the strain rate images. 

3 Results 

In all the healthy subjects we were able to acquire strain rate images of the ventric
ular septum with a higher temporal resolution than previously published. In all the 
subjects, the isovolumic contraction with shortening of the ventricular septum started 
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almost simultaneously at all levels from base to apex, followed by a slight, equally
simultaneous recoil (Figure 3). Similarly, the shortening during ejection started al-
most simultaneously. The elongation of the septum started in the midinferior septum,
and even before the isovolumic relaxation as shown by the phonocardiogram in Fig-
ure 4. The two main phases of diastole; i.e. early filling and atrial systole, were clearly
demonstrated in all subjects. However, the deformation patterns were not similar in
the subjects. In diastasis (the slow filling phase) the strain rate was almost zero. Mean
peak systolic strain rate in the healthy subjects was −1.65± 0.13s−1. Mean peak dias-
tolic strain rate during early filling was 3.14 ± 0.50s−1 and mean peak diastolic strain
rate during atrial systole was 0.99 ± 0.09s−1. In Figure 5 we have compared a high
temporal resolution (high frame rate) strain rate imaging M-mode with M-modes of
lower frame rates. The M-mode was calculated from data acquired with a frame rate
of 323 FPS (a) and these data were then decimated down to frame rates of 65 FPS (b)
and 25 FPS (c).

4 Discussion

This study shows the feasibility of studying rapid deformation patterns in the heart
with a new strain rate imaging method with very high frame rates. The method has
a superior temporal resolution as illustrated in Figure 5. The frame rate of 25 FPS
corresponds to the frame rate of data recorded on video tape. The precise spatial
position of the start of the elongation of the septum can only be found with the highest
frame rate. A smoother display of the M-modes in Figure 5b and c can be achieved
by temporal and spatial interpolation. However, Figure 5 illustrates the temporal
information contained in the raw data for different frame rates.

It is a fundamental problem with the currently available strain rate methods in
ultrasound that only one out of possibly nine strain components can be measured at one
time. However, the clinical relevance of the method is promising [14–16] and with frame
rates above 300 FPS the potential for quantification of the regional myocardial function
is even greater than with the currently available methods. The spatial resolution with
this method is equal to the B-mode resolution and is superior to conventional strain
rate imaging.

This study shows the feasibility of high frame rate strain rate imaging, with a
possibility of studying events and temporal-spatial inequalities of down to 3ms duration.
It is important to realize that strain rate imaging shows only deformation. Shortening
may either be contraction or elastic recoil after stretching. In systole, the isovolumic
contraction started almost simultaneously judged by a shortening followed by a short
simultaneous elongation which we believe is a recoil before the ejection phase. As the
ventricle shortens during the isovolumic contraction period, this is in accordance with
the ventricle assuming a more spherical shape. The shape and geometry of the ventricle,
arrangement of the fiber bundles in the wall and the nonuniform stress distribution at
rest are all major determinants of the ventricular contraction-relaxation pattern. These
structural features result in nonuniform configurational changes during systole, when
the left ventricle changes shape [3]. In addition, the mechanical performance of the
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Expansion

Compression

Figure 3: Strain rate imaging M-mode of the ventricular septum for one heart
cycle in four healthy subjects from the apical part at the top of each
image to the basal part at the bottom. Start is at the R-wave of the
QRS complex and the vertical line marks the mitral valve opening
determined from the 2-dimensional image. To the right is the colour
scale where cyan to blue corresponds to positive strain rate values
and orange to blue corresponds to negative strain rate values.
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Figure 4: Strain rate imaging M-mode of the ventricular septum for one heart
cycle in two healthy subjects in a similar way as in Figure 3, but
with tissue priority in the middle and standard phonocardiogram in
the bottom image.
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323 frames/second

(a)

65 frames/second

(b)

25 frames/second

(c)

Figure 5: (a) A strain rate imaging M-mode calculated from data with a frame
rate of 323 FPS. (b) A strain rate imaging M-mode from the data
in (a), but decimated down to 65 FPS. (c) A strain rate imaging
M-mode from the data in (a), but decimated down to 25 FPS. No in-
terpolation is performed in the visualization of the M-modes. Green
colour in these strain rate imaging M-modes corresponds to strain
rates values around zero (see the colour scheme in Figure 3)
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myocardium in different layers of the ventricular wall is not uniform. The nonuniform 
changes in the septum are not so easily seen with the strain rate imaging method in 
the beginning of systole. Earlier studies have shown that the nonuniformity is more 
pronounced at higher loading conditions, being most marked during relaxation [9]. 

The exact onset of diastole is controversial and varies according to the definitions 
described by Wiggers [18] which includes isovolumic relaxation time in systole, Brut
saert et al. [4, 5] which includes rapid filling phase in systole according to the triple 
control of relaxation, or using a clinical definition. Using the clinical definition, dias
tole is divided into two phases with an isovolumic relaxation period from aortic valve 
closure to mitral valve opening and an auxotonic period from mitral valve opening to 
mitral valve closure. These phases are demonstrated in Figure 4 and this study shows 
that elongation starts even before the isovolumic relaxation period. In the auxotonic 
period this method demonstrates clearly the three events with rapid filling phase, slow 
filling phase (diastasis) and the atrial filling phase. The slow filling phase is earlier 
described to account for only 5% of the total filling [12]. In the slow filling phase the 
peak strain rate fluctuated around zero and this indicates hardly any changes in length 
in this phase of diastole. 

The new strain rate imaging method with very high frame rates show individual 
differences in the healthy subjects with regards to the contraction-relaxation patterns. 
A possible explanation is the nonuniform configuration of the myocardium and that we 
can only measure one of the strain components. In healthy subjects no fundamental 
differences in the myocardial structure or performance is expected. Strain rates in 
the directions transverse to the ultrasound beam as well as shear strain rates are not 
currently accessible in simultaneous recordings, but we still believe that strain rate 
imaging can be an important tool in physiologic research. 

Mean peak systolic strain rate and mean peak diastolic strain rate of the rapid 
filling phase were somewhat higher than earlier published values obtained with lower 
frame rates [15, 17]. The reason can be that it is easier to get peak strain rates with 
this new method if there are peaks of very short duration. It may also be that the lower 
noise level leads to recognition of peak strain rate that has previously been classified 
as noise. However, in this study, the center of the sector is oriented along the septum, 
while the previous studies utilised standard apical planes with the sector center in 
mid-chamber. This may account for a larger angle and hence, lower measured values. 
High frame rate strain rate imaging therefore seems to have the potential of providing 
additional physiological information compared to standard strain rate imaging and of 
course compared to standard echocardiography. Its main advantages seem to be the 
high time resolution with respect to the location of the start and the propagation of 
events in the myocardium. This may be especially promising in the field of arrythmias 
and conduction abnormalities. With around 3 ms between the strain rate images, one 
should be able to track the mechanical events following the depolarization wave. 

A limitation of this method is the sector angle of 20°-30°. This was sufficient to 
cover the ventricular septum from an apical view, but makes it impossible to study 
more than one wall of the left ventricle at a time. Increasing the sector width reduces 
either the spatial resolution or the frame rate. 
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