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Abstract 

The acoustic properties of contrast agent have been studied in vitro. 
Various theories for bubbles in acoustic fields have been reviewed, both 

linear and nonlinear. A theoretical model for the oscillation of a gas bubble in 
a shell has been developed. The shell was modeled using the linear viscoelastic 
parameters shear modulus G and shear viscosity "7· The shell was included into 
the theory for linear bubble oscillations, giving expressions for the resonance 
frequency, damping, scattering, attenuation and speed of sound. The nonlinear 
models were formulated as ordinary differential equations for the motion of the 
bubble wall. The shell was included into these models as a boundary condition 
at the bubble wall. 

A system for measuring the acoustic attenuation as function of frequency 
was constructed. This system can be closed and set under pressure, to in­
vestigate how the agents respond to hydrostatic pressure. Another system 
to measure acoustic scatter from the agents was developed. This system can 
transmit a sequence of pulses with defined shape into a sample of contrast 
agent. The scattered echoes are recorded as digitized RF-traces. 

Measurements of acoustic attenuation spectra were used to investigate and 
compare three different contrast agents made by Nycomed Amersham. The 
resonance frequency of the microbubbles was found to be between 2 and 5 
times higher than predicted from the theory for gas bubbles of the same size. 
This increased resonance frequency is explained by the shell, which increases 
the stiffness of the bubbles. The measured acoustic attenuation spectra were 
compared with theoretical measurements, and were used to estimate the un­
known material parameters of the shell. Differences were found between the 
three investigated substances. These differences could not be explained by the 
size of the bubbles alone, but must be caused by the different shell materials. 
The stiffness of the microbubbles was estimated, measured as bulk modulus. 
The bulk modulus was estimated to around 3 MPa for Albunex, 2.5 MPa for 
the polymer shelled bubbles and around 0. 7 kPa for Sonazoid. For compar­
ison, the bulk modulus of a gas under isothermal compression is 0.10 MPa. 
The shell increases microbubble stiffness between 5 and 40 times, depending 
on the shell type and bubble size. 

Measurements of sound speed showed small, but measurable dispersion. 
For concentrations relevant for diagnostic imaging, the change in phase ve­
locity is less than 1%. The measured dispersion curves fit well to theoretical 
calculations for shell encapsulated bubbles. The measured dispersion was less 
than predicted for free gas bubbles of the same size. 

Exposed to 120 mmHg increased hydrostatic pressure, the polymeric mi­
crobubbles showed a decrease in resonance frequency. This shift under pressure 
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was reversible. Such a downshift in resonance frequency is contrary to what 
is expected, and was explained by the polymer shell being curled and made 
more flexible by the increased pressure. Sonazoid gave a reversible increase in 
resonance frequency when exposed to the same pressure. This is as expected 
from the reduction in bubble size under pressure. 

The scatter from Sonazoid at higher harmonics was investigated. When 
exposed to driving pulses of center frequency 1 MHz, peaks up to the 9th 
harmonic were measured. The measured harmonics agreed with predictions 
from the nonlinear theory. 

The nonlinear models were implemented into computer programs, simu­
lating the response of a contrast agent bubble to a driving ultrasound pulse. 
These programs were used to simulate effects reported in the literature. Pulse 
inversion was modeled, describing how the responses from two inverted pulses 
change from two inverted to two phase-shifted echoes. The subharmonic re­
sponse was modeled, showing how a subharmonic mode emerges at a certain 
driving pressure, and that the contrast agent bubbles can respond chaotic 
under some conditions. 
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Chapter 1 

Introduction 

1.1 Medical Ultrasound Imaging and Contrast 
Agents 

Ultrasound imaging has been commonly in use in medical diagnosis since the 
1970s. The technique is today widely used, for a variety of medical investiga­
tions. It is especially the low cost and easy use that makes ultrasound imaging 
so attractive. 

Contrast agents for medical ultrasound imaging were proposed in 1968 [51], 
a more systematic search for good ultrasound contrast agents started around 
1980. The first agent was approved by the health care authorities in 1991, 
this was Echovist from the German company Schering AG. Two years later 
came the agent Albunex, from the company Molecular Biosystems Inc. in San 
Diego, California, USA. This agent was co-developed by several pharmaceuti­
cal companies, one of these was Nycomed Imaging AS in Norway. After 1990, 
the research efforts towards better contrast agents for ultrasound imaging have 
been intensified. There are now several contrast agents in clinical trials, and 
a few are already on the market. 

Medical ultrasound imaging is based on echoes, i.e. the scatter and reflec­
tion of sound from inhomogeneities in the tissue. These echoes are interpreted 
in the Ultrasound scanner, and are used to compose an image of the interior 
of the body. Ultrasound scatter from blood is much weaker than scatter from 
other tissue, typically 30 to 60 dB weaker. But the Doppler effect causes a 
frequency shift in the echoes from moving blood, and these weak signals can 
be separated from tissue echoes. This is used to estimate the velocity and di­
rection of the blood flow in various diagnostic ultrasound Doppler techniques. 

The aim of introducing contrast agents is to increase the scatter of sound 
from the blood. This will be used to increase the information contents in ultra-
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2 Introduction 

sound images and obtain diagnostic information that is not available without 
contrast agent. Examples are: 

• Volume, shape and movement of blood filled cavities, notably the ven­
tricles of the heart. 

• Studies of blood flow in small vessels that are difficult to investigate 
without contrast agents. 

• Measurements of blood perfusion, that is, blood flow through the tissue. 
This is especially interesting in the heart muscle, myocardium. 

To achieve these goals, the scatter of sound from blood should be increased 
by approximately 30 dB. Various new detection techniques are now in use or 
being tested to enhance the signals from the contrast agent above the signals 
from the tissue. The most well known are 2nd harmonic imaging and pulse 
inversion imaging. Such techniques reduce the required increase in scattered 
power from the contrast agents. 

Ultrasound is a macroscopic phenomenon: Contrary to x-rays, sound is 
scattered and reflected from macroscopic structures, not on single atoms or 
molecules. A contrast agent for ultrasound must therefore be based on parti­
cles, not on water soluble molecules. Frequencies used in medical ultrasound 
imaging range from 2 to 10 MHz, giving wavelengths between 150 and 800 J-Lm. 
The contrast agent particles have to pass through capillaries with diameters of 
about 7 J-Lm [63], giving an upper limit for the particle diameter that is much 
smaller than the wavelength of the sound. About 40% of the blood volume 
consists of particles of this size, mainly red blood cells [30]. Particles used 
as an ultrasound contrast agent must therefore be very powerful ultrasound 
scatterers. Theory [117] and experiments show that such strong sound scatter 
can be achieved by using extremely compressible particles. As a consequence 
of this, most of the research on ultrasound contrast agents is concentrated on 
microbubbles, where the gas is stabilized by a shell. 

There are some interesting alternatives to the use of shell encapsulated 
bubbles as ultrasound contrast agents. The substances Echovist and Levo­
vist (Schering AG, Berlin, Germany) consist of sugar crystals that liberate air 
while being slowly dissolved in the blood. The agent Echogen (Sonus, Bothell, 
Wash., USA) contains perfluourpentane, which is a liquid at room temper­
ature, but boils and generates gas when the temperature is raised to body 
temperature. Another approach being tested is to make a particle with an 
irregular hydrophobic surface, which traps gas in small cavities. This is the 
concept behind the Bubbicles [132]. Hwang et al. [66] have described a device 
that generates bubbles in the urinary bladder by emitting long ultrasound 
bursts at frequency 1.8 MHz. 



1.2 Underwater Acoustics and Bubbles 

A rather new approach is to make "targeted" contrast agents. These con­
trast agents contain particles that specifically bind to pathological tissue, en­
hancing the ultrasound echoes from such tissue [87, 86]. 

The agents studied in this thesis all consist of gas bubbles stabilized by 
various types of shells. For the reasons mentioned above, this is by far the 
most common approach to creating an ultrasound contrast agent. 

1.2 Underwater Acoustics and Bubbles 

From underwater acoustics, it is well known that bubbles in water are power­
ful ultrasound scatterers. Studies of underwater bubble acoustics date back to 
Lord Rayleigh [143], who in 1917looked at cavitation and collapse phenomena. 
Later, in 1933, Minnaert published a model where the bubble was viewed as 
a harmonic oscillator [113], explaining the characteristic resonance frequency 
of oscillating bubbles. This model, with some improvements, is still the basic 
description of bubbles oscillating at small amplitudes, i.e. under linear condi­
tions. From 1950 until today, a large amount of studies on bubble acoustics 
were published, both theoretical and experimental, describing effects like the 
stability of bubbles towards gas diffusion [41], the effect of encapsulating the 
gas in a membrane [4 7], and damping mechanisms of the oscillating bubble [34]. 
A nice summary of linear bubble acoustics is given by Medwin [110], nonlinear 
bubble acoustics is summarized by Prosperetti [141, 142]. A more complete 
description of oscillating bubbles can be found in the book by Leighton [96]. 
The acoustics of bubbles shows nonlinear behavior at lower acoustic pressures 
than in a homogeneous liquid [142]. One result of these nonlinear oscillations 
is the creation of higher harmonics. This effect has been used to selectively 
detect bubbles in a flowing liquid [111], and is now being used to detect medi­
cal contrast agents. Nonlinear frequency mixing, creating sum- and difference 
frequencies, has been used to measure the size of bubbles [123]. The use of 
nonlinear properties to detect contrast agents in vivo is described in a patent 
by Schering AG [165]. 

The understanding of contrast agents for medical imaging has gained great 
benefit from decades of bubble research in underwater acoustics, as several 
theoretical and experimental models can be directly transferred. However, 
there are differences between medical ultrasound and underwater acoustics, 
and medical ultrasound introduces new phenomena not previously studied. 
Compared to bubbles in underwater acoustics, contrast agents in medical ul­
trasound differ mainly in the following ways: 

• The scale is different, involving higher frequencies, shorter distances and 
smaller bubbles 

3 
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• Bubbles used in medical ultrasound imaging are encapsulated in a shell, 
which alters the acoustic properties compared to free bubbles 

• Blood is a highly inhomogeneous liquid, about 40% of its volume is 
particles. Blood has also higher viscosity and lower surface tension than 
water, and higher solubility for oxygen. 

• The different size and time scales introduce different absorption mecha­
nisms. These mechanisms alter the transfer of sound energy into heat. 

Studies of the scatter and transmission of sound from a contrast agent 
were published by de Jong et al. in the early 1990s [29, 28]. The theoretical 
models here were based on bubble models by Fox and Herzfield [47] and Med­
win [110]. These studies could explain why and how the acoustic properties of 
the ultrasound contrast agent Albunex differed from free bubbles. This theory 
was extended by Holm et al. in 1994 [64], to give a more complete model for 
the attenuation and scatter from contrast agents in tissue. 

1.3 Definition of the Problem 

Although there exists a vast amount of studies in bubble acoustics, medical 
contrast agents introduce phenomena that are yet not fully understood. The 
aim of this thesis is to increase the understanding of the acoustics of ultrasound 
contrast agents. Specifically, the scatter and absorption of ultrasound from 
microbubbles is studied. The bubbles' acoustic properties are described in 
terms of: 

• Physical properties, including the encapsulating shell. 

• Include nonlinear oscillations into the models. 

Ethical Aspects 

All medical research involves ethical considerations. This work is in essence 
basic technology, but aims towards medical applications. All experiments are 
purely technical, and were performed in vitro in laboratories. 

It is a goal that ideas and results from the thesis shall be implemented into 
medical diagnostic ultrasound equipment, and that the results may be helpful 
in the diagnosis of diseases. New technology must be tested in biological trials 
involving animals or humans. This implementation and testing lies outside 
this thesis. Any biological testing, whether in animals or in humans, must be 
performed by persons who are qualified to do so, and who are qualified to do 



1.4 Medical Applications 

the necessary ethical considerations. Likewise, any evaluation of the clinical 
diagnostic value of the methods must be done by qualified persons, with the 
necessary medical training and expertise. 

The anticipated medical applications of this work are to increase the ability 
to detect the presence and measure the flow of blood. This shall improve the 
diagnosis of the patients. Any final evaluation and decision concerning the use 
of these methods must be done by qualified medical personnel. 

1.4 Medical Applications 

A goal of this work is to obtain a better understanding of the signals from the 
contrast agents. This may increase the diagnostic information in ultrasound 
images, and help improving medical diagnosis in some patients. 

Specifically, the sound scattered from contrast agents can have signatures 
that distinguish it from sound scattered from tissue. Better understanding 
of these effects will help optimizing diagnostic ultrasound equipment towards 
detecting such signatures. It will also help the manufacturers of contrast 
agents to design the agents to give as much information as possible. 

The information gained may be used in a variety of clinical applications, 
the most attractive seem to be: 

• Visualization of presence of contrast agent in the tissue, e.g. by color 
coding. This is interesting for studying the liver function, by looking at 
uptake of particles by the liver. 

• Measurement of blood supply to an organ, e.g. the heart muscle. Visu­
alization of regions with normal, reduced or increased blood supply. 

Measuring the blood supply to the heart muscle is of very high interest, 
as reduced blood supply to the heart caused by occluded vessels is a cause of 
serious heart diseases. A reliable method to detect reduced blood supply to 
regions of the heart at an early stage might help diagnosis and treatment of 
these diseases. 

Detection of contrast agent in the liver is another area of great interest. 
The particles will be taken up by a functioning liver, hence, detecting particles 
in the liver will tell if parts of the liver do not function. This may provide 
a simple and reliable method to diagnose spread of cancer to the liver, and 
might help to improve the treatment of some cancer patients. 
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1.5 Overview of the Thesis 

This thesis describes work done to characterize and better understand the 
acoustic properties of contrast agents used in medical ultrasound imaging. 

The thesis contains rather extensive chapters on linear and nonlinear bub­
ble acoustics, Chapters 2 and 3. These were included partly as a background 
for the experimental and theoretical descriptions later in the thesis. But it 
has also been my ambition to collect and give a unified presentation of the 
acoustic theory behind the bubbles used in medical contrast agents, including 
the shell enclosing them. Hence, I hope that these chapters will be of general 
interest for persons working with the acoustics of ultrasound contrast agents, 
not only as a background for the rest of this thesis. 

The experimental part of the thesis consists of Chapters 4 to 7. It describes 
the development of two different systems used to characterize the agents, and 
results of these characterizations. The results are linked to the theory de­
scribed in the earlier chapters. 

The last chapter, Chapter 8, describes the implementation of the nonlinear 
bubble models, and gives the results of simulations based on these models. It 
is shown how some effects reported in the literature can be explained by the 
bubble models. 

The contents of the thesis is summarized as: 

Chapter 2. Linear Bubble Theory Overview of the interaction between 
sound and small gas bubbles. Emphasis is on the effects, bubble sizes and 
sound frequencies that are important in diagnostic ultrasound imaging. 

Chapter 3. Nonlinear Bubble Models A review of nonlinear bubble mod­
els. A theoretical model of the effect of enclosing the bubble in a solid 
shell. 

Chapter 4. Measurement Systems Description of two in vitro systems 
used to characterize ultrasound contrast agents: 

• Acoustic attenuation spectra, with hydrostatic over-pressure 

• Acoustic backscatter, sampled as RF traces. 

Chapter 5. Estimation of Shell Material Properties An experimental 
method to estimate the unknown material parameters of the shell. 

Chapter 6. Comparison between Three Contrast Agents Results from 
acoustic in vitro characterization of Albunex, polymer shelled air-bubbles 
and Sonazoid. The three agents are characterized and compared acous­
tically, with emphasis on the effect of the different shell materials. 



1. 5 Overview of the Thesis 

Chapter 7. Scatter at Higher Harmonics Measurements of acoustic scat­
ter at higher harmonics. Comparison with numerical simulations. 

Chapter 8. Simulations of Nonlinear Oscillations Implementation of non­
linear bubble models as simulation programs. The bubble response to 
a driving ultrasound pulse is simulated. The following effects are simu­
lated: 

• Scatter at higher harmonics 

• Pulse inversion 

• Subharmonic oscillation 

7 
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Chapter 2 

The Bubble as a Linear 
Oscillator 

Gas bubbles in liquids are known to be highly efficient scatterers of sound, even 
if the bubble diameter is much smaller than the wavelength of the sound. This 
makes bubbles unique compared to other particles of equal size. The strong 
acoustic scatter makes bubbles important in several applications of acoustics, 
as sources of noise, absorption and scatter. Some examples of applications are: 

Fish Sonar The target strength of fish can be strongly enhanced by the swim 
bladder. Fish without swim bladder give lower target strength than fish 
with swim bladder. 

Attenuation Attenuation of sound in water is increased in presence of even 
very low concentrations of bubbles. 

Contrast agents for medical ultrasound imaging A tiny concentration 
of small gas bubbles is injected into the blood vessels. This increases the 
power of the ultrasound echoes from blood by several orders of magni­
tude, and opens new possibilities for studying blood flow by ultrasound. 

This chapter gives an overview of the basic linear theory for the scattering 
of sound on small gas bubbles. In this context, small means that the bubble 
diameter is much smaller than the wavelength of the driving sound field. The 
theoretical description models the bubble with its surrounding liquid as a 
linear oscillator. 

9 
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2.1 

The Bubble as a Linear Oscillator 

Some Comments Regarding Scale and Dimen­
sions 

Diagnostic medical imaging uses ultrasound frequencies typically between 2 
and 8 MHz. Some special applications uses higher frequencies, 15 or even up 
to 30 MHz. An example of this is intracardiac imaging with the transducer 
placed on a catheter inside the blood vessel. When using contrast agents, non­
linear techniques have gained popularity, such as imaging at the 2nd harmonic 
frequency and pulse inversion imaging. These techniques tend to use lower fre­
quencies, 1.5 to 2.5 MHz. Pulses for imaging are mostly short, typically a few 
oscillations, with bandwidth around 50% of the center frequency. Pulses used 
in Doppler techniques are longer, with narrower bandwidth. 2nd harmonic 
imaging tend to use longer pulses than in conventional imaging, to reduce the 
transmitted sideband level at the 2nd harmonic frequency. Coded pulses, with 
a high time-bandwidth product, are also used in medical imaging. For these 
long pulses, the radial resolution is regained by correlating the received signal 
with the transmit pulse. 

The wavelength A. of the ultrasound is determined by the frequency f by 

(2.1) 

where c is the speed of sound in the tissue. Typical sound velocities in soft 
tissue are c ;:.::::1540 mjs. This means that the frequencies used in medical 
ultrasound imaging cause wavelengths between 200 p,m and 1 mm. Frequencies 
used in intracardiac imaging give much shorter wavelengths, between 10 p,m 
and 30 p,m. 

The diameter of particles injected into the blood stream is limited by the 
diameters of the capillaries. The capillary diameter varies between 2 and 
10 p,m, with a mean around 7 p,m [63]. 

This means that the particle diameters must be much smaller than the 
acoustic wavelength. 

A contrast agent for diagnostic ultrasound imaging must consist of parti­
cles that are much smaller than the acoustic wavelength, but nevertheless are 
extremely powerful sound scatterers. The only known solution to this is using 
micro bubbles. 

2.2 Rayleigh-scatter 

The simplest model for scatter of sound from small particles is due to Rayleigh. 
Small means that the particle diameter is much smaller than the wavelength 



2. 2 Rayleigh-scatter 

Table 2.1. Rayleigh-scatter: Contributions from compressibility and from 
density for various materials. Data from Kinsler et al. [73]. 

Bulk modulus Density Contribution to scatter 
(adiabatic) 

Material K [MPa] p [kg/m3
] (K3fo)2 

2 

Air (37°C) 0.14 1.14 2.9 X 10 
Rubber (soft) 1000 950 0.17 0.00001 
Water (37°C) 2250 1000 0 0 
Glass (Pyrex) 39000 2300 0.10 0.018 
Aluminum 75000 2700 0.10 0.024 
Steel 170000 7700 0.11 0.056 
Tungsten 310000 19300 0.11 0.071 

of the sound, 

or ka « 1, (2.2) 

where d is the particle diameter, >. is the wavelength of the incoming sound, 
k = 27f / >. is the acoustic wavenumber and a = ~d is the particle radius. 

Rayleigh-scatter is not a model suited for describing the scatter of sound 
from bubbles. It ignores both resonance phenomena and sound absorption by 
the bubble. But the Rayleigh model gives a first impression of the mechanisms 
and properties causing the scatter of sound, and it illustrates why bubbles are 
so extremely powerful sound scatterers. 

A model for the scatter of sound from small objects is given in Lord 
Rayleigh's book "The theory of sound", published in 1896 [144]. When this 
model is formulated as a scattering cross section IJ8 , it gives the expression [118] 

where p and Po are the densities of the particle and of the embedding fluid, 
and K and Ko are the bulk moduli of the particle and of the embedding fluid. 

The factors outside the brackets give the dependence on particle size and 
sound frequency: 

• 1ra2 is the geometric cross section of the particle. 

• (ka) 4 gives dependence on frequency. 

11 
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According to Rayleigh's model, the scattering cross section increases by 
k4 , that is, by frequency to the 4th power, and by a6 , by particle diameter to 
the 6th power. 

The terms inside the brackets give dependence on the material parameters 
of the particle, bulk modulus K and density p. The bulk modulus is a measure 
of the volume stiffness of a material, it is the inverse of compressibility. The 
bulk modulus is defined by 

K = -V b..p 
b..V' 

(2.4) 

where b..p is the change in pressure and b.. V is the change in volume. If a 
particle with bulk modulus different form the embedding fluid is exposed to 
a sound pulse, the particle will oscillate in volume. This causes the particle 
to radiate sound in a spherically symmetric pattern, giving monopole scatter. 
If the density of the particle differs from that of the liquid, the particle will 
undergo a translatory motion. It will oscillate back and forth in the sound 
field. The particle will radiate sound in a dipole pattern, with directionality 
as the cosine to the angle with the incoming sound wave. These two radiation 
patterns are illustrated in Figure 2.1. 

The expression (2.3) for the scattering cross section predicts that the den­
sity term cannot exceed k, regardless of the value of the density p. There is no 
limit to the magnitude of the compressibility term. The monopole scattering 
increases towards infinity as K is reduced towards zero. 

The most compressible materials are the gases. Under isothermal com­
pression, the ideal gas law predicts that p V = constant. This gives a bulk 
modulus of the gas equal to the ambient pressure PO· Adiabatic compres­
sion is more common in acoustics. The relation for adiabatic compression, 
pV' =constant, predicts that the adiabatic compressibility of a gas is 

K = 'YPo, (2.5) 

Figure 2.1. Scattering diagrams for monopole and dipole scatter. Scattered 
intensity as function of angle for a plane sound wave. 
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where 1 is the adiabatic constant of the gas. The value of 1 for diatomic gases, 
such as air, is 1=1.40. Noble gases, being mono-atomic, have 1=1.67, while 
multi-atomic gases have 1 between 1.0 and 1.3. 

Liquids and solids have much larger bulk moduli than gases, ranging from 
104 to 106 times the atmospheric pressure PO· Examples of K and p for selected 
substances are listed in Table 2.1. The same table lists values of the density 
and compressibility terms, calculated from (2.3). The contributions from com­
pressibility and density to scattering cross section are plotted in Figure 2.2. 
The compressibility term for air is several orders of magnitude larger than 
all the other terms, illustrating the extreme ability of air bubbles to scatter 
sound. 

Bulk modulus K 

Density p -------r------- ..... 
10-2 

1: Air (37°C) 
2: Rubber 
3: Glass (Pyrex) 
4: Aluminium 
5: Steel 
6: Tungsten 

3 4 5 6 
·-6------

10-3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

10-5 10-4 10-3 10-2 10-1 10° 101 102 1d 
Relative bulk modulus KJK

0 
Relative density p/p

0 

Figure 2.2. Rayleigh-scatter: Contributions from compressibility and den­
sity. 
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14 The Bubble as a Linear Oscillator 

2.3 The Bubble as an Oscillator 

Rayleigh's model ignores resonance, and is not suited for calculating the scatter 
of sound from a bubble. A better model is to consider the bubble as a linear 
oscillator. This requires that the oscillation amplitude is small relative to the 
equilibrium radius. 

Table 2.1 shows that the difference in compressibility is the dominating 
source of scatter for gas bubbles. The density term is several orders of magni­
tude smaller and can be neglected. It is convenient to compare the oscillating 
bubble with electrical and mechanical oscillators. 

Mass Oscillation of the bubble surface requires the surrounding liquid to be 
displaced. This adds inertia to the system. The liquid mass corresponds 
to the mass of a mechanical oscillator, or to the inductor of an electrical 
oscillator. 

m 
Liquid displacement 
Radiation reactance 

R 
Heat transfer, viscosity, 

Radiation resistance 

Bubble Mechanical oscillator 

Gas pressure Spring, stiffness 

Liquid mass Mass, inertia 

Radiation resistance Dash-pot, friction 
viscosity, heat transfer 

R 

L 

Electrical oscillator 

Capacitor, capacitance 

Coil, inductance 

Electrical resistance 

Figure 2.3. Analogy between a gas bubble and mechanical and electrical 
oscillators. 
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Spring Compression or expansion of the gas gives a spring force acting against 
the change in volume. The gas pressure corresponds to the spring of a 
mechanical oscillator, or to the capacitor of an electrical oscillator. 

Damping Viscosity, radiation of sound, and heat exchange between gas and 
liquid introduce damping. They correspond to the dash-pot of a me­
chanical oscillator, or to electrical resistance. 

The bubble will have an eigenfrequency, giving a resonance peak in the scat­
tering cross section. The first oscillator-description for the bubble is due to 
Minnaert. In 1933, he studied the sound emitted from air bubbles in water, lis­
tening to the emitted sound and comparing it to a tune-fork. The results were 
published in a paper titled On Musical Air-Bubbles and the Sounds of Running 
Water [113]. Minnaert derived equation for resonance frequency from energy 
equations. In this chapter, equations of force balance are used, as this makes it 
easier to include damping from frictional forces. It also makes easier to include 
the response to an external pressure field. Parts of the following derivation 
are based on the paper Counting Bubbles Acoustically by Medwin [110] and 
on the book The Acoustic Bubble by Leighton [96]. 

It is assumed that the bubble retains its spherical shape during the oscilla­
tions. Nonspherical bubbles were studied theoretically and experimentally by 
Strasberg in 1953 [159]. He concluded that deviations from the spherical shape 
change the resonance frequency by less than 5% for spheroids, when the ratio 
between the long and short axes is less than 3. The treatment is also limited 
to bubbles embedded in a liquid of infinite extent, wall effects are ignored. 
Strasberg [159] also studied bubbles close to a rigid wall or a free surface. He 
concluded that when the boundary is more than 5 bubble diameters away, it 
alters the resonance frequency by less than 5%. 

Stiffness: Gas Pressure 

In acoustics, compression is mostly regarded as adiabatic, there is no heat 
transport. This is not true for all bubble diameters and frequencies. For 
micrometer-size bubbles driven at Megahertz-frequencies, the oscillation is 
closer to isothermal. A more convenient model is to describe the bubble com­
pression and expansion with the polytropic gas model. The relation between 
pressure p and volume V is modeled as 

pV~~: = constant , (2.6) 

where 11, is the polytropic exponent of the gas. For adiabatic oscillations, 11, 

equals the adiabatic constant 'Y of the gas, while for isothermal oscillations, 
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K, is equal to one. In general, K, is a function of bubble radius and sound 
frequency. Expressions for K, can be found in the literature, this is discussed 
in the section about thermal damping later in this chapter. 

On differential form, the polytropic relation between changes in volume 
and pressure takes the form 

dp dV 
y;=-f'l,--v· (2.7) 

The bulk modulus K of the bubble is, from (2.4), 

K= f'l,Pe, (2.8) 

where Pe is the equilibrium pressure inside the bubble. 
The topic of this chapter is linear oscillations. Small volume changes ~ V 

around the equilibrium volume V0 are studied. The situation is illustrated in 
Figure 2.4. The instantaneous radius a(t) of the bubble is expressed as 

a(t) = ae + ~(t) , (2.9) 

where ae is the equilibrium bubble radius and ~ is the radial displacement. 
The radial displacement ~ is much smaller than the bubble radius, To the first 
order in~' the change in bubble volume ~Vis 

i 
< 

l 

with 

) 

4 
V- -1ra3 

-3 . 

p 

Figure 2.4. Definition of pressures and force on a bubble. 

(2.10) 
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The change in volume causes a change in pressure b.p = p - Pe inside the 
bubble. The polytropic model (2. 7) gives this pressure change as 

b.p = _ 3/'i,Pe ~ . 
a 

(2.11) 

The force F8 on the bubble surface is the integral of the pressure over the 
bubble surface 

Fs = J J PsdS = 47ra
2p8 = -127WK,Pe~ = -S~, 

s 
(2.12) 

where s is a "spring constant" of the bubble. The bubble compression and 
expansion follows Hooke's law, with spring constant s given by 

s = 127WK,Pe . (2.13) 

This derivation has not included the effect of a shell encapsulating the bubble, 
neither was surface tension considered. Both shell and surface tension will 
increase the stiffness compared to the free bubble. The effect of a shell is 
described in Chapter 2.4. A surface tension T at the gas-liquid interface in­
creases the pressure by 2r /a. This increases the equilibrium pressure Pe inside 
the bubble to 

2T 
Pe =po +-, 

a 
(2.14) 

where Po is the hydrostatic pressure in the fluid. For an air-water interface, 
the surface tension is Tw = 0.07 N/m [100]. For bubbles with radii in the j),m­

range, this causes an increase in gas pressure in the order of one atmosphere. 
This is not negligible. But if the water is polluted or contains surface active 
ingredients, its surface tension will be substantially reduced. Blood contains 
surface active protein molecules, causing the surface tension of blood to be 
much lower than of water. 

Inertia: Mass of the Moving Liquid 

When the bubble oscillates, it sets the surrounding liquid in motion, introduc­
ing inertia to the system. The mass of the gas will also add some inertia. But 
as the density of a gas is approximately 1000 times less than the density of a 
liquid, the inertia of the gas can safely be neglected. Inertia is calculated from 
the pressure field Ps radiated from the oscillating bubble. This is a diverging 
spherical wave, with radial variation as 

Ps(r) = Ps(a)?'_ei(wt-kr)' 
r 

(2.15) 
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where p 8 (a) is the pressure at the bubble surfacer= a. The relation between 
pressure p and velocity u is found from the Euler equation [82], neglecting the 
nonlinear term 

au 
Pat = -Vp · (2.16) 

At the bubble surface, where the liquid velocity u = ~ and r = a, this gives 

p{ = _ OPs = Ps(a) (1 + ika) . 
or a 

(2.17) 

Dots denote differentiation with time. The pressure p8 radiated from the 
bubble is 

1- ika . . 
Ps(a) = pa 1 + (ka) 2 iw~ ~ wpa(ka + i)~, (2.18) 

where the approximation is valid for ka « 1. The integral of p8 over the bubble 
surface gives the force Fm on the bubble surface from the liquid motion 

(2.19) 

The mechanical impedance Zm at the bubble surface is defined by 

Fm = -Zm~ = -(R~ + m{) = -(R + iwm)~, (2.20) 

where R is the radiation resistance and wm is the radiation reactance. The 
effective mass m of the oscillating bubble is identified from (2.19) and (2.20) 
as 

(2.21) 

The effective mass of the oscillating bubble is equal to the mass of a liquid vol­
ume three times larger than the bubble. wm is the reactive source impedance 
of a simple acoustic source [118]. 

Damping 

Various frictional mechanisms will damp out the oscillations of the bubble. 
The three main sources of damping are: 

• Radiation resistance. Energy is lost as the bubble radiates sound energy. 

• Viscosity in the surrounding liquid. 
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• Heat transport between the gas and the liquid. This causes energy ab­
sorption if the oscillation is neither perfectly isothermal nor adiabatic, 
but somewhere in between. 

The frictional force is defined as a force FR of the form 

(2.22) 

where R is the mechanical resistance of the oscillating bubble. R is modeled 
as a sum contributions from the three mechanisms above, R = Rc + Rry + Rrh· 
Rc is the radiation resistance, Rry is the resistance from liquid viscosity, and 
Rrh is the resistance from heat transport inside the gas. 

Radiation resistance The radiation resistance Rc is the real part of the 
radiation impedance Zm from (2.19) and (2.20) 

(2.23) 

47ra2 is surface area of the bubble and pc is the specific acoustic impedance of 
the liquid. 

47ra2c would be the radiation resistance of a source that is large compared 
to the wavelength [118]. The factor (ka) 2 « 1 makes the radiation resistance 
of the bubble much smaller than this. It is caused by the bubble radius being 
much smaller than the wavelength of the sound. 

Viscous damping Damping from viscosity in the embedding liquid is im­
portant for bubbles diameters in the p,m-range. Mechanical resistance from 
the viscosity of the liquid was calculated from the viscous stress-tensor of a 
Newtonian liquid in Chapter 3.3, (3.103) on page 79. This gives the radial 
stress TL at the bubble surface as 

(2.24) 

This corresponds to a viscous resistance force Fry on the bubble surface equal 
to 

(2.25) 

The viscous resistance Rry is, by the definition (2.22) 

(2.26) 
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Thermal damping The thermal damping is found by analyzing the heat 
transport inside the gas during the oscillations. The liquid is treated as a 
reservoir of constant temperature. 

These calculations were done by Devin in 1959 [34], who found expres­
sions for viscous, acoustic and thermal damping calculated at the resonance 
frequency of the bubbles. Devin's results were extended in 1970 by Eller [37], 
to give values also off-resonance. An outline of these calculations can also be 
found in the book by Leighton [90]. 

Prosperetti extended Eller's results in 1977 [140], allowing the pressure 
inside the gas to vary with radius. Prosperetti found differences from Eller's 
calculated polytropic exponent for large bubbles at high frequencies. In almost 
all situations of practical interest, the results of Devin-Eller and Prosperetti 
are identical, as was shown by Crum in 1983 [24]. Crum also compared the 
theoretically calculated values of the polytropic exponent "' with experimental 
measurements, finding a good agreement between the theoretical and experi­
mental results. 

The thermal damping is a relaxation process. At low frequencies, the 
heat transport in the gas goes fast enough to keep the temperature constant 
in the bubble. This gives isothermal oscillation with no thermal damping. 
At high frequencies, the heat transport is too slow to be considered. This 
gives adiabatic oscillations and no damping. However, in an intermediate 
frequency range, the oscillation is neither isothermal nor adiabatic. In this 
range, the temperature oscillates inside the gas so that the pressure caused by 
the temperature variations is out of phase with the driving acoustic pressure. 
Oscillatory energy is converted to heat, causing a damping of the oscillations. 
Across this intermediate frequency range, the exponent "' changes from its low 
frequency isothermal value "'= 1 to its high frequency adiabatic value "'= 'Y· 

The results for thermal damping parameter summarized here are based 
on the works by Devin [34] and Eller [37], assuming that the pressure in the 
gas does not vary with position. Devin derived an expression for the relation 
between applied pressure 'fii(w) and volume change v(w) in the gas bubble, 
calculated in the frequency domain. This is formulated in Devin's Equations 
(49) and (50) as 

v(w) v 
-:::---( ) = -<P(a,w), 
Pi w Pe 

(2.27) 
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<P (a, w) = ~ ( 1 + 3 ('yw~ 1) ( w coth w - 1)) , 

W(a, lD(w)) = ~(1 + i)-G, 

Kg 
2wpgc;' 

lD(w) = 

(2.28a) 

(2.28b) 

(2.28c) 

The quantity lD is the thermal diffusion length, which is a function of the 
thermodynamic properties of the gas: Pg is the density, Cp is the heat capacity 
at constant pressure, Kg is the thermal conductivity and 'Y is the adiabatic 
constant of the gas. 

The thermal diffusion length l D expresses the typical thermal diffusion dis­
tance during one oscillation cycle. When the bubble is much smaller than the 
thermal diffusion length, the heat transport is fast enough to keep the tem­
perature constant during the oscillation cycle. Contrary, when the bubble is 
much larger than the thermal diffusion length, the heat transport is negligible 
over the bubble radius. 

From the definitions of bubble stiffness and damping constant, the poly­
tropic exponent "" and the resistance from thermal conduction Rrh are iden­
tified as 

(2.29a) 

(2.29b) 

The thermal diffusion length lD(w) for air bubbles and the real and imaginary 
parts of the function 1/<P are plotted in Figure 2.5. The real part of 1/<P 
is the polytropic exponent ""' while the imaginary part is a measure of the 
thermal resistance Rrh· The graph of Re(1/<P) shows how "" changes from 
its isothermal value /'1,=1.0 to its adiabatic value /'1,=1.4 as the bubble radius 
increases relative to the thermal diffusion length. The graph of the imaginary 
part of 1/<P shows how thermal damping is important only in the intermediate 
region where "" is between its isothermal and its adiabatic value. 

For bubble sizes and frequencies used in ultrasound contrast agents, the 
bubble oscillation is mainly in the transition region between isothermal and 
adiabatic oscillations. Hence, for typical contrast agent bubbles used in med­
ical ultrasound imaging, the damping from thermal conduction must be con­
sidered. 

21 



22 The Bubble as a Linear Oscillator 

;&1.5 
--....... ......., 
~ 1.4 

~ 1.3 
d 
Q) 

§ 1.2 
0.. 
K 

~1.1 
·a 
0 .... 

.;3 
~ 

0 
~ 0.9 

10-1 100 10
1 102 10

3 

ajlD 

~ 10-4 0.14 
§ Adiabatic ,--._ 

._e:. ~ 0.12 
....... 

.;3 
......., 

~n 10-5 .§ 0.1 
Q) 

gfo.os -~ 
.9 ·a 
00 fJ 0.06 .e ;:a 10-6 "0 

10.04 (;l 

§ Q) 

Q) Isothermal ~ 0.02 
...c: 
E-< 10-7 0 

105 106 107 10-1 10° 10
1 

10
2 

10
3 

Frequency [Hz] aj!D 

Figure 2.5. Thermal diffusion length lv as function of frequency. The ther­
modynamic gas properties are for air. Polytropic exponent r;, and thermal 
damping constant drh as function of bubble radius a, relative to thermal dif­
fusion length l D. 



2. 3 The Bubble as an Oscillator 

2.3.1 Equation of Motion for the Bubble 

An equation of motion is found from the forces at the bubble surface. These 
forces consist of restoring stiffness from the gas, inertia from the liquid, damp­
ing from mechanical resistance, and the driving acoustic pressure Pi(t). The 
resulting equation is 

Fm + FR + Fs = J J Pi(t)dS. (2.30) 

s 
The expressions for F8 , FR and Fm, (2.12) and (2.20), are inserted into this 
equation, giving a differential equation for the radial displacement e 

me+ Re + se = -47ra2pi. (2.31) 

This is recognized as the equation of motion for a linear mechanical oscillator. 
The equation is best handled in the frequency domain. Fourier-transformation 
yields 

(- w
2 + iwwo8 + w5)t(w) = -~Pi(w). 

pa 

The angular resonance frequency wo and the damping constant 8 are 

2 S 3"'Pe w -----
0- m- a2p ' 

0=_!!_. 
wom 

The linear resonance frequency fo = wo/27r is 

fo=-
1
- ~' 21raVp 

fo is called the Minnaert-frequency [113]. 

(2.32) 

(2.33a) 

(2.33b) 

(2.34) 

The mechanical resistance R is a sum of three terms, Rm = Rc+Rry+Rrh· 
This gives the damping constant 8 as a sum of three corresponding terms 

(2.35) 

The damping constants from radiation resistance and viscosity are identified 
from the expressions (2.23), (2.26) and (2.29b) as 

(2.36a) 

(2.36b) 

(2.36c) 
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The damping constants for three different bubble sizes are plotted in Fig­
ure 2.6. At low frequencies, the damping from liquid viscosity dominates for 
the smallest bubbles, while thermal damping dominates for the larger bub­
bles. At high frequencies, the radiation damping takes over and becomes the 
dominating damping mechanism for all bubble sizes. 

Several slightly different definitions of the damping constant o are found in 
the literature. The definition used here is the same as that used by Church [22], 
but differs by a factor w / w0 from those used by Medwin [110] and Leighton [90]. 

The radial displacement t as function frequency and driving pressure Pi ( w) 
is found from the equation of motion (2.32) to 

t w __ 1_ Pi(w) 
( ) - paw5 (w/wo)2- 1- iw/woo · 

(2.37) 

This can be expressed by a transfer function for radial displacement H(O), 
defined by 

2 t(w) 1 
H(O) = pawoPi(w) = 02-1- iOo' 

0 = _:::__, 
wo 

(2.38) 

0 is the normalized frequency. 
The transfer function H(O) is plotted in Figure 2.7. The radial displace­

ment amplitude has its maximum at the resonance frequency wo. Below res-
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Figure 2. 7. Normalized radial displacement as function of frequency and 
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26 The Bubble as a Linear Oscillator 

onance, the transfer function is constant. Above resonance, it decays rapidly 
with increasing frequency. 

The radial displacement transfer function gives a hint to where the linear 
model is most likely to be valid. The linear model requires the radial displace­
ment to be small. For a given driving pressure, the radial amplitude is larger 
below resonance than above resonance. From this it can be expected that the 
bubble is more easily driven into nonlinear oscillations for driving frequencies 
below resonance than above. Maximum radial displacement is found at res­
onance. This is where the bubble is expected to be most easily driven into 
nonlinear oscillations. 

2.3.2 Scatter and Absorption 

Scattering Cross Section 

The radiated sound pressure pressure p 8 (a, t) at the surface of the bubble was 
found in equation (2.18) to 

.. 1 2 ' 
p8 (a, w) = ap~ 

1 
'k ~ -w ap~(w) 

+~ a 
(2.39) 

The radial oscillation € is expressed as function of the driving pressure Pi from 
(2.37). This gives a relation between the driving pressure field Pi and the 
radiated pressure p8 (a) at the bubble surface as 

f22 
Ps(a,w) = 1- f22 + mo Pi(w). (2.40) 

The scattering cross section CT 8 (a, w) is defined as the ratio between the scat­
tered power P8 (a, w) and the incoming sound intensity Ji ( w) 

P8 (a, w) 
O's(a,w) = Ii(w) . (2.41) 

0'8 has dimension area. Expressed by the pressure amplitudes of the incoming 
and scattered field, the scattering cross section becomes 

( ) 21Ps(a, w) 1
2 

CT s a, w = 4na Pi ( w) (2.42) 

The relation (2.40) between Ps( a, w) and Pi(w) gives the scattering cross section 
as 

(2.43) 

Examples of scattering cross sections for selected bubble sizes and frequencies 
are plotted in Figure 2.8. 
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Variation with frequency The left diagram in Figure 2.8 displays how 
the scattering cross section varies with frequency. For frequencies well below 
resonance, a 8 increases by f 4 . In this region, the expression (2.43) for a 8 

equals the compressibility term in the Rayleigh scattering model, (2.3). For 
frequencies above resonance a 8 is independent of the frequency. The scatter 
from a bubble deviates strongly from Rayleigh scatter around and above the 
resonance frequency. 

Variation with diameter The right diagram in Figure 2.8 displays how 
the scattering cross section varies with bubble diameter. For diameters smaller 
than the resonance diameter, the scattering cross section increases with the 
sixth power of the diameter, a 8 ex: d6 . In this region, the oscillator-model (2.43) 
gives the same result as the compressibility term in Rayleigh's model, (2.3). 
For diameters larger than resonance diameter, the scattering cross section 
increases as the geometric cross section of the bubble, a 8 ex: d2 . 

Comparison between Rayleigh's Model and the Oscillator Model 

Rayleigh scatter gave the expression (2.3) for the scattering cross section of 
small particles. The oscillator model gave the expression (2.43) for the scat­
tering cross section of the bubble. For frequencies below resonance, these two 
models should give equal results. 

For frequencies well below resonance, the oscillator model (2.43) gives 

n « 1, 

The angular resonance frequency was found in (2.33a) to 

2 3K;Pe 
wo = --2 · 

pa 

(2.44) 

(2.45) 

The angular frequency is expressed by the wave number as w = ck. This is 
inserted into the expression (2.44), giving 

(2.46) 

The speed of sound in a fluid is c = VKJP, and the bulk modulus Ko in the 
Rayleigh model is expressed by the speed of sound in the liquid as 

Ko = pc2. (2.47) 
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The bulk modulus of the gas is K = "'Pe· This is inserted into the equation 
(2.3) for Rayleigh scatter, giving 

(2.48) 

The bulk modulus in the liquid is much larger than in the gas, pc2 » "'Pe· 
This allows the first term inside the brackets to be simplified. The second term 
can be neglected compared to the first term. This makes (2.48) equal to the 
low-frequency expression for the bubble, (2.46). The scattering cross section 
from Rayleigh scatter is equal to that from the oscillator model, provided that 
the driving frequency is well below the resonance. 

Absorption- and Extinction Cross Sections 

Viscosity and heat transfer cause absorption of sound. Some of the energy in 
the sound is converted from wave energy into heat in the bubble and the liquid. 
This conversion is described by an absorption cross section O"a. The total loss 
of energy from the sound beam, including both absorption and scatter, is 
described by the extinction cross section, O"e· 

The absorption cross section for one absorption mechanism is defined as 

~k ( 
O"ak = Ji , 2.49) 

where Pak is the power absorbed by the absorption mechanism k. k denotes 
the source of absorption, viscosity or heat conduction. 

The extinction cross section O" e is defined by 

Pe 
0" e = Ji , (2.50) 

where Pe is the sum of scattered and absorbed power. This is the total loss of 
power from the incoming sound field. 

The relation between the various cross sections is found by expressing the 
power Pak absorbed by absorption mechanism k as function of the mechanical 
resistance Rk from damping mechanism k. This is 

(2.51) 

The ratio between power absorbed by damping mechanism k and the scattered 
power can now be expressed by the damping constants 6 as 

(2.52) 
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30 The Bubble as a Linear Oscillator 

The absorption cross section is the sum of viscous and thermal damping. The 
absorbed power is expressed by the scattered power P8 as 

(2.53) 

The absorption cross section can then be expressed by the scattering cross 
section O" s as 

(2.54) 

The total power removed from the acoustic beam is 

(2.55) 

This gives the extinction cross section expressed by the scattering cross section 
0"8 as 

(2.56) 

where D is the sum of all damping constants, including radiation. Inserting 
the expression (2.43) for the scattering cross section gives the extinction cross 
section as 

D 2 n4 D 
O"e = O"s De = 47ra (1- f22)2 + (0D)2 De . (2.57) 

The efficiency rJ of the bubble as a sound scatterer is defined as the ratio 
between scattered and consumed power as 

P8 De De 
1)=-=-= . 

Pe D D71 + Drh + De 
(2.58) 

The scattering efficiency for selected bubbles and frequencies 1s plotted in 
Figure 2.10. 

For large bubbles, with diameters in the mm-range, radiation is the major 
source of damping for frequencies above about 10 kHz, De » D71 , DTh· For 
these bubbles, almost all the absorbed power is reradiated, giving a scattering 
efficiency rJ ~ 1. 

For micrometer-sized bubbles and frequencies in the Megahertz-range, vis­
cous and thermal damping dominate over radiation, De < Dry, DTh· Most of the 
consumed power is absorbed, giving low scattering efficiency. Typically rJ is of 
the order w-l for these bubbles. 
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2.3.3 Attenuation 

Attenuation measures how much the incoming sound is reduced when passing 
through the medium. Attenuation is commonly measured in dB per unit 
length. In medical ultrasound imaging, dB/ em is most commonly used. 

The bubble concentrations studied are low, typical volume fractions are 
10-5 to 10-6 . At these low concentrations, the the bubble oscillations do not 
interact. The bubbles oscillate, absorb and scatter sound independently of one 
another. The reduction in power from in the sound field is the sum of power 
absorbed and scattered for all bubbles treated individually. 

A justification for this approach is given at the end of this section, giving 
a condition for when the bubbles can be treated individually. 

Consider sound absorbed and scattered within a small volume dV = dAdz, 
as illustrated in Figure 2.11. Each bubble n in dV removes the power Pn from 
the sound field. The total power removed from the sound field dPi is the sum 
of power absorbed by all bubbles. This is expressed by the extinction cross 
section as 

(2.59) 

where the sum is taken over all N bubbles in the small volume element dV. 
Ii is the intensity of the incoming sound and n(a)da is the number of bubbles 

1Q-3 U---~----~L---~----~ 
1~ 1~ 1~ 1~ 

10-3 LL..._-.....L..~--~L..__.._~-..___j 
100 101 102 

Frequency [Hz] Diameter [J.Lm] 

Figure 2.10. Ratio between scattering and extinction cross section. This is 
the ratio between the power scattered and the power absorbed by the bubble. 

31 



32 The Bubble as a Linear Oscillator 

per unit volume with radius in the interval (a, a + da). 
The change dii in sound intensity associated with this consumption of 

power is 

dPi ( rX) ) 
dii =- dA = -Ii Jo ae(a)n(a)da dz. (2.60) 

This gives the intensity Ji(z) as function of distance z through the bubble 
suspension as 

I(z) = I(O)e-n<ue>z, (2.61) 

where the < ae > is the average extinction cross section per bubble, 

1100 

< ae >= - ae(a)n(a)da, 
n o 

n = 100 

n(a)da. (2.62) 

n is the number of bubbles per unit volume. The attenuation coefficient a, in 
dB per unit length, becomes 

a= -~10lg (~:~~D = 10(lge) n < ae > [dB], (2.63) 

where the factor 10 lg e ;:::j 4.34 comes from the definition of the dB-scale. 

Treating the Bubbles as Individual Scatterers: The Waterman and 
Truell Condition 

A classic description of the multiple scattering of waves is due to Waterman 
and Truell from 1961 [167]. They give a condition for treating the bubbles as 

K 
dz 

Figure 2.11. Attenuation from a population of bubbles. 
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individual scatterers, later formulated by Commander and Prosperetti as [23] 
"the multiple scattering field caused by insertion of a bubble is much smaller 
than the field exciting that bubble". 

The criterion for this to be valid is found from [167] to 

n<Ys 
~«1, (2.64) 

where n is the number of scatterers per unit volume, <Y8 is the scattering 
cross section of each scatterer, and kr = 2n /A is the real part of the acoustic 
wavenumber. 

The propagation of a plane harmonic wave is described by a complex 
wavenumber kc = kr + iki, so that the pressure p(z, t) varies as 

(2.65) 

This expression is compared with the expression (2.61) for the attenuation of 
acoustic intensity. This gives the relation between the imaginary wavenumber 
ki and the extinction cross section <Y e (a, w) 

(2.66) 

For simplicity, it is assumed that all bubbles are of equal size in these calcu­
lations. The extinction cross section <Y e is expressed by the scattering cross 
section <Y8 by (2.56) 

(2.67) 

The Waterman and Truell condition (2.64) can now be reformulated to a ratio 
between the real and imaginary parts of the complex wavenumber 

(2.68) 

The ratio J / Jc is always greater than one. Hence, the condition above will 
always be fulfilled when the attenuation per wavelength is small. The condition 
can be expressed by the wavelength A and the attenuation per distance a by 
using a= -20(lg e)ki 

J 1 
a« 10(lg e)2n Jc ~ . (2.69) 

Insertion of the worst case values, (J/6c)min=1 and Amax=l.5 mm gives a« 
180 dB/em. 
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34 The Bubble as a Linear Oscillator 

The condition above is always true in the experimental systems used to 
study the contrast agents. Hence, the Waterman and Truell condition is always 
fulfilled, and the bubbles can be treated as individual scatterers. 

Commander and Prosperetti [23] observed a discrepancy around the res­
onance frequency between their theoretical calculations and experimental re­
sults. They explained this discrepancy by the Waterman and Truell condition 
(2.64) being violated around resonance. The contrast agent studies described 
in this thesis and the studies by Commander and Prosperetti were done at 
comparable attenuation per distance. But the frequencies used by Commander 
and Prosperetti were much lower, giving a larger attenuation per wavelength. 
The attenuation per wavelength is always low in the contrast agent studies, 
and the Waterman and Truell condition is always fulfilled. 

2.3.4 Speed of Sound in a Bubbly Liquid 

A small volume fraction of bubbles can alter the speed of sound in the liquid. 
Bubbles can also make the sound speed frequency dependent, that is, intro­
duce velocity dispersion. The radial displacement and volume change of the 
bubble is in general not in phase with the driving acoustic pressure. In the 
frequency domain, this corresponds to a complex and frequency dependent 
compressibility for the bubbly liquid. From this, a complex and frequency 
dependent speed of sound cc(w) and wavenumber kc(w) = kr(w) + iki(w) can 
be calculated. 

The phase velocity of the sound is calculated from the real part kr of the 
complex wavenumber kc. The imaginary part ki gives the attenuation. The 
attenuation calculated from ki by this method should give the same result as 
the attenuation calculated from the extinction cross section, Equation (2.63). 

A calculation of the speed of sound in bubbly liquids is given by Leighton [91]. 
Experimental measurements of velocity dispersion in bubbly liquids were done 
by Silberman in 1957 [154]. Reviews of experimental and theoretical data are 
given by Anderson and Hampton [1] and by Commander and Prosperetti [23]. 
More rigorous mathematical treatments are given by Caflisch et al. [12] and 
Lu et al. [105]. 

The sound velocity calculations presented here are done assuming the bub­
ble oscillations to be linear. This means that the relative changes in bubble 
radii due to the applied acoustic pressure must be small. In general, sound 
propagations through bubbly liquids may display strong nonlinearities, reduc­
ing the validity of this model. But as long as the nonlinear effects are small, 
the following calculations should give a fairly good model for the phase velocity 
in the bubbly liquid. 

The complex wave number kc(w) for the sound propagating through the 
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bubbly liquid is calculated from the linear model for bubble oscillations pre­
sented in the previous sections. The speed of sound in a medium depends on 
its compressibility, expressed by the bulk modulus K, and on its density p, 
according to 

(2.70) 

For an inhomogeneous medium, the simplest model for effective bulk modulus 
and density describes the effective medium parameters K and p as the average 
of its components [91, 161] 

_!_=1-¢+2::~ 
K KL k Kk 

(2. 71a) 

p = (1- rf>)PL + L ¢kPk, (2.71b) 
k 

where ¢k is the volume fraction of component k, ¢ is the total volume fraction 
of particles, Kk is the bulk modulus of component k, KL is the bulk modulus 
of the liquid, Pk is the density of component k and PL is the density of the 
liquid. 

The bulk modulus Kb of the bubble is found from the radial oscillation of 
the bubble, (2.37) and (2.38). Kb is calculated in the frequency domain as 
a complex, frequency dependent quantity. It includes static stiffness of the 
bubble, inertia caused by the displacement of liquid as the bubble oscillates 
and damping from various frictional mechanisms. 

The relation between radial displacement €(w) and applied sound pressure 
Pi(w) is expressed from (2.38) as 

A 1 
e(w) = H(D) - 2 Pi(w), 

paw0 

H(n) 1 n = ..:::._ . 
H = D2 - 1 - iDS ' H wo 

The volume change V(w), associated with the radial motion € is 

(2.72a) 

(2. 72b) 

(2.73) 
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This gives the complex bulk modulus modulus of the single bubble as function 
of its radius a 

4 3 
31ra A 1 2 2 -1 

Kb(a,w) = --A-Pi(w) = -3pa w0 H (D). 
V(w) 

(2.74a) 

The bulk modulus Kw of water is 

(2.74b) 

where Cw is the speed of sound in water. The compressibility of a bubbly liquid 
is calculated from (2.71a) as the sum over all bubbles within a volume 

1 1-¢ 47r ~ ak - = --2 -- L....J nk2Hk(D), 
K PwCw P k Wo 

(2.75) 

where nk is the number of bubbles per unit volume with radius ak. The volume 
fraction ¢k of bubbles with radius ak is 

(2.76) 

The fraction ¢ = L:k ¢k of bubbles in the liquid will always be very small 
compared to unity. This allows the expressions for K and p to be simplified 
to 

¢ « 1 , Pg « Pw 
1 

K 

p = (1- ¢)Pw + rPPg ~ Pw · 

(2.77a) 

(2.77b) 

The complex, frequency dependent speed of sound Cw in the bubbly liquid is 
found from the expressions for K and p above as 

1 p 1 100 

a 2 =- = 2- 47r 2H(D)n(a)da, 
cc K Cw 0 Wo 

(2.78) 

where the sum over the bubbles have been replaced by an integral. n(a)da is 
the number of bubbles with radius in (a, a+ da) per unit volume. 

The result above is identical to the expression found by Commander and 
Prosperetti after a more rigorous mathematical treatment, see Equation (36) 
in Reference [23]. 

Equation (2.78) is a closed expression for the complex speed of sound 
cc(w), assuming linear oscillations and low volume fractions of bubbles. The 
complex wavenumber kc is found from from Cc, giving the phase velocity and 
the attenuation in the bubbly liquid. 
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Phase velocity and attenuation A plane wave propagating in the positive 
z direction is expressed by its complex wavenumber kc as 

p(z, t) = poei(wt-kcz) = poekizei(wt-krz) , 

kc(w) = kr + iki. 

The complex wavenumber kc and speed of sound c(w) are related as 

1 1 ( . ) - =- u+zv , 
Cc Cw 

kc = w = kw(u + iv), kw = w/cw, 
Cc 

p(z, t) = poevkwzei(wt-ukwz), 

where the quantities u and v are found from (2. 78) as 

1
00 a 

(u + iv) 2 = 1- 47rc; 2H(O)n(a)da, 
o wo 

1
00 a 

u 2
- v2 = 1- 47rc; 2 HR(O)n(a)da, 

o wo 

1
00 a 

2uv = -47fc; 2 Hr(O)n(a)da, 
o wo 

02-1 
HR(O) = Re(H(O)) = (02- 1)2 + (05)2 ' 

06 
Hr(O) = Im(H(O)) = (02 _ 1)2 + (0<5)2 . 

(2.79) 

(2.80a) 

(2.80b) 

(2.80c) 

(2.81a) 

(2.81b) 

(2.81c) 

(2.81d) 

(2.81e) 

The phase velocity c and the attenuation a in decibels are found from the real 
and imaginary parts of kc as 

W Cw 
c= =-, 

Re(kc) u 
wv 

a= -20(lge)Jm(kc) = -20(lge)- [dB], 
Cw 

(2.82a) 

(2.82b) 

where the factor 20 lg e ~ 8.69 comes from the definition of the decibel-scale. 
The velocity and attenuation as function of frequency for suspensions of 

single-sized bubbles with diameter 3 J-Lm are plotted in Figure 2.12. The 
volume fractions of bubbles were selected to 10-6 , 10-5 and 10-4 . The some­
what more realistic situation of a distribution of bubble sizes is plotted in 
Figure 2.13. This figure shows a Gaussian distribution of sizes, with mean 
diameter 3 J-Lm and standard deviation 1 J-Lm. 
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Figure 2.12. Speed of sound and attenuation in a bubbly liquid for single 
sized bubbles with diameter 3 f.Lm. Volume fractions of bubbles are 10-6 , 10-5 

and 10-4 . Results are calculated from the complex wavenumber model in this 
section (solid lines) and from the extinction cross section, (2.63) (dashed lines). 
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Figure 2.13. Speed of sound and attenuation in a bubbly liquid for a Gaussian 
size distribution of bubbles. The mean diameter is 3 f.Lm and the standard 
deviation is 1 f.Lm. Volume fractions of bubbles are 10-6 , 10-5 and 10-4 . 

Results are calculated from the complex wavenumber model in this section 
(solid lines) and from the extinction cross section, (2.63) (dashed lines). 



2.3 The Bubble as an Oscillator 

For a bubble volume fraction of 10-6 , the speed of sound is hardly affected. 
The attenuation shows a very steep peak at resonance, going up to 30 dB/em. 
As the volume fraction of bubble increases, velocity dispersion becomes ap­
parent. However, for these concentrations, the attenuation is extremely large. 

Approximation: Low attenuation For almost all situations of practical 
interest, the attenuation will be low, in the sense that the reduction in ampli­
tude per wavelength is small. This means that the imaginary part ki of the 
wavenumber kc is much smaller than the real part kr. Under these conditions, 
(2.81a) can be simplified to give separate analytic expressions for u and v as 

(2.83) 

Approximation: Small changes in velocity The quantity u is a measure 
of the phase velocity in the bubbly mixture relative to the speed of sound in 
the pure liquid. When the changes in phase velocity due to bubbles are small, 
the expressions can be simplified further by setting u ~ 1 in the calculation of 
v. This gives 

u = 1 + E, lEI « 1 
(2.84) 

This gives the phase velocity c and the attenuation a as 

( 
roo a n2 1 ) 

c = Cw 1 + 27rc~ Jo w5 (D2- 1)2-+ (DJ)2 n(a)da ' (2.85a) 

roo acw D2o 
a= 20(lg e) x 21f Jo wo (D2- 1)2 + (Do)2 n(a)da. (2.85b) 

The expression (2.36a) gives the radiation damping constant as Oc = D2w0ajc. 
If this is inserted into the expression for a above, it gives the same result as 
equation (2.63) derived from the extinction cross section (2.57). 

Hence, the two methods of calculation give the same result when the at­
tenuation per wavelength is low and the velocity dispersion is small. 
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Low Frequency Limit 

The bubbles have the largest effect on the phase velocity for frequencies around 
the resonance frequency of the bubbles. For frequencies above resonance, the 
speed of sound rapidly approaches the sound speed Cw in the pure liquid. Be­
low the resonance frequency, the sound speed of the bubbly mixture can be 
significantly lower than the speed of sound in the liquid. In this frequency 
range, the acoustic attenuation can be quite low, even at high bubble concen­
trations. Hence, it is interesting to study how the speed of sound varies with 
bubble concentration for frequencies well below resonance. 

The compressibility and density are calculated from (2.71a). Well below 
resonance, the dynamics of the bubble is determined by the stiffness alone. The 
dynamic compressibility Kc(w) used in the previous section can be replaced 
by the static value for the bulk modulus of a gas under isothermal compression 

(2.86) 

The effective bulk modulus K and density p of the bubbly mixture is now 

_!_ = 1- rP + i__ = _1_ ( 1 _ rP + rPPwC~) 
K Pwc'fv Pe Pwc'fv Pe 

P = (1- ¢)Pw + rPPg = Pw(1- ¢ + ¢ Pg) 
Pw 

(2.87a) 

(2.87b) 

Note that in this situation, the size of the bubbles does not influence the 
compressibility. Only the total volume fraction of gas matters. This is valid 
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Volume fraction air 

Figure 2.14. Speed of sound at frequencies well below resonance, as function 
of bubble volume concentration. 
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when the bubbles are small enough, so that the resonance frequency of the 
individual bubble is much higher than the frequency used. The speed of sound 
at low frequencies becomes 

(2.88) 

The result here differs slightly from the simpler expression given by Leighton [91], 
as the latter does not consider the change in density associated with the bub­
bles. However, for all realistic bubble concentration the expressions yield iden­
tical results. Differences appear at high bubble concentrations, where the 
attenuation is very large, and the bubbly liquid is better described as a foam. 

A plot of the low frequency limit for the speed of sound is shown in Fig­
ure 2.14. Small volume fractions of bubbles can reduce the speed of sound 
considerably. The speed of sound in the mixture can even be lower than the 
speed of sound in air. This somewhat surprising result appears because the 
bubbles reduce the bulk modulus K of the mixture much more than they re­
duce the density p. Hence, a bubbly liquid may end up as a medium that is 
very compressible due to the bubbles. But the density of the bubbly liquid is 
still rather high, due to the density of the liquid. 

2.4 Gas Bubble in a Shell 

Most ultrasound contrast agents consist of gas bubbles encapsulated in a shell. 
The gas gives the bubbles a high compressibility, ensuring that they are pow­
erful acoustic scatterers. The shell stabilizes the microbubbles, preventing the 
gas from dissolving into the liquid. 

The shell will reduce the compressibility of the bubble. This alters its 
acoustic properties, by increasing its resonance frequency and adding extra 
viscous damping to the oscillation. 

Shell Stiffness 

The difference in radial stress across an elastic shell was found in Chapter 3.4 
to be 

( )4( ) dse ae a 
T2-T1=12Gs-- --1, 

ae a ae 
(2.89) 

where T2 and T1 are the radial components of the stress tensor at the outer 
and inner shell surfaces. This is linearized by setting 

a(t) = ae + ~(t)), 1~1 « 1. (2.90) 
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The stress difference across the shell is expanded to the first order in ~(t), 
yielding 

(2.91) 

The boundary conditions at the inner and outer shell surfaces are 

(2.92) 

where TL(a) is the radial stress in the liquid and p9 is the pressure in the gas. 
The pressure from the gas is taken from (2.11). This is combined with 

(2.91), giving the radial stress at the outer shell surface 

(2.93) 

where the equilibrium bubble radius ae is replaced by a, consistent with the 
linear approximation. The force Fs acting on the liquid from the shell encap­
sulated bubble is now 

Fs =- J J TLdS = -4Jra2TL = -(12JraA;pe + 487rGsdse)~. 
s 

(2.94) 

The spring constant for the shelled bubble is identified from the definition 
Fs = -s~ to 

(2.95) 

The shell is assumed to be thin: The shell thickness is small compared to 
the bubble radius, dse « a. The inertia of the shell is neglected compared to 
the inertia of the liquid being displaced as the bubble oscillates. This means 
that the dynamic mass of the shell encapsulated bubble is set equal to the 
dynamic mass of the free bubble. This was calculated in (2.21) to 

(2.96) 

where p is the density of the liquid. 

Damping 

For the free bubble, the damping of the oscillations was caused by three mech­
anisms: Radiation, liquid viscosity and thermal conduction in the gas. When 
a shell is added, viscous forces in the shell may introduce a new damping 
mechanism. 
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Radiation resistance The radiation resistance depends only on the liquid 
and on the motion of the bubble surface. Hence, the expression for radiation 
damping does not change with the introduction of a shell. The radiation 
resistance Rc is, from (2.23), 

(2.97) 

Liquid viscosity The mechanical resistance from viscous forces in the liquid 
depends only on the bubble diameter and on the viscosity of the surrounding 
fluid. This does not change with the introduction of a shell, and the viscous 
resistance is, from (2.26), 

!LryL = 167Ta1] . (2.98) 

Thermal conduction in the gas The thermal damping depends on the 
motion of the bubble surface and on properties of the gas. The model for 
the thermal damping was taken form Devin [34] and Eller [37]. They studied 
temperature variations in the gas, modeling the liquid as a heat reservoir of 
constant temperature. Using this model for a shelled bubble means assuming 
the shell to have the same constant temperature as the surrounding liquid. 
Heat generation in the shell during the oscillations is neglected. This seems 
as a reasonable assumption, as the heat capacity of the shell material is of the 
same order of magnitude as the heat capacity of water, which is three orders 
of magnitude greater than the heat capacity of air [129]. Hence, it is assumed 
that the results by Devin and Eller for the free bubble can also be applied 
when a shell is present. 

Under these assumptions, the polytropic exponent "' and the mechani­
cal resistance from thermal conduction Rrh for the shelled bubble are, from 
(2.29a) and (2.29b), 

R _ 121rape I (_!_) 
Th- w m <I> , (2.99) 

where <I> is a function of the thermal properties of the gas, defined in (2.28a). 

Shell viscosity The stress difference across the shell due to shell viscosity 
was derived in Chapter 3.4 to 

(2.100) 
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This is linearized for small radial displacements ~=a- ae, giving 

dse · 
T2- T1 = 127]s-2 C 

a 

The viscous force F'f/s from the shell viscosity is 

F'fls = - J J (T2 - T1)dS = -47ra2(T2 - T1) = -487r7]sdse~ . 
s 

(2.101) 

(2.102) 

The mechanical :esistance R'f/s from shell viscosity is identified from the defi­
nition FR = - R~ as 

~s = 487r7]dse . (2.103) 

Damping Constants 

The dimensionless damping constants are calculated from the mechanical re­
sistance by the definition o = Rj(wom). This gives 

w2a 
Oc=­

WQC 

[) _ 47]L 
'f/- wopa2 ' 

3pe ( 1) 0Th = 2 1m n. , 
wwopa '±' 

05 
= 127]sdse . 

wopa3 

(2.104a) 

(2.104b) 

(2.104c) 

(2.104d) 

The expressions for the three first damping constants De, 8r;, and Orh are equal 
to the expressions for the free bubble. But the the resonance frequency w0 is 
changed by the shell, and this will change the values of the damping constants. 

Resonance Frequency 

The angular resonance frequency of the shelled bubbles is calculated from the 
bubble stiffness s and dynamic mass m, using (2.95) and (2.96), to 

w5 = ~ (3"'Pe + 12Gs dse) . 
pa a 

The linear resonance frequency is 

fo = wo = _1_ 
21r 27ra 

3"'Pe + 12Gsdse/a 
p 

(2.105) 

(2.106) 
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Scattering and Extinction Cross Section 

An equation of motion for the encapsulated bubble is set up based on the 
expressions for the spring constant, mechanical resistance, damping constants, 
and resonance frequency. This equation of motion is equal to the equation of 
motion for the free bubble, (2.31) and (2.32). But the parameters wo and 5 
have different values. 

The equation of motion in the time domain is 

(2.107) 

where the parameters R and s are for the encapsulated bubble. In the fre­
quency domain, this equation of motion is transformed to 

2 2 ~ 1 
( -w + iwwo5 + w0 )~ =--pi, 

pa 
(2.108) 

where the expressions for the resonance frequency wo and the damping con­
stant 5 are for the shell encapsulated bubble. 

Various expressions for the interaction between the bubble and the ultra­
sound field were derived for the free bubble, based on the equation of motion. 
These include expressions for radial oscillation amplitude, scattered pressure 
field, scattering and extinction cross sections and scatterer efficiency. Since 
the equations of motion for the encapsulated and free bubbles take the same 
form, these expressions are equal for the shelled and unshelled bubbles. The 
differences between the two bubble types is handled by the different values of 
the parameters, Wo and 5, and of the normalized frequency f2 = wjwo. 

The expressions for the shelled bubble are 

Normalized frequency 

(2.109a) 

Radial displacement € as function of applied pressure field Pi 

~ 1 Pi(w) 
~(w) = paw5 D2 - 1- iD5 (2.109b) 

Transfer function for radial strain 

1 
H(D) = f22- 1- iD5 (2.109c) 
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Ftadiated pressure 

Ps(a,w) = 1- o~~ i08 Pi(w) 

Scattering cross section 

Extinction cross section 

The efficiency of the bubble as a sound scatterer 

The attenuation coefficient a, in dB per unit length 

a= 10(1g e) 100 

O"e(a)n(a)da [dB] 

Complex, frequency dependent speed of sound 

1 1 100 

a 2 = 2- 4?T 2H(O)n(a)da 
cc cw o Wo 
1 1 
- = -(u+iv) 
Cc Cw 

(u + iv) 2 = 1- 4?Tc; 2 H(O)n(a)da 1
00 a 

o wo 
0 2 -1 

HR(O) = Re(H(O)) = (02 _ 1)2 + (08)2 , 

08 
H1(0) = Im(H(O)) = (02 _ 1)2 + (08)2 • 

Phase velocity and attenuation 

Cw 
C=­

U 
wv 

a= -20(lg e)- [dB] 
Cw 

(2.109d) 

(2.109e) 

(2.109f) 

(2.109g) 

(2.109h) 

(2.109i) 

(2.109j) 

(2.109k) 

(2.1091) 

(2.109m) 

(2.109n) 

(2.109o) 
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Low attenuation, Jvl « lui 

(2.109p) 

(2.109q) 

Low dispersion, u = 1 + E , with jEj « 1 

(2.109r) 

(2.109s) 
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Chapter 3 

Nonlinear Bubble Theory 

The previous chapter modeled the bubbles as linear oscillators. This enabled 
the theoretical descriptions to be made in the frequency domain. The concepts 
resonance frequency, damping constant and scattering and absorption cross 
section were defined. These concepts are useful in linear theory, where time­
domain response can be calculated from a transfer function or an impulse 
response of the system. 

In many practical situations, the bubble response is nonlinear, and the 
description in Chapter 2 is insufficient. For a nonlinear response, the use 
of impulse response and Fourier synthesis loses its value. The time domain 
responses are no longer the sum of responses to the individual Fourier compo­
nents. 

A classic paper modeling nonlinear bubble responses is due to Lauterborn 
from 1976 [88]. He modeled the bubbles with the Rayleigh-Plesset equation, 
driving the bubbles with a CW ultrasonic field. Lauter born's simulations show 
a strongly nonlinear response, giving harmonics, sub- and ultraharmonics of 
the driving ultrasound frequency. 

3.1 Nonlinear Acoustics in Diagnostic Ultrasound 

Acoustic propagation is basically nonlinear [52, 119]. This nonlinearity is 
caused partly by the particle movement associated with the acoustic wave, and 
partly by a nonlinear compressibility of the medium. For sound propagation 
in water, these two mechanisms are of comparable magnitude [9]. 

In most applications of acoustics, the nonlinear effects are small and can 
be neglected. A linear treatment is sufficient, and this is what is found in 
standard textbooks on acoustics [74, 120]. However, the interest in nonlinear 
propagation for diagnostic ultrasound imaging has increased dramatically since 
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about 1996, because of so-called Native harmonic imaging, where ultrasound 
images are formed based on the second harmonic of the transmit frequency [5]. 
A theoretical description [20] and experimental measurements [21] of nonlinear 
sound propagation in pulse-echo imaging systems was given by Christopher in 
1997 and 1998, including phase abberations. 

3.1.1 Nonlinearity in Liquids with and without Bubbles 

In most fluids, including water, the local nonlinearity is very small, but non­
linear effects add up as the wave propagates. This allows nonlinear sound 
propagation to be treated as perturbations to the linear case. Classic models 
for nonlinear propagation, the Westervelt, Burgers and the KZK (Khokhlov­
Zabolotskaya-Kuznetsov) equations, include local nonlinearity to the second 
order [52], and effects are added up as the wave propagates. 

In contrast to the weak local nonlinearity in liquids, a bubble may create a 
large local nonlinearity, making a perturbation approach difficult. A measure 
of local nonlinearity in a fluid is the relative volume compression. For small 
compression, this is equal to the acoustic Mach-number M = ujc, and is given 
by the ratio between the acoustic pressure and the bulk modulus of the fluid. 
This can be expressed as [83] 

~v 

v 
u 

c 
Pa 
K' 

(3.1) 

where - ~ V /V is the relative volume compression, u is the particle velocity, c 
is the speed of sound in the fluid, Pa is the acoustic pressure and K = pc2 is 
the bulk modulus of the fluid. 

The condition for local linearity is that the relative volume compression is 
small, which is equivalent to saying that the acoustic Mach-number is small 

1~:1 = 1~1 « 1 Requirement for local linearity (3.2) 

The values of the bulk modulus of water Kw and of air Kair differ by four 
orders of magnitude 

Water 

Air (adiabatic) 

Kw = pc2 = 2200M Pa 

Kair= "!Po = 0.14M Pa (3.3) 

The acoustic pressure amplitude in diagnostic ultrasound equipment can at 
maximum reach a few MPa [169]. For sound propagation in water Pal Kw is 
always small, giving low local nonlinearity. The nonlinear effects accumulate as 
the wave propagates, but the propagation is adequately described by including 
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local nonlinearity terms to the second order in Pal K. For the bubble, the 
situation is different. The local nonlinearity term Pa/Kgas need not be small, it 
may very well exceed unity, and an expansion in the parameter Pal Kgas is not 
meaningful. This simplified picture is complicated by the inertia of the moving 
liquid, which will influence the bubble oscillation, especially for frequencies 
above resonance. In addition, a shell around the bubble may increase its bulk 
modulus. 

These arguments illustrate why an expansion in acoustic Mach-number 
M = ul c =Pal K to the second order, which is sufficient for sound propagation 
in liquids, is of limited value when studying bubbles exposed to diagnostic 
ultrasound. Instead, the bubble's response is calculated from time domain 
simulations of a nonlinear differential equation. 

Second order, and also higher order, perturbation solutions for the oscilla­
tion of bubbles have been published. Typically, specific nonlinear components 
are studied using Taylor-expansion of the governing nonlinear equations of 
motion. This was done for the response at the second harmonic frequency 
for free bubbles by Miller [111] and for shell encapsulated bubbles by de Jong 
et al. [26], by Church [22] and by Miller [112]. These studies describe second­
order frequency domain calculations, giving the response to a CW acoustic 
driving field. Such calculations are of limited value for diagnostic ultrasound 
pulses, which are normally very short and broadband. A second-order model 
for the response of these broadband pulses must include the response to all 
sum- and difference frequencies of the driving ultrasound pulses, analogous to 
what is done in the Bergen-code solution of the KZK-equation. The response 
of the bubble becomes strongly nonlinear even for moderate driving pressure 
amplitudes, and a second order solution gets inaccurate. However, one impor­
tant reason for finding these approximate analytical solutions, is the insight 
these solutions give in the underlying physics. The analytical results provided 
by Miller for the second harmonic response [112] and by Prosperetti for the 
subharmonic response [138, 139] give valuable insight into mechanisms for the 
phenomena, such as frequency dependence and amplitude thresholds. 

In the following, the second order solutions are not considered, only time 
domain solutions are used. With todays fast computers and efficient numerical 
software, these time domain simulations are rapidly and easily obtained. 

3.1.2 Linear and Nonlinear Systems 

For a linear system, the response to two input signals is the sum of the re­
sponses to the individual inputs. More general, if the system response y(t) to 
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an input x(t) is described by the operator linear L as 

y(t) = L{x(t)} L: Linear operator , (3.4) 

then, the response to a linear combination of input signals ax1(t) + a2x2(t) is 

x(t) = Lt1X1(t) + Lt2X2(t) 

y(t) = L{a1x1 + a2x2} = a1L{xi} + a2L{x2} 

= ct1Y1(t) + a2y2(t). 

(3.5) 

The response y(t) of the linear system is completely described by its impulse 
response h(t), or in frequency domain, by its frequency response H(w). The 
response can be expressed as 

y(t) = h(t) * x(t) = 1: x(T)h(t- T)dT, 

f)(w) = H(w)x(w), 

where the symbol * denotes temporal convolution and x(w) 
transform of x(t). 

Some characteristics of a linear system are 

(3.6) 

is the Fourier 

1. The system is completely described by its frequency response H(w). 
The input signal x(t) can be decomposed into its frequency components, 
and the system response is the sum of the responses for the individual 
frequency components. 

2. The response f)(w) contains only frequency components that are already 
present in the input signal x(w). The response at one frequency is inde­
pendent of the input on other frequencies. 

x(t) ~I L{x} I~ y(t) 

Figure 3.1. The response of a linear system L{ x} to an input signal x( t) and 
to a linear combination of input signals a1x1(t) + a2x2(t) . 



3.1 Nonlinear Acoustics in Diagnostic Ultrasound 

3. A scaling of the input signal causes a scaling of the response, 

(3.7) 

A special case is the response to input signals with inverted polarity, 
a = -1. This causes responses that are inverted copies of one another. 

For a nonlinear systems, the relations in (3.5) and (3.6) are not valid. The 
list of characteristics above is changed to 

1. The nonlinear system response is not described by an impulse or fre­
quency response. The system response cannot be calculated from Fourier 
synthesis. 

2. The response contains new frequency components, not present in the 
input signal. The response at one frequency depends not only on the 
input on this frequency, but also on the input on other frequencies. 

3. The response to a scaled version of the input is not a scaling of the 
response. The responses to pulses with inverted polarity are not inverted 
versions of one another. 

3.1.3 Bubble Detection Based on Nonlinear Acoustics 

The nonlinear response introduces qualitatively new effects, effects that are 
not known from linear acoustics. These effects can be used to enhance echoes 
from bubbles over echoes from tissue, because the bubbles typically respond 
more nonlinearly than tissue. In ultrasound contrast imaging, several different 
nonlinear effects are in use or have been proposed to enhance the contrast agent 
signal compared to the tissue signals. 

So called "shadowing" is a major limitation with linear imaging meth­
ods [164]. This occurs because the attenuation from the contrast agent reduces 
the sound intensity behind the contrast filled region. More sensitive detection 
techniques allow use of lower contrast agent concentrations, and reduce the 
attenuation introduced by the contrast agent. What we see today is probably 
only the start of nonlinear acoustics used in diagnostic ultrasound imaging. 

Detection methods based on nonlinear acoustics that are either in use or 
have been proposed include: 

Second harmonic The received signals are filtered at twice the transmit fre­
quency. The image is formed based on the power received at this second 
harmonic. This technique requires the bandwidth of the transducer to 
cover both the transmit frequency and its second harmonic frequency. 
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To achieve this, the transducer is normally driven at a frequency near 
the lower end of its frequency response. 

The use of the 2nd harmonic to detect bubbles in blood was proposed in 
1968 by Tucker and Welsby [163]. It was demonstrated experimentally 
by Miller in 1981 [111] and described theoretically in detail by Vacher 
and Gimnez in 1984 [166]. Second harmonic echoes from ultrasound 
contrast agents have been studied by a number of authors [26, 27, 13]. 
Krishnan and O'Donnel [77] proposed to suppress the second harmonic 
generated by the tissue propagation. They suggested transmitting a sec­
ond harmonic signal with a phase that cancels the propagation generated 
second harmonic. This might increase the specificity of the technique. 

Higher harmonics The same principle as in 2nd harmonic imaging may be 
applied to higher harmonics of the transmit frequency. Images can be 
formed based on the received power at 3fi, 4fi, etc. where fi is the 
transmit frequency. 

The third harmonic, 3fi, is of particular interest, as thickness mode 
transducers have natural resonances at odd harmonics. But the third 
harmonic is also sensitive to distortion, as saturation in the transmit and 
receiver stages typically create odd harmonics. 4th and higher harmonics 
can hardly be detected using the transmit transducer. This would re­
quire a new transducer arrangement, probably using separate transducer 
elements for transmit and receive. 

Higher harmonics are presently of low importance. But contrast agents 
have been shown to emit sound at these frequencies, and the higher 
harmonics may have a potential to detect contrast agents with high 
specificity. 

Nonlinear frequency mixing Two frequencies are transmitted. The non­
linear response creates frequency components at the sum- and differences 
of the transmit frequencies. A typical arrangement will be to transmit 
one high "imaging" frequency fi and one lower "pumping" frequency fv· 
The image will be formed based on the difference frequency fi - fv, or 
on the sum frequency fi + fv· 

Nonlinear frequency mixing has not yet been applied to detection of con­
trast agents in vivo. But the method has been tested experimentally in 
various other situations. During the last half of the 1980s, Newhouse, 
Chapelon, Shankar and co-workers demonstrated the use of nonlinear 
frequency mixing for various types of bubble detection, sizing and pres­
sure measurements [123, 15, 151, 14]. Boyle and Chotiros [11] presented 
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in 1998 a model for using the difference frequency to detect bubbles 
trapped in the seabed. Ostrovsky et al. [130] have given theoretical and 
experimental results for generation of a difference frequency signal using 
the resonance of the whole bubble layer instead of the of individual bub­
bles, applied to parametric acoustic arrays. Kripfgans et al. [76] in 1998 
reported in vitro results measuring the sum- and difference frequency 
echoes from the contrast agent MRX-115 (ImaRx, Tucson, Arizona, 
USA). A very interesting technique related to this, although not involv­
ing bubbles, was presented recently by Fatemi and Greenleaf [43, 44]. 
They used nonlinear frequency mixing to detect solid objects, where the 
nonlinear mixing was created by the radiation force. 

Pulse inversion Two pulses are emitted. The second pulse is a copy of the 
first with inverted polarity. The echoes from the two pulses are summed, 
and an image is formed from the summed signal. 

The technique requires two transmit pulses. Motion during the interval 
between the pulses will be misinterpreted as nonlinearities. The energy 
in the summed signal is mainly at twice the transmit frequency. Hence, it 
is important that the receiver is sensitive at twice the transmit frequency. 
As for second harmonic imaging, the transmit transducer is normally 
driven at the lower part of its sensitivity spectrum. Pulse inversion 
can be viewed as an alternative way of doing second harmonic imaging, 
reducing the problem of sideband leakage from the transmitter to the 
receiver. 

The use of such pulse-inversion imaging combined with Doppler process­
ing has been demonstrated in vitro and in vivo by Simpson [156, 155]. 

Sub- and ultra harmonics Subharmonics are frequency components below 
the driving frequency. Oscillating bubbles have the potential to create 
subharmonic peaks at integer fractions of the driving frequency. Most 
important is the peak at ~fi, where fi is the driving frequency. Subhar­
monic peaks at } fi and ultraharmonics at ~ fi and ~ fi are also reported. 
Subharmonics require long pulses to develop, the driving pulse must 
contain several cycles. This may give degraded axial resolution. 

The subharmonic response from Albunex was measured by Lotsberg 
et al. in 1996 [104]. Results from subharmonic imaging implemented 
on a clinical scanner were reported by by Shi et al. in 1999 [153]. 

Acoustic destruction of bubbles Bubbles can be destroyed by the acous­
tic pulses used in diagnostic imaging. Two different mechanisms for 
bubble destruction have been reported. 
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1. The shell or membrane encapsulating the bubble membrane can 
be damaged, causing the gas inside the bubble to dissolve. The 
dissolution times of bubbles were calculated in 1950 by Epstein 
and Plesset [41]. From their models, the dissolution of a t-tm-sized 
bubble will typically takes from a few hundred microseconds to a 
few seconds, depending on the type of gas inside the bubble. 

2. The violent collapse of the bubble can cause it to fragment, and 
these fragments are then dissolved in the liquid. The fragmenta­
tion takes place within one ultrasound cycle. This instability of 
the bubble has been explained by oscillations set up on the bub­
ble surface. Under some conditions, at large amplitude oscillations, 
small surface oscillations on the bubble will grow, causing the bub­
ble to become unstable. The phenomenon was studied theoretically 
in 1961 by Hsieh and Plesset [65] and later extended by Eller and 
Crum in 1970 [38]. These studies provide criteria for regions of 
stability and instability of bubbles exposed to ultrasound pulses. 

Both these destruction mechanisms have been observed experimentally 
on microbubbles exposed to ultrasonic pulses [25]. An overview of vari­
ous modes of bubble oscillation and destruction mechanisms was written 
by Leighton [95]. 

Combination of techniques The specificity of bubble detection can be in­
creased further by combining two or more of the techniques above. An 
example of such a combination is given by Leighton et al. [97], who stud­
ied the detection of bubbles in seawater. The bubbles were insonified by 
one imaging and one pumping frequency. The most specific bubble detec­
tion was found by receiving at the sum or difference between the imaging 
frequency and the order ~ subharmonic of the pumping frequency. 

Coded excitation may also provide new opportunities combined with a 
nonlinear detection technique. Coded excitation improves signal to noise 
ratio by increasing the pulse length, while preserving the axial resolution. 
Theoretical simulations of coded excitation combined with 2nd harmonic 
imaging was described by Li in 1999 [99]. 

3.2 Equations of Motion for the Liquid 

Equations of motion for the liquid are derived from the conservation equations 
for mass and momentum and from the equations of state for the liquid. These 
equations give relations between changes in pressure, density and enthalpy in 
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the liquid. The basic equations are combined, making some approximations, to 
obtain an equation of motion for the liquid surrounding the bubble. The basic 
idea of the following derivations is to reduce the partial differential equations 
describing the motion of the liquid to an ordinary differential equation for the 
bubble radius as function of time. 

Contrast agent bubbles have diameters much smaller than the wavelength 
of the ultrasound field. Hence, only such small bubbles are considered, with 

ka « 1, (3.8) 

where k is the acoustic wavenumber and a is the bubble radius. 
The sound radiated from bubbles oscillating at higher shape modes, for 

low values of ka, was studied by Strasberg in 1956 [160]. He found that the 
sound radiated from the bubble is dominated by the zeroth order oscillation 
mode, that is, the spherically symmetric volume pulsation. The contribution 
to the radiated field from the higher order shape modes is negligible compared 
to the contribution from the zeroth mode. 

Bubbles with size comparable to the wavelength of the sound was stud­
ied by Nishi in 1975 [124], decomposing the incident and scattered waves in 
spherical Bessel and Hankel functions. Later, Ye [170] used this approach to 
investigate theoretically the contribution from higher order modes to the scat­
tering of sound from Albunex. Ye's results (e.g. Figure 5 in Reference [170]) 
show that for low values of ka, the scattering is dominated by the spherically 
symmetric, zeroth order oscillation mode, in accordance with the earlier re­
sults of Strasberg. A summary of nonspherical bubble oscillations has been 
given by Prosperetti [142]. 

The treatment in this chapter is limited to bubbles surrounded by a liquid 
of infinite extent. Wall effects are not included. Bubbles in a tube were studied 
by Chen and Prosperetti [16]. Their approach might be useful when studying 
contrast agent bubbles in capillaries with diameter close to that of the bubble. 
Such studies are not included in this thesis. 

Equations of State 

The equations of state establish a link between changes in pressure p, density 
p and enthalpy h per unit mass of the liquid. The equations are formulated as 
partial derivatives under constant entropy, following the common assumption 
in acoustics that the processes are adiabatic. This adiabatic approximation is 
used consistently for the acoustic wave in the liquid surrounding the bubble. 
For the dynamics of the gas inside the bubble, the adiabatic model is not ade­
quate. A model for the dynamics of the gas was given in Chapter 2, for linear 
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oscillations. In most situations involving !LID-sized bubbles and MHz-frequency 
ultrasound, the gas behaves closer to isothermally than adiabatically. 

The first part of this derivation follows a review by Prosperetti from 
1984 [141]. For the liquid, the two basic equations of state for sound speed c 
and enthalpy h are [82, 83] 

1 1 

p 
(3.9) 

The index S means that the partial derivatives are to be evaluated at constant 
entropy. p is the pressure in the liquid and p is the density. 

The two basic conservation equations for the liquid are the continuity equa­
tion, giving conservation of mass, and the Navier-Stokes equation, giving con­
servation of momentum. 

The continuity equation for the liquid is [82] 

8p at +u'Vp+p'Vu=O, (3.10) 

where u is the velocity vector and t is time. 
Conservation of momentum is given by the Navier-Stokes equation for the 

liquid. The flow is purely radial and irrotational, \7 x u = 0. Bulk viscosity is 
ignored. Under these conditions, the Navier-Stokes equation is [84] 

(3.11) 

were TJ is the viscosity of the liquid. The volume dilation V'u can be reformu­
lated by using the continuity equation (3.10) and the equations of state (3.9) 
to 

1 dp 1 dp 
V'u = --- = ---. 

p dt pc2 dt 
(3.12) 

For irrotational flow, \7 x u = 0 and \72u = V'(V'u), giving 

(3.13) 

This reformulates the N avier-Stokes equation to 

du 4 TJ d'Vp 
p-+'Vp=----. 

dt 3 pc2 dt 
(3.14) 
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Here fit denotes the total, or material, derivative, defined as 

(3.15) 

For liquids of interest, WTJ « pc2 , where w is the highest frequency involved. 
The viscosity term on the right side is small to the second order in 1/ c, com­
pared to the \lp term on the left side. This implies that the contribution from 
viscosity can be neglected in the bulk of the liquid, and the N avier-Stokes 
equation (3.11) is replaced by the Euler equation [82] 

P(~~ + (uV)u) + \lp = 0 (3.16) 

Although the viscosity term was shown to be negligible in the bulk of the 
liquid, viscosity gives a contribution at the surface of the bubble. Viscosity 
will be included into the boundary conditions at the bubble surface. 

Spherical Symmetry and Velocity Potential 

The liquid motion is spherically symmetric. The flow is purely radial and 
irrotational, and the velocity field u(r, t) can be derived from a potential 
<P(r, t) [82], defined by 

u = V<P. (3.17) 

Under spherical symmetry, where u = uer, the equations (3.10), (3.16) and 
(3.17) take the form 

1 (ap ap) 1 a 2 - -+u- +--(ur)=O, p at ar r 2 ar (3.18a) 

au au 1ap 
-+u-+--=0 at ar par (3.18b) 

(3.18c) 

Conservation of mass, (3.18a), is reformulated to an equation in velocity 
potential and enthalpy. Inserting (3.18c) and (3.9) into (3.18a) gives 

(3.19) 
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The Euler equation (3.18b), is integrated from an arbitrary position r in the 
liquid to infinity 

1oo (au au) a<I> 1 2 - + u- dr = --- -(V'<I>) 
r at or at 2 ' 

(3.20a) 

1
00 lap 100 1 

--dr = -dp = -h(r). 
r par r p (3.20b) 

These integrals were evaluated utilizing that the velocity potential <I>(r, t) van­
ishes at r = oo. The enthalpy h(r, t) is defined relative to its value at r = oo, 
so that h(r = oo) = 0. 

This converts (3.18b) to a Bernoulli-equation for the flow of the liquid [82] 

a <I> 
at+ ~(V'<I>) 2 + h(r) = 0 (3.21) 

Equation of Motion for the Liquid 

The continuity equation (3.18a), alternatively (3.19), and the Bernoulli equa­
tion (3.21), together with the equations of state (3.9), from a set of equations 
of motion for the liquid. The only approximation used so far, is neglecting the 
viscosity in the bulk of the liquid. 

These equations are used to formulate equations of motion for the bubble 
surface. The set of equations is summed up for completeness as 

Equations of state 

Continuity equation 

1 
p 

1 (ap ap) 1 a 2 - -+u- +--(ur)=O, 
p at or r 2 or 

n2<I> __!__ (oh "<I> oh) = 0 
v +c2 8t+v or . 

Conservation of momentum, Bernoulli equation 

a <I> 
at+ ~(V'<I>) 2 + h(r) = 0 

(3.22a) 

(3.22b) 

(3.22c) 

(3.22d) 
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Small Variations in p and c: Taylor Expansion 

The enthalpy h, density p and speed of sound care functions of the pressure 
p. The variations are given by the equations of state, (3.9). The variations in 
c and pare small compared to their equilibrium values at infinity, c00 and p00 • 

The enthalpy h(p) and speed of sound c(p) is expressed as a Taylor expansion 
around the equilibrium, p = Poo· 

Following a formulation by Prosperetti [141], the enthalpy is expressed as 

1

p(r) 1 
h(r) = -( )dp 

Poo P p 

=1p(r) (-1 +(q-qoo)( --i-)~p~ + ... )dq 
Poo Poo Poo q r=oo 

(3.23a) 

= P- Poo _ (p- Poo? + 0( -4) 
2 2 coo . 

Poo 2poocoo 

Likewise, the speed of sound c(p) is expanded around its equilibrium value c00 

1 1 8(c-2
) I 

2 = -2 + (p- Poo) 8 + ... 
C Coo P r=oo 

1 P- Poo 8c
2

1 

= c~ - c~ 8p r=oo + · · · (3.23b) 

1 -4 
= -2 + 0( Coo ) . 

Coo 

This results in expressions for enthalpy h and speed of sound c correct to the 
second order in 1 I c 

(3.24a) 

(3.24b) 

(3.24c) 

Equations of Motion for the Liquid 

The expressions for enthalpy, (3.24a), and speed of sound, (3.24b), are inserted 
into the continuity equation (3.22c) and the Bernoulli-equation (3.22d). This 
results in equations correct to the second order in 1 I c 
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Continuity equation 

V'2<I> + _1_ (ap + a<I> ap) = 0' 
C~Poo at ar ar (3.25a) 

Bernoulli-equation 

(3.25b) 

Linear Wave Equation 

If the pressure and velocity amplitudes are small, only the lowest order terms 
from the equations above need to be considered. This means that the liq­
uid is treated as compressible and linear, and the equations of motion are 
approximated as 

2 1 ap 
V' <I> + -2-!:) = 0 ' 

C00 p00 ut 

a<I> + P - Poo = O . 
at Poo 

(3.26a) 

(3.26b) 

These equations can be combined to yield the linear wave equation in the 
velocity potential <I>(r, t) 

(3.26c) 

3.2.1 Incompressible Liquid: The Rayleigh-Plesset Equation 

The first studies of bubble oscillations are due to Lord Rayleigh [143]. The 
resulting nonlinear differential equation for the bubble surface is commonly 
called the Rayleigh-Plesset equation. This is the simplest, most basic nonlinear 
equation of motion for a gas bubble in a liquid. 

Treating the liquid as incompressible is equivalent to keeping terms to the 
zeroth order in the acoustic Mach-number M = a/c for the bubble surface. 
This requires the bubble wall velocity a( t) to be small compared to the speed 
of sound c in the liquid. For moderate oscillation amplitudes, this assumption 
is fulfilled. 

The Rayleigh-Plesset model does not include energy loss caused by the ra­
diation of sound. There is no propagation of sound energy in an incompressible 
liquid. This may seem as a rather strong limitation. However, according to 
the results of the linear theory in Chapter 2, acoustic radiation is not the main 
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source of energy loss from the bubble. Damping from viscosity in the liquid 
is included, and this is normally larger than the radiation damping. Radia­
tion damping is small for small bubbles at low frequencies. Acoustic radiation 
starts to become an important source of damping for ka ~ 0.1. For frequency 
5 MHz, this means that acoustic radiation damping becomes important for 
bubble diameters above about 10 J-tm. 

Basic Equations 

The equation of state (3.9) for an incompressible liquid is 

p = constant, (~;)s =0. (3.27) 

When the density pis constant, the other basic equations are simplified to 

Continuity equation, (3.22b) or (3.22c) 

or 

Enthalpy, from (3.23a) by setting p =constant 

h(r) = p(r)- Poo . 
p 

Bernoulli-equation, from (3.22d) 

(3.28a) 

(3.28b) 

(3.28c) 

p =constant 

Figure 3.2. Illustration of a bubble in liquid. a(t) is the bubble radius, PL(t) 
is the pressure in the liquid at the bubble surface, p00 is the pressure in the 
liquid far from the bubble, and p is the density of the liquid. 
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Solution at the Bubble Surface 

The continuity equation (3.28a) and the Bernoulli equation (3.28c) are solved 
to obtain an equation of motion for the bubble radius a= a(t). The boundary 
conditions at the bubble surface are 

u(r =a) = o<I> 1 =a, 
or r=a (3.29) 

p(r =a)= PL. 

The continuity equation (3.28a) requires the velocity u(r, t) and the velocity 
potential <I>(r, t) to be of the form 

f(t) 
u(r, t) = - 2- , 

r 
<I>(r,t) = _f(t)' 

r 
(3.30) 

where f(t) is an arbitrary function of time. The partial derivative of <I>(r, t) 
with time is 

o<I>(r, t) f'(t) 
ot r 

(3.31) 

The boundary conditions at the bubble surface, (3.29), together with (3.30) 
give the velocity a(t) and acceleration i:i(t) of the bubble surface 

. f(t) 
a=-2-, 

a 

i:i = !!:__ (f(t)) = f'(t) - 2f(t).!!__. 
dt a2 a2 a3 

(3.32a) 

(3.32b) 

By its definition, (3.30), f ( t) = ur2 , and f' ( t) can be expressed by the position, 
velocity and acceleration of the bubble surface as 

f '(t) 2 .. + 2 ·2 =a a aa . (3.33) 

Inserting this expression for f'(t) into the Bernoulli equation (3.28c) gives the 
velocity u(r, t) and pressure p(r, t) at an arbitrary radius r in the liquid as 

a
2

i:i + 2aa
2 

_ ~u2 + Poo- p(r) = 0 . 
r p 

(3.34) 

The equation of motion for the bubble surface is obtained by setting r = a(t). 
This relates the radius a(t), velocity a(t) and acceleration i:i(t) of the bubble 
surface to the difference between the pressure PL(t) at the bubble surface and 
the pressure p00 (t) in the liquid far from the bubble 

.. + 3 • 2 + Poo - PL _ 0 aa 2a - . 
p 

(3.35) 
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This is commonly called the Rayleigh-Plesset equation for the oscillating bub­
ble. It is based on the work by Lord Rayleigh from 1917 [143], who studied 
the collapse of vapor-filled cavities around ship propellers. 

A driving acoustic field was included in 1949 by Plesset [133], by letting 
the background pressure p00 vary with time as Poo = Po+ Pi ( t). Here, Po is the 
static background pressure and Pi(t) is the driving sound field. This results in 

.. + 3 • 2 + Po + Pi ( t) - P L _ O aa 2a - . 
p 

(3.36) 

Extensions by Noltingk and Neppiras [125, 122] and by Poritsky [137] have 
added the effect of a gas inside the bubble, a constant vapor pressure, a surface 
tension, and liquid viscosity. These effects are not included in (3.35), as this 
describes the motion of the liquid only, with the pressure PL(t) at the bubble 
surface as a boundary condition. The contributions from the gas and from 
the viscosity will be included into the expression for the pressure PL(t). This 
expression will also contain the effect of a shell surrounding the bubble. 

This approach makes it easier to separate various models for the motion 
of the liquid, and to replace the gas-liquid interface with a shell. 

Scattered Sound Field 

The Bernoulli equation (3.28c) gives the pressure as function of velocity po­
tential as 

(
a<I> 1 2) p(r)- Poo = -p 8t + 2(\l<I>) · (3.37) 

Inserting the expressions (3.30) and (3.31) for f(t) and f'(t) gives the velocity 
and the pressure in the liquid, expressed by f(t), as 

p(r) _ Poo = P(f'(t) _ j2(t)) . 
r 2r4 (3.38) 

The expressions (3.32a) and (3.33) for f(t) and f'(t) are inserted to obtain the 
the pressure field as function of the radius a(t), velocity a(t) and acceleration 
a of the bubble surface 

(
a2a + 2aa2 a2a4

) 
p(r)- Poo = p r - -2-r4- . (3.39) 

Only the far-field part of the pressure field is of interest when receiving scat­
tered energy from the bubble 

I 
a2a + 2aa2 

Ps(r, t) = (p(r)- Poo) = p---
Far-field r 

(3.40) 
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This expression requires the bubble wall acceleration a to be calculated. Nu­
merical differentiation can easily become inaccurate and unstable. To over­
come this, (3.40) is reformulated using the equation of motion (3.35), to 

Ps(t)l = ~ (!pa2 + PL(t)- Pco(t)) . 
Far- field r 

(3.41) 

3.2.2 Linear Propagation 1: Trilling Model 

Several different formulations exist for the equation of motion of an oscillating 
bubble, derived from a "Synthesis of incompressible and acoustic approxima­
tions" [141]. In addition to the Rayleigh-Plesset equation, commonly used 
models are those due to Trilling [162] and to Keller et al. [68, 69]. 

This section derives the Trilling model. The derivation is based on a paper 
by Trilling from 1952 [162]. Trilling in turn refers to work by Herring [54] and 
by Kirkwood and Bethe [75], studying gas bubbles from underwater explosions. 
The Trilling model was used by Chin to model contrast agent bubbles in 
1997 [18, 17]. 

Basic Equations 

The Trilling model is based on the acoustic approximation. The speed of sound 
in the liquid surrounding the bubble is assumed constant, that is, independent 
of acoustic pressure. The linear wave equation is valid. In this approximation, 
the equation of state (3.9) takes the form 

(aap) = 
1
2 = i- =constant. 

p S c ceo 
(3.42) 

The oscillating bubble radiates a wave that follows the linear wave equation, 
(3.26c). With only a diverging spherical wave, the linear wave equation can 
be written 

(3.43) 

with the general solution 

1 
<I>(r, t) =- f(t- rjc), 

r 
(3.44) 

where f(x) is an arbitrary function. 
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The Bernoulli-equation (3.22d) is differentiated with time to give 

a<P 1 2 - = --u - h 
at 2 ' 

(3.45a) 

a2 <P au ah 
at2 = -u at - at . (3.45b) 

Likewise, the wave equation for diverging spherical waves, (3.43), is differen­
tiated with time to give 

(3.46) 

The differentiated Bernoulli and wave equations, (3.45b) and (3.46), are com­
bined to give 

(3.47) 

The density p as function of pressure p is found from the equation of state 
(3.42) to 

p- Poo 
P = Poo + 2 ' c 

(3.48) 

where the speed of sound c is a constant. This expression for the density 
p(p) is inserted into the enthalpy integral (3.23a), which can now be evaluated 
exactly 

1
p(r) 1 

h(r) = -( )dp 
Poo P p 

21p(r) 1 2 P- Poo = c 2 dp = c ln ( 1 + 2 ) . 
Poo C Poo + P - Poo PooC 

(3.49) 

For liquids such as water, pc2 ~ 109 Pa. This is much greater than the acoustic 
pressures involved, and (3.49) can be simplified to 

h(r) = p(r)- Poo, 
Poo 

(3.50) 

This result is correct to the first order in 1/ c. It is equal to the result in 
(3.24a), which was derived from an expansion in powers of 1/c. 

The enthalpy, (3.50), is differentiated with time to give 

ah = ap .!!_ 1p ~dp = ap_1_ ~ ap_1_ 
at at dp Poop at p(r) at Poo ' 

(3.51) 
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which is equal to the result of the series expansion, (3.24c). 
This expression for the enthalpy h( r) is inserted into the Bernoulli equation 

(3.47), and an equation of motion for the liquid is achieved 

r (1 - _::) au - lu2 + Poo - p - !___ ap = 0 . (3.52) 
c at 2 Poo pc 8t 

This equation of motion is for a fixed coordinate r. What is sought, is an 
equation of motion for the bubble surface. To achieve this, (3.52) is converted 
to an equation of motion at the bubble radius r = a(t), which varies with 
time. This requires the partial derivatives of u and p with respect to space 
and time to be expressed by the motion of the bubble wall, a(t), a(t) and ii(t). 

The conservation equations for mass, (3.18a), and momentum, (3.18b), and 
the definitions of the total time derivatives of pressure and velocity constitute 
four equations. These four equations combined give the partial derivatives of 
p and u with respect to t and r. 

The continuity equation (3.18a) is reformulated, using the relations 

ap dp ap 1 ap ap 1 ap 
- --
at dp at ar 

The resulting four equations for the four partial derivatives are 

1 ap u ap au 2u 
--+--+-+-=0 
pc2 at pc2 ar ar r 

au au 1 ap 
-+u-+--=0 
at ar p ar ' 

They have solution 

ap . . .. 
at = PL + paa 

au .. 2a2 a . 
- =a+-+-PL, at a pc2 

ap . ap dpL . 
at +a ar = dt = PL' 
au . au da . 
at + a ar = dt = a . 

ap .. 
ar = -pa' 

au a 1 . 
-=-2---PL· 
ar a pc2 

Equation of Motion for the Bubble Surface 

(3.53) 

(3.54) 

(3.55) 

The expressions for ~~ and ~~ from (3.55) are inserted into the equation of 
motion (3.52). This gives an ODE for the bubble surface a(t) 

.. ( 1 2a) 3·2(1 4a) a ( 1 a (a)2). Poo-PL O aa - - +-a --- -- -- + - PL + = , 
c 2 3 c pc c c p 

(3.56) 
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where Poo is rewritten as p, which now denotes the equilibrium density of the 
liquid. The Trilling model is derived from the acoustic approximation, the 
speed of sound is modeled as constant. It is only meaningful to the first order 
in the acoustic Mach-number M = ajc. Terms of order 1/c2 are removed from 
(3.56), reducing it to 

.. ( 1 2a) 3·2(1 4a) a. Poo-PL 0 aa - - +-a - -- - -pL + = . 
c 2 3 c pc p 

(3.57) 

This equation of motion for a gas bubble was published by Trilling in 1952 [162]. 
For an incompressible liquid, c = oo, and (3.57) is converted to the Rayleigh­
Plesset equation (3.35). 

There are two differences between the Trilling model (3.57) and the Rayleigh­
Plesset model (3.35). The factors (1- 2a/c) and (1-1a/c) change the inertia 
of the liquid for high velocities, when the bubble wall velocity a becomes com­
parable to the speed of sound c in the liquid. If the bubble wall velocity a 
exceeds c/2 the factor (1- 2%) over-compensates, giving an unphysical nega­
tive inertia, which can cause the solution to become unstable. This unphysical 
result is caused by the approximation of constant speed of sound, or constant 
compressibility. It predicts negative volume for Mach numbers larger than !· 
Hence, the Trilling model is only meaningful for acoustic Mach-numbers much 
smaller than ! . 

A more important improvement of the Trilling model is the term containing 
PL· This term predicts acoustic damping, the oscillations are damped because 
the bubble radiates acoustic energy as it oscillates. 

Driving Sound Field 

Trilling' original work [162] considered only the sound radiated from the oscil­
lating bubble. A driving sound field was not included. A driving sound field 
is included by letting the background pressure p00 vary with time as 

Poo =Po+ Pi(t) , (3.58) 

where Po is the static background pressure and Pi(t) is the driving sound field. 
A varying background pressure p00 changes the expression (3.51) for the time 
derivative of the enthalpy to 

(3.59) 

This causes an additional term ;cPi in the equation of motion for the liquid, 
(3.52), and in the resulting ODE for the bubble surface. Hence, with a driving 
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pressure Pi(t), the Trilling equation is modified to 

.. ( 1 2a) +3·2(1 4a) a. +a. (t)+Po+Pi(t)-PL _ 0 aa - - -a - -- - -PL -pi - · 
c 2 3 c pc pc p 

(3.60) 

This equation is equal to the model proposed by Chin (Equation (6) in Ref­
erence [18]), if the terms of second and higher order in 1/c are removed from 
Chin's equation. 

Scattered Sound Field 

The velocity potential <I>(r, t) represents a diverging spherical wave. It obeys 
the wave equation (3.43), and has solution (3.44) 

,;n( ) = f(t-rjc) 
'±' r, t . 

r 
(3.61) 

The velocity potential <I>(r, t) and the enthalpy h(r, t) are given by (3.22d) and 
(3.50) as 

B<I>(r, t) = -h- .!u2 
at 2 ' 

h(r, t) = p(r, t) - Poo . 
p 

(3.62) 

These equations are approximately satisfied by a potential <I>(r, t) of the form 

(3.63) 

The scattered velocity field u(r, t) and pressure field p(r, t) are found from the 
velocity potential (3.61) and (3.62) to 

a<r> f(t- (r- ae)/c) f'(t- (r- ae)/c) 
u = - = - - ~-----'---'-:______:__ 

or r2 rc ' 
a<r> 1 2 

p(r)- Poo = -p7Jt + 2u . 

(3.64a) 

(3.64b) 

The term ~u2 decays as 1/r2
, and is a near field effect. Only the far field 

terms are of interest when receiving sound scattered from the bubble. The 
scattered sound pressure in the far field is 

I 
8<I> 

Ps(r) = p(r)- Poo = -p7Jt. 
Far- field 

(3.65) 
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The expression (3.63) for the velocity potential <I>(r, t) gives the scattered 
pressure p8 (r, t) in the far field of the bubble as 

r-ae 
T=t---. 

c 
(3.66) 

This is equal to the expression for the scattered field in the Rayleigh-Plesset 
equation, (3.41), except that the time is replaced by the retarded time T = 
t- (r- ae)/c. For the incompressible Rayleigh-Plesset model, the speed of 
sound is infinite, and there is no difference between the timet and the retarded 
timeT. 

3.2.3 Linear Propagation II: Keller-Miksis Model 

Another approach based on essentially the same assumptions as the Trilling 
model, is due to Keller and Kolodner [68]. This was later extended by Epstein 
and Keller [40] and modified by Keller and Miksis [69] to include a driving 
sound field. 

This approach combines the Bernoulli equation (3.22d) with the linear 
wave equation (3.26c), under the assumption of a constant speed of sound in 
the liquid. The basic equations are 

Bernoulli equation. (3.67a) 

Linear wave equation. (3.67b) 

The speed of sound c and the enthalpy h are taken from (3.22a) and (3.23a), 
setting the speed of sound c independent of the pressure 

( ~;) 
8 

= c
1
2 = constant 

h = p(r)- Poo 
Poo 

Speed of sound. (3.67c) 

Enthalpy. (3.67d) 

The expression (3.67d) for the enthalpy his correct to the first order in 1/c. 
The boundary conditions at the bubble surfacer= a(t) are 

p(a, t) = PL(t), 

o<I>(a,t)- ( ) - .() or - u a, t - a t . 
(3.68) 
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The equations above are combined to give a set of equations for the velocity 
potential <P( a, t) at the bubble surface 

8<I> 1 ° 2 
at+ 2a + h = 0, 

82 <I> 1 82 <I> 
----=0 
8r2 c2 8t2 

8<I> 0 

8r =a. 

The general solution to the wave equation (3.69b) is 

<I>(r,t) = JI(t-rjc) + h(t+r/c), 
r r 

(3.69a) 

(3.69b) 

(3.69c) 

(3.70a) 

where h(x) and f2(x) are arbitrary functions. The partial derivatives with 
time and radius are 

(3.70b) 

(3.70c) 

These expressions are inserted into the Bernoulli equation (3.69a), using (3.69c) 
to replace the potential. The results are combined and f{ is eliminated, giving 

c(h +h)= a2 (~a2 - ca +h)+ 2af~. (3.71) 

Differentiation with time gives 

c ( 1 - ~) (!{ + f~) 

= ca ( - 2a 
2 

( 1 - ~ ~) - aa ( 1 - ~) + 2 ~ h + ~h) + 2a ( 1 + ~) f~ . ( 3. 72) 

The time derivatives of h and f2 are eliminated by (3.69a), formulated as 

f{ + f~ + ~a,2 + h = 0 0 

a 
(3.73) 

This is inserted, the terms are sorted, and an equation of motion for the bubble 
surface a(t) is obtained 

a a ( 1 - ~) + ~a 2 
( 1 - k ~) - h ( 1 + ~) - ~ h 

- ~ (1 + ~) f~(t + ajc) = 0. (3.74) 



3.2 Equations of Motion for the Liquid 

The equation above is as formulated by Prosperetti [141]. It is equivalent to 
the equation derived by Keller and Miksis [69], but viscosity terms from the 
bulk of the liquid are neglected. The omission of the viscosity in the bulk of the 
liquid was justified in (3.11) to (3.16). A driving acoustic pressure is included 
by the term containing f~ ( t + a I c), as h ( t + rIc) represents a converging 
spherical wave. 

Driving Acoustic Pressure 

The driving acoustic field is described by a velocity potential <I>i(r, t). The driv­
ing field is decomposed into spherical harmonics and spherical Bessel functions, 
as described e.g. in Morse and Ingard [117]. The bubble oscillation is purely 
radial, and zeroth term in the decomposition is the only term interacting with 
this radial oscillation mode. The zeroth term is expressed as 

ffi. ( ) _ h(t +ric)+ h(t- ric) 
'±'tO r, t - . 

r 
(3.75) 

The potential of the driving field <I>i(r, t) must exist in the bubble center, 
r = 0. This implies that h = - h, and the driving acoustic field <I>w(r, t) is 

ffi. ( ) _ h(t+rlc)-h(t-rlc) 
'±'tO r, t - . 

r 
(3.76) 

The bubble diameter is small compared to the wavelength of the driving pres­
sure field. This allows only small variations in the function h over a distance 
equal to the bubble diameter 2a. The variation in hover the bubble diameter 
can therefore be approximated as 

_h-'-( t_+_a-'-1-'c )_-_f_2-'-( t_-_a_.:._l_.:_c) ~ ~ f~ ( t) . 
a c 

(3.77) 

The driving acoustic field is treated linearly. The driving pressure Pi (a, t) at 
the bubble surface is calculated from the velocity potential <I>i(a, t) to 

( ) 8<I>w I 2p "( ) Pi a,t = -p-- = --f2 t . ot r=a c 
(3.78) 

This expression is inserted into (3.74) to include the driving acoustic pressure 
explicitly. The enthalpy h is expressed by (3.67d), correct to the first order 
in 1lc. The driving acoustic field <l>w vanishes at r = oo, giving P= = po, the 
hydrostatic background pressure . 

.. ( 1 a) 3·2(1 1a) aa - -; + 2a - 3 -; 

( a) p L - Po - Pi ( t + a I c) a . 0 
- 1 +- - -pL = · 

c p pc 
(3.79) 
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This is an equation of motion for the bubble, including a driving acoustic field 
Pi· This model is commonly referred to as the Keller-Miksis model [69]. 

The Keller-Miksis model possess the same basic features as the Trilling 
model, and the comments given to the Trilling model apply also here: The 
factors of type (1 ± %) change the inertia due to the compressibility of the 
liquid, but can cause the solution to become unstable for high Mach-numbers. 
The term containing PL introduces damping from acoustic radiation. 

Scattered Sound Field 

The scattered sound field <l> 8 (r, t) is defined as the difference between the total 
field <I>(r, t) and the incoming field <I>i(r, t) as 

<I> 8 (r, t) = <I>(r, t)- <I>i(r, t). (3.80) 

This is expressed by (3.70a) and (3.76) as 

<I> 8 (r, t) = ~ (h(t- r /c)+ h(t- rjc)) . (3.81) 

The scattered pressure p8 (r, t) is given by the velocity potential <I> 8 (r, t) as 

( 
a<I> s 1 ( a<I> s) 2) Ps(r, t) = -p at+ 2 Br . (3.82) 

The last term, 88~s, give rise to terms decaying as 1/r2 and faster. These near 
field effects do not contribute to the scattered energy from the bubble. The 
scattered pressure in the far-field is 

Ps(r, t)lfar-field = -p B!s = -~(f{(t- rjc) + f~(t- rjc)). 

The difference between the derivatives of h is found from (3. 77) to 

f~(t + ajc)- f~(t- ajc) = 
2
a f{(t), 
c 

which is combined with the Bernoulli equation (3.73) to yield 

f{(t- ajc) + f~(t- a/c) =-a ( ~a2 + h(a, t) + ~f{(t)) . 

(3.83) 

(3.84) 

(3.85) 

Note that in (3.73), f{ = f{(t- r/c) and f~ = f~(t + rjc). f{(t) is expressed 
by the driving acoustic pressure Pi(t) from (3.78). This gives 

(3.86) 



3.2 Equations of Motion for the Liquid 

where the enthalpy at the bubble surface h(a, t) is taken from (3.67d). 
The time origin is changed by letting t -+ t + ( T - a)/ c. The expression 

(3.86) for f{ + f~ is inserted into (3.83). This gives the scattered pressure in 
the far-field as 

(3.87) 

This result for the scattered field is equal to the results of the incompressible 
Rayleigh-Plesset model, (3.41), and of the Trilling model, (3.66), except for 
the shift in time scale. The difference between the three models is in the 
equations of motion. These are are slightly different, and may give different 
solutions for a(t) and PL(t). 

3.2.4 Comparison between the Liquid Models 

Three models for the liquid around the bubble have been presented 

• Rayleigh-Plesset Incompressible liquid 

• Trilling Linear compressibility, finite and constant speed of sound 

• Keller-Miksis Linear compressibility, finite and constant speed of sound 

Other models for the oscillation of the liquid exist. The model by Gilmore [50] 
goes one step further than the presented models, taking into account a pressure­
dependent speed of sound in the liquid. The Gilmore equation does not re­
quire the bubble wall velocity to be small compared to the speed of sound 
in the liquid, and is better at handling large acoustic Mach-numbers. It is 
especially useful when studying the extreme velocities associated with single 
bubble sonoluminescence. The Gilmore model has not been tested or im­
plemented here. Another approach to the nonlinearly oscillating bubble was 
given by Flynn [45, 46]. Flynn's approach includes thermal processes in the 
gas, resulting in a more complex mathematical formulation, and has not been 
tested. 

The Rayleigh-Plesset model is frequently used in the literature. It assumes 
an incompressible liquid, and is only useful for small acoustic Mach-numbers, 
where 

M=l~l«l, (3.88) 

where a is the bubble wall velocity and c is the speed of sound in the liquid. 
In most situations involving ultrasound contrast agents, this requirement is 
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fulfilled. It can be violated in some extreme cases, during very short time­
intervals near the end of the contraction cycle of the oscillation. The major 
weakness with the Rayleigh-Plesset model is that it does not include damping 
from acoustic radiation. This becomes important at larger bubble diameters, , 
above about 10 p,m, and at high frequencies, above about 10 MHz. For linear 
oscillations, the contribution from radiation damping is compared with other 
damping mechanisms in Chapter 6, see Figure 6.14 on page 155 and Figure 
6.15 on page 156. 

The Trilling and Keller-Miksis models go one step further than the Rayleigh­
Plesset model, by including a finite but constant speed of sound in the liquid. 
The main advantage by going from the Rayleigh-Plesset to the Trilling or 
Keller-Miksis model, is including the term containing PL, which accounts for 
radiation damping. The terms of type (1- ajc) give small improvements at 
lower Mach-numbers, but over-compensate and may cause numerical instabil­
ity for Mach-numbers approaching unity. 

For the Keller-Miksis model, the driving acoustic pressure Pi(t) was in­
cluded explicitly in the derivation. In the Rayleigh-Plesset and Trilling mod­
els, a driving acoustic pressure was included as an addition to the background 
pressure p00 • 

The Trilling and Keller-Miksis models were derived from the same as­
sumption; constant speed of sound in the liquid. Prosperetti [141] has shown 
that the differences between these two models are of second order in aj c. It is 
therefore difficult to state which of the two models are "best" at describing the 
behavior of the liquid. One difference is that the unphysical negative inertia 
term occur for a= ~c in the Trilling model, but at a= c, in the Keller-Miksis 
model. This might be a reason for preferring the Keller-Miksis model. 

An intermediate model that includes radiation damping, but avoids the 
numerical problems with the Trilling and Keller-Miksis models, is a Modified 
Rayleigh-Plesset equation. This has been used by Hilgenfeldt et al. [55]. The 
radiation damping term from the Trilling and Keller-Miksis equations is in­
cluded, but the (1- a/c)-terms are omitted. This modified Rayleigh-Plesset 
equation takes the form 

··+3·2 PL-po-Pi(t) a. O aa -a - - -pL = . 
2 p pc 

(3.89) 

The various models have been tested for shell-encapsulated bubbles, for 
frequencies and diameters relevant in medical ultrasound imaging. The four 
different models yielded very similar results in all situations. Small differences 
were found for frequencies above 10 MHz, where the Rayleigh-Plesset model 
tends to predict a few decibels higher scattered power than the others do. 



3. 3 Viscous Damping in the Liquid 

For high driving pressures and low frequencies, the velocity in the com­
pression cycle can get very large. Velocities comparable to the speed of sound 
in the liquid were found during very small fractions of the oscillation cycle, for 
some extreme combinations of low driving frequency and high driving ampli­
tude. In these situations, the Trilling and Keller-Miksis models could become 
numerically unstable. The Rayleigh-Plesset models handle this without nu­
merical problems, as the Mach-number in these models is always zero. But as 
the surface velocity approaches and perhaps exceeds the speed of sound, the 
assumption behind the model is violated. 

These large velocities occur in a very short fraction of the total oscillating 
cycle, and the results are assumed to be reliable outside this part of the cycle. 
But since high Mach-numbers have been found, an improved model should be 
considered, including a pressure-dependent speed of sound in the liquid. The 
Gilmore model should be a good choice for these high Mach-numbers, but has 
not been tested here. 

3.3 Viscous Damping in the Liquid 

For for spherically symmetric motion, it was shown in Chapter 3.1 that viscous 
damping vanishes in the bulk of an incompressible liquid. In a compressible 
liquid, the viscosity causes a damping term of second order in 1/c. Terms 
of this order are neglected in the models considered. Hence, damping from 
liquid viscosity can be ignored in the bulk of the liquid. But viscous damping 
forces can give significant contributions at the surface of the bubble. This 
section introduces viscous damping from the liquid as a boundary condition 
to the equations of motion presented in the previous sections. The effect of 
the viscosity is on the pressure PL(t) at the bubble wall. 

The liquid flow around the oscillating bubble is spherically symmetric and 
purely radial. The angular components and the angular derivatives of the 
velocity vector u disappear, giving 

Ur = u(r), uo = uq; = 0, 
au au 
ae =a¢= 0 · 

The components of the rate-of-strain tensor Dij are [79] 

Ur 
Doo = Dq;q; =-' 

r 
Dij = 0 , i -=/= j . 

(3.90) 

(3.91a) 

The trace of the rate of strain velocity tensor is the rate of volume dilation [147] 

TrD = L Dii = V'u. (3.92) 
i=r,O,¢; 
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The liquid is modeled as Newtonian. Only shear viscosity is considered, bulk 
viscosity is neglected. The components of the stress tensor Tij are expressed 
by the rate of strain tensor Dij as [147] 

~i = -p + 2r/L ( Dii - ~ Tr D) , 
Tij = 2r/LDij = 0 , i f. j , 

(3.93) 

where TJL is the shear viscosity in the liquid. This gives the radial and angular 
components of the stress tensor 

(3.94a) 

(3.94b) 

From (3.93), it is seen that the trace of the stress tensor ~j is -3 times the 
hydrostatic pressure p 

TrT = :2:.:: Tii = -3p. (3.95) 
i=r,O,¢ 

3.3.1 Incompressible Liquid 

For an incompressible liquid, there is no volume dilation, Vu = 0, and (3.92) 
simplifies to 

TrD = Vu = 0. 

The components of the stress tensor T from (3.94a) and (3.94b) are 

(3.96) 

(3.97a) 

(3.97b) 

The relation (3.95) between the trace of Tij and the hydrostatic pressure p 
gives the radial component Trr of the viscous stress tensor as 

(3.98) 

A similar derivation of the viscous stress can be found in the book by Leighton [92], 
using the pressure tensor instead of the stress tensor. 



3.4 Pressure Difference across a Spherical Shell 

3.3.2 Compressible Liquid: Acoustic Approximation 

For a compressible liquid, pressure variations will cause volume dilation. In 
this situation, V'u -=f 0, but is given by (3.12) as 

1 dp 1 dp 
V'u= --- = ---. 

p dt pc2 dt 
(3.99) 

The components of the stress tensor at the bubble surface are given by (3.94a) 
and (3.94b). These are combined with (3.95) to obtain the radial component 
Trr 

u 4 
Trr = -p- 4rl£- + 3'flL V'u. 

r 

The volume dilation V'u is replaced by (3.99), giving 

u 4 1 dp 
Trr = -p- 4TJL-- -TJL-- · 

r 3 pc2 dt 

(3.100) 

(3.101) 

The last term in this expression is small to second order in 1 I c, and is ne­
glected. The resulting expression for the stress tensor of the compressible 
liquid is equal that for the incompressible liquid, 

u 
Trr = -p- 4TJL- · 

r 
(3.102) 

This gives the radial component of the stress tensor at the bubble surface, 
where r = a(t) and u = a(t) 

(3.103) 

where PL(t) is the pressure at the bubble surface. The result above is valid to 
the first order in 1 I c. 

The expression (3.103) for Trr is used to obtain a boundary condition for 
the motion of the liquid at the bubble surface. Trr is required to be continuous 
at the liquid-bubble interface. 

3.4 Pressure Difference across a Spherical Shell 

The gas bubbles used in ultrasound contrast agents are normally stabilized by 
a thin shell. The shell can influence the mechanical properties of the bubble 
by increasing its stiffness and by introducing added viscous damping. 
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The purpose of this section is to develop a theoretical model for the in­
fluence of a shell. The shell is described as a visco-elastic solid, using the 
Lame-coefficients A and J-L and shear viscosity 'f]s. 

Models for the tension in an elastic spherical shell can be found in text­
books in continuum mechanics, such as the book by Lai et al. [81]. Fox and 
Herzfield [47] postulated in 1954 that gas bubbles in the ocean were stabilized 
by an organic skin, and presented a theoretical model for the effect of this 
skin on the resonance frequency of the bubbles. The hypothesis was later 
withdrawn. But the model for the increased resonance frequency due to a 
shell is still useful for other types of encapsulated bubbles. The effect of 
the shell on the contrast agent Albunex was studied in 1992 and 1993 by de 
Jong and Hoff [29, 28], using a linear model. Church [22] in 1995 published 
a nonlinear model for the effect of a shell on contrast agent bubbles. He 
used a slightly different approach than what is done in this section, modeling 
an incompressible shell of arbitrary thickness. In 1998 and 1999, Frinking 
et al. [48, 49] presented a different nonlinear model for the contrast agent 
Quantison. They modeled the shell-encapsulated bubbles as particles with a 
constant bulk modulus, based on the linear model by Hoff et al. [61]. 

3.4.1 Shell Elasticity 

The motion of an elastic solid is described by the Navier equation [148]. In 
absence of body forces, this is 

du 2 
P dt = f-Lv e +(A+ J-L)v(ve), (3.104) 

where A and f-Lare the Lame-coefficients, e is the strain vector, u is the velocity 
field and p is the density of the solid. The shells studied here are thin. The 
mass of the shell is negligible compared to the dynamic mass m = 4n pa3 of 

Figure 3.3. Definition of the radial stress and pressures on the bubble shell. 
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the moving liquid, (2.21) on page 18. The inertia of the shell is neglected by 
letting p--> 0. 

The bubble oscillation is purely radial, giving a strain e that is spherically 
symmetric and radial. The angular derivatives and the tangential components 
of e vanish, giving 

(3.105) 

The Navier equation (3.104) is transformed to spherical coordinates and the 
inertia of the shell is neglected. The resulting differential equation for the 
radial strain e(r, t) is 

a (2e ae) (>-+2JL)- -+- =0. 
ar r ar 

(3.106) 

The pressure difference across the shell is found from the radial components 
of the stress tensor Tij(r) in the shell. The components of Tij are expressed 
by the Lame coefficients A and JL and by the spatial strain tensor Eij, using 
the generalized Hooke's law [148] 

(3.107) 

where the Kronecker delta bij is 

biJ' = {
1 i = j 
0 i i= j 

(3.108) 

Under spherical symmetry the components of the strain tensor Eij are [79] 

ae 
Err= 8r' 

e 
f.()()= E¢¢ =-' 

r 
Eij = 0 , i # j . 

These are inserted into the expression (3.107) for Tij, giving 

(3.109) 

(3.110a) 

(3.110b) 

(3.110c) 

The components of the stress tensor are expressed by the stresses T1 and T2 
at the inner and outer surfaces of the shell, see Figure 3.3 

(3.111) 
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The difference in radial stress between the inner and outer shell surfaces gives 
the pressure difference across the shell. This difference is calculated from 
(3.110a). Equation (3.106) gives 

(~; + 2~) = C(t) =spatial constant, (3.112) 

which is inserted into (3.110a) to give 

(3.113) 

The difference in radial stress between the outer and inner shell surface is now 
found as 

(3.114) 

where 6 and 6 are the displacements of the inner and outer shell surfaces. 
This expresses the difference in radial stress across the shell as a function 

of the displacements of the two shell surfaces. The relation between 6 and 6 
depends on the elastic properties of the shell material, ,\ and JL· 

The oscillation of contrast agent bubbles is governed by the stress difference 
found in (3.114). The value of the stresses themselves are of less importance. 
Solutions for these stresses Trr(r) and Too(r) inside the shell can be found 
from (3.106), using an approach similar to that in the book by Lai et al. [80]. 
The general solution of (3.106) for ~ = ~(r, t) is 

B 
~=Ar+ 2 , 

r 
(3.115) 

where A and B are arbitrary constants in space. This expression for ~(r) is 
inserted into (3.110a) and (3.110b) and adapted to the boundary conditions 
(3.111). The resulting solutions for the constants A and B are 

3 3 
(3,\ + 2JL)A = T2a~- T~a1 ' 

a2- al 
(3.116a) 

B 
_ 1 aya~(T2- T1) 

2ji, - 2 3 3 . 
a2- al 

(3.116b) 

Insertion into (3.110a) and (3.110b) gives the radial Trr and tangential com­
ponents Too, T¢¢ of the stress tensor as 

(3.117a) 

(3.117b) 
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Two assumptions will be made about the shell: The shell is thin compared 
to the bubble radius, and the shell is incompressible during the oscillations. 

Thin Shell 

The shell is thin compared to the bubble radius, 

ds «a, (3.118) 

where ds = ds(t) is the instantaneous shell thickness. The shell thickness 
may vary as the bubble radius a = a(t) oscillates. The outer shell radius is 
a= a2(t), see Figure 3.3. The inner shell radius a1 is expressed as 

a1 =a-ds = a(1- {3) , with {3 = ds « 1. 
a 

(3.119) 

The expressions (3.117a) and (3.117b) for Trr and Tee are expanded in the 
small quantity {3, keeping terms to the first order. This yields simplified ex­
pressions for the components of the stress tensor, valid for a thin shell 

(3.120a) 

(3.120b) 

These expressions allow the radial stress difference across the thin shell Trr to 
be expressed by the tangential stress Tee in the shell as 

(3.121) 

This well-known result for the pressure difference across a thin shell can be 
derived from geometric arguments of pressure balance, and is found in text 
books of mechanical engineering. 

A model for the tension Tee in the shell as a function of its radial strain 
can be postulated. This model can be used to obtain an expression for the 
stress difference T2- T1 across the shell by (3.121). 

Incompressible Shell 

For an incompressible material, the volume dilation is zero, and the trace of 
the strain tensor E disappears 

TrE = \7~ = 0. (3.122) 
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This reduces (3.106) to 

8~ + 2~ = o. (3.123) 
ar r 

(3.123) is the continuity equation for an incompressible material. It gives the 
relation between radius r and radial strain~ as 

~r2 =spatial constant= 6ai = 6a~, (3.124) 

where a1 and a2 are the inner and outer bubble radii, and 6 and 6 are the 
radial strains at the inner and outer bubble shell surfaces. 

The difference in radial stress Trr between the inner and outer shell sur­
faces, (3.114), can now be expressed by the strain 6 at the outer shell surface 
alone 

T2- T1 = -4p,(
6 - 6 ) = -4p,

6 
(1- (a

2
)

3
) . 

a2 a1 a2 a1 
(3.125) 

A thin shell allows simplification of this expression, by use of (3.119) 

(3.126) 

The incompressible shell model implies that the shell thickness varies to 
keep its volume constant, so that, 

3 3 3 3 t t . t• a 2 - a 1 = a2e - a 1e = cons an In 1me (3.127a) 

which for a thin shell is approximated by 

dsa2 = dsea; =constant, (3.127b) 

where the subscript e denotes values at equilibrium. By these approximations, 
the radial stress difference across a thin, incompressible shell can be expressed 
as 

(3.128) 

The radial strain 6 is the value at the outer bubble surface 

6 = 6 ( t) = a ( t) - ae . (3.129) 

This gives the pressure difference across the shell as function of radius a(t) 

( )4( ) dse ae a 
T2 - T1 = 12p,- - - - 1 

ae a ae 
(3.130) 

This result, for the incompressible shell, can also be derived from the result 
found by Church [22], by letting the shell thickness in his model become much 
smaller than the bubble radius. 
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3.4.2 Comments and Alternative Shell Models 

The shell model was derived from the theory for a linear elastic material. 
The tension in the shell material was modeled by the Lame coefficients, using 
the linear relation (3.107). The derivation that followed ended up with the 
nonlinear relation (3.130). The nonlinearity in this equation comes from the 
geometry of the system, assuming that the material properties stay linear. 
The validity of this combination of linear material and nonlinear geometry is 
questionable. 

An alternative approach would be to postulate a relation between the radial 
strain and the pressure difference, and test this postulate against experiments. 

In addition to the model (3.130), three other models for the stress-strain 
relation in the shell are suggested 

Linear relation The pressure difference is proportional to the radial strain, 
giving 

(3.131) 

This linear relation is appealing as a first order model. It predicts that 
the shell is equally stiff no matter how much it is expanded or con-

in ear 
-3~----~------~----~------~----~ 
-1 -0.5 0 0.5 1.5 

Radial strain (a-a )Ia 
e e 

Figure 3.4. Pressure difference across the shell as function of radial strain. 
The curve marked '4' is the "linear material-nonlinear geometry" model, 
(3.130), '2' is the "intermediate" model, (3.132), 'Exp' is the exponential 
model, (3.133), with xo = !, and 'Linear' is the linear model (3.131). The 
dashed line is the pressure-strain relation for the gas, for comparison. 
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tracted. This models gives no softening of the shell as it expands, and 
it is suspected to overestimate the shell stiffness in expansion. 

Intermediate model An intermediate between the "linear material-nonlinear 
geometry" model (3.130) and the linear model (3.131) is 

dse ae a ( )2( ) T2 - T1 = 12~t- - - - 1 
ae a ae 

(3.132) 

This is a compromise between the two assumptions. The factor ( ae/ a )2 

adds some softening to the shell as it expands, but not so much as in 
(3.130). 

Exponential model An exponential relation between pressure and radial 
strain. This has been found successful in describing the elasticity of 
blood vessel walls. It was suggested used on the shell of contrast agents 
by Angelsen et al. [4]. This model is appealing as it gives softening in 
shell expansion. In addition, it gives a monotonic decrease in pressure 
as the shell is expanded. The exponential relation is formulated as 

a 
x=--1. 

ae 
(3.133) 

The value of the parameter xo should be estimated from the stress-strain 
relationship for the shell at large expansions. Another estimate for xo 
can be found by comparing the exponential shell model with the model 
derived from linear material and nonlinear geometry, (3.130). xo can be 
selected so that the second derivatives at no strain, x = 0, are equal for 
the two models. This gives 

- 1 xo- 8. (3.134) 

It is difficult to assess which is the best of the proposed models without 
good experimental data at large amplitude oscillations. Experimental data 
from measurements at low radial amplitudes give estimates for the values 
around x = 0, hence, for the shear modulus 1-L· 

The pressure-radius curves for these polynomial and exponential shell mod­
els are shown in Figure 3.4. 

3.4.3 Shell Viscosity 

In addition to elasticity, the shell material can also possess viscosity. Viscous 
forces in the shell cause energy to be absorbed as the bubble oscillates, and 
increases the damping of the oscillations. 



3.4 Pressure Difference across a Spherical Shell 

The shell is modeled with a shear viscosity TJS· The radial component of 
the stress tensor in a newtonian liquid under spherically symmetric oscillations 
was found in (3.103) to 

u 
Trr = -p- 4TJs-, 

r 
(3.135) 

were Trr is the radial component of the stress tensor, p is the hydrostatic 
pressure, TJs is the shear viscosity of the shell material, u = Ur ( r, t) is the 
radial velocity, and r is the radial coordinate. 

The shell is modeled as incompressible, and the volume dilation is zero, 

Vu=O, (3.136) 

which under spherical symmetry gives 

[) 2 
or (r u) = 0' or ur2 = constant . (3.137) 

This gives the relation between the instantaneous radii and velocities of the 
shell surfaces as 

(3.138) 

where a1 is the radius of the inner and a2 the radius of the outer shell surface. 
The stress difference across the shell due to viscosity is found from (3.135) to 

T2- T1 = -4TJs (a2 
- a1

) = -4TJs~ (1- (.!!__) 
3

) , 
a2 a1 a a1 

(3.139) 

where a= a2. The shell is thin, with thickness ds «a. This allows simplifi­
cations 

f3 = ds « 1 . 
a 

(3.140) 

This is inserted into (3.139), giving the pressure difference across the shell 
from shell viscosity as 

(3.141) 

The shell thickness and surface velocity are expressed relative to the equilib­
rium bubble radius ae, and the instantaneous shell thickness ds is replaced by 
its equilibrium value dse by (3.127b). The result is 

Se ae a 
T2 -T1 = 127Js- - -. 

d 
( )

4. 

ae a ae 
(3.142) 
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88 Nonlinear Bubble Theory 

As for the shell stiffness models, (3.142) was derived assuming a constant, 
linear material property 'f}S. The nonlinear factor ( ae/ a )4 is a result of the 
geometry of the system. As for the shell elasticity, the validity of this approach 
is questionable. It may be argued that the nonlinear factor ( aef a )4 should 
best be removed, leaving only the first-order term. However, it is physically 
appealing to keep a factor that reduces the influence of the shell as the bubble 
expands. 

An alternative is to postulate how the viscosity contribution from the shell 
changes with bubble radius, and eventually test and verify these postulates 
with experimental results. 

As for the shell stiffness term, an exponential relation for the relation is 
postulated. This takes the form 

a 
X=--1. 

ae 
(3.143) 

An estimate for the constant x1 is proposed by setting it so that the first 
derivative of the exponential model equals the result from the "linear material­
nonlinear geometry", (3.142), for x = 0. This results in 

(3.144) 

The contributions to viscous shell damping for these models are compared 
in Figure 3.5. 

5,-----~~--~----~------~----. 
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Radial strain (a-a )Ia 
e e 

Figure 3.5. Relative contribution to shell viscosity as function of bubble 
radius. The curve marked '4' is the "linear material-nonlinear geometry" 
model, (3.142), 'Exp' is the exponential model, (3.143), with x1 = l, and 
'Linear' is a linear model. 



3. 5 Pressure in the Gas 

3.4.4 Summary: Tension across the Shell 

The models for tension across the shell due to elasticity and viscosity are sum­
marized in the following four different models. The second Lame coefficient 
P,s of the shell, the shear modulus, is rewritten as G s to avoid confusion with 
other quantities denoted by p,. 

Linear material - nonlinear geometry 

dse 1 . 
( )

4 

T2- T1 = 12-· -- (Gsx + r7Sx). 
ae 1 + x 

Fully linearized model 

Intermediate model 

Exponential shell 

where 

a- ae 
x---- ' ae 

. a 
x=-. 

ae 

3.5 Pressure in the Gas 

(3.145a) 

(3.145b) 

(3.145c) 

(3.145d) 

(3.145e) 

The pressure p9 in the gas is calculated from a polytropic gas model. The os­
cillations of interest occur at Megahertz-frequencies, giving typical time scales 
less than a microsecond. It is assumed that no condensation or evaporation 
takes place during the oscillation cycle, and the effect of a constant vapor 
pressure is not included. The vapor pressure of water at body temperature is 
6 kPA or 0.06 atmospheres [101]. This is in any case a small correction to the 
total gas pressure in the bubble. 
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90 Nonlinear Bubble Theory 

The polytropic gas model assumes a relation between gas pressure and 
volume as 

p v~ = constant (3.146) 

where "' is the polytropic gas constant. For adiabatic oscillations, "' = ry, 
the adiabatic constant of the gas. For isothermal oscillations "' = 1. The 
validity of the polytropic assumption, the value of"' and the transition between 
adiabatic and isothermal oscillations has been studied by several authors for 
linear oscillations. A review of this was given in Chapter 2. 

The polytropic law assumes the gas pressure to be uniform within the 
bubble. This is equivalent to saying that the velocity of the bubble surface is 
smaller than the speed of sound in the gas. At large radial oscillation ampli­
tudes, the surface velocity can reach very high velocities during the compres­
sional phase of the oscillation, violating this assumption. These high velocities 
will occur in a very small fraction of the oscillation cycle. In the following, the 
gas is always assumed to follow the polytropic law. 

The value for "' is estimated from linear theory for the bubble diameter 
and driving frequency used. For the bubble diameters and frequencies most 
common in ultrasound contrast agent imaging, this causes "' ~ 1.0, that is, 
isothermal oscillations. 

For a sphere, the polytropic gas law gives the pressure inside the bubble 

2.---~,~-r--~----~----~----T---~ 

\: 
:\ 

\ 
. . ' 

\ 

-2L---~~--~----~-'----~----~--~ 
-1 -0.5 0 0.5 1.5 2 

Radial strain (a-a )Ia 
e e 

Figure 3.6. Pressure inside the bubble as function of radial strain. The curve 
is calculated from the polytropic gas law (3.148) with "' = 1. The pressure 
from a linear spring is plotted for comparison (dashed line). 



3. 6 Boundary Condition: Pressure at the Bubble Surface 

as function of radius a(t) 

(3.147) 

where Pe is the pressure in the gas at equilibrium. If there is no tension in 
the shell at equilibrium and no surface tension, Pe is equal to the hydrostatic 
pressure Po in the liquid 

(3.148) 

The gas acts a nonlinear spring. In compression, the bubble is stiffening, its 
pressure increases more than proportional with radial strain. In expansion, 
the gas is softening, the pressure decreases less than proportional with strain. 

The pressure in the bubble is plotted in Figure 3.6, for K, = 1. For com­
parison, the pressure of a linear spring is plotted in the same figure. 

3.6 Boundary Condition: Pressure at the Bubble 
Surface 

The calculations in this chapter have resulted in 

• An equation of motion for the liquid, selected from four alternative mod­
els. These equations contain the pressure PL(t) at the surface of the 
bubble. 

PL 

Figure 3. '7. Boundary conditions at the inner and outer bubble shell surfaces. 
Illustration of the pressures and tensions acting at the shell. 
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92 Nonlinear Bubble Theory 

• The added radial stress TL at the bubble surface from viscous forces, 
(3.103). 

• The difference in radial stress T2- T1 across the shell, due to elastic and 
viscous forces in the shell, (3.145a) to (3.145d). 

• The pressure p9 in the gas, calculated from a polytropic gas model 
(3.148). 

The pressures and stresses are illustrated in Figure 3.7. The boundary condi­
tions require continuity in radial stress at the shell-liquid and shell-gas inter­
faces. These boundary conditions are 

Continuity at outer shell surface. 

Continuity at inner shell surface. 

The expressions for the stresses involved are 

T2 -T1 

P9 = Po ( ~) 
3

/i 

Stress at the bubble-liquid surface 

Stress difference across the shell 

Pressure in the gas 

(3.149) 

(3.150a) 

(3.150b) 

(3.150c) 

These equations are combined with the boundary conditions (3.149), giving 
an expression for the pressure PL(t) at the bubble surface 

(3.151) 

where the stress difference across the shell T2 - T1 is taken from one of the 
shell models in Chapter 3.4.4. 

The effect of surface tension has not been included here. It is assumed that 
the shell reduces the surface tensions of both the gas-shell and the shell-liquid 
interfaces, so that these can be neglected. Typical dilution liquids used with 
ultrasound contrast agents, e.g. Isoton II and blood, have much lower surface 
tension than pure water. 

3. 7 Equations in Dimensionless Variables 

The equation derived in the previous sections shall be applied to simulate the 
bubble response to a driving ultrasound pulse. The equations are rescaled to 



3. 7 Equations in Dimensionless Variables 

dimensionless variables for numerical simulations on a computer. This rescal­
ing reduces the number of parameters in the simulations and allows better 
control over the precision. 

The rescaling is done by introducing the following new variables 

Dimensionless time, radius and pressure 

x' 

a- ae 
x=-­

ae 

fE 
wo = V pa~ 

T = wot 

dx 1 dx 

dT Wo dt 

q = ]!_ 
Po 

X 

wo 

Radial strain 

Characteristic frequency 

Dimensionless time 

Time differentiation 

Normalized pressure 

Dimensionless liquid and shell parameters 

c 
Normalized speed of sound {=--

aewo 
wo 

Shear viscosity of the liquid VL =TIL-
Po 
wodse 

Shear viscosity of the shell vs =Tis--
poae 
dse 

gs = Gs-- Shear modulus of the shell 
poae 

3. 7.1 Pressure at the Bubble Surface 

(3.152a) 

(3.152b) 

(3.152c) 

(3.152d) 

(3.152e) 

(3.152f) 

(3.152g) 

(3.152h) 

(3.152i) 

The pressure at the bubble wall is expressed by (3.151) as a sum of contri­
butions from the gas, the p:ressure difference across the shell and the extra 
tension due to liquid viscosity. 

Equation (3.151) for the pressure qL at the bubble wall is reformulated to 
dimensionless variables as 

x' 
qL = -4vL-

1
-- + qs + qg Pressure at the bubble surface, 
+x 

T2- T1 
qs = - Pressure difference across the shell, 

Po 
qg = (1 + x)-3,; Pressure in the gas. 

(3.153a) 

(3.153b) 

(3.153c) 
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The derivatives of qL are 

( ') aqL x' aqs ( -31\:-l 
qlX,X =ax =411£(1 +x) 2 + ax -3A:1+x) (3.154a) 

, aqL 1 aqs 
q2(x, x ) = - = -411£-- + -

ax' 1 +X ax' 
(3.154b) 

Different models were postulated for the pressure difference qs across the 
shell, see Chapter 3.4.2. These models are: 

Linear shell 

qs = -12(gsx + 11sx') . 

aqs 
ax = -12gs 

aqs 
- = -1211s 
ax' 

Linear material - nonlinear geometry 

qs = -12 ( 
1 

)4 (gsx + 11sx') . 
1+x 

aqs __ 12 ( ( 1 _ 4x ) _ II 4x
1 

) 

ax - gs (1 + X )4 (1 + X )5 S (1 +X )5 
aqs 1 
ax' = -1211s (1 + x)4 

Intermediate model 

qs = -12 ( 
1 

)2 (gsx + 11sx'). 
1+x 

aqs __ 12 ( ( 1 _ 2x ) _ II 2x
1 

) 

ax- gs (1+x)2 (1+x)3 8 (1+x)3 

aqs 1 
ax' = -1211s (1 + x)2 

Exponential shell 

qs = -12(gsxo(1- e-x/xo) + llse-xlx 1 x') 

aqs - 12 ( -x/xo 1 -x/xl ') - - - gse - lis-e x 
ax Xl 

aqs - -12 -x/xl 
ax' - lise . 

(3.155a) 

(3.155b) 

(3.155c) 

(3.155d) 

(3.155e) 

(3.155f) 

(3.155g) 

(3.155h) 

(3.155i) 

(3.155j) 

(3.155k) 

(3.1551) 



3. 7 Equations in Dimensionless Variables 

3.7.2 Rayleigh-Plesset Model 

The Rayleigh-Plesset equation, (3.36) on page 65, is converted to dimensionless 
variables, giving 

x" (1 + x) + ~x12 + 1 + qi - qL = 0 . (3.156) 

This is is solved for the highest order derivative of x, 

II -1 (3 12 1 ) 
X = 1 + X 2 X + + qi - qL . (3.157) 

Equation (3.156) is converted to a set of first order ordinary differential 
equations, suitable for numerical simulation on a computer. These are written 
on vector form as 

X= [:~] 
xl = [:U 

This gives the following set of first order equations 

I 
xl = X2 

1 -1 (3 2 ) 
X2 = 1 +XI 2X2 + 1 + qi- qL . 

(3.158) 

(3.159) 

The scattered pressure in the far field of the bubble is taken from (3.41). 
Written in dimensionless variables, the far-field scattered pressure qs( T) = 
Ps(ae, t)/Po at distance equal to the equilibrium radius of the bubble, is 

(3.160) 

The numerical ODE solver returns x and x1
• All the quantities needed to 

calculate qs from (3.160) are calculated when simulating the differential equa­
tion. 

3. 7.3 Trilling Model 

Trilling's model, including a driving acoustic field, (3.60) on page 70, is con­
verted to 

I I 1 
x"(1 + x) (1- 2~) + ~x12 (1- :!~) - -(1 + x)q~ 

'Y 2 3"/ 'Y 

+ !(1 + x)q~ + 1 + qi- qL = 0. (3.161) 
'Y 
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The pressure at the bubble wall qL is selected from one of the models in 
Chapter 3.7.1. 

Equation (3.161) is rewritten in terms of the derivatives of qL with respect 
to x and x' 

11 ( ) ( x') 3 ,2 ( 4 x') x 1+x 1-2---:y + 2x 1- 3 ---:y 

1 ( ) ( oqL , oqL II) 1 ( ) , - - 1 +X ~X + n/X + - 1 +X qi + 1 + qi - qL = 0 . 
"( uX ux "( 

(3.162) 

This equation is solved for the highest order derivative of x 

11 1 ( 3 t2 ( 4 X
1

) 1 ( ) I 1 ( ) 1 ) X = -- -X 1- -- -- 1 +X q1X +- 1 +X q· + 1 + qi- qL 
q3 2 3 "( "( "( 2 

with 

( ') oqL 
ql x,x = ox 

( ') oqL 
q2 x,x = ox' 

x' 1 
q3 (X, X1

) = ( 1 + X) ( 1 - 2-) - - ( 1 + X) q2 . 
"( "( 

(3.163) 

(3.164a) 

(3.164b) 

(3.164c) 

For computer simulations, these equations are rewritten as a set of first order 
ODEs, giving 

with 

M= X2 

"( 

(3.166a) 

(3.166b) 

The pressure qL at the bubble wall and its derivatives ql = 86J: and q2 = ~~~ 
are taken from the expressions in Chapter 3.7.1. 

The scattered pressure in the far field of the bubble is taken from (3.66). 
This is rewritten to dimensionless variables. The far-field scattered pressure 
qs( r) calculated at distance equal to the equilibrium radius of the bubble is 

qs = Ps(ae, t)/po = (1 + x)(qL- 1- qi + !x'
2
). (3.167) 

This result is identical to that from the Rayleigh-Plesset model, (3.160). 



3. 7 Equations in Dimensionless Variables 

3.7.4 Keller-Miksis Model 

The Keller-Miksis equation, (3.79) on page 73, is in dimensionless variables 

x"(1 + x)(1- M) + ~x' 2 (1- !M) 

- (1 + M)(qL- 1- qi)- ]:_(1 + x)q~ = 0. (3.168) 
'Y 

The driving pressure qi is to be taken at time t + ajc, or T + (1 + x)h. 
The pressure qL at the bubble surface is taken from one of the models in 
Chapter 3.7.1. The equation is solved for the highest order derivative of x 
expressed as function of the derivatives of qL with respect to x and x' 

with 

( ') 8qL 
ql x,x = ax 

( ') 8qL 
q2 x, x = 8x' 

1 
q3(x, x') = (1 + x)(1- M)- -(1 + x)q2, 

'Y 
x' 

M=­
'Y 

(3.170a) 

(3.170b) 

(3.170c) 

(3.170d) 

The scattered pressure in the far field of the bubble is taken from (3.87). 
The far-field scattered pressure q8 (T), calculated at distance equal to the equi­
librium radius of the bubble, is 

(3.171) 

The pressure q8 found from this expression is at normalized time T - x / "(. 

3.7.5 Modified Rayleigh-Plesset Model 

The Rayleigh-Plesset equation modified to include radiation damping, (3.89) 
on page 76, is converted to dimensionless variables, giving 

x11 (1 + x) + ~x' 2 + 1 + qi- qL- ]:_(1 + x)q~ = 0. 
'Y 

(3.172) 
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The pressure qL at the bubble surface is taken from one of the models in 
Chapter 3.7.1. The equation is solved for the highest order derivative of x 

with 

(3.173) 

(3.174a) 

(3.174b) 

(3.174c) 

The scattered pressure in the far field of the bubble is identical to the 
results for the Rayleigh-Plesset model, (3.160). The far-field scattered pressure 
q8 ( T), calculated at distance equal to the equilibrium radius of the bubble, is 

(3.175) 

3. 7.6 Reconstitution of Dimensional Variables 

The radius a(t) and velocity a(t) as function of timet are reconstituted from 
the dimensionless variables T, x(T) and x'(T) by 

T 
t=-, 

wo 
a(t) = ae(1 + x(t)), 

. ( ) dx 1 
a t = aewo dT = aewox . 

The scattered pressure p 8 t in the far-field of the bubble is 

(3.176a) 

(3.176b) 

(3.176c) 

(3.176d) 

where r is the radial distance from the bubble center. The scattered pressure 
is normally calculated for a reference distance r = ro = 1m. 



Chapter 4 

Measurement Systems 

4.1 Acoustic Attenuation 

Acoustic attenuation measured as function of frequency is the basic method 
used to characterize the contrast agents. The attenuation spectra give infor­
mation about the resonance frequency and damping, or Q-value, of the bubbles 
as oscillators. 

The acoustic attenuation through a suspension of contrast agent shows a 
simple, monotonic variation with concentration and extinction cross section, 
provided the concentration of bubbles is not too high. This can be compared 
with the scatter from a region within the contrast agent suspension. The 
scattered echoes depend on the combined effect of the scatter from the bubbles 
and attenuation from bubbles in the sound path between the transducer and 
the region studied. 

The attenuation introduced by the bubbles is measured by comparing mea­
surements without and with contrast agent in the sound path. The measure­
ment without contrast agent gives a reference which is used to compensate for 
the frequency response of the transducers and for characteristics of the sound 
path. 

The attenuation measurements are for basic characterization of the agent 
properties. There is no simple relationship between attenuation level and 
performance as contrast agent. For more direct measurements of the efficiency 
of the agent, acoustic backscatter is measured, as described in the following 
section. 
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4.1.1 Measurement of Attenuation Spectra 

System Setup 

The measurement system for acoustic attenuation spectra is based on a method 
described by de Jong et al. [29]. The system illustrated in Figure 4.1. The 
equipment consist of a combined pulser and receiver (Panametrics 5800PR, 
Panametrics Inc., Waltham, Mass., USA), a coaxial cable relay for selecting 
transducers ( CX-600N, Toyo Tsusho Electric Co. Ltd., Tsuchiura, Japan), two 
transducers (Panametrics Videoscan, exchangeable) and a digital oscilloscope 
(LeCroy 9310A, LeCroy Corporation, Chestnut Ridge, New York, USA). 

The transducers can be exchanged to select the frequency range most ap­
propriate for the contrast agent being investigated. Possible transducers are 
listed in Table 4.1. The mounting brackets were made to fit the Standard 
Case Style Panametrics Immersion transducers. All the transducers are un­
focused. Most measurements are done using the Panametrics Videoscan V382-
SU 3.5 MHz and V326-SU 5.0 MHz transducers. 

The pulser/receiver and oscilloscope are connected to a PC-type computer 
via a GPIB-board (AT-GPIB, National Instruments Inc, Austin, Texas, USA). 
The coaxial relay is controlled by a digital in/out board (PC-DI024, National 
Instruments Inc.). The measurement system is controlled and digitized results 
are acquired by programs written in the programming language C, using the 
software package Lab Windows (National Instruments Inc.). 

The two transducers are mounted in parallel in a water tank made of Per-

Oscilloscope 
LeCroy 9310AM 

0 0 0 
0 0 0 

0 0 0 

Pulser/receiver Coaxial relay Transducers 
Panametrics 5800PR Toyo Tsusho __ ..... ..., .... .,...,_.,... .............. 

GPIB 

CX-600N 

Computer ~=~ 
Lab Windows 

Mat lab 

Digital output 
PC-D/024 

• 0 
0 0 

0 
0 

Contrast agent particles 

Figure 4.1. Measurement system for measuring acoustic attenuation spectra. 



4.1 Acoustic Attenuation 

Table 4.1. Transducers used to measure acoustic attenuation spectra. All 
are of type Panametrics Immersion Videoscan, in Standard Case Style. 

Center frequency Aperture diameter Panametrics 
[MHz] [mm] [inches] part no. 

1.0 13 0.5 V-303-SU 
2.25 13 0.5 V-306-SU 
3.5 13 0.5 V-382-SU 
3.5 10 0.375 V-383-SU 
5.0 10 0.375 V-326-SU 
5.0 6 0.25 V-310-SU 

spex. The sample cell has thin Teflon membranes acting as acoustic windows. 
The cell is placed 10 em from the transducer faces and is 3.15 em long. The 
back wall of the water tank is used as an acoustic reflector. This was positioned 
15 em from the transducer faces. 

Sample Preparation 

The sample cell is filled with 55 ml Isoton II (Coulter Electronics Ltd., Luton, 
UK). Isoton II is a standardized dilution liquid, used in hospital laboratories. 
It is a 0.9% saline solution with a phosphate pH-buffer and a detergent to 
reduce surface tension. 

The contrast agent is diluted in the Isoton II in the sample cell. The 
concentration of contrast agent is adapted to the size and concentration of the 
bubbles in the agent. Best results are obtained when the attenuation from 
the agent is between 15 and 20 dB, or around 3 dB/em. This typically means 
that the contrast agent is diluted by a factor 103 to 104 . This concentration 
and attenuation level is common in clinical use of the agents. 

The results of the measurements are calculated as dB/ em and are normal­
ized to a standardized dilution of 1:1000, assuming linearity with the concen­
tration. 

Acquisition of Pulses 

The transducers are excited by short pulses from the pulser/receiver, sending 
broadband ultrasound pulses through the sample cell. The repetition rate is 
50 pulses per second. The transmitted pulses traverse through the water tank 
and sample cell, and are reflected at the back wall of the tank. The reflected 
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pulses are received by the transmitting transducer. On their path, the pulses 
pass through the sample cell twice, giving a total sound path length through 
the contrast agent equal to 6.3 em. 

The received signals are amplified in the receiver section of the pulser /­
receiver and recorded by the oscilloscope. The oscilloscope is set to sample 
only the reflection from the back wall of the sample cell, using delayed trigger 
and time-gating. The received pulses are digitized in the oscilloscope at sample 
rate 25 Msa/s. Results are averaged over 50 successive pulses to improve signal 
to noise ratio. The digitized pulses are transferred via the GPIB interface to 
the computer and are stored on the computer disk for processing. 

Figure 4.2 shows an example of received pulses and their power spectra, 
without and with contrast agent in the sample cell. The acquisition of the 
pulses is illustrated in the flowchart in Figure 4.3. The results acquired are 
displayed real time on the computer screen during the measurement sequence. 

~ 
~ 
0 -50 
> 

No contrast agent 

-loo~--~--~--~--~--~ 

~ 
~ 

224 225 226 227 228 229 

20r---~--~--~-------. 
With contrast agent 

o-10 
> 
-20~--~------~--~--~ 

224 225 226 227 
Time [!ls] 

228 229 

60.---~--~--~--~--~ 

50 

40 

-30 

. o contrast~gent . 

-40L---~--~--~--~--~ 

0 2 4 6 8 10 
Frequency [MHz] 

Figure 4.2. Example of pulses measured with the 3.5 MHz transducer. The 
left diagrams show pulses received after reflections from the back wall, travers­
ing the sample cell twice. The upper pulse is from a reference measurement 
with no contrast agent in the sample cell, the lower pulse is received with con­
trast agent in the cell. The right diagram shows the power spectra of the two 
pulses. This 3.5 MHz transducer was used to evaluate spectra in the frequency 
range from 1.5 to 5.0 MHz. 
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Figure 4.3. Attenuation measurements. Acquisition of ultrasound pulses 
reflected from back wall. 
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parameters parameters 

Figure 4.4. Attenuation measurements. Processing of results. 



4.1 Acoustic Attenuation 

Calculation of Results 

The attenuation spectra are calculated from the acquired pulses using the 
software package Matlab (The Math Works Inc., Natick, Mass., USA). The 
signal processing is illustrated in Figure 4.4. 

Power spectra are calculated from FFT on the pulses. The part of the 
spectrum containing useful information for each transducer is singled out. 
The 3.5 MHz transducer displayed in Figure 4.2 is used between 1.5 and 5.0 
MHz. Spectra are always measured with two transducers of different center 
frequency. The overlap region, where both transducers provide spectral infor­
mation, gives a test of the validity of the results, as the different transducers 
should give equal results here. 

The power spectra measured with contrast agent present are normalized 
by dividing them with spectra measured without contrast agent in the sound 
path. This corrects for the frequency responses of the transducers and for 
propagation path characteristics. 

Several spectra are measured at fixed time intervals. The development 
with time is plotted in a "stability curve" showing how the contrast agent 
response changes with time. 

4.1.2 Sensitivity to Hydrostatic Pressure 

Stability under hydrostatic pressure is an important feature of a contrast agent. 
Hydrostatic pressure can drive gas out of the bubbles, causing them to 

dissolve. The liquid in which the bubbles are suspended has a certain ability 
to dissolve gas. Normally, the partial pressures of dissolved gases in the liquid 
will be in equilibrium with the atmospheric pressure. In the blood, the contents 
of dissolved gases is regulated by the respiratory system [31 J. 

Diffusion constants of gas molecules in water are around 2 x 10-9 m 2 /s 
for most common gases [102]. This makes gas diffusion through a liquid a 
slow process, diffusion over centimeters typically takes hours. Over distances 
corresponding to the dimensions of a bubble, a few J-Lm, the diffusion takes 
only fractions of a second [41], and the gas inside the bubble can rapidly be 
dissolved in the liquid. Convection in the liquid will speed up the diffusion 
process considerably, especially over larger distances, that is, centimeters. 

When the atmospheric pressure is increased, the hydrostatic pressure in the 
liquid and the pressure inside the bubbles increase rapidly. But the pressures 
of dissolved gases in the liquid will remain almost constant, due to the slow 
gas diffusion in the liquid. The gas in the interior of the bubble will no longer 
be in equilibrium with the dissolved gases in the liquid. This can drive gas out 
of the bubble into the liquid by diffusion, and cause the bubble to dissolve. 
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Table 4.2. Solubility of gases in water at 37°C, measured as volume gas 
per volume liquid. The partial pressure of the gas is 1 atmosphere minus the 
vapor pressure of water. The volume fraction ¢8 is calculated from the mass 
solubility m 8 by ¢8 = mM~T, where R is the gas constant, T=310 K is the 
absolute temperature, M is the molar mass of the gas, and p=95 kPa is the 
pressure of the gas. Data from Aylward and Findlay [6]. 

Solubility 
Gas Volume fraction 

¢s [%] 
Nitrogen N2 1.6 
Oxygen 02 3.1 
Carbon dioxide C02 83 
Helium He 0.95 
Argon Ar 3.4 
Methane CH4 3.3 
Ethane C2H6 4.5 
Perfl uoromethane CF4 0.52 
Sulfur hexafluoride SF5 0.69 

The shell enclosing the gas in the bubble will slow down or stop this process. 
In clinical use, the contrast agents will be exposed to hydrostatic over­

pressures in two different situations. 

During injection In the syringe, before the agent has been diluted in blood, 
the volume fraction of gas is typically around 1%, which is very high. 
The pressure in the syringe can reach a few hundred mmHg. Under these 
conditions, the amount of gas in the bubbles is normally high enough 
to saturate the dilution liquid at this increased pressure. The agent's 
response to the pressure in the syringe has not been studied in this 
thesis. 

In the blood After the agent is injected, it is rapidly diluted in the blood 
of the patient. The dilution factor may vary a great deal, both between 
different agents and depending on the method of use. Typically, the 
agent will be diluted a factor 103 to 104 when reaching the left ventricle 
of the heart. This gives gas volume fractions in the order of 10-5 to 
10-6. In the heart and arteries, the agents are exposed to the systolic 
blood pressure. This pressure is typically 120 mmHg, but may exceed 
200 mmHg in some persons [32]. 



4.1 Acoustic Attenuation 

In this high dilution, the amount of gas in the contrast agent is low com­
pared to the solubility of gases in the blood, see Table 4.2. Dissolution 
of the contrast agent bubbles and release of the gas inside them will have 
a small influence on the amount of dissolved gases in the blood. 

Blood pressure is most commonly measured in millimeters of mercury, 
mmHg. Since the over-pressure test is intended to be compared with systolic 
blood pressures, the pressure applied in this test is also measured in mmHg. 
All other pressures in this thesis are measured in Pascal, Pa. The relationship 
between Pa and mmHg is 

760 mmHg = 101.3 kPa , 1 mmHg = 113 Pa . ( 4.1) 

This relation is plotted in Figure 4.5. 

Measurement System 

The response to hydrostatic pressure is tested by measuring acoustic atten­
uation spectra under pressure. Changes in overall attenuation level and in 
resonance frequency are registered when the agents are exposed to pressure. 

The pressure test system is illustrated in Figure 4.6. It is based on the 
attenuation measurement system shown in Figure 4.1. The tank is now closed, 
making the tank with sample cell and transducers into an airtight pressure 
chamber. The interior of the tank is connected via a tube to a 3-way magnetic 
valve. This valve is connected so that the interior of the tank is either open to 
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Figure 4.5. Relationship between the two pressure units mmHg and Pa. 
One atmosphere equals 760 mmHg or 101 kPa. 
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the atmosphere or to a pressure reservoir, made of a plastic bottle containing 
compressed air. The valve is opened and closed by the computer via the digital 
in/out board (PC-DI0-24, National Instruments Inc.). 

The sample preparation, acquisition of pulses and calculation of results is 
identical to that described in the section about acoustic attenuation measure­
ments, Chapter 4.1.1. 

Manometer 

Pulser/receiver Coaxial relay 
Panametrics 5800PR Toyo Tsusho 

GPIB 

Computer 
Lab Windows 

Mat lab 

CX-600N 

Manometer 

Digital outputs 
PC-Dl024 

Contrast agent 

Figure 4.6. Pressure sensitivity test. System for measuring acoustic attenu­
ation spectra under increased hydrostatic pressure. 



4.2 Acoustic Backscatter 

Measurement Sequence 

Pressure stability is measured according to the following sequence: 

Before pressure The magnetic valve is in "position 1", so that the tank 
is open to the atmosphere. 3 attenuation spectra are measured at 10 
seconds intervals. 

During pressure The magnetic valve is switched to "position 2", where the 
tank is open to the the pressure reservoir. The pressure in the tank 
increases to the specified value, typically 120 mmHg over atmospheric 
pressure. 3 or more attenuation spectra are measured at 10 seconds 
intervals. 

After pressure The magnetic valve is released to "position 1". The tank is 
open to the atmosphere again, and 3 attenuation spectra are measured 
at 10 seconds intervals. 

This procedure gives 3 attenuation spectra measured before the pressure is 
applied, 3 or more spectra during pressure, and 3 spectra measured after the 
pressure was released. The results of the pressure test are plotted in two 
graphs: 

Attenuation vs. frequency The attenuation spectra measured before, dur­
ing and after exposure to pressure are plotted in one diagram. Different 
line styles are used to mark the different situations. 

Attenuation vs. time The attenuation at the center frequencies of the trans­
ducers are plotted as function of time. The time points where pressure 
was applied and released are marked in the diagram. 

An example of results from the pressure test system is displayed in Figure 4.7. 

4.2 Acoustic Backscatter 

Diagnostic ultrasound imaging is based on acoustic backscatter. An ultra­
sound pulse is transmitted into the body, and the received echoes are used to 
form an image of the internal structures. Hence, measurement of backscattered 
power in some form is important for characterization of ultrasound contrast 
agents. 

Several transmission schemes and signal processing algorithms are used to 
process the received echoes and form an image. The most common imaging 
modus is B-mode: One focused ultrasound pulse is transmitted for each scan­
line, and the power of the received echoes is used to form an image. vVhen 
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Figure 4. 7. Example of a result report from the pressure test system. Acous­
tic attenuation spectra measured before, during and after exposure to hydro­
static pressure. 



4.2 Acoustic Backscatter 

using contrast agents, 2nd harmonic imaging in some situations seems to give 
better results than imaging at the transmit frequency. Pulse inversion is 
another imaging scheme that seems promising when using contrast agents. 
These and other nonlinear imaging methods are described in Chapter 3. 

Hence, several different imaging methods may be used in conjunction with 
contrast agents. Several more probably exist, not yet invented. A charac­
terization system to measure backscatter from the contrast agents has to be 
flexible, allowing testing of different known and potential new techniques. 

To obtain this, a system has been constructed that transmits pulses of 
defined shape into a contrast agent sample, and then captures the RF signals 
scattered from them. This system consists of a programmable function genera­
tor to define the pulses ( Wavetek 395, Wavetek Wandel Goltermann, Research 
Triangle Park, NC, USA), a power amplifier (EN! 2100L, ENI, Rochester, New 
York, USA), a variable gain receiver with high- and lowpass filters (Panamet­
rics 5800PR, Panametrics Inc., Waltham, Mass., USA), and a digital storage 
oscilloscope to capture the RF traces (LeCroy 9310AM, LeCroy Corporation, 
Chestnut Ridge, New York, USA). Several different transducers can be used 

Computer 
Lab Windows 

Matlab 

GPIB 

Oscilloscope 
LeCroy 93JOAM 

Function 
Generator 

Wavetek395 

Amplifier 
Panametrics 

5800PR 

Power 
Amplifier 

ENI2100L 

50Q 

Sample cell 
with 

contrast agent 

Figure 4.8. Setup for sampling RF traces backscattered from the contrast 
agent. Various different transducers may be used. The displayed setup shows 
use of one single element transducer for both transmit and receive, but separate 
transducers for transmit and receive may also be used. 
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Table 4.3. Sampling RF results. Oscilloscope sampling parameters. 

TimejDiv. Trace length No. of points Sample rate 

[f-Js] [f-Js] per trace [Msa/s] 
0.2 2 200 100 
0.5 5 500 100 
1.0 10 1000 100 
2.0 20 2000 100 
5.0 50 2500 50 

10 100 2500 25 
20 200 2000 10 
50 500 2500 5 

for transmit and receive. 
The system transmits a predefined number of shaped ultrasound pulses into 

a sample of contrast agent, at a specified pulse repetition rate. The echoes 
received from the contrast agent are digitized and saved to the computer disk. 
Sample parameters and equipment settings are also stored with the results. 

The typical setup used in these measurements is displayed in Figure 4.8. 
A flow scheme for the transmit and acquisition of pulses is illustrated in Fig­
ure 4.9. The system is controlled by a PC-type computer. This is connected 
to the external components via a GPIB interface (AT-GPIB, National Instru­
ments Inc.) and a digital injout board (PC-DI0-24, National Instruments 
Inc.). The software used to define transmit pulses and to acquire traces is 
written in the programming language C using the Lab Windows development 
package (National Instruments Inc.). The operation of the system is controlled 
by a graphical user interface, shown in Figure 4.10. 

Trigger pulses The trigger pulses are defined by the clock in the computer. 
The accuracy of the timer is 1 kHz, limiting the maximum pulse repeti­
tion rate to about 200 pulsesjs. The trigger pulses are transferred to the 
function generator using an output from the PC-DI0-24 digital in/out 
board. 

The accuracy and maximum rate of the trigger has been satisfactory 
for the experiments so far. The maximum trigger rate can be increased 
by installing a more sophisticated digital timer board into the computer. 
The PC-DI0-24 board was used because this board was already installed 
into the computer for other purposes. 
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Figure 4.9. Acquisition of RF traces scattered from the contrast agent. 
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Transmit pulses The transmit pulses are produced by the programmable 
W avetek 395 Arbitrary Function Generator. The pulse is defined in 
software in the computer, and the pulse shape is transferred as a sequence 
of points to the function generator, using the GPIB interface. Any pulse 
shape can be defined. Standard pulses are defined by their frequency, 
amplitude, number of cycles, and envelope. 

Receiver The Panametrics 5800PR pulser/receiver is used as receiver. The 
values of the high- and lowpass receive filters, gain and attenuation are 
set in the computer. 

Digitizer The LeCroy 931 OAM Digital Storage Oscilloscope is used as digi­
tizer. The resolution of the ADC is 8 bit, and the oscilloscope memory is 
200 000 sample points. For these measurements, the memory is divided 
into segments of 2500 or 2000 sample points length. 

Echoes from the different transmit pulses are stored in different segments 
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Figure 4.10. Acquisition of RF traces backscattered from the contrast agent. 
Graphical user interface used to control transmit pulses and the acquisition of 
RF traces. 



4.2 Acoustic Backscatter 

Table 4.4. Measurement parameters and results stored from backscattered 
measurement. 

Measurement parameters Date and time of measurement 
Sample and operator identifiers 
Sample volumes 

Trigger data Number of trigger pulses and pulse repetition 
rate 

Transmit pulse data Pulse envelope, length, frequency, phase and 
amplitude 

Receiver settings Gain and attenuation, high- and lowpass filter 
settings 

Oscilloscope Coupling mode, trigger delay, horizontal and 
vertical scale 
Sample rate, trace length, memory segmenta­
tion 

Received traces Stored as 8-bit data points 

of the oscilloscope memory. The portion of the received echoes to sample 
is selected by setting the trigger delay and the segment length. The 
sample rate is determined by the length of the memory segment. Possible 
settings are listed in Table 4.3. Most measurements are done using 50 
or 100 f.lS trace length, giving sample rates of 50 or 25 Msajs. 

When a sequence of pulses is finished, the contents of the oscilloscope 
memory is transferred to the computer for processing and permanent 
storage. 

The digitizer and the function generator run on separate clocks, not syn­
chronized with each other. This is a limitation when testing techniques based 
on comparing two or more pulses, such as pulse inversion or Doppler methods. 

The acquired RF pulses and measurement parameters are stored on the 
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computer disk in a binary format. The parameters stored are listed in Ta­
ble 4.4. 



Chapter 5 

Estimation of Shell Material 
Properties 

In the the theory chapters, Chapter 2 and Chapter 3, it was postulated that 
a shell enclosing the bubble will alter its acoustic properties. The aim of this 
chapter is to investigate the effect of the shell for oscillations in the linear 
range. The measurement technique in Chapter 4.1 is applied to characterize 
a contrast agent consisting of polymer-shelled air bubbles. The theoretical 
models of Chapter 2 are compared with the experimental results, and are used 
to estimate values for the visco-elastic shell parameters, values that are not 
known a priori. It is further shown how the results can be used to calculate the 
stiffness of the whole microbubble, the bulk modulus. This links it to results 
reported in a previous, phenomenological study [56, 61]. A version of the 
methods described here have also been applied to characterize the ultrasound 
contrast agent Sonazoid from Nycomed [157]. 

The study described in this chapter has been accepted for publication in 
the Journal of the Acoustical Society of America in 2000 [62]. 

5.1 Composition of the Microbubbles 

The substance investigated in this study was prepared by Nycomed (Nycomed 
Amersham, Oslo, Norway) as an experimental contrast agent for medical ul­
trasound imaging. The substance consists of air bubbles enclosed in a thin 
polymer shell. Bubble diameters are between 1 and 10 p,m. Preparation and 
characterization of the microbubbles are described by Bjerknes et al. [10]. 
Figure 5.1 illustrates the composition of these polymeric microbubbles. 

From the production process [10], it is estimated that the ratio between 
polymeric shell material and total microbubble volume is constant, with 15% 
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of the microbubble volume in the shell. This gives a constant ratio between 
shell thickness and microbubble radius, where the shell thickness is 5% of the 
microbubble radius. 

The theoretical model describes the shell as a viscoelastic material with 
constant shear modulus Gs and viscosity TJS· The shear modulus and viscosity 
of a polymeric material are in general frequency dependent. The aim of this 
study was to characterize the contrast agent in the frequency range most 
commonly used in diagnostic medical imaging, from 1 to 8 MHz. It is assumed 
that G s and TJs are constant within this range. 

The shell material is not easily made in bulk quantities that allow conven­
tional measurements of elastic properties. Instead, G s and T)s are estimated 
from measurements of ultrasound absorption through a contrast agent suspen­
sion. 

5.2 Theory 

The theoretical modeling of the polymeric micro bubbles is based on the model 
for a shell encapsulated gas bubble described in Chapter 2 and Chapter 3. 

Several different models for the liquid and for the shell were presented in 
Chapter 3. The experimental measurements were done at small oscillation 
amplitudes, where the oscillation is linear. In the limit of small oscillation 
amplitudes, the different liquid and shell models of Chapter 3 yield identical 
results. 

Polymer shell 

Ps' Jls' Gs 

Liquid - -----

PL ' JlL - -- - - -

Figure 5.1. Drawing of the polymer-encapsulated air-filled microbubble. 



5.2 Theory 

5.2.1 Church's Model for Albunex: Comparison with the Mod­
els of Chapter 3 

In 1995, Church presented a model for the oscillation of Albunex [22]. For 
bubbles in a thin shell, Church's model is equivalent to one of the models 
presented in Chapter 3, as will be shown in this section. 

Church described air bubbles enclosed in a solid, incompressible, visco­
elastic shell, described by a shear modulus Gs and a shear viscosity fJS· The 
liquid surrounding the bubbles is modeled as incompressible and Newtonian, 
with shear viscosity fJL· It is further assumed that the shell reduces surface 
tensions at the shell-liquid and shell-gas interfaces, so that surface tension can 
be neglected. 

Under these assumptions, a nonlinear equation of motion for the bubble 
surface is 

(5.1) 

where a1(t) and a2(t) are the inner and outer shell radii, ps and PL are the 
densities of the shell material and of the surrounding liquid, Pge is the equi­
librium pressure in the gas inside the bubble, ale and a2e are the inner and 
outer shell radii at equilibrium, p00 (t) is the pressure in the liquid far from the 
bubble, "'is the polytropic exponent of the gas, Vs =a~- ar, and dots denote 
differentiation with respect to time. 

Equation (5.1) is Church's Equation (12). This has been rearranged to 
identify the different terms better, using the conservation of mass relation for 
an incompressible shell; alar = a2a~. 

Equation ( 5.1) is the basis for the theoretical description of the polymeric 
microbubbles investigated in this paper, using shell thickness, viscosity, and 
shear modulus different from those of Albunex. According to this description, 
the thickness ds of the shell varies as the bubble oscillates, so that the shell 
volume is constant. The shell is thin compared to bubble radius, and use of 
this, ds(t) « a 2 , allows simplification of (5.1). 

The left side of (5.1) represents inertia: Terms multiplied with ps represent 
inertia of the shell, terms multiplied by PL represent inertia of the liquid, and 
Ps and PL are of the same order of magnitude. The inertia terms are expanded 
in the small parameter ds / a2, keeping terms to the first order. This simplifies 
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the left side of (5.1) to 

(5.2) 

Hence, the shell contributes to the inertia of the oscillating bubble through a 
term of order ds/a2, which can be neglected. 

The right side of (5.1) represents restoring stiffness and damping viscous 
forces. The first three terms are known from the Rayleigh-Plesset equation 
for unshelled bubbles. The last two terms represent viscous and elastic forces 
due to motion and tension in the shell. The shell is thin, and terms of order 
ds/a2 are neglected. This reduces the last two terms in (5.1) to 

(5.3a) 

(5.3b) 

where dse is the shell thickness at rest. The shell viscosity and elasticity terms 
contain the relative shell thickness dse/ a2 multiplied with viscous and elastic 
shell properties 'TJs and Gs. The resulting terms may become large compared 
to other pressure terms. Hence, while the shell contribution to inertia is small 
and neglected, the contributions from the shell to stiffness and viscosity depend 
on G s and 'T/S, and must be considered. 

The result of these simplifications is a version of (5.1), suitable when the 
encapsulating shell is thin compared to the bubble diameter 

Equation (5.4) contains both inner radius a1 and outer radius a2 of the shell. 
It is reduced to an equation in outer radius a= a 2 (t) alone by setting 

(5.5) 

At equilibrium, the pressure in the gas inside the bubble is assumed to be 
equal to the hydrostatic pressure in the surrounding liquid, Pge = PO· This 
means that there is no tension in the shell at equilibrium. The pressure p00 far 



5.2 Theory 

from the bubble is the sum of the atmospheric pressure Po and the incoming 
acoustic pressure Pi ( t). 

All these assumptions lead to the following reduced equation of motion, 
containing outer shell radius a(t) as the only variable 

This nonlinear equation is identical to the result obtained in Chapter 3, if the 
Rayleigh-Plesset equation (3.36) is used to model the liquid, and (3.151) gives 
the pressure at the bubble wall. The result above corresponds to using the 
"linear material - nonlinear geometry" model (3.145a) to describe the shell. 
This is a consequence of Church using the linear material parameters G s and 
'T/S to describe the shell, while nonlinear terms are caused by the nonlinear 
geometry of the oscillating bubble. 

5.2.2 Linearization 

The parameters G s and 'T/S are estimated from acoustic measurements at low 
pressure amplitudes. Here, the oscillation is linear and (5.6) is solved analyt­
ically. 

The bubble radius a(t) is written 

lx(t)l « 1. (5.7) 

Equation (5.6) is expanded in the radial displacement x(t), keeping terms to 
the first order in x. This gives a simple linear equation for the forces acting 
on the surface of the bubble 

with coefficients 

(5.8) 

(5.9a) 

(5.9b) 

(5.9c) 

This is the same equation of motion as was found from a linear derivation in 
Chapter 2, see (2.31) and the modifications by the shell in Chapter 2.4. 
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Equation (5.8) is best handled in the frequency domain. Fourier-transformation 
yields 

(5.10) 

with coefficients 

2 s 1 ( dse) w0 = - = --2 3r;;p0 + 12Gs- , 
m PLae ae 

(5.11a) 

(5.11b) 

(5.11c) 

(5.11d) 

The linear resonance frequency fo of the shell-encapsulated bubble is 

fo = wo = _1_ 
27r 27rae 

1 ( dse) - 3r;;po + 12Gs- . 
PL ae 

(5.12) 

Compared to the free bubble, the shell increases resonance frequency through 
the shear modulus Gs, by increasing the stiffness of the bubble. Without a 
shell, when dse = 0; and under adiabatic conditions, when r;; = ri the expres­
sion (5.12) reduces to the well-known Minnaert resonance frequency [113] for 
gas bubbles. 

From (5.10) the radial oscillation x(w) as function of acoustic pressure p(w) 
is found 

(5.13) 

5.2.3 Acoustic Attenuation and Scatter 

The increased attenuation caused by adding contrast agent to a liquid is given 
by the extinction cross section u e defined in Chapter 2. The expression for u e 

is found from (5.13) and (2.57) to 

c<5 0 2 

O"e(a, w) = 47ra; aewo (1- f22)2 + f22J2 (5.14) 



5.3 Results 

At the low bubble concentrations studied here, the oscillations of the bubbles 
do not interact. The power absorbed by a bubble suspension is the sum of 
the power absorbed by the individual bubbles. This gives acoustic attenuation 
a(w) per unit distance in decibels, from (2.63) 

a(w) = 10(lge) fooo O"e(a,w)n(a)da [dB], (5.15) 

where n(a)da is the number of bubbles per unit volume with radius in (a, a+ 
da). 

The scattering cross section O" 8 ( ae, w) is given by ( 2.43) as 

(5.16) 

5.2.4 Thermal and Acoustic Damping 

The damping constants <5 and the polytropic exponent K, for an oscillating gas 
bubble were derived in Chapter 2. The results are summarized as 

(5.17a) 

(5.17b) 

(5.17c) 

(5.17d) 

Thermal and acoustic damping were not part of the derivation of the equations 
of motion, (5.6) and (5.10). These extra damping terms can be added to the 
linearized expressions for extinction and scattering cross sections, (5.14) and 
(5.16), by replacing <5 from (5.11d) with <Stat from (5.17d). 

5.3 Results 

5.3.1 Size Distribution 

Size distributions were measured using a Coulter Multisizer (Coulter Electron­
ics, Luton, UK). The effect of varying bubble size was investigated by removing 
the larger bubbles by a flotation technique. Contrast agent was injected into a 
glass tube and left at rest for a specified time. The flotation speed of gas bub­
bles increases with diameter. By extracting bubbles from the bottom of the 
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tube after varying times, samples of varying size distribution were obtained. 
Samples were harvested after 30, 60, 120 and 180 minutes flotation time. The 
resulting size distributions, measured with the Coulter Multisizer, are plotted 
in Figure 5.2, showing how the procedure produced samples of successively 
smaller size. 

5.3.2 Acoustic Attenuation Spectra 

Acoustic attenuation was measured using the method described in Chapter 4.1. 
The attenuation spectra were measured using two broadband and unfocused 
transducers, one with center frequency 3.5 MHz and 13 mm aperture diameter, 
the other with 5.0 MHz center frequency and 10 mm aperture (Panametrics 
Videoscan V-382-SU and V-326-SU). 

The sample cell was filled with 55 ml Isoton II (Coulter Electronics Ltd.), 
and samples of contrast agent were diluted in this. Sensitivity and signal­
to-noise ratio were optimized by varying the dilution, depending on the size 
distribution of the sample investigated. Best results were obtained for dilutions 
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Figure 5.2. Size distribution of microbubble samples, plotted as relative 
volume of bubbles per J.Lm. (1) is the original distribution, (2) to (5) are 
samples extracted from the bottom of a glass tube after flotation: (2) is after 
30 minutes, (3) after 60 minutes, (4) after 120 minutes and (5) after 180 
minutes flotation time. 



5.3 Results 

giving acoustic attenuation around 3 dB/em. This resulted in dilution factors 
between 1:2500 and 1:250, depending on the sample. Acoustic attenuation 
was verified to vary linearly with bubble concentration, and all results were 
scaled to a standardized dilution of 1:1000. 

Acoustic attenuation spectra were measured on the samples shown in Fig­
ure 5.2. The results are plotted in Figure 5.3. The attenuation spectra are 
normalized to standardized dilution 1:1000. These results show how the over­
all attenuation level is reduced, the resonance frequency increased and the 
spectrum broadened as the larger bubbles are removed. In the region cov­
ered by both transducers, from 2.5 to 5.0 MHz, the curves from the different 
transducers overlap. 

5.3.3 Estimation of Shell Parameters 

The visco-elastic parameters G s and 'r/S of the shell were estimated by com­
paring theoretically calculated acoustic attenuation spectra with the measured 
spectra plotted in Figure 5.3. 
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Figure 5.3. Acoustic attenuation spectra measured on the samples displayed 
in Figure 5.2. Solid lines are measured attenuation. Dashed lines show acous­
tic attenuation spectra calculated from size distributions, using the described 
theory. The viscoelastic properties G s and 'r/S were adapted to the best fit 
between measured and calculated attenuation spectra. This result is for batch 
(a), see Table 5.1. 
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The theoretical spectra were calculated from the linearized model described 
in Chapter 5.2, using the measured size distributions shown in Figure 5.2. 
Acoustic attenuation o:(w) in decibels was calculated from (5.14) and (5.15), 
using the total damping constant from (5.17d). The integral in (5.15) was 
replaced by a sum over the 54 logarithmically spaced Coulter Multisizer chan­
nels, spanning diameters from 1 to 30 /-Lm, 

64 

o:(w) = 10(lg e) L cre(akl w)nk [dB]. (5.18) 
k=l 

Here, ak is the geometric mean radius of Coulter Multisizer channel k and nk 
is the number of bubbles per unit volume counted in channel k. 

The equation of motion, (5.6), contains the visco-elastic shell parameters 
Gs and 'r/S only as products of the parameters and the relative shell thickness, 
Gsdse/ae and rJsdse/ae. The shell thickness was estimated to 5% of the bubble 
radius, as described in Chapter 5.1, giving 

dse 
- = 0.05 = constant. (5.19) 

The exact value of the ratio dse/ ae is not critical for the modeling, it enters 
into the calculations as a simple scaling of Gs and 'r/S· It is assumed that all 
micro bubbles are equal, that is, have the same shell material properties G s 
and rJs and relative thickness dse/ ae. 

The values of G s and 'r/S were estimated by adjusting their values to min­
imize summed square difference between the measured and calculated spec­
tra. The parameter values were then varied around these first estimates, and 
measured and calculated spectra were compared by visual inspection and by 
calculating the residual. The values of G s and 'r/S were adjusted until the fit 
between measured and calculated spectra was judged unacceptable. This cor­
responded to a doubling of the summed square error between measured and 
calculated spectra, and was selected as limits for the confidence intervals of 
Gs and 'r/S· 

This procedure was repeated for three different production batches of the 
polymeric microbubbles. Results for the individual batches are given in Ta­
ble 5.1. The differences between the three batches are close to the uncertainty 
estimates for each batch. The differences are judged as significant, and may 
be caused by variations in production parameters between the batches. 

The theoretically calculated attenuation spectra for one of the batches is 
plotted in the same graph as the measured spectra, Figure 5.3. The theoretical 
spectra for the four larger samples, (1) to (4), fit very well to the measured 
spectra. The attenuation calculated for the smallest sample (5) is higher 



5.4 Some Calculations Based on the Results 

Table 5.1. Values for parameters estimated for the three different batches 
of polymer-encapsulated air bubbles, (a), (b) and (c). Shell thickness ds was 
estimated from production process parameters and electron microscopy [10] 
to 5% of bubble radius for all samples. The viscoelastic shell parameters Gs 
and TJs and the microbubble bulk modulus Kp were estimated from acoustic 
measurements. 

Shear modulus Shear viscosity Bulk modulus 
Batch Gs [MPa] TJs [N s/m2

] Kp [MPa] 
(a) 10.6 ± 1.0 0.39 ± 0.04 2.2 ± 0.3 
(b) 11.6±1.2 0.48 ± 0.05 2.4 ± 0.3 
(c) 12.9 ± 0.9 0.49 ± 0.03 2.7 ± 0.2 

than the measured value. Microscopic images and comparisons of polymer 
and microbubble volume [10] indicate that the samples contain a very small 
fraction of small fragments of solid polymer material. These fragments will 
show up as small particles on the Coulter Multisizer, but have minimal effect 
on the attenuation. This may explain the reduced attenuation of the smallest 
size-fraction. 

5.4 Some Calculations Based on the Results 

5.4.1 Damping Constants 

The total damping constant 8tot is the sum of several damping terms, see 
(5.17d). The contributions from each of these terms are plotted in Figure 5.4 
and Figure 5.5, for bubble diameters 4 p,m and 8 p,m. The value of 8s is 
calculated from the value of TJs estimated from the measurements. The curves 
show that shell viscosity is the dominating damping mechanism for frequencies 
below 10 MHz. 

Contributions from acoustic and thermal damping were not included in 
the derivation of the equation of motion (5.6). The curves in Figs. 5.4 and 
5.5 indicate that these are not very important at frequencies below about 10 
MHz. Acoustic damping starts to play a role only for frequencies above about 
10 MHz for bubbles with diameter below 8 p,m. 
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Figure 5.4. Dimensionless damping constants for a polymeric microbubble 
with diameter 4 p,m. Contributions from liquid viscosity OL, shell viscosity 6s, 
acoustic radiation Oc, thermal conduction in the gas Oth, and the total damping 
Otat = 0£ + Os + Oc + Oth· The shell viscosity is 7JS = 0.48 Ns/m2
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Figure 5.5. Dimensionless damping constants for a polymeric microbubble 
with diameter 8 p,m. Contributions from liquid viscosity 0£, shell viscosity 6s, 
acoustic radiation Oc, thermal conduction in the gas Oth, and the total damping 
Otat = 0£ + Os + Oc + Oth· The shell viscosity is 7JS = 0.48 Ns/m2
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5.4 Some Calculations Based on the Results 

5.4.2 Microbubble Stiffness 

The bulk modulus Kp expresses the stiffness of the whole microbubble, com­
posed of gas-filled interior and surrounding shell. It is informative to compare 
this microbubble stiffness with the bulk moduli of known materials. Bulk 
modulus Kp and bulk viscosity 'f]p are defined from the relation 

~p=-K~V -n!!__(~V) 
p Ve "tP dt Ve ' (5.20) 

were ~p is the applied pressure, ~ V is the change in volume and Ve is the 
equilibrium volume. For the polymeric microbubbles, expressions for Kp and 
'f]p are found from (5.8) to 

dse 
Kp ="'Po+ 4Gs-, 

ae 
dse 

rJp=4rJs-. 
ae 

(5.21a) 

(5.21b) 

The bulk modulus for a polytropic gas is K 9 = "'Po· Compared to the free gas 
bubble, the bulk modulus of the shell-encapsulated bubbles increases due to 
the shear modulus of the shell. Bulk moduli for the polymeric microbubbles 
are estimated by inserting the value for Gs into (5.21a). This results in values 
for Kp of around 2.5 MPa, see Table 5.1. Kp and 'f]p are independent of the 
microbubble diameter when the ratio between shell thickness and microbubble 
diameter is constant. The value of Kp estimated for the polymeric microbub­
bles is compared with other materials in Table 5.2. According to these results, 
the polymeric microbubbles are approximately 20 times stiffer than free gas 
bubbles. The stiffness of the microbubbles is mainly determined by the shell, 
not by the air inside. The polymeric microbubbles are, however, 1000 times 
more compressible than water. 

When the bubbles are described by their bulk modulus Kp, the resonance 
frequency fo from (5.12) can be expressed in a simple form analogous to the 
result by Minnaert [113] 

fo = - 1
- {3K;_ 

27rae V--;;;: (5.22) 

5.4.3 Resonance Frequency and Scattering Cross Section 

Increased stiffness from shell elasticity causes the resonance frequency to in­
crease. Increased damping from shell viscosity broadens the resonance peak 
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Table 5.2. Microbubble stiffness. Bulk modulus of the investigated polymer­
shelled bubbles compared with other substances. Data from Kinsler et al. [73]. 

Substance 
Air (isothermal) 
Air (adiabatic) 
Polymer-shelled air bubbles 
Water (37°C) 
Steel 

Bulk modulus 
K [MPa] 

0.10 
0.14 
2.5 

2250 
170000 

and increases sound absorption. The resonance frequency calculated from 
(5.12) is compared with results for free gas bubbles, results are plotted in Fig­
ure 5.6. The resonance frequency for the polymeric microbubbles was found 
to be approximately 4 times higher than what is expected for air bubbles of 
the same diameter. 

The scattering cross section is calculated from (5.16). Figure 5.7 shows 
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Figure 5.6. Calculated resonance frequency as function of bubble diameter. 
The solid line shows the values found for the bubbles encapsulated in a poly­
meric shell, while the dashed line shows values calculated for free air bubbles. 
The two curves for the polymeric microbubbles correspond to the parameter 
values Gs=10.6 MPa and Gs=12.9 MPa, see Table 5.1. 



5.4 Some Calculations Based on the Results 
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Figure 5. 7. Scattering cross section for polymeric microbubbles (solid lines) 
and for free air bubbles (dashed line). The frequency is 3.5 MHz. The two 
curves for the polymeric microbubbles correspond to the parameter combina­
tions Gs=10.6 MPa, 77s=0.39 Ns/m2and Gs=12.9 MPa, 77s=0.49 Ns/m2
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Figure 5.8. Scattering cross section as function of frequency for polymeric 
microbubbles (solid lines) and for free air bubbles (dashed line). Diameters 
are 4 {lm and 8 {lm. The two curves for the polymeric microbubbles cor­
respond to the parameter combinations Gs=10.6 MPa, 77s=0.39 Ns/m2 and 
Gs=12.9 MPa, 77s=0.49 Ns/m2 . 
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dependence on diameter, at frequency 3.5 MHz, while Figure 5.8 shows depen­
dence on frequency for bubbles with diameters of 4 f.Lm and 8 f.Lm. Scattering 
cross sections of air bubbles without shells are plotted in the same diagrams 
for comparison. Figure 5. 7 corresponds to Figure 8 in Church's article [22]. 
Figures 5. 7 and 5.8 show how the resonance frequency increases and the reso­
nance peak broadens and almost disappears, due to the viscoelastic polymeric 
shell. 

5.5 Discussion 

5.5.1 Shell Thickness 

A critical assumption for the estimation of the viscoelastic shell parameters is 
that the ratio between shell thickness and bubble radius is constant. The ba­
sis for this assumption is the production process for the microbubbles [10]: A 
droplet with a constant fraction of dissolved polymeric material is converted to 
one air-filled, polymer-shelled microbubble, with proportionality between ini­
tial droplet size and resulting microbubble size. The good agreement between 
experimental and theoretical attenuation spectra supports this assumption. 

The model was tested by assuming a constant shell thickness instead of 
constant ratio between shell thickness and radius. This gave poor agreement 
between measurements and calculations for any combination of G s and T/S, 
supporting the assumption that shell thickness varies with bubble diameter. 

Another critical assumption is that all bubbles of the same size are equal:. 
The shell thickness is uniquely determined by the microbubble diameter, and 
the values of the viscoelastic material parameters of the shell are equal for all 
bubbles. Particle characterization methods [10] have not shown variations in 
shell thickness between bubbles of the same size. This supports the assump­
tion. If there are variations in shell thickness or viscoelastic parameters, this 
would typically cause over-estimation of the shell viscosity T/S. The resulting 
broadening of the resonance peak could be interpreted as being caused by an 
increased damping of the oscillating bubble. 

The shear modulus estimated for the shell material is low compared to the 
shear moduli of known solids. This can be explained if the polymeric shell 
material forms a loose, porous structure, instead of a compact material. Such 
a material would have a low shear modulus and a high shear viscosity, which 
agrees with the estimated values for Gs and T/S· 



5.6 Summary 

5.6 Summary 

A model has been developed describing oscillations of gas bubbles encapsulated 
in a thin polymer shell. The model depends on viscoelastic parameters of 
the shell material that are not known a priori. A linearized version of the 
model was used to estimate the shell material properties shear modulus and 
shear viscosity from acoustic attenuation spectra. Good agreement between 
experimental and theoretical results was found. The results show that the 
polymer shell increases microbubble stiffness 20 times compared to a free gas 
bubble. 
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Chapter 6 

A Comparison Between Three 
Different Contrast Agents 

Chapter 5 presented a method to estimate the viscous and elastic material 
parameters of the shell material, based on acoustic measurements. For the 
polymeric microbubbles investigated, the measured resonance frequency was 
around 4 times higher than predicted by the theory for free gas-bubbles. This 
shift in resonance frequency was explained by the influence of the shell. The 
shell makes the bubble stiffer, and shifts the resonance frequency upwards. 

The effect of the shell was quantified by modeling it as an incompressible, 
visco-elastic solid, described by a shear modulus Gs and shear viscosity 'r/S· 
Values for G s and rts were estimated from the experimental results, and it 
was concluded that the polymer shell increases the stiffness of the bubbles by 
about 20 times. The dynamics of these microbubbles were dominated by the 
properties of the encapsulating polymer shell. 

6.1 Properties of Albunex, Polymeric Microbubbles 
and Sonazoid 

The aim of this chapter is to apply the methods introduced in Chapter 5 to 
compare three different contrast agents. The basic composition of the three 
investigated agents is similar, they all consist of gas bubbles encapsulated in 
a shell. But the shell material is quite different for the three agents, and 
there are also differences in the size distributions and the microbubble volume 
concentrations. 

The three agents that are compared are: 

Albunex (Also called Infoson). Albunex consists of air bubbles encapsulated 
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in a thin shell of denatured human serum albumin (HSA) [19]. The Al­
bunex sample investigated here was an experimental batch produced by 
Nycomed. Its parameters, especially the size distribution, may deviate 
from the parameters of the product today on the market under the name 
Albunex. 

The results for Albunex are from a study in 1992, they have been pub­
lished previously [29]. The raw data of this study are still available. 
The results were recalculated using the theoretical model in Chapter 2 
and included for comparison with the other agents. Models for the rela­
tion between size and efficiency of Albunex have been published earlier 
[57, 158]. 

Polymer shelled micro bubbles This is the agent that was studied in detail 
in Chapter 5. It is an experimental contrast agent prepared by Nycomed, 
consisting of air bubbles encapsulated in a polymer shell. 

Sonazoid (Formerly called NC100100) This contrast agent was developed 
by Nycomed and is now in clinical trials. The agent consists of bubbles 
containing perfluorocarbon gas enclosed in a thin surfactant membrane. 
Results from acoustic characterization of this agent were presented at the 
1998 joint ICA/ ASA conference [59] and at the 1998 IEEE Ultrasonic 
Symposium [60]. 

6.1.1 Size Distributions 

The size distributions of the three microbubble types were measured using 
a Coulter Multisizer. The results are plotted in Figure 6.1. The curves are 
normalized so that the not fractionated samples have equal volume of bubbles. 

The Albunex samples were split into size fractions by filtering through 
Nucleopore filters of diameter 10 p,m, 8 p,m, 5 p,m and 3 p,m, as described in 
Reference [29]. The size distributions of these filtered samples are plotted with 
dashed lines in the figure. 

The polymeric microbubbles are described in Chapter 5. This agent was 
fractionated by letting the microbubbles float in a glass tube, and harvesting 
from the bottom of the tube after predefined times. The size distributions of 
these fractions are plotted with dashed lines in the diagram. 

The Sonazoid sample was not fractionated. 
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Figure 6.1. Size distributions of three different contrast agents. Upper dia­
gram: Albunex microbubbles. (1) is the original sample, (2) to (5) are samples 
filtered through Nucleopore filters. Middle diagram: Polymeric microbubbles, 
from Chapter 5. (1) is the original distribution, (2) to (5) are fractionated 
samples obtained by flotation. Lower diagram: Sonazoid. The curves are 
normalized to equal volume of bubbles in the not fractionated samples (solid 
lines). 

137 



138 Comparison Between Contrast Agents 

5 

84 
(.) 

A1bunex 

--

I 
~ 
~3 

1'::: ~ -0 / --- - :: - --::,..." 
-~ 2 I / 

/ -~_...,,,......, 

"- -::l 
I I d 

(]) 
I / 

tj 1 
I / ----< / / 

~~-===-==-- ---- ... 
0 
0 2 3 4 5 6 7 8 9 10 

6 

85 
(.) -- /" 

~4 / 
f -:::7"'"-----

§3 
/. ::::-

II r 
·:g II / 

/ -------
§2 I // ----
~ I / ./- ... ~ ./ 

-< 1 I/ .#' ...... 
/ // 
/-

0 
c.-

0 2 3 4 5 6 7 8 9 10 

30 

825 
Sonazoid 

~ 
~20 

§ 15 ·:g 
§ 10 
(]) 
tj 

-< 5 

0 
0 2 3 4 5 6 7 8 9 10 

Frequency [MHz] 

Figure 6.2. Acoustic attenuation spectra measured on the three contrast 
agents whose size distributions are plotted in Figure 6.1. The measurements 
are normalized to equal volume of bubbles in the not fractionated samples 
(solid lines). 



6.1 Properties of the Three Agents 

6.1.2 Acoustic Attenuation Spectra 

Acoustic attenuation spectra were measured to compare the acoustic proper­
ties of the different contrast agents. The polymeric micro bubbles and Sonazoid 
were measured using the system for attenuation measurements described in 
Chapter 4. Albunex was measured using an older system based on the same 
measurement method, but with five transducers instead of two. The mea­
surement system and method used on Albunex is described by de Jong et al. 
[29]. 

The results of the acoustic attenuation measurements are plotted in Fig­
ure 6.2. These are large differences between the three different contrast agents. 

Albunex gives a resonance peak at a lower frequency than the others. For 
the unfiltered Albunex sample, the peak is at 2.2 MHz. As the larger Al­
bunex microbubbles are removed by filtering, the resonance peak shifts to­
wards higher frequencies. Marsh et al. [106, 107] have done the same attenu­
ation measurements on Albunex produced by Mallinckrodt (St. Louis, USA), 
reporting similar results. 

The polymeric microbubbles have a peak in attenuation at 4.8 MHz. This 
is at a higher frequency than for Albunex, and the resonance peak is much 
broader. This can partly be explained by the size distributions, as the poly­
meric microbubbles are smaller than the Albunex microbubbles. As the larger 
bubbles are removed by flotation, the resonance moves towards higher fre­
quencies, and the peak broadens even more. 

The attenuation from Sonazoid is higher than from the other substances. 
At equal volume concentration of bubbles, the Sonazoid gives about 5 times 
higher attenuation than Albunex and the polymeric microbubbles. Sonazoid 
also gives a narrower resonance peak than the other substances do. This can 
be explained by the narrower size distribution of Sonazoid. Sonazoid has a 
resonance peak around 4.2 MHz, lower than for the polymeric microbubbles. 
The Sonazoid bubbles are smaller than the polymeric microbubbles. Based on 
size alone, Sonazoid should show a higher resonance frequency than the poly­
meric microbubbles. An explanation to this apparent discrepancy is sought in 
differences in shell thickness and material properties. 

Visual comparison between the size distributions and attenuation spectra 
in Figure 6.1 and Figure 6.2 gives the following impression: 

The Sonazoid sample has maximum attenuation around the same fre­
quency as the Albunex sample No. (3), which has about twice as large di­
ameter. The resonance peak of Sonazoid is sharper than for the Albunex 
sample. This indicates that the Sonazoid bubbles are softer and have higher 
Q-values than the Albunex bubbles. 

Compare the size distribution of the Sonazoid sample with sample No. ( 4) 
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Table 6.1. Comparison between three ultrasound contrast agents with differ­
ent shell materials. Visco-elastic parameters estimated for the shell material 
and for the whole microbubble. 

Albunex 
Polymer shell 
Sonazoid 

Thickness 
ds [nm] 
15 
50x _Q_ 1 

p,m 

4.0 

Shell properties 
Shear modulus Shear viscosity 

Gs [MPa] 'f/S [Nsjm2] 

120 ±20 2.2 ±0.8 
11.5 ±2 

50 ±3 
0.4 ±0.1 

0.8 ±0.1 

1 The thickness of the polymer shell is proportional to the microbubble radius, equal to 5% 

of the radius. This is expressed as (50 xajp,m) nm, where a is the microbubble radius. 

of the polymeric microbubbles. The polymer sample has slightly larger diam­
eter. While the Sonazoid sample has a sharp resonance peak, the polymer 
sample shows a very broad spectrum with hardly any maximum within the 
observed frequency range. This indicates that the polymeric microbubbles 
behave like harder oscillators with lower Q-values than the Sonazoid-bubbles. 

6.2 Estimates for Shell Material Properties 

The visco-elastic parameters of the shell material for Albunex and Sonazoid 
were estimated by fitting measured and calculated attenuation spectra, using 
the method developed for the polymeric microbubbles in Chapter 5. The shell 
thickness for the substances was estimated from electron microscopic images 
and from measurements of shell material mass. These results were provided by 
Nycomed. The estimated shell parameters for the three substances are listed 
in Table 6.1. 

6.2.1 Albunex 

The results of previously published measurements on Albunex [29] were recal­
culated using the theoretical model from Chapter 2. The results are plotted 
in Figure 6.3. 

The spectra for Albunex were fitted by assuming a shell thickness that was 
constant, that is, independent of the microbubble diameter. This assumption 
results in a much better agreement between measured and calculated atten-



6. 2 Estimates for Shell Mat erial Properties 

uation spectra than modeling the shell thickness as proportional with the 
microbubble diameter. This is in accordance with what was expected from 
the composition of the Albunex microbubble: The shell is formed by a coag­
ulation of HSA protein molecules around the air bubble. It is reasonable to 
assume that the thickness of this molecule layer does not depend on the size 
of the bubble, although this is not known exactly. 

The fit between measured and calculated spectra is not as good for Al­
bunex as it is for the polymeric microbubbles studied in Chapter 5. This is 
reflected in large uncertainties for the estimated shell parameter values. One 
reason for this may be that the Albunex microbubbles are rather unstable, 
and require very careful handling not to be damaged prior to or during the 
measurement. It is suspected that the handling procedure, including filtering, 
stirring and transportation between acoustic and size measurement systems, 
might have destroyed a small amount of Albunex microbubbles, and that this 
has caused the acoustic and size measurements to be done on slightly different 
microbubble samples. However, it may also be that the theoretical model does 

2 3 4 5 6 7 8 9 10 
Frequency [MHz] 

Figure 6.3. Measured and calculated acoustic attenuation spectra for Al­
bunex. The solid lines are the measured attenuation spectra from Figure 6.2. 
(1) is for unfiltered Albunex, (2) to (5) are Albunex filtered through Nucleopore 
filters of varying pore diameters. The dashed lines show spectra calculated 
from the size distributions in Figure 6.1, using the shell properties for Albunex 
listed in Table 6.1. The curves are normalized to standardized bubble volume 
fraction ¢ = 10--5. 
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not work so well for the Albunex microbubbles as it does for the polymeric 
microbubbles. 

6.2.2 Sonazoid 

The measured and calculated acoustic attenuation spectra for Sonazoid are 
plotted in Figure 6.4. 

The calculated spectrum was fitted by assuming a shell thickness that was 
constant, that is, independent of the microbubble diameter. The calculations 
gave equally good fits between measured and calculated spectra either the shell 
thickness was modeled as constant or as proportional to the bubble diameter. 
This is probably because the size distribution of Sonazoid is so narrow that it 
does not contain much information about how properties vary with diameter. 
No fractionation was done on the Sonazoid sample. 

The assumption of constant shell thickness was selected based the com­
position of Sonazoid. The microbubble shell is composed of a monolayer of 
molecules, and it is likely that the shell thickness does not depend on the 
microbubble diameter. 
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Figure 6.4. Measured and calculated acoustic attenuation spectra for Son­
azoid. The solid line is the measured attenuation spectrum from Figure 6.2. 
The dashed line shows the spectrum calculated from the size distribution in 
Figure 6.1, using the shell properties for Sonazoid listed in Table 6.1. The 
curves are normalized to standardized bubble volume fraction ¢ = 10-5 . 



6.3 Sensitivity to Hydrostatic Pressure 

The fit between measured and calculated spectra for the investigated Son­
azoid sample is excellent. However, only one fraction with a rather narrow 
size distribution was investigated. A good fit between measured and calcu­
lated results is easier to obtain for such a narrow size distribution than for 
several samples with different sizes. 

6.3 Sensitivity to Hydrostatic Pressure 

It is critical that the contrast agent bubbles can withstand the hydrostatic 
pressures in the heart ventricles and in the arterial system. The pressure 
stability of the agents was investigated by measuring acoustic attenuation 
spectra before, during and after exposure to 120 mmHg static pressure, using 
the system for pressure measurements described in Chapter 4. 

The agents were diluted in Isoton II, and acoustic attenuation spectra 
were measured. The measurement sequence is described in Chapter 4, it is 
summarized as follows: First, 3 spectra are measured at 10 seconds intervals. 
The pressure valve is then opened, and either 3 or 9 spectra are measured while 
the sample is under pressure, also at 10 seconds intervals. The pressure is then 
released, and the last 3 spectra are measured. The pressure was 120 mmHg 
in all the measurements reported here. 

6.3.1 Polymeric Microbubbles 

The results of pressure measurements on polymeric microbubbles are plotted 
in Figure 6.5. 

Before the pressure is applied, the attenuation spectrum has a resonance 
peak around 4.5 MHz, and there is no significant difference between the three 
spectra measured. When the pressure valve is opened and 120 mmHg pressure 
is applied, the resonance peak shifts downwards to 3.9 MHz. The attenuation 
decreases slightly with time during the 90 seconds the pressure is applied. 
After the pressure is released, the spectra goes back to the shape it had before 
pressure was applied, but the attenuation is slightly reduced, by about 3%. 

The difference between the spectra measured before and after pressure 
is significant, but is probably not of any practical importance. It is most 
likely caused by a destruction of a small amount of bubbles by the hydrostatic 
pressure. It may also be caused by bubbles floating away from the sound 
path during the time of measurement. However, given the very slow rising 
speed of these microbubbles, flotation is not likely to have caused the reduced 
attenuation. 

The resonance peak shifts down during the exposure to pressure. From the 
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Figure 6.5. Pressure stability of the polymeric microbubbles. The upper 
diagram shows acoustic attenuation spectra measured before, during and af­
ter exposure to 120 mmHg static over-pressure. The two lines in the spectra 
correspond to measurements with two different transducers. The bottom dia­
gram shows the attenuation values at the center frequencies of the transducers, 
plotted as function of time. The pressure was applied at time = 25 seconds 
and released at time = 115 seconds. The resonance is shifted towards lower 
frequencies during exposure to pressure. The effect of the pressure is reversible. 
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6.3 Sensitivity to Hydrostatic Pressure 
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Figure 6.6. Pressure stability of Sonazoid. The upper diagram shows acoustic 
attenuation spectra measured before, during and after exposure to 120 mmHg 
static over-pressure. The two lines in the spectra correspond to measurements 
with two different transducers. The bottom diagram shows the attenuation 
values at the center frequencies of the transducers, plotted as function of 
time. The pressure was applied at time = 25 seconds and released at time = 

55 seconds The resonance is shifted towards higher frequencies during exposure 
to pressure. The effect of the pressure is reversible. 
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theoretical models for linear resonance frequency in Chapter 2, the resonance 
frequency is expected to increase if the bubble diameter is decreased and the 
bubble stiffened, e.g. by an increased external pressure. For this substance, 
the opposite effect is observed. From Chapter 5, it was concluded that the 
polymeric microbubbles were much stiffer than air bubbles, and that the be­
havior of these bubbles was dominated by the shell, not by the air inside them. 
The downshift in resonance frequency during hydrostatic pressure can be ex­
plained by the shell being curled and made more flexible during hydrostatic 
pressure. 

6.3.2 Sonazoid 

The results of pressure measurements on Sonazoid are plotted in Figure 6.6. 
Before the pressure is applied, the attenuation spectrum has a resonance 

peak around 4.0 MHz. There is no significant difference between the three 
spectra measured. When the pressure is applied, the resonance peak shifts 
upwards to 4. 7 MHz. The attenuation decreases slightly with time during the 
30 seconds the pressure is applied. After the pressure is released, the spectra 
goes back to the value it had before pressure was applied. The difference 
between the spectra measured before and after pressure is not significant 

Sonazoid gives an increased resonance frequency when it is exposed to 
hydrostatic over-pressure. This is as expected from the theoretical models in 
Chapter 2, if the pressure causes the bubbles to shrink and stiffen. 

6.4 Velocity Dispersion 

Gas bubbles are known to introduce velocity dispersion. Observation of the 
oscilloscope screen during measurements have showed only very small time 
shifts in the received pulses when the contrast agents were added, much smaller 
than half a wavelength of the acoustic pulse. 

Changes in phase velocity after introduction of contrast agent are calcu­
lated from the pulses used to calculate acoustic attenuation spectra. The at­
tenuation measurement system described in Chapter 4 allow detection of small 
changes in relative velocity, changes that are not easily seen by observing the 
pulses on the oscilloscope. 

6.4.1 Calculation of Phase Velocity 

The phase velocity is calculated from the phase of the pulses received after 
traversing twice through the sample cell with the contrast agent. 



6.4 Velocity Dispersion 

The voltage V(t) received at the transducer is described as 

V(t) = L Vnei(wnt-knz-Bn) , (6.1) 
n 

where Vn is the amplitude of frequency component n, Wn is the angular fre­
quency, t is the time after the pulse was emitted, kn is the acoustic wavenum­
ber' and z is the distance through the contrast agent suspension. en is a phase 
constant that incorporates the effect of transmission, reflection from the back 
wall, and of the phase of the transfer function of the transducer. The phase 
¢(w) of the received voltage is, from (6.1) 

¢(w) = -k(w)z- B(w), (6.2) 

where the wavenumber kn for frequency component n is rewritten as k(w). 
The wavenumber relates to the phase velocity c(w) as 

w 
k(w) = c(w) ' (6.3) 

where c(w) is the frequency dependent phase velocity in the contrast agent 
suspension. 

The phase velocity in the contrast agent suspension is calculated by com­
paring the phase of two pulses: One that has traveled through the contrast 
agent suspension and one reference pulse that has traveled through a liquid of 
known velocity. The phase difference between the two pulses is 

b.¢=¢- ¢o = z(ko- k) = wz (]__- ~) , 
co c 

(6.4) 

where ¢ is the phase of the pulse, and ¢0 is the phase of the reference pulse. k 
and ko are the wavenumbers in the contrast agent suspension and in the ref­
erence liquid. This allows the phase velocity in the contrast agent suspension 
c( w) to be calculated from the phase difference by 

1 1 cPm- ¢o 
c(w) co wz 

(6.5) 

6.4.2 Measured Dispersion 

The velocity dispersion curves were calculated for two of the substances, the 
polymeric microbubbles and Sonazoid. The raw data pulses for Albunex were 
no longer available for such calculations. 
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Figure 6. 7. Phase velocity and attenuation measured on the polymeric mi­
cro bubbles. The solid lines show measured velocity and attenuation. The 
dashed lines show theoretical curves calculated from the measured size distri­
butions, using the model for a shell-encapsulated bubble and parameters from 
Table 6.1. 



6.4 Velocity Dispersion 

Dispersion curves for the polymeric microbubbles are plotted in Figure 6.7. 
Dispersion curves for Sonazoid are plotted in Figure 6.8. The attenuation 
spectra for the samples are plotted in the same figures. These curves are not 
normalized to equal concentration, as the dispersion does not show a simple 
linear variation with bubble concentration. 

The curves were calculated using the parameters 

Distance through contrast agent 

Speed of sound in Isoton II 

z = 63 mm 

co= 1500 m/s (6.6) 

The results in Figure 6. 7 and Figure 6.8 show that the variations in phase 
velocity introduced by the contrast agents at realistic concentrations is less 
than 1%. "Realistic concentrations" means concentrations that increase the 
attenuation by a few dB/ em. 

The phase velocity and attenuation as function of frequency were calcu­
lated from equation (2.109i) in Chapter 2. The size distributions n(a) used in 
the calculations were measured by the Coulter Multisizer, see Figure 6.1. 

The theoretical dispersion and attenuation curves for the polymeric mi­
crobubbles and for Sonazoid are plotted in the same figures as the measured 
values, Figure 6. 7 and Figure 6.8. The solid lines show measured results, the 
dashed lines show results calculated from the size distributions. The shell 
properties used to calculate the dispersion and attenuation curves are listed in 
Table 6.1. The agreement between measured and calculated results is good. 

The calculated dispersion curve for Sonazoid is compared with the theoret­
ical curve for air bubbles without a shell in Figure 6.9. The shell encapsulating 
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Figure 6.8. Phase velocity and attenuation measured on Sonazoid. The 
solid lines show measured velocity and attenuation. The dashed lines show 
theoretical curves calculated from the measured size distributions, using the 
model for a shell-encapsulated bubble and parameters from Table 6.1. 
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the Sonazoid bubble reduces both velocity dispersion and attenuation consid­
erably compared to free air bubbles. 

6.5 Theoretical Calculations Based on the Results 

The results in this chapter have showed that there are differences between 
the three contrast agents, and that these differences must be explained by 
differences in the thickness and mechanical properties of the shell. Table 6.1 
lists the properties of the different shell materials estimated from the acoustic 
attenuation measurements. The theory in Chapter 2 gives models for how 
various linear acoustic properties of the bubbles can be calculated from these 
shell parameters. The following sections gives the results of some of these 
calculations, with emphasis on how the different shell parameters give different 
results for the three agents, and how they compare with the theory for free 
air bubbles. 

6.5.1 Resonance Frequency and Bulk Modulus 

The bulk modulus Kp and the resonance frequency fo are calculated from the 
equations (5.21a) and (5.22) in Chapter 5, using the shell property estimates 
in Table 6.1. The results, as function of bubble diameter, are plotted in 
Figure 6.10 and Figure 6.11. The theoretical result for an air bubble is plotted 
in the same diagram for comparison. 
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Figure 6.9. Dispersion and attenuation curves calculated for Sonazoid com­
pared with air bubbles of the same size. The solid lines are the curves from 
Figure 6.8, calculated for Sonazoid using the estimated shell material proper­
ties in Table 6.1. The dashed lines are results calculated for air bubbles of the 
same size distribution. 
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Figure 6.10. Calculated bulk modulus as function of diameter for the three 
different contrast agents. The theoretical result for a free air bubble is included 
for comparison. 
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Figure 6.11. Resonance frequency as function of diameter for the three 
different contrast agents. The theoretical result for a free air bubble is included 
for comparison. 
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The main conclusion from the curves in Figure 6.11 is that all the inves­
tigated contrast agents have higher resonance frequency than free air bubbles 
of the same size. The reason for this is found in Figure 6.10: The shell encap­
sulated contrast agent bubbles are stiffer than the free air bubbles, quantified 
by their higher bulk modulus. 

The dependence of diameter is different between the three bubble types. 
This is caused by the differences in shell thickness: The polymeric microbub­
bles have a shell that is assumed proportional to the bubble diameter, while 
the shell thickness of Albunex and Sonazoid is assumed constant. 

According to the results, the polymeric microbubbles and Albunex have 
around four times higher resonance frequency than air-bubbles of the same 
size. The resonance frequency of Sonazoid is around twice that of air bubbles. 

The curves in Figure 6.10 and Figure 6.11 are calculated for driving acous­
tic frequency equal to 3.5 MHz. The bulk modulus shows a weak dependence 
on frequency, through the variation in the polytropic exponent "" of the gas. 
In the diameter and frequency range investigated here, the oscillation is close 
to isothermal, corresponding to "" ~ 1.0 independent of the type of gas. The 
dependence on"" is seen in the curve for the free air bubble, which would have 
been constant for a constant value of""· 

6.5.2 Scattering Cross Section 

The scattering cross section for the different bubble types are calculated using 
the described theoretical model and parameters. The scattering cross section 
is plotted as function of diameter in Figure 6.12 and as function of frequency 
in Figure 6.13. These curves show how the resonance peak is broadened and 
shifted towards higher diameters and frequencies for the shell encapsulated 
bubbles. The broadening is explained by the increased damping caused by the 
viscosity in the shell material. 

6.5.3 Damping Constants 

The dimensionless damping constants for the three different substances were 
calculated from the estimated shell parameter values. The results for 3 J.Lm 
diameter bubbles are plotted in Figure 6.14, and the results for 5 J.Lm diameter 
bubbles are plotted in Figure 6.15. Results for air bubbles of equal diameter are 
included for comparison. According to these results, the shell viscosity is the 
dominating damping mechanisms for all bubbles and diameters for frequencies 
below 10 MHz. The polymeric microbubbles are more damped than Albunex 
and Sonazoid. 
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Figure 6.12. Scattering cross section as function of diameter for the three 
different contrast agents. The theoretical result for a free air bubble is included 
for comparison. 
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Figure 6.13. Scattering cross section as function of frequency for the three 
different contrast agents. The theoretical result for a free air bubble is included 
for comparison. 
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Note that the presence of a shell changes the values of the other damping 
constants; Oth, OL and De change when the bubble is enclosed in a shell. This is 
a consequence of the definition of the damping constant 8 as depending on the 
resonance frequency wo. The change in wo due to the shell causes the other 
damping constants to change when a shell is present. 

6.6 Summary: Comparison between the Agents 

The main result of this chapter, is that there are differences between the three 
contrast agents Albunex, polymeric microbubbles, and Sonazoid that cannot 
be explained by the bubble size alone. 

The acoustic attenuation spectra for all three agents show an increased 
resonance frequency compared to what is predicted for gas bubbles. This 
increase in resonance frequency is different for the three agents, and is used 
to estimate the shell stiffness of the agents. It is concluded that the stiffness 
of all three agents is mainly determined by the encapsulating shell, not by 
the gas inside the bubbles. The three agents are different, with the polymeric 
microbubbles and Albunex being the stiffest, and Sonazoid being considerably 
more flexible. A typical Sonazoid bubble still has a bulk modulus of around 
600 kPa, which is about 6 times the stiffness of a free gas bubble. 

The main conclusion from the pressure stability measurements is that the 
polymeric microbubbles and Sonazoid are stable when exposed to hydrostatic 
pressures found in the cardiac system. Exposed to 120 mmHg pressure, a 
measurable change in acoustic properties is seen. This change is reversible. 
When the pressure is released, the initial behavior is retained. The change 
in acoustic properties during pressure is too small to affect the performance 
of the products in an ultrasound investigation. When exposed to hydrostatic 
pressure, Sonazoid shows an upshift in resonance frequency, as expected from 
theory. The response polymeric microbubbles gives a downshift in resonance 
frequency, which is not so readily explained. It is postulated that this down­
shift is caused by the shell becoming more flexible, e.g. curled, when the bub­
bles are exposed to static pressure. 

The dispersion measurements show that the introduction of contrast agent 
bubbles changes the speed of sound in the liquid by less than 1%, for rele­
vant concentrations of microbubbles. The experimental results fit well to the 
theoretical dispersion curves calculated for shell-encapsulated bubbles. It is 
concluded that the dispersion introduced by the bubbles is measurable, but 
the change in sound velocity is too small to cause any distortion of the images. 

The estimated shell material parameters are combined with the theory to 
calculate several acoustic properties of the bubbles. These calculations give 
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Figure 6.14. Damping constants for the three different contrast agents. The 
curves are calculated for a 311m diameter bubble, based on the estimated shell 
parameter values. Results for a free air bubble are included for comparison. 
6th is damping from thermal conduction in the gas, 6s is from shell viscosity, 
6 L is from viscosity in the liquid, 6c from acoustic radiation and 6tot is the 
total damping constant. 
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Figure 6.15. Damping constants for the three different contrast agents. The 
curves are calculated for a 5 p,m diameter bubble, based on the estimated shell 
parameter values. Results for a free air bubble are included for comparison. 
8th is damping from thermal conduction in the gas, 8s is from shell viscosity, 
8 L is from viscosity in the liquid, 8c from acoustic radiation and 8tot is the 
total damping constant. 
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as results an increased resonance frequency compared to free bubbles of the 
same size. The curves for scattering cross section are shifted towards higher 
frequencies and larger diameters compared to the curves for free bubbles. The 
dimensionless damping constants for all three substances are dominated by 
the viscosity in the shell. The damping is increased compared to the damping 
of the free bubble. 
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Chapter 7 

Scatter at Higher Harmonics 

The oscillation of gas bubbles is known to be highly nonlinear for moder­
ate driving pressure amplitudes [88]. "Moderate amplitude" means amplitude 
between 100 and 500 kPa, amplitudes that occur frequently in diagnostic ul­
trasound imaging. The nonlinear oscillations cause the bubbles to radiate 
sound at harmonics of the driving acoustic pressure pulse. 

This chapter presents results of a study that measured experimentally the 
scatter at higher harmonics from Sonazoid. The experiments were done using 
the system for backscatter measurements described in Chapter 4.2. The echoes 
received at the higher harmonics of the transmit frequency were compared with 
simulations using the theory in Chapter 3. 

A shortened version of this chapter was published at the 1999 IEEE Ul­
trasonics Symposium [58]. 

7.1 Experimental Setup 

The experimental setup is described in Chapter 4.2. Separate transducers 
were used for transmit and receive, to obtain the bandwidth needed to receive 
the higher harmonics of the transmit pulse. The experimental configuration 
is illustrated in Figure 7.1. See also Figure 4.9 on page 113 for details. 

Shaped ultrasound pulses are generated by the programmable function gen­
erator ( Wavetek 395), amplified by 50dB in the power amplifier (ENI 21 OOL) 
and transferred to the transmitting transducer. The transmitting transducer 
had center frequency 1 MHz, a large aperture diameter of 38 mm and was 
strongly focused. The focal length was 50 mm, giving an F-number of 1.3 
(Panametrics Videoscan V392-SU). Parameters of the transducers used for 
transmit and receive are listed in Table 7.1. 

The transmitting transducer insonified a sample of Sonazoid diluted in 
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Table 7.1. Parameters of the transducers used to measure harmonic scatter. 

Transducers 
Transmit Receive 

Center frequency f MHz 1.0 5.0 
Aperture diameter D mm 38 10 
Focal length F mm 50 00 

Panametrics part No. V392-SU V326-SU 

Isoton II. The contrast agent suspension was contained in a sample cell with 
thin Mylar film acting as acoustic windows. The transducers and the sam­
ple cell with contrast agent was submerged in degassed tap water, acting as 
transmission medium for the sound pulses. 

Scattered sound pulses were received by an unfocused, broadband, 5 MHz 

Computer 
Lab Windows 

Mat lab 

GPIB 

Oscilloscope 
LeCroy 9310AM 

Generator 
Wavetek395 

Amplifier 

Receive 
5MHz 

Transmit 
IMHz 

F=50mm 
(2)38mm 

Sample cell 
Sonazoid 

in/satan II 

Figure 7.1. Measurement setup for detecting harmonics. The large focused 
1 MHz transducer is used for transmit ultrasound pulses. The smaller, unfo­
cused 5 MHz transducer is used to receive scattered echoes from the contrast 
agent. 



7.1 Experimental Setup 

Table 7.2. Parameters of the transmit pulses used to measure harmonic 
scatter. 

Frequency fi MHz 1.0 
Sample rate is Msa/s 100 
No. of cycles Nc 20 

Voltage amplitudes 
From function generator v; mV 20, 50, 100, 200 and 500 
From power amplifier Vout v 3, 8, 15, 30 and 80 
Pulse envelope WM[n] Hanning window 
Pulse repetition rate ipr 1/s 10 
No. of pulses Np 5 

Pressure amplitudes 
Measured maxima Pmax kPa 34, 85, 170, 340 and 850 
Estimated averages Pmean kPa 17, 43, 85, 170 and 430 

transducer placed at an angle to the transmitting transducer (Panametrics 
Videoscan V326-SU), see Table 7.1. The receiving transducer was aimed at 
the focal region of the transmitting transducer, as illustrated in Figure 7.1. 
The received signals were amplified in the receiver section of the Panametrics 
5800PR ultrasound pulser/receiver and transmitted to the digital oscilloscope 
(LeCroy 9310AM) for digitizing. 

The function generator and the digital oscilloscope were connected to the 
PC-type computer (Dell Pentium II) over a GPIB interface. The transmit 
pulses were programmed and oscilloscope traces were sampled by the computer 
using the programs described in Chapter 4.2. 

7.1.1 Transmit Pulses 

The transmit pulses were 20 cycles long sine wave bursts enclosed in a Hanning 
window, defined in the computer and generated by the Wavetek arbitrary 
function generator. The driving pulse voltage v(t) is expressed as 

(7.1) 

where Vi is the voltage amplitude, WM[n] is a Hanning window of length 
M = Nc * is/ fi [126], Nc is the number of cycles in the pulse, is is the 
sample rate and ii is the driving frequency. Values of these parameters are 
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Figure 7.2. Transmitted pulses measured with a GEC Marconi membrane 
hydrophone in focus of the transmitting transducer. The output voltage am­
plitude from the W avetek 395 function generator was set to Vi =20, 200 and 
500 mV. The pulses were specified as 20 cycles long sine-wave bursts enclosed 
in a Hanning-envelope. The center frequency was 1 MHz. The measured 
spectra are characterized by a narrow main peak at the transmit frequency, 
low side lobe levels and some 2nd and 3rd harmonics for the higher driving 
voltages. 



7.2 Results 

listed in Table 7.2. The long pulses were used to obtain a good separation 
between the harmonics in the received spectra, while the Hanning envelope 
gave good suppression of the side lobes. 

Varying transmit amplitudes were tested by adjusting the voltage from the 
Wavetek function generator. The open circuit voltage amplitude Vi was varied 
from 20 m V to 500 m V in 5 steps, see Table 7.2. 

The output impedance of the function generator and the input impedance 
of the EN! 21 DOL RF power amplifier were both 50 0. The pulses from 
the function generator were amplified by 50 dB in the power amplifier. The 
resulting voltages from the power amplifier are listed in Table 7.2. 

The transmit pulses and their power spectra were measured with a cali­
brated hydrophone ( Y-33-7611, 1 mm bilaminar membrane hydrophone, GEC­
Marconi, Chelmsford, UK). The results, measured where the pressure was 
maximum, are plotted in Figure 7.2. The spectra are characterized by a nar­
row peak at the transmit frequency, low sidelobe levels outside the main peak, 
and smaller peaks at the 2nd and 3rd harmonics of the transmit frequency. 
The peaks at the harmonics increase more strongly than the main peak as the 
drive voltage increases. The harmonic peaks in the transmit spectra are as­
sumed to be caused by nonlinear propagation through the water. The peak at 
the third harmonic can also be caused by nonlinearities in the power amplifier. 

7.1.2 Receiver Characteristics 

An estimate for the frequency response of the receiving transducer was found 
by measuring its transmit characteristics. 

The receiving transducer was excited by short pulses from the Panametrics 
5800PR pulser/receiver, set at the lowest pulse energy, 12.5 p,J. The trans­
mitted pulse was measured with the GEC Marconi membrane hydrophone. 
The measured pulse and its power spectrum are plotted in Figure 7.3. This 
spectrum was used as an estimate for the frequency response of the receiving 
transducer. 

7.2 Results 

7.2.1 Received Spectra 

The suspension was kept in motion during the measurement, causing the 
echoes to be uncorrelated between different transmit pulses. The echoes from 
stationary targets are correlated between pulses, and this was used to identify 
the part of the received traces coming from the contrast agent microbubbles. 
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The spectral power density in the received traces was estimated by Welch's 
method [168]. This algorithm is available in Matlab as the function psd [109]. 
The sampled traces were subdivided into overlapping segments, and each seg­
ment enclosed in a Hanning window. The spectral power density was estimated 
as the average of the spectral power densities of these segments, calculated 
from the FFT of each segment. The sample and calculation parameters are 
listed in Table 7.3. The resulting power spectra were averaged over 5 suc­
cessive pulses fired at pulse repetition rate 10 pulses/s. These measurements 
were repeated twice for each driving voltage. 

The resulting received spectral power densities are plotted in Figure 7.4. 
The left column of diagrams show the received spectra for different transmit 
amplitudes. The middle column of diagrams show the same spectra after 
compensating for the estimated frequency response of the receiving transducer. 

The lowest driving amplitude gives a low peak at the 2nd harmonic, in 
addition to the peak at the driving frequency 1 MHz. As the driving amplitude 
increases, peaks at higher harmonics emerge. The power at the harmonics 
increases more strongly than the level at the driving frequency. For the highest 
driving pressure amplitude, estimated to about 430 kPa, the microbubbles 
were destroyed by the acoustic pulses. The received spectra lost its harmonic 
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Figure 7.3. Pulses measured with the membrane hydrophone when using 
the 5 MHz receiving transducer as transmitter. The transducer was excited 
by short pulses from the Panametrics 5800PR pulser /receiver. The spectrum 
was used as estimate for the relative receiving sensitivity of the transducer, 
and used to correct measured spectra for receiver characteristics. 
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Figure 7.4. Received spectra after transmitting 20 cycles pulses at frequency 
1 MHz. Transmit amplitudes were varied from approximately 17 to 430 kPa. 
The left panels show spectra received by the 5 MHz transducer. The center 
panels show the same spectra after compensating for the estimated frequency 
response of the receiver. The right panels show simulated responses for the 
same pulses, calculated from a visco-elastic shell model. 
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Table 7.3. Sampling parameters and data used to calculate spectral power 
density by Welch's method. 

Sample parameters 
Sample rate 
Total sampled length 
Echoes from contrast agent 
Distance sampled 

Spectral power estimator 
Length of FFTs 
Overlap between FFTs 
Envelope around FFTs 
Number of FFTs per trace 
Frequency resolution 

50 Msa/s 
2500 points ~ 50 J..lS 
2048 points ~ 40 J.lS 
30mm 

1024 points ~ 20 J..lS 
512 points 
Hanning window 
3 
0.05 MHz 

structure, and the backscattered power level decreased as the contrast agent 
bubbles were exposed to several ultrasound pulses. 

7.2.2 Simulated Spectra 

The size distribution of the Sonazoid contrast agent was measured with a 
Coulter Multisizer and used as input for simulating the spectra. The size 
distribution is plotted in Figure 7.5. 

The theoretical spectra were calculated from the Rayleigh-Plesset model 
with radiation damping added, described by (3.89) on page 76. The effect of 
the shell was included using the exponential shell model described in Chap­
ter 3.4.2 ((3.145d) on page 89). The shell material parameters for Sonazoid 
were estimated from acoustic attenuation spectra, as described in Chapter 6 
(Table 6.1 on page 140). The shell material properties used in the simulations 
were 

Gs = 50 MPa, TJs = 0.8 Ns/m2
, ds = 4.0 nm. (7.2) 

The simulated spectra were calculated as incoherent sums of the power spectra 
from the single bubbles, using the measured size distribution. 

The simulations should be done for pressure amplitudes equal to the actual 
pressures in the overlap region between the two transducers. The transmit­
ted pressure pulses were measured where the amplitude was maximum. The 
pressure in an ultrasound beam varies both along and perpendicular to the 
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acoustic axis. For the circular, focussed transducer used in this experiment, 
this variation can be modeled quite straightforward [2]. A simulation of the 
scattered signals should include this variation, by using a weighted sum over 
the pressure levels in the region studied. This weighted sum over pressure lev­
els has not been calculated, partly because of the computational complexity 
and partly because the overlap region from which signals were received is not 
exactly known. 

Instead, the simulations were done for average pressure levels roughly es­
timated to half of the maximum pressures measured. The resulting pressure 
amplitude values used in the simulations are listed in Table 7.2. This es­
timates for average pressure amplitude was varied, and the results did not 
change critically because of this. 

The results of these theoretical simulations are plotted in the right column 
of diagrams in Figure 7.4. 

The measured and simulated spectra show the same tendency in the de­
velopment of the harmonics. The actual pressure driving the bubbles is not 
accurately known, reducing the accuracy of the comparison. For the highest 
amplitude, 430 kPa, the bubbles were destroyed by the ultrasound pulses, and 
the measured results cannot be compared with the simulations. 

6 8 1 0 12 14 16 18 20 
Diameter [!J,m] 

Figure 7.5. Size distribution of the Sonazoid sample used to measure scatter 
at higher harmonics. 
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Figure 7.6. Simulated radial oscillation of a Sonazoid bubble with diameter 
3 p,m. Transmit pulses: 5 cycles at frequency 1 MHz, amplitudes from 17 to 
430 kPa. The upper panels show the driving ultrasound pulses, normalized 
to unit amplitude. The left column of graphs show the radial oscillation plot­
ted with equal y-axis scale, to allow comparison with the equilibrium bubble 
radius. The right column shows the same results plotted with varying y-axis 
scale, to illustrate the shape of the oscillations. 



7. 3 Simulated Bubble Radius and Bubble Destruction 

7.3 Simulated Bubble Radius and Bubble Destruc­
tion 

The simulated radial oscillation patterns for the different driving amplitudes 
are plotted in Figure 7.6. The plotted traces are for Sonazoid microbubbles 
with diameter 3 11m. To make the figures easier to interpret, the radial oscilla­
tion is plotted for 5 cycle pulses instead of the 20 cycle pulses used to calculate 
the spectra. 

Figure 7.6 shows that for driving pressure amplitudes below about 200 kPa, 
the radial oscillation amplitude is small compared to the bubble radius. When 
the driving pressure amplitude increases form 170 kPa to 430 kPa, the radial 
oscillation increases dramatically. For 430 kPa, the maximum radius of the 
bubble is almost 3 times its equilibrium radius. 

The radial oscillation patterns in Figure 7.6 show a linear and symmetric 
bubble oscillation for the lower driving amplitudes. As the amplitude in­
creases, the oscillation pattern starts to deviate form this symmetric response, 
and the response looks more nonlinear. 

These simulated radial oscillation traces can be compared with the spectra 
of the traces scattered from the Sonazoid bubbles. The spectra contained 
increasingly more harmonics as the driving pressure increased, corresponding 
to an increasingly more nonlinear response from the microbubbles. For the 
highest driving amplitude, the bubbles were destroyed by the acoustic pulses. 

The scattered sound pressure contains more harmonics than the radial 
bubble oscillation. This is explained by the radiated pressure being roughly 
proportional to the bubble surface acceleration. In the frequency domain, this 
corresponds to multiplying the radial oscillation spectra by w 2 to obtain the 
spectra of the radiated sound. This causes the radiated pressure to show a 
more nonlinear response, with higher harmonic levels, than the radial bubble 
oscillation. 

For 430 kPa driving pressure, the radial oscillation amplitude becomes 
larger than the equilibrium bubble radius. Experimentally, it was observed 
that the bubbles were rapidly destroyed at this pressure amplitude. Quanti­
tative models for instability of oscillating bubbles were studied by Plesset in 
1954 [134], more elaborate models are given by Hsieh and Plesset [65] and by 
Eller and Crum [38]. These studies consider the growth of shape oscillations in 
free bubbles, describing the bubble oscillations with spherical harmonics. Re­
views of this approach to bubble stability is given by Plesset and Prosperetti 
[136] and in the book by Leighton [93]. The models, especially those by Hsieh 
and Plesset and by Eller an Crum, end up with rather elaborate criteria for 
the stability of oscillating bubbles. 
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These models for surface stability were formulated for free air or vapor 
bubbles, and need modifications to be valid for the shell encapsulated bubbles 
studied here. This has not been done. 

A very simple criterion for the stability of bubbles was given by Plesset 
and Mitchell in 1956 [135, 93], who studied the stability of free vapor bubbles 
in water. Plesset and Mitchell's stability criteria are formulated by the ratio 
between the maximum and the minimum bubble radius as 

amax {< 5 
amin > 10 

Bubble is stable. 

Bubble is unstable. 
(7.3) 

Figure 7.7 shows the ratio between maximum and minimum bubble radius 
from the simulated bubble oscillations. The ratio between amax and amin is 
plotted as function of the driving acoustic pressure amplitude. The Plesset­
Mitchell stability criteria are indicated for comparison. It must be warned that 
these criteria were derived for vapor bubbles, and cannot be expected to be 
directly valid for the encapsulated, gas filled Sonazoid microbubbles studied. 

Instable 

105 
Driving pressure amplitude [Pa] 

Figure 7. 7. Simulated ratio between maximum amax and minimum amin 

bubble radius during the oscillations, plotted as function of the driving pulse 
amplitude. The values for amin and amax are taken from Figure 7.6. The 
Plesset-Mitchell [135] stability criteria for vapor bubbles are indicated for com­
parison. Experimentally, the bubbles were observed to be destroyed by the 
sound pulses for the highest driving amplitude, corresponding to the last point 
on this graph. 



1.4 Discussion 

7.4 Discussion 

The experimental results in this chapter have verified that the scatter of sound 
from Sonazoid is nonlinear at pressure amplitudes used in diagnostic medical 
imaging. 

The comparison between measured and simulated spectra show the same 
tendency in the development of the harmonics. The comparison is rather 
rough, mainly because of uncertainties in the actual transmit pressure levels. 
An exact quantitative conclusion cannot be drawn from the comparison. But 
the similarity between measured and simulated spectra, and the tendency 
with increasing drive level, is good enough to have confidence that the model 
describes the main features of the bubble oscillation. 

The simulations were repeated using the theoretical model for a bubble 
without shell, by setting the shell thickness in (7.2) to dse = 0. These sim­
ulations predicted much higher harmonics than what was measured, giving a 
very poor agreement between the measured and simulated spectra. 

Bubble destruction from exposure to the acoustic pulses was observed for 
the highest driving pressure only. The simulated bubble radial oscillation gave 
as result that the maximum bubble radius was approximately three times the 
equilibrium radius for this driving amplitude. This corresponds well with the 
observed destruction: Bubbles are destroyed when the oscillation amplitude 
becomes large compared to the equilibrium radius. 

There seems to be a threshold effect in the maximum radius. When the 
driving pressure passes from 170 kPa to 430 kPa, a dramatic increase in max­
imum bubble radius is observed. This can be compared with the particle stiff­
ness, the bulk modulus. This was estimated in Chapter 6 to about 700 kPa for 
a Sonazoid bubble of diameter 3 Jlm. Since the bubble stiffness is nonlinear, 
the bulk modulus is not constant: It decreases as the bubble is expanded. 
For driving frequencies below resonance, the bubble oscillation is mainly de­
termined by the bubble stiffness. When the negative pressure amplitude ap­
proaches or exceeds the bubble bulk modulus, the stiffness force that limits 
bubble expansion is small, and the bubble can be expanded to a very large 
radius. Under these conditions, the bubble expansion is limited only by the 
inertia of the displaced liquid and by the duration of the negative pressure 
cycle. 

7.5 Conclusion 

Form these experiments, it is concluded that the nonlinear scatter from Son­
azoid can be predicted using the model for a shell-encapsulated bubble. Mod-
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eling the Sonazoid microbubble as gas bubbles without a shell gives strong 
deviations from the experimentally observed spectra. 

This study is a preliminary experiment giving promising results regarding 
the validity of the theoretical understanding of the nonlinear scatter from 
Sonazoid. More studies are needed to test the model more completely. Better 
calibration of the pressure field from the transmitting transducer is needed, 
as is better calibration of the receiver. Different transmit frequencies should 
also be tested. 



Chapter 8 

Simulations of Nonlinear 
Bubble Response 

8.1 Implementation of Nonlinear Bubble Models 

The models described in Chapter 3 have been implemented using the numer­
ical software package Matlab (The Math Works Inc., Natick, Mass., USA). 
The implementation is done as a set of functions in Matlab. Graphical user 
interfaces have been written, to allow quick and intuitive user operation. 

The Matlab functions calculate the bubble response to a driving ultrasound 
pulse, using one of the liquid models in Chapter 3 together with a model for 
the shell. 

The input pulse driving the bubble is defined by the user. It is either a 
"synthetic pulse" specified by a set of pulse parameters, or it is a measured 
pulse loaded from a file. The user also specifies parameters of the bubble: 
radius and thickness, elasticity, and viscosity of the shell. A list of the input 
parameters is found in Table 8.1. The graphical user interface used to operate 
the program and an example of calculated results are displayed in Figure 8.1. 

The response is calculated by simulating the ordinary differential equation 
corresponding to the selected liquid model, with the boundary condition at 
the bubble surface given by the shell model, see Chapter 3. The response is 
simulated in time domain: bubble radius as function of time, and radiated 
acoustic pressure at distance 1 m from the bubble center. For comparison, the 
bubble response can also be calculated from the linearized model in Chapter 2. 

The bubble dynamics is modeled by a second order ordinary differential 
equation. This equation is solved numerically using an embedded Runge­
Kutta algorithm of order 4 and 5 [70], using the coefficients by Dormand and 
Prince [35]. This algorithm is available a standard function in Matlab [108], 
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Figure 8.1. Graphical user interface windows used to simulate bubble re­
sponse. The upper window is the user interface used to run the program. The 
lower window is an example of a Bubblesim calculation. The graphs show 
the the driving ultrasound pulse (upper left), the simulated scattered pulse 
(upper right), the bubble radius (lower left) and the spectra of incoming and 
scattered pulse (lower right). Results of a linearized model are plotted with 
dotted lines for comparison. 



8.1 Implementation of Nonlinear Bubble Models 

Table 8.1. Simulation of bubble bubble response to a driving ultrasound 
pulse. Input parameters specified by the user. 

Bubble parameters Bubble radius [11m] 
Shell thickness [nm] 

Driving sound pulse 

Shell shear modulus [MPa] 
Shell shear viscosity [Ns/m2

] 

Measured Load from file. Specify file name 

Synthetic Frequency [MHz] 
Amplitude [MPa] 
Length [cycles] 
Envelope (Rectangular, Hanning, cosine-tapered 
rectangular etc.) 

Theoretical model Rayleigh-Plesset 
Modified Rayleigh-Plesset 
Trilling 
Keller-Miksis 

Results to plot Driving pulse Pi(t) 
Scattered pulse at distance 1 m p 8 (t) 
Bubble radius a(t) 
Bubble wall velocity a(t) 
Power spectra Pi (f), Ps (f) 
Linear transfer functions Hx(f), Hp(f) 
Inverted pulses 
Linear model calculations 

called ODE45. The implementation of this algorithm is described in detail by 
Shampine and Reichelt [150]. 

For some combinations of bubble radius and driving pulse parameters, the 
resulting differential equation can become stiff, making the numerical solution 
more difficult. Stiff means that there are large variations in the time scales 
involved. Stiffness mainly occurs at low driving frequency and large driving 
pressure amplitude. Here, the bubble radius changes slowly during the expan-
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sion phase, but can go through very rapid changes in radius and velocity in 
the compressional phase. For these stiff conditions, a multistep ODE solver of 
variable order can be more suited than the Runge-Kutta algorithm described 
above [71]. The stiff ODE solver of order 1 to 5 available as Mat lab function 
ODE15s [108, 150] has proven to be more reliable and stable for solving some 
of these more extreme situations. 

8.1.1 Simulation Parameters 

The rest of this chapter describes results of bubble simulations using the pro­
gram Bubblesim. The equations and parameters used in these simulations are 
taken from Chapter 3. They are summarized here as 

Equation of motion: Rayleigh-Plesset with radiation damping (Equation 
(3.89) on page 76) 

.. + 3 • 2 P L - Po - Pi a · O aa -a - - -pL = . 
2 p pc 

(8.1a) 

Boundary condition: Pressure PLat the bubble wall, using the exponential 
shell model (Equations (3.145d) on page 89 and (3.151) on page 92) 

PL = -41]L~ + 12d~e ( Gsxo(1- e-xfxo) + 7]8 e-xfx1 x) + p0 ( ~) 
3

K;, 

a-~ ~ 1 1 
X = -----;;::;- ' X = ae ' Xo = 8 ' Xl = 4 . 

(8.1b) 

Shell parameters, estimated in Chapter 6 (Table 6.1 on page 140) 

dse = 4.0 nm, Gs =50 MPa, 1]S = 0.8 Ns/m2
. (8.1c) 

8.2 Pulse Inversion 

Pulse Inversion Imaging is a promising technique for contrast agent imaging. 
The technique consists of transmitting two pulses with inverted polarity into 
the tissue. The nonlinear response is singled out by looking at differences in 
the echoes from the two pulses. Since the bubble responds more nonlinearly 
than the tissue, this should enhance the bubble echoes compared to the tissue 
echoes. The processing is normally done by summing the received signals, but 
using the Doppler demodulated signal has also been suggested [156]. 

Bubbles are known to respond nonlinearly to a driving ultrasound pulse, 
the response being asymmetric in compression and expansion. It is therefore 
no surprise that a bubble responds differently to pulses with inverted polarity. 



8.2 Pulse Inversion 

Experimental observations of the response of single contrast agent bubbles to 
inverted ultrasound pulses was reported by Morgan et al. in 1997 [116, 115]. 
They observed that the scattered pulses were not inverted, but looked more like 
phase-shifted copies of each other. They also reported differences in frequency 
content in the responses of the inverted pulses. 

In Chapter 3, it was shown that in a linear system, the response of two in­
verted pulses are inverted copies of one another: Let L{ x} be a linear operator 
describing the system. The response to an inverted input signal is 

L{x(t)} = y(t), L{ -x(t)} = -L{x(t)} = -y(t). (8.2) 

The inverted input causes an inverted response, and the sum of the responses 
vanishes 

L{x(t)} + L{ -x(t)} = y(t)- y(t) = 0, (8.3) 

This is not true for a nonlinear system. The nonlinear system is described by 
the operator N { x}, giving 

N{-x(t)} # -N{x(t)}, N{x(t)} + N{ -x(t)} # 0, (8.4) 

For the nonlinear system, the sum of the responses to inverted signals does 
not vanish. 

The aim of this section is to simulate the response to inverted pulses, 
showing how some of the reported results can be understood from the bub­
ble dynamics, based on the theoretical models from Chapter 3. The pulse 
amplitude is varied to investigate the transition from a linear to a nonlinear 
response as the amplitude increases. 

The contrast agent microbubbles are modeled as gas bubbles encapsulated 
in a thin shell. The dynamics of the liquid is described by the Rayleigh-Plesset 
equation, modified to include radiation damping, as described in Chapter 3. 
The shell is modeled as viscoelastic, using the material parameters estimated 
for Sonazoid in Chapter 6. The exponential shell model is used. This results in 
the theoretical model for Sonazoid summarized in the equations (8.1a), (8.1b) 
and (8.1c). All simulations are done on a 1.5 p,m radius (3.0 p,m diameter) 
Sonazoid microbubble. The simulation parameters are listed in Table 8.2. 

Morgan et al. [115] refer to calculations using the Gilmore equation, with­
out a shell encapsulating the gas. Results from this model ought to agree 
qualitatively with the shell-encapsulated model used here. But the shell model 
predicts a stiffer and more damped microbubble, which may cause differences 
in amplitude and frequency scaling. 
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Table 8.2. Parameters used to simulate response to inverted pulses. For 
definitions, see Chapter 3. 

Bubble Radius 1.5p,m 

Shell Thickness 4.0 nm 
Shear modulus 50 MPa 
Shear viscosity 0.8 Ns/m2 

Driving pulse Frequency 2.25 and 6.0 MHz 
Amplitude 10 to 500 kPa 
Length 3 cycles 
Envelope Hanning window 

Liquid model Rayleigh-Plesset with radiation damping 
(Chapter 3, (3.89) on page 76) 

Shell model Exponential (Chapter 3, (3.145d) on page 89) 

Calculated results Scattered sound pulse 
Scattered sound spectrum 
Bubble radius 

8.2.1 Results of Simulations 

Driving pulses with center frequency 2.25 MHz and 6.0 MHz were tested. The 
pressure amplitudes were varied from 10 to 500 kPa. See Table 8.2 for details. 
The driving pulses are plotted in Figure 8.2. 

Simulated responses from the bubble are plotted in Figures 8.3 to 8.11. 
The first of the driving pulses is denoted "positive", the second, being equal 
to the first with inverted polarity, is denoted "negative". This choice of names 
is arbitrary. 

Time Responses 

Figure 8.3 shows simulated scattered pressure for driving pulse frequency 
2.25 MHz. The amplitude is scaled with the amplitude of the driving pulse. 

The two first columns in Figure 8.3 show the responses to the individual 
driving pulses. For the lowest amplitudes, the responses look like inverted 
copies of each other. As the driving pressure increases, the responses start to 



8.2 Pulse Inversion 

deviate this. For the highest driving amplitudes, the responses look more like 
phase-shifted versions of one another. This is as reported experimentally by 
Morgan et al. [115]. The simulations also show that the response amplitudes 
increases more than linearly with the driving pulse amplitude. 

The third column of pulses in Figure 8.3 display the sums of the two 
individual responses. For the lower amplitudes, the sum of the two responses 
is much weaker than the response from each pulse, demonstrating that the 
response in this range is dominantly linear. As the pressure amplitude passes 
100 kPa, the summed responses become comparable to the responses of the 
individual pulses. The bubble response is highly nonlinear at these higher 
amplitudes. 

Cross-Correlations 

Figure 8.4 shows the cross-correlation of the responses to the positive and 
negative pulses, from Figure 8.3. 

For the lowest driving amplitudes, the cross-correlation has a negative peak 
reaching -1 at zero time lag, t = 0. This corresponds to the two pulses being 
dominantly inverted copies of one another. Two lower positive peaks are found 
at time shifts corresponding to half a period time shift, t = ±!T=±0.22 J-LS. 

When the driving pressure amplitudes increases above 100 kPa, the nega­
tive peak at t = 0 decreases and eventually vanishes. As the driving amplitude 
increases, the positive peak at time lag t = -! T becomes the dominating peak 
in the cross correlation plots. 

This change in the cross-correlation peak illustrates the transformation in 
response as the driving pressure increases: The responses change from inverted 
versions to time shifted versions of one another, the dominating peak in the 
cross-correlation plot moves from a negative peak at t = 0 to a positive peak 
at t = -!T. 

~ 
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Figure 8.2. Driving inverted pulses. Frequency 2.25 MHz. 
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Figure 8.3. Response to inverted pulses for various driving amplitudes. Fre­
quency 2.25 MHz. Responses to the positive pulse (left), to the negative pulse 
(middle) and the sum of the responses (right). The amplitudes are normalized 
to the driving pulse amplitude. 
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Figure 8.5. Spectra of the responses in Figure 8.3. Frequency 2.25 MHz. 
The left column of graphs is the response to the individual pulses, positive 
pulse (solid line) and negative pulse (dashed line). The right column is the 
spectra of the summed responses. The driving frequency and its harmonics 
are marked with dotted lines in the plots. 



8.2 Pulse Inversion 

Spectra 

Power spectra of the pulses in Figure 8.3 are plotted in Figure 8.5. The left 
column of graphs shows the power spectra of the responses, the right column 
shows the spectra of the summed responses. 

At the lowest driving amplitudes, the spectra of the individual responses 
has a peak around the transmit frequency. As the driving pressure amplitude 
increases, peaks appears at the harmonics of the transmit frequency. For 
the highest driving amplitudes, the harmonic peaks overlap, and the spectra 
become smeared out. 

The spectra of the individual pulses are very similar for the lowest drive 
levels. This agrees with the impression from Figure 8.3 that these responses 
are close to linear. As the drive level increases above 100 kPa, differences 
start to occur in the response spectra. The spectra from positive and inverted 
pulses are very similar around the driving frequency, but deviate outside this 
main lobe. 

The right column in Figure 8.5 shows the spectra of the summed responses 
from Figure 8.3. The sum spectra have their main peak at the second harmonic 
of the transmit frequency. The driving frequency is completely suppressed. 

As the drive level increases, the height of this second harmonic peak in­
creases rapidly. It reaches approximately the same level as the peaks of the 
individual pulses for a driving pressure amplitude of 100 kPa. This corresponds 
to the results from the summed responses in Figure 8.5. 

These spectra show how the pulse inversion and summation technique sup­
presses the driving frequency and enhances the second harmonic. More gen­
eral, the pulse inversion technique suppresses the odd harmonics and enhances 
the even harmonics. 

An interesting change occurs at the highest driving amplitude, 500 kPa. 
At this amplitude, the suppression of the odd harmonics is not so strong, 
and there is some energy around the driving frequency. This is interesting, 
as the weak nonlinearities from propagation through tissue tend to suppress 
the driving frequency completely. Hence, signals received around the driving 
frequency after pulse inversion and summation may further enhance echoes 
from bubbles above echoes from tissue. 

Radius 

Figure 8.6 displays the simulated bubble radius as function of time, for the 
various driving amplitudes. The left column of plots is the bubble response 
to the positive pulse, the middle column is the response to the negative pulse. 
The right column shows the two radial responses together. 
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column), and both responses together (right column) They-axis scale differs 
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8.2 Pulse Inversion 

For the lowest driving amplitudes, the bubble radius oscillates gently around 
its equilibrium value. The radial oscillation amplitude is here much smaller 
than the equilibrium radius. As the driving amplitude increases, the radial 
oscillation amplitude becomes comparable to the equilibrium radius, and the 
asymmetric nature of the oscillation becomes clear. The bubble is easier to ex­
pand than to compress. For the highest amplitude, the radial oscillations look 
more like phase-shifted than inverted versions of one another. At the highest 
amplitude, the oscillation pattern is mainly determined by the negative half 
cycles of the driving pressure pulses. 

Frequency Dependence 

The results in Figure 8.3 to Figure 8.6 were calculated for driving frequency 
2.25 MHz. The same calculations for driving frequency 6.0 MHz are plotted 
in Figure 8.8 to Figure 8.11. The driving pulses are plotted in Figure 8.2. 

The frequency 6.0 MHz is rather high for medical ultrasound imaging. This 
frequency was selected to illustrate the response for a driving frequency above 
resonance frequency of the bubble. 

The frequency 2.25 MHz is below resonance for the bubble, while 6.0 MHz 
is above resonance. The tendencies in the 6.0 MHz graphs are similar to those 
in the 2.25 MHz graphs, but there are differences. The bubble response is less 
nonlinear at 6.0 MHz. This can be seen by noting that the summed response 
and the level of the second harmonic is much lower for 6.0 MHz than for 
2.25 MHz driving frequency. The transition in the response from inverted to 
phase-shifted versions is not seen for 6.0 MHz driving frequency. 
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Figure 8. 7. Driving inverted pulses. Frequency 6.0 MHz. 
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Physical Interpretation of the Phase-Shift 

At low frequencies, below resonance, the radial amplitude is in phase with the 
driving pressure. The bubble oscillation follows the driving acoustic pressure. 
When the pressure amplitude is high, the rarefying pressure phase expands the 
microbubble to a large volume. During the compressional phase, the bubble 
contracts, driven by the external pressure and by the inertia of the surrounding 
liquid. The bubble wall reaches a high velocity before stopping against the 
internal pressure in the bubble and the tension in the shell. The acceleration 
associated with this stopping and reversion of the bubble wall is much higher 
than the acceleration when the velocity reverses in the expanded phase. This 
causes the positive pressure peak radiated in the compressional phase to be 
higher than the negative pressure radiated in the expansion phase. When 
the radial expansion is large, the radiated sound is dominated by positive 
pressure peaks emitted about half a period after the rarefactional half cycles 
of the driving pressure pulse. 

Hence, for high amplitude, low frequency pulses, the signals radiated from 
the bubbles are mainly due to the negative pressure half cycles of the driving 
pressure pulses. For frequencies above resonance, the radial oscillation is out 
of phase with the driving pressure, and the effect is not as evident. 

8.2.2 Summary and Comments 

For driving frequency below resonance, the bubble model predicts responses 
to inverted pulses that look more like phase-shifted versions than like inverted 
versions of one another. The phenomenon requires the driving amplitude to 
be above a certain value, about 100 kPa. This is not a high pressure amplitude 
in diagnostic ultrasound imaging. 

The nonlinear response is stronger for low driving frequencies. The driving 
frequency should be below the resonance frequency of the microbubble, which 
for Sonazoid is around 4 MHz. 

The power spectra of the sound scattered from the positive and negative 
pulses are slightly different. For detection purposes, this frequency difference 
has strong advantages over earlier reports of frequency shift from contrast 
agents [114, 64], because the pulse-inversion technique gives a reference for 
the shift. However, nonlinear frequency shifts are also introduced by nonlinear 
sound propagation through tissue [8]. This propagation effect is enhanced if 
the tissue contains contrast agent bubbles. 



8. 3 Subharmonic Oscillations 

8.3 Subharmonic Oscillations 

Under certain conditions, bubbles driven by an acoustic field can go into sub­
harmonic oscillations. These are oscillations on integer fractions of the driving 
frequency fi· The most well known subharmonic is at !Ji, but subharmonics at 
k!i, ~fi etc. are also reported. Related to subharmonics are ultraharmonics, 
which are the harmonics of the subharmonics: ~]i, ~fi ~fi etc. 

Sub- and ultraharmonics require a strongly nonlinear response from the 
bubble. The occurrence of an order ! subharmonic, a period doubling, can be 
viewed as the first step in a development towards a chaotic response [94]. The 
transition in bubble response from a harmonic distortion via a subharmonic to 
a chaotic response was measured experimentally by Lauterborn and Cramer 
in 1981 [89]. Parlitz et al. in 1990 [131] applied chaos theory to describe this 
transition, modeling the bubble with a modified Keller-Miksis equation. Chaos 
theory will not be applied in this thesis. 

Subharmonic oscillations of order ! were measured by Esche in 1952 [42]. 
Subharmonic oscillation requires the driving amplitude to exceed a certain 
threshold. This was measured in 1968 by Neppiras [121], and derived theoret­
ically by Eller and Flynn in 1969 [39]. This threshold effect is not present in 
other nonlinear effects: The level at the higher harmonics increase gradually, 
although stronger than linearly, with increasing driving pressure amplitude. 
Eller and Flynn reported the subharmonic response to be strongly frequency 
dependent, requiring the driving frequency to be around twice the resonance 
of the bubble for order ! subharmonics. 

Prosperetti gave an analytical treatment of subharmonics in two articles 
from 1974 and 1975 [138, 139]. He found the subharmonic oscillation mode 
to depend strongly on the initial conditions when the bubble is driven into 
excitations by an acoustic pulse. Computer simulations of oscillating bubbles 
were published in 1976 by Lauterborn [88]. He showed harmonics, sub- and 
ultraharmonics, and a strong frequency dependence. Lotsberg et al. [104] 
reported in 1996 the observation of subharmonic oscillations in the contrast 
agent Infoson (Infoson is the same as Albunex). Shi et al. [153] in 1999 
reported results of measurements of subharmonics in vitro and in vivo on two 
different microbubble contrast agents. In 1999, Shankar modified Prosperetti's 
analytical treatment to include a bubble encapsulated in a shell [152]. 

8.3.1 Simulations of Subharmonic Response 

This chapter presents results of simulations of subharmonic oscillations on 
Sonazoid, using the nonlinear bubble models from Chapter 3. The model used 
is summarized in the equations (8.1a), (8.1b) and (8.1c) in Chapter 8.1. The 
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Table 8.3. Parameters used to simulate subharmonic response. For defini­
tions, see Chapter 3. 

Bubble 

Shell 

Driving pulse 

Radii 

Thickness 
Shear modulus 
Shear viscosity 

Frequency 
Amplitude 
Length 
Envelopes 

1.0 to 3.0 J-Lm 

4.0 nm 
50 MPa 
0.8 Nsjm2 

2.0 to 8.0 MHz 
20 to 1000 kPa 
10 cycles or CW 
Hanning and cosine-tapered rectan­
gular window 

Liquid model Rayleigh-Plesset with radiation damping 
(Chapter 3, (3.89) on page 76) 

Shell model Exponential (Chapter 3, (3.145d) on page 89) 

Results calculated Bubble radius 
Power spectrum of the scattered sound 

simulation parameters are listed in Table 8.3. 
The difference between these simulations and previous simulation studies, 

is the shell encapsulating the bubble. This shell has a strong influence on the 
stiffness and viscosity of the oscillating bubble, as shown in Chapters 5 and 6. 

The simulation studies in this chapter concentrate on how the level of the 
order ! subharmonic depends on parameters of the bubble and the driving 
acoustic field: Bubble radius, sound frequency and pressure amplitude. 

A precursor to this study was done in collaboration with Terje Orskaug [128], 
who was then a student at NTNU. 

CW Response 

The CW-response was simulated numerically by driving the bubble with 30 
cycles long sine wave pulses. To reduce transients, the first and last lo of 
the pulses were tapered by a half-cycle cosine function. The CW response 
was taken as the response of 12 cycles, cycle 15 to cycle 26, of the totally 



8. 3 Subharmonic Oscillations 

Table 8.4. List of figures showing results of simulations of subharmonic 
response. 

Bubble Driving Pulse 
Figure diameter frequency length Pulse envelope 

[tLm] [MHz] [cycles] 
8.12, page 195 2.0 2.0 cw 
8.13, page 196 3.0 4.0 cw 
8.14, page 197 4.0 4.0 cw 
8.15, page 198 6.0 3.0 cw 

8.19, page 206 2.0 2.0 10 Hanning 
8.20, page 207 3.0 4.0 10 Hanning 
8.21, page 208 4.0 4.0 10 Hanning 
8.22, page 209 6.0 3.0 10 Hanning 

8.23, page 210 2.0 2.0 10 Cos-tapered rectangular 
8.24, page 211 3.0 4.0 10 Cos-tapered rectangular 
8.25, page 212 4.0 4.0 10 Cos-tapered rectangular 
8.26, page 213 6.0 3.0 10 Cos-tapered rectangular 

Driving pressure amplitudes: 20, 100, 500 and 1000 kPa. 

30 cycles calculated. The start, after cycle 15, was chosen to ensure that the 
initial transients were damped out. The number of cycles included, 12, was 
chosen to include possible subharmonic responses of order ~' ! and ~· These 
subharmonics are periodic with 2, 3 and 4 times the period of the driving 
pulse. The 12 cycles of the driving pulse contain all these periods. 

CW responses are not the most relevant for diagnostic ultrasound imaging. 
Ultrasound imaging uses short, broadband pulses, and transients are always 
important. The conversion from CW to a pulse response is not given for a 
nonlinear system. But the CW responses give valuable information about 
where and when a subharmonic response is likely to occur, and it gives an 
impression of the strength of the subharmonic response. 

A selection of CW responses are displayed in the figures on the following 
pages, illustrating the subharmonic oscillation phenomenon and the transition 
to a subharmonic response as the driving amplitude increases. The parameter 
combinations used in these plots are listed in Table 8.4. 
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Figure 8.12 shows the response of a 2 p,m diameter bubble driven at 2 MHz. 
No subharmonic response can be seen in this response. As the driving pressure 
amplitude increases from 20 kPa to 1 MPa, the harmonic distortion increases 
gradually. In the spectra, this is manifested by the harmonics increasing as 
the driving amplitude increases. No frequency components are found below 
the driving frequency or between the harmonics. 

Figure 8.13 shows the response of the 3 p,m diameter bubble driven at 
4 MHz. For the lower driving amplitudes, up to 500 kPa, this bubble shows 
the same tendency as the smaller bubble: Increasing harmonic distortion, but 
no sub- or ultraharmonics. Driven by the highest pressure, 1 MPa, the radial 
oscillation includes a mode at twice the period of the driving sound. This 
causes a peak at half the driving frequency in the spectra. Peaks also emerge 
at the odd harmonics of this, at ~, ~ etc. of the driving frequency. This is an 
example of development of sub- and ultraharmonics. 

This effect is stronger for the 4 p,m diameter bubble driven at 4 MHz, 
Figure 8.14. This larger bubble's radial oscillation enters into the subharmonic 
mode for a lower driving amplitude, 500 kPa. At the highest driving pressure, 
the radial oscillation is dominated by the oscillation at the double period. 

The oscillation of the largest bubble, diameter 6 p,m driven at 3 MHz is 
plotted in Figure 8.15. This bubble diameter is around the maximum allowed 
by the capillaries in our body. For driving amplitude 500 kPa, the radial oscil­
lation of this bubble is dominated by the ~ order subharmonic. At the highest 
driving amplitude, 1 MPa, the oscillation of this bubble looses its periodicity, 
and the response looks more chaotic. In the spectrum, the harmonic peaks 
are replaced by a noisy looking response. 

This transition from harmonic distortion via subharmonics to a chaotic 
response agrees qualitatively with the experimental results of Lauterborn and 
Cramer [89] and with the simulations of Parlitz et al. [131] (see e.g. Figure 15 
in Reference [131]). 
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Figure 8.12. Simulated bubble radius (left), and scattered power (right). 
Driven by CW at frequency 2.0 MHz. Bubble diameter 2.0 J-Lm. 
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Figure 8.13. Simulated bubble radius (left), and scattered power (right). 
Driven by CW at frequency 4.0 MHz. Bubble diameter 3.0 p,m. 
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Figure 8.14. Simulated bubble radius (left), and scattered power (right). 
Driven by CW at frequency 4.0 MHz. Bubble diameter 4.0 J-lm. 
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Driven by CW at frequency 3.0 MHz. Bubble diameter 6.0 p,m. 



8.3 Subharmonic Oscillations 

Table 8.5. Simulation of subharmonics. Summary of results for subharmonic 
of order ~· 

Bubble Resonance Frequency limits 
diameter frequency [MHz] 

[p,m] [MHz] 500 kPa 1000 kPa 
::::; 2.5 No subharmonic No subharmonic 

3 4.7 No subharmonic ~4 
4 3.1 3.5 to 6 2 to 7.5 
5 2.3 2 to 5 ::::; 5.5 
6 1.8 :5:4 ::::; 4.5 

Strength of the Scattered Subharmonic 

The level of the order ~ subharmonic was calculated from the simulated CW 
responses. The results are plotted as function of driving frequency in Fig­
ure 8.16 for driving pressure 500 kPa and in Figure 8.17 for driving pressure 
1000 kPa. 

The responses at the lower driving pressure, 500 kPa, displays a smooth 
variation with frequency. The subharmonic response is present in a limited 
frequency band. The conclusions are summarized in Table 8.5. 

The responses at the highest driving pressure, 1000 kPa, displays a not 
so smooth variation with frequency, see also the chaotic response at the high­
est driving amplitude in Figure 8.15. Especially the largest bubble, 6 p,m 
diameter, shows an irregular frequency dependence at the lowest frequencies. 
Inspection of the time traces for this bubble revealed an irregular, chaotic 
looking oscillation pattern, and small changes in driving frequency could cause 
large variations in the oscillation pattern. This agrees with the simulations of 
Parlitz et al. [131]. 

The subharmonic response for 1 MPa driving pressure is present in a wider 
frequency band than for 500 kPa. The main conclusions are summarized in 
Table 8.5. 

8.3.2 Comments and Relation to Earlier Results 

The results of these simulations give tendencies for the dependence on driving 
amplitude, frequency and bubble diameter. These tendencies are compared 
with the analytical calculations available in the literature. The simulations 
presented here differ from earlier results by the simulations being done for a 
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shell-encapsulated bubble, with shell properties as estimated for Nycomed's 
Sonazoid contrast agent. The comparable results in the literature are for free 
air bubbles. The shell-encapsulated Sonazoid bubble is stiffer, causing a higher 
resonance frequency, and has a higher damping, or lower Q-value, than the 
free air-bubble. 

Threshold 

The simulations predict that the subharmonic oscillation has a threshold. A 
subharmonic mode is present only above a certain driving pressure amplitude. 
This is seen in Figure 8.13 to Figure 8.15, where the subharmonic oscillation 
suddenly appears at a certain driving pressure. Contrary to this, the harmon­
ics increase gradually with driving amplitude. 

The minimum pressure amplitude required to get a subharmonic oscillation 
for any Sonazoid bubble or frequency was 500 kPa. 

A threshold effect is reported for bubbles without shell [121, 39, 138], but 
the simulated threshold for Sonazoid is higher than reported values for free 
bubbles. 

Neppiras [121] measured sound scattered at the subharmonic frequency for 
driving pressure above 40 kPa. The bubbles studied by Neppiras were larger, 
and the frequencies were in the kilohertz-range. These large bubbles are less 
damped than the 11m-sized bubbles studied here, and are therefore expected 
to give a lower threshold. The theoretical results of Eller and Flynn [39] show 
that the threshold for the subharmonic mode increases and the frequency band 
widens when the damping of the bubble increases. Prosperetti [138] calculated 
subharmonic responses for pressure amplitudes around 50 kPa, also for free 
bubbles. 

The free air bubbles in the referred studies have stiffness, measured as bulk 
modulus, of 100 to 140 kPa. The bulk modulus of Sonazoid was estimated in 
Chapter 6 to between 400 and 900 kPa, decreasing with increasing diameter, 
see Figure 6.10 on page 151. In addition, the Sonazoid bubbles are more 
damped than the free bubbles, as shown in Figure 6.14 on page 155 and Figure 
6.15 on page 156. 

This higher stiffness and increased damping of Sonazoid, caused by the 
shell, can explain why the simulated thresholds for subharmonic oscillations 
of Sonazoid are higher than the values reported in the literature for free air 
bubbles. 
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Frequency Dependence 

The plots of subharmonic strength against frequency, Figure 8.16 and Fig­
ure 8.17, show a strong frequency dependence. The subharmonic response is 
present in a limited frequency band for each bubble. This band moves towards 
lower frequencies as the bubble diameter increases, which is consistent with 
the decrease in resonance frequency as the diameter increases. 

This observation is compared with the resonance frequency for Sonazoid, 
estimated from the experiments in Chapter 6 (Figure 6.11 on page 151). The 
estimated resonance frequencies are listed in Table 8.5, for comparison. Ac­
cording to the simulations, a subharmonic response is achieved for driving 
frequencies fi between fo and 2fo, where fo is the resonance frequency of the 
bubble. 

Eller and Flynn [39] found analytically that the subharmonic mode re­
quires a driving frequency around twice the resonance frequency of the bubble 
to be excited. For heavily damped bubbles, the threshold level increases and 
the frequency band widens compared to undamped bubbles. Prosperetti [138] 
extended the calculations of Eller and Flynn, showing that in some frequency 
ranges, two stable oscillation modes can exist, one with and one without a 
subharmonic. Which one of these modes is excited depends on the initial con­
ditions. Prosperetti found that a subharmonic mode may exist for frequencies 
up to about fi = 2fo. 

Diameter Dependence 

A subharmonic mode could not be achieved for bubble diameters smaller than 
3 fLm. For the lowest amplitude giving a subharmonic, 500 kPa, the subhar­
monic level of the 4 fLm diameter bubble is much weaker than the response 
of the larger bubbles, with diameter 5 fLm and 6 fLm. For the highest driving 
amplitude, 1000 kPa, the maximum subharmonic level is independent of the 
diameter. The main difference between the bubble sizes, is in which frequency 
band the subharmonic mode is achieved. 

These simulations differ from previous results for the free bubbles by the 
relation between bubble size and frequency. The Sonazoid bubbles are around 
4 to 9 times stiffer than the free bubbles of equal size, giving a resonance 
frequency that is 2 to 3 times higher. This means that the Sonazoid bubbles 
should give a response comparable to free bubbles of 2 to 3 times smaller 
diameter. The damping of Sonazoid is larger than for the free bubble, giving 
a wider frequency dependence. 

The observation that the larger bubbles are more easily driven into subhar­
monic oscillation can be explained by the larger bubbles being less damped 
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than the smaller ones. The larger bubbles have higher Q-values than the 
smaller bubbles, and the ability to single out and oscillate around its reso­
nance frequency is greater for the larger bubbles. 

The shell gets more important the smaller the bubbles are. The contribu­
tion from the shell to the microbubble bulk modulus increases as the bubble 
diameter decreases. This causes the smaller bubbles to require higher driving 
pressure amplitudes to reach the subharmonic mode than the larger bubbles 
do. 

8.3.3 Pulse Responses 

The CW responses in the previous section were chosen to avoid transients. 
But transients are important in diagnostic ultrasound imaging. This section 
will show results of the same simulations for pulses of finite length. 

The pulse responses were simulated for driving pulses defined as 10 cycles 
long sine wave bursts, enclosed either in a Hanning or in a cosine-tapered 
rectangular envelope. The cosine-tapered rectangular envelope wc[n] is defined 
as a rectangular envelope with the first and last lo tapered by a half cycle 
cosine function. This is mathematically described as 

1. (1 - cos 7r...!L) 
2 Ne 

Wc[n] = 
1 
1(1- COS7rN-n) 
2 Ne 

0 

0 :s; n < Ne 

Ne :s; n :s; N - Ne 

N-Ne <n< N 

n < 0 or n 2: N, 

(8.5) 

where N =10 is the number of cycles in the driving pulse and Ne = N /10 
defines the first and last parts of the envelope being tapered by a cosine func­
tion. The shape and power spectra of these two driving pulses are plotted in 
Figure 8.18. 

The cosine-tapered rectangular envelope was selected to have a pulse that 
is flat over a large portion of its extent, but has a smoother start and end than 
a rectangular envelope. The cosine-tapered pulse has less transients and lower 
sidebands than the rectangular pulse, and it is easier to obtain experimentally. 
The Hanning envelope is an example of a smoother pulse shape, with low 
sidebands in the power spectrum. The low sidelobe level makes it easier to 
separate a nonlinear response from sideband leakage. The Hanning pulses do 
not contain a portion of oscillations with constant amplitude. 

A selection of pulse responses are displayed in the figures on the following 
pages. The parameter combinations used in the plots are listed in Table 8.4 
on page 193. 
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Hanning Envelope 

The results for the 2 J-Lm diameter bubble excited by a Hanning pulse, Fig­
ure 8.19, shows the same tendency as the CW response for the same bubble, 
Figure 8.12 on page 195. The harmonic distortion increases as the driving 
amplitude increases, but no subharmonic is seen. 

The 3 J-Lm diameter bubble, Figure 8.20, shows the same tendency. No 
subharmonic is found. This is in contrast to the CW response for this diameter­
frequency combination at 1 MPa driving pressure, Figure 8.13 on page 196. 

The response of the 4 J-Lm and 6 J-Lm bubbles driven at 1 MPa, Figure 8.21 
and Figure 8.22, show an interesting effect. The first half of these responses 
display strong harmonic distortion, but no subharmonic. About halfway in the 
pulses, the oscillation changes abruptly to being dominated by an oscillation at 
twice the driving period, and this mode lasts for the rest of the pulse duration. 
This gives sub- and ultraharmonic peaks in the response spectra. 
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Figure 8.18. Driving pulses for simulating subharmonic response: Pulse 
shapes (left) and power spectra (right). The pulses are defined as 10 cycles 
enclosed in either a Hanning envelope (upper diagram) or a cosine tapered 
rectangular envelope (lower diagram). 
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Cosine-Tapered Rectangular Envelope 

Figure 8.23 shows the responses of the 2 f-Lm and bubbles driven by cosine­
tapered rectangular envelope pulses. These responses show the same effect as 
for the Hanning envelope, increasing harmonic distortion with increasing drive 
pressure, but no subharmonic. 

The responses plotted in Figure 8.24 and Figure 8.25, for the 3 f-Lm and 
4 f-Lm diameter bubbles, are basically equal to the CW response. A sub­
harmonic is seen for pressure amplitudes 500 kPa and 1000 kPa. This sub­
harmonic oscillation pattern starts immediately. This is in contrast to the 
responses to the Hanning-pulse, Figure 8.20 and Figure 8.21. The Hanning 
pulse gave a subharmonic only for the 4 f-Lmbubble driven at 1000 kPa, where a 
transition from harmonic distortion to subharmonic response occurred halfway 
in the pulse duration. 

The response of the 6 f-Lm bubble is plotted in Figure 8.26. The 500 kPa 
driving amplitude shows a subharmonic oscillation pattern that starts about 
halfway into the pulse. For the highest driving amplitude, 1 MPa, the response 
starts with a rather irregular oscillation pattern, mainly at half the driving fre­
quency. About halfway into the pulse, this pattern switches to a more regular, 
but strongly asymmetric oscillation pattern, at half the driving frequency. In 
the spectrum, the subharmonic peak is seen to be at a frequency lower than ~ 
the driving frequency, and the harmonic and ultraharmonic peaks are smeared 
out to a chaotic, noisy looking pattern. 

8.3.4 Difference between Pulse and CW Responses 

The pulse and CW responses simulated in this chapter show that a subhar­
monic mode is not always obtained as a response to a pulse, even if the CW 
response predicts the presence of a subharmonic. The subharmonic pattern 
needs time to develop. 

The simulated pulse responses show an important phenomenon not present 
in the CW cases. In some situations, the oscillation pattern switches abruptly 
halfway in the pulse, changing the oscillation pattern from a harmonic dis­
tortion to a subharmonic oscillation. This time-dependent change cannot be 
found by studying CW responses. The phenomenon agrees with the analyti­
cal results of Prosperetti [138, 139], who showed that under some conditions, 
different stable oscillation patterns may exist depending on the initial condi­
tions, and that the oscillation mode may jump from one pattern to the other. 
Which oscillation mode is obtained in a specific situation, depends on the 
initial conditions. This switch in oscillation mode was found for the largest 
driving amplitudes in Figures 8.21, 8.22 and 8.26. 
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Figure 8.19. Simulated bubble radius (left), and scattered power (right). 
Driving Pulse: 10 cycles in a Hanning envelope, frequency 2.0 MHz. Bubble 
diameter 2.0 J.Lm. 
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Driving Pulse: 10 cycles in a Hanning envelope, frequency 4.0 MHz. Bubble 
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Figure 8.21. Simulated bubble radius (left), and scattered power (right). 
Driving Pulse: 10 cycles in a Hanning envelope, frequency 4.0 MHz. Bubble 
diameter 4.0 p,m. 
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Figure 8.22. Simulated bubble radius (left), and scattered power (right). 
Driving Pulse: 10 cycles in a Hanning envelope, frequency 3.0 MHz. Bubble 
diameter 6.0 JLm. 
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Figure 8.23. Simulated bubble radius (left), and scattered power (right). 
Driving Pulse: 10 cycles in a cosine-tapered rectangular envelope, frequency 
2.0 MHz. Bubble diameter 2.0 f.-tiD. 
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Figure 8.24. Simulated bubble radius (left), and scattered power (right). 
Driving Pulse: 10 cycles in a cosine-tapered rectangular envelope, frequency 
4.0 MHz. Bubble diameter 3.0 f.-LID. 
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Figure 8.25. Simulated bubble radius (left), and scattered power (right). 
Driving Pulse: 10 cycles in a cosine-tapered rectangular envelope, frequency 
4.0 MHz. Bubble diameter 4.0 p,m. 
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Figure 8.26. Simulated bubble radius (left), and scattered power (right). 
Driving Pulse: 10 cycles in a cosine-tapered rectangular envelope, frequency 
3.0 MHz. Bubble diameter 6.0 p,m. 
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Chapter 9 

Summary and Conclusions 

The main topic of this thesis is the acoustic properties of gas bubbles encap­
sulated in a shell. 

Three contrast agents for medical ultrasound imaging have been investi­
gated experimentally, all consisting of gas bubbles encapsulated in a shell. 
It was found that the shell increases the stiffness and viscosity of the bub­
bles, increasing the resonance frequency and the damping of the oscillating 
microbubble. 

To characterize the agents, two different experimental acoustic measure­
ment systems were developed and built. One system measures the acoustic 
attenuation as function of frequency, the other system records the scattered 
sound from a contrast agent sample exposed to specified sound pulses. 

Based on the theory and the experimental results, a numerical simulation 
program was developed. The program models the response of a contrast agent 
bubble to a driving ultrasound pulse. Simulations using this program were 
used to investigate and hopefully improve the understanding of the mecha­
nisms behind various nonlinear ultrasound imaging techniques. 

Extensive theoretical background chapters have been included. The mate­
rial in the theory chapters has been collected from many sources, both text­
books and journals. This has been put together to give the necessary back­
ground for the measurement systems, the shell properties estimation and the 
nonlinear simulation programs. The theory chapters concentrate on effects of 
encapsulating the gas bubble in a shell. There exist publications about the 
behavior of shelled bubbles, and textbooks of mechanical engineering contain 
models for the behavior of spherical shells. But a collection of this material 
with application to and consequences for ultrasound contrast agents is not 
found elsewhere. 
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Experimental Equipment and Software Resulting from this Work 

The thesis has resulted in three products that will hopefully prove useful in 
the future characterization of ultrasound contrast agents 

• A system to measure acoustic attenuation spectra, with the option of 
adding a hydrostatic pressure. This system is combined with software 
that can combine the measured spectra and size distributions read from 
a Coulter Multisizer, and estimate the microbubble stiffness. 

• A system that can transmit specified ultrasound pulses into a sample of 
contrast agent and record the scattered signals on digital format. 

• A simulation program that models the bubble response to a specified 
driving ultrasound pulse. 

All these systems have been constructed to be easy and user-friendly to op­
erate. The experimental measurement systems are now routinely in use at 
Nycomed. 

Suggestions for Future Work 

Much work remains before the characterization and understanding of contrast 
agents for medical ultrasound imaging is complete. 

This thesis has concentrated entirely on the in vitro behavior of the agents. 
The extension of these methods to clinical use of the agents remains. 

The experimental characterization methods all study a large number of 
bubbles. The possibility of studying single bubbles, visualizing the radial os­
cillation with a camera, will provide much extra information about the agents. 
Such experiments are now becoming available, and will certainly provide new 
insight about the behavior of the agents. When studying single bubbles, how­
ever, it is always the question how representative that single bubble is, and if 
the experimental technique changes its properties. I therefore believe that sin­
gle bubble experiments and measurements on bubble clouds are both needed 
for contrast agent characterization. 

More sophisticated theoretical models for the oscillating liquid are available 
from the literature. The simulations have shown that in some extreme cases, 
the bubble wall velocity can approach the speed of sound in the liquid. For 
these cases, the Gilmore model would be more suited than the simpler models 
used in this thesis. The Gilmore model could be combined with the shell 
models from this thesis. 

This thesis has concentrated on the characterization, understanding and 
modeling on the bubbles. A next step would be to use the experimental 



methods and the simulation programs to improve ultrasound contrast imag­
ing, either by creating improved contrast agents or by creating measurement 
techniques that can extract more information from the agents. 
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