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Summary 

[n this thesis, consisting of an introduction and five separate papers, wave propagation 
:tnd pressure drop in blood vessels are studied by means of mathematical and numerical 
:nodels. The first four papers are related to the hemodynamics of the fetal ductus venosus
clmbilical vein bifurcation, while the fifth paper relates to pressure and flow waves in the 
:mlmonary veins of man. 

In paper I we deduce a generalized Bernoulli equation for pressure drop estimates in 
Jifurcations. Further, physiological measurements were used as the basis for a rigid-walled, 
~.hree-dimensional computational model of the umbilical vein-ductus venosus bifurcation. 
Based on results of this computer model, energy dissipation is estimated to constitute 
'rom 24 to 31 percent of the pressure drop between the umbilical vein and the ductus 
venosus inlet, depending on the Reynolds number and the curvature ratio. Thus, energy 
:lissipation should be taken into account in pressure drop estimates. 

Information about the mechanical properties of fetal ductus venosus and the umbilical 
vein is presented in paper II. The information is based on pressure-area measurements of 
;he ductus venosus and the umbilical vein of five fetal sheep in vitro. Each data set is 
l.tted to an exponential function to determine the stiffness parameter and the area of the 
luctus venosus and umbilical vein at a standard pressure. The mechanical properties of 
:etal veins are comparable to those described for veins later in life. The stiffness parameter 
.·epresents the elastic properties at all pressure levels and conveniently permits inference 
)f compliance and pulse wave velocity. 

A mathematical model to identify the mechanical factors that influence pulsation in 
;he umbilical vein is presented in paper III. The umbilical vein is modeled as a compliant 
.·eservoir and the umbilical vein pressure is assumed to be equal to the stagnation pressure 
1t the ductus venosus inlet. The pulsatility of the umbilical vein pressure and the reflection 
1nd transmission factors at the ductus venosus inlet, are quantified numerically and with 
ostimates. The results indicate that wave transmission and reflection in the umbilical vein
luctus venosus bifurcation depend on the impedance ratio between the umbilical vein and 
;he ductus venosus, as well as on the ratio of the mean velocity and the pulse wave velocity 
n the ductus venosus. The impedances, in turn, depend on the mechanical properties of 
;he veins, the pressure level, and their dimensions. These findings are in agreement with in 
vivo observations. Thus, we believe that the mathematical model is suitable for analyzing 
;he factors involved in the occurrence of umbilical venous pulsations. 

In paper IV the effect of ductus venosus tapering on the reflection coefficient is inves
;igated with a mathematical model incorporating wave propagation. The results in this 



)er indicate that the only effective reflection site in the ductus venosus is located at 
: ductus venosus inlet. The tapered geometry of the ductus venosus is of minor impor
tee. The differences between the ductus venosus inlet and outlet flow are also minor for 
dium to large umbilical vein-ductus venosus diameter ratios. The results of this model 
·ee well with those of paper III. 
The pulmonary venous systolic flow wave in man has been attributed both to left 

1rt phenomena, such as left atrial relaxation and descent of the mitral annulus, and 
propagation of the pulmonary artery pressure pulse through the pulmonary bed from 
~ right ventricle. In paper V we hypothesize that all waves in the pulmonary veins 
ginate in the left heart, and that the gross wave features observed in measurements 
1 be explained simply by wave propagation and reflection. A mathematical model of 
~ pulmonary vein and the pulmonary bed in man is developed; the pulmonary vein 
nodeled as a lossless transmission line and the pulmonary bed by a 3-element lumped 
mmeter model. We conclude that the gross features of the pressure and flow waves in the 
lmonary vein can be explained in the following manner: the waves originate in the left 
:trt and travel towards the pulmonary bed, where reflections give rise to waves traveling 
ck towards the left atrium. Although the gross features of the measured pressure were 
Jtured well by the model predicted pressure, there was still some discrepancy between 
o two. Thus, other factors initiating or influencing waves traveling towards the LA can 
t be excluded. 
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Introduction 

fhis thesis consists of an introduction and five separate papers. The papers are self
~ontained and complete with abstracts and references. In what follows the papers will be 
·eferred to by their respective Roman numerals. 

The introduction is divided into four parts. In the first the clinical problems relevant 
'or this thesis are presented. The 1D governing equations for wave propagation along 
.vith selected examples of applications in biofluid dynamics are introduced in the second 
)art. In the third part, estimates are presented of the counteracting effects of viscous 
lissipation and pressure recovery in the human fetal ductus venosus. In the last part 
ralidation simulations are presented for the computational fluid dynamics (CFD) package 
~mployed in paper I. 

l Motivation 

:;:;xamination of the precordial venous flow is an increasingly important part of the din
cal hemodynamic evaluation. This is particularly true for the evaluation of the fetal 
:irculation which is entirely dependent on ultrasound techniques. However, the lack of 
nformation about the mechanical properties and an insufficient understanding of the fluid 
lynamics of this section of the circulation hampers the use and interpretation of the ve
wus Doppler recordings. The first four papers are related to fetal hemodynamics. For a 
~eneral introduction to fetal circulation and physiology the reader is referred to textbooks 
m fetal physiology (e.g. Thorburn and Harding, 1994; Moore and Persaud, 1993). In the 
'allowing, a short outline of the fetal cardiovascular system (FCS) will be presented. 

The FCS is the single most important system responsible for nourishment and exchange 
lf gas, water, and electrolytes between the maternal and the fetal tissue. The system is 
lesigned to serve the prenatal needs and to adapt rapidly to the totally different envi
·onment after birth. In the FCS, the umbilical circulation plays a dominating role during 
nost of the pregnancy. The fact that 50% of the total fetal blood volume is contained 
vi thin the placenta and that the placenta receives 40% of the fetal combined cardiac out
mt reflects the importance of this circulatory section (Rudolph, 1985). The oxygenated 
Jlacental blood that returns to the fetus through the umbilical vein (UV) enters the liver 
issue or is shunted through the ductus venosus (DV), to reach the heart directly (Fig. 1). 
['he DV is a narrow, trumpet-shaped vein that connects the UV to the hepatic veins and 
he inferior vena cava (IVC) below the atrial inlet (Chako and Reynolds, 1953; Blanc, 
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~0). At eight weeks of gestation the DV is well defined, whereas during the early stages 
ntra-uterine life the vascular system has a different arrangement (Chako and Reynolds, 
>3; Lassau and Bastian, 1983). 
In animals, 50% of the oxygenated blood is directed through the DV, but the proportion 
reases to 70% during reduced oxygen content or reduced blood volume (Behrman et al., 
'0; Edelstone and Rudolph, 1979; Edelstone et al., 1978). In the human fetus, a similar 
chanism of preferential streaming (Fig. 1) exists (Kiserud et al., 1991) but with a smaller 
:tion of shunting (20-30%) through the ductus vensosus (Kiserud et al., 1998b). Both 
1nimal and human fetuses the oxygenated blood accelerates in the DV and is directed 
rards the foramen ovale to generate the preferential streaming to the left atrium (Fig. 1). 
is flow mixes only to a small extent with the less oxygenated blood in the inferior vena 
·a which otherwise is directed to the right atrium. There is a small contribution of 
Jxygenated blood from the pulmonary circulation to the left atrium. The net effect of 
:se flow patterns is a 10-12% higher oxygen saturation of the blood in the left atrium 
mpared to the right atrium), which is sufficient to ensure an abundant oxygen supply 
the coronary arteries and the brain via the ascending aorta. On the other hand, the 
>Od in the right side of the heart has the lower oxygen saturation and predominantly 
.vs through the ductus arteriosus to reach the lower parts of the body and the placenta. 
Knowledge about the central venous pressure is generally accepted as a key to under

.nding central blood circulation and the underlying hemodynamics changes in disease. 
e high velocity in the DV, both in normal (Huisman et al., 1992; Kiserud et al., 1992) 

=1 complicated pregnancies (Kiserud et al., 1992; Oepkes et al., 1993; Hecher et al., 
)5a), has been suggested to reflect a major proportion of the pressure drop from the 
r to the fetal heart. Attempts to calculate the UV-DV pressure drop by means of a 
1ple Bernoulli equation have been reported (Kiserud et al., 1994b; van Splunder et al., 
95). By employing such a method in conjunction with measurements of the UV pressure 
ined by needling, one may obtain an estimate of the pressure in the fetal heart. How
"r, until the methodological limitations are controlled, the formulation cannot reliably 
used in clinical practice. In paper I a rigid-walled, 3D computational model of the 

/-DV bifurcation for stationary flow conditions is established. The energy dissipation 
this model constitute 24% to 31% of the pressure drop from the UV to the DV inlet, 
pending on the Reynolds number and the curvature ratio. Note, however, that only the 
essure drop from the UV to the DV inlet is discussed in this paper, while the long term 
al is to estimate the pressure drop from the UV to the IVC or the fetal heart. This is 
very complex problem and remains to be investigated. In section 3 a brief outline of an 
;imation procedure for the counteracting effects of viscosity and pressure recovery along 
e DV is provided. 

In contrast to the pulsatile flow in precordial veins, the blood flow in the umbilical 
in (UV) is usually stationary. In 1986, Lingman et al. described a pulsatile veloc
' in the UV in fetuses with imminent asphyxia (Lingman et al., 1986); Gudmundsson 
al., who found the same pulsations in fetuses with congestive heart disease, suggested 
is sign as a marker of poor prognosis (Gudmundsson et al., 1991). Similarly, such 
tlsations were found in cases with fetal cardiac malformations (Kiserud et al., 1993), 
rhythmias (Gembruch et al., 1995), serious growth restriction (Kiserud et al., 1994a) 
td twin-twin transfusion syndrome (Hecher et al., 1995b). However, UV pulsation is a 
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i<'igure 1: Fetal vascular anatomy showing the three shunts: the ductus arteriosus (DA), ductus 
renosus (DV) and foramen ovale (FO). Observe that three shunts permit most of the blood to 
)ypass the liver and the lungs. The left portion of the fetal liver is relatively large compared to 
ts size in adult life. The umbilical vein (UV) is connected to the left branch of the portal system 
11hich is usually called the intra-abdominal UV. The main stem of the portal vein (P) is a modest 
1essel during fetal life. In contrast to adult life, the left hepatic vein (LHV) and the medial branch 
:MHV) are well defined in the fetus. Note the close anatomical relationship between the DV and 
;he FO, a detail that is commonly neglected, but important for understanding the function of 
;he FO. AO, aorta; CCA, common carotid artery; FOV, foramen ovale valve; lAO, isthmus of 
;he aorta; LA, left atrium; PA, pulmonary artery; PV, pulmonary vein; RA, right atrium; RHV, 
·ight hepatic vein; SVC, superior vena cava; UA, umbilical artery. (Adapted from Hanson and 
(iserud 1999) 
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:mal phenomenon in fetuses of a gestational age of 13 weeks and younger (Rizzo et al., 
)2; Nakai et al., 1995), and its occurrence is described even in normal fetuses during 
e pregnancy, particularly in the deep intra-abdominal portion of the vein (van Splunder 
al., 1994). Fetal sheep experiments have shown that such waves are transmitted to the 
1 during adrenergic stimulation and hypoxic challenge (Reuss et al., 1983; Hasaart and 
Haan, 1986), and that the transmission of such waves is blocked by the agenesis of the 
ctus venosus (Kiserud et al., 1998a). The mechanisms that govern the transmission and 
;urrence of pulsations in the UV are not well understood. In papers II-IV, information 
the mechanical properties of the UV and DV is presented, and mathematical models 
the UV-DV bifurcation are established in order to identify the factors that influence 
lsation in the UV. 
In the adult human being the pulmonary venous flow pattern is believed to provide 

ormation about left atrial pressure and to improve noninvasive assessment of left ven
cular diastolic function (Kiicherer and Schiller, 1993). The concept of what causes the 
lmonary venous systolic flow wave is controversial and has been attributed both to left 
art phenomena, such as left atrial relaxation and descent of the mitral annulus, and to 
:)pagation of the pulmonary artery pressure pulse through the pulmonary bed from the 
;ht ventricle. In paper V all waves in pulmonary veins are assumed to originate in the 
t heart and a lumped mathematical model including wave transmission and reflection 
established to address this issue. 

lD governing equations 

1e one-dimensional equations for flow in an impermeable, uniform elastic tube can be 
·itten as (Anliker et al., 1971; Raines et al., 1974; Pedley, 1980): 

0 

Aap 1rDTo ---+--
pox p 

(1) 

(2) 

r1ere p and A denote pressure and cross-sectional tube area, D the tube diameter, p the 
1id density, Q the volume flow (Q = u A), u the spatially averaged velocity, and To the 
ear stress at the wall. This model is based on the following assumptions: 

• The fluid is incompressible and Newtonian. 

• Gravitational effects are negligible. 

• The primary variables change only along the longitudinal axis x, i.e. the radial 
dependency of pressure and velocity is neglected. Consequently, the momentum 
coefficient defined by: 

(3) 
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is assumed to be 'Y = 1. The velocity component in the axial direction is denoted by 
Ux. Local Poiseuille flow could be accounted for by the following correction of the 
convective term in Eq. (2): 

.!!__ ('Y Q2) 
ax A 

Young and Tsai (1973) approximated the shear stress by comparing with the analytical 
iolution for harmonically, oscillating, laminar, Newtonian, and incompressible flow in a 
ong tube of constant cross-sectional area and obtained: 

To = -- -- Q + ( c - I)-p [ 81fVCv aQ] 
1rD A u at (4) 

,vhere Cu and cv, the inertia and viscous coefficients, respectively, are functions of the 
\Vomersley number a= (D/2)JWTV (Womersley, 1957). The kinematic viscosity and the 
1ngular frequency of the primary variables are denoted by v and w, respectively. 

To close the system of equations (Eqs. (I) and (2)) the constitutive equation for the 
;ube is normally taken to be represented by a single-valued function p of A: 

P = P (A) (5) 

rhus, the viscoelasticity (Holenstein et al., 1980) of the vessel wall is neglected. The sig
lificance of viscoelastic correction in human arteries has been estimated to be comparable 
;o nonlinear and dissipation corrections (Pythoud, 1996), i.e. 10-20%, while information 
m both the dynamic and the static mechanical properties of veins is scarce. 

Various approaches to represent the pressure-area relations for blood vessels have 
)een suggested. Hayashi reviewed recent studies on the elastic properties of arterial 
,valls (Hayashi, I993) and argued that a simple constitutive relation, such as an expo
lential or logarithmic one, is more advantageous than the more elaborated relations based 
m strain energy functions (Vaishnav et al., 1973; Fung et al., 1979). In these simple for
nulations the number of coefficients are reduced, while their physical meaning is retained. 
Jonstitutive equations based on linear elasticity theory for a thin-walled cylinder have 
tlso been proposed (Bergel, 1972), but these require the knowledge or assumption of the 
ressel wall thickness. A three-parameter arc tangent model was suggested to capture the 
)-shape of the arterial pressure-area relation, i.e. the presence of an inflection point, better 
.han an exponential function (Langewouters et al., 1985a, b). Our pressure-area measure
nents, in paper II, of the UV and the DV showed no inflection point (i.e. S-shape), most 
)robably because the pressure variation is much smaller in fetal veins than in adult arter
es. Thus, we preferred the simplest regression model that gave a statistically satisfying 
·epresentation of the data, i.e. the exponential model. 

Such a pressure-area relationship may be introduced into Eqs. (I) and (2) to eliminate 
jther the cross-sectional area or the pressure. Normally the area is eliminated and by 
ntroducing the area compliance C: 

C= aA 
ap 
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ich is derived from the constitutive equation and in general is pressure dependent. This 
3 also been found to be the case for the UV and DV in paper II. 
From the linearized and inviscid forms of Eqs. (1) and (2) the widely used pulse wave 

ocity c and the characteristic impedance Zc may be derived (Fung, 1984): 

(6) 

Founded on the inviscid and linearized forms of Eqs. (1) and (2), the concept of wave 
)aration for analysis of wave propagation in arteries was first introduced by Westerhof 
al. in 1972. This concept has been developed further to incorporate both nonlinearities 
d viscous dissipation (Pythoud et al., 1996). However, due to limitations in measure
'nts in vivo, the classical method of Westerhof et al. is the method of choice to estimate 
e forward and backward running wave components. 
Wave intensity (WI), is another useful concept related to wave propagation in blood 

ssels. Based on theory for acoustic intensity (Lighthill, 1978), WI was first introduced in 
terial dynamics by Parker et al. (Parker et al., 1988; Parker and Jones, 1990; Jones et al., 
94). Any finite wave can be analyzed as the sum of "wavelets", defined as infinitesimal 
anges in pressure and velocity. Along the characteristic directions the flow is steady and 
e relationships between wavelets of pressure ( dp) and velocity ( du) are: 

(7) 

1ere the subscripts f and b denote forward and backward propagating wavelets, respec
rely. Wavelets with positive pressure changes dp > 0, are generally called compression 
welets and those with negative changes dp < 0 expansion wavelets. The instantaneous 
anges in p and u are the result of intersecting forward and backward wavelets at the 
ne and location of measurements: 

(8) 

he wave intensity WI = dp du, is the rate of energy flux per unit area associated with 
1e wavelet, and from Eqs. (7) and (8) the following expression for WI may be derived: 

dp2 dp2 
WI= f- b 

pc 
(9) 

hus, the WI has the useful property that forward propagating wavelets make a positive 
mtribution to the WI, whereas backward propagating waves make a negative contribu
on. This is the case regardless of whether or not they are compression or expansion 
avelets. In paper V the WI is derived with volume flow and not velocity as the primary 
1riable for convenience. Thus, the WI dimension in paper Vis Wand not W s-2 (Parker 
; al., 1988; Parker and Jones, 1990; Jones et al., 1994); i.e. strictly speaking it does not 
~present wavelet intensity but rather wavelet power. However, the interpretation of the 
II remains unchanged with respect to identifying the direction of net energy transport. 

Further, the Eqs. (1) and (2) have, with varying degrees of simplification, also been 
pplied to develop a wide range of distributed models of the human arterial system (West
chof et al., 1969; Schaaf and Abbrecht, 1972; Raines et al., 1974; Avolio, 1980; Zagzoule 
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and Marc-Vergnes, 1986; Stergiopulos et al., 1992). Arterial network models allow for 
~alculation of the pressure and flow waves along the arterial tree and exhibit the observed 
wave phenomena such as: the systolic pressure rise, diastolic pressure decay, wave atten
Lmtion and wave reflection. In a study by Segers et al. (1997) the relative importance 
Jf elastic nonlinearities in a nonlinear time-domain approach by Stergiopulos et al. was 
~~om pared to that of viscoelastic effects in a linearized frequency domain approach by Avo
lio. In paper IV, Eqs. (1) and (2) are used to study wave propagation phenomena in the 
lmman fetal ductus venosus. 

3 lD estimate of DV tapering impact on pressure drop 

[n paper I results are presented on energy dissipation and UV /DV inlet pressure drop in 
1 3D computational model of the UV /DV bifurcation. The energy dissipation in these 
:nodels was estimated to constitute 24% to 31% of the pressure drop, depending on the 
Reynolds number and the curvature ratio. Thus, energy dissipation should be taken into 
:tccount in pressure drop estimates at the DV inlet. For a physician, however, the primary 
~oncern is the pressure drop between the UV and the outlet of the trumpet-shaped DV. 
rhe DV shape resembles a relatively low-Re diffusor (White, 1988). The diffusor effect 
.vas not accounted for in the paper as we wanted to study the inlet effects first and leave 
;he diffusor effect for future studies. However, in the discussion section of paper I we do 
;tress the need to study the effect of DV tapering and refer to 1D estimates of its effects for 
;ertain physiological parameters. The rationale for these 1D estimates is outlined below. 

For stationary flow and with the spatially averaged velocity u as the primary variable, 
;he momentum equation (Eq. (2)) reduces to: 

Op To OryU 
-ox = - 4 D + pu ox (10) 

Further, let the pressure drop be defined by: Llp =Pi- p0 , assume that ry is constant, and 
et the subscripts i and o refer to inlet and outlet, respectively. Then, integration along 
;he flow yields: 

{L 7< ro 
Llp = - lo 4 ~ dx +pry lu; u du 

Further, the pressure drop may be split into viscous (Llpv) and inviscid (tlpr) parts: 

1
L To 

Llpv =-
0 

4 D dx, 
ro 

Llpr =pry lui U du (11) 

.e. Llp = Llpv + Llpn which normalized by the dynamic pressure ~ pur gives the corre
;ponding diffusor (kd), viscous (kv), and inviscid (kr), pressure loss coefficients: 

Llpv Llpr ( ) kd = kv + kr, kv = -1 - 2 , kr = 12 12 
2PUi 2PUi 

ro obtain quantitative approximations of the pressure loss coefficients, a wall friction law 
tnd a momentum coefficient have to be prescribed. 
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l Estimate of the viscous pressure loss coefficient 

Jject to the assumption of local Poiseuille flow ( ry = 4/3) the wall shear stress takes the 
m: 

64 pu2 

-To =Tw =--
Re 8 

uD 
and Re=

v 
(13) 

ere Re denotes the Reynolds number. From the principle of mass conservation it follows 
lt: 

(14) 

.en, from Eqs. (12), (13) and (14) an integral expression for the viscous pressure loss 
officient kv may be obtained: 

64 rL 1 
kv = Re; Df } 

0 
D 4 dx 

suming the diameter of the tube to vary linearly along the axis yields: 

D -D· Do-D; - '+ L x, 
dD 

dx 

d an analytical approximation of kv may be found: 

Do-D; 
L 

kv = ~ D3 L !Do D-4 dD 
Re; " Do - Di Di 

(15) 

(16) 

1ich by the introduction of the expansion factor f = Do/ Di and the monotonously 
creasing function: 

h (f) = ~ 1 + f + p 
1 3 J3 (17) 

duces to: 

(18) 

ms, the larger the expansion factor f the smaller the viscous pressure loss coefficient 
. Observe that, h1 (1) = 1; thus for f = 1 the viscous pressure loss coefficient equals the 
dinary Poiseuille form for a straight tube. Note further that h1 will always be positive 
the expansion factor per definition is positive. Consequently, kv will always contribute 
a streamwise pressure reduction . 

. 2 Estimate of inviscid pressure loss coefficient 

·om the inviscid pressure drop expression Eq. (11) and with: 

·D2 
du=-~dD D3 
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an expression for the inviscid pressure drop coefficient kr in Eq. (12) may be found: 

For expansion factors f larger than one, h2 will be negative and consequently kr will yield 
a pressure recovery. Observe that h2 (1) = 0, which corresponds to no inviscid effects for 
a straight tube. Further, as j- 4 drops very fast to zero, kr will be close to its maximum 
1•alue 1 for relatively modest expansion factors. 

3.3 The diffusor pressure loss coefficient 

3ubject to the assumptions above an approximate expression for the diffusor pressure loss 
~oefficient was obtained: 

64 L 
kd = - - h1 (f) + 1 h2 (f) 

Re; D; 

Por kd ~ 0 the inviscid pressure recovery will approximately cancel the viscous pressure 
!rop, and thus an approximate criterion for pressure drop cancellation may be expressed: 

(19) 

The estimate in paper I is based on an expansion factor f = 2, a DV inlet diameter of 
D; = 1.65'10-3 m, a DV length of 8.4 D; (the length downstream of the branch junction 
.tt 1.6 D; to the outlet at 10 D.;), 1 = 4/3, and a UV Reynolds number of 163. For a 
low split of 0.45 this corresponds to Ui = 0.46 m/s and Rei = 191. These parameters 
rield a kd = -0.43, whereas simulated pressure drop from the UV to the DV inlet was 
1pproximately 1.5 mmHg, corresponding to a bifurcation loss coefficient kb of 1.8, i.e. 
;he diffusor pressure loss coefficient kd is about 24% of the kb and makes a significant 
~ontribution to the over all pressure loss. By changing the expansion factor to f ~ 1. 75 
md the DV length to 10Di, kd is close to zero. Thus, the estimates outlined above suggest 
.hat the DV geometry is also of importance for estimates of the pressure drop from the 
JV to the DV outlet. 

However, it should be stressed that the estimates presented in this section are one
limensional only. The fluid dynamics of a diffusor may be very complex; for instance the 
low may separate along the wall in the case of an adverse pressure gradient. Thus, we 
;uggest that a parametric study of these effects should be performed in the future, where 
he factors suggested by White (1988) are taken into account: 

• Expansion factor f 

• Divergence angle 28 = 2arctan ( Do2£Di) or slenderness L/D 

• Inlet Reynolds number Rei. 

• Inlet boundary layer blockage factor Bt = D~tf Dr, where n D~1 is the wall area 
blocked, or displaced, by the retarded boundary-layer flow in the inlet. 
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Validation 

paper I we employed a commercially available CFD package (Fluent, 1991) to investigate 
~ssure drop and energy dissipation in a simplified computer model of the bifurcation of 
~ human fetal umbilical vein and the ductus venosus. In this code, the governing mass 
:l momentum equations are discretized with the finite volume method (FVM) (Rizzi and 
mye, 1973). To investigate the applicability ofthe FVM-code to flow regimes similar to 
~ one presented in the first paper, some preliminary validation simulations were carried 
t. The results of these investigations are outlined in this section. 

1 2D validation 

1merical simulations were carried out for steady, laminar and incompressible flow through 
2D T-bifurcation and compared with numerical and experimental results (Collins and 
1, 1990; Liepsch et al., 1982). 

igure 2: 2D T-bifurcation geometry and measurements locations scaled by the channel width: 
cations of Liepsch et al. (solid line), additional locations for comparison in the present study 
1d by Collins and Xu (dashed lines). The location excluded in the present study and by Collins 
1d Xu, but included in the measurements by Liepsch et al. (dotted line). All lengths are 
m-dimensionalized with the channel width D. 

Liepsch et al. used a one-component direction-sensitive laser Doppler anemometer 
~DA) to measure the velocity profiles in their experimental setup. The test section 



4. Validation 11 

:onsisted of a 90° glass bifurcation of lOmm x 80mm cross-section. They found this aspect 
t·atio to provide two-dimensional flow in the individual channels and the measurements 
were carried out along the center lines of the corresponding channels. The geometry and 
the measurement locations are shown in Fig. 2. All lengths are scaled by the channel width 
D. Measurements were performed for various Reynolds numbers, ranging from Re = 496 
t,o Re = 1130 (Reynolds number based on the hydraulic diameter Dh = 2D), and various 
r:low ratios, ranging from Q3/Q 1 = 0.23 to Q3 /Q 1 = 0.64. In this study however, only the 
:·esults of theRe= 496 and Q3 jQ 1 = 0.44 configuration will be used for validation. 

The simulations of Collins and Xu were performed using ASTEC, a fluid flow code in 
ivhich finite volume methods are applied to a finite element mesh (Lonsdale, 1988). For 
xessure velocity coupling the SIMPLE algorithm was employed (Patankar, 1980), and a 
vector upwind scheme was used for the advection terms. To reduce computational costs 
:hey reduced the upstream main tube (MT) length to 3.5 D, the downstream MT length 
:o 11.8 D and the branch length to 6.2 D. Their mesh consisted of 840 elements and 1870 
1odes, with a refined distribution in the bifurcation junction. 

We discretized the governing mass and momentum equations by employing a finite 
volume formulation (Fluent, 1991). The SIMPLEC algorithm (van Doormaal and Raithby, 
L984) was utilized for the pressure velocity coupling in order to improve convergence. For 
;he advection terms we used power law, second order, and Quick upwind schemes to 
~valuate their impact on the solution. The fluid was assumed to be Newtonian and all 
;imulations were performed at Re = 496. At the inlet plane a fully developed profile with 
~ero normal velocities was specified. Further, at the MT outlet a fully developed profile was 
1lso imposed, whereas a zero velocity gradient condition was used at the branch outlet. 
fhe assumption at the branch outlet implies a fully developed profile. Collins and Xu 
mposed a constant pressure at the branch outlet; this implies a fully developed profile. 

Due to the relatively short branch length (6.2 D) (Collins and Xu, 1990), we found it 
1ecessary to investigate the upstream impact on the imposed boundary conditions at the 
)ranch outlet. The inlet length XL, is normally defined as the point where the developing 
:enter line velocity equals 99% of the fully developed maximum velocity. In the book 
)y Schlichting (Schlichting, 1968, pp. 176-178) an outline of an analytical estimation 
nethod of the inlet length in a straight channel is presented, based on a previous and 
nore comprehensive paper (Schlichting, 1934). Schlichting found that the inlet length 
nay be taken as: 

XL D:::::: 0.02Re (20) 

The numerical values quoted are modified for use of Re based on the hydraulic diameter 
'Jh = 2D, rather than the channel width D.) Several others have reported similar results 
or steady flow in circular cylindrical tubes (e.g. (Schiller, 1922; Targ, 1951) cited in Fung 
1984, p. 141) and Chang and Atabek (1961) cited in McDonald (1973, p. 111)). Note, 
wwever, that these approximations do not apply when the Reynolds number tends to zero. 
n their study, Shah and London (1978) report that the inlet length tends to a constant 
ts the Reynolds number tends to zero and suggest the following correlation for the inlet 
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gure 3: Comparisons for the different upwind schemes in the extended model of the present 
1dy with the axial MT velocity profiles of Collins and Xu (solid lines) and Liepsch et a!. (circles), 
the various MT locations. The upwind schemes of the present study (dashed lines) are in panel 
second order, b) p-ower law, and c) Quick. The velocities are scaled by the maximum velocity 
the MT inlet. The profiles are plotted in increasing consecutive order, starting at the bottom 
the figure. 

1gth (Shah and London, 1978): 

XL 0.6 
2 D ;:::; 1 + 0.0175Re + O.O BRe (21) 

For the Reynolds number in our validation case (Re = 496) both inlet length approx
tations in Eqs. (20) and (21) by far exceed the branch length of 6.2 D (xL ~ 10 D and 
~ ~ 14 D, respectively). Thus, in order to study the appropriateness of the imposed 
mndary conditions at the branch outlet, simulations were conducted, both on the trun
Lted geometry proposed by Collins and Xu with branch length 6.2 D, and on an extended 
~ometry with branch length of 14 D. This geometry is the same as that employed by 
tepsch et al. in their numerical simulations (not included here for brevity). 

In Figs. 3 and 4, the axial velocity profiles in the MT and the branch of the extended 
odel are plotted against the non-dimensionalized diameter at different locations. The 
~sults of the three upwind schemes in the present study are compared with the numerical 
~sults of Collins and Xu and the experimental results of Liepsch et al.. The velocity 
·ofiles at the different locations are plotted in increasing consecutive order, starting at 
te bottom of the figures. Note that we, like Collins and Xu, have excluded the velocity 
cofile at 8.0 D and included velocity profiles at -0.5 D and -0.25 D in the MT and 0.5 D 
1 the branch (i.e. at the branch inlet) in addition to the measurement locations of Liepsch 
, al. (Fig. 2). Further, as the numerical grid points did not always coincide with the 
teasurement locations, some of the profiles were linearly interpolated. In Fig. 3 the MT 
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<'igure 4: Comparisons for the different upwind schemes in the extended model of the present 
tudy with the axial branch velocity profiles of Collins and Xu (solid lines) and Liepsch et al. 
circles), at the various branch locations. The upwind schemes of the present study (dashed lines) 
.re in panel a) second order, b) power law, and c) Quick. The velocities are scaled by 3/2 Vrn. 

~he profiles are plotted in increasing consecutive order, starting at the bottom of the figure. 

b) 
0.5 

c) 

'igure 5: Comparison of the extended (solid lines) versus truncated (dashed lines) branch model 
f the present study. Panel a) second order, b) power law and c) Quick. The velocities are scaled 
'Y 3/2vrn. 
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ocities are scaled by the maximum inlet velocity, whereas in Figs. 4 and 5 the velocities 
~scaled by 3/2vm, where Vm is the axial mean velocity in the branch, i.e. the maximum 
al velocity for fully developed flow. The lines used in the figures are obtained by linear 
erpolation between discrete values. Unless otherwise stated, this convention is adopted 
the following. 
The velocity profiles in the MT show quantitative agreement for all upwind schemes 

tg. 3). The velocity profile upstream of the bifurcation is parabolic, whereas at the 
urcation the velocities increase in the upper part due to the upstream influence of flow 
o the branch. The velocities become slightly negative in the lower region opposite the 
dling edge of the bifurcation and re-develop to parabolic profiles again downstream at 
.~ exit of the main duct. 
In the branch, however, some discrepancies are found both in comparison with the 

merical results and with the measurements. The velocity profiles show an asymmetry 
th higher values towards the trailing edge of the bifurcation. The reverse flow region 
more pronounced along the upstream branch wall than in the main tube. Close to the 
anch inlet all the upwind schemes overshoot the maximum velocity and undershoot the 
gative velocities. The discrepancies between simulated and experimental results may in 
.rt be due to the fact that the experimental flow is not truly 2D at the branch inlet and 
at the presence of secondary velocities in the experimental data reduce the magnitude 
the streamwise velocity components. However, Collins and Xu's results seem to agree 
mewhat better with the measurements at these locations. The discrepancies between 
eir simulations and those in the present study may be partly ascribed to numerical 
ffusion associated with the choice of upwind scheme in conjunction with the truncated 
ometry. The effect of the geometry on the different upwind schemes of the present study 
illustrated in Fig. 5, where the axial velocity profiles in the branch of the truncated and 
e extended model are compared. From the left and right panel it is seen that the 
tpact of the extended geometry is marginal for higher order upwind schemes, whereas 
bstantial discrepancies are observed in the middle panel for the power law scheme, which 
known to produce more numerical diffusion than higher order schemes such as second 
der and Quick. Such a change in geometry would probably yield similar effects for 
e results of Collins and Xu. Probably more important, however, is that we learned 
)ffi private communications with Collins and Xu that the real Reynolds number in their 
mulations was approximately 20% higher than the one reported. This explains, then, why 
1e fully developed flow pattern appears at a shorter distance from the branch inlet in our 
mulations than for those of Collins and Xu. Furthermore, the numerical results of Liepsch 

al. for the extended model, discretized with a hybrid differencing scheme (Spalding, 
)72) and a power law upwind scheme, show the same qualitative behavior as in the 
:·esent study, i.e. they overshoot the maximum velocities and undershoot the negative 
;locities. The results are not included here. 

In conclusion, the numerical and experimental velocity profiles in the MT agree well 
; all locations. In the branch, however, discrepancies are present at the inlet, both 
etween the numerical results of Collins and Xu and those in the present study, and the 
{perimental results. Three-dimensional effects in the experiments carried out by Liepsch 
; al. are probably the most likely explanation for the discrepancies with the present 
mulations. The discrepancies between the two numerical approaches are most likely due 
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t.o the short branch length and the higher Reynolds number in the numerical simulations 
)f Collins and Xu. However, at about 6D both numerical approaches seem to agree well 
with the measurements. 

4.2 3D validation 

To validate the FVM-code for 3D bifurcations, comparisons were made with a study by 
Yung et al. for steady, incompressible, Newtonian flow through a rigid-walled, symmetric 
¥-bifurcation (Yung et al., 1990). The area ratio of the daughter-to-mother tube was 2.0 
1nd the branching angle was 60°. Symmetry with respect to both the horizontal and the 
vertical center plane was assumed, and thus the analyses were confined to only one quarter 
)f the flow region. 

Yung et al. discretized the governing mass and momentum equations by a finite vol
Jme formulation, incorporating the Sil\IIPLE solution algorithm (Patankar, 1980) for the 
)ressure velocity coupling, a hybrid difference scheme for the convective and diffusive flux 
;erms and a body fitted coordinate transformation. Their computational grid was gener
:1ted by solving a set of Poisson equations subject to Dirichlet boundary conditions. For 
:1 3D grid, the boundary points are normally specified on the surface constraining the 
1ow domain. In this study, however, Yung et al. employed a simplified method such 
Jmt the x-coordinates of the grid points were fixed beforehand, leaving only a 2D grid 
;o be computed for each x-plane. This grid strategy and the choice of coordinate system 
rield a mesh with constant skewness in the daughter vessel. However, grid independent 
mlutions are reported for a grid solution 31 x 9 x 13 (31 control volumes in x-direction, 9 
n y-direction and 13 in z-direction). 

l"igure 6: An outline of the Y-bifurcation geometry with the grid-distribution in the present 
;tudy at selected cross-sections in streamwise direction. 

In the present study an analogous model was established with a grid resolution equal 
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that of Yung et al., using the geometry and mesh generation preprocessor (Geomesh, 
l4) and the FVM-code. An outline of our geometry is given in Fig. 6, along with the grid 
tribution at selected cross-sections in streamwise direction. The validation simulations 

Z= 0.0 

~1 0.50 

Perpendicular plane 

0
=0.5 

Bifurcation plane 
Z= 1.0 

y =- 0.5 

.gure 7: An illustration of the bifurcation plane (BP), the perpendicular plane (PP), and the 
=ations where the velocity profiles are presented. 

:;re performed for two upstream Reynolds numbers Re = 100 and Re = 500. For these 
mulations the SIMPLE algorithm and a second order upwind scheme were used for the 
·essure velocity coupling and the advection terms, respectively. 

Yung et al. presented axial velocity profiles in the bifurcation (BP) and the perpen
cular planes (PP) at different axial positions. These planes and the locations where the 
)locity profiles are presented and compared are illustrated in Fig. 7. The BP is located 
, y = 0, extending from the inner wall (z = 0) to the outer wall (z = 1), whereas PP is 
~iented vertically to the BP at the center of the branch, ranging from y = -0.5 toy = 0.5. 
t Fig. 8 our axial velocity profiles at the stations Sl-86 are compared with the results 
'Yung et al. for Re = 100 and Re = 500. The velocities are scaled by the maximum 
1tlet velocity. Note that only half of the profile is computed for the velocities in the per-



4. Validation 

z 

a) 

y 

b) 

17 

z 

c) d) 

l"igure 8: The axial velocity profiles for the present study (dashed line) and the those of Yung 
~t a!. (solid-line), in the bifurcation plane (BP) and the perpendicular plane (PP). In panel a) 
md b) the results are given for Re = 100 in the BP and the PP, respectively. The corresponding 
·esults for Re = 500 are shown in panel c) and d), respectively. The profiles are plotted in 
ncreasing consecutive order, i.e. Sl-86, starting at the bottom of the figure. The velocities are 
;caled by the maximum outlet velocity. 

>endicular plane, whereas the other half is mirrored about the branching plane according 
.o the a priori symmetry assumption. At station 81, the velocity profile in the BP is 
leflected at the inner wall due to the presence of the apex and the axial momentum of the 
luid as it leaves the mother tube. Close to the outer wall, the velocity almost vanishes 
'or Re = 100 after passing the sharp corner, whereas negative velocities (i.e. separation) 
>ccur in the case of Re = 500. At 85, approximately 7 diameters away from the apex, 
he flow appears to be fully developed for Re = 100. The results of the present study and 
hose of Yung et al. agree well at all locations for Re = 100. The centrifugal forces induce 
t secondary flow which moves in a spiral from the inner corner to the outer edge along the 
1pper wall and turns back along the center of the BP. With a strong centrifugal force, 
he velocity profile in both the BP and the PP will exhibit a trough in the middle. Such 
t trough appears for Re = 500 for both numerical approaches. However, for Re = 500 the 
liscrepancies between the velocity profiles of the present study and that of Yung et al. 
tre more pronounced. In conclusion, despite the differences in skewness between the two 
neshes, the simulations show qualitative agreement. 
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Summary of papers 

fhis thesis consists of an introduction and five papers. Four of the papers are related to 
"etal hemodynamics and therefore grouped together (papers I-IV). The fifth paper relates 
.o the hemodynamics in pulmonary veins. 

paper I Simulation of pressure drop and energy dissipation for blood flow 
in a human fetal bifurcation 
Based on physiological measurements, a 3D computational model of the um
bilical vein and ductus venosus bifurcation for stationary flow conditions is 
established. The energy dissipation at the bifurcation inlet was estimated 
to constitute 24% to 31% of the pressure drop, depending on the Reynolds 
number and the curvature ratio. 
J Biomech Eng 1998, 120(4), 455~462. 

paper II Mechanical properties of the fetal ductus venosus and the umbilical 
Vein 

The pressure-area relationship of the umbilical vein and the ductus venosus 
is studied in vitro. Each data set is fitted to an exponential function to 
determine the stiffness parameter and the area at a standard pressure. 
Heart Vessels 1999, In press. 

paper III A mathematical model of umbilical venous pulsation 
A mathematical model is presented to identify the mechanical factors that 
influence pulsation in the umbilical vein. The umbilical vein is modeled as 
a compliant reservoir and the umbilical vein pressure is assumed to be equal 
to the stagnation pressure at the ductus venosus inlet. 
Submitted for publication. 

paper IV Wave propagation in the human fetal ductus venosus-umbilical vein 
bifurcation 
The effect of ductus venosus tapering on the reflection coefficient is inves
tigated with a mathematical model incorporating wave propagation. The 
results of this model are compared with those of paper III. 
Submitted for publication 

paper V Mechanism of pulmonary venous pressure and flow waves 
A mathematical model of the pulmonary vein and the pulmonary bed is 
developed, where the pulmonary vein is modeled as a lossless transmission 
line and the pulmonary bed by a 3-element lumped parameter model. All 
pulsations are assumed to originate in the left atrium, the pressure in the 
pulmonary bed being constant. 
Heart Vessels 1999. In press. 
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Abstract 

The pressure drop from the umbilical vein to the heart plays a vital part in 
human fetal circulation. The bulk of the pressure drop is believed to take place 
at the inlet of the ductus venosus, a short narrow branch of the umbilical vein. 
In this study a generalized Bernoulli formulation was deduced to estimate this 
pressure drop. The model contains an energy dissipation term and flow scaled 
velocities and pressures. The flow scaled variables are related to their corre
sponding spatial mean velocities and pressures by certain shape factors. Further, 
based on physiological measurements, we established a simplified, rigid-walled, 
3D computational model of the umbilical vein and ductus venosus bifurcation 
for stationary flow conditions. Simulations were carried out for Reynolds num
bers and umbilical vein curvature ratios in their respective physiological ranges. 
The shape factors in the Bernoulli formulation were then estimated for our com
putational models. They showed no significant Reynolds number or curvature 
ratio dependency. Further, the energy dissipation in our models was estimated to 
constitute 24% to 31% of the pressure drop, depending on the Reynolds number 
and the curvature ratio. The energy dissipation should therefore be taken into 
account in pressure drop estimates. 

Published in J Biomech Eng 1998, 120(4), 455-462. 
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Introduction 

The advent of ultrasound techniques has opened a new era in fetal medicine by giving 
access to information about fetal hemodynamics non-invasively. Additional information 
may be deduced from measurements by means of physical/mathematical models, such 
as in cardiology where Doppler velocimetry is used to estimate pressure gradients by 
employing a simple Bernoulli formulation (Holen et al., 1976; Hatle et al., 1978). 

Access to quantitative information has spurred the development of mathematical 
models aimed at describing functional relations, such as the circulation in the placenta 
(Guiot et al., 1992), and the resistance and velocity waveforms in the arterial system 
(Trudinger et al., 1985; Thompson and Stevens, 1989). However, the venous part of 
the fetal circulation still remains to be examined by means of mathematical models. 
Especially models that give quantitative information about the pressure drop from 
the umbilical vein (UV) to the left heart would be helpful to improve the physician's 
understanding of fetal cardiac function. 

Atrial septum 

Figure 1: Oxygenated blood from the placenta may leave the umbilical vein and enter the 
ductus venosus. This blood is accelerated and directed towards the left atrium (LA) through 
the foramen ovale. RA denotes the right atrium and IVC the inferior vena cava. 

The oxygenated placental blood that returns to the fetus through the UV enters the 
liver tissue or is shunted through the ductus venosus (DV), to reach the heart directly 
(Fig. 1). In animals, 50% of the oxygenated blood is directed through the DV, but the 
proportion increases to 70% during reduced oxygen content or reduced blood volume 
(Behrman et al., 1970; Edelstone and Rudolph, 1979; Edelstone et al., 1978). In the 
human fetus, a similar mechanism of preferential streaming (Fig. 1) is described from 
the UV through the DV and the foramen ovale (the atrial hole) towards the left atrium 
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{iserud et al., 1991). 
The high velocity in the DV, both in normal (Huisman et al., 1992; Kiserud et al., 

)92) and diseased (Oepkes et al., 1993) conditions, has been suggested to reflect a 
1ajor portion of the pressure drop from the UV to the fetal heart. Attempts to 
1lculate the UV-DV pressure drop by means of a simple Bernoulli equation have been 
~ported (Kiserud et al., 1994; van Splunder et al., 1995). By employing such a method 
. conjunction with measurements of the UV pressure, gained by needling, one may 
Jtain an estimate of the pressure in the fetal heart. However, until the methodological 
:nitations are controlled, the formulation cannot reliably be used in clinical practice. 

The study of blood flow in bifurcating vessels has been an important topic in biofluid 
echanics for several decades. Extensive monographs on the theoretical and exper
Jental foundation of blood flow in arteries (McDonald, 1973; Pedley, 1980), have 
:ovided a sound basis for the more recent numerical approaches (Power, 1995; Liep
:h, 1994). As atherosclerosis is often found near bifurcations, much attention has 
?en given, both numerically and experimentally, to understand the role of fluid dy
tmics in the development and progression of the disease (Lou and Yang, 1992; Xu 
1d Collins, 1990). The numerical models have evolved from 2D stationary, Newto
an, T-bifurcation models (Liepsch et a!., 1982; Collins and Xu, 1990), via transient 
)-models for more realistic geometries, with both Newtonian (Perktold et al., 1991c) 
1d non-Newtonian (Perktold et al., 1991b) constitutive laws, to models incorporat
g the fluid-structure interaction for blood and vessel wall in complex 3D-geometries 
>adeghipour and Hajari, 1995; Perktold et al., 1994; Power, 1995). 

The aim of the present study is twofold: a) to deduce a generalized Bernoulli 
rmulation applicable to pressure drop estimates in a general bifurcation, and b) to 
tablish a simple 3D computational model of the fetal UV-DV bifurcation and to 
vestigate the errors associated with the Bernoulli formulation for this model. 

!Jet hod 

Iathematical Formulation 

a bifurcation, the energy dissipation varies from streamline to streamline and the 
·essure may vary as much over the tube cross-section as in the stream-wise direction 
'edley, 1980, page 246). An ordinary Bernoulli approach, valid only for inviscid flow 
ong a streamline, might not suffice for estimating pressure drop in bifurcations. We 
1ll therefore resort to an energy formulation and develop it in a form suitable for our 
udy. 

The basic principles of conservation of mass and balance of linear momentum for 
compressible flow may be presented as: 

0 

divT + pb 

(1) 

(2) 

1ere v denotes the fluid velocity, p the density, T the stress tensor, and b body 
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forces per unit mass. By multiplying (2) with the velocity vector, employing the 
Gauss theorem, using well known identities from tensor calculus, and integrating over 
a general control volume V we obtain the mechanical energy equation: 

i p ~: · v dV = // div ( v · T) dV i T : D dV + i pb · v dV 

where the rate of strain tensor is denoted by D. The stress tensor may be decomposed 
into isotropic and deviatoric parts T = -pI + T', which in conjunction with the 
incompressibility assumption implies: T : D = T' : D. Here p denotes the pressure. 
Further, we define total rate of viscous energy dissipation 6., which is equal to the stress 
power in the case of incompressible flow, and the term 6.' as: 

6. = iT : D dV = iT' : D dV, 6.' = ( v. T' · n dA 
lav 

where av denotes the surface of the control volume v and n the outward unit normal 
vector. Further, we introduce 6.t = 6. - 6.' and q2 = v · v for convenience. For station
ary flow without body forces we then employ the Gauss theorem, the incompressibility 
assumption, a vector identity, and obtain: 

( p q
2 

(v. n) dA = - ( pv · n dA- 6.t 
lav 2 lav (3) 

We let the control volume take the form of a general bifurcation as shown in Fig. 2, 
and let An denote the n-th cross section. Then, by introducing the following conven
tions: 

we get the relation between pressure, velocity and energy loss from (3) and (4): 

Further, we let Pt denote the total pressure: 

Then, by following the same conventions as in ( 4) we obtain: 

A A A 6.t 
Ptl - Ptz - Pts = -

Q 

(4) 

(5) 

(6) 
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Figure 2: Upper half of the bifurcation control volume. 
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lte term on the right hand side in (6) may be understood as the total loss of energy 
r the whole bifurcation. However, a further physical interpretation is not readily 
·ailable as the inlet pressure is related to two outlet pressures. A clinically relevant 
pression should relate the main tube (MT) inlet pressure to the branch pressure only. 
·e assume therefore that it is possible to divide the former control volume into two 
bcontrol volumes: v2 and v3, where the v2 volume holds the fluid that finally will 
ach the MT outlet with flow rate Q2 , while V3 is the branch counterpart with flow 
te Q3 . Further, we let A12 and A13 denote the sub-cross-sectional areas of V2 and 
, respectively, at the MT inlet cross-section A1 . For these control volumes we then 
)tain from (3) and (4): 

Pt12 = Ql r Pt Wn dA 
jA12 

Ptl3 = Ql r Pt Wn dA 
jA13 

' + .6.t12 
Pt2 --

Q 
' + .6.t13 Pt3 --

Q 

(7) 

1ere Ptli represents the flow scaled total pressure at cross-section A1i at the MT inlet, 
td .6.tli represents the dissipative terms for control volume Vi. These definitions imply 
e relation: fin = Pt1z+fit13 . Further, by substitution into (6) we also get the expected 
lation: 
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Thus, the sum of the energy losses in the subcontrol volumes equals the total loss of 
mechanical energy in the whole bifurcation. If the pressure p 1 is constant and the 
velocity is a function of the radial coordinate only at the MT inlet, it can be shown 
that: 

A Q3 A A Q2 A 

Ptl3 = Q Pn, Pt12 = Q Ptl (8) 

From (7) and (8) a relation between the MT inlet pressure and the branch pressure is 
obtained: 

A Q A ~t13 
Ptl- -Pt3 = --

Q3 Q3 
(9) 

By splitting the total pressures into pressure and kinetic energy terms we may formulate 
a generalized Bernoulli equation: 

(10) 

The inviscid form of this equation will be referred to as the simplified Bernoulli equa
tion. Note that the terms involved are not physical quantities that can be obtained 
by pressure manometers or fiowmeters. However, they may be related to their spatial 
mean counterparts, i.e. the spatial mean velocity Vrn and the spatial mean pressure Prn 

in the following manner: 

qA2 = a v2 PA - (3 p rn' - rn (11) 

where a is velocity shape factor and (3 a shape factor for the pressure. A constant 
pressure yields (3 = 1, and a uniform velocity profile implies a = 1, whereas a parabolic 
velocity profile corresponds to a = 2. 

By assuming a uniform pressure p 1 = Prnl, and a parabolic velocity profile at the 
MT inlet we get from (10) and (11): 

1 2 2 ~t13 
P1 - f3 Prn3 = 2 pavrn3 - PVrnl + Q";; (12) 

Geometry and reference bifurcation 

A reference bifurcation for our computational models of the UV-DV bifurcation, was 
taken as a 3D T-bifurcation (Fig. 3). The diameters were taken as the mean values 
of the UV and the DV in human fetus at the 26-th week of gestation (Kiserud et al., 
1994). Thus, as the UV is represented by the MT in the models, the MT diameter was 
taken as Drnt = 4.3 · 10-3 m. The trumpet-shape of the DV (Chako and Reynolds, 
1953; Blanc, 1960) was neglected and a constant diameter Db = 1.65 · 10-3 m in the 
branch of our models was adopted. As curvatures will be imposed on the MT in the 
simulation section, the MT was segmented into four different regions. For a complete 
geometrical description, see Table 1 and Fig. 3. 
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Dimensionless parameter 
Lui/Dmt 
Lu2/Dmt 
Ldi/Dmt 
Ld2/ Drnt 
Lb/Db 

Value 
0.9 
1.3 
1.0 
4.4 

10.0 

9.ble 1: Geometrical parameters for the T-bifurcation. Dmt = 4.3 · 10-3 m and Db 
55· 10-3 m 

:urvature ratio 

7 

ne of the main geometrical features of the junction between the UV and the DV 
the human fetus, is the curvature of the UV. Thus, it is of importance to exploit 

1d ·enhance the understanding of curvature impact on both the energy loss and the 
.ape parameters. By introducing proper scales and orthogonal curvilinear toroidal 
•ordinates for the governing mass and momentum equations (1) and (2), an important 
m-dimensional quantity is found for flow in curved tubes (Ward-Smith, 1980), namely 
e curvature ratio: 

(13) 

here R is the radius of curvature, D the diameter of the tube. 
To have an impression of the physiological range of the curvature ratio 0 of the UV, 

neteen healthy pregnant women were recruited from the low risk antenatal clinic. 
:1e participants were non-smokers, had a normal obstetrical history and their present 
1gleton pregnancy was uneventful. The gestational age of the fetuses was assessed 
· ultrasonography. The radius of curvature R of the UV, was estimated with a 
Lir of compasses from 2D-ultrasonographic images. Subsequently the curvature ratio 
= Dmt/2R, was estimated by taking the umbilical vein diameter as Dmt = 4.3·10-3m, 
'· the mean diameter at the 26th week of gestation. 

omputational Method 

e employed an finite volume method (FVM) using a commercially available package 
'luent, 1991) running on an HP 9000/755 workstation to solve the governing mass and 
Jmentum equations. The SIMPLE algorithm (Patankar, 1980) was utilized for the 
essure-velocity coupling, and a second order upwind scheme was used to discretize the 
nvective terms. The walls were assumed to be rigid, and the flow regime was assumed 
be plane symmetric in order to reduce memory requirements and computational 

sts. Further, the fluid was assumed to be incompressible and Newtonian with density 
= 1.05 · 103 kgjm 3 and dynamic viscosity J..t = 4.2 · 10-3 kgjms. 

The dynamic viscosity corresponded to human fetal whole blood at delivery (Joup
la et al., 1986), and the density corresponded to human whole blood (Perktold et al., 
91a; Fernandez et al., 1976). The imposed boundary conditions were intended to 
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Figure 3: Sketch of the 3D T-bifurcation. 
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reflect the physiological values obtained by Doppler ultrasonography (Kiserud et al., 
1994), where approximately 45% of the blood is directed into the branch. For the 
mean flow at 26 weeks of gestation, this corresponds to the following Reynolds num
bers: Re ~ 109, Re0 ~ 60, Reb ~ 128, for MT inlet/outlet and branch, respectively. 
The Reynolds numbers are based on the hydraulic diameters, a convention which will 
be followed throughout the paper. 

To obtain a branch volume fraction of approximately 45%, with pressure boundary 
conditions at the MT and branch outlets for a given Reynolds number, we established 
the following procedure: At first a preliminary simulation was performed for the ref
erence bifurcation; stationary parabolic velocity profiles were the boundary conditions 
at the MT boundaries, and a zero velocity gradient was the boundary condition at 
the branch outlet. Secondly, the pressure values at the MT and branch outlets from 
the preliminary simulations were taken as boundary conditions for the models with 
MT -curvature. 

Results 

Reference bifurcation 

Preliminary simulations for various branch lengths were performed to ensure that the 
imposed boundary conditions at the branch outlet did not yield upstream effects on the 
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:locity profiles. The structured reference grid, which constituted 99 x 15 x 52 control 
)lumes, was constructed with decreasing control volumes towards the bifurcation for 
better resolution in the branch. Two additional grids were constructed for grid

tdependency tests; a coarse grid (50 x 9 x 30) and a refined grid (119 x 22 x 72). As 
ressure drop and pressure distribution are some of the main features of interest in this 
aper, we focused on the mean pressure distribution in the MT in our grid tests. The 
tean spatial pressure in each MT cross-section is plotted versus the normalized MT 
ngth in Fig. 4. It is seen that the coarse grid overpredicts the sudden pressure drop 
:. the bifurcation, whereas the overall pressure drop is well represented. The reference 
·id solution follows the refined grid solution rather well at all locations. 

~ 
~ 
::J 
Cll 
Cll 

2.------.-------,--------,------,-------, 

-2 

~ -6 
0. 
c 
Cll 
Q) 

:2 

-1 I I ,, 
It 

-·coarse 

-- reference 

-- refined 

-14.L-----~------~-------L------~----~ 
0 0.2 0.4 0.6 0.8 

Normalized MT length 

igure 4: Spatial mean pressure in the MT versus normalized MT length. Coarse grid 
lash-dot), reference grid (solid line), refined grid (dashed). 

'hysiological curvature ratios 

he mean gestational age of the fetuses was 30 weeks (range 19-39), and the mean 
wsiological curvature ratio Jm = 0.19 (range 0.12-0.35). 

imulations 

ine different grids with varying MT curvature were constructed, each with a constant 
.dius of curvature R, starting at Lui/ Dmt MT diameters and ending at (Lul + Lu2 + 
·11)/ Dmt diameters, see Table 1 and Fig. 3. 

All grids had resolutions equal to the reference T-bifurcation. The curvature ratios 
ere held approximately in the physiological range, ranging from J = 0.15 to J = 0.35. 
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For all these geometrical configurations the axial center line lengths (Lu 1 + Lu2 + Ld1 + 
Ld2 ) of the MT were kept constant. A typical grid is depicted in Fig. 5. 

Figure 5: A typical grid configuration for a bifurcation with MT curvature. 

Simulations were carried out for two inlet Reynolds numbers per configuration, 
corresponding to the mean and maximum umbilical venous flow at the 26th week of 
gestation: Re ~ 109 (Q ~ 88 ml/min) andRe~ 163 (Q ~ 132 ml/min). 

Filled, interpolated pressure contours in the symmetry-plane for a representative 
curvature ratio are shown in Fig. 6. A pronounced pressure drop at the bifurcation inlet 
is clearly seen, and immediately after the inlet at the MT wall facing the bifurcation, 
the pressure builds up again to oppose the centrifugal forces due to the change in 
direction of the fluid. 

In Figs. 7 and 8, the cross-sectional mean pressure and the center-line pressure 
in the MT are plotted versus the normalized MT length for the various curvature 
ratios, and for Reynolds numbers Re ~ 163 and Re ~ 109, respectively. The imposed 
boundary conditions imply that the pressure at the MT outlet remains constant for all 
configurations, and that the overall pressure drop is changed by variations in the inlet 
pressure. The graphs show monotonous curvature ratio dependence in the pressure, 
i.e. the higher curvature ratio the higher pressure drop is required to force the fluid 
through the bifurcation. The relative difference in the mean pressure drop at b = 0.15 
and b = 0.35 is approximately 35% for Re ~ 163. For Re ~ 109 the relative difference 
is approximately 26%. For brevity these results are not depicted here. A prominent 
feature of the mean pressure distribution is the sudden pressure drop and recovery 
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rigure 6: The pressure distribution in symmetry-plane for a representative curvature ratio. 
' low from left to right . 

. t the MT-branch junction. For convenience we denote this feature as a pressure 
ssure. The qualitative difference in the pressure fissures for the mean pressures and 
he center line pressures is caused by the large cross-sectional variation in pressure, 
ttributed to the centrifugal forces (Fig. 6). However, distal to the branch inlet these 
ifferences vanish , thus the center line pressure and the spatial mean pressure may be 
sed interchangeably. 

The cross-sectional mean pressure in the branch is plotted versus the normalized 
ranch length in Fig. 9, starting at the MT wall furthermost from the branch inlet . 
~egardless of the curvature ratio, the pressure is rather constant in the MT, and then 
hows a rapid drop at the branch inlet, after which it merges to a linear Poiseuille 
ehavior. The pressure drop at the branch inlet of approximately 200 Pa (1.5 mmHg) 
iffers from the MT pressure drop by an order of magnitude (Figs . 7 and 9) , whereas 
e changes caused by the variation in curvature are of the same order of magnitude 

s the corresponding changes in the MT. 
Further , the volume fraction at the MT outlet was calculated (Fig. 10). A monotonous 

ependency of curvature may be observed. However , the relative variation in volume 
·action is less than 2% for both Reynolds numbers. 

The energy dissipation from the MT to the branch inlet was also computed. The 
1let station was located at 0.7Dmt upstream from the bifurcation center in the MT, 
·here the pressure drop starts to deviate from the linear Poiseuille drop. This corresponds 
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Figure 7: Mean pressure in MT for Re ~ 163. 

to a normalized MT length of 0.2 (Fig. 7). 
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Further, a station in the branch at 1.6Db from the bifurcation center, close to the 
branch inlet at 1.3Db, was chosen as the outlet station in the branch. At this station the 
rapid pressure drop is over and a linear Poiseuille pressure drop has been established 
(Fig. 9). The lengths 1.6Db and 1.3Db corresponds to normalized branch lengths of 
0.26 and 0.23, respectively. We define the energy dissipation factor A as the the ratio 
of the energy dissipation to the flow scaled pressure drop ratio, i.e. : 

\ ~t13/( ' Q ') /\=-- P1--p3 
Q3 Q3 

This factor expresses the relative error obtained by using the simplified Bernoulli equa
tion to estimate the flow scaled pressure drop. From Fig. 11 we see that A, ranges from 
24% to 31% for all simulation configurations. A weak impact of both Reynolds num
bers and curvature ratio is observed. For the lower Reynolds number Re ~ 109, the 
energy dissipation is approximately 5% higher than for Re ::::i 163, regardless of curva
ture ratio. This is reasonable as viscous effects are expected to be more prominent at 
low Reynolds numbers. 

The A-factor decreases slightly as 8 increases. If we take into account that the flow 
distribution is almost unaffected by changes in 8, the decrease in A may be ascribed 
to a decrease in fh - p3 , i.e. a slight reduction in the resistance from the MT to the 
branch inlet as 8 increases. 

The computed shape factors a and j3 are plotted in Figs. 12 and 13. From the 
scale of the ordinate we see that regardless of the Reynolds number, the correlation 
between the a-factor the curvature ratio is only marginal. The a-factor may thus be 
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Figure 8: Center line pressure in MT for Re :::o 109. 

13 

1ken as a constant, given by the mean value O:m = 1.5. The apparent non-monotonous 
-dependency of the curvature ratio may, also due to the small scale, most probably 
c ascribed to numerical errors. The tJ-variation in the Reynolds number is also only 
targinal, and we may take it as its constant mean value tlrn = 0.94 

jonclusions and discussion 

1 this study we deduced a generalized Bernoulli formulation applicable for pressure 
rop estimates in a general bifurcation. 

In the results from the computational model of the fetal UV /DV-bifurcation, the 
ressure profiles (Figs. 7 and 8) show significant curvature ratio impact on the overall 
IT pressure drop. But as the pressure drop in the branch differs from the MT pressure 
rap by an order of magnitude (Fig. 9), the curvature ratio impact on the branch 
ressure drop is only modest. Note also that this overall pressure drop is in the 
:·der of 20 Pa, corresponding to 0.15 mmHg, and therefore would not be measurable. 
owever, pressure fissures similar to the ones in the present study have been reported 
L experimental investigations for arterial branch models. These measurements were 
mducted for flow regimes with higher Reynolds numbers than in the present study for 
Jth steady (Cho et al., 1985) and unsteady (Back et al., 1986) flow. In these works 
te pressure rise was attributed to inertial effects associated with momentum losses in 
te MT due to the flow through the branch. Further, Back et al. (1986) also measured 
me averaged pressure drops for the branch pulsatile flow at a lower time averaged 
eynolds number (Rease :=:o 115). 
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Figure 9: Mean branch pressure for Re::::; 163. 

The relative variation in volume fraction at the MT outlet is less than 2%; hence 
the importance of the curvature ratio as a volume distributor is minor for our models. 

Further, the simulation results indicate that the shape factors a and (3 should 
be included for pressure drop estimates in bifurcations. For the geometries in our 
simulations, they may be taken as a = 1.5 and (3 = 0.94, i.e. independent of Reynolds 
number and curvature ratio. Further, the dissipation appeared to constitute about 
30% of the pressure drop from the MT to the branch inlet and to have a modest 
Reynolds number and curvature ratio dependency. We therefore conclude that the 
energy dissipation also should be taken into account in pressure drop estimates for 
bifurcation geometries similar to the ones in this study. 

In our simulations we have assumed the blood to be Newtonian, even though it 
is known that it has viscoplastic rheological properties. However, significant non
Newtonian effects appear only at low shear rates (Chang and Tarbell, 1988). Nu
merical studies of arterial bifurcations with the Casson model show that the effect of 
non-Newtonian rheology on the fluid dynamics is not dramatic (Lou and Yang, 1993; 
Perktold et al., 1991b). It is therefore assumed that the inclusion of non-Newtonian 
rheological models would not change the results significantly. 

Further, we have also made a rigid wall assumption. Numerical comparisons have 
been made between rigid wall and compliant wall solutions for the carotid artery bifur
cation (Reuderink, 1991; Perktold et al., 1994). The compliant models show that the 
velocity-magnitudes and wall shear stresses are significantly reduced in the reversed 
flow area. Reduced wall shear stress is associated with a parabolic-like velocity profile, 
and thus a possible consequence in our simulations might be that the velocity profile 
at the branch inlet would be more parabolic, i.e. a closer to 2. 
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The pressures in the fetal heart oscillates during the heart cycle, and this yields a 
Jlsatile flow in the DV. The normal DV velocity pattern is triphasic; A peak during 
mtricular systole, a second peak during early ventricular diastole and a nadir during 
.rial contraction. The velocity waveform ranges from 0.4-0.85 m/s during the last half 
·normal pregnancies (Huisman et al., 1992; Kiserud et al., 1992) and is altered during 
tal diseases with an increased pulsatility (Kiserud et al., 1993). In our simulations 
Le velocities are taken as steady, and in general velocity profiles for steady flow are 
ore or less parabolic, whereas in a pulsatile flow the profile tends to a flat one for high 
'omersley numbers. Numerical simulations for the aortic bifurcation have shown that 
r steady flow with an average Re, the shear stresses are less than 10% of those for an 
1steady flow. Even with peak Re, the steady solution still underestimates the shear 
resses in most places (Lou and Yang, 1991). However, physiological measurements 
.ow that the UV-flow is steady; this indicates that the pressure-pulse propagating 
>stream in the DV is subject to significant reflection and/or damping in the UV. 
rms, the UV-DV flow regime may be of a less pulsatile character than the flow at 
e aortic bifurcation. Still, our steady simulations might be insufficient, therefore 
tlsatile simulations should be performed in the future. 

As stated previously, the DV has a more trumpet-like shape, i.e. a narrow inlet 
ction with a wider outlet section, whereas in our simulations it has been given a 
nstant diameter for simplicity. Thus in a more physiological model the branch will 
.ve a narrower inlet section. This will probably affect the velocity profile and we 
erefore assume that the numerical values of the shape factors and the dissipation 
ould be modified for a more physiological relevant model. 

Further, it should be noted that we have only estimated the pressure drop from 
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the MT to the branch inlet. Thus, the effects of pressure recovery due to the change 
of cross-section and the pressure drop due to viscous forces in the branch are not 
addressed in the present study. To obtain an estimate of these effects we make the 
following assumptions for the DV: local Poiseuille flow, a linearly diverging branch with 
an expansion factor of 2, the DV inlet diameter is Db = 1.65-3m, and the DV length 
as 8.4Db (the length from just downstream of the branch junction l.6Db, to the outlet 
at 10Db). Then for Re ~ 163 a rough estimate of the viscous and cross-sectional effects 
may be obtained by application of the mean flow momentum equation along the branch 
axis, yielding a pressure recovery estimate of approximately 0.4 mmHg. However, 
these estimates are sensitive to the branch inlet diameter and to the expansion factor. 
Furthermore, the assumption of Poiseuille flow is inaccurate. Therefore we suggest 
that a parametric study should be performed in the future. 

From the discussion above, it is clear that the estimates of the shape-factors and 
the energy-dissipation should be taken as indicative only. However, we would maintain 
that the suggested mathematical formulation (12) for pressure drop estimates could be 
useful. Thus, to improve the estimates of the shape-factors and the energy dissipation, 
computational models that better mimic the physiological reality should be established. 
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Abstract 

During fetal circulatory compromise, velocity pulsations in the precordial veins 
increase and are commonly transmitted through the ductus venosus into the 
umbilical vein, indicating a serious prognosis. The nature of the pulsations and 
their transmission into the periphery, specifically the umbilical vein, is poorly 
understood. We present information on the mechanical properties of fetal veins 
as a basis for describing the pulse wave propagation. Five fetal sheep livers with 
connecting veins (gestational age 0.8-0.9) were studied in vitro. The transmural 
pressure, obtained with a fluid-filled catheter, was reduced stepwise from 10.3 
to 0 mmHg, and the diameter determined by ultrasonography. Each data set 
was fitted to an exponential function to determine the stiffness parameter and 
the area at a standard pressure, which we proposed to be 5 mmHg for the fetal 
venous circulation. The stiffness parameter was 6.2 ± 1.8 at the ductus venosus 
outlet, 3.4 ± 1.3 at the ductus venosus inlet, and 4.0 ± 1.0 in the umbilical vein. 
Correspondingly, values for compliance and pulse wave velocity for the three 
venous sections were established for a physiological pressure range. The estimated 
pulse wave velocity of 1-3 m/s is comparable with values estimated for veins 
in adults. The mechanical properties of fetal veins are comparable with those 
described for veins later in life. The stiffness parameter represents the elastic 
properties at all pressure levels and conveniently permits inference of compliance 
and pulse wave velocity. 

To appear in Hear-t and Vessels 1999 
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Introduction 

In 1979 Gill (Gill, 1979) described the fetal umbilical vein (UV) dimension and veloc
ity in utero by applying combined ultrasound imaging and Doppler velocimetry. The 
umbilical vein is a sizeable vessel in the fetus and was accessible with the equipment 
available at the time. In addition, Doppler velocity waveforms for fetal arteries were 
the focus of interest at that time. Later studies focused on the pulsating flow in the 
precordial veins which was found to be a useful method to evaluate fetal cardiac func
tion (Reed et al., 1990; Kanzaki and Chiba, 1990; Wladimiroff et al., 1991; Respondek 
et al., 1996). Another vein, the ductus venosus (DV) was shown to play a key role in 
shunting oxygenated umbilical blood in the human fetus (Kiserud et al., 1991; Huis
man et al., 1992). During congestive heart disease or abnormal atrial contractions, 
augmented pulsation of the precordial veins is increasingly transmitted to peripheral 
sections of the veins as the fetus deteriorates, and may reach the umbilical vein mainly 
through the ductus venosus (Lingman et al., 1986; Kiserud et al., 1993, 1994, 1998). 
Such pulsatile changes in the umbilical vein are regarded as a sign of poor prognosis 
(Gudmundsson et al., 1991; Nakai et al., 1994). In the fetal sheep, injection of saline ex
pands the venous system, increases the venous pressure, reduces the transmission time 
for wave travel and leads to umbilical venous velocity pulsations (Reed et al., 1996, 
1997). However, the occurrence and pattern of pulsations show individual variations 
and the way they are transmitted is not well understood. 

Mathematical models of the UV /DV junction have been applied to describe the 
hemodynamic characteristics more precisely. In a computational model with steady 
flow and rigid walls, the velocity profile was found to be partially blunted and skewed 
(Pennati et al., 1996). Energy dissipation up to 30% of the UV DV-inlet pressure drop 
has been reported (Hellevik et al., 1998). The mechanical properties of fetal veins 
are not known, and computations with elastic walls and pulsatile flow have so far not 
been attempted. Once information on the mechanical properties of the UV and DV 
is available, the wave propagation can be addressed in a mathematical model, and a 
more meaningful interpretation of various clinical findings can be expected. 

Thus, the aim of the present study was to estimate the mechanical properties, 
i.e., the stiffness parameter, the compliance, and the pulse wave velocity, of the intra
abdominal UV, the DV inlet, and the DV outlet in the fetal sheep. 

Methods 

Experimental methods 

All procedures were conducted in accordance with UK Home Office regulations and the 
Guidance for the Operation of Animals (Science Procedures) Act (1986). Immediately 
after sacrifice of five mule cross ewes of median gestational age of 130 days (range 
124-138), term being 147 days, the fetal lambs were delivered through a uterotomy. 
The intra-abdominal UV was catheterized and flushed with heparin-saline solution (10 
IU/ml saline). The inferior vena cava was divided below the atria and at the level of 
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1e renal veins, the portal vein was ligated close to the pancreas, and the liver excised 
om the posterior abdominal wall and the peripheral parts of the diaphragm. A tube 
)Ore 4 mm) connected the UV to the input reservoir which was filled with saline. Care 
as taken to avoid introduction of air into the system. The preparation was rinsed 
ith saline until all portions of the liver tissue were equally pale and no more blood 
mid be detected at the outflow from the inferior vena cava. The inferior vena cava was 
1en ligated at both ends. The preparation was submersed to a depth of 11-14 em in 
1line at 37°C (Fig. 1) to achieve similar pressure and temperature to the intrauterine 
mditions but with the influence of flow, neural activity, and endogenous vasoactive 
.sents eliminated or kept at a low activity. 

gure 1: Experimental setup. The liver of the fetal sheep was submersed in saline. The 
ferior vena cava (IVC) and the portal vein were ligated, and the umbilical vein (UV) was 
nnected to a pressure regulated input tube. The preparation was placed with the UV and 
e ductus venosus facing upwards to facilitate the ultrasound measurements. The sites of 
~asurement are marked with arrows. 

The saline level in the basin was kept constant by means of an overflow. The 
1nsmural pressure in the UV and the DV was determined from the distance between 
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the meniscus in the air inflow tube in the input reservoir and that of the basin (Fig. 1). 
The pressure was changed by varying the level in the input reservoir. The venous 
system was filled up to a pressure of maximum 10.3 mmHg and measurements of the 
dimensions were then done at stepwise reductions in pressure. 

The vessel diameters were measured with a Vingmed CFM 800 ultrasound scanner 
with a 7.5 MHz multifrequency annular array sector transducer (Vingmed, Harten, 
Norway). The axial resolution was ::::; 0.6 mm, according to the manufacturer, and 
the upper 95% confidence limit for the diameter, based on repeat measurements (2: 5 
times), was ::::; 0.06 mm (Kiserud et al., 1999). The inner diameter, D, of the intra
abdominal portion of the UV (Fig. 1) was measured at the entrance to the liver by 
averaging five or more measurements. Subsequently, the area A, was calculated by 
assuming a circular cross section (A = 1r D 2 /4). The same technique was applied for 
the inlet of the ductus venosus (at the junction with the UV) and its outlet (at the 
junction with the inferior vena cava). The measurements were performed when the 
pressure and the vessel wall had reached stability. Each experiment was completed 
within 3~5 h. 

Parametric expression for pressure-area relation and compliance 

Since the pressure and area seemed to be exponentially related by visual inspection of 
the measurements, we use the constitutive equation: 

{3( _A_~l) p = Ps e As (1) 

where Ps is a standard pressure, (3 the stiffness parameter, and As the cross-sectional 
area of the vessel at the standard pressure. The standard pressure was taken as Ps 
= 5 mmHg, and for each data set a least square fit was performed to determine (3 
and As. Umbilical venous pressures are reported to be between 2~ 12 mmHg (Ville 
et al., 1994; Weiner et al., 1989; Castle and Mackenzie, 1986; Nicolini et al., 1989). 
Our equation is similar to that which has been suggested for the arterial vessel walls 
(Hayashi et al., 1980; Hayashi, 1993), the only difference being that we have used area 
as the primary variable to represent the vessel dimension, whereas in the equation 
for arteries the diameter was employed. The dimensionless quantity (3 represents the 
structural stiffness of the vessel wall and is called the stiffness parameter in the arterial 
wall studies. It has been useful in the evaluation of the elastic properties of arteries, 
not only in fundamental studies, but also in clinical medicine (Hayashi, 1993). 

From Eq. 1 parameters such as compliance C and pulse wave velocity c may be 
derived: 

C = 8A = Cs Ps = As 
8p p (Jp' 

2 8pA p p 
c = - - = - ((3 + ln -) 

8A p p Ps 
(2) 

where the compliance at standard pressure is: 

C _ As ]:_ 
s - Ps f3 (3) 

and p is the density of the blood. 
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lesults 

1 the five preparations it was possible to determine the pressure-area relationship for 
1e UV (n = 4), DV inlet (n = 5), and DV outlet (n = 5). The pressure and area 
·ere found to be exponentially related at all locations and to be fitted well by the 
~ast-squares method. The experimental and fitted pressure-area curves for DV inlet, 
IV outlet, and UV are depicted in Fig. 2. 
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igure 2: Nondimensional area A/As- 1 vs nondimensional pressure p/Ps for experiments 
'pen circles) and exponential fits (solid lines), at the inlet (left panel) and the outlet (middle 
mel) of the ductus venosus. The data for the intra-abdominal umbilical vein are presented 
the right panel. As corresponds to the area at the standard pressure Ps = 5 mmHg. 

The estimated parameters, (3 and A 8 , for each data set at each location are sum
arized in Table 1. 

(3 SD range As SD range 
DV inlet 3.4 1.3 2.2, 5.6 4.4 0.7 3.6) 5.3 
DV outlet 6.2 1.8 3.8, 8.6 21.0 10.6 8.1) 35.4 
uv 4.0 1.0 3.1, 5.3 28.3 9.4 20.1) 41.7 

3.ble 1: The mean stiffness-parameter f3 of the inlet and outlet of the ductus venosus (DV) 
td the intra-abdominal portion of the umbilical vein (UV) determined in vitro in the fetal 
eep. The mean cross-sectional areas As in mm2 at standard pressure Ps = 5 mmHg. 

The (3-value ranges are quite wide, especially for the DV outlet. From Table 1 
2 can see that the mean (3 value at DV outlet is larger than that at both DV inlet 
1d UV, and that the mean (3 value in the UV is larger than that at the DV inlet. 
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Correspondingly, the pulse wave velocity, calculated with mean (3 values (Eq. 2), was 
found to be largest at the DV outlet, smallest at the DV inlet, and intermediate in the 
UV (see Fig. 3). Representative values for the compliance at the standard pressure 
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Figure 3: Estimated pulse wave velocity for the ductus venosus inlet (DVinlet), outlet 
(DVoutlet), and the intra-abdominal umbilical vein (UV), based on averaged (3- and As-values. 

p 8 , were obtained from Eq. 2 and the averaged (3 and A 8 values from Table 1. Their 
values were found to be: C~ = 2.6 · 10-3cm2 /mmHg, C~ = 6.8 · 10-3cm2 /mmHg, and 
c;: = 1.4 · 10-2cm2 /mmHg at the DV inlet, DV outlet, and UV, respectively. The 
pressure dependency of the compliance at these locations is depicted in Fig 4. These 
values are also based on averaged (3- and A8 -values. From the data it is seen that the 
compliance was largest in the UV, intermediate at the DV outlet, and smallest at the 
DV inlet. 

Discussion 

The stiffness parameter, (3 was 6.2 ± 1.8 at the DV outlet, 3.4 ± 1.3 at the DV inlet, 
and 4.0 ± 1.0 in the UV (Table 1). The pulse wave velocity varied correspondingly 
(Fig. 3). However, the compliance at the three locations was not inversely related 
to the stiffness parameter (Fig. 4). The reason for this is that compliance does not 
represent mechanical properties alone, but also includes geometry (see Eq. 2). Since the 
cross-sectional area at the DV inlet is relatively small, the corresponding compliance 
turns out to be lower than that observed at the two other locations. 
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igure 4: Estimated compliance for the ductus venosus inlet (DVinlet), outlet (DVoutlet), 
td the intra-abdominal umbilical vein (UV), based on averaged (3- and As-values. 

Hayashi (Hayashi, 1993) reviewed recent studies on the elastic properties of arterial 
ails, and argued that a simple constitutive relation, such as an exponential or loga
thmic one, is more advantageous than the more elaborated relations based on strain 
1ergy functions (Vaishnav et al., 1973; Fung et al., 1979). In these simple formulations 
1e number of coefficients are reduced, while their physical meaning is retained. 

From a practical point of view, expressing the elastic properties by a single param
.er is more useful than a thorough but more composite expression based on several 
uameters. However, the pulse wave velocity depends on pressure; the compliance on 
)th pressure and area. Thus, neither pulse wave velocity or compliance rigorously 
~present the elastic properties of the vessel wall. On the contrary, once a reference 
.·essure has been agreed upon, the ,8-value will describe the elastic properties of the 
all material at all physiological pressure levels. Hayashi suggested a reference pres
tre in the arterial system of adults of Ps = 100 mmHg. Since the umbilical venous 
·essure is reported to be 2-12 mmHg (Ville et al., 1994; Weiner et al., 1989; Castle 
1d Mackenzie, 1986; Nicolini et al., 1989), we propose Ps = 5 mmHg as the reference 
tlue for the fetal venous circulation. 

A three-parameter arc-tangent model was suggested to capture the S-shape, i.e. 
1e presence of an inflection point, of the arterial pressure-area relation better than 
1 exponential function (Langewouters et al., 1985a,b). However, our pressure-area 
easurements in the UV and the DV showed no inflection point (i.e. S-shape), most 
·obably because the pressure variation is much smaller in fetal veins than in adult 
teries. Thus, we preferred the simplest regression model that gave a statistically 
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satisfying representation of the data, i.e., the exponential model. 
Hayashi related pressure and diameter, where as the present approach relates pres

sure and area. This convention is motivated from the fact that a constitutive relation 
should readily be included in mathematical models for wave propagation. In such mod
els, the conservation laws and the constitutive laws are often formulated with area, not 
diameter, as one of the primary variables (Raines et al., 1974; Stergiopulos et al., 1992). 

In the human fetus, foot-to-foot estimates of pulse wave velocities have been re
ported to be 2.5 m/s in the umbilical artery (Stale et al., 1991), and 1.4-2.9 m/s in the 
abdominal aorta (Sindberg Eriksen et al., 1984). However, data on elastic properties 
in the fetal venous tree are scarce. In a study by Azuma and Masamitsu (Azuma and 
Masamitsu, 1973), stress-strain curves are given for some veins in the adult. By assum
ing that 1.5 · 10-2 is a representative wall-thickness diameter ratio (Fung, 1984), we 
can estimate pulse wave velocities in the range of 0.5-3 m/s as a function of strain in 
the jugular, axillary and femoral veins. Estimates from data in the human saphenous 
vein (Wesley et al., 1975) and in the abdominal vena cava (Anliker et al., 1969) of a 
dog yield pulse wave velocities ranges of 0.6-6 m/s and 2-6 mjs, respectively. The 
pulse wave velocity estimates in Fig. 3 for fetal veins, the DV and UV, are thus within 
the range of pulse wave velocities in both human fetal arteries and in human veins in 
adults. We performed static pressure measurements, and thus our experiments do not 
account for viscoelastic effects such as hysteresis, creep, and relaxation. These effects 
should be dealt with in future studies. 

By studying the UV and DV as an explant with the liver, the influence of neural 
influences and endogenous vasoactive substances and the shear stress of flow is elimi
nated or low. Adrenergic stimulation influences the DV in vitro (Coceani et al., 1984), 
and prostaglandin seems to act on the DV in much the same way as on the ductus ar
teriosus (Coceani and Olley, 1988), but probably produces a weaker response (Momma 
et al., 1984). The extent of such regulation is not known for the fetus in utero. By 
excluding such possible modifying effects on the stiffness parameter, we believe that 
the present results give a fair picture of the mechanical properties of the DV and UV, 
and, furthermore, we suggest that the same preparation should be used to quantify 
these modifying effects. 

It is known that in postnatal life veins can collapse when subjected to a negative 
transmural pressure. This is probably a rare event for the UV /DV in fetal life and has 
not been addressed in the present study. 

The similarity between the venous circulation of the human fetus and the fetal sheep 
is well documented (Rudolph, 1985; Kiserud et al., 1992), suggesting that equivalent 
mechanical properties also can be expected for the UV and DV. Hence, we suggest that 
the present results of stiffness parameters can be used for calculating pulse velocity and 
compliance in the human UV and DV until corresponding human data are available. 

The stiffness parameter cannot be derived during conventional evaluation of the 
sick fetus with the currently available noninvasive techniques, but is an important 
determinant of compliance. In fetal congestive heart failure, reduced compliance due to 
an elevated venous pressure is believed to promote UV pulsations. On the other hand, 
in the early stages of pregnancy, pulsations in the UV are present under physiological 
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Jnditions. We believe that such pulsations can be ascribed to a low compliance due to 
te small dimensions of the DV and UV in the first trimester. Much in the same way as 
coustic waves are attenuated, reflected, and transmitted when hitting a medium with 
different density, the atrial wave is expected to be modified according to changes in 

1e mechanical properties and geometry (i.e., changes in impedance) along the DV and 
1e UV. In the present study we demonstrate and quantify the mechanical properties 
nd dimensions of the DV and the UV, and show that these factors, together with the 
ressure, determine the compliance (see Eq. 2). Based on the information presented in 
1is paper, the stiffness parameter and dimension of the DV and UV, the underlying 
techanisms for pulsations in the UV can be studied (e.g., in computer simulations). 

In conclusion, the information about the mechanical properties of the UV and DV 
resented in this paper can be used to investigate wave transmission and reflection 
henomena in the UV /DV bifurcation. A better understanding of these phenomena 
tay be helpful in the interpretation of the pulsatile changes recorded in the DV and 
V during fetal diseases. 
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Abstract 

Pulsations in the fetal heart propagate through the precordial vein and the 
ductus venosus but are normally not transmitted into the umbilical vein. Pulsa
tions in the umbilical vein do occur, however, in early pregnancy and in patholog
ical conditions. Such transmission into the umbilical vein is poorly understood. 
We present a mathematical model to identify the mechanical factors that influence 
pulsation in the umbilical vein. The umbilical vein was modeled as a compliant 
reservoir and the umbilical vein pressure was assumed to be equal to the stagna
tion pressure at the ductus venosus inlet. We calculated the index of pulsation 
of the umbilical vein pressure ((max-min)/mean), the reflection and transmis
sion factors at the ductus venosus inlet, numerically and with estimates. Typical 
dimensions in the physiological range for the human fetus were used, while stiff
ness parameters were taken from fetal sheep. We found that wave transmission 
and reflection in the umbilical vein ductus venosus bifurcation depend on the 
impedance ratio between the umbilical vein and the ductus venosus, as well as 
the ratio of the mean velocity and the pulse wave velocity in the ductus venosus. 
The impedances, in turn, depend on the mechanical properties of the veins, the 
pressure level, and their dimensions. Thus, we believe that the mathematical 
model is suitable for analyzing the factors involved in the occurrence of umbilical 
venous pulsations. 

Submitted for publication 
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Introduction 

Doppler velocimetry of the fetal venous system is increasingly used in the hemody
namic evaluation of the sick fetus. In contrast to the pulsatile flow in precordial veins, 
the blood flow in the umbilical vein (UV) is usually stationary. In 1986, Lingman et al. 
described a pulsatile velocity in the UV in fetuses with imminent asphyxia (Lingman 
et al., 1986); Gudmundsson et al., who found the same pulsations in fetuses with con
gestive heart disease, suggested this sign as a marker of poor prognosis (Gudmundsson 
et al., 1991). Similarly, such pulsations were found in cases with fetal cardiac malfor
mations (Kiserud et al., 1993), arrhythmias (Gembruch et al., 1995), serious growth 
restriction (Kiserud et al., 1994a) and twin-twin transfusion syndrome (Hecher et al., 
1995). 

However, UV pulsation is a normal phenomenon in fetuses of a gestational age 
of 13 weeks and younger (Rizzo et al., 1992; Nakai et al., 1995), and its occurrence 
is described even in normal fetuses during late pregnancy, particularly in the deep 
intra-abdominal portion of the vein (van Splunder et al., 1994). 

There are probably several sources and types of pulsation (Huhta, 1997; Kiserud, 
1997). The pulsation commonly occurring in the sick fetus (and in the normal fetus 
during early pregnancy) appears as a short deflection linked to the cardiac cycle. It 
is believed that an augmented atrial contraction is transmitted mainly through the 
ductus venosus to the umbilical vein (Kiserud et al., 1993; Kiserud, 1997). 

Fetal sheep experiments have shown that such waves are transmitted to the UV 
during adrenergic stimulation and hypoxic challenge (Reuss et al., 1983; Hasaart and 
de Haan, 1986), and that the transmission of such waves is blocked by the agenesis of 
the ductus venosus (Kiserud et al., 1998). The complete waveform of the precordial 
venous velocity may be transmitted into the UV in cases of gross placental compromise, 
or during the extreme afterload seen in twin-twin transfusion syndrome (Fig. 1). The 
local mechanisms that govern the transmission and occurrence of pulsations in the UV 
are not well understood. 

The aim of the present study was to identify the mechanical factors that influence 
pulsation in the intra abdominal UV using a mathematical model. 

Method 

The DV acts as a direct communication that shunts blood from the UV to the fetal 
heart (Fig. 2). Downstream from the DV, the fetal heart contracts periodically and 
generates pressure and flow waves that propagate in the negative flow direction into 
the DV and thereby give rise to the characteristic pulsatile DV velocity pattern. In this 
study the positive flow directions were taken as shown in Fig. 2. The UV flow before the 
bifurcation was denoted Qb; the UV flow after the bifurcation, Qa; the flow in the DV, 
Q. To account for a non-zero and timevarying net inflow into the UV, (Qb- Qa- Q), 
we were led to introduce a compliance of the UV to ensure mass conservation. 

In the following section we develop the mathematical model to calculate pulsations 
in the UV pressure puv from an imposed DV flow pattern. Subsequently, the DV 
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igure 1: Venous Doppler velocity recordings for twin-twin transfusion syndrome. Upper 
mel: DV velocity pattern. Lower panel: UV velocity pattern. 

·essure p is estimated. In the next step approximate analytical expressions are devel
)ed for the reflection and transmission factors at the DV inlet. Further, we introduce 
1 index of pulsation to quantify pulsatility, and provide computational details. 

[athematical model 

:mservation of mass at the bifurcation is expressed as: 

(1) 

r1ere 11 and cuv = 8111 ap are the uv volume and volume compliance, respectively. 
) ensure no accumulation of mass over a cycle, the pulsatile DV flow is assumed to 

N 

Q(t) = Qb _ Qa + 'L Qn ejwnt (2) 
n=l 

1ere j = A and Wn is the n-th harmonic angular frequency. In what follows, a 
bscript n of a primary variable denotes its corresponding Fourier-coefficient. For a 
nstant cuv Eq. (1) is integrable, and with an imposed flow as given by Eq. (2) the 
V pressure is: 

(3) 
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Figure 2: Diagram of flows in the mathematical model of the umbilical vein (UV) and ductus 
venosus (DV). The flows in the UV before and after the bifurcation are denoted by Qb and 
Qa, respectively, and the flow in the DV by Q. 

From this solution we see that there will always be a phase shift between the UV 
pressure and the DV flow of 90°, and that the larger the UV compliance cuv, and/or 
angular frequency Wn, the smaller the pulsations in the UV pressure puv. 

We have previously shown (Hellevik et al., 1999) that the pressure-area relationship 
in both the UV and the DV is nonlinear and can be described by the following relation: 

p(A) = Ps ef3 (A/As -1) (4) 

where A is the cross-sectional area and f3 the stiffness parameter. The subscript s de
note the area at the reference pressure Ps = 5 mmHg. By assuming that the UV length, 
Luv, is constant, i.e. the UV is tethered, an estimate of the UV volume compliance 
may be obtained: 

(5) 

where A~v is the reference cross-sectional area and f3uv the stiffness parameter of the 
UV. With the introduction of a nonlinear cuv Eq. (1) does not yield an analytical 
solution, but may readily be solved numerically by an explicit, one-step Runge-Kutta 
method. 

The pressures in the merging vessels of a bifurcation have frequently been assumed 
to be equal (Fung, 1984; Avolio, 1980; Stergiopulos et al., 1992). However, compared to 
the UV, the DV is a small vessel, with a UV /DV diameter ratio gin the range of 2 to 6 
(Kiserud, 1999). This change in diameter is accompanied by a convective acceleration 
and, consequently, a pressure drop; this pressure drop has been approximated by a 
Bernoulli formulation (Kiserud et al., 1994b; Pennati et al., 1996; Hellevik et al., 1998). 
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hus, we refrained from the assumption of equal pressures in the merging branches in 
1e present study to incorporate the dynamic pressure pd: 

(6) 

here p denotes the fluid density. To close the system of equations (Eq. (6)) a consti
ltive equation from our experiments, expressed by Eq. ( 4) was introduced (Hellevik 
. al., 1999). For an imposed flow Q and a calculated UV pressure puv, the DV pres
Ire p may thus be obtained numerically from the nonlinear Eqs. ( 4) and ( 6) by a 
ewton-Raphson approach . 

. eflection and transmission factors 

t this section, approximate analytical solutions for the reflection factor r and the 
ansmission factor T will be outlined to obtain a qualitative understanding of how the 
1rameters involved influence reflection and transmission at the DV inlet. 

For simplicity we assumed: Q = Qo + Qn ejwn t, A = Ao +An ejwn t, and An = C Pn, 
here C is the area compliance of the DV. From Eq. (6) and multivariate Taylor
:pansion: 

(7) 

here u0 = Q0 /A0 , i.e. the mean DV velocity. As the incident waves travel in the 
~gative flow direction we defined: Zuv = p~v /( -Qn) and then from Eqs. (6) and (7): 

Q 
Zuv + puo/Ao 

Pn R:i - n 1 - ( Uo / C )2 

owever, when u0 « c the denominator of Eq. (8) will be close to one and: 

hus, an estimate of the DV inlet impedance Zav was found to be: 

Zav= !Qn R:iZuv+Zcuo/c 

(8) 

(9) 

(10) 

1rther, the incident (pi) and reflected (pr) pressure components at the DV inlet may be 
timated by the linear splitting purposed by Westerhof et al. (1972): pi= (p-Zc Q)/2, 
= (p+ ZcQ)/2, where Zc = pcjA0 is the characteristic impedance of the DV and c 

e pulse wave velocity in the DV: c2 = Ao/ p C. 
Finally, the estimates of the reflection factor r = p~jp~ = (Zav- Zc)/(Zav + Zc) 

1d the transmission factor T = p~v jp~ was obtained: 

r R:i 1- (1- uo/c) Zc/Zuv 

1 + (1 + uo/c) Zc/Zuv 
(11) 
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T~ 2 
1 + (1 + uo/c) Zc/Zuv 

(12) 

From the estimates in Eqs. (10), (11), and (12) we see, qualitatively, how the 
nonlinear term in Eq.(6) influences the DV impedance, reflection factor, and transmis
sion factor at the DV inlet. Observe that when u0 -+ 0 these estimates degenerate 
to the expressions for a pure reservoir termination, and thus r-+ [f0 [e-i 280 , and 
T-+ [To[e-i 8o, with Bo = arctan(Zc/[Zuv[), [To[= 2/J1+ (Zc/[Zuv[) 2 , and [fo[ = 1. 
For perfectly matched impedances (}0 = 45° and [To[ = 1, i.e. this corresponds to full 
transmission with no reflection. On the contrary, when Zc/[Zuvl -+ oo, the phase angle 
(}0 -+ 90°, [To [ -+ 0, i.e. there is no transmission and a phase lag between incident and 
reflected pressure waves of 180°, corresponding to a complete cancellation of pressure 
pulsations in the DV. Note that as Zuv = 1/(jw cuv) (see Eq. (3)), the modulus of the 
impedance ratio Zc/[Zuv[ is proportional to g2

• From our estimates we deduced that 
the mean velocity u 0 related to the dynamic pressure term, reduces the modulus of 
both rand T. Further, the phase angle ofT increases slightly, whereas counteracting 
effects in the numerator and denominator in Eq. (11) tends to cancel and leaves the 
phase angle of r relatively unaffected. 

Index of pulsation 

To quantify pulsations we introduced an index of pulsation (IP): 

IP(·) _ max(·)- min(-) 
- mean(·) 

(13) 

For a constant cuv and with "small" changes in puv an approximation of the index of 
pulsation of the UV pressure was obtained from Eq. (3): 

(14) 

Thus, subject to the assumptions above, I P(puv) is a linear function of the stiffness 
parameter f3uv and the flow component Qn, whereas it is a nonlinear function of the 
reference area A~v. 

The UV velocity does not occur in our model explicitly. However, pressure and flow 
waves are related through the characteristic impedance in the absence of reflections. 
Thus, by assuming that reflections are negligible in the UV, the index of pulsation of 
UV pressure can be shown to be related to the index of pulsation of the UV velocity 
I P( uuv) in the following manner: 

(15) 

with "" = Pov / (p Cuv u0v), where Cuv and u0v denote the pulse wave velocity and the 
mean velocity in the UV, respectively. Note that although IP(puv) is independent of 
pressure (Eq. (14)) this is not the case for IP(uuv), due to the pressure dependence of 
K,. 
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:omputational details 

nless otherwise stated, stiffness parameters from fetal sheep experiments were used 
lr the calculations (Hellevik et al., 1999). The ,8-value at the DV inlet has a mean of 
.4 and ranges from 2.2 to 5.5, whereas the UV stiffness parameter ,Buv has a mean of 
.0 and ranges from 3.1 to 5.3. 

To obtain a typical flow pattern for the DV (Fig.3) recordings were made of Doppler 
~locity measurements of fetuses in the low-risk antenatal clinic. A typical Doppler 
"locity measurement was multiplied with a typical cross-sectional area corresponding 
l a DV diameter of Ddv = 0.8 mm. The DV inlet diameter ranges from 0.4 mm to 2.2 
1m, while the UV /DV diameter ratio granges from 2 to 6 (Kiserud, 1999). The flow 
as averaged over four cycles and low-pass filtered, keeping only the six first harmonics 
.e. N=6) of Eq. (2). Further, all UV pressures were calculated numerically using the 
:·essure dependent compliance cuv (see Eq. (5)) and Luv = 7 em, unless otherwise 
a ted. 

tesults 

he results from two parameter configurations illustrate how the index of pulsation of 
te UV pressure is affected by extreme, but physiological, UV parameter values (Fig. 3). 
he DV parameters were kept constant and taken as: ,8 = 3.4, and As = 0.63 mm2 
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igure 3: Calculated UV pressure puv and DV pressure p for the imposed flow pattern Q in 
e DV. Left panel: compliant UV. Right panel: less compliant UV. 

)dv = 0.9 mm), i.e. typical values within the physiological range. The results in the 
ft panel correspond to a relatively compliant UV (cuv = 8.0 · 10-2 ml/mmHg) at 
ean pressure p~v = 6.5 mmHg with parameter values: ,Buv = 3.1 and A~v = 23 mm2 

)uv = 5.4 mm, g = 6). The right panel shows the results corresponding to a less 
mpliant UV (Cuv = 5.2 · 10-3 ml/mmHg) at mean pressure p~v = 6.5 mmHg with 
~rameter values: ,Buv = 5.3 and A~'v = 2.6 mm2 (Duv = 1.8 mm, g = 2). Relatively 
odest pulsations in puv were observed for the compliant case (IF= 0.02), whereas 
cge pulsations were obtained for the less compliant case (IF= 0.21). 
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The IP of the UV pressure was calculated for parameter configurations where only 
one parameter was changed. In the left panel of Fig. 4 the IP is plotted as a function 
of the UV stiffness parameter f3uv for three UV /DV ratios: g=2, g=4, and g=6, i.e. the 
minimum, mean, and maximum in the physiological range. The index of pulsation was 
largest for the series with the smallest g, i.e. the smallest impedance ratio, and smallest 
for the series with the largest g, i.e. the highest impedance ratio. For each g the IP 
showed linear behavior as a function of f3uv. Likewise, the I P is plotted in the right 
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Figure 4: Left panel: index of pulsation IP of the UV pressure plotted versus UV stiffness 
parameters f3uv for three different values of UV /DV diameter ratios g. Right panel: IP of the 
UV pressure plotted versus the UV /DV diameter ratio g for extreme and mean values of the 
UV stiffness parameters f3uv. 

panel of Fig. 4 as a function of the of the UV /DV diameter g for extreme and mean 
values of the stiffness parameter of the UV: f3uv = 3.1, f3uv = 4.0, f3uv = 5.3. The index 
of pulsation was largest for the series with the largest f3uv, i.e. the smallest impedance 
ratio, and smallest for the series with the smallest f3uv, i.e. the highest impedance ratio. 
For each f3uv the IP showed nonlinear behavior as a function of A~v. 

The impact of the dynamic pressure term on the reflection factor r is illustrated 
in Fig. 5, where the first harmonic, corresponding to the heart rate, of the modulus 
lrJ, and phase Lf, are plotted against the UV /DV diameter ratio g. The stiffness 
parameters were taken as (3 = 2.2 and f3uv = 5.3, as this parameter configuration 
(i.e. minimal (3 and maximal f3uv) showed the largest change in Lf as a function of g. 
The DV diameter was kept constant at Ddv = 0.9 mm to maintain a constant mean 
velocity uo = 0.4 m/s for all simulations. The moduli of both the analytical estimate in 
Eq. (11) and the numerical simulations were both found to be lower than 1, i.e. lower 
than for a pure reservoir, and only a mild g-dependence of the moduli was observed. 
Nevertheless, the analytical estimate consistently overestimates the modulus (mean 
difference 15%). The phase angles vary from approximately -90° to -170°. Although 
the analytical estimate overpredicts the magnitude of the phase angle for small g and 
underpredicts for large g, only minor discrepancies were observed for the phase angles 
(mean difference of 1%). 

The IP of the DV pressure was also found to decrease with increasing g (Fig. 6), i.e. 
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igure 5: The first harmonic modulus (upper panel) and phase (lower panel) of the reflection 
ctor r for a pure reservoir (dots), analytical estimate in Eq. (11) (dash-dots), and numerical 
nutation (solid). 

1e phase angle of r becomes more negative. This is due to the fact that the reflected 
·essure wave tends to cancel the incident pressure wave for phase angle of r close 
' -180°; when the phase angle approaches -90°, the cancellation diminishes. This 
illustrated in Fig. 7 where the incident and the reflected pressure components are 

·esented for g = 6 (i.e. Lr ~ -170°) and for g = 2 (i.e. Lf ~ -90°). For the UV /DV 
ameter ratio g = 2 the index of pulsation of the DV pressure was I P(p) = 0.35. The 
's of the incident and reflected pressures were 0. 76 and 0.38, respectively. Conversely, 
r g = 6 the I P(p) decreased to IP=0.21, accompanied by IPs of 0. 70 and 0.29 for the 
cident and reflected pressure components, respectively. 

Further, the corresponding first harmonic of the transmission factor T, was also cal
ilated (Fig. 8). The pd-impact on the modulus ofT was found to be less pronounced 
an for r; the analytical estimate ofT was somewhat better than for r (mean differ
ICe 1%). By contrast, the g-dependence is stronger for ITI than for lfl, as it ranges 
)ill approximately 1 for small values of g to approximately 0.1 for lager values of g. 
)rrespondingly, this is accompanied by a stronger reduction in the IP of puv than for 
e p (Fig. 6). The mean difference between the analytical estimate and the simulated 
.lue for ITI was 6%. The phase angles ofT range from approximately -60° to -90°. 
agreement with what was predicted from the estimates, the magnitude of the phase 

1gles from the analytical estimates and the simulations are consistently larger than 
e "pure reservoir" value. The mean difference between the analytical estimate and 
e simulated value was 1%. 

To illustrate the impact of both the mean velocity u0 and the UV /DV ratio g on If!, 
nulations were carried out for g ranging from 2 to 6, and DV diameters from 0.9 mm 
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Figure 6: The index of pulsation IP for the UV pressure (dots) and DV pressure (solid) as 
a function of the UV /DV ratio g. 

to 2 mm (Fig. 9). The imposed flow was the same for all simulations and the stiffness 
parameters were the same as for the previous simulations. Thus, the simulations with 
the smallest DV diameter had the highest mean velocity (u0 ::::;; 0.4 m/s), while the 
simulations with the highest diameter had the lowest mean velocity (u0 ::::;; 0.1 m/s). 
The behavior of lfl corresponds well with our theoretical predictions; the lower the u0 

the higher the r regardless of g. 
Finally, to assess the impact of a pressure dependent UV compliance cuv, the UV 

pressure was calculated both numerically and analytically from Eq. (3), with a pressure 
dependent cuv given by Eq. (5), and a constant UV compliance evaluated at the 
mean UV pressure from Eq. (5), respectively. Only modest root-mean-square (RMS) 
differences (RMS = 0.24 mmHg) between the analytical and the numerical solution 
were observed for a low compliant UV (cuv = 7.6 · 10-3 ml/mmHg). For a more 
compliant UV (cuv = 2.1 · 10-2 ml/mmHg), the RMS-value reduced to RMS = 0.03 
mmHg. Parameter settings corresponding to higher UV compliance gave consistently 
lower RMS-values. 

Discussion 

In this paper we have developed a mathematical model to study the factors influencing 
pulsations in the UV. 

We have demonstrated that both the stiffness parameter, i.e. the mechanical prop
erties, and the size, i.e. the UV cross-sectional area, influence the index of pulsation 
I P of the pressure in the UV. In our model, the I P increases linearly with the stiffness 
factor of the UV, whereas the IP shows a nonlinear dependency with respect to the 
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igure 7: The incident pi and reflected pr pressure waves for g = 6 (upper panel) and g = 2 
)Wer panel). 

V cross-sectional area (see Fig.4). 

We have shown that a low compliant UV yielded an index of pulsation for the UV 
·essure I P = 0.21, which is relatively high. Conversely, a compliant UV yielded a 
latively small index of pulsation: I P = 0.02 (see Fig. 3). Thus, our simulations show 
.at although both flow and pressure in the DV were highly pulsatile, the UV pressure 
ay show little pulsatility, due to a relatively high UV compliance. This agrees well 
ith the pattern of pulsatile DV velocity concurrent with a more or less constant UV 
Jocity in a normal pregnancy. During the first trimester however, pulsations in the 
V are present under normal physiological conditions (Rizzo et al., 1992; Nakai et al., 
195; van Splunder et al., 1996). Based on the present model (Fig. 4) we believe that 
trt of the reason for these pulsations is the low compliance due to the small dimensions 
the UV during the first part of the pregnancy. 

UV pulsations have been associated with various pathological situations: hypoxic 
.allenge (Lingman et al., 1986), asphyxial cardiomyopathy, congenital heart lesions 
lakai et al., 1992), and elevated venous pressure (Reed et al., 1996). However, future 
trametric studies are needed to assess the relations between the parameters of Eqs. 
4) and (15) and the various pathological situations. Nevertheless, our results are in 
;reement with the findings of Reed et al., as an increase in the pressure may result in 
t increased I P( uuv), in spite of a constant I P(puv) due to the pressure dependency of 
(see Eq. (15)). Only pressure differences influence the mean velocity, thus a general 
crease in the pressure level does not affect the mean velocity. Consequently, for a 
nstant u0v = 0.2 m/s and f3uv = 4, a UV pressure change from 2 to 12 mmHg will 
use changes in "' from 1.4 to 2.8. 

UV pulsations have also been found late in the pregnancy in fetuses with no heart 
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Figure 8: The first harmonic modulus (upper panel) and phase (lower panel) of the trans
mission factor T for a pure reservoir (dots), analytical estimate in Eq. (12) (dash-dots), and 
numerical simulation (solid). 

anomalies, and with no sign of increased preload (Nakai et al., 1997a,b). In these cases 
the umbilical cord was either hypercoiled or compressed. Thus, we believe that the UV 
pulsations might be explained as a result of a reduced UV compliance as our results 
suggest. 

By introducing the dynamic pressure term pd in Eq. (6) we have shown that the 
mean velocity in the DV causes the reflection factor modulus lfi to decrease(Fig 9). 
Only minor changes were observed for Lr and T. The analytical estimates of If! and 
ITI differ from the simulated by 15% and 6% in mean, respectively. These estimates 
can be improved to 3% and 0.24% respectively, by including the (u0 /c) 2-term in the 
denominator of Eq. (8). The pd-term, however, has little effect on the phase angle 
of r, and the phase angle for the "pure reservoir" and the analytical estimate both 
agree well with the simulated values. This was also the case for the phase angle of the 
transmission factor, whereas somewhat larger discrepancies were found for the ITI. 

The impedance ratio Zc/Zuv influences how incident and reflected pressure com
ponents interact in the DV. For a large g (i.e. large Zc/IZuvi) the phase angle of the 
reflection factor Lf-+ -180° (Fig. 5), and thus decreases the IP of the DV pressure 
(Fig. 6). However, as the mean velocity u0 reduces the If!, there will be no complete 
cancellation of pulsations in the DV pressure even if Lf -+ -180° (Fig. 7 upper panel). 
Further, the transmission factor is affected by changes in the impedance ratio; A large 
g-value (i.e. large Zc/IZuvl) corresponds to a low ITI, and will yield a small IP of the 
UV pressure and vice versa. Thus, the r and the T factors should be regarded as 
important determinants of pulsation in the DV and the UV, respectively. 

The model incorporates a pressure dependent compliance for the UV. However, 
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te simulations with constant and pressure dependent UV compliance C"v, showed 
tat the UV pressure was estimated well with a constant cnv. Thus, the analytical 
~pression of the pulsatility of the UV pressure I P in Eq. (14) served as a good and 
mple approximation. 

In our model the DV flow was imposed in the UV without incorporating wave 
~opagation in the DV. The pulse wave velocity in the DV has been estimated to be in 
te range 1.0-3 m/s (Hellevik et al., 1999), and for a fundamental frequency of 2.5 Hz, 
tis corresponds to wave lengths ranging from 0.4 m to 1.2 m, which is much larger than 
te physiological length of the DV of only a few centimeters (Kiserud et al., 1994b). 
hus, waves propagate within the DV almost instantaneously and the assumption that 
te flow along the DV equals the flow at the inlet is therefore reasonable. The Cuv of 
te UV was estimated to be in the same range as for the DV (Hellevik et al., 1999). 
1 particular, at a mean pressure of 6.5 mmHg, the pulse wave velocity Cuv ~ 1.9 m/s. 
)r a characteristic UV length of Luv = 7 em, this corresponds to a transit time 
~ Luv/Cuv ~ 37 ms, which is relatively short compared to a physiological period of 
= 0.4 s. Thus, we believe that a lumped approach gives a fair description of the 

wsics involved. 
In conclusion, by means of a mathematical model we have shown that wave trans

ission and reflection in the UV /DV bifurcation depend on the impedance ratio 
j Zuv, as well as the ratio of the mean velocity and the pulse wave velocity in the 
V. The impedances depend, in turn, on the mechanical properties of the veins, the 
·essure level, and the dimensions. Thus, we believe that the mathematical model 
·esented in this paper is suitable for analyzing the factors involved in the occurrence 
pulsations in the UV. 
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Abstract 

Pressure and flow pulsations in the fetal heart propagate through the pre
cordial vein and the ductus venosus but are normally not transmitted into the 
umbilical vein. Pulsations in the umbilical vein do occur, however, in early preg
nancy and in pathological conditions. Such transmission into the umbilical vein is 
not well understood. In this paper we developed a mathematical model to study 
the effect of ductus venosus tapering on the reflection factor. The one-dimensional 
mass and momentum equations were solved for the ductus venosus, whereas the 
umbilical vein was imposed as an upstream boundary condition. Further, the 
results of the present model were compared with those of a previously proposed 
lumped model. We found that the results of the previous lumped model agree 
well, both quantitatively and qualitatively, with the present model of the ductus 
venosus-umbilical vein bifurcation. The only effective reflection site in the ductus 
venosus was found to be the ductus venosus inlet. The tapered geometry of the 
ductus venosus was of minor importance. Differences between the ductus venosus 
inlet and outlet flow were also found to be minor for medium to large umbilical 
vein-ductus venosus diameter ratios. 

Submitted for publication 
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Introduction 

Pulsations in the fetal heart propagate through the precordial vein and the ductus veno
sus (DV) but are normally not transmitted into the umbilical vein (UV). Pulsations in 
the UV do occur, however, in early pregnancy and in pathological conditions (Lingman 
et al., 1986; Gudmundsson et al., 1991; Kiserud et al., 1993; Gembruch et al., 1995; 
Kiserud et al., 1994; Hecher et al., 1995). The DV is regarded as the main trans
mission line of pulsations between the fetal heart and the UV (Kiserud et al., 1998). 
However, the transmission of pulsations into the UV is still not well understood. We 
have previously proposed a lumped mathematical model aimed at describing the me
chanical factors influencing UV pulsation (Hellevik et al., 1999b ). In that paper the 
UV was modeled as a compliant reservoir and linked to the DV by assuming that the 
UV pressure was equal to the stagnation pressure at the DV inlet. We found that wave 
transmission and reflection in the DV depend on the impedance ratio between the UV 
and the DV, as well as on the ratio of the mean velocity and the pulse wave velocity 
in the DV. However, in this lumped model the DV inlet flow was imposed directly at 
the inlet of the DV, i.e. the wave propagation in the DV was not dealt with properly. 

The aim of the present study was threefold: a) to develop a mathematical model 
for wave propagation in the UV /DV bifurcation based on the one-dimensional mass 
and momentum equations where the UV is imposed as a boundary condition (BC) in 
a characteristic manner; b) to study the effect of DV tapering on the reflection factor; 
c) to compare the results and analytical approximations of the previous lumped model 
with those of the present model. 

Methods 

The DV acts as a direct communication that shunts blood from the UV to the fetal 
heart (Fig. 1). Downstream from the DV, the fetal heart contracts periodically and 
generates pressure and flow waves that propagate in the negative flow direction into 
the DV and thereby give rise to the characteristic pulsatile DV velocity pattern. In 
analogy with our previous paper, the positive flow directions were taken as shown in 
Fig. 1. The UV flow before the bifurcation was denoted Qb; the UV flow after the 
bifurcation, Qa; the flow in the DV, Q. 

The ductus venosus 

The mathematical model for the DV was based on the one-dimensional equations 
obtained by integration of the governing mass and momentum equations over the cross
section of the vessel lumen (Raines et al., 1974): 

aA aQ _ 
0 at +ax -

aQ + !!._ (Q2
) = _.:i ap + 1rDro 

at ax A pax p 

(1) 

(2) 
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igure 1: Diagram of flows in the mathematical model of the umbilical vein (UV) and ductus 
,nosus (DV). The flows in the UV before and after the bifurcation are denoted by Qb and 
a, respectively, and the flow in the DV by Q. 

here pis the pressure, A the cross-sectional area at the DV inlet, p the fluid density, 
the vessel diameter, and To the shear stress at the wall. The shear stress may be 

>proximated by (Young and Tsai, 1973): 

To = -- -- Q + ( c - 1)-p [ 81fLICv 8Q] 
wD A u 8t 

(3) 

here Cu and Cv are functions of the Womersley number a = (D/2).jW/V (see e.g. 
cDonald, 1973). The kinematic viscosity and the angular frequency are denoted by 
and w, respectively. By substitution of Eq. (3) into Eq. (2), a modified momentum 
tuation was obtained: 

(4) 

[th B = 8wvcv. 
To complete the system of equations, a linear constitutive relation for the vessel 

::tll was introduced: 

(5) 

l1ere As is the DV cross-sectional area at the DV inlet at the reference pressure 
= 5 mmHg and (3 is the stiffness parameter. This constitutive equation is a first 

der Taylor expansion of a constitutive equation by Hellevik et al. (1999a). The 
[ffness parameter was taken from sheep experiments and typical human fetal cross
ctional areas were used for the DV. The tapering of the DV was expressed by the 
V expansion factor f = D 0 /Di, where Do and Di are the outlet and inlet diameters 
the DV, respectively. 
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The umbilical vein 

To account for a non-zero and time varying net inflow into the UV, (Qb- Qa- Q), we 
introduced a compliance of the UV ( cuv). Conservation of mass at the bifurcation is 
expressed as: 

(6) 

where 11 and cuv = EJV I op are the UV volume and volume compliance, respectively. In 
accordance with our previous paper the UV length, Luv, was assumed to be constant: 
Luv = 7 em, and the UV volume compliance C"v, to be: 

where A~v is the UV reference cross-sectional area, f3uv the UV stiffness parameter, 
and puv the UV pressure. Accordingly we assumed that puv equals the stagnation 
pressure at the DV inlet: 

1 (Q) 2 

Pd = 2 P A: (7) 

From Eq. (6) and (7): 

EJA 1 0 (Q) 2 
C ( b a ) 8t + 2 PC ot A = cuv Q - Q - Q (8) 

where the area compliance C, of the DV has been introduced from Eq. (5) as: 

C= EJA = ~ 
op f3Ps 

(9) 

Eq. (8) was imposed as aBC for the DV. Note that this differential equation links the 
fluid dynamics at the DV inlet to the UV, while the UV pressure has been eliminated; 
the only "UV parameter" in Eq. (8) is cuv. Finally, the UV diameter Duv was related 
to the DV diameter through the UV IDV diameter ratio: g = Duv I Di. 

Numerical implementation 

An explicit, one-step MacCormack scheme was employed to solve the discretized equa
tions (Eq. (1) and Eq. (4)) (MacCormack, 1969). The DV was taken as a linearly di
verging branch with respect to diameter and was discretized with 21 equidistant nodes 
and a physiological length of L = 10-2 m. For all simulations, the Courant-Friedrich
Lewy number (Courant et al., 1928) was close to 1. The linearized and discretized 
version of Eq. (8) was imposed as aBC in a characteristic manner at the DV inlet. To 
solve the nonlinear system of equations for the BC at the DV inlet, a fixed number of 
subiterations (3) were performed for each time step. 
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Only one harmonic component, corresponding to the fundamental frequency in our 
·evious study (Hellevik et aL, 1999b), was imposed in the BC at the DV outlet. The 
ood was assumed to have a density p = 1.05 · 103 kgjm3 (Fernandez et al., 1976) and 
dynamic viscosity of f.1 = 4.2 · 10-3 kgjms (Jouppila et al., 1986). Further details on 
te numerical implementation may be found in the appendix. 

tesults 

D compare the reflection factors for the present and the previous model, the stiffness 
1rameters for the DV and the UV were taken as (3 = 2.2 and f3uv = 5.3 (i.e. minimal (3 
1d maximal f3u·v), as this parameter configuration showed the largest variation in the 
mse angle Lf as a function of g. Simulations were performed for expansion factors 
=1.25, 1.5, and 2, while the DV inlet diameter was kept constant, Di = 0.9 mm, to 

.aintain a constant cross-sectional mean velocity at the DV inlet (Fig. 2). 
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igure 2: Comparison between the previous lumped model (solid line) and the present model 
ith expansion factors f =1.25 (dashed-line), 1.5 (dash-dotted line), and 2 (dotted line) for 
Le first harmonic modulus If! (upper panel) and phase angle Lr (lower panel) of the reflection 
ctor as a function of the UV /DV diameter ratio g. For all simulations Di = 0.9 mm. 

The moduli lfl, for all simulation configurations were found to agree well with 
te values from our previous lumped model; the RMS-values relative to the previous 
odel were all less than 0.08. Likewise, the phase angles Lf, also corresponded well 
ith the previous results. However, the phase angles of the present model consistently 
:1derestimated the absolute value of the phase angle, with RMS-values less than 10° 
>r all configurations. 

To illustrate the impact of the mean DV inlet velocity ( u0 ) and the UV /DV diameter 
ttio g, simulations were carried out for g ranging from 2 to 6, with average stiffness 
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parameters for the UV and DV (f3uv 
diameter Do= 1.8 mm (Fig. 3). 

4.0, (3 3.4), and with a fixed DV outlet 

5 .~ E------------------- --~.~-I 
0 

o~-------~------~------~----~ 

-45 

-90 

f=2 
f=1.5 
f=1 

-135~ 
-1 so L__'_·-·:-·~:···~:·-::·~·:=~ ··::-"::':'::'~~~ ........... =.J 

2 3 4 
g 

5 6 

f = Do 
D; 

uv 

Figure 3: The -first harmonic of the modulus lrJ (upper panel) and the phase angle Lr (lower 
panel) of the reflection factor as a function of the UV /DV diameter ratio g for three different 
expansion factors: f = 1 (dotted line), f = 1.5 (dash-dotted line), and f = 2 (solid line). For 
all simulations Do = 1.8 mm. 

For a fixed imposed flow and DV outlet diameter, the u0 was changed by employing 
the expansion factors: f = 1, 1.5, 2, i.e. by changing the DV inlet diameter. For these 
expansion factors the mean DV inlet velocities were: u0 r::::! 0.1 m/s, 1.1.0 r::::! 0.3 m/s, and 
u0 r::::! 0.5 m/s, respectively. The stiffness parameters were the same as for the previous 
set of simulations. From Fig. 3 we see that the lower the u0 the larger the modulus of 
the reflection factor If!, whereas the opposite was the case for the phase angle Lr. 

o,-----~------~------~-----, 

~ 
N -45 
~ 

3 4 
g 

........... .... -·-·-·-·"" 

5 

1=1 
1=1.5 
f=2 

6 

Figure 4: The phase angle LZdv of the DV inlet impedance Zdv as a function of the UV /DV 
diameter ratio g for three different expansion factors: f = 1 (solid line), f = 1.5 (dash-dotted 
line), and f = 2 (dotted line). 

The corresponding phase angles L Zdv of the DV inlet impedance, are depicted in 
Fig. 4. For each expansion factor f we observe that LZdv increases with increasing g. 
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ikewise, for a given UV /DV diameter ratio g, the LZdv increases with increasing f. 
urther, the phase angles of the UV impedance Zuv = Puv(wl)/( -Q(wl)), were found 
) be close to -90°, for all configurations, with a maximum RMS of 3.4°. 

Finally, a range of simulations were performed, again with averaged stiffness pa
tmeters for the UV and DV, to investigate the differences between DV inlet and 
1tlet flow (Fig. 5). The simulations were carried out for the three expansion fac
)rs: f=1.25, 1.5, 2, with the DV inlet diameter fixed: D; = 0.9 mm. The up
er panel of Fig. 5 shows the relative percentual difference of the flow amplitudes: 
1mp = 100 · (IQol - IQ;I)/IQ;j, as a function of g; the lower panel shows the corre
)Onding angular difference: dang= LQ0 - LQ;. The mean damp were 3.3%, 3.7%, and 
0% for f = 1.25, 1.5, and 2, respectively. The corresponding mean values for dang 
ere 7.6°, 6.7°, and 5.8°, respectively. 

1=1.25 
1=1.5 
1=2 

~~ :r=-- ~----------------- ---- -j 
5L-------~------~------~------~ 

2 3 4 5 6 
g 

uv 

igure 5: The relative percentual difference damp between the amplitude of DV outlet and 
let flow (upper panel) as a function of the UV /DV diameter ratio g. The phase difference 
eng between DV outlet and inlet flow (lower panel). 

The expansion factor was observed to have only a minor impact on the reflection 
ctor r, with maximum inter configuration RMS-values of 0.4% and 0.3° for ifl and 
r, respectively. 

>iscussion 

l this study we have developed a mathematical model of wave propagation in the 
V /DV bifurcation. The model was developed to study the effect of DV tapering 
1 the reflection factor at the DV inlet and to compare the results and analytical 
)proximations of a previous lumped model (Hellevik et al., 1999b) with those of the 
·esent model. 
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For a wide range of UV /DV diameter ratios g and for various expansion factors f, 
only minor differences between the present and the previous model were found for the 
reflection factor r (Fig. 2). The differences for the reflection factor modulus irj had a 
maximum RMS-value of 0.08, whereas the RMS-value between the present and previous 
reflection factor phase angles Lr were less than 10° for all parameter configurations. 
The reason for these discrepancies may be due to the slightly different mathematical 
approach used to calculate the DV inlet pressure in the two methods: in the previous 
paper the DV inlet pressure is calculated from the UV pressure which occurs explicitly, 
whereas in the present paper the UV pressure is imposed implicitly with a differential 
equation (Eq. (8)) as the BC. Another factor that may have influenced the differences 
is that the mean DV inlet velocities for the present model configurations were slightly 
lower (u0 = 0.43 m/s, 0.46 m/s, 0.47 m/s for f = 1.25, 1.5, 2, respectively) than that 
for the previous model (u0 = 0.48 m/s). From the approximate analytical solution of 
r: 

r = 1- (1- uo/c) Zc/Zuv 
1 + (1 + uo/c) Zc/Zuv 

we may deduce that the lower the u 0 the higher the WI; this agrees well with the fact 
that lr! is highest for the lowest u0 , i.e. f = 1.25. 

Further, we found that with the DV inlet diameter and imposed flow pattern fixed, 
changes in the expansion factor f do not influence the reflection factor at the DV inlet. 
This was found to be true for both extreme and normal stiffness parameters for the UV 
and DV. On the contrary, for a fixed DV outlet diameter, changes in the expansion 
factor, i.e. the DV inlet diameter, do influence the reflection factor significantly. These 
results correspond well with the approximate analytical solution for r in our previous 
paper, where it was shown that a reduced DV mean velocity will increase the lr!- From 
this we conclude: the only effective reflection site in the DV is located at the DV inlet; 
DV tapering per se is of minor importance for the DV inlet reflection factor. 

Further, the calculations of the LZdv (Fig. 4) also correspond well with the approx
imate analytical solution: 

where Zuv denotes the imaginary UV impedance and Zc/IZuvl ex g2 . From the ap
proximation one may deduce that an increase in g yields an increase in LZdv and that 
an increase in the DV inlet cross-sectional area, i.e. reduction in f, corresponds to a 
reduction in the LZdv· 

For medium to large UV /DV diameter ratios g, the relative difference in flow am
plitude damp was found to be less than 10%, while for small g the relative difference 
increased. Still, damp was always positive demonstrating larger flow pulsations at the 
outlet than at the inlet. Although not directly comparable, these findings agree with 
previous investigations in vivo where the velocity pulsation at the DV outlet was found 
to be larger than that at the DV inlet (Pennati et al., 1997; Acharya and Kiserud, 
1999). In this case the differences between the indices of pulsation at the DV inlet and 
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te DV outlet may also be ascribed to changes in the respective velocity profiles. In 
:trticular the angle between the DV and the UV affect the DV inlet velocity profile 
'ennati et al., 1997), whereas the DV expansion factor f will influence the velocity 
··ofile at the DV outlet through diffusor effects (White, 1988). Further, the results of 
te present study indicate that the larger the DV expansion factor f, the larger the 
~lative amplitude difference damp· These effects can not be ascribed to viscous ef
cts, since the amplification increases with f and should thus have caused less viscous 
:tmping; the opposite, however, was observed. Furthermore, viscous effects should not 
:pend upon the impedance ratio. Thus, the amplitude amplification effects must be 
;cribed to wave propagation phenomena. 

Likewise, the phase angle differences were found to be positive and less than 8° for 
I parameter configurations tested. This implies that the DV outlet flow pulsations 
ere just barely leading the DV inlet flow. The results indicate that the larger the 
cpansion factor the smaller the the phase lag. By contrast, in absence of reflections, 
larger expansion factor corresponds to an increased averaged DV cross-sectional area 
1d consequently to a reduced pulse wave velocity accompanied by an increased phase 
.g. Thus, as we observed that an increase in expansion factor was accompanied by 
decrease in phase lag, this phenomenon has to be ascribed to reflections at the DV 
1let. We therefore conclude that the differences between the DV inlet and outlet 
:Jws for both amplitude and phase were found to be minor for medium to large for 
V /DV diameter ratios. Consequently, we maintain the proposition from our previous 
:tper: the lumped model the UV /DV bifurcation gives a fair description of the physics 
1volved (Hellevik et al., 1999b). 

The pressure-area relationship of the DV and the UV have recently been proven to 
2 nonlinear (Hellevik et al., 1999a), i.e. pressure is a nonlinear function of area. In 
te present study we have, for simplicity, assumed a linear pressure-area relationship. 
owever, based on our previous study where no considerable impact of nonlinear con
itutive equations were found (Hellevik et al., 1999b), we believe that the influence 
' nonlinearity in the present model would be minor. Further, the results from the 
.udy on mechanical properties indicate that the stiffness parameter at the DV outlet 
1ay be different from that at the DV inlet. Such possible spatial variations in the 
1echanical properties of the DV have not been incorporated in the present study and 
10uld therefore be accounted for in future studies. 

In conclusion: we have shown that the results of the previous lumped model agree 
ell, both quantitatively and qualitatively, with the present model of the UV /DV 
ifurcation. Furthermore, the tapered geometry of the DV was found to be of minor 
rrportance. Differences between the DV inlet and outlet flow were also found to be 
tinor for medium to large UV /DV diameter ratios. 
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lppendix 

rumerical implementation 

1ternal scheme 

y introducing the compliance C = oAf op, which is readily obtained from the con
itutive Eq. (5), the pressure was eliminated from Eq. (4). Further, we adopted the 
mdensed notation: 

ith u = Q/A and c2 = Aj(Cp), and: 

u = [ ~ ] , ~: = M ~~, b = [ _?1 ] 

he governing equation system Eq. (1) and (4) may then be represented: 

ou oF_ h 
ot +ox - (10) 

which allows for a generic Forward-Backward MacCormack discretization (MacCor
ack, 1969) of the governing equation in a cell-vertex fashion with non-overlapping 
mtrol volumes (Fig: 6): 
Jrward step 
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--------,----------------~--------

n ~ _________..., n+1 
F· I ~ ~F· I 1 I 

i-1 I i+1 
________ J ________________ ~--------

Figure 6: Vertex-centered MacCormack scheme formulation with non-overlapping control 
volumes. 

Backward step 

Riemann invariants 

By using the Split Coefficient Matrix method (SCM) (Anderson et al., 1984) a splitting 
of M = RAL was obtained, where A is the diagonal eigenvalue matrix of M, and L 
and R the left and right eigenmatrices, respectively. Finally, the right eigenmatrix was 
taken as R = L-1 , and the splitting was introduced into Eq. (10) yielding: 

L au AL au= L b 
at+ ax 

The eigenvalues of M were found to be: 

u ± c* 
A.i=-

c.u 

(11) 

(12) 

where the plus and minus signs are associated with subscript i = 1, 2, respectively, and 
c* = )(1- cu) u 2 + Cu c2 . The corresponding eigenvectors were found to be: 

(13) 

where l;2 = (u±J(1- cu)u2 + Cuc2)/(C(c2 -u2
)). The products l;·u with i = 1, 2, are 

the Riemann invariants; the Eq. (11) is a system of the classical wave-equations, where 
the Riemann invariants propagate with wave speed A.;. When the Riemann invariants 
are accounted for in the implementation of the BCs, they are said to be imposed in a 
characteristic manner. 

Boundary conditions 

To impose the BCs, the variables were advanced in time for the whole field, including 
the boundaries, to generate an update. The BCs were not included in this update but 
imposed afterwards in a characteristic manner for both the forward and the backward 
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tep at the DV inlet. That is, the convected Riemann invariant, which is a combination 
fA and Q, was filtered out simultaneously with the imposition of the BC. 

In general, the BC may be given as a combination of the two primary variables: 
(A, Q, t) A+ b(A, Q, t) Q = g(t), where a, b and g are prescribed functions. The 
:c and the Riemann combination will then generally constitute a nonlinear equation 
ystem from which the new values A~+l and Q")/1 may be obtained. Below we give a 
etailed description of how the inlet boundary was treated. 

The BC at the outlet was imposed implicitly. Flow was imposed for inviscid simu
ltions, whereas pressure was used for viscous simulations as imposition of flow in this 
ase lead to divergence. 

nlet boundary 

,t the inlet, the DV model was coupled with the UV model represented by Eq. (8). A 
)rward Euler discretization of Eq. (8) yielded: 

rhere the superscript n for the present time step was omitted for clarity. This is a 
onlinear equation which we linearized in the following manner: 

r in a more compact form: 

(16) 

- 1 - pC Q 
mn = , m12 = 2 AZ 

k1 =A+ pC (Q)2 + f:lt .!}_ (Qb- Qa- Q) 
2 A cuv 

The vertex at the DV inlet was located at the physical boundary and associated 
rith a half control volume. In the forward step we first generated an update, denoted 
y a star, for the half control volume at the inlet with contributions from both the flux 
nd source terms: 

- f:lt 
un+h = Un- --(Fn- Fn) + f:lt (bn + bn) o o !:lx / 2 1 o 1 o 

ubsequently, the left-traveling Riemann invariant was filtered out from the internal 
eld: 

(17) 
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which on component form yields: 

An+l + z Qn+l _ k 
0 22 0 - 2 (18) 

Both Eq. (16) and Eq. (18) have to be satisfied simultaneously and thus form an 
equation system which we represented: 

(19) 

where mij and ki denote the components of the matrix M and vector k, respectively; 
m21 = 1 and m22 = Z22 . Thus, the characteristic imposition of the BC at the DV 
inlet resulted in the nonlinear equation system Eq. (19). A fixed number of three 
subiterations were performed to solve the nonlinear system of equations. The nonlinear 
terms in M and the eigenvector were linearized by using the values of the primary 
variables at the previous subiteration level. 

Finally, the procedure was repeated for the backward step where the source term 
was disregarded following the convention for the fluxes. First the update was generated: 

This update was subsequently combined with the Riemann invariant in the same man
ner as for the forward step. 
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Abstract 

The pulmonary venous systolic flow wave has been attributed both to left heart 
phenomena, such as left atrial relaxation and descent of the mitral annulus, and 
to propagation of the pulmonary artery pressure pulse through the pulmonary 
bed from the right ventricle. In this study we hypothesized that all waves in 
the pulmonary veins originate in the left heart, and that the gross wave features 
observed in measurements can be explained simply by wave propagation and 
reflection. A mathematical model of the pulmonary vein was developed; the 
pulmonary vein was modeled as a lossless transmission line and the pulmonary bed 
by a 3-element lumped parameter model accounting for viscous losses, compliance, 
and inertia. We assumed that all pulsations originate in the left atrium, the 
pressure in the pulmonary bed being constant. The model was validated using 
pulmonary vein pressure and flow recorded 1 ern proximal to the junction of the 
vein with the left atrium during aortocoronary bypass surgery For a pressure drop 
of 6 mmHg across the pulmonary bed, we found a transit time from the left atrium 
to the pulmonary bed ofT :::::; 150 rns, a compliance of the pulmonary bed of C :::::; 
0.4 ml/mrnHg, and an inertance of the pulmonary bed of 1.1 mmHgs2 jml. The 
pulse wave velocity of the pulmonary vein was estimated to be c:::::; 1 m/s. Waves, 
however, travel both towards the left atrium and towards the pulmonary bed. 
Waves traveling towards the left atrium are attributed to the reflections caused 
by the mismatch of impedance of line (pulmonary vein) and load (pulmonary 
bed). Wave intensity analysis was used to identify a period in systole of net wave 
propagation towards the left atrium for both measurements and model. The linear 
separation technique was used to split the pressure into one component traveling 
from the left atrium to the pulmonary bed and a reflected component propagating 
from the pulmonary bed to the left atrium. The peak of the reflected pressure 
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wave corresponded well with the positive peak in wave intensity in systole. We 
conclude that the gross features of the pressure and flow waves in the pulmonary 
vein can be explained in the following manner: the waves originate in the LA and 
travel towards the pulmonary bed, where reflections give rise to waves traveling 
back to the LA. Although the gross features of the measured pressure were 
captured well by the model predicted pressure, there was still some discrepancy 
between the two. Thus, other factors initiating or influencing waves traveling 
towards the LA can not be excluded. 

To appear in Heart and Vessels 1999 
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lltroduction 

he normal flow pattern in extra parenchymal pulmonary veins (PV) is characterized 
v antegrade flow peaks during systole (S waves) and early diastole (D wave), and by 
rongly reduced or retrograde flow (R wave) into the PV during atrial contraction 
late diastole (Fig. 1). The pulmonary D wave is caused by LV relaxation and the 
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igure 1: Measurements of pressure (solid line; left axis) and flow (dashed line; right axis) 
the pulmonary vein. Below: corresponding ECG. 

tbsequent opening of the mitral valve and pressure reduction in the left atrium (LA). 
he factors that determine the D wave are largely the same as those determining early 
ansmitral filling (Nishimura et al., 1990). 

The pulmonary venous S wave is composed of an early (81) and a late (82) systolic 
)W pulse. The origin of the pulmonary venous S wave, and in particular the 82 wave, 
not clear. Several experimental studies in dog models conclude that the S wave is 

merated predominantly by transmission of the right ventricular flow pulse through 
te pulmonary bed (Caro and McDonald, 1961; Pinkerson, 1967; Maloney et al., 1968). 
owever, other studies, also done in dog models, conclude that the systolic flow pulse 
the PV is caused by pressure changes in the (LA) (Morgan et al., 1966; Rajagopalan 
al., 1979). The latter has been attributed to a combined effect of atrial relaxation and 

·stolic descent of the atrioventricular plane, both of which decrease atrial pressure. 

To our knowledge, the effects of wave propagation and reflection have not been 
I dressed to explain the wave features in the PV. In this study we hypothesize that 
l waves in the pulmonary veins originate in the left heart, and we test this hypothesis 
r means of a mathematical model. Our hypothesis implies that the 82 wave which 
·opagates towards the LA, evident by wave intensity (WI) analysis, can be explained 
: a reflected LA wave. 
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Methods 

The present study was part of a more extensive study on pulmonary venous flow in 
patients undergoing aortocoronary bypass surgery. The study was approved by the 
ethics committees at St.Paul's Hospital and the University of British Columbia. All 
patients gave written informed consent. The measurements were done after the chest 
had been opened by a median sternotomy and just prior to initiation of extracorporeal 
circulation. Pulmonary vein flow was recorded by an ultrasonic transit time flow probe 
(Transonics Systems, Ithaca, NY) placed on the right lower pulmonary vein close to 
its entrance into the left atrium. The probe was connected to a flowmeter (Transonics 
Systems, Ithaca, NY). Pulmonary vein pressure was recorded by a micromanometric 
catheter (model SSD-827, Millar Instruments, Houston, TX, USA) in the pulmonary 
vein less than 2 em from its entrance into the left atrium. The analysis in this study 
was based on measurements on a patient with representative pressure and flow traces. 

Further, a mathematical model of the PV and the pulmonary bed was estab
lished. The PV was modeled as a lossless transmission line (TL) with a characteristic 
impedance Zc, a transit time T, and a pulse wave velocity c. The pulmonary bed 
was modeled by a 3-element lumped parameter model that took viscous losses Rp, 
compliance C, and inertiaL into account (Fig. 2). 

ZT 

PV Rp 

LA -c-~j PB 

Zc,'C, c 

Figure 2: Schematic representation of the model. The pulmonary vein (PV) is modeled as 
a transmission line (TL) with characteristic impedance Zc, transit timer, and pulse wave ve
locity c. In the pulmonary bed model Rp accounts for peripheral resistance, C for compliance, 
and L for inertance of the blood. 

A constant driving pressure at the lung capillaries was represented by Pc = p + !:::..p, 
where p is the mean pressure at the LA entrance, and !:::..p is the pressure drop across 
the pulmonary bed. The mean flow direction was taken as positive, i.e. flow towards 
the LA is positive. The input impedance of the model may be presented as (Milnor, 
1989): 

1 + re-i2wr 
Zi = Zc ----.,---1- re-i2wr 

where the reflection coefficient r is: 

Zr-Z r = c 
Zr+Zc 

(1) 

(2) 
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ith the terminal impedance Zy representing the impedance of the pulmonary bed: 

iwL 
Zy = Rp + 1 - w 2 LC (3) 

he model had five parameters that had to be estimated: Zc, Rp, T, L, and C. The 
1aracteristic impedance Zc was estimated from the measurements by averaging the 
tput impedance modulus for medium to high frequencies (3-10 harmonics) (Murgo 
, al., 1980). In order to further reduce the number of parameters, Rp was taken as 
.pjQ. We varied .6.p from 2 to 10 mmHg by increments of 2 mmHg, and the mean 
1·essure p and flow Q were obtained from the measurements. 

The remaining three parameters T, L and C, were estimated for each .6.p-value, by 
tinimizing the cost function: 'I:(Pe - Pm) 2

, where Pe and Pm denote estimated and 
1easured pressures, respectively. The estimated pressure was obtained by using the 
teasured flow and the model input impedance. The procedure was implemented in 
lATLAB, utilizing a Nelder-Mead type simplex search method for non-linear mini
tization. The goodness of fit was evaluated as: 

here N is the number of samples. 
For a given cross-sectional area A and blood density p, estimates for pulse wave 

"locity c and PV length l may be derived from: 

ZcA 
C = --, l = CT 

p 

hen estimates for Zc and T are available. 
The linear separation technique was used to separate the measured and computed 

~essure waves into one component Pap, propagating from the LA to the pulmonary 
Jd, and a reflected component Pn propagating towards the LA Westerhof et al. (1972). 

p- ZcQ 
Pap= 

2 
(4) 

ote that the unconventional signs in the splitting equations are due to the fact that 
1e reflected wave propagates in the positive flow direction. The splitting enabled us 
) estimate the the transit time from the measurement location to a point of reflection, 
>the time-lag between the peaks in the Pap and the Pr divided by two. 

Finally, WI analysis was used to identify the direction of net rate of energy transport 
Jring the heart cycle. This concept, based on theory for acoustic intensity (Lighthill, 
)78), was first introduced by Parker et al. in arterial dynamics (Parker et al., 1988; 
arker and Jones, 1990; Jones et al., 1994). Any finite wave can be analyzed as the 
tm of "wavelets", defined as infinitesimal changes in pressure and flow. Along the 
1aracteristic directions the flow is steady and by following the convention for flow 
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direction in the present paper, the relationship between wavelets of pressure (dp) and 
flow ( dQ) satisfies: 

(5) 

where the subscripts ap and r, in the same manner as above, denote waves propagating 
from the LA to the pulmonary bed and reflected waves, respectively. The instantaneous 
changes in p and Q are the result of intersecting wavelets in the ap-direction and those 
in the opposite direction at the time and location of measurements: 

(6) 

The wave intensity TV I = dp dQ, is the rate of energy flux associated with the wavelet, 
and from Eq. (5) and Eq. (6) the following expression for WI may be derived: 

(7) 

Thus, the WI has the useful property that waves propagating in the ap-direction make 
a negative contribution to the WI, whereas waves traveling in the opposite direction 
make a positive contribution. Note that for convenience the WI has been derived with 
flow and not velocity as the primary variable in the present paper. Thus, the WI 
dimension in the present study is W and not W s-2 as in (Parker et al., 1988; Parker 
and Jones, 1990; Jones et al., 1994); i.e. strictly speaking it does not represent wavelet 
intensity but rather wavelet power. 

Results 

The characteristic impedance of the PV was estimated as: Zc = 0.1 mmHg s/ml. From 
Zc, the pulse wave velocity c in the PV can be estimated as: c ~ 1 m/s, for a typical 
cross-sectional area A=0.8 cm2 and blood density, p = 1.05 ·103 kg/m3 . The estimated 
model parameters for a range of 6.p-values with their corresponding RMS-values, are 
listed in Table 1. In Fig. 3 the measured and the model predicted pressures are depicted 
for 6.p = 6 mmHg. From the pulse wave velocity above and aT= 0.15 s corresponding 
to a 6.p = 6 mmHg, the PV length was estimated as l = 15 em. 

6.p (mmHg) T (s) C (ml/mmHg) Rp (mmHg s/ml) L (mmHg s2 /ml) RMS 
2 0.12 0.6 0.08 1.3 1.0 
4 0.14 0.4 0.16 1.2 1.0 
6 0.15 0.4 0.24 1.1 1.0 
8 0.16 0.4 0.32 0.9 1.0 

10 0.16 0.4 0.4 0.9 1.0 

Table 1: Estimated model parameters for a range of pressure drops across the pulmonary 
bed (6.p). 
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igure 3: Measured (solid line) and model predicted pressure (dash-dotted line) for !::.p = 
mmHg. Below: corresponding ECG. 

The presence of a net energy wave transport towards the LA during systole is 
·ident as shown in the upper panel of Fig. 4 by the positive WI peak at t = 0.485 s. 

The lower panel of Fig. 4 shows the pressure decomposed into one component 
P propagating from the LA to the pulmonary bed, and a reflected component Pr 
·opagating towards the LA. The onset of waves propagating towards the pulmonary 
~d caused by the LA contraction during diastole is observed both in the peak of Pap 

t=0.21 s, and in the negative WI in the upper panel. A reflected pulse is observed 
335 s later, at t=0.545 s. This corresponds to a transit time ofT = 0.168 s. 

~iscussion 

this paper we have shown that the gross features of the pressure and flow waves in 
.e PV may be explained by a simple model, using the principles of wave propagation. 

particular, the presence of a net rate of energy transport towards the LA during 
stole, may be explained as a reflection of the wave in the direction of the pulmonary 
)d initiated in late diastole by the contraction of the LA. This follows from the 
~reement between the positive peak in the WI wave in upper panel of Fig.4 and the 
fleeted wave in the lower panel of Fig.4. Therefore, wave transmission through the 
1lmonary bed is not needed to explain the positive WI wave. 

We observed a good correspondence between the two independent transit time es
nates, predicted by the model and the wave splitting procedure, respectively. Values 
r the transit timeT, the compliance C, and the inertance L were found to be within 
narrow range for variations of the pressure drop across the pulmonary bed (~p) 
.nging from 4 to 10 mmHg (Table 1). These pressure drops correspond with values 
und in physiology textbooks (West, 1990). Further, the T for 6.p = 6 - 10 mmHg 
1rresponds well with the transit time predicted from the wave splitting procedure. 
lms, we believe that a pressure drop in this range is the best choice. 
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Figure 4: Upper panel: wave intensity (WI) for measurements (solid line). Lower panel: the 
pressure split into Pap, the component propagating from the LA towards the pulmonary bed 
(dash-dotted line), and Pr the reflected component propagating towards the LA (dashed line). 
Below: corresponding ECG. 

Information on elastic properties and wave speeds in the venous tree of mammals 
is scarce. Stress-strain curves have been developed for some veins in the adults Azuma 
and Masamitsu (1973). By assuming a wall-thickness diameter ratio of 1.5 ·10-2 (Fung, 
1984, pg. 79), we estimated wave speeds in the range 0.5-3 m/s as a function of strain 
in the jugular, axillary and femoral veins. Estimates from the data on the human 
saphenous vein Wesley et al. (1975) and the abdominal vena cava of a dog Anliker 
et al. (1969) yield wave speed ranges of 0.6-6 m/s and 2-6 m/s, respectively. Thus our 
estimate of a wave speed c ~ 1 m/s, is within the range of reported values. 

The authors are not aware of available data which can be used to test whether the 
estimates for the compliance of the pulmonary bed, and the inertia of the blood in the 
pulmonary bed (Table 1), are within physiological ranges. These issues remain to be 
investigated. 

Although the gross features of the measured pressure were captured well by the 
model predicted pressure (Fig. 3), quantitative discrepancies between the two were 
found (RMS = 1 mmHg). An unconventional load has been introduced to terminate 
the TL in our model. This was motivated by the fact that the impedance pattern of 
our PV measurements does not look like the impedance pattern of the arterial system. 
In our measurements, pressure is leading flow indicating an inertia dominated system, 
characterized by the positive input impedance phase angle, while the opposite is true 
for the pulmonary and systemic arterial system. Thus, we were led to introduce an 
inertance term in our model. However, we do acknowledge that a good fit between 
the measured and predicted pressures does not imply that the elements in the lumped 
model correspond to real physical quantities. On the contrary, it is known that the 
three-element Windkessel model provides excellent fit of data, but overestimates the 
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tal arterial compliance and underestimates the characteristic impedance (Stergiop
os et a!., 1995). Further, based on the results presented in this paper the modulus 
the reflection coefficient may be found to be less than unity, i.e. a part of the wave 

iginating in the LA will propagate through the pulmonary bed. Similarly, if the pul
onary bed looks the same to the arterial side as it does to the venous side, this means 
at waves form the arterial side also will be transmitted through the pulmonary bed. 
Jwever, the purpose of the present study was to present an alternative hypothesis 
tth respect to the origin of the pressure and flow waves, namely that all waves in the 
1lmonary veins originate in the left heart (in particular the S2-wave). Consequently 
is hypothesis was tested with a lumped model where possible modifying factors from 
e right heart were excluded, and we found that the gross wave features observed in 
e measurements could be represented by this model. Thus, our model suggests that 
flections of pressure and flow waves at the pulmonary bed should also be taken into 
count. Possible additional contributions from the right heart can then not be ex
cided. It should be taken into account that the pulmonary venous system operates at 
w pressures (West, 1990). Pressure and flow waves will therefore be sensitive to per
rbations, e.g. breathing and possible transmission of waves through the pulmonary 
:d. 

In conclusion, we have shown that wave transmission and reflection can explain 
e observed wave features in the PV. A simple transmission line model loaded with 
t inertia dominated lumped parameter model gave fair but not perfect agreement 
:tween measured and predicted pressure waves. Further research is needed to identify 
her contributing factors and to verify whether the proposed lumped parameter model 
the proper model for the pulmonary bed. 
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