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Pulse repetition frequency 

Pulsed wave Doppler 

Radio frequency 

Signal to noise ratio 

Very large scale integrated circuit 

Two dimensional 
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c: 

v: 

v: 

T: 

prj or PRF: 

fo: 

fc; 

fs: 

Ultrasound velocity, 

Blood velocity 

Estimated blood velocity 

Pulse repetition period. 

Pulse repetition frequency 

Center frequency of transmitted signal, 

Mean frequency of the received signal 

Sampling rate 

Deviation of the received signal center frequency 

Center frequency of the transmitted signal 

Mean frequency of the received signal 

The deviation of the received signal center frequency 

Angle between the ultrasound beam and the blood vessel 
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Aro: 

e: 
p(t,k): Received 2-D RF signal, where t: Elapsed time after pulse transmission; k: 

x(t,k): 

h(t,k): 

n(t,k), n0(t,k): 

r(t): 

j(t): 

s(t): 

e(t): 

BW.· 

B: 

w(n, 1): 

Pulse number 

Complex demodulated signal 

Echo response of a single moving scatterer 

2-D Gaussian white noise 

Envelope of the transmitted signal 

Transmitted pulse 

Received signal from a single scatterer 

Envelope of the received pulse 

Bandwidth 

Beam width. 

Function after L-1 new zero values between each pair of sample values of 

R(m, 1) has been padded. 

m Normalized mean frequency in the temporal direction 

N: Depth averaging samples 

K: Temporal averaging samples 

0' : Standard deviation 

vNY: Nyquist limit 
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3 Abstract 

Blood flow velocity in the human body is an very important information for the diagnosing of 

diseases. Doppler ultrasound is now commonly used to measure blood velocity. Some of the 

advantages are its non-invasiveness, short investigation time and low cost. The color flow 

imaging (CFI) in the Doppler ultrasound scanners has become an indispensable tool in modem 

hospitals, because it provides an excellent spatial visualization of flow pattern. The purpose of 

this thesis is to improve color flow image quality by using signal processing method. 

Signal processing plays an important role in the CFI technology. Among the challenges in the 

CFI signal processor, parameter estimators and clutter filter are of major interests in this study. 

Parameter estimators in CFI seek to quantify blood velocity, bandwidth and power of the blood 

signal. All of which have haemodynamic significance. One aim of my study is to develop 

unaliasing velocity estimators with high estimation accuracy, small estimation variance and 

potentially for real-time implementation. 

The unaliasing RF-signal cross-correlation velocity estimator has been regarded as a wide band 

velocity estimator which has small estimation variance and high spatial resolution. However, it 

suffers from large computation. Four new interpolation methods have been presented in this work 

(Paper B). All four methods reduce the computation in the RF-signal cross-correlation method 

without sacrificing the performances of the estimators. The matched filter interpolation method in 

paper B has improved the performance of the estimator when the signal to noise is low, as is 

typically the case for the received blood signal. 

In addition, a novel velocity estimator for extending the traditional autocorrelation approach 

is described in Paper A in this thesis. The new method can estimate velocities above the Nyquist 

limit and its performance is similar to the RF cross-correlation method. It has similar estimation 

variance to the cross-correlation method and smaller estimation variance than the conventional 

autocorrelation method when applied to wideband cases. Moreover, it uses much less calculation. 

A clutter filter is a kind of highpass filter which is used to remove the strong clutter signals 

from boundaries and slowly moving solid tissue. The other aim of this study is to investigate of 
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clutter filter. In order to achieve an acceptably high frame rate in CFI, only 4-16 pulses are 

available for analysis from a line of sight. Conventional highpass filtering methods are not 

suitable for application to such a short time period. The third part of this study is to investigate 

the clutter filter which is capable of eliminating the strong clutter component in a short sample 

segment (Paper C). The highpass filter may also remove the blood signal power which limits the 

low velocity estimation range. Due to its sampled nature, the frequency response feature of the 

wall filter is also repeated with the pulse repetition frequency (PRF), therefore, it also removes 

some of the signal power with high velocities. The last part of this study is to investigate the 

effects of the highpass filter on the estimation of high blood velocity (Paper D). 
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4. Introduction 

4.1 Continuous wave Doppler and pulsed wave Doppler Measurement. 

The principle and history of Doppler ultrasound 

Blood flow characteristics are important for the diagnosing of vascular diseases. Clinical 

applications include detection and velocity estimation of blood flow in the great vessels; real­

time flow mapping of the heart, peripheral vascular diagnosis and venous diagnosis. 

The Doppler effect can be used to measure the blood velocity. The principle of this Doppler 

effect can be explained by the frequency shift of backscattered acoustic echoes from moving 

targets with respect to the frequency transmitted. By estimating the frequency shift from the 

received signal, the blood velocity of the moving target is obtained. 

A continuous wave Doppler (CW) technique which used the Doppler effect to measure 

blood velocity was reported in 1957 [1]. Ten years later, a pulsed wave Doppler (PW) 

instrument was introduced [3] which is based on the phase-shift measurements of successive 

echoes. It is widely used at present, because it offers spatial resolution. In the seventies, 

multirange gated (MRG) pulsed Doppler instruments to measure real time blood velocity 

profiles in vessels and the heart was developed [ 4]. It is based on PW Doppler and the sample 

of the received signal at multiple ranges. In the late eighties, the instruments which display 

real time two-dimensional (2-D) color flow imaging (CFI) of flow profiles were developed. 

They are based on the multigated Doppler and the sweeping of the beam across the vessel. In 

the nineties, new instruments are being developed for high quality, real-time and high frame 

rate imaging of the blood flow patterns. 

CW Doppler Measurement 

In this method, an ultrasound beam is continuously transmitted into the tissue with one 

transducer, while the back-scattered signal is continuously received by another transducer. 

Thus, all the moving targets within the overlap of beams from the receiving and transmitting 

transducers are observed. Initially, the received RF Doppler signal is demodulated into the 

baseband, where the Doppler shift is estimated from the baseband signal. Then, the velocity is 

obtained using the Doppler equation: 

fa = 2fo vc~se (1) 

where fa is the Doppler shift, fo is the center frequency of transmitted ultrasound, c is 

ultrasound wave velocity, v is velocity of the scatterer; e is the angle between the velocity 

direction and the ultrasound beam. 
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The basic elements of a CW instrument are illustrated in Figure 1. 

The advantage of the CW Doppler method is that it does not limit the maximum velocity 

which can be measured. The disadvantage of this technique is that it has no range resolution. 

Tronsmtttiog 
! ransduce r \ 

~ ___;Receiving 
Ull roson1c Iff ~ trons.ducer 

beam ~~ 

-~ ~ 
~ ..... _:.·.·:::~ 
Mov1nQ ·~ 
forgers Blood 
{blood) vessel 

Dopple< 
difference 
s1gnal 

Figure 1 The continuous wave measurement [2] 

PW Doppler Measurement 

In PW Doppler, sequential short ultrasound pulses with center frequency fo and duration T 2 

are transmitted into a vessel or the heart at a fixed pulse repetition frequency (PRF). Return 

signals are received sequentially after a certain delay following the pulse transmission. The 

transmitted pulses are phase coherent with respect to an internal reference oscillator. The 

received signal sequence can be regarded as samples of the continuous Doppler signal as 

shown in Figure 2. Due to the sampling, it follows the sampling theory that the continuous 

Doppler signal can be reconstructed without errors by lowpass filtering of the sampled 

sequence, provided that the sampling rate, or PRF here, is larger than twice the maximum 

frequency of the continuous Doppler signal. 

Due to the sampled nature of PW Doppler, the Doppler shift is periodic. Hence the 

maximum Doppler shift which can be measured is limited. The maximum Doppler shift 

corresponds to PRF/2. Any Doppler shifts which exceed PRF/2 will be aliased to the 

frequency range [-PRF/2, PRF/2]. This leads to velocity aliasing. The maximum velocity 

which can be measured is obtained from (1) i.e.: 
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z 

Signal from 

one range 

Figure 2 Signal scatterer echo response in range and time [ 4]. 

Attenuation is due to transducer beam profile. 

B(z) 

cxPRF 
vNy = 4J

0
cose (2) 

This velocity is called the Nyquist limit, which can be increased by raising PRF and 

decreasing center frequency fo . High pulse repetitions frequencies can induce range 

ambiguity because there may be more than one pulse propagating in the vessel at the same 

time. Decreasing fo may degrade the signal to noise ratio (SNR) because the scattered power 

of ultrasound from blood is proportional to f~ [ 4]. 

The width of the range cell is the same as the beam width, and the length is determined by 

the length of the transmitted pulse. The same transducer can be used for both transmission and 

reception. 
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Range and Velocity Ambiguity in the PW Doppler Measurement 

When there are several pulses propagating in the tissue at the same time, it is uncertain 

from which pulse the received echo originates. Therefore, the pulse travelling time t is 

uncertain, and the range R=ct/2 is ambiguous. To avoid range ambiguity, only one pulse is 

allowed to propagate in the tissue at one time. The second pulse can be emitted only after the 

first one is received. This leads to a low pulse repetition frequency. The maximum range that 

can be measured unambiguously is R=cT/2. Combining (2), the product of velocity and range 

that can unambiguously be measured is: 

2 
c 

vNy x R = 8focose 

It is constant when the center frequency is unchanged. Thus, by increasing the measurable 

velocity, the detectable range has to be sacrificed, provided that we use some unaliasing 

velocity algorithms as those described in section 4.3. For the same reason, the maximum 

interrogated range can be increased by scarifying the maximum measurable velocity. In PW 

Doppler the maximum velocity that can be measured unambiguously is inversely proportional 

to the pulse repetition period T (as shown in Figure 3) and the maximum range which can be 

interrogated unambiguously is proportional to T. Thus, the choice of PRF produces a tradeoff 

between the range and velocity ambiguity. The velocity resolution is inversely proportional to 

the observation time T1 and the range resolution is inversely proportional to the width of the 

pulse T2 • Note that the narrower pulse reduces the signal to noise ratio (SNR) for equal mean 

power. With CW Doppler, the velocity resolution is high due to a long observation time T1• It 

does not suffer from velocity ambiguity but it has no range resolution. 

Figure 3 The envelope of the transmitted signal in PW Doppler. 

Blood Signal Content from One Pulse 

The received return pulse, p 0(t), from a scatterer is determined by the transmit pulse, f(t), 

the transducer impulse responses [4] and [5]. It can be written as: 

(3) 

where htt(t) and hr/t) are the impulse responses of transmitted and received transducer, 

respectively. Whenf(t) is a short pulse, p0 (t) will exhibit ringing since the transducer has a 

finite bandwidth. The envelope of the received signal, p 0 (t), can be described as the rapid rise 
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and more gradual fall of an actual pulse, but an approximation using a Gaussian function is 

usually adopted in the model for an ultrasound received pulse. Assuming the scatterer in the 

illuminated region is n(t, z) where t=2r/c, and where the beam profile B(z) is taken into 

account (as shown in Figure 2), the received signal from one pulse is: 

p(t) = fp 0 (t)B(z)n(t, z)dz. (4) 

z 

The Doppler Signal Spectrum in Each Range 

The Doppler signal from a particular range is displayed in Figure 2. The spectrum of the 

Doppler signal from one range is periodic because of its sampled nature. Besides the blood 

signal, the received Doppler signal from one range also includes electronic white noise and 

signal from boundaries and slow moving tissue which is commonly referred to as clutter or 

wall signal. This clutter signal is usually 60 to lOOdB stronger than blood signal. An 

illustration of the spectrum content of the received signal in one range is in Figure 4. Due to 

the effect of the scatterer entering and leaving the sampled volume, and the effect of the beam 

profile, the spectrum is broadened. The effects which cause the spectrum broaden is called 

transit time effect. 

Figure 4 An illustration of typical power spectrum of PW 

Doppler signal from one sampled range. 

The power spectral display in the PW Doppler system 

The B-mode image and the power spectrum of the blood signal from the sampled range as 

shown in Figure 5 are of clinic importance, and they have been widely used today. A B-mode 

image is used for locating the region of interrogation. The power spectrum is used for 

obtaining the velocity distribution in the vessel over time. The power spectral display in 

Figure 5 is also called as a sonogram [31]. Frequency, which is proportional to the velocity, is 
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display as the ordinate. Power density is displayed as the brightness. Some parameters such as 

peak systolic velocity, minimum diastolic velocity and pulsatility index and volume flow etc. 

can be measured or calculated from this spectral display and B-mode image. These parameters 

are important for doctors to diagnose diseases. 

The frequency in the sonogram can be obtained by means of spectrum analysis. The blood 

velocity is pulsatile due to the heartbeats. This means that we can only use a short time signal 

for spectral analysis. Hence, the estimated spectrum has large variance. This is the reason that 

the spectrum in Figure 5 has a noise appearance. 

Figure 5 B-mode image (upper) and spectral density display 

(bottom) from carotid artery. 

4.2 Color Flow Imaging System 

In the seventies, the multi-range gated pulsed Doppler instruments were developed. Using 

this approach, the received signal is sampled at multiple ranges, and the signals from each 

range are processed in parallel. The velocities along the ultrasound beam are measured 

simultaneously. However, a compact serial signal processing can be used in which each range 

is processed by the same circuit. 

Using the multigated Doppler and sweeping the beam across the vessel, a two-dimensional 

velocity image is obtained. In CFI, the parameters of the signal power, blood velocity and its 

variance are combined and presented as a coded color. The color flow image provides an 

excellent spatial visualization of flow pattern. 

Most current scanners are based on the Doppler technique, which extracts the parameters 
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from the complex Doppler signal. The most significant parts of these systems for CFI are 

plotted in Figure 6. Although the parameters can also be estimated directly from the RF signal, 

commercial scanners employing this RF processing are still in the development stage [18]. 

Transducer 

A 

Parameters 

Estimation 

D 

Quadrature 

Demodulation 

B 

_..Display 

Figure 6 Block diagram of color flow imaging system 

The function of each part in Figure 6 is described as follows: 

A: A transducer is an energy conversion device. A transmitting transducer converts electri­

cal energy to acoustic energy, while a receiving transducer converts acoustic energy to 

electrical energy. The most commonly used materials for medical ultrasound transducer are 

piezoelectric ceramics. The vast majority of transducers are made of one or more piezoelec­

tric elements. The transducer is a key component in the ultrasound system. Electronic beam 

forming is used to obtain narrow beams with very high sensitivity and low side-lobe levels. 

Electronically controlled focussing can be obtained by building a transducer out of an array 

of small elements. The most commonly used array types are: the annular array, the phased 

array, the linear array and the curved linear array [4]. The annular array is made up of sev­

eral concentric piezoelectric rings with some curvature for focusing. An adjustable focus 

can be obtained by putting a spherical delay on the signal from different elements. The 

advantage of the annular array is that the focus is symmetric. The disadvantage is that it 

needs mechanical scanning to steer the beam direction. Phased array transducers are com­

posed of a number of elements. By varying the delay for transmission on the echo of the 

elements, the beam is steered within a sector. This array normally has a small aperture (e.g. 

15mm) [14]. A linear array typically has a large aperture (about 40mm) and more elements, 

which are used to form beams normal to the surface of the transducer. A curved linear array 

is obtained by curving the linear array slightly which gives a wider image field. Due to the 

small footprints of the annular array and the phased array, they can image the heart between 

the ribs. Thus, those arrays are normally used in cardiological application [9]. It is easier to 

obtain high sensitivity for the Doppler and color flow imaging with the annular array due to 
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the larger and fewer elements. It is also easy to make a high frequency transducer for using 

an annular array geometry which have special applications in neonatal medicine, endocav­

ity imaging and for guidance of surgical procedures. The phased array with multiple beam 

can provide very high frame rates for 2-D imaging. Linear array and curve linear array are 

widely used in abdominal and peripheral. Due to the availability of high-speed analog to 

digital (AID) converters and improvements in VLSI technology, digital beamforming has 

become feasible. Multiple channels (e.g. 256 channels) for digital beamforming have been 

implemented in the present generation of scanners. 

B: Demodulation is a process which consists conversion of the received RF signal into the 

baseband. In order to detect the sign of the Doppler shift, quadrature demodulation is used 

(Figure 7) 

oscillator f0 

-iro t 
2e 0 

RF signal s(t) 

Figure 7 An illustration of quadrature demodulation. 

C: A Wall Filter is used to remove the signals from tissue and vessel walls. In CW, an ana­

log highpass filter with sufficiently high stop-band damping and narrow transition band can 

be used for this purpose [4]. In PW Doppler, due to long measurement time, either a com­

bined highpass and lowpass analog filter or digital highpass filter can surpress the clutter 

signal [4]. In MGR and CFI with phased array probes, only 4-16 pluses in one beam are 

available for analysis in order to get a high frame rate. Thus, only a digital filter can be 

used. In this case, the conventional FIR digital filter is not suitable since the filter order that 

can be used becomes severely limited and a significant number of samples must thrown 

away due to the transient effect. IIR filters usually exhibit a long transient response. Thus, 

special precautions should be taken in order to initialize filters and reduce the transient time 

as in [10] and [11]. The regression filters described in [12] and [13] have proved to be a bet­

ter solution in this case. The idea is to make a curve fit to the slowly varying wall signal, 

and to remove that curve from the received signal; hence separating blood signal from clut­

ter. More details and experimental results are given in Paper C. 

D: Parameter Estimation includes velocity, bandwidth and power estimation in CFI. The 

signal power, mean frequency and square bandwidth can be defined respectively as the 
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zero, first and second order central moments of the power spectrum G(ro): 

1t 
Signal power: p = J G( ro )dro 

-1t 
(5) 

1 1t 
Mean frequency: rn = pJ_1t roG(ro)dro (6) 

/1 1t 2 
Bandwidth: B = ~pJ_1t(ro-rn) G(ro)dro (7) 

The conventional autocorrelation method presented in [14] and [15] is widely used for 

velocity estimation in the scanner because it is simple and suitable for real time implemen­

tation. Since the correlation function R(n) and power spectrum G(ro) are a Fourier trans­

form pair, the parameters defined by the power spectrum can also be estimated by the 

autocorrelation coefficients: 

Signal power: P = R(O) (8) 

(
lm(R(1))) 

Meanfrequency:rn = angle(R(1)) = atan Re(R( 1)) (9) 

. M IR(1)1 
Bandw1dth:B = "'2 1 - R(O) (10) 

However, the maximum velocity to be measured is limited in this method. Its estimation 

variance is proportional to the bandwidth of the transmitted signal. It has larger estimation 

variance when used in the wideband situations which corresponds to high spatial resolu­

tion. Some other methods which can solve the velocity ambiguity are discussed in section 

4.3. 

E: Color Coding refers to the process of representing the parameter estimation results by 

an assigned color. Some color assignment schemes are describes in [5]. The mean fre­

quency and bandwidth are included in the normalized autocorrelation coefficient which is: 

(11) 

The color is assigned in the complex plane p ( 1) . In the most commonly used color assign­

ment scheme, the sign of the frequency is represented by color hue; red is used for positive 

frequencies, and blue for negative frequencies. The magnitude of the frequency is repre­

sented by color intensity. Increasing bandwidth is indicated by including green with red or 

blue. The power is usually used to discriminate between the region with flow and the region 

without flow. Using the power and bandwidth parameters, the laminar flow and turbulent 

flow can be discriminated. 

4.3. Algorithms to solve the velocity aliasing in CFM 

As mentioned above, the maximum velocity that can be measured is limited in the PW 
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system, due to its sampled nature. The maximum velocity will be slightly higher when using 

higher PRF, but it sacrifices the range that need to be interrogated. Here, some methods that 

can solve the velocity aliasing in PW system are introduced. By means of these methods, the 

PRF does not have to be increased. Thus, the maximum range that can be interrogated remains 

unchanged. 

We can divide the methods into two types. In one type, the system is different from the 

conventional PW system. This type includes dual frequency Doppler. In the other type, the 

system is completely the same as the conventional one and the received blood signal is also 

the same as in the conventional one. Using some different processing methods such as the RF 

crosscorrelation method, 2-D Fourier transform, wideband maximum likelihood velocity 

estimator and butterfly search method, the unambiguous velocity is estimated. 

Dual Frequency Doppler 

This system was introduced in [16]. In this PW system, two narrow-band pulses with 

carrier frequencies !J and .h are transmitted simultaneously. The received signals are fed into 

two parallel conventional PW systems. The Doppler shifts fd1 and fd2 are obtained by the 

conventional autocorrelation method. By combining of the Nyquist limits vNYI and vNY2• and the 

Doppler shift/,11 andfd2, the unaliased velocity is obtained. The new maximum velocity vNY. 

becomes: 

c PRF f1 
v - - --v 

NY - 2(/2-fl)cose 2 - !2- fl NY1 
(12) 

f 
The maximum velocity limit is extended by a factor of 

12 
~ 

11 
. 

An illustration of how to obtain the unaliasing velocity is in Figure 8. A block diagram of 

this PW system is in Figure 9. This system has been implemented by Kontron Instruments, 

Basel, Switzerland [16]. 

The performance of this method will be degraded when one of the Doppler signals is 

removed by the wall filter or when the spectrum is broad. 

RF Crosscorrelation Method 

In PW Doppler system, the conventional autocorrelation estimator is based on phase shift 

estimation from pulse to pulse. One of its drawbacks is velocity ambiguity. However, when 

we observe the received RF signal in Figure 10, it is seen that the received signal from pulse to 
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v 

true velocity 
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v 

Figure 8 An illustration of unaliasing velocity estimate from dual frequency 

Doppler. 

2 frequencies 

Transducer 

Transmit: 

f 1 and f2 

Received: 

llowpass ~ 

unaliasing velocity 

Estimation 

velocity 

estimator 

Figure 9 Block diagram for dual frequency Doppler system 

pulse is a time delayed version due to the scatterer movement. The time delay 'tv is 

proportional to the velocity of the scatterer which is: 

't' = v 
2Tvcose 

c 
(13) 

where T is pulse repetition period, v is the blood velocity, c is the ultrasound speed, 8 is the 

angle between the ultrasound beam and blood vessel. 

Ideally, by estimating the time delay instead of the phase shift, the velocity can be 

estimated unambiguously. 

For the 2-D data shown in Figure 10, the conventional autocorrelation method estimates the 

phase shift from pulse to pulse in the same depth (window A). When the blood velocity is 

high, the phase change is large from pulse to pulse. Velocity aliasing may occur. One solution 
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A depth direction t 

Figure 10 Illustration of 2-D blood signal 

to this problem is to use the data in a sloped rectangular window (window B). When the slope 

is tuned to the time delay 'tv, the phase change for the data from pulse to pulse is minimized, 

and the mean value of signal power in this window is maximized. Both the 2-D Fourier 

transform and the maximum likelihood velocity estimator are based on this principle. 

Alternatively, the signal variance in this sloped window can be set as an objective to 

minimize. The butterfly search technique uses this concept to get the time delay information. 

Moreover, the signal in this sloped window is the most highly correlated. The RF 

crosscorrelation method utilizes this information. 

The RF crosscorrelation method was reported in [17] and [18]. In this method, the time 

delay is estimated by the correlation function. It is calculated by searching for the maximum 

correlation coefficient between the successive received echoes. If p(t, k) is the k-th received 

echo, its 2-D correlation function from pulse to pulse is denoted as R(r, m) .This correlation 

function has maximum magnitude at the time delay 'tv, i.e, R( 'tv, 1) = max"'R( 't, 1), where 

m=1 (Figure 11). This method can estimate high velocities and it has smaller estimation 

variance in the wide band case. However, its processing load is high. The load is mainly due to 

the calculation the RF crosscorrelation function. Decimating the sampling rate of the RF 

signal can reduce the processing load because the data block becomes sparse and the 

computation for the crosscorrelation function is reduced. However, interpolation has to be 

performed on the correlation function to estimate the time delay accurately. Some 

interpolation methods are proposed in Paper B. 

2-D Fourier Transform: 
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Figure 11 RF correlation function R('t, 1) 

This method was reported in [19] and [20]. The time delay 'tv is found by integrating the 

data along the rectangular window (window B) with a slope 't: 

B('t) = ~~?p(t-k't, kf dt (14) 

When 't = 'tv, the integration B('t) has the maximum value. In [19], it was shown that an 

integration along the rectangular window with slope 't in depth/time plane is equivalent to an 

integration of the magnitude squared of the 2-D Fourier plane along the straight line with 

slope 't. Thus, this method is called 2-D processing of pulsed Doppler method in [19] and 2-D 

Fourier transform in [20]. 

Wideband Maximum Likelihood Velocity Estimator (MLE) 

This estimator was developed by Ferrara and Algazi [21] and [22]. It utilizes both the shift 

in time and the shift in frequency to estimate velocity. An implementation of the likelihood for 

a point target is shown in Figure 12. 

r'(t, k Delay line of length 

(P-k)'t 

Figure 12 Implementation of the wideband point MLE where signal is 

2ro 
matched to h(t) = s'*(t) exp~7vr) and lis likelihood function 

When we ignore the frequency shift and assume the matched filter is a rectangular function, 
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this method is similar to the 2-D Fourier transform method. Because it uses both the frequency 

and time shift information, the estimation variance is less than for other methods [21]. This 

estimator has a considerably higher complexity which results in more expensive hardware and 

longer processing time. 

Butterfly Search Technique 

This technique was presented in [23]. It utilizes the fact that the variance is minimum to the 

samples in the line with slope 'tv or in the butterfly line 'tv. This method can be used with either 

RF received signal or the quadrature signal. Under some assumptions, the butterfly method 

has the same form as the wideband maximum likelihood velocity estimator. 

The key to solving the velocity ambiguity is to use both the phase and the amplitude 

information. The conventional autocorrelation method utilizes only the phase information, 

hence, it has velocity aliasing when the velocity exceeds the Nyquist limit. Based on the 

conventional autocorrelation method, a new extended autocorrelation method which uses both 

the phase and amplitude of 2-D correlation function is presented in Paper A. It is shown that 

this new method has similar performance to the crosscorrelation method, but with more 

computational efficiency than the crosscorrelation method. This new method is ready to be 

implemented on a commercial system. 

4.4 Other Activities and Directions in Doppler Signal Processing 

Recently, a nonlinear filter method has been used to differentiate the blood signal from the 

clutter signal. This method is based on ultrasound contrast agents which are suspensions of gas 

microbubbles. Due to nonlinear backscattering from these microbubbles, harmonics are 

generated [24]. If a bandpass filter in a receiver is tuned to the second harmonic, only the 

blood signal and white noise will be received. The wall signal will be suppressed effectively. 

This method is very useful when the blood flow velocity is comparable to that of the 

surrounding tissue and vessel wall. Commercial scanners with harmonic Doppler imaging is 

currently available. These scanners are transmit at one frequency and receive at its second 

harmonic. For example, ultrasound could be transmitted at 3-4 MHz and echoes detected at 6-

8MHz. 

Traditional Doppler techniques can only estimate the blood flow velocity along axis of the 

transducer beam. However, most vessels exhibit curvature and branching. Considerable 

efforts have been devoted to overcoming the angle dependence problem [25] and [26]. The 

methods for measuring more than one component of blood velocity may be broadly grouped 

into two categories: one uses multiple conventional Doppler transducers, while the other uses 

image sequences. Using the first group methods, two or three parallel beams are generated. 
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The axis velocity components are calculated along each beam the same as the traditional 

technique. The lateral velocity components are calculated by tracking the signal from beam to 

beam. With a triple-beam transducer, 3-D blood flow velocity can be measured. The second 

group methods are based on tracking the speckle pattern in a sequence of successive images 

[27]. This tracking can be accomplished with a block-matching search algorithm. In this 

method, we select a target block in the first image and compare blocks within the second 

frame to find out where the scatterers in the target block have moved to. The similarity 

between two blocks can be measured with a 2-D correlation coefficient, a sum of absolute 

difference or by mean square error. 

The improvements to spectral estimation techniques for CFI is also a significant area. The 

maximum blood velocity is an important parameter for diagnosis of heart diseases. The 

velocity estimators discussed above give only the mean velocity and velocity spread. The 

spectrum analysis gives the entire velocity distribution in the sample volume and presents 

accurate quantitative blood velocity information [28]. Spectrum analysis based on the 

modified periodogram method and parameter spectrum estimation methods have been 

commonly used [6]. Because the Doppler signal is a moving average process [6], 

computational efficient spectrum estimators based on Fourier transforms are widely used in 

clinical practice. Such methods have spectrum aliasing when the blood velocity exceeds the 

Nyquist velocity. The velocity matched spectrum [28] technique is capable of suppressing the 

velocity ambiguity. In [16], linear interpolation of the complex Doppler signal is used to 

reconstruct aliased Doppler spectra. 

The center frequency for Doppler measurement is typically between 2MHz and lOMHz 

range. The choice of frequency is a compromise between penetration and range resolution. 

However, Doppler ultrasound in this frequency range is unable to detect the low blood 

velocities in small vessels or in the microcirculation. Estimation of low blood velocity with 

high frequency PW ultrasound (38MHz) is reported in [29] and it is used for mapping blood 

velocities in small regions near the transducer. A high frequency ( 40MHz) CW Doppler 

ultrasound system for detecting blood flow in the microcirculation is reported in [30]. 

4.5 Flow Images from Water-tank Experiments 

In this section, we give an experimental example to show the procedures of the signal 

processing in CFI. It is seen that we are successful in removing the clutter and extracting the 

parameters of power, bandwidth and velocity. Specially, we are able to estimate high 

velocities without velocity ambiguity. A water tank model was set up in Appendix A. The 

illustration of jet stream is featured in Figure 13. The Nyquist limit in this experiment is 
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0.8867m/s. The received signal is demodulated to baseband. 

Figure 14: 

(a): Logarithm power grey image of jet stream. The signal from boundaries is too strong to 

see the jet steam from this image. 

(b): Logarithm power grey image after the wall filter (Paper D). The stationary signals from 

boundaries have been removed and the jet steam can be seen clearly from this image. 

(c): Bandwidth grey image of the jet stream. The stream near the hole has high velocity 

which corresponds to high bandwidth due to the transit time effect. 

(d): Velocity grey image of the jet stream. The velocities were estimated by the conven­

tional autocorrelation method. The velocity aliasing has been observed in this example. The 

velocities which exceed the Nyquist limit 0.8867m/s cannot be estimated correctly. 

(e): Velocity grey image of the jet stream using the extended autocorrelation method 

described in Paper A. This method can resolve the velocity ambiguity. The velocities which 

exceed the Nuquist limit have been estimated correctly. However, there are still some 

velocity estimation errors in the image. This kind error is called as "global error''. It is 

caused by the variance of the estimated correlation function. Factors which affect the vari­

ance of the estimated correlation function error such as the size of the 2-D data window, the 

bandwidth of the received signal, the used correlation estimator and the signal to noise ratio 

are discussed in Paper A. A 2-D tracking method can reduce this kind of global error as 

described in paper A. 

(f): Velocity grey image of the jet stream using the extended autocorrelation method and a 

2-D tracking (Paper A). In order to reduce the global errors, a 2-D tracking method can be 

used. It is based on the knowledge from flow physics that the blood velocity is continuous 

both in depth and temporal directions. 

(g): Color velocity image of the jet stream using the autocorrelation method. The red indi­

cates positive velocities which are defined by the flow moving toward the transducer. The 

blue indicates the negative velocities which means the flow is moving away from trans­

ducer. 

(h): Color velocity image of the jet stream using the extended autocorrelation method. 
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Figure 13 An illustration of jet stream 
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(a) Raw power grey image (in dB) of jet stream 

(without highpass filter) 
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(b) Power grey image (in dB) of jet stream after 

highpass filtering 
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(c) Bandwidth grey image of jet stream. 
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(e) Velocity grey image of the jet stream using 

the extended autocorrelation method. 
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(d) Velocity grey image of the jet stream using 

the autocorrelation method. 

-0.5 0 0.5 1 1.5 
the ruler to velocity(rnls) 

2 

(f) Velocity grey image of the jet stream using the 

extended autocorrelation method and 2-D tracking 
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(g) Color velocity image of the jet stream using 

the autocorrelation method. 

~1. 
'5 
~ 1 
.5 
Q) 

g>1. 
"' 

Intro- 19 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
distance from transducer in meter 

-0.5 0 0.5 1 1.5 2 
the ruler to velocity(m/s) 

(h) Color velocity image of the jet stream using 

the extended autocorrelation method. 

Figure14 Expetimental flow images of jet stream from water­

tank. The Nyquist limit in this expetiment is 0.8867m/s. 

4.6 An overview of the papers in this thesis 

Two issues were discussed in this work. One is unaliasing velocity estimators (Paper A and 

Paper B). The other is clutter filter (Paper C and Paper D). An overview of these papers are 

presented in this section. 

Paper A: The autoconelation method and the crossconelation method are two major 

techniques used in the color flow imaging. The autoconelation method is of 

computational simplicity, but it has some drawbacks such as large estimation vatiance 

and the velocity ambiguity. The crossconelation method is supetior to the 

autoconelation method in the aspects of the estimation valiance and the velocity 

ambiguity, but it requires longer processing time. In this paper, a new extended 

autocotTelation method is presented. It is shown that the EAM has similar petformance 

to the crosscotTelation method. Both of them have smaller estimation vruiance than the 

AM and have the ability to estimate velocities beyond the Nyquist limit. However the 

EAM is more computationally efficient than the CCM. 
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Paper B: The cross correlation method (CCM) for blood flow velocity measurement 

is based on time delay estimation of the echoes from pulse-to-pulse. The time delay is 

estimated by searching for the peak location of the correlation function. The sampling 

frequency of the received signal is usually kept as low as possible in order to reduce 

computational complexity, and the peak in the correlation function is found by 

interpolating the correlation function. The parabolic-fit interpolation method 

introduces bias at low sampling rate to ultrasound center frequency ratio. In this 

study, four different methods are suggested to improve the estimation accuracy: 

1. Parabolic interpolation with bias-compensation, derived from a theoretical sig­

nal model. 

2. Parabolic interpolation combined with linear filter interpolation of the correla­

tion function. 

3. Parabolic interpolation to the correlation function of the complex signal enve­

lope. 

4. Matched filter interpolation applied to the correlation function. 

Each of which is useful in reducing the required computation in the RF-signal cross­

correlation method. The matched filter interpolation method has improved the perfor­

mance of the estimator when the signal to noise is low, as is typically the case for the 

received blood signal. 

Paper C: In pulsed wave Doppler ultrasonic measurements, a highpass wall filter is 

used to suppress the clutter signal prior to the blood velocity estimation. In order to 

achieve an acceptably high frame rate in CFI, only 4-16 pulses from each beam 

direction are available for analysis. The conventional highpass filters (IIR and FIR) 

have a settling time which must be removed prior to the velocity estimation. 

However, this reduces velocity resolution. In order to reduce the settling time, only 

low order FIR filters or IIR filters with special initialization can be used. In addition, 

a regression filter was proposed [3]. In this work, the FIR clutter filter and regression 

clutter filter have been evaluated using experimental data from the subclavian artery 

and the mitral region of heart. The results show that when the number of segments is 

short (less than 16), the regression filter gives better results than the FIR filter. When 

the number of segments is increased to 30, no significant difference exists between 

the FIR filter and the regression filter. 

Paper D: In pulsed wave Doppler ultrasonic measurements, a highpass clutter filter 

is used to remove the clutter signal prior to the blood velocity estimation. For high 
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velocity measurements, the clutter filter creates dead zones where the Doppler 

frequency equals multiples of the pulse repetition frequency. In this work, the effect 

of the wall filter has been studied for two different blood velocity estimators; the 

crosscorrelation method and the extended autocorrelation method. When the pulse 

bandwidth is sufficiently high, the Doppler signal bandwidth will exceed the wall 

filter cut-off frequency due to the transit-time effect, and the dead zones are partially 

removed. However, the chance of velocity aliasing is increased in these zones due to 

the filtering, both for the CCM and BAM method. 
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Paper A 

An Extended Autocorrelation Method for Estimation of 
Blood Velocity 

Parts of this paper were published in: Xiaoming Lai, Hans Torp, Kjell Kristoffersen, 

"Extended Autocorrelation Method for Color Flow Imaging", Proceedings of 15th 

International Congress on Acoustics, Trondheim, Norway, pp.347-350, 1995. (In Appendix 

A), and in: H. Torp, X. M. Lai and K. Kristoffersen, "Comparison between Cross-Correlation 

and Auto-Correlation Technique in Color Flow Image", Proceedings of IEEE International 

Ultrasonics Symposium, Baltimore, MD, pp.1039-1042, 1993. 

A large part (Except D in section VI) of this paper was published in: X. Lai, H. Torp and K. 

Kristoffersen, "An Extended Autocorrelation Method for Estimation of Blood Velocity", IEEE 

Trans. on Ultrasound, Ferroelectrics, and Frequency Control, Vol. 44, No. 6, Nov. 1997. 
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An Extended Autocorrelation Method for Estimation of 
Blood Velocity 

Abstract 

The conventional autocorrelation method (AM) [1] to estimate the blood velocity for color 

flow imaging (CFI) is based on the phase estimation of the autocorrelation function. In this 

paper, a new extended autocorrelation method (BAM) that use both phase and magnitude of 

the two dimensional (depth and temporal direction) autocorrelation function for estimating the 

blood velocity is presented. It is shown that the BAM has similar performance to the 

crosscorrelation method (CCM). Both of them have smaller estimation variance than the AM 

and have the ability to estimate velocities beyond the Nyquist velocity. However the BAM is 

more computationally efficient than the CCM. 2-D blood flow signals with rectilinear velocity 

including the transit time effect have also been simulated and the results are presented in this 

paper. For comparison, the BAM and the CCM have been applied to the simulated signals in 

which the flow velocities are up to 4 times the Nyquist velocity. The BAM has been further 

verified by experimental RF data from the subclavian artery. 

!.Introduction 

Doppler ultrasound is an important noninvasive technique for measuring blood velocity in 

order to diagnose cardiovascular diseases. The pulsed Doppler technique is widely used at 

present time because it also offers range resolution. With this method, sequential short 

ultrasound pulses are transmitted into the vessel or heart at a pulse repetition frequency (PRF). 

Returned signals are received sequentially after a certain delay following the pulse 

transmission. The blood velocity within selected ranges can be estimated from the received 

signal. Sweeping the beam across the vessel gives a complete measurement of a 2-D flow 

profile in the vessel which includes velocity and its variance. A color flow image is obtained 

by coding the velocities. The velocity variance has also been used to modulate the color in 

some display modes. 

Today, two widely used velocity estimation methods are the Doppler technique AM and the 

time domain technique CCM. The AM technique was first developed for weather radar 

applications and applied to ultrasound blood velocity measurement later [ 1]. It is based on the 

phase estimation for successive pulses from the complex demodulated signal. Due to its 

computational simplicity, most ultrasound scanners for CFI use this method today. But the AM 

is regarded as a narrowband estimation method because it has small estimation variance when 

the bandwidth of the received signal is narrow. Its estimation variance increases greatly when 

the bandwidth of the received signal is wide. This leads to poor image quality. On the other 

hand, reduced bandwidth limits the range resolution, so there is a trade-off between velocity 
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estimation variance and range resolution. 

The sampled nature of the pulsed Doppler introduces a limit on the maximum velocity 

which can be measured. The maximum velocity is referred to as the Nyquist limit and is given 

by 

cxPRF 
v = 

4f0 cose 
(1) 

where c is the sound velocity, fo is the transmitted center frequency, and 0 is the angle between 

the ultrasound beam and the blood vessel. Velocities exceeding this Nyquist limit are often 

found in various jet flows in heart defects (valve stenoses and regurgitations, ventricular septal 

defect etc.). 

The CCM is an alternative algorithm for blood velocity estimation [2] and [3]. The CCM is 

based on estimation of the time delays of the received RF echoes from the pulse-to-pulse cross 

correlation function. It is superior to the AM in some aspects, however its computation is 

considerable more time consuming. In practical applications, the received signal is sampled 

along the depth direction with a certain rate. Since the CCM is performed on the RF-signal, the 

minimum sampling rate is much higher than that in the baseband. In addition, the location of 

the maximum in the crosscorrelation function is not constrained to discrete increments and 

hence, the true location of the maximum has to be estimated by means of interpolation 

methods. The interpolation accuracy depends on the ratio of the sampling rate to the center 

frequency. In order to improve the estimation accuracy for low ratio of the sampling rate to the 

center frequency, some time consuming interpolation techniques have to be used. Besides the 

CCM, there are some other velocity estimation techniques such as the 2-D Fourier transform 

method [4] and the maximum likelihood estimator [5] and [6] which are superior to the AM, 

but the computation requirements are higher. These techniques will not be discussed further in 

this work. 

In this paper, the EAM which is developed from the AM is presented and it is compared to 

the CCM. This paper is organized as follows: In section II, a 2-D correlation function model 

based on [9] is introduced. From this 2-D correlation function model, a simulation model for 2-

D blood signal is obtained. In section III, the EAM technique is described and a theoretical 

comparison between EAM and CCM is given. In section IV, the EAM is analyzed by 

simulation. In section V, the EAM is verified by experiment. In section VI, factors which 

affect the estimation results are discussed. 
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II The Correlation Function and Blood Signal Model 

A. The Correlation Function Model 

The correlation function plays an important role in the blood velocity parameters 

estimation. Most velocity estimators are based on the correlation function. This is because the 

received blood signal is a Gaussian random signal [7] which is completely characterized by its 

correlation function [8]. Therefore, the blood velocity parameters are included in the 

correlation function. In this section, a 2-D correlation function model based on [9] is 

introduced. 

The received 2-D RF signal is denoted as p(t,k) where t is the elapsed time after pulse 

transmission which corresponds to a certain depth from the transducer and k is the pulse 

number. Its correlation function is defined by the statistical ensemble average of the signal 

product: 

R(1:, m) = (p(t, k)p(t + 1:, k + m)) (2) 

assuming that f(t) = r(t)cosro0 t is the transmitted pulse, where r(t) is the envelope of the 

transmitted signal, roo is transmitted center frequency, and assuming that s(t) = e(t)cosroct 

is the received signal from a single scatterer, where e(t) is the envelope of the received pulse 

and ffic is the mean frequency of the received pulse. The function e(t) is determined by the 

convolution of the envelope of the transmitted pulse, the impulse response of transmission and 

reception transducer. The mean frequency of the received pulse may be different from the 

center frequency of transmitted pulse. This is because when there is the effect of the frequency 

dependent attenuation and frequency random fluctuation, the envelope and the center 

frequency of the received pulse are altered [10]. The major effect is a shift in the spectral mean. 

Thus, the effect to the envelope will be neglected. The mean frequency is shifted from roo to 

When the effect of the beam profile is taken into account and b(tf) is the transverse beam 

sensitivity function, where d is the distance from the ultrasonic beam center axis, the received 

pulse is: s(t)b(d). This is based on the assumption of separability of the radial and transverse 

impulse response [9]. In [11], with the stationary and uniform velocity field assumption, the 

RF correlation function is given by: 

(3) 

Re(1:) is the correlation function of e(t) and RB(kTvsinS) is the correlation function oflateral 

sensitivity function B(tf). 
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tv is the delay between echoes from two subsequent pulses caused by the scatterer movement. 

vcose and vsinS are the velocity components in the radial (along the ultrasonic beam) and 

the lateral (transversal to the ultrasonic beam) direction. Tis the pulse repetition period. The 

radial velocity towards to the transducer is defined as positive velocity. Note that the 

autocorrelation model in (3) includes decorrelation caused by lateral velocity components. 

Decorrelation caused by velocity gradients may be included by integrating (3) over the 

corresponding velocity distribution. 

B. Simulation Model for the Blood Signal 

Assuming the echo response of a single moving scatterer is defined by: 

h(t, k) = s(t- kt)b(kTvsinS) (5) 

The 2-D blood signal can be written as a 2-D convolution between the echo response and the 

2-D Gaussian random signal n(t,k), i.e. 

p(t, k) = h(t, k) ® n(t, k). (6) 

Then the correlation function of the blood signal in (6) equals R(t,k) in (3). 

Figure 1 is an illustration of the simulation model for the blood signal, including additive white 

noise to account for the thermal noise from the transducer and receiver amplifier. Figure 2 

shows the echo response h(t,k) from a scatterer and the simulated RF blood signal p(t,k). 

echo response 
Gaussian n(t, k)l' ----,, p(t, k) 
random signal -----11 ... ~ h(t, k) f----ll ... ~cpH+--... ~ p0 (t, k) 

f blood signal 

n0 (t, k) 

white noise 

Figure 1 The 2-D blood signal model 
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Figure 2 Left plot is the illustration of the echo response h(t, k) from a single 

scatterer. Right plot is the simulated blood signal p(t, k) 

Ill. The Extended Autocorrelation Method 

A. The Conventional Autocorrelation Method with Frequency Compensation 

In the conventional autocorrelation method (AM), the complex correlation function with lag 

one in the temporal direction is used to calculate the normalized mean frequency [ 1]. Using the 

notation for the 2-D correlation function, the normalized mean frequency in the temporal 

direction is estimated as [12]: 

m = phase(Rx(O, 1)). (7) 

From the Doppler equation, the velocity estimate is calculated, assuming that the center 

frequency of the received signal is constant and equal to the transmitted frequency fo 

cMPRF 
v = . 

47tf0 cose 
(8) 

Frequency dependent attenuation and frequency random fluctuation effects cause variations in 

the received signal center frequency. This results in velocity bias and estimation variance. The 

effect of the frequency dependent attenuation becomes significant especially in the wideband 

signals. This effect can be reduced by estimating the center frequency of the received signalfc 

and using it for the estimation, i.e. 

cMPRF 
(9) 
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The deviation of the received signal center frequency Af = fc -!0 is estimated from the 

autocorrelation function with lag in the depth range direction: 

phase(Rx('t, 0)) 
Af = --2-=-1t-'t-- (10) 

This method is referred to as "AM with frequency compensation" and is also described in [12] 

and [13]. 

B. The Extended Autocorrelation Method 

From (3), it is seen that both the envelope and the phase of the correlation function include 

velocity information. The AM uses only the phase to estimate the velocity. Due to the 

periodicity of the phase, aliasing will occur for velocities exceeding the Nyquist limit. 

A new method, the extended autocorrelation method (EAM), which uses both the phase and 

the magnitude of the correlation function to estimate the velocity has been developed. The 

phase information is used for accurate velocity estimation and the magnitude is used to solve 

the ambiguity. As in the correlation function model, the time delay 'tv and the phase -roc 'tv 

which account for the Doppler shift, both include velocity information. The phase -roc 'tv is 

proportional to the time delay, however, due to the periodicity of the phase, the phase 

estimation wraps the time delay information. When the time delay increases and -roc 'tv is 

beyond l1tl , the phase estimation still lies within l1tl and aliasing occurs. Because the time 

domain method CCM directly estimates the time delay, there is no velocity ambiguity. The 

time delay estimation in the CCM is found by maximizing the RF correlation function, R('t,l). 

The maximum magnitude of R('t, 1) occurs when 't = 'tv. It is seen from (3) that the envelope 

correlation function Re('t- 'tv) attains its maximum and the phase equals -roc 'tv. Thus, the 

CCM combines the envelope and the phase information which leads to no velocity ambiguity. 

If the envelope information was discarded, there would be the same velocity ambiguity 

problem as in the AM. 

The relation between the phase and the time delay is 

where ( ( ) )21t denotes modulo 21t operation, sign is for the sign function. 

The time delay 'tv will not be estimated correctly when l-21tfc 'tvl > l1tl . 

The phase estimate results in a number of possible time delay candidates 
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n = 0, ±1, ±2 ... , (12) 

where tn denotes delay candidates. When n=O, the velocity is below the Nyquist limit. 

Rearranging (12) gives 

rn n 
t'n = - 21tfc -fc n = 0,±1,±2 .... (13) 

Because the peak of the envelope is located in tv, the true delay candidate is found by 

maximizing the envelope of the correlation function, n' = maxn(R(tn, 1 )) . This is the basic 

idea for the BAM method. 

In its simplest form, the time delay candidates are found from the phase of RxCO, 1). In the 

appendix, a complete relation between the phase of the 2-D correlation function and the mean 

frequency in both directions is given, and the normalized mean frequency in the temporal 

direction can be estimated by: 

rn = phase(R/t, 1))-~on. (14) 

It means that the normalized mean frequency in the temporal direction can be estimated by 

the phase Rx(t, 1) for any t in addition to the phase of Rx(O, 1) for t = 0 . It is also seen that the 

phase Rx(t, 1) is independent oft when there is no frequency shift of the received blood signal 

from ffio, i.e. ~ro = 0 . 

For real signals, the envelope of the correlation function is discrete for the sampled echo 

signal, but the delay candidates can be at any position and it is necessary to reconstruct the 

envelope for all t's by interpolation techniques. Unlike in the CCM where a high performance 

interpolation technique is needed to locate the precise delay, the interpolation technique is not 

so crucial in the BAM; a parabolic interpolation usually results in good performance, even with 

low depth sampling rate. 

In the BAM, several delay candidates, tn, are found by extending the phase estimation 

result rn periodically. Then the n which gives the maximum amplitude of R/tn' 1) is 

determined. The BAM algorithm is illustrated in Figure 3. 
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Figure 3 An illustration of the BAM. * represents the amplitude of correlation 

function R x< 'r, 1 ) in sampling points. The dash curve represents the reconstructed 

envelope of Rx('r, 1). 'r_p -r0, -r1 are the three candidates for the velocity. -r0 is the 

candidate for the true velocity in this example because it corresponds to maximum 

amplitude. 

C. Comparison Between the EAM and the CCM 

At present, the AM and the CCM are the two most commonly used techniques for 

estimating blood flow velocity. The CCM is usually referred to as a time domain technique, 

whereas the AM is referred to as a frequency domain Doppler technique. The advantages of 

the time domain method over the Doppler technique are discussed in [14] and [15]. The BAM 

is developed from the AM and, therefore, it is performed on the baseband complex signals. In 

contrast, the CCM is performed on the real valued RF signals. It is worthwhile to compare the 

BAM with the time domain method CCM and it is interesting to see in the following 

discussion that those two methods essentially estimate the same parameter. We will first 

briefly discuss the CCM algorithm. 

1. The CCM 

In the cross correlation method, the object is to find the time delay 'tv by searching for the 

location of the maximum of the RF correlation function R('r, 1) i.e. 

'tv = max't(R( 'r, 1)) . 

A typical example of a RF correlation function is given in Figure 4. The RF correlation 

function is the product of the envelope and the modulating signal cos2nfc('r- -r). The 

modulating signal is a periodic function with multiple peaks at 2nfc('r- 'tv) = 2nn, which 

can be reformulated to 
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1: = (('tv+ sign('tv)fc))2fc + ~ n = 0, ±1, ±2 ... (15) 

When the envelope of the correlation function is constant, several peaks will have the same 

magnitude. For a shaped envelope, differences in the magnitude of the peaks appear and this 

makes it possible to pick out the true peak. 

envelope 

Figure 4 An illustration of a RF correlation function which is the product of the 

modulation function and the envelope. The modulation function determines the precise 

delay locations, the envelope determines the true delay 'tv from delay locations. 

In a practical implementation, the RF correlation function R( 1:, 1) is discrete and 

interpolation is necessary in order to estimate precise time delays. The interpolation is used in 

order to locate the peak in the RF correlation function, therefore, the interpolation technique is 

crucial in order to obtain good estimation accuracy. 

2. A Theoretical Comparison of the EAM and the CCM 

The relation between the complex demodulated signal x(t,k) and the RF signal p(t,k) is: 

jro0 t 
p(t, k) = Re(x(t, k)e ) (16) 

The complex correlation function is defined as: 

Rx('t, m) = (x*(t, k)x(t + 1:, k + m)) 

and RF real correlation function is 

R('t, m) = (p(t, k)p(t + 1:, k + m)) 

By some algebraic manipulations, the following relation is obtained 

1 jro0 -r: 1 jro0 -r: j2ro0 t 
R(1:,m) = 2Re(e R/1:,m))+2Re(e (x*(t,k)x(t+'t,k+m)e )) (17) 

The second term has zero mean and will approach zero when the smoothing in depth direction 
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extends to more than one period of the transmitted signal. This is usually the case due to the 

high frequency of the transmitted signal. So (17) can be approximated to: 

(18) 

Usually, only the correlation function with temporal lag one (m=1) is used in both the CCM 

andtheEAM. 

If the magnitude of the complex correlation functioniRx('t', 1)j is sufficiently smooth 

compared to the modulation function cos ( ro0 't'), then the peak 't' = 't'v in the RF correlation 

function R('t', 1) occurs when 

n = 0, ±1, ±2 ... (19) 

By combining the equations (14) and (19), the following relation between the time delay 't'v 

and the mean frequency estimate m is obtained: 

(20) 

The time delay 't'v is: 

't' = 
v ro0 + dw 

-m-2nn 
(21) 

Observe that 't'v is the same as the delay candidates- 't'n in the EAM. The time delay 't'v in (21) 

is not unique, but the true velocity corresponds to the delay which maximize the envelope. 

3. Comparison of the Processing Time 

The processing time is mainly spent on calculating the correlation function in the CCM and 

in the EAM. Although the interpolation step also requires substantial processing time, 

especially when the sampling frequency in the depth direction is low, the computational 

efficiency is comparable to that of the correlation function. The processing time depends on 

the number of data samples. The EAM operates on the complex signal where the sampling rate 

can be decreased substantially compared to the CCM. This reduces the computational 

requirement. By calculation, one depth sample delay corresponds to 2j0 /fs times the Nyquist 

velocity. In order to estimate velocities up to 4 times the Nyquist velocity, 2f/fo samples are 

required in the depth direction. 

For instance, if the sampling frequency of the demodulated signal fsd, equals the 

transmitted frequency, five correlation coefficients are required to estimate a velocity range of 

four times the Nyquist limit. 

In the EAM, the calculations are: five complex correlation coefficients from the data block 

N x K, where N is the depth averaging samples and K is the temporal averaging samples. 
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In the CCM, the calculations are: 5f/fsd correlation coefficients from the data block 

Nx(!s~)K. 
Assuming that the calculation of the correlation function is proportional to the data size, the 

ratio of the calculation of the correlation coefficients of the CCM to the EAM is 

!( js )2 
2\jsd (22) 

When fs =10MHz,fsd=2.5MHz, the ratio is 8, but in this case, the interpolation method in the 

CCM is time consuming. The total computation in the EAM is much less than the CCM. When 

fs =20MHz, a parabolic interpolation method to the CCM works well, the interpolation step 

will not take too much time, but the ratio of the calculation of the correlation function in (22) is 

32. 

IV. Analysis of the EAM and the CCM by Simulations 

A. Simulation Signal and Parameters 

A 2-D Gaussian random signal based on the blood signal model in section II is simulated. 

The length of the wideband transmitted pulse is approximately two cycle periods. Typically, a 

wideband transmitted pulse is minimum phase with a rapid rise and more gradual fall of the 

pulse envelope. However, a Gaussian shape envelope of the received signal was used in our 

simulations. What is important for the performance is the envelope of the correlation function, 

which will approach a Gaussian form, also for the minimum phase pulse. The received signal 

from a scatterer is then 

s(t)b(d) = exp( ::}os(2nj0t)b(kTvsin8) 

The standard deviation is set to a = 1 I fo, giving a pulse length of approximately two cycle 

periods. The pulse bandwidth BW is defined as 1/a which the magnitude of the envelope 

decreases 8.69dB. The transverse beam profile b is assumed to Gaussian function [9] and 

b(d) = exp(-3i /2B
2

) is used in our simulation, where B is the Beam width. 

The other parameters for all the simulations in the paper are given in Table I. The Nyquist 

velocity is determined by (1) and equals 1.0265 rn/s with the given parameters. 
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Table 1: PARAMETERS FOR SIMULATIONS 

Center frequency fo 

Pulse bandwidth BW 

Pulse repetition frequency PRF 

Speed of sound c 

Measurement angle 9 

Temporal averaging 

2.5MHz 

2.5MHz 

6564Hz 

1540m/s 

10 degree 

1.8ms or 12 samples for the signal ofprf 6564Hz 

Depth averaging 3 *0.81lS or 24 samples for the signal of fs =lOMHz 

and fo =2.5MHz 

Beam widthB 

B. Signal to Noise Ratio 

White noise is added to the final RF signal as shown in Figure 1. The signal to noise ratio 

for the blood signal is defined as: 

LLP2(n, k) 

SNR = 10log n k 
2 I,I,n0 (n, k) 

n k 

p 0 (n, k) = p(n, k) + n0 (n, k) 

(23) 

(24) 

The complex signal x(n, k)is obtained by demodulating the RF-signal p 0 (n, k). Signals with 

SNR=30dB and SNR=OdB are used for the simulations in this work. 

C. Simulation Results 

The estimation Results for the CCM and the BAM are shown in Figure 5. The sampling rate 

fs is 1OM Hz for both methods 

The blood signal is a random signal. Because the mean frequency estimate based on the 

correlation function has a distribution close to Gaussian [5], the estimation variance possesses 

a chi-square distribution. To evaluate the estimator of the CCM and the BAM, the estimation 

results in this work were based on 50 independent simulations. A confidence interval for the 

variance of a normal random variable can be obtained from the statistic [19] which 

is:[0.84s, l.25s], where s is the estimated standard derivation. This parameter gives the 

reliability of this simulation. The 95% confidence interval of the standard deviation for the 

CCM is plotted in Figure 5. The simulation results in Figure 5 show that the CCM and the 

BAM have similar performance, especially when the signal to noise ratio is high. They can 

estimate velocities up to four times Nyquist velocity and give similar variance. The estimation 

Paper A: An EAM for Estimation of blood velocity 



A-14 

variance depends on the correlation length of the signal. For the highest velocities, the 

correlation length decreases due to the transit time through the ultrasound beam, giving 

increased estimation variance. 

0.1 

i 
0.09 

0.06 
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1.5 2 2.5 3.5 4 

velocity /the Nyquist limit 

SNR=OdB 

velocity /the Nyquist limit 

Figure 5 Standard deviation of velocity estimation by the CCM and the BAM. Solid line is 

for the CCM. '*'is for the BAM, dash lines indicate the 95% confidence interval based on 

the standard deviation of the CCM. 

Since the BAM operates on the complex demodulated signals, the sampling rate fs can be 

reduced down to the bandwidth of the signal, which was BW=2.5 MHz. However, the CCM 

perform on the RF signal, which requires a sampling rate of 2/0 + BW. In the simulations 

fs=2.5 MHz, 5 MHz, and 10 MHz was used for BAM, andfs=lO MHz was used for CCM. The 

estimation results for the BAM with sampling rate 10MHz, 5MHz and 2.5MHz are shown in 

Figure 6. 95% confidence interval of the standard deviation for this simulation is:, 

[0.84s, 1.25s] where s is the estimated standard derivation. 95% confidence interval of the 

standard deviation for the BAM in the sampling rate lOMHz is shown in Figure 6. 

The results for the BAM with sampling rate 1 OMHz, 5MHz and 2.5MHz have no significant 

difference when the signal to noise ratio is high. When the signal to noise ratio is low, the 

standard derivation in the case of sampling rate 2.5MHz is slightly higher than for sampling 

rate 10MHz and 5MHz. 
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Figure 6 Standard deviation of the velocity estimator EAM in sampling rate 1 OMHz, 5MHz 

and 2.5MHz.Solid line is for the sampling rate lOMHz, '*' is for the sampling rate 5MHz and 

'-.'is for the sampling rate 2.5MHz. 

V. Experiment Verification 

The EAM was verified by experimental data from the subclavian artery. The CCM was also 

applied to the experimental data for comparison. The RF data from a ultrasound scanner 

(Vingmed CFM 800) was collected in real-time via a custom data grabbing system. The slow 

tissue movement signal in the raw data was removed by a 4 order IIR butterworth high pass 

filter with normalized cutoff frequency 0.155. Then the data was demodulated with the center 

frequency 2.5MHz. 

A. The AM with frequency compensation is applied to the experimental data from the 

subclavian artery. The quality improvement achieved by the frequency compensation is 

shown in Figure 7. Left plot is the estimation result by the AM. Right plot is the estimation 

result by the AM with frequency compensation. The curve in the right plot is smoother than the 

left, indicating lower estimation variance. 
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Figure 7 Comparing the AM to the AM with frequency compensation method. Left plot 

is the results of the AM, right plot is the results of the AM with frequency compensation 

B. Comparison between the EAM and the CCM when the velocities are within the 

Nyquist limit 

The depth averaging in this experiment was 0.8f.!s, i.e. 8 samples in depth direction for 

fs=10MHz, [0 =2.5MHz. The other parameters in the upper plots Figure 8 (a), (b) were the 

same as in the simulation in this paper. They show no difference between the two methods. 

Both of them give good results. 

C. Comparison between the EAM and the CCM when there are velocities beyond the 

Nyquist velocity but within 2 times the Nyquist limits 

In the middle plots (c), (d) in Figure 8 are the results from another set of experimental data 

from the subclavian artery. The pulse repetition frequency was reduced to 4kHz, so the Nyquist 

velocity has been reduced. The depth averaging is l.2J.!s, i.e. 12 samples for fs =10MHz, 

fo =2.5MHz. The temporal averaging is 6ms, i.e. 24 samples. The overlap is 3ms between 

temporal averaging. The performance of the two methods are similar. 

D. Comparison between the EAM and the CCM when there are velocities up to 4 times 

Nyquist limits 

The data in this experiment was acquired by decimating the RF data in experiment B to 

reduce the pulse repetition frequency, so a lower Nyquist limit was obtained. This decimation 

was done before the wall motion filter. The depth averaging in this experiment is 1.2J.!s, i.e. 12 

samples for fs=lOMHz, [0 =2.5MHz. The temporal averaging is 6ms, i.e. 12 pulses by 
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Figure 8 Experimental data from subclavian artery analyzed by the BAM and the CCM. Left 

plots (a), (c) and (e) are the results by the BAM. Right plots (b), (d) and (f) are the results by 

the CCM. Upper plots (a) and (b): The Nyquist limit is 1.0265m/s and the velocities are 

within the Nyquist limit. Middle plots (c) and (d): The Nyquist limit is 0.6255m/s and the 

velocities are within twice the Nyquist limit. Lower plot (e) and (f): The Nyquist limit is 

0.3128m/s and the velocities are within 4 times the Nyquist limit. 
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repetition frequency 2kHz. The overlap is 3ms between temporal averaging. The results in the 

lower plots (e), (f) in Figure 8 show that both the EAM and the CCM can estimate the 

velocities up to 4 times the Nyquist limit. But there were global errors in the results. 

Two gray scale velocity images in the upper (a) and middle (b) in Figure 9 are by the EAM 

and the CCM. The experimental data is the same as in the experiment B. The depth averaging 

was 1.21! s, the temporal averaging was 3ms. No overlap between temporal averaging. 

Velocities within two times the Nyquist limits have been estimated. There was no significant 

difference between the two images. Global errors can be seen in both images. In order to 

reduce the global errors, a 2-D tracking method has been used. It is based on the knowledge 

from flow physics that the blood velocity is continuous both in depth and temporal directions. 

The global error is always twice the Nyquist limit, which makes the velocity discontinues. The 

tracking method is to compare the present point to the previous neighboring points, if the 

velocity varies beyond the Nyquist limit, then the present point is taken to have global error. 

Then the velocity in the present point should be added or subtracted twice the Nyquist velocity 

until the difference between its velocity and the velocity of previous neighboring points is 

within the Nyquist limit. The lower image (c) in Figure 9 is the results of the upper image (a) 

of Figure 9 by 2-D tracking method. It is seen that the quality of the velocity image has been 

improved. It should be mentioned that the velocity in the previous neighboring points is 

important for tracking. If the velocity of the reference points --neighboring points is not 

correct, it may cause velocity images with large errors. 

In Figure 10, there are three gray scale velocity images in which velocities within four times 

the Nyquist limits have been estimated by the EAM and the CCM, respectively. The 

experimental data is the same as in the experiment C. The depth averaging was 1.2~-Ls, the 

temporal averaging was 6ms with 3ms overlap between temporal averaging. There was no 

significant difference between the two images Figure 14 (a) and (b). The global errors can be 

seen in both images. The global errors can be reduced by 2-D tracking. This is shown in the 

lower image (c) in Figure 10. 

VI. Discussing factors which affect the Estimation Results 

A. The Effects of the Pulse Bandwidth and Signal to Noise Ratio to the EAM 

The velocity estimation variance and sensitivity versus the pulse bandwidth and signal to 

noise ratio was discussed in [17]. The velocity estimation variance decreases and the 

sensitivity increases with increasing pulse bandwidth as long as the signal to noise ratio is 

sufficiently high. Under poor SNR condition, the pulse bandwidth should be reduced in order 

to increase the sensitivity. To global error which is caused by choosing the wrong peak in the 
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Figure 9 Velocity image from subclavian artery analyzed by the EAM and the 

CCM. The Nyquist limit is 0.6255m/s and the velocities are within 2 times the 

Nyquist limit. Upper image (a) is the results by the EAM. Middle image (b) is the 

results by the CCM. Lower image (c) is obtained from the upper image with 2-D 

tracking. 
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Figure 10 Velocity image from subclavian artery analyzed by the EAM and the CCM. 

The Nyquist limit is 0.3128m/s and the velocities are within 4 times the Nyquist limit. 

Upper image (a) is the results by the EAM. Middle image (b) is the results by the 

CCM. Lower image( c) is obtained from the upper image( a) with 2-D tracking. 
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correlation function, it decreases with the pulse bandwidth [21]. It is because that the shape of 

the envelope affects the searching of the maximum. A sharp envelope makes it easy to tell the 

main peak from subsidiary peaks. A flatter envelope makes it difficult to find the main peak. 

Sometimes it can choose the wrong peak and the ambiguity associated with aliasing occurs. 

The shape of the correlation function envelope is determined by the pulse bandwidth. High 

pulse bandwidth signal corresponds to a sharp envelope. Narrow pulse bandwidth signal 

correspond to a flat envelope. 

Thus, there is trade-off between the wideband pulse and narrow band pulse since the 

optimization for the velocity estimation variance and sensitivity are contradictory. When SNR 

is low, the aliasing errors occur easily. This is because the correlation function for poor SNR 

conditions is flat compared to high SNR conditions. The estimation variance of the correlation 

function has heavy influence on the detection of the true peak in the correlation function, and 

aliasing error can occur. 

B. The Effect of the Depth Averaging Time and the Temporal Averaging Time to the 

EAM 

Increasing the depth averaging time and temporal averaging time, the estimation variance is 

decreased [22]. The depth averaging determines the range resolution. To get a high range 

resolution, the depth averaging can not be too long. The temporal averaging time affects the 

frame rate. To keep a high frame rate in color flow imaging, the temporal averaging time can 

not be too long. The temporal samples are typically 6 to 16. With a pulse repetition frequency 

of 5kHz, this corresponds to 1.2- 3.2 msec averaging time. 

C. The Effect of Measurement Angle and Velocity of Scatterers to the EAM 

When increasing the measurement angle, the transversal velocity increases. This increases 

the estimation variance due to the decorrelation caused by the beam profile. For the higher 

velocities, the transversal velocities are higher. This increases estimation variance the same as 

the results for increasing the measurement angle. 

D. The Effects of the Correlation Estimator 

The correlation estimator affects the estimate of the velocity. Several estimators are 

available such as the biased estimator, the unbiased estimator [20] and the normalized 

estimator [22]. Given Mx L 2-D sequence x(n,k), an unbiased estimator of the 2-D correlation 

function is defined as: 

M -lmi-1L -lll-1 
1 1 

cu(m, l) = M -lml L -Ill L L x(n, k)x*(n + m, k + l) 
n=O k=O 

A biased estimator of the 2-D correlation function is defined as: 
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M -lml - 1 L -Ill - 1 
1 

cb(m, l) = ML L L x(n, k)x*(n + m, k + l) 

n=O k=O 

A normalized estimator of the 2-D correlation function is defined as: 

M -lml-lL-Ill-1 
L L x(n,k)x*(n+m,k+l) 

n=O k=O 

M -lml - 1 L - II - 1 
x(n, k)x*(n, k) L L x(n + m, k+ l)x*(n + m, k + l) 

n=O k=O 

Among those, the biased and unbiased correlation function estimators were used in our 

simulation due to calculation requirements. The biased estimator has smaller estimation 

variance than the unbiased estimator, but its estimated amplitude does not approach the 

expected value of the autocorrelation function coefficient. The estimated amplitude of the 

correlation function is weighted by a triangular function window. The larger 1: in R(t,1), the 

larger bias. When there is a high velocity, the maximum amplitude of the correlation function 

corresponds to a large 1:. However, due to the effect of the triangular window, the maximum 

amplitude is easily located for small 1:. So the high velocity can't be estimated by using the 

biased autocorrelation estimator. The unbiased estimator has to be used to estimate the high 

velocities because its estimated amplitude of the correlation function is unbiased to the 

expected correlation function. The estimated amplitude is regarded as weighted by rectangular 

function window, the amplitude in large 1: is not attenuated. Unfortunately, it yields a much 

higher variance than the biased estimator for large 1:. 

The unbiased estimator is suitable to use for signal with high velocities, the biased estimator 

is suitable to use for signal with low velocities. If the unbiased estimator is used for the signal 

with low velocity, global error easily occurs and the estimation value is usually higher than the 

true value. If the biased estimator is used for the signal with high velocity, global error easily 

occurs and the estimation value is usually lower than the true value. Several correlation 

estimators have been investigated and that there is not a particular correlation estimator that 

can give good results in the whole velocity range from zero to four times the Nyquist limit for 

either the BAM or the CCM. 

The effects of the correlation estimator to the velocity estimation can be verified by the 

simulation and experiment. In this simulation, all the parameters are the same as in section IV 

except the depth averaging is lOj.Ls. The simulation results are obtained by applying the biased 

correlation estimator and unbiased correlation estimator with respect to low velocity case (0.2 

rn/s) and high velocity case. For each case, we have 50 simulation results which is presented by 

the histgram in Figure 11 and Figure 12. 
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Figure 11 Histgram for velocity estimation results (from 50 simulations) when 

velocity is 0.2m/s. The results by using the biased correlation estimator is in the 

left plot. The results by using the unbiased correlation estimator is in the right 

plot. 

From Figure 11, there are global errors in the right plot where the unbiased correlation 

estimator is used. No global errors in the left plot and the mean value is around 0.2m/s. That 

means the estimation results is better by using the biased correlation estimator than by the 

unbiased correlation estimator when the velocities are low. It is seen that for the same data, 

using different correlation estimator, we get different estimation results. 

From Figure 12, there are global errors in the left plot where the biased correlation estimator is 

used. 

In the right plot where the unbiased correlation estimator is used, no global errors have been 

observed and the mean value is around 3.2m/s. That means the estimation results is better by 

using the unbiased correlation estimator than by the biased correlation estimate when the 

velocities are high. 

In practice, the velocity range may be large. Whether the biased or the unbiased correlation 

estimator should be used depends on the velocity. However, the velocity is unknown until it is 

estimated by using the correlation estimator. Methods to choose the biased or the unbiased 

estimator are recommended by means of the bandwidth parameter. Because a high velocity 

scatterer of wide bandwidth has small correlation coefficient, the bandwidth can be 

represented approximately by the correlation coefficient as discussed in the correlation 

function model. 

The effect of the correlation estimator to the bandwidth parameter is not so crucial as to the 
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Figure 12 Histgram for velocity estimation results (from 50 simulations) wher 

velocity is 3.2m/s. The results by using the biased correlation estimator is in tht 

left plot. The results by using the unbiased correlation estimator is in the right plot 

velocity. It is feasible to use to the bandwidth parameter to determine the type of estimator. 

Figure 13 is a block diagram of blood velocity estimation. 

Input signal block 
output 

The biased __.... ~ 
correlation estimator ~ 

ThepowerP I 
The bandwidth B. No 

output result v=O 

Figure 13 Velocity estimation diagram using the biased or the unbiased estimator 

automatically by the bandwidth parameter. PO is the power threshold, BO is the 

bandwidth threshold. 

PO and the BO are the thresholds of the signal power and the bandwidth. If the power is below 

the power threshold, it means no blood signals have been detected or only noise is present, so 

the velocity is set to zero. If the signal has enough power, then test the bandwidth. If the signal 

has high bandwidth, then high velocities are possible. Then the unbiased estimator is chosen. 

Otherwise, the biased estimator is used. The velocity estimation refers to the BAM or the 

CCM. Figure 14 is an example for switching from the biased to the unbiased estimator 

automatically by using the bandwidth parameter. For comparison, we give the estimation 
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results using either biased correlation estimator or the unbiased correlation estimator in Figure 

15. 

Bandwidth waveform Velocity waveform 

quist velocity=0.62 5(m 

Time in second Time in second 

Figure 14 An example for switching the biased to the unbiased correlation 

estimator by means of the bandwidth parameter. 

Time in second Time in second 

Figure 15 The results comparison by using either biased correlation estimator or 

unbiased correlation estimator. Left plot is the results for using the biased estimator. 

Right plot is the results for using the unbiased estimator. 

Another velocity estimation diagram shown in Figure 16 can also be used. It uses only the 

unbiased estimator, but uses the bandwidth parameter to limit the velocity range. The velocity 

range processing means that the estimated velocity adds or subtracts twice the Nyquist limit 

until the velocity is within the defined velocity limit. When the bandwidth is low, the velocity 
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is low. Then the velocity range can be defined, for instance, within the Nyquist limit. 

input signal block 

~es 

correlation 
estimator 
~ 

P,B 1 
'No 

output result v=O 

continue 
the velocity 
estimation 

P: the power B: the bandwidth 

output result v 

Figure 16 Velocity estimation diagram using only the unbiased estimator. The low 

velocities are found by limiting the velocity range by means of the bandwidth 

parameter. PO is the power threshold, BO is the bandwidth threshold. 

The rectilinear velocity flow is only considered in the paper, so the bandwidth can be used 

to distinguish between high velocities and the low velocities. In practice, the turbulent flow is 

possible for the patient which signal components distribute all over the frequency range in the 

power spectrum and it has a broadband Doppler signal. The broadband implies two types of 

flow. To distinguish between these two types of flow, some prior knowledge about flow is 

needed. 

E. Effects of the Prior Knowledge of Flow to the Estimation 

The more the prior information, the better the estimation results. The prior information of 

flow includes the type of flow, the flow velocity range and the flow direction. The type could 

be rectilinear or turbulence flow. The flow velocity range, for example, is within the Nyquist 

limit, twice the Nyquist limit or multiple times the Nyquist limit. The flow direction is whether 

the flow is unidirectional or it has the positive or negative flow. 

In summary, the parameters which affect the estimation result in the CCM can also affect 

the estimation results in the EAM. 

Conclusions 

A new extended autocorrelation method to estimate the velocity in color flow imaging is 

presented. Compared to the autocorrelation method, it has small estimation variance and the 

capability to estimate high velocities beyond the Nyquist limit. The performance improvement 

can be explained by the depth information added in the estimation. The small estimation 

variance is due to the frequency compensation by using several samples of the signal in the 

depth range. The capability to estimate high velocities beyond the Nyquist limit is because the 
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envelope of the correlation function in depth is used. The frequency dependent attenuation and 

random fluctuation has not affected the EAM velocity estimation due to the frequency 

compensation. It is shown that the EAM and the CCM have similar performance. 

The processing time is mainly spent in the calculation of the complex correlation function 

in the EAM. In the CCM, the processing time is spent on the calculation of the RF correlation 

function in addition to the interpolation method. Because the EAM performs on the 

demodulated complex data in contrast to the RF data in the CCM, the computation requirement 

has been reduced greatly in the EAM. 

The estimate result to the EAM, as to the CCM, can be affected by many factors such as the 

SNR, the pulse bandwidth, measurement angle, scatterer velocities and the data block size. The 

global errors can be observed when estimating the velocity exceeding the Nyquist limit. By 

applying a 2-D tracking method, the amount of global errors can be reduced. 

The EAM has been verified by simulations and experimental RF data with velocities up to 4 

times the Nyquist limit. The CCM has also been applied to the simulation and experimental RF 

data for comparison. 

Appendix 

Mean Frequency Estimator 

It is shown that the complex Doppler signal is a complex Gaussian process. Therefore, the 

autocorrelation function R x( 't, n) and the power spectrum density G( rol' ro2 ) is a Fourier 

transform pair. The autocorrelation function can be written as 

(25) 
-00-1t 

Let dro denote mean frequency in depth direction, m is the mean frequency in the temporal 

direction. They are defined by 

00 1t 00 1t 

(26) 
-00-1t -00-1t 

00 1t 00 1t 

(27) 
-oo-1t -00-'Jt 

jro 1 't + jro2n 
Expanding e in (25) by a power series in the points dro, m 
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}AOO't+jmn[Joo 1tJ j(ro1 -Aro)'t+j(ro2 -m)n) 
Rx('t, n) = e; -oo dro1 dro2G(rol' ro2)e 

-1t 

(28) 

The first power term in (28) is zero. The approximation in (29) is valid when G(rop ro2 ) 

vanishes outside a small area around ro1 = Aro, ro2 = rn, the third and higher term approach 

zero. That implies G(ro1, ro2) should have a narrow 2-D bandwidth. Thus, (29) is a good 

approximation to the higher sampling rate signal both in the depth and temporal direction 

because this signal has a narrow bandwidth. 

From (29), the relation between the phase and the mean frequencies is: 

phase(R/'t, n)) = Aro't +ron 

The mean frequencies in the 2-D sampled signal is given by: 

phase(R/1, 0)) 
Aro = -----­

Ts 

phase(R/0, 1)) 
rn= T 

Ts is the sampling period in depth direction. T is the pulse repetition period 
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Interpolation Methods for Time Delay Estimation Using 

Crosscorrelation Method for Blood Velocity Measurement 

This is a revised version in accordance with reviewer's comments of paper: X. Lai, H. Torp, 

"Interpolation Methods for Time Delay Estimation in the RF-Signal Crosscorrelation 

Technique for Blood Velocity Measurement", which was submitted to IEEE Trans. on 

Ultrasound, Ferroelectrics, and Frequency Control. 

A part of this paper was published in: X. Lai, H. Torp, "Interpolation Methods for Time Delay 

Estimation in the RF-Signal Crosscorrelation Technique for Blood Velocity Measurement", 

Proceedings of IEEE International Ultrasonics Symposium, San Antonio, Texas, pp.1211-

1216, 1996. (In Appendix B) 
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Interpolation Methods for Time Delay Estimation Using 

Crosscorrelation Method for Blood Velocity Measurement 

Abstract 

The cross correlation method (CCM) for blood flow velocity measurement is based on time 

delay estimation of the echoes from pulse-to-pulse. The sampling frequency of the received 

signal is usually kept as low as possible in order to reduce computational complexity, and the 

peak in the correlation function is found by interpolating the correlation function. The 

parabolic-fit interpolation method introduces bias at low sampling rate to ultrasound center 

frequency ratio. In this study, four different methods are suggested to improve the estimation 

accuracy: 

1. Parabolic interpolation with bias-compensation, derived from a theoretical signal model. 

2. Parabolic interpolation combined with linear filter interpolation of the correlation 

function. 

3. Parabolic interpolation to the correlation function of the complex signal envelope. 

4. Matched filter interpolation applied to the correlation function. 

The new interpolation methods are analyzed both by computer simulated signals and RF­

signals recorded from a patient with time delay up to 2/fo, where/0 is the center frequency. The 

simulation results show that these methods are more accurate than the parabolic-fit method. 

From the simulation, the worst estimation accuracy is about 1.25% of l/f0 for the parabolic-fit 

interpolation and it is improved by the above methods to less than 0.5% of llf0 when the 

sampling rate is 10 MHz, the center frequency is 2.5 MHz and the bandwidth is 1 MHz. These 

improvement can also be observed in the experimental data. Furthermore, the matched filter 

interpolation gives the best performance when signal to noise ratio (SNR) is low. This is 

verified both by simulation and experimentation. 

I. Introduction 

Blood velocity is an important parameter for the clinical diagnosis of vascular disease. 

Ultrasound has become an indispensable noninvasive tool for blood velocity measurement. 

The pulse Doppler technique is widely used, because it can provide range resolution. With this 

method, sequential short ultrasound pulses are transmitted into the vessel or heart at a pulse 

repetition frequency (PRF). Return signals are received sequentially after a certain delay 
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following the pulse transmission. Due to the movement of the scatterers, the received echo is a 

time delayed version of the echo from the previous pulse if the time transit effects are not 

considered. In the conventional autocorrelation method [ 1] this time shift is estimated from the 

pulse to pulse phase shift of the complex signal envelope. In the cross correlation method 

(CCM) [2] and [3], the time shift of the echoes is estimated directly from the RF-signal. It has 

advantages over the Doppler method [4] in some circumstances. The main advantages are that 

CCM is a wideband estimator and it does not suffer from the Nyquist limit. The main 

drawback is the computational load due to RF-signal processing. 

In the CCM, the time delay is estimated by searching for the maximum correlation 

coefficient between the successive received echoes. If the received echoes are denoted as 

p(t, k), where tis the elapsed time after pulse transmission which corresponds to a certain 

depth from the transducer, k is the pulse number, its two dimension (2-D) correlation function 

is denoted R(t, m) which is defined as: 

R(t,m) = J(L,p(t,k)p(t+t,k+m))dt 
t k 

In the CCM, we use R(t, m) in the lag one, i.e. m=1 for estimating the time delay. Then the 

correlation function has maximum magnitude in the time delay tv, i.e. 

R(tv, 1) = max-r:R(t, 1). 

A 2-D correlation function model was given in [5]. The magnitude of the correlation 

function has a shape close to the Gaussian function [5]. With the approximated Gaussian 

envelope and without lateral transit time effect, a theoretical2-D RF correlation model is: 

t = v 
2Tvcose 

c 
(1) 

In which a is the standard derivation which is related to the transmitted signal bandwidth B by 

B=2Ja. Tis pulse repetition period, vis the blood velocity, cis the ultrasound speed, e is the 

angle between the ultrasound beam and blood vessel. Figure 1 is an illustration of the RF 

correlation function. 

In practice, the echo signal is discrete due to the sampling in time. The true location of the 

maximum correlation coefficient is not constrained to discrete increments, and may fall 

between the discrete sampling points which results in estimation inaccuracy. An interpolation 

technique is usually used to improved the time delay estimation accuracy [9]. Special interests 
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'*' sampling points 

Subsidiary peak 

Figure 1 RF correlation function R('t,m) when m=1 

to discuss the interpolation methods in the low sampling rate are: firstly, the computation to calculate 

the correlation function and to filter the wall signal. can be reduced. The received signal is usually 

composed of not only the blood signal but also the clutter signals or wall signal from the boundary 

and wall vessel, therefore, it is necessary to remove the wall signal prior to the time delay estimation. 

This is generally implemented by a highpass filter or a wall filter. This filtering is operated on the 

signal from the same depth. When the sampling rate in is lower, the wall filtering becomes simple. 

Secondly, most scanners use the Doppler method which is based on the baseband complex signal. The 

sampling rate is usually low in those systems. In order to implement the crosscorrelation technique in 

those systems, the interpolation methods are investigated. 

The most widely used interpolation method is the parabolic-fit which is simple but its estimation 

bias is high when the sampling rate to the center frequency ratio if/f0 ) is low (in the order of 4) [9]. In 

addition to the parabolic-fit, the cosine-fit [6], [7], [8] and [9] and the reconstructive interpolation 

methods [9] are also used. The cosine-fit interpolation can be used at fifo =4 with high estimation 

accuracy, but as mentioned in [7] it has velocity aliasing for velocities exceeding the Nyquist limit. 

The reconstructive interpolation method [9] and [10] is based on the Nyquist sampling theorem, that 

is, a bandlimited continuous-time signal can be reconstructed from its digital samples. The key 

component in the reconstruction is the ideal lowpass filter. It cannot be implemented in practical 

system, a reasonable approximated lowpass filter is used. Therefore, an approximated continuous­

time signal is reconstructed. Its computational time is usually longer than the other interpolation 

methods. 

In this work, four other interpolation methods are proposed and evaluated. The paper is organized 

as follows: In part II, the four interpolation methods are described. In part Ill, the performance of the 

cosine-fitting interpolation method, the reconstruction filter interpolation method and the other four 
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interpolation methods described in part II are compared by simulations. In part IV, the four 

interpolation methods are evaluated by the experiments. 

II. Interpolation Methods description 

A. Parabolic Interpolation with Bias-compensation 

It is seen from Figure 1 that the interpolation is necessary to get good time delay estimation. 

One simple interpolation method is parabolic-fitting, which has been used in many 

applications. In our application, the parabolic-fitting is performed near the peak and only 

requires a few operations. An illustration of parabolic-fit is shown in Figure 2. The parabola 

has the form y(x) = ai + bx +c. The location of the maximum coefficient: 

() = -b/2a = (y(-1)-y(1))/2(y(-1)-y(O)+y(1)) (2) 

The parabolic-fit works well at high sampling rate RF correlation function, but it has 

substantial bias when the sampling rate is low. Specially, it induces high bias to low Q-factor 

( Q = fol B ) signal which corresponds to narrow correlation function curve. The parabolic 

interpolation bias also depends on the location of the time delay, or blood velocity v. 

To a given velocity v, the parabolic interpolation bias b is: 

(3) 

" where f means a function of argument v, fs/jV, and Q. v is the estimated velocity and 

A( fs ) .. v v, fo' Q means v is a function of argument v, fs/jV, and Q. 

If we can predict the bias b, it should able be possible to compensate for it by using this 

priori knowledge. A theoretical prediction of the bias b can be obtained from correlation 

function model described in (1) when oversampling fifo and Q-factor are given. In order to 

obtained bias b, (1) should be written as a discrete form. Then we interpolate the discrete 

correlation function by parabolic-fit and search for the time delay i which maximized 

correlation magnitude. The difference of 'tv- i is the bias. Because the time delay 

corresponds to the velocity, we also get the velocity bias b. Varying 'tv in (1), the bias b for 

different velocity is obtained as plotted in Figure 3. 
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Figure 2 An illustration of the parabolic fitting 
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It is shown in Appendix 1 that in most applications, the v and the v is uniquely determined 

whenf/fo and Q are given. We can use a zero order approximation: 

(4) 

Rewrite (3) as: 

~ ~ j~ fs ) 
v = v + b = v + Jlv, fo' Q (5) 

The blood velocity estimated by (5) is the parabolic-fit with bias-compensation. Bias b is 

obtained from theoretical correction function model. The bias-compensation may be 

implemented by a lookup table. 

De Jong, et al.in [7] and [8] developed a correlation interpolation algorithm that 

approximates the correlation function by a cosine model. By using a few correlation 

coefficients, the parameter values in the model are solved and the location of the maximum of 

correlation function is estimated. Both the parabolic-fit with the bias-compensation and the 

cosine-fit interpolation methods use correlation function models. The difference between them 

is the envelope shape; the envelope to the model of the parabolic-fit with bias-compensation 

method is a Gaussian shape, the envelope to the model of cosine-fit interpolation is constant 

amplitude or it is a rectangular function for the truncated the correlation function. Thus, the 

cosine-fitting method uses an approximation correlation function model. The location (or time 

delay) of the maximum of the cosine function is solved from a few correlation coefficients. If 

Gaussian envelope is used, more correlation coefficients are required. 

The bandwidth B has been included in the parabolic-fit with bias compensation model, so it 
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2.5 

-2.5'-----'--------'--------'--------'------____u 
0 20 40 60 80 1 00 

The estimated velocity(% the Nyquist limit) 

The estimated time delay (1/2/0) 

Figure 3 The velocity estimation bias by parabolic interpolation for the signal 

with Q=l which is calculated from the theoretical correlation function model. 

can be applied to both narrow band signal and wideband signal. Nevertheless, the rectangular 

shape envelope is only a good approximation to the narrow band blood signal. Therefore, the 

cosine-fit can work well with the narrowband signal, however, there may have large 

estimation bias to the wideband signal. 

False peaks and aliasing. 

In the CCM, the velocity is estimated by the time delay which has the maximum correlation 

magnitude. In practice, there may be peak hopping or false peak errors, that is, the main peak 

may be mistaken from main peak to subsidiary peak due to the estimation variance of the 

correlation function. In the Doppler method [4], there is velocity aliasing when the true 

velocity is beyond the Nyquist limit. The aliasing appears at multiple of two times the Nyquist 

limit velocity. As discussed in [17], the false peaks in the CCM appear at time delays which 

are equivalent to the multiple of two times Nyquist velocity in the Doppler method, therefore, 

they are same kind of errors in the sense of aliasing. Thus, the peak hopping or false peak 

detection is also called aliasing in this paper and the velocity which corresponds to the time 

delay 112f0 is called the Nyquist limit. 

The parabolic-fit can only be applied locally around the peak. As a result, the first step in 

the parabolic-fit is to select the peak from the discrete correlation coefficients. Therefore, it 

can only improve accuracy when the global peak is correctly selected from the discrete 

samples. When fifo is low, the false maximum from the subsidiary peak is selected. As a 

result, aliasing occurs. This occurs more frequently with the narrowband signal because its 

envelope of the correlation function is flat. An aliasing example from practical blood signal is 
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shown in Figure 4. 

The cosine-fit interpolation uses the center ultrasound frequency and not the envelope of 

the correlation function. It discards the valuable envelope information, the velocity aliasing is 

inherent. 

"o" the &IWT1pled correl~ion function points with fa.ffO=B 
-0.5 

-6 -4 -2 0 2 4 6 B 
delay 

Figure 4 An illustration that the false maximum in the discrete 

correlation function is occurred when the ratio of the sampling rate to the 

center frequency is low. 

Effect of the Frequency Dependent Attenuation. 

The cosine-fit and the parabolic-fit for delay estimation both depends on the parameters of 

their own correlation function model, however, the cosine-fit uses more correlation 

coefficients than the parabolic-fit with bias compensation, the additional parameters are used 

to estimate the center frequency of the received signal. Hence, the frequency dependent 

attenuation does not degrade the cosine-fit interpolation method. 

In the parabolic-fit with bias-compensation, the frequency dependent attenuation may cause 

performance degradation. However, it is impractical to use the center frequency of the 

received signal and in this method the center frequency of the received signal is assumed to be 

equal to the center frequency of the transmitted signal. Nevertheless, this does not significantly 

affect the estimation results because the estimated velocity bias in the parabolic-fit with bias­

compensation is related to oversampling f lfo instead of / 0 • When fo has a shift Af ,J lifo+ Af) 

has little difference to f //0 • 

Effect of signal decorrelation. 

The correlation function model in (1) does not include the effect of signal decorrelation. 

When there is serious signal decorrelation, the bias-compensation method may increase 
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estimation bias and variance. However, in our experimentation and simulation signal which 

the lateral time transit effect has been included, the bias-compensation method still works 

well. No significant difference has been observed, as compared to the results of other methods. 

B. Parabolic-fit Interpolation Combined with Linear Filter Interpolation 

The parabolic-fit interpolation uses a few correlation coefficients in the vicinity of the 

maximum discrete point. According to Appendix 2, the requirement for oversampling to 

reduce the chance of aliasing is: 

fs 1t 
-> 
fo acos[exp(-2Q2

)] 
(6) 

In many cases, this requirement is not satisfied. Increasing f/!0 to Lf/!0 can reduce the 

chance of aliasing; where Lis the interpolation rate. It also reduces interpolation error by using 

parabolic-fitting. According to (6), the required L depends on the Q-factor of the signal. For 

Q=1 signal, if Lf/fo>6.42, there will be no aliasing induced by peak hopping error. Therefore, 

for a transmitted signal with a approximated two cycle period pulse (the central frequency is 

2.5MHz in our simulations later), an interpolation rate L=2 is sufficient to reduce the aliasing 

error induced due to low oversamplingf/!0=4. Furthermore, the estimation bias introduced by 

the parabolic-fitting is small when L=2. From Figure 3, the estimation bias has been reduced 

from 1% to less than 0.25% of l/f0 whenf/!0=4 is increased to f/!0=8. 

The digital approach of the linear filter interpolation is usually used to increase the 

sampling rate fromf/fo to Lf/!0 by using lowpass filter [10]. The process of increasing the 

sampling rate is introduced in [ 10] and a diagram for linear filter interpolation is plotted in 

Figure 5. 

Sampling 
rate 

~ w(n, 1) l"::l _ 
R(m,1)~~; ~R'(n,1) 

fs fs 

Figure 5 Block diagram of the linear filter interpolation 

If the sampling rate f, of the RF correlation function R ( m, 1) is interpolated to sampling 

rate fs', L = fs'lfs, then there are L-1 new sample points between each pair of points of 

R( m, 1). Initially, we set these interpolation point to zero, creating the signal: 
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{R(~ 1) 
w(n, 1) = L' 

0 

n = 0, ±L, ±2L ... 
(7) 

otherwise 

The spectrum of w(n, 1) contains not only baseband frequencies (i.e. -rt/L to rt/L ) of 

interest, but also the images of the baseband frequencies centered at harmonics of the original 

sampling frequency (±2rt/L, ±4rt/L, ... ) . Normally, to recover the baseband signal of 

interest and to eliminate the unwanted image components, it is necessary to use a digital anti­

aliasing filter with near ideallowpass characteristic: 

H(ro) = {: 
1t 

lrol < L 
otherwise 

A simple filter design, for the case L=2, is by window design method: 

h(n) = 
. (rtn) Sill 2 

rtn 
2 

n = 0,±1,±2, ... M 

Where M is the length of the window and h(n) has the coefficient with 

h(n) = {~ n = 0 

n = ±2, ±4, ... 

(8) 

(9) 

(10) 

It satisfies the zero-crossing criterion of ideal filters and is an efficient design where every 

other coefficient is zero and need not be computed in a practical implementation. 

In addition to the filter in (14), other halfband filters [10] are also of interest for 

interpolation by a factor of "two". They have a spectrum symmetric property where 

H(ro) = 1-H(rt-ro) 

This also improves computation efficiency. 

In this interpolation method, the sampling rate of the correlation coefficients is increased by 

a small factor before the parabolic-fit. This is more efficient than the reconstruct filter 

interpolation [9] in which the interpolation rate L has to be very high (L=50) to get similar 

estimation accuracy. 
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C. Parabolic Interpolation to the Correlation Function of the Complex Signal Envelope 

Most existing ultrasound scanners are already equipped to demodulate RF signal to the 

baseband signal. The sampling rate is lower in the baseband than that in RF-data. The 

minimum sampling rate is determined by the sampling theorem. To realize crosscorrelation 

technique on these scanners, in this method, the cross correlation function is calculated and 

interpolate in the baseband, and then remodulated to the RF domain. It is easier to interpolate 

the baseband signal since it is slowly varying compared to the RF signal. 

The modulation formula from baseband correlation function Rx(T.,k) to RF-band correlation 

function R(T.,k) [11] is: 

R(T., k) = 0.5Re(Rx<T., k)expU2nf0T.)) (11) 

From (1 ), the expected shape of the correlation function R, is Gaussian shape. It is conceivable 

that a simple way is parabolic-fit to the Gaussian function locally, that is, using several 

samples of the correlation function centered around its magnitude peak. An illustration of 

parabolic interpolation in the complex envelope is shown in the Figure 6. 

(a) Parabolic-fit in real part (b) Parabolic-fit in imaginary part 

Modulation from the complex envelope to the RF correlation signal is the most costly step 

in term of computation. One way to reduce computation is to modulate iteratively around 

magnitude peak [9]. At each iteration, only a few points are modulated to the RF band, and the 

RF magnitude is compared among those points. 

D. Matched Filtering for Interpolation 

Time delay estimation is used in many applications. A generalized crosscorrelation method 

was developed in the classical work [14]. The block diagram is in Figure 7. 
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A RF correlation function which is obtained from complex correlation function (a) and (b) 

Figure 6 An illustration of the parabolic interpolation to the correlation 

function of complex envelope. '*' is for sampled points. '-' is for interpolated 

curve. 

basic cross-correlation optimum linear 
filter 

Figure 7 Diagram of time delay estimate 

Due to the deteriorating effect of the noise on the time delay detection, a false peak may be 

produced and cause a false estimate of the time delay. The purpose of the optimum linear filter 

is to minimize the occurrence of false peaks. 

The optimum filter obtained in [14] was based on two conditions. One is that only two 

pulses have been transmitted and the other is no decorrelation between two received echoes. 

This is not the case here since more than two pulses have been transmitted and transversal 

velocity components are present. However, for simplicity, we still use the optimum filter of 

[14]. 

According to the criterion of maximizing the expected signal peak at 't' relative to the 

background noise, an optimum filter was given in [14] in term of signal and noise spectral 

density. However, it is certainly difficult to design the true optimum filter, since it has a 

complicated relationship to signal and noise spectral characteristics. Thus an Eckart filter [14] 

is used. It uses the criterion that maximizes the ratio of the mean correlator output due to the 

signal present to the variance of the correlator output due to noise alone. The Eckart filter is an 

approximation of the optimum filter when SNR is low. This Eckart filter is also referred to as a 

matched filter. This was also discussed in Appendix B. The matched filter for estimating time 

delay is 
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m(-r) = f<R(t, l))R(-r-t, l)d-r1 (12) 

where R (t, 1) is the estimated correlation function from the signal, and R ( 't", 1) is the 

correlation function model. A correlation function model in which transit time effect is not 

taken into account is used and it is: 

(13) 

The peak detector is performed on filtered signal m(-r). 

Matched Filter Interpolation. 

The matched filter can also be used in the interpolation for estimation time delay when the 

RF-signal is sampled with a low sampling rate. The matched filter is the expected correlation 

function as in (18). Thus, it can be sampled according to our requirements. 

In this application, the matched filter is sampled by Is', which is rather higher than .f,. and 

where 111
5

' satisfies the resolution of the time delay estimation. This densely sampled 

matched filter can also be used as an anti-aliasing filter in the linear interpolation, where it is 

unnecessary to use an additional narrowband anti-aliasing filter. Thus, the matched filter has 

two functions: one is that it is a suboptimal linear filter which maximizes the signal peak to 

output noise, and the other is that it replaces the narrowband anti-aliasing filter which 

eliminates the image spectra produced in the zero padding. An implementation of the matched 

filter interpolation is illustrated in Figure 8. 

' 
R(m, 1) w(n, 1) 

anti -aliasing 

and match filter 

I/ =f5 XL 

m(n) 

Figure 8 Block of the match filtering and interpolation 

The correlation function is sampled by .f,.. Lis interpolation rate. w(n, 1) is a function after 

L-1 new zero values between each pair of sample values of R(m, 1) has been padded. It has 

the same sampling rate Is' as matched filter R(n, 1). The typical spectra is illustrated in 

Figure 9. 
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ro 

The baseband frequencies of(a) 

The spectrum after zero-padding which includes the baseband 
frequencies and their images centered at harmonics of the 
original sampling frequency 

0 

IR(ro')l 

(\ 
21t ro' 

The spectra of the matched filter 

lm(ro')l 

The spectra of the interpolated and matched correlation 
function 

Figure 9 Typical correlation function waveforms and theirs spectra for matched filter 

interpolation 
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Comparing Matched Filter Interpolation with Reconstruction Filter Interpolation to Find 

Time Delay 

A reconstructive linear filter interpolation method is used to reconstruct a sampled signal. 

The purpose of matched filtering for detecting the time delay is to maximize the expected 

signal peak relative to output noise, rather than the reproduction of the crosscorrelation 

function signal. In frequency domain, the difference of these two method is the anti-aliasing 

filter. The matched filter interpolation method uses a priori information about the correlation 

function. It has similar spectral shape and bandwidth that is similar to the correlation function 

spectrum. For the reconstruction method, an ideal anti-aliasing lowpass filter is used. When 

the SNR is high, the two methods perform similarly. However, when the SNR is low, the 

matched filter interpolation method perform better because it has a narrower bandwidth than 

the lowpass filter, which is used in the reconstructive linear interpolation method. The 

difference in performance becomes most significant when the received signal has narrow 

bandwidth. The computational complexity is similar for both the reconstruction interpolation 

and matched filter interpolation method. Using FIR lowpass filter can reduce the computation. 

Using multistage implementation of the interpolation [10] and iterative implementation 

approach [9] can reduce the computation further for both the matched filter and the 

reconstructive interpolation. 

III. Evaluation the Interpolation Methods by Simulation 

Simulation signal 

The blood signal model used here is the same as in [17], where the 2-D blood signal is 

generated by a 2-D convolution between the echo response h(t,k) from a single scatterer and a 

2-D Gaussian random signal n(t,k). In this model, the transit time effect in the lateral beam 

profile direction is included. The echo response in this simulation is: 

h(t, k) = exp( ;:}os(21tj0 t)b(kTvsin9) 

where b is the transverse beam profile and it is assumed to be a Gaussian function [5]. 

b(d) = exp(-3tf 12B
2

) is used in our simulation, where B is the beam width. A Gaussian 

shape envelope in the echo response was used, as discussed in [17]. With a wideband signal, 

the standard deviation is set to a = l/f0 , giving a pulse length of approximately two cycle 

periods. The pulse bandwidth BW is defined as 1/ a which the magnitude of the envelope 

decreases by 8.69dB. 

The used parameters are given as follows. 

Pulse repetition frequency prj 6564Hz Ultrasonic measurement angle I:J lOdegree 
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Speed of sound c 1540m/s Temporal averaging ta 1.8ms 

Beam width Depth averaging ra 2.4f! s 

Center frequency fo 2.5MHz Bandwidth for transmitted signal 2.5MHz 

From above parameters, the Nyquist velocity is 1.0265(m/s). 

If the blood signal is given by z(t, k) = y(t, k) + n1 (t, k) , where y is the signal and n1 is 

the noise, the signal to noise ratio for the sampled blood signals is defined as 

I,I,/(n,k) 

SNR n k = lOlog 
2 

I,I,n 1 (n, k) 
(14) 

n k 

A. Velocity Estimation Bias and Standard Deviation by Using Different Interpolation Methods 

In [16], it was indicated that the mean frequency estimate based on the correlation function 

has a distribution close to Gaussian function, and that the estimation variance possesses a chi­

square distribution. In [17], it was shown that the CCM method and the mean frequency 

estimate method have the similar estimation results. Therefore, the estimation variance of the 

CCM method possesses a chi-square distribution. Reliability of the simulation is indicated by 

the 95% confidence interval. It can be obtained from the statistic [15] which is: 

[0.84SD, 1.25SD] where SD is the estimated standard derivation. 

Table 1 lists the results of velocity estimation bias and standard deviation (SD) by using 

different interpolation method from 50 independent simulations. A is parabolic-fit without bias 

compensation, B is the cosine-fit interpolation, Method 1 is the parabolic-fit with bias­

compensation. Method 2 is the parabolic-fit combined with linear filter interpolation. Method 

3 is the parabolic interpolation to the correlation function of the complex signal envelope. 

Method 4 is the matched filter interpolation. 
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Table 1: Velocity estimation bias and standard deviation (SD)(% 
Nyquist velocity) SNR=30dB,f/fo=4. 

0.2m/s 0.5m/s 1.2m/s 2.2m/s 3.2m/s 4.2m/s 

bias A -2.1919 0.3215 -- -- -- --

B -0.6332 -0.0779 -- -- -- --

Method I -0.0585 -0.0560 -- -- -- --

Method2 -0.3082 -0.5832 0.4834 0.5210 0.7866 0.3295 

Method 3 -0.093 -0.049 0.097 0.010 0.195 0.023 

Method4 0.434 0.591 0.818 0.880 0.721 0.418 

SD A 1.2859 1.1593 -- -- -- --

B 1.0619 1.4126 -- -- -- --

Method I 1.0326 1.4189 -- -- -- --

Method2 1.1412 1.4588 1.8770 1.9351 2.5188 3.0802 

Method3 0.922 !.442 1.724 1.812 2.289 2.871 

Method4 1.007 1.474 1.841 1.938 2.565 3.079 

The results show that method 1 reduces velocity estimation bias significantly. Cosine-fit 

interpolation gives similar results. Because the parabolic-fit method suffers from aliasing, it is 

usually limited by the Nyquist limit (the time delay is within 1/2/0). Thus, only the estimation 

results to the velocities within the Nyquist limit are given in those methods. 

For Method 2, 3, and 4, velocities up to 4 times the Nyquist limit, or the time delay up to 2/ 

fo have been estimated. The results for velocities which are within the Nyquist limit are similar 

to the results of Method 1. It should be mentioned that Method 3 operates with the 

demodulated signals, the sampling rate can also be reduced from 10 MHz if/!0=4) to 5MHz if/ 
/ 0=2) or even 2.5 MHz if/!0=1) as illustrated in Table 2. 
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Table 2: Velocity estimation bias and standard deviation for method 

3 in differentfl.fo rate, SNR=30dB 

0.2lllls 0.5lllls 1.2m/s 2.2lllls 3.2lllls 4.2m/s 

bias - - 0.097 0.010 0.195 0.023 

fs/fU=4 0.093 0.049 

SD 0.922 1.442 1.724 1.812 2.289 2.871 

bias - - - - - -

fs/!0=2 1.042 0.164 0.906 0.619 0.380 0.277 

SD 1.111 1.564 1.783 2.026 2.192 3.124 

bias - - - - - -

fs/!0=1 0.978 0.833 0.710 0.713 0.083 0.287 

SD 1.171 1.662 1.848 1.936 2.519 2.943 

The sampling rate for the matched filter is 50 times higher than that of the signal, i.e. 500MHz. 

The theoretical velocity accuracy is about 0.5% of l/f0 in this case. The results show that there 

is no significant difference to the results of Method 2 and 3. 

B. Performance Comparison between the Interpolation Methods in the Low Signal to Noise 

Ratio Circumstance 

As mentioned above, due to the deteriorating effect of the noise on the time delay detection, 

a false peak in the correlation function may be appeared. This leads to a wrong estimation. The 

simulation in this section shows that the probability for wrong peak detection is reduced by 

using matched filter method. 

Four interpolation methods mentioned in this paper plus the reconstructive interpolation 

method [9] are applied to the simulation signal for Q=3 and SNR=-6dB for comparison. The 

length of transmitted pulse is approximately six cycle periods. In this case, the required 

interpolation rate L for method 2 is 5 according to (11). 

The results are from 900 simulations. The velocities vary from 0. hn/s to 0.9m/s by interval 

O.lm/s (The Nyquist limit is 1.0265m/s). In this simulation, the velocity estimation range has 

not been limited for method 1. The purpose is to display the aliasing error due to the low 

oversampling. 

Histogram for velocity estimation bias are plotted as in Figure 10. The distribution of the 

bias around zero shows the velocity estimation variance. Due to the aliasing, some estimates 

were distributed around twice the Nyquist limit which corresponds the time delay llf0 • 
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Velocity estimation bias(m/s) 

(a) Parabolic-fit b) Matched filter interpolation 

with bias compensation 

4 ~1.5 ~1 ·4J 0 0.5 

(C) Parabolic-fit combined 

linear filter interpolation 

(d) Parabolic-fit to the 

complex correlation envelope. 

(e) The reconstructive 

filter interpolation. 

Figure 10 Histogram (from 900 simulations) for velocity estimation bias with 

simulation signal Q=3 and SNR=-6dB. 

The interpolation rate is 50 in the reconstructive interpolation. The lowpass filter used in this 

case is FIR filter designed by window method with a Blackman tapering window. The length 

of filter is 801 samples. 

From the simulation results, it is seen that the matched filter gives best performance at low 

SNR. This improvement is even more significant for narrow bandwidth signal since the 

matched filter is more efficient to removed noise in narrow band case. 
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C. Computation comparison 

To implement the CCM method, the received RF data is necessary to pass a highpass filter 

prior to the correlation function calculation. The computation is usually high when the 

sampling rate is high, due to filtering and correlation function calculation. Table 3 gave 

approximated amount of multiplication operations for flfo=8 with parabolic interpolation 

method and f/!0=4 with four new interpolation methods. All the methods listed in Table 3 

gives similar estimation accuracy, however, the number of operations required for the case// 

fo=4 is reduced. 

In Table 3, we assume that a regression filter is used as a high pass filter [18] and the 

number of operation needed for the high pass filter is 2(p+1)K [19] where pis the order of 

regression filter and K is samples in temporal direction. The number of operations required for 

the correlation function calculation is assumed to be proportional to data block size N*K, 

where N is samples in depth direction. 

Whenf//0=8, the parabolic interpolation method is used, and only one division is required 

as in (2). Whenf/fo=4, interpolation method 1 uses the parabolic-fitting and then looking for 

table for compensation. Only one division is needed in this interpolation method. 

In the interpolation method 2, we interpolate the correlation function R(n, 1) by a small rate 

using linear filter interpolation method. In our simulation, we used a halfband filter and the 

number of operation for this linear filter interpolation is 51. 

In interpolation method 3, we have to modulate the complex signal to RF domain. This is a 

time-consuming process. In order to save the computation time, we modulate some samples 

and choose the global maximum. Then we use iteration around the maximum samples. At each 

iteration, only two samples are modulated. In our simulation, total number of operations for 

this interpolation method is 88. 

In interpolation 4, the computation is usually high for high interpolation rate. To save the 

computation time, we used a method similar to the interpolation method 3. In our simulation, 

the number of operations is 748. A summary of the number of operations is in Table 3. The 

histogram in Figure 11 shows the difference of the number of operations for the case when 

N=48 (jjf0=8), K=32 andp=3. 

It is shown that the amount of operations is reduced whenf//0 is reduced to 4. Furthermore, 
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the amount of operations can be reduced significantly when the originalf/.fo is higher than 8. 

Table 3: A comparison of the number of operations for different interpolation 
methods 

f/frF8 f.lfo=4 

Parabolic-fit- method 1 method 2 method3 method 4 
ting 

Wall filter N(p+l)K N(p+l)K/2 

Correlation function N*K NK/2 

Interpolation 1 1 51 88 748 

Total for case N=48, 7681 3841 3891 3928 4588 
K=32andp=3 

Figure 11 A comparison of the amount of operations for different interpolation methods 

0.8 
A 
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D. Summary the Simulation Results 

A: f /!0=8 with parabolic-fitting 
B:f/!0=4 with itJ,terpolation method 
C:f/!0=4 with interpolation method 
D:f/!0=4 with interpolation method 
E: j/J0=4 with inierpolation method 

.•. 

c D E 

From simulation results, it is seen when the true velocity is within the Nyquist limit, method 

1 gives similar performance to other interpolation methods and it has shortest computation 

time. Methods 2, 3 and 4 give good results up to 4 times the Nyquist limit. Method 4 gives the 

best performance when the signal to noise ratio is low. Table 4 summarizes the characteristics 

of the interpolation methods. The choice of the interpolation method depends mainly on the 

specific application. 
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Table 4: Summarizes the characteristics of the interpolation methods 
Method 1: Parabolic-fit with bias-compensation 
Method 2: Parabolic-fit combined linear filter interpolation 
Method 3. Parabolic-fit to the complex correlation envelope 
Method 4: Matched filter interpolation 

Method 1 Method2 Method3 Method4 

Perform on RF or baseband RF-band RF-band Baseband RF-band 
signal 

Ovesamplingf/fo flfo=4 flfo=4 flfo=1,2,4 flfo=4 

Estimation Error small small small small 

Velocity estimation range within the excess the excess the excess the 
Nyquist limit Nyquist limit Nyquist limit Nyquist limit 

Computation time short medium medium long 

Using a priori information yes no no yes 
of the theoretical correla-

tion model 

Performance for low SNR Not good Not good Not good Best 

IV Experimental Evaluation 

The interpolation methods are verified by experimental data from human subclavian artery. 

The RF data from a ultrasound scanner (Vingmed CFM 800) was collected in real time via a 

custom data acquisition system. The slow tissue movement signal in the raw data was removed 

by a 4th order IIR butterworth high pass filter with normalized cutoff frequency 0.155. Then 

the data was demodulated with center frequency 2.5 MHz. 

A. The Parabolic Interpolation with Bias-compensation Applied to Experimental Data with the 

Velocities within the Nyquist Limit 

The parameters in this experiment were the same as in the simulations. When method 1 is 

applied to the signal withf/!0 =4, aliasing is easy to be occurred. Thus, we only applied this 

method to a set experimental data with velocities within the Nyquist limit. The experimental 

results from the subclavian artery are shown in Figure 12. The cosine-fit method is also 

applied to the same experimental data for comparison. 
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time in second 

'-'cosine-fit intetpolation, 

'--'parabolic-fit with bias-compensation. 

Figure 12 Experimental evaluation of Parabolic-fit with bias-compensation, 

parabolic-fit and cosine-fit interpolation 

It is seen that method 1 has significantly improved the result. There is no significant 

difference between method 1 and the cosine-fit interpolation method. 

B. The interpolation methods applied to the experimental data with velocities up to 2 times the 

Nyquist limit 

The Experimental data from the subclavian artery with the velocities up to twice the 

Nyquist limit was obtained. In the experiment, the center frequency is 2.5 MHz, the sampling 

rate in depth is 10 MHz, the pulse repetition frequency is 4kHz. The depth averaging is 1.0~ s. 

The temporal averaging is 3ms. The results in Figure 13 and Figure 14 show that method 2, 3 

and 4 can interpolate the correlation function with the velocities beyond the Nyquist limit. 

From (a), (b) and (c) in Figure 14, (c) has fewest velocity aliasing errors. Since the Q-factor in 

this experiment data is only 1, the performance improvement of the matched filter 

interpolation is not as significant as that in the simulation where Q is 3. 
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1.4,---------------, 1.4,---------------, 

Time in seconds 
(a) 

'--'in (a) parabolic-fit to the complex correlation envelope 

'-'in (a) and (b) matched filter intetpolation. 

'--' in (b) parabolic-fit combined with linear filter intetpolation. 

(b) 

Figure 13. Experimental evaluation: Method 2, method 3 and method 4 applied to 

the experimental data with velocities up to twice the Nyquist limit. 

In Figure 14, velocity aliasing errors can be seen. This is due to the fact that factors such as 

depth averaging time and temporal averaging time, correlation function estimator and signal to 

noise ratio all can affect the estimation variance of the correlation function. The matched filter 

method can only reduce the velocity aliasing error caused by low signal to noise ratio. Aliasing 

can be further reduced by a 2-D tracking method. It is based on the knowledge from flow 

physics that the blood velocity is continuous both in depth and temporal directions, while 

aliasing makes the velocity discontinuous. When a velocity discontinuity in the velocity image 

is detected, then twice the Nyquist velocity should be added or subtracted until the difference 

between its velocity and the velocity of neighboring points is within the Nyquist limit. The 

velocity image after 2-D tracking is shown in Figure 14 (d). 
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(a)Velocity image obtained with method 2 
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(c) Velocity image obtained with method 4 matched 
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(b)Velocity image obtained with method 3 

parabolic-fit to the complex correlation envelope. 

-2 -1.5 -1 -0.5 0 0.5 1.5 
the ruler to velocity(m/s) 

(d) 2-D tracking method applied to the 
velocity image in (a). 

2 

Figure 14 Velocity image of the Subclavian artery with the velocities up to twice the 
Nyquist limit. 
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C. The methods applied to the experimental data with velocities up to 4 times the Nyquist limit 

The experimental data with velocities up to 4 times the Nyquist limit was obtained by deci­

mating above the RF data to reduce the pulse repetition frequency, so a lower Nyquist velocity 

was obtained. This decimation was performed prior to the wall motion filter. The depth aver­

ring is 1 .2jl s, i.e 12 samples. The temporal averaging is 6ms, i.e. 12 pulses by the repetition 

frequency 2kHz. The estimation results are in Figure 15 and Figure 16. The aliasing can be 

reduced by 2-D tracking in the velocity as shown in Figure 16. 

-0.2 -0.2 

-0.4 -0.4 

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.16 0.2 
(a) 

Time in seconds 
(b) 

'--'in (a) parabolic-fit to the complex correlation envelope 

'-'in (a) and (b) matched filter interpolation. 

'--'in (b) parabolic-fit combined with linear filter interpolation. 

Figure 15 Experimental evaluation: Method 2, method 3 and method 4 applied 
to the experimental data with velocities up to 4 times the Nyquist limit. 
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(a) Velocity image obtained with method 2 parabolic­

fit combined with linear filter interpolation. 
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(c) Velocity image obtained with method 4 
matched filter interpolation to the correlation func­
tion. 
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0.05 0.1 0.15 0.2 0.25 
time In aeconda 

-1 -0.5 0 0.5 
the ruler to veloclty{mla) 

(b)Velocity image obtained with method 3 parabolic· 
fit to the complex correlation envelope. 

0.05 0.1 0.15 0.2 0.25 
timo in •CKloncb 

-1 -0.5 0 0,5 
tho rulor to vel¢¢lty(ml•) 

(d) Velocity image obtained with 2-D tracking 

applied to image (a) 

Figure 16 Velocity image of the Subclavian artery with the velocities up to 4 times 
the Nyquist limit. 
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V. Conclusions 

Four interpolation methods for time delay estimation in the RF-Signal crosscorrelation 

technique for blood velocity measurement are presented. All the methods have higher velocity 

estimation accuracy than the parabolic-fit whenf//0 is 4. The estimation accuracy is improved 

from 1.25% to 0.5% of llf0 compared to the parabolic-fit interpolation method whenf/!0=4 

and Q=l. 

The first method, parabolic-fit with bias-compensation, has shortest computation time, but 

suffers from aliasing at low oversampling. It works well if the velocity range is limited within 

the Nyquist limit which corresponds to the time delay 1/2/0• This interpolation method was 

compared to the cosine-fitting interpolation in this work. It is shown that while both methods 

suffer from aliasing, parabolic-fit with compensation produces a smaller variance when 

applied to wideband signal. 

The second method, parabolic-fit combined with linear filter interpolation, avoids much 

aliasing by interpolating the correlation function to a higher sampling rate. Its computation 

time is between method 1, methods 3 and 4. 

The third method, parabolic-fit to the complex correlation function envelope, performs as 

well as method 2, but requires intensive computations modulating baseband signal to RF-band. 

An iterative approach can reduce computation time greatly. 

The fourth method, matched filter interpolation, maximizes the expected peak value 

relative to noise. This method was compared to reconstructive filter interpolation, which 

reconstructs the crosscorrelation function. It is shown the matched filter interpolation method 

performs better than the reconstructive filter method when SNR is low. Since the matched 

filter was designed to remove noise power, the matched filter interpolation method gives best 

performance when SNR is low. This performance improvement is more significant for narrow 

band signal. 

The interpolation methods were verified by simulations with velocities up to 4 times the 

Nyquist limit corresponding to the time delay 21/0 • Further verification was provided by in vivo 

measurements in a subclavian artery with velocities up to 4 times the Nyquist limit. Velocity 

images have been obtained using method 2, 3 and 4. Most pixels seem to display the correct 

velocities but a small number of pixels still demonstrate aliasing. A 2-D tracking was used to 

further reduce aliasing. 
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Appendix 1 

The explanation for the unique determined relation ofv and v 

From Figure 3, the predicted velocity bias b can be approximated by; 

h N 
v = v- b = v -psin

200
nv (15) 

where pis the maximum magnitude of the estimation bias. N=f/!0 is oversampling, vis the true 

velocity in terms of percent of theN yquist limit. 

The first order derivative with respect to vis: 

when p 2~0n < 1 , i.e. 

200 
pN<-

1t 

(16) 

(17) 

then v' is strictly positive and it is a monotonic function of v. (17) is usually true, for instance, 

pN = 2.5 x 4 < 
200 

for the signal with Q=1 shown in Figure 3. 
1t 

Appendix 2 

Requirement of the oversampling to reduce likelihood of aliasing in the curving-fitting 

Considering the correlation function R('t, 1) and its sampled version R~, 1), if the true 

time delay 'tv happens to lie midway between two sampled points and a subsidiary peak lies 

on a sampled point, then the possibility exists that the sample point of the subsidiary peak has 

a high value than the point of the true peak, causing aliasing (refer to Figure 1 and Figure 4). In 

the worst case, we have sample points at 'tv± 2~s (half sampling period on both sides of 'tv) 

and at 'tv± Ta (the two nearest subsidiary peaks on the both sides of 'tv), Aliasing occurs when 
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Assuming the correlation function model (1), then (18) becomes: 

Since f. is usually high compared to ~ , we use the approximation 

Then (19) can be written as: 

(
nfo) 2 cos fs ~ exp(-1/2(crj0 ) ) 

The required oversampling to reduce likelihood of aliasing is: 

fs n 
-> 
fo acos[exp(-112(crj0)

2
)] 
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Experimental Evaluation of Regression and Finite Impulse 

Response Clutter Filter in Colour Flow Imaging 

Abstract 

In pulsed wave Doppler ultrasonic measurements, a highpass wall filter is used to suppress the 

clutter signal prior to the blood velocity estimation. In order to achieve an acceptably high 

frame rate in CFI, only several pulses from each beam direction are available for analysis. The 

conventional highpass filters (IIR and FIR) have a settling time which must be removed prior 

to the velocity estimation. However, this reduces velocity resolution. In order to reduce the 

settling time, only low order FIR filters or IIR filters with special initialization can be used. In 

addition, a regression filter was proposed [3]. 

In this work, the FIR clutter filter and regression clutter filter have been evaluated using 

experimental data from the subclavian artery and the mitral region of heart. The results show 

that when the number of segments is short (less than 16), the regression filter gives better 

results than the FIR filter. When the number of segments is increased to 30, no significant 

difference exists between the FIR filter and the regression filter. 

I. Introduction 

In continuous waved Doppler (CW), pulsed wave Doppler (PW) and color flow imaging (CFI) 

systems, the received Doppler signal not only includes the blood flow signal, but also includes 

noise and echoes from boundaries and slowly moving solid tissue, which is commonly referred 

to as the clutter or wall signal. This clutter signal is usually 60-100dB higher than the blood 

signal. A highpass filter must be used to remove the unwanted clutter signal prior to velocity 

estimation. This clutter filtering is one of the most critical components for high quality colour 

flow imaging. An optimal highpass filter is one that can remove high magnitude clutter signals 

and pass the blood velocity signal. In CW, an analog highpass filter can be used [1]. In PW 

Doppler, either a combined highpass and lowpass analog filter or conventional digital IIR 

(infinite impulse response) and FIR (finite impulse response) highpass filter can be exploited 

to suppress the clutter signal [1]. The IIR filter is often preferred, because it has a steep 

transition band with low order. In CFI, in order to achieve an acceptably high frame rate to 

measure fast varying of flow phenomena, only 4-16 pulses are available for analysis from a 

line of sight. This requires the filter to have a short transient response. A number of different 

approaches has been proposed for this purpose. IIR filters usually exhibit a long transient 

response. Therefore, in this case, special precaution should be taken to initialize filters to 
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reduce the transient time [ 4] [5]. FIR filters with short impulse response can also be used, 

however, some output samples which equals to the filter order must be discarded. Furthermore, 

a low order FIR filters limits the clutter capability of suppression. A regression filter was 

proposed in [3]: the slowly varying wall signals is fitted to a curve which is then subtracted 

from the Doppler signal. The advantage of this technique is that the number of output samples 

is not reduced. 

In this work, we compared experimentally the performance of FIR clutter filter and the 

regression clutter filter. 

II. FIR clutter and Regression Filters 

A. FIR clutter Filter 

In order to remove high amplitude low frequency wall signals, the filter should have 

sufficiently high stop-band damping. In addition, in order to prevent the filter from removing 

the blood signal, the filter should have a steep transition band. Thus, a high order FIR filter is 

required. Inadequate clutter filtering will introduce bias into the velocity estimation. Clutter 

artifacts pulls the estimated velocity towards the clutter velocity (negative bias). A filter with a 

broad transition band may remove the blood signals and limit their detectability. As a result, 

the estimated velocity has a positive bias. 

The long settling time of the high order FIR filter means that some sample points must be 

discarded prior to estimation. For a long signal segment, the estimation would not be 

significantly affected by discarding several samples. However, for a short signal segment, the 

estimation variance will be increased greatly by the reduction of sample points. Therefore, 

there is trade-off between the FIR filter order and the performance of the filter. In this work, a 

first and a second order FIR filters, as well as a high order (8th order) FIR filter were studied. 

In radar and sonar system as mentioned in [1] and [6], a simple first order FIR filter is usually 

used to remove the stationary signal. Using this technique, the received signal from two 

consecutive ultrasound pulses are subtracted. e.g., 

z(k) = y(k)-y(k-1) (1) 

where z(k) is the filtered data, y(k) is received Doppler signal. Its performance is described by 

its frequency transfer function, as shown in Figure 1. 
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Figure 1 Frequency response of FIR filter 

This filter is limited to be removal of small magnitude wall signals. Furthermore, its cut-off 

frequency is high (for example, to remove a 40 dB wall signal, the cut-off frequency is over 

0.5n) which means it may also removes blood signal and the velocities lower than half the 

Nyquist limit will not be estimated correctly. 

The advantage of this filter is that it has the shortest settling time of all the FIR type filters and 

is easy to implement in real time. 

A second order filter which is also used in radar systems can be described by 

z(k) == 0.5y(k)-y(k-1)+0.5y(k-2) (2) 

It is also easy to implement in real time because no multiplication is required. Its frequency 

transfer function is also shown in Figure 1. Compared to the first order filter, the performance 

of the second order filter has been improved. In order to remove a 60dB wall signal, the cut-off 

frequency is about 0.37t. However, the setting time is longer than the first order FIR filter. 

Although the second order filter has better performance than the first order filter, its transition 

band is still wide. For cardiac examinations, the simple FIR filter is not adequate for removing 

the tissue signals, since the heart walls are moving rapidly and produce quite large Doppler 

shifts. Thus, other high order FIR filters must be used. In Figure 1, a frequency response for a 

8th order FIR filter is plotted. This filter is obtained by using the window design method: 

Kaiser window with a beta-value of 2.5. 
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B. Regression filter 

The regression filter, or polynomial fitting is based on the fact that the short signal segment can 

be assumed as the sum of a curve (or straight line) for which reflects a slowly varying, low 

frequency clutter signal and a fluctuation around this curve for which reflects a quickly varying 

high frequency blood signal. By subtracting the curve from the Doppler signal, the clutter 

signal can be suppressed. An example of regression filtering is shown in Figure 2. In the left 

side, the solid curve is the Doppler signal, the dashed line is the clutter signal. By subtracting 

the clutter signal from the Doppler signal, the blood signal is obtained (Figure 2). 
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Figure 2 An example of regression filtering. (a) The Doppler signal and 

estimated clutter signal. (b) The filtered segment (The Doppler signal minus 

the estimated clutter signal). 

If input Doppler signal is denoted as a vector: 

x = (x(l), ... , x(N)), 

output filtered signal as a vector 

y = (y(l), ... , y(N)). 

From [2], we have y = Ax, where A = {a(n, m)} is a filter matrix and 

N 

y(k) = I, a(n, k)x(n) k = 1, 2, ... K 

n = 1 

(3) 

If we assume that the clutter signal is contained in a subspace K of eN, the projection 

transform P K from eN onto K gives the least square fit to the clutter component. If we have an 

orthonormal basis for eN, the filter operation can be performed by calculating the projection 

along each basis vector, and subtract the projection from the original signal. i.e. 

~ = A~ = (I- p K)~ (4) 
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where I is the identity matrix. One of the most frequently used set of orthogonal polynomials is 

the Legendre polynomials {bn}, which are orthogonal on [-1 1] with respect to the weigh 

function w(k)=l. The bn are given by: 

2 3 3 
b0 (k) = 1, b1 (k) = k, b2 (k) = k -113, b3 (k) = k - :5k 

The Legendre polynomials {bn} can also be obtained by applying the Gram-Schmidt 

orthonormalization process to the algebraic polynomials { 1, k, k
2

, k
3 
... }. 

In fact, the filtering results remains the same by using the equal order algebraic polynomial [ 4] 

and orthogonal polynomials. The advantage of using orthogonal polynomials is that this 

technique minimizes the operations needed to find the coefficients. From [4], the number of 

operations (add/multiply) for matrix implementation of regression filtering is 2(P+ 1 )K, where 

P is the basis order, N is the segment length. Due to the symmetry of the basis vectors, the 

number of operations required to find the coefficients by using orthogonal polynomials is 

(P+1)K. Furthermore, the projected coefficients are independent due to the orthogonal 

property of the basis function. This makes the higher order regression results can employ the 

lower order regression results. This fact is extremely useful for adaptive filtering. However, by 

using algebraic polynomials, a new equation has to be solved for different order regressions. 

The performance of time invariant IIR and FIR filters can be evaluated from their frequency 

response. The filtered output signal is the convolution in the time domain of the filter and the 

input signal. For the regression filter, the filtered signal is the difference between the input 

signal and the estimated clutter signal. However, a frequency response function H(ro) was 

defined in [2] to evaluate the quality of the regression filter. It was defined as the power of the 

output signal when the input is a complex harmonic signal. i.e., 

x(k) = t!kro k = 1, ... K (5) 

N 

y(k) = L a(n, k)inro (6) 

n = 1 

N 

H(ro) 
1 2 
N L IAk(ro)l (7) 

k = 1 

The quantity A k( ro) is the Fourier transform of row number k in the filter matrix. From this 

frequency response of the regression filter, the cut-off frequency decreases by increasing the 

signal segment. However, the cut-off frequency of the regression filter increases with filter 
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Figure 3 Frequency response for the regression filter. (a) N=8 samples per 

segment. (b) N=16 samples per segment. 

order. The slope of the transition band is related to the segment length and filter order. If a high 

magnitude clutter signal has to be removed, the lowest velocity that can be estimated increases, 

while the velocity estimation range decreases. In the regression filter, there is a trade-off 

between the removable clutter magnitude and the velocity estimation range. Due to the fact 

that the clutter amplitude may vary considerably from one area to another area, an adaptive 

regression filter can be used to give optimum filtering results. 

Ill. Experimental Verification 

A. Experiment Setting and Referenced Velocity Estimation Results 

An experimental evaluation of the regression filters and FIR filters was performed in this 

section. The RF data was collected by an ultrasound scanner (Vingmed CFM 800) via a 

custom data acquisition system. The experimental data was from the subclavian artery. The 

experimental parameters were as follows: 

Pulse repetition Center 
Depth averaging 

frequency (PRF) frequency (f0 ) 
Pulse length 

2.5kHz 2.5MHz lf.lS 0.312= 

The sound velocity used was 1540m/s and the Nyquist limit with these parameters was 

0.385m/s. 

A typical power spectrum from this experiment data is shown in Figure 4. The clutter signal is 

about 40dB higher than the blood signal. Our first goal is to remove this clutter signal. Due to 
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the fact that mechanical scanning was used in this experiment and this scanning system has a 

continuous movement of the beam, the data from each range gate can be regarded as 

continuous. Thus, a conventional clutter filter may be used. We used an IIR filter to give the 

referenced velocity estimation results. The data from each range gate is continuous, therefore, 

any length N can be used. Usually N must be small enough so that the signal remains 

stationary. In this work, we used N=8, 16 and 30. Then, we apply regression filters and FIR 

filters to data. The results are compared to the referenced results. 

The used IIR highpass filter was a 4th order butterworth filter. Its normalized cut -off frequency 

was 0.155. Its frequency response is plotted in Figure 5. After high pass filtering, some 

samples at the beginning and the end of the filtered data were dropped in order to reduce the 

transient effects. Following that, we used a conventional autocorrelation method to estimate 

the velocity. The temporal averaging was 3.2ms (N=8), 6.4ms (N=16) and 12ms (N=30), 

respectively. The results were shown in Figure 6. In this experiment, some velocities have 

exceeded the Nyquist limit. In order to prevent aliasing, another velocity estimator should be 

used, such as the extended autocorrelation estimator [paper A] and the correlation estimator 

[paper B]. However, the unambiguous velocity estimate is not our main concern in this work. 

A further discussion on the effect of the clutter filter on the extended autocorrelation estimator 

and the correlation estimator is in paper D. 
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Figure 4 The power spectrum of the Figure 5 Frequency response of 4 order 

Doppler signal calculated for N=12. IIR butterworth filter 
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(a) N=8 (b) N=16 (c)N=30 

Figure 6 Referenced velocity estimation results. 4th order IIR butterworth filter is 

applied to the data from each range prior to velocity estimation which was based on 

segment length (a) N=8, (b) N=l6, (c) N=30. 

B. The Velocity Estimation Results When the regression filter is Applied to the Experi­

ment Signal 

The velocity estimation results are in Figure 7 to Figure 9. Table 1 gives a guide of the velocity 

estimation figures. 

Table 1: A list of velocity estimation results using regression filter 

Filter 
N=8 N=16 N=30 

order 

1 Figure 7 (a) Figure 8 (a) Figure 9 (a) 

2 Figure 7 (b) Figure 8 (b) Figure 9 (b) 

3 Figure 7 (c) Figure 8 (c) Figure 9 (c) 
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time time time 

(a) first order filter (b) second order filter (c) third order filter 

Figure 7 The velocity estimation results when the regression filter is applied to N=8 

segment length. The regression filter order (a) One, (b) Two, (c) Three. 
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(a) first order filter (b) second order filter (c) third order filter 

Figure 8 The velocity estimation results when the regression filter is applied to N=16 

segment length. The regression filter order (a) One, (b) Two, (c) Three. 
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Figure 9 The velocity estimation results when the regression filter is applied to N=30 

segment length. The regression filter order (a) One, (b) Two, (c) Three. 

C. The Velocity Estimation Results when FIR Clutter Filter Applied to the Experimental 

Signal 

The velocity estimation results are in Figure 10 to Figure 12. In order to reduce the transit 

response effect, some points were discarded prior to the velocity estimation. Table 2 gives a 

guide of the velocity estimation figures. 

Table 2: A list of velocity estimation results using FIR filter 

Filter 
N=8 N=16 N=30 order 

1 Figure 10 (a) Figure 11 (a) Figure 12 (a) 

2 Figure 10 (b) Figure 12 (b) Figure 12 (b) 

8 Figure 10 (c) Figure 13 (c) Figure 12 (c) 
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(a) the first order FIR (b) the second order FIR (c) the 8th order FIR 

Figure 10 The velocity estimation results when the FIR highpass filter applied to 

N=S segment length. The FIR filter order (a) One, (b) Two, (c) Eight. 
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(a) first order FIR filter (b) second order FIR filter (c) 8th order FIR filter 

Figure 11 The velocity estimation results when the FIR highpass filter applied to 

N=16 segment length. The FIR filter order (a) One, (b) Two, (c) Eight 
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(a) first order FIR filter (b) second order FIR filter (c) 8th order FIR filter 

Figure 12 The velocity estimation results when the FIR highpass filter is applied to 

N=30 segment length. The FIR filter order (a) One, (b) Two, (c) Eight. 

From the experimental results, it is seen that: 

1. When the segment length is short (N=16, N=8), the regression filter gives better results than 

the FIR filter. When the segment length is increased to N=30, the regression filter and FIR 

filter give similar results. 

2. When the segment length is short, the order of the regression filter should be low, because 

the high order filter can remove too much blood signal; hence, the velocity estimation results 

become worse. When the segment length is increased to N=16 and N=30, the lower order (first 

order) filter can not remove the clutter signal adequately, and the higher order filter gives 

better results. 

3. The first and the second order FIR filter cannot suppress 40dB clutter adequately. From the 

above figures, the second order FIR filter gives better estimation results than the first order FIR 

filter. When segment length is increased to 16, the 8th order FIR filter can be used, but the 

estimation results are not as good as those of the regression filter. When N=30, there is no 

significant difference between the 8th order FIR filter and the third order regression filter. 

D. Further Experimental Verification from 2-D Imaging 

A further experimental evaluation of regression filters and FIR filters was performed. A set of 

RF data was collected by an ultrasound scanner (Vingmed SYSTEM FIVE). The data was 
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from the mitral region of the heart. The experimental parameters were as follows: 

Pulse repetition Center Beams per Samples per 

frequency (PRF) frequency (j0) frame beams Depth averaging 

5.976kHz 2.5MHz 24 30 2.8= 

The Nyquist limit was 0.9204-m/s. Since the number of samples per beam is 30, it can be 

reduced toN by using only the first N samples. We use N=8, 16 and 30 in this study. 

Figure 13 shows a power spectrum from one block of this data ( depth=0.077m, angle 1.52n for 

this 2-D data set). The clutter in this block is about 20dB higher than the blood signal. 

Frequency 

Figure 13 The power spectrum of part of the received data from the mitral 

region of the heart. 

For simplicity, six velocity images were shown here in Figure 14. More velocity images were 

shown in the Appendix. 

Table 3: A list of wall filter which used in the 2-D heart mitral data 

Samples per regression 
FIR filter 

beam filter 

N=8 the first order the second 

order 

N=l6 the second the 8th FIR 

order 

N=30 the third the 8th FIR 

order 

In order to test the accuracy using different wall filters, the estimates obtained with the 

regression filter when N=30 were used as a reference. The bias and standard deviation of the 
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error between the estimates and this reference were used as a measure of the estimation 

accuracy [7]. The results are listed in Table 4. 

Table 4: Mean velocity estimation accuracy for the different wall filters. The results 
created by using the 3rd order regression filter when N=30 were assumed to be reference 

estimates. 

I II III IV v 

bias [cm/s] 3.80 4.42 2.85 7.66 2.05 

std.deviation [cm/s] 28.54 28.73 32.91 41.22 25.49 

I: N=8, the first order regression filter. II. N=16, the second order regression wall filter. 

III. N=8, the second order FIR wall filter. IV. N=16, the 8th order FIR wall filter. 

V. N=30, the 8th order FIR wall fllter. 

From the 2-D velocity images and the results in Table 4, it is seen that: 

1. When N is 8, the first order regression filter gives better results than the second order FIR 

filter, which eliminates too much blood signal. The region with low blood velocity disappears 

in Figure 14 (b). From the frequency response in Figure 1, it can be predicted that the first 

order FIR filter will remove much more blood signal. However, high order FIR filters are not 

suitable to short segment case. 

2. There is no significant difference between Figure 14 (e) and (f) when N=30. The bias and 

standard deviation between those two images is at a minimum as shown in Table 4. 

3. In this experiment, a 3.5cm wide region of the mitral region of heart has been scanned. 

When N=30, the frames rate is 16Hz. When N=16, the frames rate is 31Hz. When N=8, the 

frames rate is 62Hz. With this high frame rate, the 2-D velocity image (Figure 14 (a)) still give 

a high quality image. 

Conclusions 

Experimental comparisons between the regression filter and the FIR filter have been 

performed based on the data from the subclavian artery and the mitral region of the heart. The 

results show that when the segment length is short (less than 16), the regression filter gives 

better results than the FIR filter. When the segment length is increased to 30, no significant 

difference exist between the FIR filter and the regression filter. 

When the segment length is short, the low order regression filter is preferred because the high 

order regression filter may remove significantly blood signal. In this case, only the first or 

second order FIR filter can be used. However, they both eliminate too much blood signal. 
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In the experimental data from the mitral region of heart, a 3.5cm wide region has been 

scanned. When the pulse number per beam direction is 8, the frame rate per second is 62. A 

high quality image has been obtained by using the first order regression filter. 

Further study will include using the third to eight order FIR filter and low order IIR filter with 

special initialization for comparison. The goal is to obtain an optimum clutter filter. 
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(b) N=8. The second order FIR wall filter 
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(f) N=30. The 8th order FIR wall filter. 

Figure 14 2-D velocity imaging from the mitral region of the heart. The images are 

obtained by applying different wall filters prior to the velocity estimation. 
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Appendix: Velocity images using different wall filters 
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Appendix-1: Velocity images by using different wall filter when sample segment 

N=8. 
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Appendix-2: Velocity images by using different wall filter when sample segment 
N=l6. 
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Appendix-3: Velocity images by using different wall filter when sample segment 
N=30. 
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PaperD 

Effects of the Wall Filter on the Estimation of High Blood 

Velocity 

A large part of this paper was published in: X. Lai, H. Torp, "Effects of the Wall Filter on the 

Estimation of High Blood Velocity", presented in IEEE International Ultrasonics Symposium, 

Toronto, Ontario, Canada, 1997. 
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Effects of the Wall Filter on the Estimation of High Blood 

Velocity 

Abstract 

In pulsed wave Doppler ultrasonic measurements, a highpass wall filter is used to remove the 

clutter signal prior to the blood velocity estimation. For high velocity measurements, the wall 

filter creates dead zones where the Doppler frequency equals multiples of the pulse repetition 

frequency (PRF). In this work, the effect of the wall filter has been studied for two different 

blood velocity estimators; the crosscorrelation method (CCM) and the extended 

autocorrelation method (EAM). When the pulse bandwidth is sufficiently high, the Doppler 

signal bandwidth will exceed the wall filter cut-off frequency due to the transit-time effect, and 

the dead zones are partially removed. However, the chance of velocity aliasing is increased in 

these zones due to the filtering, both for the CCM and EAM method. The effects of the wall 

filter have been studied by simulations with rectilinear velocities up to four times the Nyquist 

limit (vNy). In this simulation, the pulse bandwidth is 2.5MHz. When the cut-off frequency of 

the wall filter is 0.1 *PRF, no velocity aliasing has been observed. When the wall filter is 

increased to 0.2*PRF, there is 15% aliasing error occurring at velocity=2*vNY and no velocity 

aliasing at v=4*vw When the wall filter is increased to 0.25*PRF, there is about 70% velocity 

aliasing error at twice vNl' and 15% velocity aliasing error at velocity four times vw The 

simulation results have further been verified by experimental data from subclavian artery 

measurements with velocities up to twice the Nyquist limit. 

I Introduction 

Blood velocity is an important parameters in the clinical diagnosis of vascular disease. 

Ultrasound techniques have been shown to be a valuable tool for blood velocity measurement. 

The pulsed wave Doppler (PW) and multi-range gated (MRG) techniques are currently widely 

used, because they provide range resolution. To obtained Doppler information in PW and 

MRG techniques, multiple pulses are transmitted repeatedly at a set pulse repetition frequency 

(PRF). The blood velocity in the selected range of interest is estimated from the received 

multiple echoes. The received signal components from a range cell include blood flow signal, 

received noise and the echoes from boundaries and slow moving tissue which are commonly 

referred to as clutter or wall signals. This clutter signal may be more than 60 dB higher than 

from blood signal and it must be removed by a high pass wall filter prior to the velocity 

estimation. 
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Due to the sampled nature of the PW and the MRG method, the Doppler shift is periodical with 

a frequency PRF. This causes the velocity estimation ambiguity by conventional 

autocorrelation method. The highest estimated velocity is the velocity corresponding to a 

Doppler shift of PRF/2. This velocity is referred to as the Nyquist limit VNJ' Since blood 

velocities exceeding the Nyquist limit can be found under jet flow conditions, for instance, in 

heart defects, other velocity estimators such as CCM [1] and BAM [2] which are not subject to 

this limit must be used. 

Due to the wall filter, any low velocity blood component of blood flow would also been 

removed. Thus, all the estimators suffer from the velocity dead zone around zero velocity. The 

frequency response of the wall filter is repeated with the PRF. This means it also removes some 

of the signal power whose velocities are centered about 2nvNY (n = 0, ±1, ±2 ... ). One of 

the question raised is whether the velocity dead zones are present around 2nvNY. 

In this work, we investigate the effects of the wall filter on the high velocity estimation in the 

CCM and the BAM. 

II. Theoretical Analysis 

A. Effects of the Wall Filter When the Transit Time Effect is not included 

In a 2-D blood signal model [4], the received RF signalp(t,k) is a Gaussian random signal [4], 

where tis the elapsed time after a pulse transmission which corresponds to a certain depth from 

the transducer and k is the index of the transmitted pulse sequence. If we ignore the transit time 

effect of the received signal from successive pulses, the received echo from the k•• pulse differs 

from ]••pulse only by a time delayed factor, i.e., 

2Tvcose 
p(t, k) = p(t-kT:v, 0) T: = v c 

where Tis the pulse repetition period, c is the velocity of sound. v is the blood flow velocity, e 
is the angle between the ultrasound beam and the blood flow direction. 

The 2-D Fourier transform of p(t,k) can be expressed as [3] 

-jro1 t -jro2k 
G1 (rol' ro2) = JL.p(t, k)e e dt = (1) 

tk 
-jrol k'tv -jro2k ( 21t ) 

L,P( ro1 )e e = L,P 1 ( ro1 )3 ro2 + nT + T:vrol 
k n 

where P 1(ro
1
) is the Fourier transform of p(t,O). The 2-D power spectrum ofp(t,k) is given by: 
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It can be seen from (1) that GJ(W
1
,ro

2
) is periodic in ro2 with a period of 2n/T. It may be 

written as a sum of copies of the nonaliased part G0 (rol' ro2) and: 

G(rol' ro2) = I. Go( rol, ro2 + n2;) 
n 

An example of a 2-D power density spectrum is shown in Figure 1. 
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N f / • Ultrasound frequency 

BWJ 

Figure 1 2-D power spectrum of pulsed wave Doppler signal without transit 

time effect 

To estimate the blood velocity by CCM, we make use of the correlation coefficient Ro('t,l) 

defined as the 2-D Fourier transform of the power spectrum. When a wall filter is applied, the 

2-D correlation function will be: 

(2) 

-00-1t 
00 

2 J P( ro1 )H( ro1 't) cos ro1 ( t- tv)dro1 

0 

Where H(ro2) is the power transfer function of the wall filter and P(ro1) = IP 1 (ro1)1 2 

The CCM method uses the maximum point of Ro(t,l) to calculate the velocity. Since the 

product P(w)H(w
1 
tv) is non-negative, an upper bound for the integral in (2) can be found: 
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00 00 

I P( ro1 )H( ro1 't) cos ro1 ( 'r- 't)dro1 :::; I P( ro1 )H( ro1 'rv)dro1 (3) 

0 0 
From (3) it follows that the expected correlation function attains its maximum at 't='tv. This 

means that even though the shape of the correlation function (or the power spectrum) is 

changed, the time delay is able to be estimated, as long as the wall filter H( ro
1 
'tv) does not 

remove the power of ultrasound signal P( ro1) completely, the estimation will be unbiased. 

However, the wall filter does remove a portion of the signal power. It causes decorrelation in 

the signal and the envelope of the correlation function become smoother. On the other hand, 

the signal to noise ratio may also be reduced due to the wall filter which also cause the 

envelope of the correlation function become smoother. Thus, the probability of velocity 

aliasing may be increased. 

Two special situations in which the wall filter H(ro1'tv) may remove the power of P(ro1) 

completely are worth mentioning here. The first case occurs when the blood velocity is low and 

H(ro1'tv) acts as a highpass filter with a cut-off frequency is ffihp't"v- When the blood velocity 

(Doppler shift) power distribution is within the cut-off frequency of the wall filter, all the blood 

signal power is removed. Therefore, the filter disable the velocity estimator. 

The second special case occurs when the blood velocity is high and its Doppler shift power is 

approximately equal to PRF. Under these conditions the wall filter acts as a stopband filter. 

When the blood velocity (Doppler shift) power distribution is within the stopband of the wall 

filter, all the blood flow signal power is again removed. This situation can only take places 

when 

BW2 >BW1 

where BW1 is the RF signal bandwidth and BW2=2rohp/'rv as shown in Figure 1. This condition 

can be expressed as: 

BW1 X 'tv 
00hp < 2 (4) 

( 4) gives a threshold for the cut-off frequency of the wall filter. The above threshold frequency 

is proportional to the Doppler shift or the blood velocity. So that it is lowest for a Doppler shift 

frequency approximately one times the PRF and higher for shift frequencies equal to higher 

multiples of the PRF. When the Doppler shift is equal to the PRF, (4) can be rewritten as 
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BWl 1 
(i)hp < 2/0 = 2Q (5) 

where Q is a quality factor defined as fr/BW 1• For high blood velocity estimation, the right side 

of (5) (112Q), gives a useful value for the upper-limit of the cut-offfrequency of the wall filter. 

The same analysis is valid for the EAM estimator, since the two methods give the same value 

[1], provided that the radial sampling frequency is sufficiently high. 

We can also explain this in another way. From (21) and Appendix of Paper A, the time delay 

equals to the line slope passing through the origin of the frequency plane and point cun, m), 
i.e. 

m1 is defined as: 

m 
't = m1 

m was defined in (26) Paper A which gives: 

(6) 

(7) 

(8) 

If there is a wall filter, the output 2-D spectral density has been affected and the time delay 

should be 

(9) 

which can be further expressed as: 
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(10) 

This means if un t:O, the slope of rn/ml is still equal to the time delay 'tv even there is a wall 

filter. It also means that the time delay estimation is unbiased, or the wall filter will not affect 

mean value estimation of the time delay. 

B. Effects of Wall Filter when the Transit Time Effect is included 

So far, the effects of the wall filter are based on the ideal pulsed wave Doppler signal where the 

transit time effect has not been taken into account. The transit time effect is the spectral 

broadening along the Doppler frequency axis due to the scatterers entering and leaving the 

ultrasonic beam. A model for the 2-D spectrum was given in [4]: 

(11) 

Here B is the Fourier transforms of the transversal two-way beam sensitivity function, b(d), 

and d is the distance from the ultrasonic beam center axis to the scatterer. A typical example is 

shown in Figure 2 

By comparing the 2-D power spectra between Figure 1 and Figure 2, we make the following 

observations. 

a. In the case of high blood velocity, the requirement on the wall filter cut-off frequency when 

the transit time effect is absent can also be applied. This means that as long as the blood signal 

is not completely removed by the filter, the blood velocity can still be estimated. 

b. The estimation of the blood velocity is biased when the Doppler shift is close to multiples 

forth PRF and when transit time effect is present. Since the clutter filter may remove some 

signal power, the mean Doppler frequency rn may have bias. The mean RF frequency till may 

also have a small bias. But it is not significant compared to bias of rn and it is neglected here. 

Therefore, the time delay t = rn/(till) has bias. The bias depends on the true velocity. When 

the Doppler shift is the same as PRF (Figure 3 (a)), the clutter filter removes power 

symmetrically around PRF. There is no velocity bias in this case. When the Doppler shift is 

higher than the PRF (Figure 3 (b)), the clutter filter removes more power from frequencies just 
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Ultrasound frequency 

Figure 2 2-D power spectrum of pulsed wave Doppler signal with transit 

time effect 

above PRF than below, the estimated m will be smaller than the true value, causing a negative 

bias. Conversely, when the Doppler shift is higher than the PRF the bias is positive. An 

prediction for the velocity estimation bias is sketched in Figure 4. The results are valid in the 

absence of white noise 
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Figure 3. An illustration of 2-D signal 

spectrum distribution depends on the 

Doppler shift. (a). The Doppler shift 

=PRF; (b) The Doppler shift >PRF; (c) 

The Doppler <PRF. 

(c) 

Ultrasound frequency 

Velocity I the Nyquist limit 

Figure 4 The illustration of velocity estimation bias due to the wall filter 

c. The bias value 'a' in Figure 3 depends on the signal spectrum shape and the cutoff frequency 
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of the wall filter. The bias is more pronounced when the bandwidth of the received signal is 

narrow. 

III. Simulation Results 

Flow signal was generated using the model in [1] including transit time effect. The following 

parameters were used: Pulse length: 0.81.ls. The center frequency: 5MHz, PRF: 6.564kHz, 

giving a Nyquist limit vNY: 1.0265m/s. The processing procedures include demodulation, wall 

filtering and velocity estimation. The depth and temporal averaging for each estimation is 

2.41.ls and 9.75ms, respectively. 

The wall filter is a FIR filter with 20 taps and utilizes a Kaiser window. Mter wall filtering the 

data is weighted by a Hamming window. The velocity is calculated by the BAM method from 

50 independent signal segments. 

Case A: The velocity estimation result is shown in Figure 4 for a cutoff frequency 

rohp = 0.27t, SNR=30dB. One can see that a large velocity estimation bias exists at very low 

velocities while higher velocities have a small bias. The bias is zero when the velocities are 

multiples of 2vNY. These results are consistent with the discussions in section above. 

Case B: The velocity estimation result for a cutoff frequency rohp = 0.417t, and SNR=30dB is 

shown in Figure 5. As the cutoff frequency increases, estimator bias and velocity aliasing 

around velocities equal to 2nvNY increase as well. This latter finding can be explained on the 

basis of the wall filter removing part of the signal power which decreases the magnitude of 

correlation function and flattens its envelope. The probability of aliasing is maximum when the 

velocity is multiple of 2 vNli this is because the power removed by the wall filter approaches 

maximum. This is illustrated in Figure 8. In Figure 6, '--' marks where velocity aliasing 

occurred. In this case, no velocity aliasing is observed for velocities around four times vM' 

Case C: The velocity estimation results for a cutoff frequency rohp = 0.57t and SNR=30dB 

are shown in Figure 7. It is evident that as the cutoff frequency increases, the bias around 2n 

vNli increases, while the velocity aliasing occurs not only around twice vNl! but also around 

four times vM' 
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Figure 5 Simulation results for ~p=0.2n and SNR=30dB. 
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Figure 7 Simulation results for ~p=0.51t and SNR=30dB. '--' marks 
where velocity aliasing occurred. 'x' marks the velocity dead zones. 
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3 4 

Velocity I the Nyquist limit 

Figure 8 The illustration of the chance of velocity aliasing due to the wall filter 

IV. Experimental Verification 

Our conclusion regarding the wall filter effect has been verified by experimental ultrasound 

data taken from subclavian artery flow. Raw RF data from an ultrasound scanner (Vingmed 

CFM 800) was collected in real time via a custom data acquiescing system. 

The parameters used in the experiment are the same as in simulation except that the 

PRF=4kHz. The processing procedures are also the same but a power threshold was used to 

discriminate between the noise from the blood signal. The data window for each estimation has 

the same as in the simulation study. 

Case A. cutoff frequency rohp = 0.21t, 

Case B cutoff frequency rohp = 0.4ln, 

Case C cutofffrequency.rohp = 0.44n 
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Tablel: Summary the experiment results 

Dead Corresponding 
zones Estimated the 

Correspondin 
non-

around 
highest 

g non- Estimated the 
aliasing multiple aliasing lowest velocity 

PRF velocity 
Dopplershift 

Doppler shift 

ffiJJp=0.27t No 1.2307(m/s) 1.977t -0.1201(m/s) -0.197t 

ffiJJp=0.417t No 1.2141(m/s) 1.947t -0.2434(m/s) -0.397t 

ffiJJp=0.447t Yes -0.6063(m/s) -0.977t -0.2665(m/s) -0.437t 

Time in second 

Figure 9 '--' is the results from Case A which rohp=0.27t '-' is the 

results from Case B which rohp=0.417t '-.' is the results from Case C 

which ffiJJp=0.447t. 

The experiment showed similar performance as the simulations, and the results are 

summarized in Table 1 and Figure 9. 

V. Conclusions 

The influence of a wall filter to velocity estimators in both the CCM and the BAM is 

investigated. Theoretical analysis showed that both estimators are unbiased, when no transit­

time effect is present, provided that the signal power is not completely removed by the wall 

filter. When transit-time effect was included, a theoretical estimator bias curve was calculated. 

When the cut-off frequency of the wall filter is below a upper limit, there will be no velocity 

dead zones around multiply 2vNll but the probability of velocity aliasing will be increased. The 

highest aliasing probability occurring at the velocity = 2nvm 
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Accounting for transit time effects introduces a bias into the velocity estimates. Furthermore, 

this bias depends on velocity. 

The occurrence of velocity aliasing and the velocity estimation bias depend mainly on the 

bandwidth of signal and the cutoff frequency of the wall filter. Other factors such as depth and 

temporal averaging, signal to noise ratio and velocity may also affect the estimation error. In 

order to reduce the occurrence of velocity aliasing and velocity estimation bias, the cut-off 

frequency of wall filter should remain as low as possible. 

Those conclusions have been verified by simulations and experimental data. 
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EXTENDED AUTOCORRELATION METHOD FOR 
COLOR FLOW IMAGING 

X-M. LAI, H. TORP, and K. KRISTOFFERSEN*, 

Dep. ofBiomed. Engineering, University ofTrondheim, Norway, 

*vingmed Sound, Horten, Norway 

The conventional autocorrelation method for color flow imaging (CFI) is based on the phase estimation of the 
autocorrelation function with temporal lags. A new method for velocity estimation based on the autocorrelation 
function with lags both in temporal and axial direction, is presented. The new algorithm shows better performance 
than the conventional autocorrelation technique in the estimation variance and the capability of resolving velocity 
ambiguity. This can be explained by the axial information added in the estimation. The performance of this new 
algorithm is compared to the RF cross-correlation technique in the estimation variance and the ability to estimate the 
maximum velocity up to three times the Nyquist limit. The estimation variance is calculated by simulation using a 
theoretical signal model with different pulse bandwidth and signal-to-noise ratio. The improvement of this new 
algorithm is demonstrated by digitized ultrasound RF-data from a jet flow in a water-tank model. 

INTRODUCTION 
The conventional autocorrelation method for CFI is based on the phase estimation of the autocorrelation function. 

Parameters such as velocity, velocity spread and signal power are calculated from the autocorrelation function of the 
complex demodulated pulsed Doppler signal from each rang gate on the beam axis. They are coded into a color 
image which overlay with the standard gray level tissue image. This method was firstly developed for weather radar 
applications and applied to ultrasound blood velocity measurement in 1983 by a Japanese group [1]. There are 
mainly two limitations in this method. One is the velocity ambiguity problem caused by the sampled nature of pulsed 
Doppler. The other is the large variance of the velocity estimation. Because high range resolution need wideband 
transducer which leads to the increase of variance in the velocity estimation. 

An alternative algorithm called crosscorrelation method for blood velocity estimation has been presented by 
Bonnefous [2]. The crosscorrelation algorithm is based on estimation of the time delays of the received echoes from 
the pulse-to-pulse from the crosscorrelation function of the RF signal. The two limitations of the conventional 
autocorrelation can be overcome by the crosscorrelation method [2]. Because the time delays is found by detecting 
the peak amplitude of the crosscorrelation function, the wrong peak detection can happen in some cases because of 
the estimation variance of the crosscorrelation function. In this paper, the velocity estimation error caused by wrong 
peak detection of the correlation function is called aliasing estimate error. 

In this work, a new extended autocorrelation (EAM) is proposed. It uses both of the phase and the amplitude of 
the autocorrelation function to estimate the velocity. It uses firstly the phase of the autocorrelation function to give a 
limited number of candidates in time delays which is proportional to the velocity. Then it selects the candidate which 
corresponds to the maximum amplitude of the autocorrelation function. The true velocity is determined by the 
selected candidate, consequently. The similarity between the EAM and crosscorrelation method is analyzed 
theoretically, and a quantitative comparison for different velocity estimators is performed with computer 
simulations. 

ALGORITHM DESCRIPTION 
Assuming x(t, k) is the received complex demodulated signal. The parameter tis the elapsed time after pulse 

transmission, which corresponds to a certain range distance from the transducer, and k is pulse number. If there is a 
frequency dependent attenuation, the signal spectrum of x(t, k) is not sy=etrical around zero frequency but around 

a frequency of ilro. This ilro can be estimated by the phase of the autocorrelation function Rx( 1, 0) . If x'(t, k) is 

the frequency shifted complex demodulated signal of x(t, k) and assume the spectrum of x'(t, k) is sy=etrical 
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around zero frequency. Then we have: x'(t,k)=c -i""'"x(t, k) . The relation between the autocorrelation functions is 

(1) 

where 't is the arbitrary lag in range, and min time (or pulse number). 

The approximate relation between the correlation function of the RF signal Rs( 't, m) and autocorrelation function 

Rx('t, m) was derived in a previous paper [3] as: 

A. 1 iro0t .... 
Rs('t,m)=;zRe{e Rx('t,m)} (2) 

where ro0 is the center frequency in the transmitted signal. From (1) and (2 ), we have: 

• 1 i(ro0 +&ro)t. 
Rs('t,m)=;zRe{e Rx'('t,m)} (3) 

If the envelope of Rx•( 't, 1) is sufficiently smooth, then the peak in the correlation function Rs occurs when 

't = 'tmax i.e. 

i(ro0 +Aro)'t .... 
phase{e Rx'('t,1)} = 0 (4) 

So the following relation between the autocorrelation phase angle estimate and the 'peak crosscorrelation estimate' 
can be found as: 

(ro0 + Aro)'tmax = 21tn- phase{ Rx'('tmax' 1)} (5) 

In [ 4], it is shown that the phase of Rx•( 't, 1) is independent of 't when there is only one velocity component inside 

the sample volume. That means we can use the phase of Rx•( 't, 1) for any 't instead of the phase of Rx•( 'tmax' 1) . 

From (1) and (5), we have: 

(ro0 +Aro)'tmax=21tn-phase{Rx('tmax• 1)}+Aro'tmax (6) 

The new method is firstly to estimate the phase of {Rx(-tmax• 1 )} and find a number of the candidates which are: 

'tn = (roo~ Aro) {21tn- phase{Rx(-!maxo 1)} + Aro-!maxHn = 0, ±1 ... ± K) (7) 

where 'tmax is the rough estimate of 'tmax, because true 'tmax is unknown in this step and imax is found by 

maximizing the amplitude of Rx( 't, 1) . K is the number of the Nyquist repetition. Then, it uses the amplitude of 

Rx('t, 1) to determine which 'tn corresponds to the maximum amplitude of Rx('t, 1). The velocity is determined by 

the selected 'tn . 

fu a practical situation, the autocorrelation function is sampled in the radial coordinate 't . The amplitude of 

Rx('t, 1) for any 't can be found using some kind of interpolation technique. 

SIMULATION RESULTS 
To evaluate the velocity estimators, some simulation experiments were performed. In paper [4], a parametric 

model for the 2D signal from blood flow with constant, rectilinear velocity field is described. The signal is 
completely described by the single scatterer response, where the transmitted pulse waveform, beamwidth and 
velocity magnitude and direction can be selected. Two-dimensional blood flow signals were generated by 
convolution of a matrix of independent Gaussian random variables, with the ultrasonic system single scatterer 
response[3]. The simulation parameters in this paper were given as follows. 

Transducer center frequency 2.5MHz RF sampling rate 
Pulse repetition frequency 6564Hz Ultrasonic measurement angle 
Speed of sound 1540m/s Temporal averaging 
Nyquist velocity 1.0265m/s Radial averaging 
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The velocity estimators had been applied to simulated signals with constant velocity v=0.2 m/s, v=0.5m/ 
s,v=1.2m/s, v=2.2m/s and v=3.2m/s from 50 independent simulations. The values in the table are standard deviation 
or the probability of aliasing estimate error of velocity estimators. The probability is denoted by "P" and it is defined 
as 

P= the number o~ aliasing estimate *100% 
the total estimate number 

The probability of aliasing estimate error will be displayed in the table instead of standard deviation when P>O. 
The result shows that the EAM has less velocity estimate variance than the conventional autocorrelation method 

both for low bandwidth and high bandwidth. This is because the radial information has been added to the EAM. 
There is no significant difference between the EAM and the crosscorrelation method. Both of them have the ability 
to estimate the velocity which is beyond Nyquist limit and give the similar variance. The aliasing estimate errors 
have been observed in the case of low pulse bandwidth and low signal to noise ratio. This is because the correlation 
function of low pulse bandwidth or under poor SNR condition is flat compared to high pulse bandwidth and under 
high SNR condition, respectively. The estimation variance of the correlation function has heavy influence on the 
detection of the true peak in the correlation function and the aliasing error can occur. 

Table 1: The variance of the velocity estimators 

Autocorr. EAM 
Cross- Cross-

pulse Autocorr. EAM 
velocity corr. corr. 

length SNR=~ SNR=~ 
SNR=~ 

SNR=O SNR=O 
SNR=O 

2.4j.ts 0.2m/s 0.0241 0.0120 0.0122 0.0573 10%(P) 10%(P) 

2.4j.ls 0.5mls 0.0344 0.0163 0.0164 0.1105 4%(P) 0.0192 

2.4j.ls 1.2m/s -- 0.0177 0.0179 -- 4%(P) 4%(P) 

2.4j.ls 2.2m/s -- 0.0206 0.0209 -- 8%(P) 10%(P) 

2.4j.ls 3.2m/s -- 0.0237 2%(P) -- 6%(P) 4%(P) 

0.8fls 0.2m/s 0.0317 0.0095 0.0094 0.1696 0.0136 0.0136 

0.8fls 0.5mls 0.0609 0.0165 0.0162 0.1149 0.0189 0.0194 

0.8fls 1.2m/s -- 0.0178 0.0170 -- 0.0207 0.0190 

0.8j.ls 2.2m/s -- 0.0228 0.0221 -- 0.0267 0.0258 

0.8fls 3.2m/s -- 0.0196 0.0195 -- 0.0241 0.0249 

EXPERIMENTAL RESULTS 
a. Water-tank model 

Figure 1 shows a schematic diagram of the water-tank. It consists of an upper reservoir tank and a flow tank 
which has two rooms. There is a small jet aperture between the two rooms. The fluid flow from the upper reservoir 
tank to the left room of the flow tank by a tube with a valve. This valve is used to control the water pressure in the 
left room which determines the jet velocity. A pump in the right room is controlled by an adaptive water level 
regulator. The fluid is pumped back to the upper reservoir tank. Figure 2 is an illustration of the jet stream. 

b. The parameters in this experiment 
Transducer center frequency 2.5MHz 
Pulse repetition frequency 5670Hz 
Temporal averaging 2.1ms 
pulselength 0. 8 fls 

c. The gray flow imaging of the jet stream 

RF sampling rate 
Acoustic velocity 
Nyquist velocity 
Radial averaging 

10MHz 
1540mls 
0.8732m/s 
1.28fls 

Figure 3 is the velocity image estimated by the extended autocorrelation method. 
Figure 4 is the velocity image estimated by the conventional autocorrelation method. 
Figure 4 illustrates that the velocity aliasing occurs and only low velocities which are below the Nyquist limit are 

estimated correctly. Figure 3 shows that the EAM can estimate velocities up to three times the Nyquist limit. But the 
aliasing estimate error occurs at some places in Figure 3. 
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CONCLUSIONS 
The extended autocorrelation method (EAM) of velocity estimation for color flow imaging has been presented. 

The performance of EAM, crosscorrelation and autocorrelation velocity estimators has been assessed by simulation 
using a theoretical signal model. The results show that the performance of EAM is better than the conventional 
autocorrelation method. The EAM and cross correlation method give a similar performance in the estimation variance 
and capability of resolving velocity ambiguity. Those two methods can work well for high pulse bandwidth. 
Therefore, the range resolution and accuracy of the estimated velocity are improved. For low pulse bandwidth and 
under the situation of poor signal to noise ratio, significant aliasing error occurred for both two methods. 
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Abstract 
The cross correlation method (CCM) for blood flow 
velocity is based on the time delay estimation of the echoes 
from pulse-to-pulse. The sampling frequency is usually 
kept low in order to reduce computation complexity, and 
the peak in the correlation function is found by 
interpolating the correlation function. The parabolic-fit 
interpolation method introduces bias at low ratio of 
sampling rate to ultrasound center frequency. In this work, 
4 different interpolation methods are suggested to improve 
the estimation accuracy. 

l.Parabolic-fit with bias-compensation, derived from a 
theoretical signal model. 
2.Parabolic-fit combined with linear filter interpolation 
to the correlation function. 
3.Parabolic-fit to the correlation function of the complex 
signal envelope. 
4.Matched filter applied to the correlation function 
interpolation. 

The new interpolation methods are analyzed both by 
computer simulated signals, and RF-signals recorded from 
patient data with velocities up to 4 times the Nyquist 
velocity. The results show that these methods have similar 
estimation accuracy when signal to noise ratio (SNR) is 
high and the matched filter interpolation gives the better 
performance when SNR is low. 

1. Introduction 
The cross-correlation method of the time domain technique 
has been used for estimating the blood velocities [1], and 
has advantages over the Doppler method in many 
applications [2]. The CCM is by searching the maximum 

correlation coefficient R(1:, 1) (in depth and temporal 

direction) for the time delay 1:1 , i.e, 1:1 = max,(R('t, 1)) 

where R( 1:, 1) is a 2D RF correlation function model given 

in [6]. With the approximated Gaussian envelope, a 
theoretic correlation model is: 
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(1) 

2Tvcos8 
(2) 

c 

In which the standard deviation cr is given by the RMS 

bandwidth B = 11 cr. T is pulse repetition period, v is the 

blood velocity, c is the ultrasound speed, e is the angle 
between the ultrasound beam and blood vessel. 
In practice, the digital echo signal is discrete due to the 
sampling. The true location of the maximum correlation 
coefficient is not constrained to discrete increments, and 
may fall between the discrete sampling points; which 
results in the estimation inaccuracy. Interpolation is 
necessary to improved the time delay estimation accuracy 
[3]. 
The curve-fitting method of the parabolic-fit and the 
cosine-fit [4], [5]; the linear filter interpolation methods [4] 
, [7] are usually used. The parabolic-fit method is usually 
simple but it has bias when the ratio of the sampling rate to 
the center frequency ifs/fO) is low [3], [4]. To reduce 
computation complexity, fs/fO is usually kept low (in the 
order of 4). In this situation the curve-fitting interpolation 
methods above suffer from large errors for velocities 
exceeding the Nyquist limit. 
In this work, four other interpolation methods are proposed, 
and evaluated. 

2. Parabolic-fit with bias-compensation 
The parabolic-fit has been used in many applications. This 
method only requires a few operations. It works in densely 
sampled RF correlation function, but it has bias when the 
sampling rate is low. The bias introduced by parabolic-fit 

depends on the Q-factor (Q = f 0/B ), ft/JO and the velocity 

( v) itself. The bias is denoted b( v,fs/jD, Q), can be calculated 
from the theoretical correlation function model Eqn(1). 
Some examples are shown in Fig.1. 



(3) 

where v is the estimated velocity by the parabolic-fit. 
One method to reduce the estimated velocity bias is to 
compensate it by using the priori knowledge of the 
estimated velocity bias from the theoretical correlation 
function model. Rewrite Eqn(3) as: 

v = v+b(v,%,Q) (4) 

Using the zero order approximation: 

( 
fs ) (· fs ) b v, jfj' Q = b v, jfj' Q 

Eqn(4) become: 

• ( fs ) v = v + b v, jfj' Q (5) 

The blood velocity estimated by Eqn(5) is parabolic-fit 
with bias-compensation. The bias-compensation may be 
implemented by look-up table. 

Fig. I The velocity estimation bias by parabolic-fit for 
signal with Q=l which is calculated from the theoretical 
correlation function model. 

3. Parabolic-fit combined with linear filter 
interpolation 

The parabolic-fit interpolation calculates a few correlation 
coefficients in the vicinity of the maximum discrete point. 
The true maximum amplitude could be missed when fs/JO 
is low and the false maximum from the subsidiary peak 
could be selected. In other word, the velocity aliasing 
occurs. It can be derived that the aliasing error is likely to 
occur when 

1!..:;; 21t 

fO acos[exp(-1/2(cr/0 )
2
)] 

(6) 

To avoid the aliasing error in the parabolic-fit, the fs/fO has 
to be increased. The digital approach of the linear filter 
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interpolation is usually used to increase the sampling rate 
fromfs!JO to Mfs!JO by using lowpass filter [7], where M is 
the interpolation rate. According to Eqn(6), the required M 
depends on the Q-factor of the signal and Mfs/f0>6.84, 
there will be no aliasing for Q=l signal. That means for a 
signal with a central frequency=bandwidth (2.5MHz in our 
simulations later), an interpolation rate M=2 is required to 
avoid aliasing error. 
This method is to increase the sampling rate with M=2 to 
the correlation coefficients before the parabolic-fit. It is 
more efficient than the reconstruct filter interpolation [ 4] in 
which the interpolation rate M has to be very high (M=50) 
to get the same estimation accuracy, furthermore the bias 
introduced by the parabolic-fit in this method is small. 
A simple lowpass filter is halfband filter [7] in the linear 
filter interpolation with rate two. It satisfies the zero­
crossing criterion of ideal filters and results in efficient 
designs in that every other coefficient is zero and need not 
be computed in a practical implementation. 

4. Parabolic-fit to the complex envelope of the 
correlation fWlction 
Ultrasound scanner which use the conventional 
autocorrelation technique is based on the complex signal. 
The cross correlation function can be calculated in 
baseband, and remodulated to the RF domain, followed by 
interpolation and peak detection. But it is efficient to use 
parabolic-fit to the real part and the imaginary part of the 
complex correlation function, respectively, before 
remodulating. 

5. Matched filter interpolation to the correla­
tion fWlction 
5.1 Matched filter method 
Time delay is a basic estimate in many applications. A 
generalized crosscorrelation for time delay estimation was 
given in the classic work [8]. The block diagram is 

Fig.2. Diagram of time delay estimate 

Because of the deteriorating effect of the noise on the time 
delay detection, a false peak may be produced and cause a 
false estimate of the time delay. The purpose of the 

optimum liner filter w('t) is to minimize the occurrence of 
false peaks. 
The received signal from two successive pulses is given by 

z(t,k) = y(t,k)+n 1(t,k) (7) 

z(t+'t,k+ 1) = y(t+'t,k+ 1)+n2(t+'t,k+ 1) (8) 



where y is the blood signal, n1 , n 2 are the white Gaussian 

noise, z is the received signal. The correlation function is: 

R/~• 1) = RyC~. 1) +Ry, n, (~, 1) +Rn,,y(~, 1) +Rn""' (~, 1) 

but due to the finite observation time, in general, 

(Ry,n('t, 1)) + (Rn_/1:, 1)) and Rn,,n,c~. 1) are not zero and 

thus contributes to the noise of the correlation function. 
The noise depends on the SNR of the signal and the length 
of the finite observation time. According to criteria of 

maximizing of expected signal peak at 1: relative to the 
background noise, the resulting optimum filter [8] in term 
of signal and noise spectral density is: 

W(ro) = <1>/ro)/ (9) 

<I> (ro)<l> (ro) +<I> (ro)(<l> (ro) +<I> (ro)) + <1>\(ro) 
n1 nz y n1 nz 

where <1>/ro) is the Fourier transform of the correlation 

function R , <1> (ro) and <1> (ro) are the noise spectral 
y n1 nz 

densities. 
From Eqn(9), it is seen that it is certainly difficult to design 
the true optimum filter since it has a complicated 
relationship to signal and noise spectral characteristics. 
The Eckart filter is used in practice. It uses the criterion 
that maximizes the ratio of mean correlator output due to 
the signal present to the variance of the correlator output 
due to noise alone. The resulting filter is 

W(ro) = <I> (ro)/<1> (ro)<l> (ro) 
y n1 nz (10) 

To the white noise, the spectral densities <1> (ro) and 
n1 

<1> (ro) are independent to co. In this case, this nz 
suboptimum linear filter is matched filter with impulse 
response w(1:) = RyC1:, 1). The matched filter for 

estimating time delay is 

m(1:) = J<R.('tp 1))Ry('t-'tp 1)d't1 

The peak detector is performed on m(1:) 

(11) 

5.2 Matched filter applied to the correlation function 
interpolation 
It is shown that the match filter can also be used in the 
interpolation for estimation time delay when the RF-signal 
is sampled in low sampling rate. In this application the 
matched filter with high sampling rate is used as anti­
imaging filter in the linear filter interpolation, therefore it 
is no necessary to use extra narrow bandwidth anti­
imaging filter. So the matched filter has two functions, one 
is that it is a suboptimum linear filter to maximum the 
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signal peak to output noise, the other is that it replaces 
narrow bandwidth filter to eliminate the image spectra 
produced in the zero padding in the interpolation. 

5.3 Performance comparison between matched and 
linear filter interpolation 
It is seen that the matched filter of Eqn(lO) approximate 
the optimum filter Eqn(9) when SNR is low. Its 
performance is verified by the simulation. In the 
simulation, the matched filter interpolation method, linear 
filter interpolation method which includes the combined 
interpolation method and the reconstruct filter 
interpolation method are applied to the simulation signal. 
The error probability p is calculated as 

p = 
number of abs(v- v) >accuracy limit 

number of simulations 
(12) 

where v is the true velocity and v is the estimated velocity, 
the accuracy limit varies from 5% to 50% of the Nyquist 
velocity. The error probability explains that the probability 
of making a false peak in the estimation of the time delay. 
The results in Fig.3 is from 2000 independent simulations 
and it shows that the error probability for those three 
methods are similar when SNR is high and the error 
probability for the matched filter interpolation is lower 
than others when SNR is low which means the 
performance by the matched filter method has been 
improved. 

0.025 0.26 
' 

to. ' _q : ! 
0.02 ' SNR=O 0.2 ! SNR=-6dB 

~ ' 
~ ' ' .n I g 0.015 •i 0.15 \ 
to. •' ' ... ' 5 ~ 

., 
0.01 0.1 ' : .., 

'• R 0.005 0.05 \ \: ::·-·- -·- -·---------

0 \ 0 
0 20 40 eo 0 20 40 eo 

The accuracy limit(% the Nyquist limit) 

' ' matched filter interpolation, '--' reconstructive 
interpolation.'-.' combination interpolation. 
Fig.3 Performance comparison between matched and 
linear filter interpolation 

6. Simulation results 
The interpolation approaches are verified by the computer 
simulations in this section. The simulation signal is gener-



ated from the model in [6]. The main parameters are given 
as follows. 

Center frequency fU 

Sampling rate fs 

Bandwidth 

2.5MHz 

lOMHz 

2.5MHz 

Pulse repetition frequency 6564Hz 

Nyquistlimit 1.0265(m/s) 

temporal averaging 1.8ms 

Depth averaging 2.4 flS 

If the blood signal is given by Eqn(7), the signal to noise 
ratio for the sampled received signal is defined as: 

LL/(n,k) 
SNR = 101og10-'"c:._;k.:__ __ 

L~>l2(n,k) 
(13) 

n k 

The velocity estimation results are from 50 independent 
simulations. 

Table 1 is the results of the method parabolic-fit with bias 
compensation. The results show that the velocity 
estimation bias has been reduced significantly by 
compensation comparing to the parabolic-fit without 
compensation. Because the parabolic-fit method has 
aliasing error when applied to the signal fs/1'0=4, only the 
estimation results to the velocities within the Nyquist limit 
are given. 

Table 1: The velocity estimation bias and standard 
deviation (SD)(% Nyquist velocity) with parabolic-fit 

(A) and parabolic-fit with bias compensation(B). 
SNR=30dB 

A B 

0.2m/s 0.5mls 0.2m/s 0.5m/s 

bias -2.192 0.322 -0.059 -0.056 

SD 1.289 1.159 1.033 1.419 

Table 2 is the results of the method parabolic-fit combined 
with linear filter interpolation. The velocities up to 4 times 
the Nyquist limit have been estimated. 

Table 2: The velocity estimation bias and standard 
deviation(SD)(% Nyquist velocity) with parabolic-fit 
combined with linear filter interpolation. SNR=30dB 

0.2m/s 0.5mls 1.2m/s 2.2m/s 3.2m/s 4.2m/s 

bias -0.308 -0.583 0.483 0.521 0.787 0.330 

SD 1.141 1.459 1.877 1.935 2.519 3.080 
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Table 3 is the results of the method parabolic-fit to the 
complex correlation function. The results show that the 
estimation error and variance are similar to results in Table 
2 

Table 4 is the results of the method matched filter applied 
to the correlation function interpolation. The results show 
that there is no significant difference to the results in Table 
2 and Table3 

Table 3: The velocity estimation bias and standard 
deviation (SD)(% Nyquist velocity) with parabolic-fit to 

the complex correlation envelope. SNR=30dB 

0.2m/s 0.5mls 1.2mls 2.2m/s 3.2m/s 4.2m/s 

bias -0.093 -0.049 0.097 0.010 0.195 0.023 

SD 0.922 1.442 1.724 1.812 2.289 2.871 

Table 4: The velocity estimation bias and standard 
deviation(SD)(% Nyquist velocity) with matched f'llter 

interpolation. SNR=30dB 

0.2m/s 0.5mls 1.2mls 2.2mls 3.2m/s 4.2m/s 

bias 0.434 0.591 0.818 0.880 0.721 0.418 

SD 1.007 1.474 1.841 1.938 2.565 3.079 

7. Experiment evaluation 

The interpolation approaches are verified by the experi­
mental data from subclavian artery in this section. 

A. The parabolic-fit with bias-compensation applied to 
experimental data from subclavian artery which veloci­
ties are within the Nyquist limit. 

The first method parabolic-fit with bias-compensation has 
velocity aliasing error when applied to the signal with fs/fO 
=4. In this experiment, the Nyquist limit is 1.0265m/s and 
the velocities are limited within the Nyquist limit. The 
results are in Fig.4. The results show that there is difference 
between parabolic-fit without compensation and with bias­
compensation and there is no significant different between 
parabolic-fit with bias-compensation and cosine-fit 
interpolation[ 51 

B. The interpolation methods applied to the 
experimental data with velocities up to 2 times the 
Nyquist limit 
The second, the third and the forth approaches can estimate 
high velocities beyond the Nyquist limit when fs/1'0=4. 



Fig.5 has the results for these interpolation methods 
applied to the experimental data from the subclavian artery 
with the velocities up to 2 times the Nyquist limit (The 
Nyquist limit is 0.6255m/s). The results show there is no 
significant difference between them. 

Time in second 

'-'parabolic-fit with bias comperuation, 
'--' the parabolic-fit without comperuation. 

Time in second 
'-'cosine-fit interpolation, 
'--'parabolic-fit with bias-comperuation. 
Fig.4 Experimental evaluation of Parabolic-fit with bias­
compensation, parabolic-fit and cosine-fit interpolation. 

C. The methods applied to the experimental data with 
velocities up to 4 times the Nyquist limit 

This experimental data were obtained from the data which 
were used in velocity image Fig. 5 by decimating the RF 
data to reduce the pulse repetition frequency, so a lower 
Nyquist velocity was obtained (The Nyquist limit is 
0.3128m/s). This decimation was done before the wall 
motion filter. The results are shown in Fig.6. 
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0.1 0.15 0.2 
time in seconds 

Velocity image obtained with method 2 parabolic-fit 
combined with linear filter interpolation. 

0.1 0.15 0.2 
time in seconds 

Velocity image obtained with method 3 parabolic-fit 
to the complex correlation envelope. 

-1 -0.5 0 0.5 
the ruler to velocity(m/s) 

Velocity image obtained with method 4 matched filter 
interpolation to the correlation function 

Fig.5. Experimental evaluation: Method 2, method 3 and 
method 4 applied to the experimental data with 
velocities up to 2 times the Nyquist limit. 



-0.2 

-0.4 -0.4 

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 
(a) (b) 

Time in seconds 

'--' in (a) parabolic-fit to the complex correlation 
envelope 
'-'in (a) matched filter interpolation. 
'--' in (b) parabolic-fit combined with linear filter 
interpolation. 
'-'in (b) with the matched filter interpolation 

Fig.6. Experimental evaluation: Method 2, method 3 and 
method 4 applied to the experimental data with 
velocities up to 4 times the Nyquist limit. 

Conclusions 
Four interpolation methods for time delay estimation in the 
RF-Signal crosscorrelation technique for blood velocity 
measurement are presented. All the methods give similar 
performance to the blood signal with high SNR(> OdB) and 
has higher accuracy than the parabolic-fit when fs/fD is 
low. The estimation accuracy is improved from 2.5% to 
1% of the Nyquist velocity compared to the parabolic-fit 
interpolation method whenfs/j0=4 and Q=1. The matched 
filter interpolation applied to the correlation function gives 
better performance than other methods when SNR is low. 

The first method; parabolic-fit with bias-compensation 
method; has least computation, but suffers from aliasing 
errors when fs/jO =4. The second method parabolic-fit 
combined with linear filter interpolation method avoids the 
aliasing error by interpolating the correlation function to a 
higher sampling rate. It requires less computation than 
method 3 and method 4. The third method; parabolic-fit to 
the complex correlation function envelope method; has 
similar performance as method 2, but requires intensive 
computations modulating baseband signal to RF-band. 
Using an iterative approach, the computation can be 
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reduced greatly. The forth method which uses matched 
filter interpolation to the correlation function gives best 
performance when SNR is low. 
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