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Abstract 

This thesis is a contribution to the field of medical imaging. The first part of the thesis relates to 
analysis and display of medical ultrasonic images. The second part of the thesis relates to analy­
sis and display of Nuclear Magnetic Resonance images. The third part relates more generally to 
analysis and display of multispectral and/or multidimensional medical images. 

We develop an algorithm for boundary detection in ultrasonic imaging which integrates anisotropic 
diffusion with a signal model for displayed ultrasonic images. The usefulness of the algorithm is 
demonstrated for applications in volume rendering and automatic contour detection. 

Problems related to rendering of three-dimensional (3D) ultrasonic data are discussed. A rendering 
method for ultrasonic data which incorporates our boundary detection scheme is proposed. This 
and several other volume rendering techniques are evaluated for display of fetal organs. With the 
proposed rendering method we have produced rendered images with very fine details which were 
difficult or impossible to interpret from the original 2D images. 

The problem of segmenting and visualizing brain lesions in 3D magnetic resonance images is stud­
ied. A probabilistic classification scheme which combines a contour detection algorithm with Has­
slet's contextual classification method is integrated with Drebins volume rendering algorithm. The 
combination of the methods are evaluated for display of soft tissue structures in the human brain. 
Some enhancements to the classification strategy are discussed. 

Two new algorithms for visualization of multi attribute medical images are introduced. The aim of 
the algorithms is to provide as much information as possible from the multi attribute image in one 
gray scale or color image without malting any rigid classification into different tissue categories. 
One algorithm is based on Sammons nonlinear projection, the other algorithm projects the multi 
attribute data onto a curve defined by an ordered set of reference vectors. 

A general framework for fast visualization of multispectral volume data is presented. Dedicated 
hardware with a non-numeric co processor is utilized in the first step of the rendering pipeline to 
process the volume data and extract voxels according to feature characteristics. The selected voxels 
are generated in a front-to-back (or back-to-front) order and projected to the view plane where a 3D 
rendering is accumulated with an adaptation of the shell rendering technique proposed by Udupa 
and Odhner. 

An efficient algorithmic framework for fuzzy object segmentation is presented. The framework is 
targeted at volume rendering methods which are fuzzy display techniques. In many volume render­
ing methods, opacity values are assigned to each voxel on the basis of local characteristics. With 
the proposed framework we incorporate a measure of spatial connectedness into the opacity func­
tion. A weight is introduced for each connection between neighboring voxels. Di jkstras algorithm 
is utilized for computation of a minimum weight path from a user defined set of seed voxels to 
all other voxels. A simple and very efficient implementation of Di jkstras algorithm which exploits 
some specific properties of our application has been developed. The presented algorithm is demon­
strated for visualization of tumor and vessel geometry using three dimensional ultrasonic images. 
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1 Organization 

This thesis is mainly a result of work that has been published in [133, 134, 129, 130, 131, 128, 
101, 66, 106, 107]. References to these papers are also given in a separate list in section 4. The 
thesis contains 4 published papers [129, 130, 128, 66]. In addition, there is one paper which has 
not been published yet + one paper which summarizes work from two papers [106, 107]. The first 
paper [129] has been slightly extended since it was published. Because each paper is meant to be 
self-contained, some material is repeated, especially in the introductions. The following section is 
a summary where each paper is given a brief presentation. Each presentation includes the title of 
the paper, reference, problem description and main contributions. Acknowledgments are given in 
section 3. The next section contains a common reference list for all the papers and the introductory 
part of the thesis. A brief overview of different imaging modalities is given in section 5. Since most 
of the papers in this thesis covers applications in multidimensional ultrasound imaging we give a 
brief introduction to conventional and multidimensional ultrasound imaging in a separate section. 
The papers are given in the subsequent chapters. 
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2 Summary of the thesis 

In the first paper, we present an algorithm for boundary detection in ultrasonic imaging. The pa­
per is called "Scale-space and boundary detection in ultrasonic imaging using nonlinear signal­
adaptive anisotropic diffusion" and is a slightly extended version of the paper [129] (The section 
on quantitative evaluation has been added later). The algorithm presented in this paper was mainly 
developed in order to improve the quality of gradient based visualization techniques. Several vi­
sualization algorithms involves gradient computations in order to emphasize boundaries between 
different tissues. Due to the coherent detection, constructive and destructive interference between 
neighboring scatterers give rise to multiplicative noise, speckle, which modulates the ultrasonic 
gray level image. Simple gradient operators are very sensitive to high frequency noise such as 
speckle. Speckle can be suppressed by traditional linear filtering techniques, but these techniques 
tend to blur the boundaries. An edge preserving smoothing algorithm which integrates anisotropic 
diffusion with a signal model for displayed ultrasonic images was therefore developed. Anisotropic 
diffusion was originally proposed by Perona and Malik [118] as a technique for boundary detec­
tion and scale space filtering. The original filtering scheme tends to produce artificially sharp edges. 
We have modified the filtering scheme in order to avoid this sharpening. We have also modified the 
scheme so that the filtering strength is adjusted according to the local signal level. The properties 
of the filtering strategy is demonstrated in numerical experiments both on synthetic images and real 
ultrasonic images. A recently proposed framework for quantitative evaluation of restoration algo­
rithms [104] is used in the evaluation process. The usefulness of the strategy is demonstrated for 
applications in volume rendering and automatic contour detection. A real time temporal speckle 
suppression filter has later been developed on the basis of the work presented in this paper. The 
real time filter is now a feature on the System Five ultrasound scanner from Vingmed Sound. 

In the second paper, several volume rendering techniques are evaluated for visualization of 3D 
medical ultraspund images. The paper is called "Volume Rendering of 3D Medical Ultrasound 
Data using Direct Feature Mapping" [130]. Several fundamental limitations in the imaging sys­
tem, make volume rendering of ultrasonic data a difficult challenge. Phase effects (speckle and 
phase aberrations), acoustic noise and thermal noise make ultrasonic images hard to interpret. An­
other severe limitation is that the received echo signal from structures lying parallel to the radial 
direction can be very weak and thus difficult to render. Yet another problem is that high density 
material may totally absorb the transmitted ultrasound waves, leaving structures further from the 
transducer in the shadow. These limitations make it very difficult to develop general and reliable 
tissue classification schemes. In this paper we have focused on methodologies which do not rely 
on any initial classification into different tissue categories. Instead, features are extracted from the 
original 3D data-set, and projected into the view-plane. The feature extraction then serves as a low­
level segmentation process which then is meant to emphasize on clinically interesting features of 
the data-set. In particular, we have developed a rendering pipeline which incorporates the filtering 
scheme which was presented in the first paper. With this rendering pipeline we produced rendered 
images with very fine details which were difficult or impossible to interpret from the original 2D 
images. The initial filtering was essential to achieve satisfactory results. 
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Magnetic Resonance imaging is a very important imaging modality for display of soft tissue struc­
tures. The multiparameter dependence of signals from tissue voxels give high contrast between 
several different soft tissue types. To improve contrast even more, contrast-enhancing agents are 
often given to the patient prior to image acquisition. For examinations of the human brain, sev­
eral parallel cross-sectional images are usually obtained. The physician then has to do a sequential 
examination of the cross sectional images in order to mentally reconstruct the three dimensional 
brain structures. Volume rendering makes it possible to present an overview of three dimensional 
structures to the physician in a single image. In the third paper, we integrate a probabilistic multi pa­
rameter classification method with a rendering method developed by Drebin et. al. [22]. The paper 
is called "Segmentation and Visualization of Brain Lesions in Multispectral Magnetic Resonance 
Images" [66]. The classification method combines Hasslet's contextual classification method with 
a contour detection algorithm. The probability that a voxel belongs to tissue category k is com­
puted for all possible categories k E { 1 .. K}. In Drebin' s method, different tissue categories can 
be displayed simultaneously by assigning different colors to them. The color of a voxel is given as 
the normalized sum of tissue colors weighted by their associated probability values. In this way, 
many artifacts which would have been introduced by a binary classification scheme is avoided. The 
methods were evaluated on images of a human brain with an intracranial tumor (Metastasis). The 
results were very encouraging. 

In the fourth paper we present new algorithms for visualization of multi attribute medical images. 
The paper is called "Visualization of multi attribute medical images" [ 128]. Visualization of multi 
attribute images is gaining increasing importance in many medical applications. In MRI, multi­
parameter images are routinely acquired. Several algorithms have been proposed for visualization 
of multi attribute images, with special attention on remotely sensed data However, most of the 
proposed algorithms deal with automatic segmentation into labeled regions. In many cases, the au­
tomatic classification procedure will introduce misclassified pixels and the displayed image may 
therefore contain misleading information. In our paper we concentrate on methods that provide 
the multi spectral information in a gray scale or color image without making any rigid classifica­
tion. Gray scale images are of special interest as the human eye is considerably more sensitive to 
spatial variations in intensity than it is to chromatic variations. A nonlinear mapping is made from 
the original N -dimensional feature space to an M -dimensional output space where M < N and 
M E { 1 .. 3}. Two different nonlinear projection methods are investigated for this purpose. We 
first present a method based on Sammons nonlinear projection algorithm. Sammons algorithm is a 
gradient descent strategy which aims at preservation of inter pattern distances by minimizing a cost 
function which measures the so-called Sammon stress. We also introduce a new algorithm where 
the original multi attribute data is projected onto a curve in feature-space defined by an ordered 
set of reference vectors, and a gray scale is mapped along this curve. The optimal ordering of the 
reference vectors is found as a minimal cost permutation, where the cost function is a weighted 
sum of inter pattern distances in N space. Our algorithms are compared to principal component 
analysis (PCA) and a recently published algorithm based on Kohonens self organizing maps. The 
usefulness of the new algorithms are demonstrated for visualization of both reproducible synthetic 
images and real MR images. 

In the fifth paper we present a general framework for fast visualization of multispectral volume 
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data. The paper is called "Shell rendering with hardware supported data extraction" [107, 106]. 
Dedicated hardware with a non-numeric co processor is utilized in the first step of the rendering 
pipeline to process the volume data and extract voxels according to feature characteristics. This 
capability is used to select voxels according to automatic classification results or real-time descrip­
tions of regions of interest supplied by the user in an interactive environment. By this step we can 
in real-time reduce the number of voxels that have to be considered in the rendering and increase 
the speed of the volume rendering accordingly. The selected voxels are generated in a front-to-back 
(or back-to-front) order and projected to the view plane where a 3D rendering is accumulated with 
an adaptation of the shell rendering technique proposed by Udupa and Odhner. The paper includes 
an overview of the underlying hardware architecture and presents numerical experiments with a 
software simulator. 

In the sixth paper, we present an algorithmic framework for fuzzy object segmentation. The frame­
work is especially targeted at volume rendering applications which by definition are fuzzy display 
methods. The paper is called "An efficient algorithmic framework for fuzzy object segmentation", 
and is based on an earlier paper [131]. Surface rendering and volume rendering are two basic ap­
proaches to visualization of 3D objects. In surface rendering, an explicit model of the imaged struc­
ture is extracted by using a surface detection scheme. This approach relies heavily on the robustness 
of the detection scheme. On the other hand, volume rendering techniques do not rely on explicit 
models of the imaged objects. The imaged scene is rather viewed as a semitransparent volume, 
where transitions between different materials may be smooth. In several of algorithms, opacity 
values are assigned to each voxel on the basis of local characteristics. In many cases it may be 
difficult or impossible to isolate an interesting structure purely on the basis of local features, since 
different materials may share the same local characteristics. Still, it may be possible to isolate a 
an object as a separate region of spatially connected voxels with similar local features. This has 
motivated us to develop a segmentation algorithm that incorporates a measure of spatial connect­
edness into the opacity function. A cost is introduced for each connection between neighboring 
voxels. Dijkstras algorithm is utilized for computation of a minimum cost path from a user de­
fined seed voxel to all other voxels. The minimum cost of connecting a voxel to the initial seed is 
then mapped into an opacity value. Different weight functions are discussed. The practical util­
ity of the algorithm depends a lot on its efficiency. A simple and very efficient implementation of 
Dijkstras algorithm which exploits some specific properties of our application has therefore been 
developed. The presented algorithms can be directly related to a framework for fuzzy object seg­
mentation which independently has been proposed by Udupa and Samasekara [150]. The presented 
algorithmic framework is demonstrated for visualization of tumor and vessel geometry using three 
dimensional ultrasonic images. 
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5 A brief overview of important medical imaging modalities 

In this section we give a brief overview of important medical imaging modalities. The following 
four subsections are mainly taken from the book "The Physics of medical imaging", [36]. 

5.1 X-ray imaging 

8. November 1895, Wilhelm Conrad R~ngten discovered the x-rays. Only about 10 weeks later, 
on 13 January 1896, a radiographic image was produced for clinical purposes by two UK doctors, 
showing a needle in a woman's hand. Since then, x-ray imaging has become clearly one of the 
most important medical imaging modalities. The radiographic image is formed by interaction of 
x-ray photons with the human body, and is a projection of the attenuating properties of the tissue 
along the x-ray paths. There are two basic modes of interaction, scattering and absorption. The 
absorption process is exploited to form the radiographic image, while the scattering reduces the 
signal to noise ratio. Commonly, an anti-scatter device is placed between the patient and the image 
receptor. The anti-scatter device can for instance be a grid of parallel lead strips, which will transmit 
most of the primary radiation, but reject most of the scatter. The signal to noise ratio can also be 
increased by increasing the number of x-ray photons used to form the image. This will however 
increase the dose to the patient. It is important to reduce the radiation dose, as x-ray radiation may 
cause damage to the patient. The transmission of monoenergetic photons through tissue increases 
as the energy increases, and decreases as the thickness of the tissue increases. If the transmission 
is close to unity, the X-ray image will have poor contrast. A very low transmission will lead to a 
very high radiation dose to the tissue. In practice, the photon energy used is in the range 17-150 
keg. 

Conventional radiological systems are analog and use screen-film receptors. These systems offer 
little possibility of image processing and are not very flexible when it comes to dose reduction. Dig­
ital systems have inferior resolution to the analog systems, but this is usually not of significance in 
clinical applications. Digital systems provide more flexible gray level mappings, greater flexibil­
ity in reduction of dose and possibilities for digital processing. Digital systems based on image 
intensifiers are very fast and can be used for real time imaging. Digital subtraction angiography 
is a technique which is used for visualization of blood vessels. With this technique, an image of 
the interesting region is obtained before injection of a contrast agent. Subsequent images are then 
subtracted from the first one in order to emphasize the vessels. The injection of contrast agents will 
however involve an element of risk. 

5.2 X-ray computed tomography 

One serious drawback of conventional X-ray imaging is that it is impossible to distinguish between 
different soft tissue structures from the radiographic images. Another severe limitation is that the 
X-radiograph is unable to resolve spatially structures along the direction of the x-rays. X-ray com-
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puted tomography( denoted CT) is an imaging modality which does not have these limitations. With 
CT, a planar slice of the body is defined and x-rays are passed through this slice. Allx-rays are 
then parallel with the slice and contained within it. The first CT scanner of practical utility was an­
nounced by Hounsfield in 1972. The first generation CT scanners utilized a single pencil beam and 
a single detector which were linearly stepped across the patient to obtain a parallel projection. The 
gantry was then rotated to a new position and a new projection was obtained. The scatter rejection 
was very high with these systems, but the acquisition time was very long, typically 4 minutes for 
a single section. The evolution of CT scanning technology has been tremendous. Today, fifth gen­
eration devices with no moving parts are used for real time acquisition with scan times reduced to 
only a few milliseconds providing frozen images of rapidly moving organs like the human heart. To 
reconstruct a CT image, one needs to recover the two-dimensional distribution of the linear attenu­
ation coefficient from a set of projections. There are several ways to reconstruct a CT-image. The 
most widely used method today is called "filtered backprojection". In practice, the reconstruction 
is made onto a regular array of discrete samples, called pixels. The reconstruction is then done by 
backprojecting each filtered projection onto the array and summing the result for each projection 
angle. Before display, each pixel value is usually rescaled into a "CT-number" which measures the 
fractional difference of a tissue's linear attenuation coefficient relative to water. 

CT imaging has a lot of important clinical applications. Only a few is mentioned here. A major 
clinical application of CT imaging is in radiotherapy planning. Radiotherapy is a common tech­
nique for treatment of cancer. For radiotherapy to be successful, It is necessary that the tumor is 
given a tumoricidal dose. At the same time, normal organs surrounding the tumor limit the radiation 
dose that can be given. CT images are ideal for radiotherapy planning because they are obtained in 
the transverse plane, and they provide detailed renderings of the tumor and its surrounding organs. 
CT images are therefore used directly for computation of carefully tailored radiation fields. 

By acquiring a set of tightly sampled parallel slices, it is possible to obtain high resolution 3D im­
ages which can be used for reconstruction of entire organs. 3D reconstruction techniques are for 
instance used in planning of complicated skull surgery and jaw surgery. 

5.3 Radioisotope imaging 

In radioisotope imaging, radionuclide-labelled agents are injected into the body. The distribution 
of these agents within the body is then imaged. The agents, often called radiopharmaceuticals, are 
designed to show physiological function of individual organs. The injection of radiopharmaceu­
ticals generally involves an element of risk, which is a disadvantage of all the methods used for 
radioisotope imaging. The first imaging devices, such as the rectilinear camera, were developed 
in the in 1950s. Today, mainly gamma cameras are used for radioisotope imaging. Planar static 
imaging, known as planar scintigraphy, is the basic and a common technique in nuclear medicine. 
The images produced by this technique are projections of the three-dimensional distributions of the 
activity in the field of view. Since only the detection position is known, collimation has to be used 
in order to produce an image. Temporal changes in the distributions can be registered by acquiring 
. multiple images over a period of time. This form of imaging is known as dynamic scintigraphy. 
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A sectional image can be obtained from a set of projections, similar to X-CT. This technique is 
known as emission computed tomography, ECT. There are two different variants of ECT, Single­
photon emission computed tomography (SPECT) and Positron emission tomography (PET). These 
two techniques are usually considered as different modalities. Because of basic limitations in spa­
tial resolution, ECT is not very suitable for determining the anatomy of an organ, but rather its 
physiological function. 

Radioisotope imaging is used for various clinical applications. For instance, radioisotope imag­
ing is used to study physiological parameters of the brain, like blood flow, blood volume, glucose 
and amino-acid metabolism. Most of these measurements require that PET imaging is used. In 
cardiac imaging, radioisotope imaging can also be used to measure the output of blood from the 
left ventricle. Skeletal diseases can be imaged by using radiopharmaceuticals that show increased 
bone-blood flow and bone production. Perfusion of blood and ventilation in the lungs can be mea­
sured with radioisotope imaging in order to detect lung segments with malfunctions. Studies of 
liver function are also conducted with radioisotope imaging. 

5.4 Nuclear Magnetic Resonance imaging 

Nuclear magnetic resonance (NMR) was discovered as early as in 1946 by two independent re­
search teams. The principle of utilizing the shift in resonant frequency resulting from imposition 
of a magnetic field gradient was proposed in 1973. Based on this principle, Damadian and co work­
ers published the first whole-body image in 1977. In 1978, the first commercially NMR scanner 
became available. Since then, NMR imaging has developed very rapidly and has become a widely 
used imaging technique for many medical applications. NMR scanners are capable of producing 
tomographic images of the body with a very good spatial resolution. NMR imaging is also known 
to have a very low hazard to the health. 

Classical theory of magnetism is usually adequate to describe the behavior of net nuclear magnetic 
moment of a material. The spinning electric charge distribution of a single proton generates a mag­
netic moment normal to the plane of charge circulation. If an external magnetic field is applied with 
a magnetic flux density Bo, the magnetic dipole moment will start rotating about Bo with acer­
tain angular frequency which is called the Lamor frequency. The Lamor frequency is both related 
to the strength of Bo and a nucleus specific constant. At equilibrium, the net magnetic moment 
M of a material will be aligned with Bo, making it impossible to measure M directly. In order to 
measure M, it must be tilted away from the Bo direction, to produce a measurable component in 
the plane normal to Bo , called the xy-plane. This is the basis for NMR measurements. A second 
external magnetic field of magnetic flux density B 1 , oriented in the xy-plane and rotating at the 
Lamor angular frequency can be applied as a pulse. This will move M away from Bo through an 
angle which depends on the magnitude and duration of B 1 . During this process, some nuclei will 
absorb energy. When the pulse is gone, the nuclei will radiate this energy which then can be de­
tected with a suitable coil. Various kinds of sequences of RF-pulses are used in order to compute 
different parameters. One important parameter is the T1 relaxation time. This relaxation time is 
a measure of how long time it takes for the nuclei to emit the absorbed energy and can be related 
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to the water content of the tissue. Another parameter is the transverse or T2 relaxation time which 
measures the time it takes before the magnetization in the xy-plane is lost. 

Many NMR imaging methods make use of the property that the resonant frequency of protons is 
proportional to the applied magnetic field. In order to compute images, magnetic gradient fields 
are applied in addition to the fields described above. In the most simple configuration, the gradient 
fields are made so that only one volume element at a time have a field strength which gives a Lamor 
frequency equal to the given RF frequency used. This is however very inefficient, and modern 
scanners utilize the gradient fields far more efficiently so that acquisition times can be reduced. 

An NMR system basically consists of different major parts: A strong (usually superconducting) 
magnet producing the main magnetic field, a set of coils generating the gradient fields, an RF system 
generating RF signals, a receiver and detection system and a computer with peripherals. 

As with most imaging methods, NMR images may contain different artefacts. One phenomenon is 
ringing effects close to high contrast tissue interfaces. Respiratory motion may result in geometric 
artefacts during reconstruction. NMR image also contain noise which is usually modeled as addi­
tive Gaussian noise. This noise can be greatly reduced by averaging several frames, at the cost of 
longer acquisition time. 

In addition, there are several other phenomena which may occur and produce artefacts in the im­
ages. Despite this, modern NMR machines can produce multi spectral images with excellent con­
trast between different tissue types. Also, contrast agents are available which can greatly increase 
contrast between for instance a tumor and the surrounding tissue. Dynamic studies of the contrast 
agents can be conducted by acquiring and co registering images over a period of time. Recent de­
velopments have also made it possible to greatly reduce acquisition time in NMR images. There 
are presently NMR scanners which can acquire upto 20 frames per second available at a very few 
hospitals in the world. These highly sophisticated instruments makes it for instance possible to 
acquire cardiac images in real time. The main drawbacks of NMR imaging today is that the in­
struments are expensive, they are not mobile and they can usually not be used if the patient uses a 
pacemaker or has metal in the body. 

NMR imaging is used in a wide range of clinical applications. NMR imaging is often the preferred 
imaging technique for examinations of pathological structures in the brain. NMR imaging is also 
commonly used for examinations of tumors or cysts in female breasts. In addition NMR imaging 
is used for cardiac imaging with the aid of ECG and respiratory triggering. 

6 Ultrasound imaging 

The following subsection is mainly taken from [5], [36] and [130]. 
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6.1 Two dimensional ultrasound imaging 

Ultrasonic imaging based on the pulse-echo principle became possible after the development of fast 
electronic pulse technology during the Second World War. The first two dimensional ultrasound 
scan was obtained in 1952 by Wild and Reid. They also developed the first two dimensional ultra­
sound scanner. Diagnostics based on medical ultrasound images has evolved dramatically during 
the past fifteen years. Technical breakthroughs in the development of new ultrasonic instrumen­
tation has made this evolution possible. The image quality is continuously improving because of 
new probe technology and new signal processing algorithms. 

6.1.1 Physical aspects of 2D ultrasound imaging 

Ultrasound is defined as sound with a frequency above the audible range human hearing (approx. 
20 kHz). Ultrasound transducers that transmit and receive sound waves in the range 2-40 MHz 
are used for clinical purposes. As the transmitted ultrasound waves propagate through a medium, 
the medium will be compressed and decompressed along the propagation direction. These kind of 
waves are called longitudinal waves. There may also be transverse waves, but hey are heavily atten­
uated in biological material The sound velocity is about 1540-1580 mis in biological tissue (which 
is mainly water), except for fat where the velocity is approximately 1440 mis. Ultrasound scanners 
are usually designed with the assumption that the speed of sound is 1540 mis. The scattering oful­
trasonic waves is caused by spatial variations in the acoustic impedance in the human body. The 
waves can be divided into specular reflections and diffuse scattering (volume scattering). Specular 
reflections appear between layers of tissues with different acoustic impedance when the boundary 
is smooth. The specular reflections are however only captured by the transducer from places where 
the layers are approximately normal to the radial direction. This is a direct consequence of the re­
flection laws. In an ultrasonic image, specular reflections appear as bright boundaries which are 
blurred according to the point spread function. High frequency spatial variations in the acoustic 
impedance give rise to diffuse scattering characterized by the backscatter coefficient per volume. 

Ultrasound is also used to measure blood velocities, by exploiting the Doppler effect. By pulsing 
the beam, blood velocities in a localized region can be measures. If a sound pulse is reflected from 
a scatterer which is moving towards the transducer, there will be a positive shift in the frequency in 
the received pulse. Similarly, if a sound pulse is reflected from a scatterer which is moving away 
from the transducer, there will be a negative shift in frequency. The speed of which the scatterer is 
moving along the radial direction can be directly calculated from the measure frequency shift. A 
continuously transmitted wave is used for measuring the highest velocities, at the cost of reduced 
radial resolution. More recently, the Doppler effect has also been exploited to measure the move­
ment of myocardial tissue in cardiac imaging. 

There are many physical factors that limits the usability of ultrasound scanners. The speed of sound 
limits the amount of data which can be acquired per second. However, with modem ultrasound 
scanners, it is possible to increase acquisition speed by acquiring two or more beams simultane­
ously. Modem ultrasound scanners are capable of generating up to hundred images in a second 

24 



Erik N. Steen Analysis and Visualization of Multidimensional Medical Images 

and even several hundred images if the number of beams in an image is reduced. This makes it 
possible to produce detailed renderings of fast moving organs like the valves in a human heart. 

Due to the coherent detection, constructive and destructive interference between neighboring scat­
terers give rise to multiplicative noise, speckle, which modulates the gray level image, and often 
make the images hard to interpret. It is however possible to reduce speckle by using various analog 
and digital filtering techniques. There are also many other acoustical phenomena, such as multiple 
reflections between tissue layers and phase aberrations which may degrade the ultrasonic image. 
Some of these effects are very difficult to cope with 

Ultrasound is attenuated by the tissue so that the intensity of a wave propagating through tissue de­
creases exponentially with the distance to the transmitter. Attenuation increases with the frequency 
of the sound. A high frequency probe can be used to obtain a high resolution image, at the cost of 
limited penetration into the tissue. Often, some part of the tissue may totally reflect or attenuate 
the ultrasound, leaving tissue farther from the transducer in the shadow. In some cases this effect 
can be reduced by using a technique called spatial compounding. With spatial compounding, ul­
trasound images which are acquired from different angles are mixed together. This technique also 
reduces speckle. 

6.1.2 Ultrasound transducers 

An ultrasonic transducer can be made from a thin plate of piezoelectric material with metal elec­
trodes on each face. An oscillating voltage source can be coupled to the electrodes causing the 
plate to vibrate. The transducer will vibrate at resonance if the plate thickness is one half of a wave 
length. If the vibrating plate is in contact with biological tissue (or a fluid), a sound wave will be 
generated. By Huygen's principle, an ultrasonic beam is formed by the interference between spher­
ical waves from each point on the transducer surface. The beam has a characteristic farfield region 
where it expands with a defined opening angle and a nearfield region which can be further divided 
into an extreme nearfield region and a transition region. In the extreme nearfield, the beam is a 
cylindrical extension of the transducer. The beam can be focussed by forming the transducer as part 
of a spherical shell. Electronically controlled beam forming can be obtained by building a trans­
ducer of an array of small elements each radiating a wide beam. The partial waves will interfere and 
and form a resulting beam which can be steered and focussed electronically. There basically four 
different types of transducers that are in clinical use. Phased arrays, Linear arrays, CurveLinear ar­
rays and annular arrays. Annular array probes are steered mechanically. The advantage of annular 
arrays is that the focus is symmetric, which increases the resolution normal to the scan plane. This 
may for instance be a benefit for three dimensional imaging. 

6.1.3 Clinical applications of two dimensional ultrasound imaging 

Ultrasound imaging has a wide range of clinical applications. Ultrasound imaging is widely used in 
obstetrics. In Norway, all pregnant women are offered an ultrasound examination in the 16th week 
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of their pregnancy. During such an examination, the midwife performs standardized measurements 
to determine fetal maturity, looks for abnormalities and studies the fetal activity. 

In gynecology, ultrasound imaging is routinely used to determine size and shape of uterus and 
cervix and for diagnosis of tumors in the uterus. Ultrasound imaging is also used in examinations 
of the ovaries. Ultrasound imaging is also widely used in the upper abdomen for assessment of 
liver size and shape, examinations of liver tumors, detection of gall stones and kidney stones, ex­
amination of spleen and examination of pancreas. 

Ultrasound imaging is widely used for examination of the cardiovascular system. A modern real 
time ultrasound scanner can be used to visualize the movement of the heart ventricles, the mistral 
valves and the aorta valves. The Doppler effect is exploited in order to visualize blood flow. This 
makes it possible to detect valve leakage. 

2D ultrasound imaging is also used during many other clinical examinations in addition to the ones 
mentioned above and also during different kinds of surgery. The ultrasound instrumentation is 
faster, simpler and cheaper to use than for instance a computer tomograph. Also, the risk of hazard 
during an examination is very low. It has not been found any evidence that ordinary ultrasound 
examinations may cause damages to the patient [126]. 

6.2 Multidimensional medical ultrasound imaging 

Three dimensional (3D) ultrasound imaging was suggested as early as in the 1950s, but then there 
was a lack of adequate computer equipment. Recent development in computer technology has 
made it possible to implement 3D and 4D instrumentation. 

6.2.1 Benefits of 3D ultrasound imaging 

In 2D ultrasound imaging, the operator must mentally construct a model of the organ he is exam­
ining by looking at many 2D images from different positions in sequence. This may be difficult 
in many cases, especially if the shape of the organ is abnormal due to a clinical condition. Very 
often, the operator want to estimate the volume of an organ. This is usually done from measure­
ments of the diameter of the organ in one or several cross sections. The estimates may therefore 
be imprecise, especially if the organ has a complex shape. In 3D ultrasound imaging, it is possi­
ble to overcome many limitations with conventional 2D imaging. By using advanced visualization 
techniques, it is possible to generate images that render whole organs and not just cross sections. 
There are also techniques that can be used to build geometric models of the organs so that precise 
volume estimates can be made. 
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6.2.2 Acquisition of multidimensional medical images 

Most of the existing solutions for 3D ultrasound acquisition are based on electro-mechanical de­
vices which systematically change the orientation of the scan plane for each generated image. The 
acquired data is then often transferred to an external PC or workstation for further processing. An­
other approach to 3D acquisitions is to use a position censoring device which is mounted to an ordi­
nary 2D probe. This is a very flexible way of acquiring 3D data. A normal 3D acquisition may take 
up to several seconds, depending on the size of the organ which is to be imaged. If the movement 
of the organ during this period can not be neglected, the acquisition is much more cumbersome. 
It is possible to acquire 3D data from a human heart by using ECG to synchronize the acquisition 
with the heart cycle of the patient. In addition, since the heart is moved during the respiration cycle, 
respiration must be monitored in order to validate each heart cycle. A four dimensional data set is 
obtained by acquiring a full cineloop in each scan plane. At present there is a big need to make 
such acquisitions less time consuming and easier to perform. 

Visualization of 3D ultrasound data 

A 3D data set is often represented as a regular array of small volume elements which are called 
"voxels". These are analog to pixels in 2D images. A scalar value or a vector value is associated 
with each voxel. There is a wide range of algorithms which have been developed for visualization 
of 3D data (see for instance [22, 152, 85, 113].) These methods generate two dimensional repre­
sentations of three dimensional scenes. Several visualization algorithms make use of a technique 
which is called "ray casting". In this technique, an image is constructed in a view plane which is 
thought to be outside the space limited 3D scene. Each pixel is associated with a ray through the 
3D scene. The value of the pixel is the calculated as a function of all voxels through which the ray 
passes. 

A very simple visualization method is to map the average value of all the voxels along each ray 
into their corresponding pixels. This method is analog to conventional X-ray imaging, where the 
intensity in each pixel depends on the total amount of light absorbed along each ray. 

Surface shading techniques are often used in medical imaging applications. These techniques are 
based on either automatic, semi-automatic or manual detection of the surfaces. The detected sur­
faces are visualized by surface shading. Surface shading algorithms model light reflections from 
surfaces towards the viewer and can give a very good understanding of object geometries. Surface 
shading techniques can give misguiding information if the detection is not reliable. In ultrasonic 
imaging, surfaces can be particularly hard to detect, due to different noise phenomena. 

Much clinical attention has been paid to the problem of visualizing the surfaces of the heart valves. 
These surfaces may often be poorly defined in normal images acquired with Trans Thoratic probes. 
However, with a multiplane TEE probe (which is swallowed by the patient) it is possible to get 
closer to the target and a much better image quality can be achieved. An example of a special sur­
face shading technique used on multi plane TEE data is illustrated in figure 1. The data was acquired 
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with the Tomtec Echoscan System and a Vingmed CFM-800 ultrasound scanner using ECG and 
respiration triggering and then transferred to an external workstation for further processing. This 
image is a rendering of a mitral valve with hole in it. Below the mitral valve, one can see the aortic 
valve which is open. This image is much more informative when displayed in a cineloop covering 
the whole heart cycle. The special shading technique used is called "Z-buffer shading" and it is 
described in [131]. 

Volume rendering techniques have become very popular for medical applications. Volume render­
ing techniques are "fuzzy" visualization methods that may be appropriate if the transitions between 
different tissues are diffuse. In many volume rendering algorithms, opacity values are assigned to 
each voxel. The opacity values define how much each voxel will contribute to the final image. 
Gradient shading is a fuzzy surface rendering technique in which surfaces are implicitly defined 
by computing gradients in each voxel. Figure 2 illustrates a volume rendering algorithm where the 
opacity values are computed on the basis of gradient magnitude values [130]. The rendering is a 
transparent view of the hands of a 30 week old fetus. It is possible to see small bone structure within 
the fetus hands. This kind of rendering technique is much more useful if it is possible to adjust the 
viewing direction interactively. Interactive rendering can be achieved by visualizing only a set of 
"interesting" voxels which is computed once for a given scene [149]. 

Ongoing research 

3D and 4D medical ultrasound imaging is still in its childhood. Much research remains in order 
to exploit the possibilities better. A great challenge is to develop real-time 3D acquisition ( 4D ac­
quisition) as a clinically useful modality. There are several groups working on 2D array probes 
[157]. There are still many theoretical and practical problems which has to be solved in order to 
develop clinically usable 2D probes. The requirement for computing power is tremendous in order 
to process data from 2D arrays in real-time. The number of connections which has to be made to 
the array elements may also be extremely high. 

Currently, the author is involved in a research project that aims at developing real time 3D acqui­
sition based on fast rotation of linear, curve-linear and phased array probes [145]. Several exper­
iments have been conducted with a prototype system. The System Five ultrasound scanner from 
Vingmed Sound was used in these experiments. The System Five scanner is capable of scanning 2D 
sectors with a frame-rate exceeding 500 frames per second. This is achieved by reducing the num­
ber of beams in each frame and by use of multiple line acquisition. A probe adapter was mounted to 
a phased array probe and by use of a electro-motor, we were able to capture up to 20 small volumes 
per second with 10-15 scan planes per volume. Several acquisitions were made of the mitral valve 
of a healthy male person. The data was reconstructed off-line on a workstation and visualized with 
various rendering algorithms. Examples are shown in 3 and 4. 

The interface between the computer and the user is a vital part of a 3D acquisition system. A gen­
eral problem is orientation. To fully understand rendered images of a 3D scene, the user needs 
an intuitive control of the orientation of the view plane. This is difficult to achieve with common 
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pointer-devices such as a mouse or a joystick. GMD is a German research institute which has de­
veloped an intuitive user interface for orientation. A position tracking system with a small receiver 
mounted on a "dummy" ultrasound probe is used. The system is used to control the orientation of 
a cross-section through a model of the human heart. The user gain interactive control of the orien­
tation of the cross section by altering the orientation of the probe. Such an interface may also be 
used for orientation after acquisition of real ultrasonic data. 
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Figure 1 : Surface rendering of the mitral and Figure 2: Transparent rendering of fetus hand 
aorta valves 

Figure 3: Cross sections of volumetric ultra- Figure 4: Surface rendering of (part of) mitral 
sound data acquired in real time valve 
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Scale-space and boundary detection in ultrasonic imaging using 
nonlinear signal-adaptive anisotropic diffusion 

Abstract 

In this paper we develop a strategy for scale-space filtering and boundary detection in med­
ical ultrasonic imaging. The strategy integrates a signal model for displayed ultrasonic images 
with nonlinear anisotropic diffusion. The usefulness of the strategy is demonstrated for appli­
cations in volume rendering and automatic contour detection. The discrete implementation of 
anisotropic diffusion is based on a minimal nonlinear basis filter which is iterated on the input 
image. The filtering scheme involves selection of a threshold parameter which defines the over­
all noise level and the magnitude of gradients to be preserved. In displayed ultrasonic images 
the speckle noise is assumed to be signal dependent, and we have therefore developed a scheme 
which adaptively adjusts the threshold parameter as a function of the local signal level. The 
anisotropic diffusion process tends to introduce artificial image details due to edge enhancement. 
Another modification has therefore been made to avoid edge-enhancement by leaving signifi­
cant monotone sections unaltered. We argue that this preservation of inaccuracies is important 
for applications such as volume rendering which is a fuzzy display technique. The proposed fil­
tering strategy is evaluated both for synthetic images and real ultrasonic images. The results are 
very promising. The filtering scheme has been implemented in a complete rendering pipeline 
which now serves as a clinical tool at the National Center of Fetal Medicine in Norway. 
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1 Introduction 

The boundaries in ultrasonic images carry structural information which is vital for diagnostic pur­
poses [8]. It is therefore important in many clinical applications that the the location of the bound­
aries is preserved also at coarse resolutions. Boundary detection is particularly difficult in ultra­
sonic imaging because of high frequency speckle, acoustic reverberations and several other limi­
tations in the imaging system. The scattering of ultrasonic waves is caused by spatial variations in 
the acoustic impedance in the human body. The waves can be divided into specular reflections and 
diffuse scattering (volume scattering). Specular reflections appear between layers of tissues with 
different acoustic impedance when the boundary is smooth. The specular reflections are however 
only captured by the transducer if the layers are approximately normal to the radial direction. 

High frequency spatial variations in the acoustic impedance give rise to volume scattering char­
acterized by the backscatter coefficient per volume. The volume scattering will therefore differ 
between different kinds of tissue and will cause gray level differences in the displayed image. This 
makes it possible to detect the boundaries between tissues by computing local gradient estimates. 
Due to the coherent detection, constructive and destructive interference between neighboring scat­
terers give rise to multiplicative noise, speckle, which modulates the gray level image. It is there­
fore essential that the gradient estimates are made as insensitive to speckle as possible. A gradient 
operator may however produce artificial double edges from single specular reflections. In this pa­
per, we have assumed that these specular reflections are not prominent in the displayed images. 

Several authors have proposed strategies for boundary detection in images corrupted with speckle 
or more specifically in ultrasonic imaging. Perhaps the best known approach to boundary detec­
tion in speckled images was presented by A. Bovik [2]. This approach was based on Laplacian-of­
Gaussian (LOG) detection combined with Ratio-of-average (ROA) estimation. The idea was then 
to use a LOG based scheme to detect all potential edges. The ROA estimate was then used to filter 
out spurious edges detected with the LOG based scheme. LOG based schemes such as the Canny 
operator [3] do however not handle multiple interfering boundaries well, and the location of bound­
aries is accurate only for small window sizes [16]. A probabilistic approach to edge detection in 
ultrasound images was suggested by W.J Lin et al [9], but failed to locate the edges accurately. 

Another approach to edge detection is to apply edge preserving smoothing prior to detection with 
a simple edge operator like Roberts or Sobel. Such a filtering scheme must satisfy the conflicting 
requirements of maximum noise suppression and preservation of edges and other image details, 
in order to be useful in medical applications [8]. An example of an edge preserving smoothing 
process is the anisotropic diffusion which was first introduced as an image processing tool by Per­
ona and Malik [16]. This smoothing process can be thought of as a kind of scale-space filtering 
which smoothes within homogeneous image regions while preserving the boundaries. Several au­
thors. [ 18, 4, 22, 21 ], have presented filtering strategies based on essentially the same computational 
framework. anisotropic diffusion was used for noise suppression in MR-imaging by Gerig et. al 
[5]. Preliminary results on boundary detection in ultrasonic images with anisotropic diffusion has 
been presented by Steen and Olstad [20, 19]. In this paper we propose a strategy which integrates 
anisotropic diffusion with a signal model which was first presented by A. Lou pas [ 11] for displayed 
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ultrasonic images. 

The anisotropic diffusion scheme proposed by Perona and Malik tends to produce artificially sharp 
boundaries and artificial boundary corners which do not reflect on the diffuse transitions and smooth 
curves often found in real-world applications. Another modification has therefore been made to 
preserve significant monotone sections. 

Boundary detection is important in applications such as volume rendering and automatic contour 
detection. As we will point out later, the proposed boundary detection scheme has several proper­
ties which are particularly useful in clinical applications. 

This paper is organized as follows: 

Section 2 reviews the anisotropic diffusion as it was presented by Perona and Malik [16] with some 
additional comments. In section 3 we develop our modified scheme which is specially adapted to 
filtering of ultrasonic images. In section 4 we discuss issues related to software and hardware im­
plementation of the proposed strategy, and we present several numerical experiments. Finally, in 
section 5, we demonstrate the usefulness of the proposed strategy in applications to volume ren­
dering and automatic contour detection. 

2 Anisotropic diffusion 

Perona and Malik has proposed a strategy for scale-space filtering and edge detection which is 
based on the anisotropic diffusion equation [ 16]. They criticized the standard scalespace paradigm, 
where only space invariant blurring is allowed. The "causality" criterion originally proposed by J. 
Koendrink [7] says that no spurious details should be generated when passing from finer to coarser 
resolutions. Mathematically, this means that no local maxima or minima should appear when pass­
ing from a finer to a coarse resolution. In addition, Perona and Malik stated that region boundaries 
should be sharp and coincide with the "semantically" meaningful boundaries at each resolution, 
and that intra region smoothing should be preferred to inter-region smoothing at all scales. 

The anisotropic diffusion equation is: 

It= div(c(x,y,t)\JI) (1) 

where It represents the image, and c( x, y, t) is a conduction coefficient. Perona and Malik defined 
t as the scale-space parameter, thus larger values oft correspond to coarser resolution of the image. 

It was proved by Perona and Malik that the causality criterion is satisfied by selecting c( x, y, t) as 
a monotonically decreasing function f ( ·) (the weight function) of the image gradient with 1 >= 
f(Ix(x, y, t)) >= 0. The proof is however only correct for ID signals. It is easy to prove that the 
isotropic diffusion as presented by J. Koendrink [7] satisfy the causality criterion in the case of 1 D 
signals. In the 2D case, local maxima (or minima) can in fact appear when passing from a fine to 
a coarser resolution [l, 10]. The following example is taken from Lifshitz and Pizer [1]: 
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Imagine a 2D image function consisting of two separate smooth and wide hills with slightly differ­
ent heights. Assume that the two hills are connected by a narrow sloping ridge without any local 
extrema The lower hill will then not be a local maximum. While smoothing this geometry with 
the isotropic diffusion, the ridge will erode much faster than the hills, such that the lower hill will 
become a local maximum. 

Since the isotropic diffusion is a special case of the anisotropic diffusion, this result is also valid 
for anisotropic diffusion. An alternative but weaker 2D formulation of the causality criterion is: 

The value of a local maximum on the gray-level image should not increase when passing from finer 
to coarser resolutions, similarly, the value of a local minimum should not decrease when passing 
from finer to coarser resolutions. 

It can easily be shown that anisotropic diffusion satisfies the modified causality criterion. This cri­
terion is similar to 2D scale-space formulations which were presented by Koendrink [7] and Lind­
berg [10]. 

Consider a step edgeconvolvedwithaGaussian and let<jJ(I,,) = f(I,,) ·I,, denote the flux function. 
It was shown in [16] thatif <P'(I,,) > 0, the blurred edge will be enhanced, while if <P'(I,,) < 0 the 
edge will be even more blurred. 

Several weight functions have been proposed in the literature [16, 18, 20, 22, 21, 4], all for compu­
tational schemes which can be shown to be special cases of the discrete version of the anisotropic 
diffusion. 

The following function has been proposed by several authors [16, 18, 4]: 

(2) 

The parameter <T determines the noise level which then is supposed to be space invariant. From 
I 2 2 

equation 2 we find that <P' (Ix) = e -~ [ 1 - ~] and blurring will occur for Ix < <T while Ix > <T 

will lead to edge-enhancement. 

Saint Marc et. al [18] developed an algorithm called iterative smoothing, which showed out to be 
an implementation of anisotropic diffusion. They also applied their algorithm to the first derivative 
of the image, generating patches of constant slope. Saint Marc et. al let the number of iterations 
be fixed, and <T was then used as the scale-space parameter. 

A somewhat different weight-function was also suggested by Perona and Malik [16] 

f(I,,) = l+(~)l+a' a> 0 (3) 

By using this weight-function, small regions will be blurred before large ones. 

It was argued by Nordstrjljm [12] that in the diffusion process, the image will converge to a con­
stant at the limit of infinite time. At some stage of the process, the edges will be very sharp, and 
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the image will be segmented into regions with nearly constant intensity. However, in a numerical 
implementation, the flow will be zero for sufficiently large gradients due to limited precision in the 
computation of the weight-functions, and the image may actually converge into several regions of 
constant intensity. Too guarantee that the algorithm converges within a limited number of steps, a 
regularization term may be added [12]. Nordstrlllm called this modified scheme, biased anisotropic 
diffusion. Biased anisotropic diffusion will however lead to less noise smooting. 

Anisotropic diffusion has been applied to medical images for noise suppression and boundary de­
tection [5, 19, 20] 

3 Signal Adaptive Anisotropic diffusion 

It has been found by experimental measurements [11, 8] that displayed ultrasonic images can be 
modeled as corrupted with signal-dependent noise of the form: 

(4) 

wheres is the original signal, Io is the observed signal and n is a zero-mean Gaussian variable with 
standard deviation CT n. A more accurate model may be developed for a specific ultrasound scan­
ner by taking specific nonlinearities in the signal processing chain into consideration. A filtering 
scheme based on a weight-function such as the one in eq. 2 will not work properly if we assume the 
signal model above, because the noise level varies within the image. Particularly, we both want to 
detect weak edges in regions where the signal-level is low, and stronger edges in regions where the 
signal level is high. We have therefore modified the algorithm by computing CT from local estimates 
of the signal-level s: 

Cr= CTnSl/2 (5) 

Now, substituting for er: 

(6) 

And differentiating: 

(7) 

Then, blurring will occur for Ix < CT n 5112 and edge enhancement for Ix > CT n 5112 • 

An implementation of the proposed scheme relies on the estimate of the local signal level 5. A 
simple solution is to use the previous output of the filter It as an approximation of the signal level. 
Because of the intra-region smoothing, the filtered value will gradually give a better estimate of the 
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signal level in the surrounding region as the filter is iterated. Initially, we may need a more robust 
estimate of the signal level. We will discuss how this can be achieved in the next section. 

In displayed ultrasonic images, the speckle patterns may be large compared to the pixel resolution. 
With conventional smoothing filters, like the average filter and the median filter, the size of the fil­
tering window is usually adjusted according to the point spread function. Anisotropic diffusion can 
only be implemented properly using minimal filtering windows. It is therefore very important that 
the original (isotropic) resolution of the image is adjusted so that the size of the minimal filtering 
window is approximately equal to the point spread function. Otherwise, the anisotropic diffusion 
filter may lead to spuriously detected edges. 

The edge-enhancement property of the anisotropic diffusion may be desirable if the underlying true 
image consists of tissue regions which are separated by step edges. In medical applications, transi­
tions between different tissues may be diffuse. Even if some transitions may be very sharp, a com­
bination of noise, blurring and phase effects make a precise restoration of the corresponding edges 
very difficult and sometimes impossible without incorporation of very specfic knowledge about 
the imaged object. We therefore argue that the edge enhancement property of the anisotropic dif­
fusion is an undesired effect of the filtering in many applications such as volume rendering, which 
is a fuzzy display technique. More sophisticated filtering schemes, such as the one proposed in [6] 
may be used if the goal is to reconstruct image details which have been significantly blurred by the 
point spread function. 

As was pointed out by Steen and Olstad [20, 14], the edge-enhancement property can be avoided 
by selecting the flux-function as a constant. Then any monotone section will remain unchanged. 
The corresponding weight-function is C /Ix, where C is a constant. This weight function should be 
selected only if Ix > 1J ns112 , while a smoothing weight-function can be selected for Ix :S 1J ns 112 • 

In this way, we permit intra-region smoothing while avoiding edge-enhancement. The constant 
C is then calculated according to the specific smoothing function to ensure a continuous weight­
function. A modified version of the weight-function in eq. 2 will then be: 

{ 

r2 
--'-"-­e 2 a-2 

f(Ix)= _l., 
e 2 17 

I;-

iflx :S Cr 

otherwise 
(8) 

We note that 1 >= f (Ix ( x, y, t)) >= 0 also for this weight-function. The corresponding flux­
function is illustrated in figure 1 

4 Numerical experiments 

4.1 Discrete implementation 

The anisotropic diffusion equation can be discretized on a lattice-structure with brightness values 
associated to the vertices, and conduction coefficients to the arcs [16]. We have used the same 
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c 

Figure 1: Proposed flux function 

discretizations as proposed by Perona and Malik [16]. A 4- or 8- nearest neighbor discretization 
of the Laplacian operator is used, and the norm of the gradients is approximated with the absolute 
value of their projections along the direction of the arcs. This gives the following simple and stable 
numerical scheme (using 4 nearest neighbors to the north,east,south and west of the center-pixel): 

It+dx, y) It ( x, y) 

+ ~[f(I \JN It(x, y)I) \?Nlt(x,y) 

+ f(I \?E It(x, Y)I) yEit(X, y) (9) 

+ f(I vs It(x, y)I) vsit(x, y) 

+ f(I \lw It(x, Y)I) \JW It(X, y)] 

where v denotes nearest-neighbor differences: 

\JN It(X, y) 
yEit(X, y) 
ySit(X, y) 
\JW It(X, y) 

It(X, y - 1) - It(X, y) 
It ( x + 1, y) - It ( x, y) 
It ( x, y + 1) - It ( x, y) 
It(X - 1, y) - It(X, y) 

(10) 

Iterating this scheme can be thought of as moving towards coarser resolutions in scale-space. An 
implementation based on an 8-point neighborhood that takes the distance between the neighbor­
pixels into account is recommended for better isotropy. 

A numerical implementation of the weight-function proposed in equation 8 requires some thought 
in order to keep the numerical process stable and to avoid blurring across boundaries. Significant 

- .1 ~ 

monotone sections can be filtered properly by choosing the weight function f(Ix) = e 1~ a 
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C / I:r symmetrically around the center-pixel. Assume that in a 2-D situation we have It ( x, y) = a, 
lt(x - 1, y) = /3 and lt(x + 1, y) = -7, where a, /3, "f 2 0. 

We then see that: 

(11) 

Hence, the two flow-contributions cancel out, and can thus be ignored. 

The constant flux-function should then be selected (by ignoring the flow-contributions) symmet­
rically if either I 'VE It(x, y)J 2 iT or I V'w lt(x, y)J 2 u. and \Jelt(x, y) · V'w It(x, y) < 0. 
This test ensures that the flow is ignored only in significant monotone sections. A similar test can 
be done for pixels lying north and south to the center pixel. 

As was pointed out in the previous section, we need an initial estimate of the local signal level. The 
signal level can then be estimated from local statistics in a minimal window VVx ,y surrounding a 
pixel with coordinates ( x, y). The window should be kept minimal to minimize the probability of 
sampling from different regions. We have then used the ML- estimate [8] of the original signal, 
given the signal model in eq. 4 with a window of size 3 x 3. 

' -()~ v li~ 1 . . 2 .. 
BML = 2 +4 + g L I(z,J) , (z,J) E Wx,y (12) 

The implementation scheme presented in this subsection was mainly selected due to computational 
simplicity. In a software implementation, extensive use oflook-up tables can dramatically speed up 
the computations. In fact the total flux in any direction can be pre-computed for all possible com­
binations of three consecutive discrete samples. For a four-neighborhood implementation, compu­
tation of each new pixel value will amount to two look-up operations and two summations. The 
scheme is also parallel in nature and well suited for implementation on dedicated hardware with 
several simple processing elements. Saint Marc et. al [18] implemented the anisotropic diffusion 
on the connection machine, gaining a dramatic speed up. They also presented a multi-grid imple­
mentation of anisotropic diffusion. 

4.2 Experimental results, synthetic images 

We have applied the proposed boundary detection strategy both to synthetic images and to real ul­
trasonic images. All experiments where done with the Application Visualization System (AVS) 
from Advanced Visual Systems. Initially, we constructed an experimental setup with various syn­
thetic images to which we could add signal dependent white noise using the signal model in equa­
tion 4. The purpose of these initial experiments was to verify the theoretical properties of the pro­
posed boundary detection scheme. In our first experiment, we constructed an artificial image with 
two "background regions" with different signal levels (pixel values were set to 25 and 100). In each 
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background region there were several smaller regions with higher intensity (pixel values were set 
to 50 and 175). We then added signal dependent Gaussian noise with (J'n = 1.25. Figure 2 is a 
topographic visualization of the test image. In figure 3 shows the test image with added noise. The 
proposed boundary detection scheme was applied to the test image with the parameter (]' n = 1.25. 
Figure 4 is a topographic visualization of the image after 25 iterations of the smoothing scheme 
using an 8-point neighborhood. Note how well the boundaries between the different regions are 
preserved, while spurious edges are almost completely removed. 

In the second experiment we blurred the test image with a 5x5 Gaussian mask, and we then added 
signal-dependent noise with (J'n = 0.8. We applied both the proposed strategy with the weight 
function in eq. 8 and a signal adaptive version of the weight-function in eq. 2: 

(13) 

The results are shown in figure 5 and 6. From figure 5 we see that the edge-enhancement property 
of the weight function in eq. 13 in some places have lead to incorrect boundary locations and artifi­
cial boundary corners. Figure 7 shows edges detected with anisotropic diffusion using the weight­
function in 13 and figure 8 shows edges detected with the scheme proposed in this paper. 

4.2.1 Quantitative evaluation of filtering scheme 

The smoothing algorithm presented in this paper can be viewed as a simple restoration scheme. It 
is therefore desirable to measure the quality of the filtered images. A common practice is to use 
the SNR value as a quality measure for restored images. The SNR value does not emphasize on 
edge localization, and is therefore a poor measure of image quality when it comes to localization of 
edges. Olstad [ 13] has proposed a quality measure which does not have this defficiency. The quality 
measure is developed on an information theoretic basis and is defined as an estimate of how well 
thresholded versions of the orginal image can be approximated by thresholding the restored image. 
Let g E Re denote the image intensity fuction and T be a given threshold. In Olstads framework, a 
thresholded image is considered as a binary partition er e = { x 1 ' x 2}. xi~ is defined as follows: 

e~ = { {g < T } , {g ~ T } } (14) 

From basic information theory we know that entropy is a measure of information content in a given 
partition. Entropy is defined as follows: 

Definition 1 (Entropy) The entropy of a partition e = { x 1 ' ... ' x n } is the nonnegative value : 

n 

H(() = - L µ(Xi) logµ(X;). 
i=l 
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µ is a probability measure. 

Conditional entropy records the information given in a partition, e, if another partition, T/, is already 
known: 

Definition 2 (Conditional entropy) The conditional entropy of e given T/ is: 

I '"" , , µ(X;n}'j) 
H(e T/) = - ~µ(.,\; n1j)log (Y,) , 

'' µ J 
Z,J 

where the terms with µ(Yj) = 0 are omitted from the sum. 

-
Let g denote the image computed from the undisturbed original image, and ( g) the restored image 
computed from a corrupted version of the original image. 

(15) 

This measure computes the information in the stochastic experiment associated with knowing the 
result of a fixed threshold T9 of g, given that the thresholded images Tg of g are known. The in­
fimum operator assures that the best possible threshold value of g for guessing the result of g is 
selected. The supremum operator then finally selects the g-threshold that is most difficult to esti­
mate in this manner. If e(g, g) = 0, all the information in the original image can be recovered. 

To give a quantitative evaluation of the proposed boundary detection scheme, we wanted to mea­
sure the quality of the smoothed images. Experiment 1 was repeated, but with <J' n increased to 1. 7 5. 
In addition, well known image operators such as running average filter and running median filters 
were used for comparison. Table 1 contains the results of the different filtering operations. 

Filter type Quality measure (scale 10-3 ) 

No filter 113 
Signal Adaptive anis. diff. 6 
3x3 average filter 44 
5x5 average filter 62 
3x3 median filter 24 
5x5 median filter 27 

Table 1: Results of filtering operations 

Evidently, the anisotropic diffusion filter performs much better than the median and average filter 
in terms of the quality measure. The average filter is known to suppress Gaussian noise better than 
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the median filter, but blurrs the edges. The median filter is known to have better edge preserva­
tion capabilites than the average filter [17] which can be seen from the table. The performance of 
both the average filter and the median filter decreases as the the filter size increases. This can be 
explained by the fact that edge localization will be less precise when large filtering windows are 
used. 

It is interesting to measure how the filtering effect increases as a function of time (number of itera­
tions). The table below shows the intermediate measurements from the previous experiment. The 
filtering effect is significantly reduced after a relatively small number of iterations. 

Number of iterations, proposed filter Quality measure (scale 10-3 ) 

0 113 
1 107 
2 101 
4 89 
8 66 
16 32 
32 10 
64 6 

We also wanted to see if it was possible to measure the observed effect that edge enhancement 
may lead to incorrect edge localization. We made several experiments with both :3 x 3 and 5 x 
5 Gaussian blurring masks and added various amounts of noise. We applied the signal adaptive 
anisotropic diffusion filter both with and without edge enhancement to all images. In all cases, the 
edge enhancing filter gave the lowest performance in terms of the quality measure used. Table 2 
contains the measurements for an experiment with <Tn = 0.8 and a Gaussian mask of size .5 x 5. 
The difference between the unfiltered and the filtered images increased significantly when the noise 
level was increased. 

Filter type Quality measure (scale 10-3 ) 

No filter 60 
Signal Adaptive anis. diff. with edge enhancement 50 
Signal Adaptive anis. diff. 40 

Table 2: Filtering with and without edge enhancement 

4.3 Experimental results, real ultrasonic images 

In our experiments with real ultrasonic images, we made an experimental setup with a CFM750 ul­
trasound sector-scanner from VingMed Sound using a 7 .5 Mhz annular array probe. A typical scan 
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consists of 128 digitized beams each containing 512 8-bit samples. The direction of the ultrasound 
rays is steered mechanically at high speed, and the scanner is capable of digitizing approximately 
50 scans per second. The data was digitally transferred to a HP series 700 workstation. The ex­
periments were done on this platform with AVS. The effect of the proposed filtering strategy is 
illustrated in figure 9, 10. Figure 9 shows gradients computed from an original ultrasonic image 
of the hand of the fetus. The image was first scaled down to half the original resolution. Figure 
10 shows gradients computed from a filtered image (after 25 iterations of the smoothing scheme). 
This and many other experiments have shown that the proposed boundary detection scheme has 
the property of preserving clinically relevant details while smoothing out spurious edges. 

5 Applications 

We have found that the proposed boundary detection scheme has several properties that are useful 
in many medical applications. 

• It is possible for a clinician to interactively define the level of detail in the gradient images, 
both by adjusting the noise-parameter er n and the scale parameter t (the numberof iterations). 
This property is very useful in volume rendering because information from an entire volu­
metric dataset is projected onto a two dimensional view-plane. Rendered images can then 
be made at a coarse scale in order to give a global overview of the volumetric dataset. 

• The location of the edges is not altered by going from fine to coarser resolution. Instead, spu­
rious edges are gradually removed while relevant details are preserved. This property makes 
it possible to generate detailed rendered images with only a very small amount of disturbing 
noise. In automatic contour detection, it is possible to remove spurious edges which might 
lead to incorrect detection. 

• The discrete implementation is simple and well suited for implementation on dedicated hard­
ware, for instance in a future ultrasound scanner. 

The effect of the filtering strategy is clearly demonstrated in figure 11 which shows a volume render­
ing of a fetus hand computed from gradients detected with a 3D version of the boundary detection 
scheme. The initial filtering was strong, but still relevant details are preserved. One can clearly see 
the small bone structures within the fetus hand. The clinical value of such images becomes even 
more prominent when displayed with stereo vision equipment and/or in animated sequences. 

The active contour algorithm has been proposed as a tool for automated object detection in medical 
images [15]. An active contour is defined as an energy-minimizing spline under the influence of 
internal and external forces. The internal forces serve as a smoothness constraint and the external 
forces typically guide the contour towards image locations with high gradients. Noise and spurious 
edges may therefore lead to imprecise location of the contour. We have then used the proposed 
smoothing strategy to remove noise and spurious edges while preserving relevant details which 
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should attract the contour. Figure 12 shows the contour of a urine bladder located with the active 
contour algorithm on a 2D gradient image computed after 25 iterations of the smoothing scheme. 

6 Conclusion 

In this paper we have presented a new strategy for scale-space filtering and boundary detection 
in ultrasonic images. The strategy integrates a signal-model for displayed ultrasonic images [11] 
with anisotropic diffusion [16]. A more accurate signal model may be developed in order to com­
pensate for scanner specific non linearities in the signal processing chain. Anisotropic diffusion is 
an edge enhancing smoothing process. Numerical experiments showed that the edge enhancement 
property of Perona and Maliks original filtering scheme may introduce artificial image details and 
lead to incorrect edge localization. A modification to the original anisotropic diffusion scheme was 
made in order to preserve monotone signal transitions, and thereby avoid introduction of additional 
artificial details. In fact, the modification turned out to improve edge localization both visually and 
quantitatively. Since the filtering scheme does not include deblurring, uncertainties in the imaging 
system are preserved. On the other hand, more sophisticated filtering schemes should be used if the 
goal is to reconstruct image details which have been blurred significantly by the point spread func­
tion. This is however an ill-posed problem due to a combination of blurring, noise, reverberations, 
phase aberrations and other degradation phenomena. 

Numerical experiments on both synthetic images and real ultrasonic images showed that the pro­
posed filtering scheme preserves edges much better than both the running average filter and the 
running median filter. The discrete version of the filtering strategy is simple and well suited for 
implementation on dedicated hardware. The usefulness of the strategy has been demonstrated for 
applications in volume rendering and automatic contour detection. 
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Figure 2: Topographic visualization of synthetic image 

Figure 3: Topographic visualization of noisy 
synthetic image 

Figure 4: Topographic visualization of noisy 
synthetic image smoothed with proposed strat­
egy 
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Figure 5: Topographic visualization of noisy 
blurred synthetic image smoothed with edge­
enhancement 

b 0 () 

Figure 6: Topographic visualization of noisy 
blurred synthetic image smoothed with pro­
posed strategy 

b 0 0 

Figure 7: Edges detected from noisy blurred Figure 8: Edges detected from noisy blurred 
synthetic image which has been smoothed synthetic image which has been smoothed 
with edge-enhancement with proposed strategy 

A-17 



Scale-space and boundary detection in ultrasonic imaging using nonlinear signal-adaptive anisotropic 
diffusion 

Figure 9: Gradients computed from original Figure 10: Gradients computed from filtered 
image image 

Figure 11: Volume rendering of fetus hand Figure 12: Contour of urine bladder 
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Volume Rendering of JD Medical Ultrasound Data 
using Direct Feature Mapping 

Abstract 

In this paper we explore the application of volume rendering in medical ultrasonic imaging. 
Several volume rendering methods have been developed for X-ray Computed Tomography (X­
CT), Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). Limited 
research has been done on applications of volume rendering techniques in medical ultrasound 
imaging because of a general lack of adequate equipment for 30 acquisitions. Severe noise 
sources and other limitations in the imaging system make volume rendering of ultrasonic data 
a challenge compared to rendering of MRI and X-CT data. Rendering algorithms that rely on 
an initial classification of the data into different tissue categories have been developed for high 
quality X-CT and MR-data. So far, there is a lack of general and reliable methods for tissue clas­
sification in ultrasonic imaging. This paper focuses on volume rendering methods which are not 
dependent on any classification into different tissue categories. Instead, features are extracted 
from the original 30 data-set, and projected onto the view plane. We found that some of these 
methods may give clinically useful information which is very difficult to get from ordinary 20 
ultrasonic images, and in some cases renderings with very fine structural details. We have ap­
plied the methods to 30 ultrasound images from fetal examinations. The methods are now in 
use as clinical tools at the National Center of Fetal Medicine in Trondheim, Norway. 

I. Introduction 

Three-dimensional (3D) display techniques have been studied extensively for medical applications 
for the past several years and are well established as a clinical toolin X-CT imaging [23, 58, 54]. Vi­
sualization techniques for MRI and PET have been explored in [l, 57, 4, 60, 41]. Recently, special 
techniques have also been proposed for multi-modal images with combination of PET and MR-data 
[8, 56]. Only limited research has been done on visualization of 3D ultrasonic data. One reason for 
this is that the scanning technology is still immature and also that the quality of ultrasonic images 
is relatively low compared to X-CT and MRI. Examples can be found in visualization of polygon 
data which are extracted automatically or semi-automatically from the left ventricle of the heart and 
the Mitral Valve [12, 10, 13]. Others have applied similar methods to visualize the arterial wall in 
intra-vascular ultrasound [14]. Standard volume rendering techniques have been used in 3D color 
Doppler ultrasound imaging to visualize quantitative maps of the Doppler shift of blood flow [11 ]. 
Bamber et al.[3] have also made visualizations of 3D Doppler echo data. Mc Cann et al.[39] have 
made transparent renderings of beating heart. Tomographic Technologies has developed a com­
mercial system for rendering of both 3D and 4D ultrasonic data. 

A volumetric data set is made of samples from a 3D scalar field and is usually represented as a 3D 
array. The sample points, or volume elements, are called voxels. A cuberille is a regular 3D array of 
voxels. In this paper, we assume that the 3D data is represented as a cuberille. Other geometries can 
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usually be scanconverted to a regular cuberille prior to the analysis. A common way to visualize 
3D data is by interactive slicing of the cuberille. Thin slices can be displayed directly as intensity 
images. By successive rendering of parallel slices, the viewer can at least mentally get an overview 
of the volumetric data set. 

Another well known technique is threshold rendering. This technique has been found useful for 
display of isovalue surfaces from Computed Tomography data, where each material falls within 
a specific density range. The surfaces can be rendered by using back to front traversal [16], ray 
tracing [30] or surface reconstruction [36]. 

Photo realistic renderings can be obtained of polygonal surfaces extracted from the data-set by 
thresholding or by using automatic surface detection schemes [44, 43, 20, 24]. Shading techniques 
can then be applied to the extracted polygon data These approaches rely heavily on the robustness 
of the surface detection schemes. 

Volume rendering is used to give a 2D representation of the interior of an entire volumetric data 
set. In medical imaging, the usefulness of such methods relies on their ability to extract clinically 
useful information. Several algorithms have been proposed [7, 55, 33, 48, 34, 40, 45] for this pur­
pose. Drebin et al. [7] developed a technique for rendering of data-sets which represents a mixture 
of materials. This paper has become a "classic" and the methodology has been used by several re­
searchers for medical applications [8, 56]. Drebin emphasizes that volume rendering algorithms 
should not incorporate discrete decisions. Such decisions tend to produce artificially sharp bound­
aries and do not reflect the diffuse transitions often found in real world applications. Instead, Drebin 
suggests that statistical analysis should be used to decide the amount of each material present within 
each voxel. Drebin[7] and Levoy[33] suggest that local gradients should be computed within the 
cuberille. Levoy applies the density values directly while Drebin computes the gradients from den­
sities assigned to the different materials. These local gradients are used in the shading computations 
together with an opacity and color value, which has been assigned to the various tissue categories. 
The methods in [7, 33] give realistic impressions of the implicit surface geometry within the cu­
berille if the initial classification stage is reliable. 

Meinzer et al. [ 40] have developed a rendering pipeline for use in medical imaging, which is based 
on the work ofKayija [29]. Several simplifications are made to reduce the computational complex­
ity. The model is achromatic in contrast to the methods presented in [7, 33], and combines proper­
ties of surface shading and light scattering by particles. Heidelberg et al. demonstrate their method 
on high quality X-CT data and the results are quite impressive. It is however obvious that data with 
a substantial noise component will give a less attractive result. Evaluations of volume rendering 
techniques in medicine can be found in [25, 27, 26]. Problems specially related to rendering of 
ultrasound data are discussed in [28, 17]. 

Several fundamental limitations in the imaging system, make volume rendering a difficult chal­
lenge for ultrasonic data First of all, ultrasonic images are distorted by several kinds of noise. This 
includes thermal noise caused by the amplifying circuits, acoustic noise, and phase effects (speckle 
noise and phase aberrations.) The substantial presence of noise makes the ultrasound images hard 
to interpret. Another severe limitation is that the received echo signal from structures lying parallel 
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. 
to the radial direction can be very weak and thus difficult to render. Structures lying normal to the 
radial direction give a much stronger echo. Yet another problem is that high density material may 
totally absorb the transmitted ultrasound waves, leaving structures further from the transducer in 
the shadow. 

The limitations suggest that binary thresholding schemes, which has been successfully used in X­
CT-imaging, will generally be unreliable in ultrasound imaging. Rendering algorithms such as the 
one presented by Drebin [7] will be of limited use unless more sophisticated tissue classification 
schemes are developed. Tissue characterization schemes based on fractal dimension [9] and neural 
networks [ 46] have been proposed for classifying tissue types as normal or abnormal. However, 
so far there is a lack of general and reliable methods for tissue classification in ultrasonic imaging. 

In this paper we focus on methodologies which do not rely on any initial classification into different 
tissue categories. Instead, features are extracted from the original 3D data-set, and projected into 
the view-plane. The feature extraction then serves as a low-level segmentation process which then 
is meant to emphasize on clinically interesting features of the data-set. 

Several authors have presented rendering methods which fall into this category [48, 45]. We ex­
plore both old and more recent approaches, which have been designed to meet the difficult noise 
conditions in ultrasonic imaging. The aim of this study has been to find methods which give clini­
cally interesting renderings, not photo-realistic images. The methods are evaluated for several fetal 
studies. 

II. Methods 

A. Image acquisition 

All ultrasound data used in this study has been acquired using the CFM-750 ultrasound annular 
array sector-scanner from VingMed Sound. A typical scan consists of 128 digitized beams each 
containing 512 8-bit samples. The direction of the ultrasound rays is steered mechanically at high 
speed, and the scanner is capable of digitizing approximately 50 scans per second. 

A prototype system for 3D ultrasound acquisition, which works with the CFM-750, has been devel­
oped at the Department of Biomedical Engineering in Trondheim, Norway. A 2D probe is placed in 
a holder, and the scan plane is either tilted, translated or rotated using a step motor. The step motor 
is synchronized with the scanner, giving the scanner time to process the data before the scan plane 
is moved into a new position. A typical acquisition takes approximately 2 seconds and consists of 
95 scans. It is essential that the probe-holder is kept stable during the acquisition, to avoid motion­
artifacts. The tilting probe covers a sector of 51 degrees in the motion plane, while the rotating 
probe covers a complete cone. The acquired data is directly transferred to an external computer 
and scan converted into a regular volume. Trilinear interpolation is used to fill in the gaps between 
the adjacent scan converted rays. Similar acquisition equipment has been developed by others. An 
overview of different acquisition strategies can be found in [28]. 
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B. Boundary detection 

The boundaries in ultrasonic images carry structural information which is vital for diagnostic pur­
poses [31]. In [ 51, 52] boundary information was exploited by computing local gradient magnitude 
values within the cuberille. These values can be computed directly from the raw data by simple op­
erators such as Roberts gradient [19]. Schemes like this are however very noise-sensitive, and it 
was therefore found in [51, 52] that more robust boundary-detection schemes should be used. 

Boundary detection is particularly difficult in ultrasonic imaging because of speckle, acoustic rever­
berations and several other limitations in the imaging system. The scattering of ultrasonic waves 
is caused by spatial variations in the acoustic impedance in the human body. The waves can be 
divided into specular reflections and diffuse scattering (volume scattering). Specular reflections 
appear between layers of tissues with different acoustic impedance when the boundary is smooth. 
The specular reflections are however only captured by the transducer if the layers are approximately 
normal to the radial direction. This is a direct consequence of the reflection laws. In an ultrasonic 
image, specular reflections appear as bright boundaries which are blurred according to the point 
spread function. The blurring means that two specular reflections from both sides of a thin tissue 
layer actually will appear as a single bright boundary in an ultrasonic image. 

High frequency spatial variations in the acoustic impedance give rise to volume scattering char­
acterized by the backscatter coefficient per volume. The volume scattering will therefore differ 
between different kinds of tissue and will cause gray level differences in the displayed image. This 
makes it possible to detect the boundaries between tissues by computing local gradient estimates. 
Due to the coherent detection, constructive and destructive interference between neighboring scat­
terers give rise to multiplicative noise, speckle, which modulates the gray level image. It is there­
fore essential that the gradient estimates are made as insensitive to speckle as possible. A gradient 
operator may however produce artificial double edges from single specular reflections. In this pa­
per, we have assumed that these specular reflections are not prominent in the displayed images. 

A probabilistic approach to edge detection in ultrasound images was suggested by Lin et al.[35], 
but failed to locate the edges accurately. Lin also argued that a boundary detection scheme should 
fill in the boundary gaps that sometimes appear due to image dropouts. This approach may however 
introduce artificial details. 

A. Bovik suggested to combine Laplacian- of- Gaussian (LOG) edge detection with Ratio- of- aver­
age estimation [5] as a general approach to edge detection in speckled images. LOG-based schemes 
such as the Canny-operator [6] will however not handle multiple interfering boundaries properly, 
and the localization of boundaries is accurate only for small window-sizes [47]. 

Another approach is to apply edge-preserving filtering schemes prior to the gradient calculations. 
Such a filtering scheme must satisfy the conflicting requirements of maximum noise suppression 
and preservation of edges and other image details, in order to be useful in medical applications [31]. 

It has been found by experimental measurements [37, 38, 31] that a reasonable image formation 
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model for displayed ultrasonic images is given by the following equation: 

(1) 

where s is the original signal, and n is a zero-mean Gaussian variable which then models the noise 
process. This signal model assumes that the original signal has been log-compressed and low-pass 
filtered. A more accurate model could be developed for a specific ultrasound scanner by taking 
time-gain-compensation and other nonlinearities in the signal processing chain into considerations. 

The non-stationary nature of ultrasonic images has motivated several authors to develop adaptive 
spatial filtering schemes which adjust their smoothing properties according to local image statistics 
[2, 38, 32, 31]. 

A signal adaptive maximum likelihood filtering scheme has been proposed by Kotropouloset al.[31]. 
The filter uses a signal adaptive weighting factor to ad just the filtering strength locally in each voxel. 
The filter preserves edges while smoothing homogeneous regions. The filter computes signal statis­
tics locally in windows centered around each pixel in the image. If an edge is present within the 
current window, the window-size is reduced, but then the output-variance of the filter increases. 
Thus, noise will not be reduced very well close to the tissue boundaries. This will also be a prob­
lem with other filtering schemes which adaptively control the window-size. 

Steen and Olstad[50] developed a boundary detection scheme for ultrasonic images which was 
based on anisotropic diffusion. The anisotropic diffusion is a smoothing process which smooths 
within homogeneous regions while preserving or enhancing the region boundaries. It was first in­
troduced as an image processing tool by Perona and Malik[ 4 7]. Others have also presented filtering 
schemes based on essentially the same computational framework[49, 53, 18]. The anisotropic dif­
fusion has also been used for noise suppression in MR-imaging by Gerig et al.[21]. 

The anisotropic diffusion equation is: 

It= div(c(x,y,t)\JI) (2) 

where I 1 represents the image, and c( x, y, t) is a conduction coefficient which is chosen as a mono­
tonically decreasing function f( ·)(the weight function) of the image gradient with 
0 :S f(Ix (x, y, t)) :S 1. Perona and Malik defined t as the scale-space parameter, thus larger values 
oft correspond to coarser resolutions of the image. Consider a step edge convolved with a Gaussian 
and let ¢(Ix) = f(Ix) ·Ix denote the flux function. It was shown in [47] that if <f;'(Ix) > 0, the 
blurred edge will be enhanced, while if¢' (Ix) < 0 the edge will be even more blurred. 

The following weight function has been proposed by several authors[ 47, 49, 18]: 

(3) 

It can then be shown thatblurringwilloccurfor rr < u while Ix > u will lead to edge-enhancement. 
The parameter u determines the noise level which is supposed to be space invariant. According to 
the signal model in eq. 1, this assumption is not valid for ultrasonic images. It was therefore argued 
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in [50] that the parameter u should be computed from local estimates of the signal level: 

(4) 

where u n is a global parameter which defines the level of detail to be preserved. Regular Gaussian 
blurring can be obtained by setting u n to inifinity. A numerical implementation relies on the esti­
mate of the local signal level s. A simple solution is to use the previous output of the filter Ii as 
an approximation of the signal level. Because of the intra-region smoothing, the filtered value will 
gradually give a better estimate of the signal level in the surrounding region as the filter is iterated. 
Initially, a more robust estimate can be achieved by computing the ML-estimate[31] of the original 
signal, given the signal model in eq. 1 within a small window. 

Numerical experiments in [50] showed that the edge-enhancement may introduce artificial bound­
ary details in 2D images. The edge-enhancement property can be avoided by using a weight func­
tion of the form C /Ix, where C is a constant [50, 52, 42]. This weight function should be selected 
only if Ix > u n s 1I2 , while a smoothing weight function can be selected for Ix :::; u n s 1t2. In 
this way, one achieves intra-region smoothing while avoiding edge-enhancement. The constant 
C is then calculated according to the specific smoothing function to ensure a continuous weight­
function. A modified version of the weight-function in eq. 3 will then be: 

iflx :=:; ir 

otherwise 
(5) 

The anisotropic diffusion equation can be discretized on a lattice-structure with brightness values 
associated to the vertices, and conduction coefficients to the arcs[47]. A 4- or 8- nearest neighbor 
discretization of the Laplacian operator can be used, and the norm of the gradients can be approx­
imated with the absolute value of their projections along the direction of the arcs. A multi-grid 
implementation of anisotropic diffusion was presented by Saint Marc et al.[49]. 

A numerical implementation of the weight-function in eq. 5 requires some thought in order to keep 
the numerical process stable and to avoid blurring across boundaries. Significant monotone sec-

_ .i ~ 

tions can be filtered properly by choosing the weight function f( Ix) = e 1: a = C /Ix symmetri-
cally around the center-pixel, hence, the two flow-contributions cancel out, and can thus be ignored. 

Iterating the basis filter can be thought of as scale-space operations [ 4 7]. By iterating the filter, noise 
and small details will be smoothed, while significant boundaries will be preserved. By allowing the 
end-user to adjust the number of iterations, the level of detail in the rendered images can be inter­
actively defined. This last property is very important in clinical applications, as all filtering of data 
is a compromise between noise suppression and image-detail preservation. In volume rendering, 
strong filtering can often be allowed, as information from the whole volume will be compressed 
into one 2D image. Boundaries can then often be extracted at a coarser scale. It is also possible to 
fix the number of iterations and use the parameter fr in eq. 5 as the scale space parameter[ 49]. The 
scale parameter then approximately defines the magnitude of gradients to be preserved. 
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Numerical experiments in [51, 52] showed that the initial filtering of the data was essential in order 
to achieve satisfactory results. Figure 2 shows gradients computed from an original ultrasonic im­
age captured during a fetal examination. Figure 3 shows gradients computed from a filtered version 
of the image. 

C. Volume Rendering 

Rendering based on Direct Feature Mapping 

RAY 

OF RAY DENSITY EVOLllTION 

Figure 1: Rendering process 

Several rendering algorithms that do not rely on an initial classification of the voxels into differ­
ent material categories have been proposed in the literature[48, 45]. These rendering models are 
based on extracting characteristic parameters from the density evolutions, p( t). The attributes are 
displayed at the associated pixel in the view plane. The rendering methods can be applied to the 
entire data-set in order to give a global overview of the data, or smaller portions of the data-set 
may be selected interactively for rendering. In the latter case, the aim may be to reveal the inte­
rior of smaller structures which are difficult to interpret from the global overview. The following 
attributes were evaluated in [ 45]. 

1) Maximum value projection: 
M = sup p(t) (6) 

t,::;t::;t2 

This method has shown to give clinically interesting renderings, but only for a limited number of 
views. Only a single voxel is projected from each evolution, which means that most information 
from the evolution is lost, and that noisy voxels with high intensities may be projected instead of 
voxels actually corresponding to the highest densities. This method was evaluated for Nuclear 
medicine data in [59] as a technique for "hot spot" imaging. The projected voxel-values would 
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then come from regions with high nuclear activity. In ultrasonic imaging, the maximum value pro­
jection method can be thought of as a technique for projecting the voxels from areas with maximum 
variation in acoustic impedance. 

2) Average value projection: 
rt2 (t)dt 

A = _Jt_1_P __ 

t2 - ti 
(7) 

This method was evaluated in [ 45] and turned out to give low contrast renderings of little clinical 
value in most cases. A similar method which consisted of projecting the sum of all voxels along 
each ray was also evaluated in [59] and was found to give low contrast renderings. The average 
value projection method is nevertheless much more insensitive to noise than the maximum value 
projection method, and may be useful for a limited range of depths. In addition, a threshold value 
can be set to project only voxels with values above this threshold. The latter method will intuitively 
be of a limited use for ultrasonic images because the individual voxel-values generally have no 
absolute interpretation. (On the contrary, this is very much the case for X-CT images). Further 
improvements can be made by using depth attenuation and by applying local contrast enhancement 
filtering to the rendered image. Some experiments on ultrasonic studies with this method were 
presented in [28]. 

Sabella[ 48] has suggested several parameters that were mapped into the HSV color model[15]. In 
addition to the maximum value M, Sabella defined the following attributes: 

3) Distance to maximum value: 

D = t 0 such thatp(t0 ) = M (8) 

4) Center of gravity: 

(9) 

5) Attenuated intensity: The attenuated intensity is modeling the scattering of light in clouds. The 
density voxels transmit light towards the viewer and at the same time absorb light from more distant 
voxels: i t2 -T J,' p-Y().) d). 

B= e •1 p1 (t)dt 
ti 

(10) 

The transmitted light is given by p 1 ( t) which becomes filtered according to the factor e - r ( r.., ( >. J d>.. 

r and "Y are constants that control the thickness of the cloud. 

6) Principal component analysis: In [45] principal component analysis - PCA (see [22, 19]) was 
proposed as a general tool for compressing information found in the density evolutions into one 
or three orthogonal attributes that can be displayed in the rendered view. Numerical experiments 
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[ 45] indicated that the methodology can be well suited for rendering of anomalies in homogeneous 
tissue. Other methods should be used if the goal is to focus on the geometry of the different tissue 
structures. Also, PCA focuses on image variance which may not be the best measure of information 
content from a clinical point of view. 

7) Gradient Magnitude projection: The methods described above project information from a lar­
ge volumetric data-set into one 2D image. Their success for a given application depends on their 
ability to reflect clinically interesting features of the data-set. For many applications it is interesting 
to render the surfaces between different tissues. The surfaces define the geometry of the different 
tissue structures. Also, it is interesting to see how different surfaces are placed relative to each 
other. This can be accomplished by allowing the surfaces to be transparent. The implicit surfaces 
are however difficult to extract in ultrasonic images because of the limitations in the imaging sys­
tem. In [52] local gradients were computed within the cuberille after applying an edge preserving 
smoothing scheme similar to the one in the previous section. Only the gradient magnitude values 
were computed with a simple scheme: 

Isur.f(X, y, z) = l\!I(x, y, z)I :=:::: 

sqrt(sqr(I(x - 1, y, z) - J(;t, y. z))+ 
sq1,(I(x,y- l,z)-I(x,y,z))+ 
sqr(I(x, y, z - 1) - I(x, y, z))) 

(11) 

Voxels from homogeneous regions will not contribute to the rendered image, as opposed to the 
average value-projection method. The voxel-values within these homogeneous regions give no in­
formation about the geometry of the tissue structures. Projecting the gradients can therefore be 
thought of as a feature extraction method that enhances contrast between different tissues. A ren­
dered view can be constructed by using a scheme similar to the one found in [33] where each sam­
ple location the ray passes makes a contribution of emitted white light. The contribution is then the 
sampled gradient magnitude value Pi multiplied with the corresponding opacity o( p;). At the same 
time, incoming light from behind will be filtered by the factor ( 1 - o( Pi)). Light is only emitted in 
the viewing direction. Let the density evolution p( t) be given by N samples (p1 , p2 •.... , p N ). The 
following attribute is then extracted: 

N i-1 

L = p1o(p1) + L Pio(pi) IT (1- o(pj )) (12) 
i=2 j=l 

o(p) is a function which maps the gradient values directly into opacity values. This mapping may 
just be a scaling, or more sophisticated functions could be used to emphasize on special features 
of the data-set. Low opacity values will make the surfaces highly transparent. In addition, each 
sample can be weighted with a depth-dependent attenuation factor to differentiate structures lying 
close to the view-plane from those lying far from the view-plane. 

In some cases, more realistic images can be composed by modeling directional light sources and 
take the directions of the gradients into account. This technique is called surface gradient shading 
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and is included in many rendering algorithms [7, 33, 40]. Surface shading is especially suited if the 
surfaces are well defined and have a smooth appearance. However, shading modulates the appear­
ance of the surface strength by the surface orientation which may also confuse the visualization. In 
ultrasound imaging the magnitude of the local gradients will also depend on the surface orientation 
relative to the radial direction. The transducer can in fact be compared to a directional light source 
which illuminates the tissue during acquisition. 

Because the structures are made transparent, visual ambiguities may arise in the rendered images. 
Numerical experiments in [52] showed that these visual ambiguities were removed by computing 
an animated sequence of rendered images or by allowing the end user to modify the viewing pa­
rameters interactively. Depth information can also be improved by presenting a pair of renderings 
as stereo images, or by using a single color image with depth encoded as color saturation. 

ill. Results 

All methods evaluated below were implemented in C under AVS (Application Visualization Sys­
tem from Advanced Visualization Systems Inc.) on an HP-7000 workstation (78 MIPS peek per­
formance). All renderings were computed in a few seconds. The most time-consuming operation 
was the initial filtering required by method 7 which took approximately 30 seconds per iteration 
for a 3 Mb data-set. This operation could however be optimized by using a multi-scale algorithm 
proposed in [ 49]. The filtering is also well suited for implementation on dedicated hardware [ 4 7]. 
Method 7 was also implemented by thresholding the gradient-values and projecting only the re­
maining voxels directly into the view-plane. This approach reduced the computation time to less 
than one second for each rendered view. 

In our first experiments we tested several different volume rendering techniques on a 3D image of 
the hands of a 30 week old fetus. In this case it was interesting to render the small bone-structures in 
the fingers. We then made renderings by applying the different methods explained in the previous 
section. The renderings were carefully examined together with medical researchers at the center of 
Fetal Medicine in Trondheim. The methods were evaluated by their ability to render the clinically 
interesting structures and also by sensitivity to viewing parameters and noise. 

Figure 4 shows a maximum value projection of the data-set. Most of the interesting structures are 
visible, but this was not the case for other viewing orientations. In the maximum value projection, 
only one voxel is selected from each density evolution, which makes this method very sensitive 
to noise and viewing parameters. Slightly better results were obtained by applying noise reduc­
tion filtering prior to the rendering. Still, useful results were obtained only for a limited number of 
viewing orientations. 

We also applied the average value projection method, but these renderings were foggy with little 
clinical value. This is not surprising, as averaging the whole density evolution tends to smear out 
small details. Better results were obtained by using a limited range of depths, but only for some 
viewing orientations. 
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The method proposed by Sabella [48] was tested by mapping the maximum value (M), distance to 
maximum value (D) and attenuated intensity (B) into HSV color space. The resulting images were 
dominated by the M and D attributes and gave similar structural information as the maximum value 
projection method. The D attribute gave somewhat better understanding of the spatial positions 
of the voxels with the maximal value. The B attribute did not give any additional clinical value. 
Clinically interesting renderings were obtained only for some viewing directions. 

The gradient magnitude projection method was applied to the data-set, including a 3D version of the 
initial filtering scheme described in this paper. Figure 6 illustrates this technique. The bone struc­
tures, which are not grown together, can be clearly seen in this image. Also one can see that surfaces 
lying normal to the radial direction are especially highlighted. It is however difficult to decide the 
position of some structures relative to each other. An animated sequence of images was therefore 
made. The use of animation gave a better understanding of the geometry of the structures, and 
removed visual ambiguities. Further improvements were made by using depth-dependent attenua­
tion to discriminate structures lying near the view-plane from those lying far from the view-plane. 
The rendered images were carefully examined by clinicians and they did not find any artificial de­
tails inside the fetus hands. Surface shading was also applied to the filtered data and turned out to 
give nice renderings of the outer surfaces of the hands. However, visual ambiguities made it very 
difficult to see the bone structures within the hands as the surfaces were made more transparent. 

Figure 5 shows an image generated by the same technique, but this time without the initial filtering. 
The image appears substantially more foggy, and much of the small structural details have disap­
peared. For other viewing orientations, the effect of the filtering was even more prominent. This 
was not surprising because of the speckle found in the original data 

Figure 7 and 8 show the head and parts of the body of a 20 week old fetus. The renderings were 
made by using method 7. One can clearly see details of the fetus face and parts of its body. 

Iv. Discussion 

Volume rendering techniques have been used with success for several medical applications with 
X-CT and MR-imaging. The high image quality obtained in these image modalities has motivated 
the development of highly sophisticated rendering techniques. Volume rendering techniques have 
shown to be superior to polygon based surface-rendering methods for several applications which 
involve displaying of soft-tissue structures. The success of such volume rendering methods are 
due to their ability to render information which is difficult to obtain from ordinary 2D images. The 
introduction of 3D data has given new possibilities also in ultrasonic imaging but the low signal-to­
noise ratio and several other fundamental limitations make volume rendering a difficult challenge. 
These limitations suggest that surface rendering based only on binary thresholding of the ultrasonic 
data in most cases will be unreliable. 

Several rendering algorithms which rely on an initial classification of the voxels into different mate­
rials have been proposed in the literature. Some of these algorithms have successfully been applied 
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to MR and X-CT data So far there is a lack of general and reliable methods for tissue characteri­
zation in ultrasonic imaging. Therefore, we have focused on rendering methods that do not rely on 
any initial classification into different tissue categories. Several rendering methods that fall into this 
category have been evaluated for rendering of fetal organs. The maximum value projection method 
can be thought of as a method of projecting voxels from regions with maximal spatial variation in 
acoustic impendance. The method turned out to give clinical useful results, but is very sensitive 
to noise and viewing parameters. Nevertheless, it is a very simple rendering method which can 
easily be included as an option in a system for visualization of ultrasonic data. The average value 
projection method gave low contrast renderings with little details. The method due to Sabella was 
dominated by the maximum value attribute and gave similar results as the maximum value projec­
tion method. 

The best results in this study were obtained by using the gradient magnitude projection method. The 
results were obtained by first applying an edge preserving smoothing scheme, and then computing 
gradients from the smoothed data Finally, a weighted sum of gradients were projected onto the 
view-plane. The method produced rendered images with very clear details and also turned out to 
be less sensitive to viewing parameters. The initial smoothing was essential to achieve satisfactory 
results. Surface shading was found to be useful for visualizing opaque surfaces, but gave confusing 
results when the surfaces were made transparent. 

Computing gradients in ultrasonic images may in some cases produce artificial double edges from 
strong specular reflections that are captured by the transducer. We did not find this to be a prob­
lem in our experiments with images of fetal organs. A possible solution to this potential problem 
is to use a mixed scheme which combines separately detected specular reflections with gradients 
computed from boundaries between tissues with different backscatter coefficients per volume. The 
methods are now implemented as clinical tools at the National Center of Fetal Medicine in Trond­
heim. 

V. Acknowledgments 

The authors would like to thank the Norwegian Technical Research Council for supporting this 
study. The results presented in this paper were accomplished in close co-operation with the clinical 
staff in the 3D ultrasound laboratory established by prof. Dr. med. Sturla Eik-Nes at the National 
Center of Fetal Medicine in Trondheim, Norway. We would like to thank the clinical staff for par­
ticipating in the evaluation of the rendered images, and especially Torvid Kiserud who provided 
us with excellent 3D acquisitions. Also, we would like to thank Hans Torp at Dept for Biomed­
ical Engineering for providing detailed knowledge about ultrasonic imaging both in general and 
also specific to the scanner used in our numerical experiments. Finally, we would like to thank the 
reviewers for many useful comments and suggestions. 

B-12 



Volume Rendering of 3D Medical Ultrasound Data using Direct Feature Mapping 

References 

[1] L. Axel, G. T Herman, and J. K Udupa et.al. Three-dimensional display ofNMR cardiovas­
cular images. Comput. Assist. Tomography, 7:172-174, 1983. 

[2] J. C. Bamber and C. Daft. Adaptive filtering for reduction of speckle in ultrasonic pulse-echo 
images. Ultrasonics, 24:41--44, 1986. 

[3] J.C Bamber, R.J Eckersley, P. Hubregtse, N.L Bush, D.S Bell, and D.C Crawford. Data pro­
cessing for 3D ultrasound visualization of tumor anatomy and blood flow. In Visualization in 
Biomedical Computing, Chapel Hill, NC, SPIE, 1992. 

[ 4] Michael Bomans, Karl-Heinz Bohne, Ulf Tiede, and Martin Riemer. 3D segmentation of mr 
images of the head for 3D display. IEEE Trans. on Medical Imaging, 9(2), June 1990. 

[5] Alan C. Bovik. On detecting edges in speckle imagery. IEEE Trans. on Accoustics, speech 
and signal processing, 36(10), 1988. 

[6] J.F Canny. A computational approach to edge detection. IEEE Transactions on Pattern Anal­
ysis and Machine Intelligence, 8(6):679-698, 1986. 

[7] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. Computer Graphics, 
22(4):65-74,August 1988. 

[8] D. N. Levin et al. Integrated three-dimensional display of MR and PET images of the brain. 
Radiology, 172:783-789, 1989. 

[9] I. Akiyama et al. Tissue characterization by using fractal dimension ofb-scan image. In IEEE 
Ultrasonics Symposium Proceedings, volume 3, pages 1353-5, 1990. 

[10] M Verlande et al. 3D reconstruction of the beating left ventricle and mitral valve based on 
multiplanar tee. In Proceedings. Computers in Cardiology. IEEE Computer Society Press, 
1991. 

[ 11] Paul A. Picot et al .. Three-dimensional colour doppler imaging. Ultrasound in Medicine and 
Biology, 19(2), 1993. 

[12] R. Pini et al. Echocardiographic three-dimensional visualization of the heart. NATO AS/ se­
ries, VOL. F60. 3D imaging in Medicine. Edited by K.H. Bohne et al. Springer-Verlag Berlin 
Heidelberg, 1990. 

[13] R. Pini et al .. Computed tomography of the heart by ultrasound. In Proceedings. Computers 
in Cardiology. IEEE Computer Society Press, 1991. 

[ 14] RI Kitney et al .. 3D visualization for the study of arterial disease and tissue caharecterisation. 
In Proceedings. Computers in Cardiology. IEEE Computer Society Press, 1991. 

B-13 



Volume Rendering of 3D Medical Ultrasound Data using Direct Feature Mapping 

[15] J.D Foley, A. van Dam, S.K Feiner, and J.F Hughes. Computer Graphics: Priniciples and 
Practice. Addison Wesley, 1990. 

[16] G. Frieder and R. Reynolds. Back-to-front display of voxel-based objects. IEEE Computer 
Graphics and Application, 5(1):52-60, January 1985. 

[17] J. E. Gardener. Volume imaging of soft tissues with ultrasound. In IEE Colloquium on 3D 
Imaging Techniques for Medicine, 1991. 

[18] F. Godtliebsen. Noise reduction using markov random fields. Journal of Magnetic Resonance, 
92:102-114, 1991. 

[19] Rafael C. Gonzalez andRichardE. Woods. Digitallmage Processing. Addison Wesley, 1992. 

[20] D. Gordon and J. Udupa. Fast surface tracking in 3D binary images. Comp. Vis. Graph. and 
Im. Proc, 45(2):196-241, 1989. 

[21] Gerig Guido, Kubeler Olaf, Kikinis Ron, and Jolesz F. A. Nonlinear anisotropic filtering of 
MRI data. IEEE Trans on Medical Imaging, 11(2), June 1992. 

[22] E. L. Hall. Computer Image Processing and Recognition. Academic Press, 1979. 

[23] D.C Hemmy, D.J David, and G.T Herman. Three-dimensional reconstruction of craniofacial 
deformity using computed tomography. Neurosurgery, 13:534-541, 1983. 

[24] G. T. Herman, J. Zeng, and C.A. Bucholtz. Shape-based interpolation. IEEE Computer 
Graphics and Applications, 12(3):69-79, 1992. 

[25] Gabor T. Herman. A survey of 3D medical imaging technologies. IEEE Engineering In 
Medicine and Biology, pages 15-17, December 1990. 

[26] K.H. Hohne and U. Tiede. Surface rendering. investigation of 3D-rendering algorithms. IEEE 
Computer Graphics & Applications, March 1990. 

[27] K.H. Hohne and U. Tiede. Rendering tomographic volume data: Adequacy of methods for 
different modalities and organs. NATO AS/ series, 3D imaging in Medicine. Edited by K.H. 
Hohne and U. 1iede F60, 90. 

[28] F. Rottier and A. Collet Billon. 3D echography: Status and perspective. NATO AS/ Series, 
3D Imaging In Medicine, F. 60, 1990. 

[29] Kajiya J, T. The rendering equation. Computer Graphics, 20( 4):143-149, August 1986. 

[30] J. T. Kajiya and B. P. Von Herzen. Ray tracing volume densities. Computer Graphics (Proc. 
Siggraph), 18(3):165-173,July 1984. 

[31] C. Kotropolous, X. Magnisalis, I. Pitas, and M.G Strintzis. Nonlinear ultrasonic image pro­
cessing based on signal-adaptive filters and self-organizing neural networks. Submitted to 
IEEE Transactions on Image Processing, 1993. 

B-14 



Volume Rendering of 3D Medical Ultrasound Data using Direct Feature Mapping 

[32] C. Kotropoulos and Ioannis Pitas. Optimum nonlinear signal detection and estimation in the 
presence of ultrasonic speckle. Ultrasonic Imaging, 14:249-275, 1992. 

[33] M. Levoy. Volume rendering: Display of surfaces from volume data. IEEE Computer Graph­
ics and Applications, pages 29-37, May 1988. 

[34] M. Levoy. A hybrid ray tracer for rendering polygon and volume data. IEEE Computer 
Graphics and Applications, 10:33-40, March 1990. 

[35] W.J Lin, S. M Pizer, and V. E. Johnson. Boundary estimation in ultrasound images. In In­
formation Processing in Medical Imaging, 12th International Conference, /PM/ 91, pages 
285-299, 1991. 

[36] William E. Lorensen and Harvey E. Cline. Marching cubes: a high resolution 3D surface 
construction algorithm. Computer Graphics, 21(4):163-169, July 1987. 

[37] A. Loupas. Digital image processing for noise reduction in medical ultrasonics. Ph.D disser­
tation, University of Edinburgh UK, 1988. 

[38] T. Loupas, W. N McDicken, and P. L. Allan. An adaptive weighted median filter for speckle 
suppression in medical ultrasonic images. IEEE Trans on Circuits and Systems, CAS-
36(1):129-135, 1989. 

[39] H.A McCann, J.S Sharp, T.M Kinter, C.N McEwan, C. Barillot, and J.F Greenleaf. Multidi­
mensional ultrasonic imaging for cardiology. In Proc IEEE, volume 76, pages 1063-1073, 
1988. 

[ 40] Hans-Peter Meinzer, Kirsten Meetz, et al. The heidelberg raytracing model. IEEE Computer 
Graphics and Applications, pages 34-43, November 1991. 

[41] T. R. Miller, J. B Starren, and R. A. Grothe. Three dimensional display of positron emission 
tomography of the heart. J. Nuclear Medicine, 29(4):530-537, 1988. 

[ 42] B. Olstad, A. Torp, and J. H. Husf<ljy. A nonlinear loop filter model for video coding. In IEEE 
Winter Workshop On Nonlinear Digital Signal Processing, 1993. 

[43] B. Olstad and H. E. Tysdahl. Improving the computational complexity of active contour al­
gorithms. In 8th Scandinavian Conference on Image Analysis, Tromsr/J, 1993. 

[ 44] Bjf<ljm Olstad. Automatic wall motion detection in the left ventricle using ultrasonic images. 
In Proceedings of SP IF/SP SE Electronic Imaging, Science and Technology, San Jose, 1991. 

[45] Bjf<ljm Olstad. Maximizing image variance in rendering of volumetric data sets. Journal of 
Electronic Imaging, 1:245-265, July 1992. 

[46] J.S Ostrem, A.D Valdes, and P.D Edmonds. Application of neural nets to ultrasound tissue 
characterization. Ultrasoniclmaging, 13(3):298-299, July 1991. 

B-15 



Volume Rendering of 3D Medical Ultrasound Data using Direct Feature Mapping 

[47] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE 
Trans. on Pattern Anal. and Machine Intell., 12(7), July 1990. 

[48] P. Sabella. A rendering algorithm for visualizing 3D scalar fields. Computer Graphics, 
22(4):51-55,August 1988. 

[49] P. Saint-Marc, J. Chen, and G. Medioni. Adaptive smoothing: A general tool for early vision. 
IEEE Trans. on Pattern Anal. and Machine Intel/., 13(6), June 1991. 

[50] E. Steen and B. Olstad. Scale-space and boundary detection in ultrasonic imaging, using 
signal-adaptive anisotropic diffusion. In SPIE Medical Imaging, Image processing confer­
ence, 1994. 

[51] Erik Steen and Bj!llm Olstad. Volume rendering in medical ultrasound imaging. In 8th Scan­
dinavian Conference on Image Analysis, TromsrjJ, 1993. 

[52] Erik Steen and Bj!llm Olstad. Volume rendering in medical ultrasound imaging based on non­
linear filtering. In IEEE Winter Workshop On Nonlinear Digital Signal Processing, 1993. 

[53] T. Taxt and E. B0lviken. Relaxation using models from quantum mechanics. Pattern Recog­
nition, 24:695-709, 1991. 

[54] W. G. Totty and M. W Vannier. Analysis of complex musculoskeletal anatomy using three­
dimensional surface reconstruction. Radiology, 150: 173-177, 1984. 

[55] Craig Upson and Michael Keeler. V-buffer: Visible volume rendering. Computer Graphics, 
22(4):59-64, August 1988. 

[56] Daniel J. Valentino. Volume rendering of multimodal images: Applications to MRI and PET 
imaging of the human brain . ./£££ Trans. on Medical Imaging, 10(4):554-561, 1991. 

[57] M.W Vannier, S. Gronemeyer, and F.R Gutierrez et al. Three-dimensional magnetic reso­
nance imaging of congenital heart disease. Radiographies, 8(5):857-871, 1988. 

[58] M.W Vannier, J. L Marsh, and J. 0. Warren. Three-dimensional ct reconstruction for cranio­
facial surgical planning and evaluation. Radiology, 150:179-184, 1984. 

[59] J. W. Wallis, T. R. Miller, C. A. Lerner, and E. C Kleerup. Three-dimensional display in 
nuclear medicine. IEEE Trans. on Medical Imaging, 8(4), 1989. 

[60] S. Webb, R. J Ott, and M. A. Flower et al. Three-dimensional display of data obtained by 
single photon emission tomography. Brit. J. Radiology, 60:557-562, 1987. 

B-16 



Volume Rendering of 3D Medical Ultrasound Data using Direct Feature Mapping 

Figure 2: Gradients computed from an origi- Figure 3: Gradients computed from a filtered 
nal ultrasonic image image 

Figure 4: Method 1: The hands of a fetus. Figure 5: Method 7: The hands of a fetus, un­
filtered. 
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Figure 6: Method 7: The hands of a fetus. 
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Figure 7: Method 7: Upper part of fetus. Figure 8: Method 7: Upper part of fetus. 
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Abstract-In this study we focus on the problem of segmentation and visualization of soft tissue structures in three­
dimensional (30) magnetic resonance (MR) imaging. We introduce a classification method which is a combination 
of a recently proposed contour detection algorithm and Haslett's contextual classification method extended to 30 
1:his ~~ssification method is u~ed i~ the classification step of a rendering model suggested by Orebin et al. fo; 
v1suahzmg normal and patholog1cal tissue structures in the brain_ We evaluate the combination of these two meth­
odologies, and identify some problems which have to be solved in order to develop a clinical useful tool. 

Key Words: Magnetic resonance imaging, Segmentation. Visualization, Brain lesions 

I. INTRODUCTION 

Essential to diagnosis by any medical imaging modality 
is detectability and locability. During the last decen­
nium, magnetic resonance imaging (MRI) have be­
come one of the most important modalities because 
of its high soft tissue contrast with multiparameter de­
pendence of signals from tissue voxels (i_e., detectabil­
ity) and its freedom of slice sectioning together with 
high spatial resolution (i.e., locability). Even if MRI is 
able to generate three-dimensional (3D) datasets from 
a volume of interest, having voxels (volume elements) 
less than I mm3, the MR images are usually stored 
and displayed as 20 slice images and require the phy­
sician to do sequential examination of images and 
mental 30 reconstruction. 

To lighten this burden on the physician and to 
increase his or hers diagnostic abilities, several inves­
tigators and manufacturers have looked into the field 
of computer graphics and taken advantage of recent 
techniques of volume rendering which is considered to 
be the most sophisticated and general method to display 
volume data in medical imaging ( 1 ). Applying volume 
rendering techniques in a proper way, the following 
proclamation (2) might become closer to reality: 
'" ... Three-dimensional medical imaging presents the 
remotely sensed morphological and physiological pa­
tient data in such a way that the physician is relieved 

1 To whom correspondence should be addressed. 
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of the chore of mentally reconstructing and orienting 
the volume and instead can concentrate on the practice 
of medicine." 

Volume rendering techniques have been studied 
extensively for the past few years. Several algorithms 
have been proposed (3-11) and some have been eval­
uated for magnetic resonance imaging and X-ray com­
puted tomography (CT) (12-14). Many ofthe reported 
methods have shown to give high quality renderings 
for several applications. One approach, which is the 
one considered here, is based on a partition (binary or 
probabilistic) of the 30 dataset. To provide useful in­
formation from the 30 dataset the partition of the im­
aged voxels should be computed as close as possible to 
the "true" anatomical or pathological structures (le­
sions) which are embedded in the 30 patient voxel 
space. To achieve this, contrast-enhancing agents (i.e., 
pharmaceuticals used to increase contrast in diagnostic 
images by altering the physical characteristics of target 
tissue) are often given to the patient previous to image 
acquisition. Then, given the image data, the partitional 
step essentially involves image segmentation, which is 
the main concern of this paper. 

Gray level segmentation, which can be either bi­
nary (crisp) or probabilistic (fuzzy), is performed to 
display the structures or lesions of interest from the 
imaged volume. Using a ray-casting technique, the 
rendering can be defined according to a particular 
function/: (i, p) ~ R of each pixel ion the screen and 
the voxel gray level values met by the ray p through 
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the investigated volume. The set of transmitted rays 
can be cone shaped or be parallel, as in this study. 
When the MR acquisitions are multispectral, which 
means that we have a set of registered slices or volumes 
to our disposal, the power of multispectral and contex­
tual statistical tissue classification techniques could be 
applied at the segmentation step of the transmission 
oriented volume rendering. 

In this paper we have combined the classification 
strategy presented in ( 15) with a rendering model sug­
gested by Drebin et al. (5) for visualizing soft tissue 
structures and lesions in the brain from multispectral 
MR acquisitions. The rendering model is based on 
probabilistic classification of the multi spectral signal 
intensity values into different tissue categories, taking 
spatial context into account. Each tissue is assigned a 
color where the color mixture in each voxel reflects 
the amount of different tissues present. The multi­
spectral 30 anatomical volume was obtained through 
the sequential acquisition (with and without a contrast­
enhancing agent) of spatially nearly contiguous and 
aligned slices piled on top of each other. In (16) visu­
alization was combined with classification results from 
( 15). The results suffered among other things from 
many misclassifications to tumor. In this work we have 
concentrated on methods which reduce the occurrence 
of misclassification. The results reported are prelimi­
nary in that only one patient with a tumor is studied 
from which the interslice spacing of the 18 multispectral 
20 acquisitions was large (2.5 mm) as well as the slice 
thickness (5 mm). Thus, the data set is suboptimal with 
respect to the full strength of our 30 contextual clas­
sification technique. 

The rest of the paper is organized as follows. 
A brief overview of volume rendering concepts 

and methods is given in Section 2.2, emphasizing the 
model suggested in (5). The main contribution of this 
paper, introduction ofa 30 contextual and multispec­
tral classification procedure in volume rendering, is 
thoroughly described in Section 2.1 (and more details 
are found in (15)). Our experimental results together 
with clinical data and the MR imaging protocol, is pre­
sented in Section 3. Finally, in Section 4, we discuss 
the combination of these two methodologies of clas­
sification and rendering, and identify some problems 
which have to be solved in order to develop a clinical 
useful tool. 

2. METHODS 

The main issue of this paper is tissue character­
ization in MR images and how this may be used in 
connection with visualization of MR-data. In the fol­
lowing sections we will describe and give a background 
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for methods used in the experiments described in Sec­
tion 3. 

2.1 Tissue characterization 
The notion of image segmentation is a key step 

in image analysis and can be defined as "a process 
which typically partitions the spatial domain of an im­
age into mutually exclusive subsets, called regions, each 
one of which is uniform and homogeneous with respect 
to some property such as intensity or texture and whose 
property vaJue differs in some significant way from the 
property value of each neighboring region" (17). In 
medical applications the different regions may corre­
spond to different tissue types. Two main segmentation 
techniques are relevant to our study; clustering and 
classification. 

The simplest way of segmenting an image is by 
saying that pixels with grey levels in a certain interval 
belong to one region, the others belong to other regions. 
This method is called thresholding. Thresholding is of­
ten used as a segmentation method for X-ray CT im­
ages because the Hounsfield units are such that certain 
intervals correspond to certain tissue types. When it 
comes to MRI, thresholding is not appropriate. The 
grey levels of a certain tissue varies between exami­
nations. In addition some tissues are well separated in 
one channel (i.e., pulse sequence with its timing pa­
rameter values) while others are better separated in an­
other channel. In this case we then take advantage of 
the multispectral nature of MR imaging. For each voxel 
we then obtain a vector of gray level values-one value 
from each channel. This vector is called a feature vec­
tor. In addition to the component values obtained from 
the image acquisitions, we may use texture measures 
or other features computed from the different channels 
to increase the number of components in each feature 
vector. A qualitative attribute of image texture can be 
a property of fineness, coarseness, granulation, 
smoothness, randomness, lineation or the texture can 
be described as mottled, irregular, speckled, lamellar 
or striped among others [see ( 18)]. In contrast to con­
ventional X-ray radiology and medical ultrasound, the 
relevance of texture in diagnostic processing of MR 
images is not thoroughly investigated. 

To perform feature-based segmentation both clas­
sification and clustering techniques can be used. 

Let us first consider the method of clustering. The 
situation here is that we have available a set of feature 
vectors and the task is to partition these vectors into 
"natural" subsets (clusters) based only on rules, a sim­
ilarity measure, and the structure in the data. There is 
no "supervisor" which tells the true number of clusters, 
nor give any prior cluster assignment information. One 
of the most commonly used clustering methods is the 
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k-means algorithm and its variants ( 19-21) which can 
be roughly described as follows: 

I . Begin with an arbitrary set of k cluster centers and 
assign each feature vector to the cluster with nearest 
center. 

2. Compute the sample mean of each cluster. 
3. Reassign each feature vector to the cluster with 

nearest mean. 
4. If the assignment of samples to clusters has not 

changed, then stop; else: go to step two. 

Let us next consider the method of classification. 
Here we have a predefined set of K classes (tissue types) 
and a sample of feature vectors from each class. This 
is called a training set. We assume that feature vectors 
coming from a certain class are distributed according 
to a certain probability density. The density is estimated 
from the samples of feature vectors from the corre­
sponding class. This and other a priori information is 
used to design a classifier. This classifier is then applied 
to novel acquisitions to perform tissue classification. 
It is this segmentation method of classification we will 
discuss and use in the rest of this paper. 

2.1.1 Training-estimation. The purpose of train­
ing is to build a classifier, incorporating for instance 
estimates of multinormal class conditional probability 
densities for each of the predefined classes. During 
training, a set of labeled pixels is accumulated from 
the MR images dedicated to the training phase. Each 
of these training pixels is associated with a class label 
and a feature vector. The feature vector is given by the 
feature extraction method. In examination of the head 
one might use the intensity values of the pixel in each 
of the image channels as the feature vector components. 
The class label of a pixel is decided by the trainer who 
employs general medical knowledge and specific di­
agnostic information about the patient and the MR 
examination. 

The training part can be facilitated by employing 
unsupervised classification techniques such as k-means 
clustering of the channel images combined with su­
pervised labeling of the segmented clusters. This was 
the approach in (22). 
REMARK. In MR-images the mean gray level of a given 
tissue in a channel can show great variability from one 
acquisition to another, even if extrinsic parameters are 
kept constant (23, 24). Thus, to train and apply the 
classifier to different examinations this effect has to be 
compensated by performing calibration of the channel 
images. This can be done either manually or by au­
tomated techniques for updating of parameter esti­
mates. In (25) an automated parameter updating tech­
nique was used for solving this problem. This approach 
seems to be very promising. 

2.1.2 Test classification. Let us first describe the 
situation. We have a data set y = y 1, ••• , YN of voxel­
based feature vectors which should be classified to the 
classes Ci. ... ' CN, where ck is one of K predefined 
classes found in the training procedure. There are two 
main methods for determining C1, ••• , CN. The first 
one is to consider the joint posterior probability P( Ci. 
... , CNIY) and compute Ci. ... , CN which optimize 
this expression. Examples of this approach may be 
found in (26) and (27) (simulated annealing). 

The second approach, which is the one we will 
concentrate on here, is to compute P( C; = k I y) for all 
classes k and choose C; equal to the class k which max­
imizes this term. This corresponds to minimizing the 
expected error rate. How this P( C; = k I y) is computed 
depends on which classification model we use. In a 
non-contextual classification model we make use only 
of the extracted features related to the voxel of interest 
when we classify the voxel, that is P( C; = k I y) = P( C; 
= k I Y;). P( C; = k I y) is then computed as foliows: 

P(C; = kJy) = P(C, = klY1) = Ktrdi..Y1) 

L trdifa) 
k•I 

wherefi is the probability density distribution for class 
k and 'Irk is the a priori probability of having class ;c. 

In a contextual classification model, we make in 
addition use of the extracted features in a spatial neigh­
borhood, o;, of the voxel of interest, that is P(C; = kjy) 
= P( C; = k Io;) (i.e. a Markov property is assumed). 
Contextual decision rules can also make use of the fact 
that the voxels of MR images is usually much smaller 
than the size of the tissue structures one wish to study. 
In most cases, adjacent voxels are likely to have similar 
tissue constituents, and field of view, acquisition matrix 
and anatomy constrains the probability of two given 
tissue classes being neighbors. Let us now study one 
such specific contextual model. 

Haslett's model. In Haslett's model (28, 29) the 
neighborhood consists of the four nearest neighbors, 
Y;s, Y;N, Y;w, Y;E, which are assumed conditionally in­
dependent. Further, isotropy and stationarity is as­
sumed. P(C; = kjy) is then computed as follows: 

P(C, = kJy) =Pf.Ci= kJy;, Y;s, Y1N, Y;E, Y;w) 

_ tr,J'i..Y1)Tk(Y1s)Tiy1N)Tk(y;E)T i..Y1w) 
- K (I) 

L tr,Jk(y;)Tk(y1s)T.(y,N)Tk(y;E)Tk(Y1w) 
k=I 

where 

K 

Tk(Y;) = L tr{l J k)f,(yj), (2) 
/::::.! 



174 Computerized Medical Imaging and Graphics 

and ?r(/ I k) is the transition probability of having class 
I in a pixel given that its neighbor is k. The classification 
is then done by using Bayes decision rule ( 19, 29) with 
minimum expected cost of misclassification. To make 
better use of the voxel information when dealing with 
a 30 data set or a stack of nearly contiguous 20 images, 
we have made a simple generalization of Haslett's 20 
model to 30. 

This we do by using information from the slice 
on each side of the slice we want to classify. We then 
get two additional nearest neighbors Y;v and y;u. The 
equation for computing P<,C; = kly) then becomes: 

P(C, = kjy) = P(C; = kfy;, Y;s, Y;N, y;r;, Y;w, Y;v, Y;u) 

'lr(k)f J.y;)T J.Y;s)Tk(Y1N)Tk(Y;E)T ,,{y;w) Tk(y;v)Tk(y;u) 
K 

~ 1r(k)fJ.y;)Tk(y;s)T J.Y;N)Tk(y;E)TJ.y;w)T J.y;v)T J.y;u) 
k•I 

(3) 

where T k(yj) is defined in Eq. (2). 
In addition to this 30 generalization of Haslett's 

model we use a recently developed contour detection 
model (30-33) to compute the outer border of brain 
parenchyma. A priori we know that an intracerebral 
tumor with edema do not occur outside this border. 
This information is then used in the classification 
scheme by excluding the tumor class and the edema 
class from the possible classes when we classify the ex­
tracerebral voxels. 

2.1.3 Contour detection. Recognition of the outer 
boundary of the brain consists offinding an appropriate 
closed curve representing the border between brain pa­
renchyma and the subarachnoid CSF. The traditional 
way of finding boundaries has been to detect edges 
(typically by defining a threshold value of some gradient 
operator and select all locations with values above the 
threshold value as potential edges) and then link these 
together. For such methods, there is no guarantee of 
obtaining one closed curve. 

Recognition of closed curves in medical images is 
a topic that has received much attention in recent years. 
A well studied application is recognition of the endo­
cardial border of the left ventricular cavity in ultra­
sound images. Many of the techniques developed for 
this particular problem may, however, be used in other 
applications with minor adjustments. Common to 
many of the techniques developed has been the use of 
a Bayesian approach through specification of a priori 
distributions of boundary features such as shape, size 
and smoothness. Combining the a priori distribution 
with a conditional distribution for the data (given the 
boundary), the posterior distribution is calculated. The 
maximum a posteriori (MAP) solution is then used as 
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an estimate of the boundary. The approaches used dif­
fer from each other in mainly three aspects. 

• The representation part, which specifies how the 
contour x E Xis formally represented (e.g., Xis the 
sample space oflinked cyclic lists ofnodes with fixed 
internode distance where the number of nodes are 
stochastic; 31 ). 

• The modeling part, which include properties of the 
contour (such as smoothness and shape) and a model 
for the observed data (images) y E Y. The models, 
which falhnto the Bayesian framework (34), are de­
fined through energy-functions U1, ••• , Un : X X 
Y-+R. 

• The numerical algorithm for finding the optimal 
contour (the MAP solution), defined to be the one 
with minimal energy. 

Friedland and Adam (35) assumed a star-shaped 
region model where the contour is star-shaped and is 
described by a set of radii with respect to a given cen­
terpoint. The contour is then specified through the 
length of each radius. In (35) an a priori model in­
cluding both spatial and temporal smoothing was used 
together with a gradient-operator for recognizing the 
radius-lengths. An algorithm based on simulated an­
nealing was defined for finding the MAP solution. 

Active contours (36-39) may be thought of as a gen­
eralization of the star-shape-representation. In this case 
the contour is represented through a set of vertices with 
straight lines or parametric curves in between. For each 
vertex, a set of possible positions can be defined. The 
models used for this approach include spatial smoothness 
or stretching and bending energy of the curve in the a 
priori models and gradient operators for the datamodels. 

Storvik (30, 31) introduced yet another approach 
where the simply closed curve is supposed to follow 
the edges of the pixels in the observed image. Spatial 
characteristics may be included in the a priori models. 
For the datamodel, class-descriptions of the regions in­
side and outside the contour are used. An algorithm 
based on simulated annealing was developed for finding 
the MAP solution in such a way that the curve will 
iteratively move towards the optimal solution. 

In the experiments described later we chose the 
approach by Storvik mainly because this approach was 
available for us at the present time. Below we will 
therefore give a somewhat more detailed explanation 
of this method. A full description of the contour rep­
resentation and optimization algorithm is given in (31) 
and (30). We will here only discuss the model that has 
been used. 

We assume a region model where the planar brain 
image is divided into two regions. These regions are 
outside brain (r = 1) and inside brain (r = 2). 
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Assume x denote the contour and y the observed 
image. The energy is then defined by 

E = U1(x) + U2(.x; y), (4) 

where U1 is an energy-function giving low energy for 
smooth curves while U2 is an energy-function describ­
ing the distribution of the grey-levels in the image. In 
this work we have chosen U1 to be related to the "frac­
tal" property of the closed contour by 

U ) _ ,, (length of contour)2 

,(x - " area inside contour ' 
(5) 

where {J E R is a smoothing parameter. Regarding the 
data, we assume the image consists of 13 tissue classes, 
air and bone. fat, connective tissue, CSF, CSF + gray 
(three different classes for voxels which are mixels of 
CSF and gray matter), tumor (three different classes), 
edema and white matter and gray matter making up 
the brain parenchyma. Further, we have assumed re­
gion 1 to contain air and bone, fat, connective tissue. 
CSF and CSF + gray; region 2 to contain brain pa­
renchyma, edema and tumor. 

Each class k = 1, ... , 13 is assumed to have a 
multivariate Gaussian distribution with expectation µk 

and covariance matrix ~k- For the two-region model, 
the likelihood function in this case will be 

2 

f(ylx) = 11 11 L 7rkN(y,; µk> !k). (6) 
,.,,. I ie.R,. keC, 

where R, is the set of pixels inside region r and C, is 
the set of classes that appears in region r, and 'Irk is the 
prior probability of class k. We define the energy-func­
tion U2 as the log-likelihood 

U2(x; y) = -log(f(ylx). (7) 
2 

= 1 L log( L 'lrkN(y,; µb !kl). (8) 
r=I iER, keC,. 

Given the energy-functions, we seek to find the 
minimum energy curves, corresponding to the maxi­
mum a posteriori (MAP) estimates of the curves. In 
(31) and (30) an iterative algorithm based on simulated 
annealing was constructed for solving this optimization 
problem. 

2.2 Volume Rendering 
Volume rendering is a set of techniques for ob­

taining a 20 representation of the interior of a volu­
metric data set. This is useful in medical imaging be­
cause it may increase the physicians diagnostic ability 
by improving his/her mental 30 reconstruction of the 
data set. The volumetric data set is made of samples 
from a 30 scalar field, or vector field in the multi­
spectral case, and is usually represented as a 30 array. 

In this study, we assume that the 30 data is represented 
as a cuberille, that is as a 30 array of equal sized cubic 
voxels. 

A common way to visualize 30 data is by inter­
active slicing of the cuberille. Thin slices can be dis­
played directly as intensity images. By successive ren­
dering of parallel slices, the viewer can at least mentally 
get an overview of the volumetric data set. 

Another well known technique is threshold ren­
dering. This technique has been found useful for display 
ofisovalue surfaces from X-ray CT, where each tissue 
falls within a specific density range (Hounsfield units). 
This is not the case for MR data. The surfaces can be 
rendered by using back to front traversal (3), ray tracing 
(40) or surface reconstruction (4). 

Experiments with volume rendering techniques 
on MR data are numerous [see (41-43)]. In (41) vol­
ume rendering is used to validate the result of a seg­
mentation technique based on iterative thresholding. 
In (42) the aim is to visualize the ventricle system of 
the brain. In (43) volume rendering is used in recon­
struction of the brain coupled with interactive "elec­
tronic dissection." 

In the next section we will consider a specific ren­
dering algorithm which was used in our experiments. 

2.2.l The rendering algorithm by Drebin and co­
workers. Orebin et al. (5) have developed a technique 
for rendering of datasets which represent a mixture of 
tissues. This paper has already become a "classic" and 
has been used by several others (see for instance (44)). 
Much effort is paid to avoid artifacts, and all-or-none 
decisions based on thresholding are avoided. Such de­
cisions tend to produce artificially sharp boundaries 
and do not reflect on the diffuse transitions and fine 
detail often found in real world applications. Orebin 
et al. demonstrate their method on X-ray CT data and 
also for several other applications. The steps in the vol­
ume rendering process applied to medical images, are 
as follows [for more details see (5)]: 

l. Classification. tissue percentage volumes are 
computed by using statistical analysis to decide the 
amount of each tissue present within each voxel. In 
this paper the tissue percentage volume is set equal to 
T(P( C; = k I y)). Here T: [0, 1] -+- R is a suitable trans­
form (see Section 3 for a detailed explanation of this 
transform) and P(C; = kly) is the value of the condi­
tional probability for class k at voxel i given the data, 
as described in Section 2.1. 

Then a color and an opacity value is assigned to 
each tissue. Each voxel will then contain a mixture of 
colors individually weighted by the probability that the 
given tissue is present in the voxel. The output of this 
stage is called the color volume. In addition so-called 
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matting volumes can be made to smoothly remove 
portions of the volume occupied by one or more tissues. 
The matting volumes are made by specifying tissue 
categories which should be made transparent. 

2. Surface determination. A density Pk E R is as-
signed to each tissue, k = l, ... , K. The composite 
density, D;, of a voxel, i = 1, ... , N, will then be 

K 

D, = L Tl.}'(.C, = kly))Pk 
k•I 

where T is the transform mentioned above. These 
voxels will then form a density volume. The bound­
aries between tissues can then be detected by cal­
culating gradients in each voxel of the density vol­
ume. The magnitude of the gradient is stored in a 
surface strength volume, and the direction of the gra­
dient is stored in surface normal volumes. A simple 
nearest neighbor calculation is suggested for the gra­
dient calculation. 

3. Shading. Shading is based on a lighting model 
which takes into account the position and color of the 
light sources, the position of the eye, the surface normal 
volumes, the surface strength volume and the color vol­
ume. The voxels may be luminous and emit outgoing 
light, they may act as translucent filters or they may 
contain surface scatters. Only a single scattering oflight 
from the light source to the eye is assumed. The re­
flected surface color is a function of the surface normal, 
the strength of the surface, the diffuse color of the sur­
face, the direction and color of the light source and the 
eye position. If no surface is present, no scattering will 
take place. 

4. Transformation. After shading the volume, it 
is re-sampled and transformed into the viewing coor­
dinate system. Re-sampling and transformation is done 
to avoid visual artifacts, and is preferred to ray-tracing. 

5. Projection. The transformed volume is finally 
projected onto the view plane. This is done by com­
puting a weighted sum of voxels on columns parallel 
to the viewing direction. 

3. RESULTS OF PRELIMINARY 
EXPERIMENTS 

3.1 MR data 
In the experiments we employed MR acquisitions 

from the Norwegian Radiumhospital ( 1.5 T GE Signa 
scanner) (15). We selected one patient from a set of 36 
patient examinations (referred to as DNR.A.03 in ( 15)). 
The patient was a 53-yr-old man with a metastatic brain 
tumor from a bronchogenic carcinoma. We obtained 
18 axial slices from this patient, but only slices 3-17 
were used. The slice thickness was 5 mm, the interstice 
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distance was 2.5 mm, the pixel size about 1 mm X 1 
mm using a 256 X 256 display matrix. 

For each slice, four geometrically equivalent 
channels were obtained representing different SE se­
quences pre and post Gd contrast. Three pre contrast 
channels were acquired with T2 (2000/80), Tl (700/ 
20) and proton density-weighting (2000/20), respec­
tively, and one T 1 weighted channel was acquired after 
injection ofGd-DTPA. 

The images were calibrated as described in (15). 
Tl-images (with an outer brain contour super­

imposed) of four slices from the selected patient ex­
amination are shown in the middle column of Fig. 2 
and all four channel images of slice 14 are shown in 
Fig. 1. 

3.2 Training, Classification and Visualization 

Training. To build a classifier we need descriptions 
of the different classes. The class descriptions used for 
classification of the images here were those used in 
( 15). These class descriptions were created from pa­
rameter estimates derived from marked regions (masks) 
in calibrated images, with some modifications (see be­
low). Calibrated images from 11 different patients were 
used in this process. 

The following classes were modeled exclusively 
from training: white matter, gray matter, fat, CSF, 
edema, connective tissue. Air was modeled as a uniform 
distribution, with limits set arbitrarily after inspection 
of a set of feature vectors from air-pixels. An outlier 
class was also introduced, modeled as a uniform dis­
tribution with pixel values ranging from zero to 400 
in all channels (all pixel values in the data set were 
smaller than 400). 

In addition, there was a tumor class derived from 
training only, on contrast-positive tumor tissue. In 
initial classifications (using patients which were not 
part of the test set), this class description was found 
to give an unacceptable level of misclassification to 
tumor. Therefore, some modifications were made 
and the tumor class was split up into three different 
tumor classes. Details of how this was done are given 
in (15). 

To further reduce the problems of misclassifi­
cation, some additional modifications were made. 
It was observed that misclassification chiefly oc­
curred subcortically (i.e., in the transition zone be­
tween gray and white matter), and on the cerebral 
surface (i.e., in the transition between gray matter 
and CSF). Therefore, classes simulating these tran­
sition pixels (pixel originating from a voxel which 
contains two different tissues) were made by simple 
interpolation. 
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Tl post contrast T 1 pre contrast 

T2 PD 

Fig. I. Example ofa slice (No. 14) of MR-images of the brain. 

Classification and visualization. We started by 
classifying the images with Haslett's classification 
method in 2 dimensions, just as was done in ( 15). In 
the experiments the transitions probabilities 7r(k I/) 
were chosen such that 7r(k I/) = 0.9 if k = I, 7r(k I/) = 
0.1/(K - I) otherwise; k, I = I, ... , K. A 0-1 loss 
function was used and all prior probabilities, 7rk, were 
set equal to 1.0/ K. The classes used during classification 
and rendering are described in Table I. 

Oassification results from four different slice levels 
are shown in the left column of Fig. 2. Note that voxels 
from the normal tissue categories are properly classified 
with only a small number ofmisclassifications. Further, 
almost all voxels from the tumor are correctly classified 
to one of the 3 tumor classes. However, misclassifica­
tions were present in other parts of the brain. In par­
ticular, several voxels lying close to extracerebral fat 
are misclassified to tumor. 

We then found the posterior probabilities P(C; 
= k I y), computed as in the Haslett classification al-

gorithm described above, but now with student dis­
tribution instead of normal distribution (cfr. (15) 
where the results indicate that this is better when 
probability images are made). These posterior prob­
abilities were used as input to the visualization al­
gorithm. First tissue percentage volumes were made 
by transforming the posterior probability values such 
that they became suitable for the display. Several 
transforms were tested in (15), and the following 
transform was suggested: 

T(P(C; = kly)) =a - c(log(max;.k{P(C; = kly)}) 

- log(P(C; = kly))), (9) 

where a denote the maximum display value (=255) 
and c was set to I 0 according to the recommendations 
in (15). In addition ma.x;.k{PC.C; = kjy)} was LO and 
the tissue percentage volumes were computed as fol­
lows: 
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Table I. Class information 

Class Tissue type Color Distribution PD T2 TI pre-contrast TI post-contrast 

White matter Yellow/white Student 100 40 91 85 
Normal 

2 ! Gray matter Student 103 41 83 79 
! White matter Normal 
Gray matter Gray Student 105 42 76 72 

Normal 
4 j Gray matter Student JOO 51 66 67 

i CSF Normal 
~ Gray matter Student 98 56 61 64 
~ CSF Normal 

6 ~ Gray matter Student 96 - 60 56 61 
j CSF Normal 

7 CSF Blue Student 91 70 46 56 
Normal 

Edema Green Student 114 70 80 76 
Normal 

9 Tumor I Red Student IOI 41 71 92 
Normal 

JO Tumor2 Red Student 105 56 72 106 
Normal 

II Tumor3 Red Student 107 58 70 141 
Normal 

12 Connective tissue Brown Student 55 22 80 65 
Normal 

13 Fat Ochre Student 98 25 158 154 
Normal 

14 Air Black Uniform 0-15 0-7 0-15 0-15 
15 Outlier White Uniform 0-400 0-400 0-400 0-400 

In the color column the colors used in the classified images are given. The values in the PD column are the mean values in the PD images for 
that tissue type if it is Student distributed. If it is uniformly distributed it is the interval in which the distribution is non-zero (if it is within the 
interval of the other channels too). Similarly for T2 and Tl pre- and post-contrast. See (15) for more information about the classes used (like 
f.ex. covariance matrices). 

T(P<_C, = k I y)) 

if P<_C, = kly) = 0 or 

{
o 

= IO·log(P<_C,=kly))<-255 

255 + 10 · log(P<,C, = kly)) otherwise 

(10) 

Because of a nonnegligible interslice distance, we 
employed bicubic interpolation to form each of the 
tissue percentage volumes. Each tissue was then given 
a color value, a density value and an opacity value, 
and a color volume was formed. The opacity values 
were set low for the outer structures in order not to 
occlude inner ones. Also the density values were set 
equal in each tissue. Therefore, no surface shading was 
performed. Matting volumes were made to reveal in­
terior structures of the brain. Instead of transforming 
the volume into the view-plane, we extracted tri-linearly 
interpolated samples with a ray-tracer. No additional 
visible artifacts were introduced by using this method. 
A much more serious limitation, however, was the low 
spatial resolution. 

Several renderings were made from different 
viewing points, showing fat, CSF, brain parenchyma 

and the tumor with surrounding edema (Figure 3). 
Generally, the quality of these renderings suffer from 
the poor spatial resolution in the axial direction (due 
to the large slice thickness and interslice distance com­
pared to the in plane pixel size). 

The substantial number of misclassifications of 
voxels to tumor for the Haslett 20 classification (see 
left column of Fig. 2) are clearly visible in these images 
(Fig. 3b). Especially in the outer parts of the brain, 
artificially high probability density values for tumor 
have been assigned to a large set of voxels. The actual 
tumor can however be clearly seen with its surrounding 
edema in the right fronto-parietal region of the brain. 

We observed that the rendered images suffered 
from the same misclassifications to tumor as ob­
served in the Haslett classified images. We therefore 
tried to avoid these misclassifications by using a priori 
information that there should be no tumor or edema 
outside the brain. In addition we employed data also 
from slices above and below the slice of interest. To 
incorporate a priori information ofintracerebral tu­
mor localization we partitioned the imaged voxel 
slice into two regions, one inside and one outside the 
brain. To obtain this segmentation we utilized the 
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2D classification 
Section 05 

Edge detection 3D classification 

Fig. 2. Classified images and contour detection results. 

automatic contour detection algorithm described in 
Storvik (30-33). In the contour finding procedure 
we assumed that white matter (1 ), gray matter (3), 
edema (8) and tumor (9-11 ), respectively, could oc­
cur inside the contour and that CSF (7), CSF + gray 
(4-6), connective tissue (12), fat (13) and air (14) 

could occur outside the contour. The result of con­
tour detection is shown in the middle column of Fig. 
2. For the air class used here, the normal distribution 
is assumed because the contour detection algorithm 
was implemented only for that case. We assume that 
this was of no importance for the result. 
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Top view of brain Top view of brain 

(a) (b) 

Fig. 3. (a) Visualization of fat, CSF and parenchyma in the brain. The color values are chosen such that fat is 
green, CSF is blue, and parenchyma is gray. Fat is given low opacity in order not to occlude inner brain parenchyma. 
(b) Visualization of tumor, surrounding edema and parenchyma in the brain. The color values are chosen such 
that tumor is red, edema is blue, and parenchyma is gray. The images were classified using Haslett 2D contextual 
classification. Note the misclassification ofvoxels to tumor in the peripheral part of the volume, but good localization 

of the tumor proper with surrounding edema in the right fronto-parietal region. 
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The two regions were then classified separately 
with Haslett's classification algorithm generalized to 
three dimensions. The interior of the brain was clas­
sified to all classes 1-15, and the extracerebral region 
was classified two all classes except tumor and edema. 
The two classification results were then merged into 
one classified image. The result of this classification is 
shown in the right column of Fig. 2. There we observe 
that the combination of contour detection and 3D 
classification gives a much better result than the use of 
2D classification alone. We also observe that inside the 
brain we have avoided some misclassifications to tu­
mor, but not all. 

4. DISCUSSION 

In this work we have introduced an improved 
multispectral and contextual statistical classification 
procedure ( 15) to the rendering technique of Drebin 
and coworkers (5) for effective visualization of MR im­
age volumes. 

The volume data we used in the preliminary ex­
periments were acquired from 15 parallel slices from 
one patient. The interslice distance was large (2.5 mm) 
as well as the slice thickness (5.0 mm), compared to 
the in plane pixel size (1 X 1 mm). The chosen patient 
was from the training set, but was used here because 
he had a large tumor in the classified image, a good 
classification result (no significant magnetic field in­
homogeneities) and there were problems near fat with 
misclassification to tumor. All this made this dataset 
suitable for visualization, and for showing how to im­
prove the classification result by combining contour 
detection and classification. Other studies show that 
classifying the test set work quite well, see for instance 
(22). We observed that Haslett's 2D classification gave 
reasonable results except for several misclassifications 
to tumor, especially outside the brain. Our main con­
tribution is improvement of this result from standard 
slice by slice classification by using anatomical and 
pathological a priori information together with addi­
tional contextual information in our classifier. The first 
improvement was obtained by using a contour detec­
tion technique to define the outer border of the brain. 
Then the interior and the exterior region relative to 
this contour were classified separately, where tumor 
and edema were excluded from classification of the 
exterior region. By this, most misclassifications outside 
the brain disappeared. Small improvements were also 
made by extending Haslett's method to 3D. The ren­
dering method suggested by Drebin (5) gave very 
promising results for rendering of normal tissue struc­
tures, but misclassifications in the 2D Haslett classified 
images were clearly visible in the rendering result. 

We should expect improvements in the results if 
more densely sampled voxels were obtained from the 
investigated volume, such as 3D-acquisitions. Three­
dimensional Fourier MR imaging have several advan­
tages to 2D MRI (45). First there is better signal-to­
noise ratio (SNR), since with each measuring pulse the 
whole volume sample contributes to the signal. In 
planar 2D-imaging only the nuclear spins of one slice 
produce the signal, while the whole volume contributes 
to the noise. Next there is an optimum spatial reso­
lution in all direction. 

Further impro-vements of classification could be 
achieved by better calibration of the images, by using 
noise filtering (46) or employ even more a priori in­
formation. Another approach is to use mixture classes 
in the classification, that is classes which consist of a 
mixture of base classes (see f.ex. (47)). Such a mixel 
model is relevant to the rendering method used in this 
work, because one step in the method consists of com­
puting tissue percentage volumes. 

Another strategy towards extraction and visual­
ization of diagnostic information could be to introduce 
measures like "malignancy" and "fluidness" in Dre­
bin 's density function o. Other diagnostic problems 
than brain tumor could also be subject to our approach. 
One example could be the intracerebral ventricular 
system with CSF and its surrounding structures, which 
is relevant to conditions of hydrocephalus and brain 
atrophy. Regarding quantitative measurements, the 
segmentation techniques may easily be extended to 
compute volumes and location of tumor or to compute 
the volume of the ventricle system or other relevant 
anatomical structures. 

To really evaluate the methods described in this 
paper, more experiments should be performed on better 
3D data. From our preliminary experiments we have 
indicated that there is a valuable potential in the de­
scribed methods. However, these should be developed 
further to make them a clinical useful tool. 

DISTRIBUTIONS 

Here we describe the multivariate distributions 
used in the experiments. 

Normal Distribution 
The multinormal distribution is given by 

f(x; µ, ~) = (21rrd12 1 ~ 1 -1;2e-112cx-,.)'::!:-
1 <x-,.). 

where µ is the mean feature vector and ~ is the co­
variance matrix. 

Student Distribution 
Sometimes the distributions have too heavy tails 

to make the normal distribution a reasonable assump-
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tion. Then a student distribution is a better approxi­
mation to the data. One possible definition of a mul­
tistudent distribution is found in Johnson & Kotz (48). 
There it is defined as follows: 
Y is multistudent distributed with v degrees of freedom, 
v > 2, if 

fy(y) = -----
{7rv)I r(~)IRl 112 

X (1 + v-l(y - µ)'R-l(y - µ))_•~m. 

. Ji ,,-
where Y1 = S vv, i = 1, ... , m, X - N(µ, R) and S 

- Xv and independent of X1
, ••• , X'1'. 

Uniform Distribution 
The multiuniform distribution may be defined as 

follows: 

f(x; a, b) = f((x)i. ... , (x)p; (a)i. ... , (a)p, (b)i, ... , (b)p) 

II--­
= t=I (b), - (a), 

if (a),:.:::; (x),:.:::; (b), for all i, 

{

P I 

0 otherwise. 

SUMMARY 

Essential to diagnosis by any medical imaging 
modality is detectability and locability. During the last 
decennium, magnetic resonance imaging (MRI) have 
become one of the most important modalities because 
of its high soft tissue contrast with multi parameter de­
pendence of signals from tissue voxels (i.e., detectabil­
ity) and its freedom of slice sectioning together with 
high spatial resolution (i.e., locability). In this study 
we focus on the problem of tissue characterization and 
visualization of soft tissue structures in 30 MRI. We 
introduce a classification method. The method is a 
combination of a contour detection algorithm proposed 
by Storvik et al. (30, 31) combined with Haslett's clas­
sification method (28, 29) which we extend to 30. This 
classification method is used in the classification step 
of a rendering model suggested by Orebin et al. in (5) 
for visualizing soft tissue structures from the central 
nervous system. We evaluate the proposed segmenta­
tion algorithm and the combination of the two meth­
odologies. We also discuss some problems which have 
to be solved in order to develop a clinical useful tool. 
Preliminary experiments were performed on 15 slices 
from the brain of one patient with a tumor. The ex­
periments show that the methods have a potential for 
being part of a useful tool for diagnosing, but the meth-

March-April/1995. Volume 19, Number 2 

ods should be tested more thoroughly on better 30 
data before firm conclusions can be drawn. 
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Visualization of multi attribute medical images 

Abstract 

In this paper we present two new algorithms for visualization of multi attribute medical im­
ages. The aim of the algorithms is to provide as much information as possible from the multi 
attribute image in one gray scale or color image without making any rigid classification into 
different tissue categories. Gray scale images are of special interest as the human eye is consid­
erably more sensitive to spatial variations in intensity than chromatic variations. A nonlinear 
mapping is made from the original N -dimensional feature space to a M -dimensional output 
space where M < N and M E { 1 .. 3}. Two different nonlinear projection methods are in­
vestigated for this purpose. We first present a method based on Sammon's nonlinear projection 
algorithm. Sammon's algorithm is a gradient descent strategy which aims at preservation of in­
ter pattern distances by minimizing a cost function which measures the so-called Sammon stress. 
To reduce computational complexity, we first find a set of X reference vectors in feature space 
by using a standard clustering technique such as the c-means algorithm. Each feature vector in 
N -space is associated with its nearest reference vector which we then map to a lower dimen­
sional M-space by using Sammon's algorithm. Finally, we introduce a new algorithm which 
can be used to create gray scale images when the number of reference vectors is sufficiently 
small. The original multi attribute data is then projected onto a curve in feature-space defined 
by an ordered set of reference vectors, and a gray scale is mapped along this curve. The op­
timal ordering of the reference vectors is found as a minimal cost permutation, where the cost 
function is a weighted sum of inter pattern distances in N space. Our algorithms are compared 
to principal component analysis (PCA) and a recently published algorithm based on Kohonens 
self organizing maps. The usefulness of the new algorithms are demonstrated for visualization 
of both reproducible synthetic images and real MR images. 

1 Introduction 

Visualization of multi attribute images is gaining increasing importance in many medical appli­
cations. In MRI, multi-parameter images are routinely acquired. Also, fusion of different image 
modalities such as MR and PET images is becoming more widespread. 

Several algorithms have been proposed for visualization of multi attribute images. Special attention 
has been paid to the problem of visualizing remotely sensed data. However, most of the proposed 
algorithms deal with automatic segmentation into labeled regions. In many cases, the automatic 
classification procedure will introduce misclassified pixels and the displayed image may therefore 
contain misleading information. In this paper we concentrate on methods that provide the multi 
spectral information in a gray-level or color image without making any rigid classification. The 
aim is to provide as much information as possible into one image such that the experienced diag­
nostician can perform the final analysis. 

Purely interactive methods have been suggested for visualization of medical data [5]. Such meth­
ods tend to be very time consuming when applied to images with more than two components per 

1 
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pixel. Standard linear projection methods such as principal component analysis [10, 6] is com­
monly used in remote sensing and has also been used for applications in medical imaging [2]. Prin­
cipal component analysis focuses on image variance which in many cases may not be the best mea­
sure of image quality [1, 7]. A more recent approach to visualization of multi attribute images was 
proposed by Harikumar and Bresler [7]. Their method was based on selecting one or few out of 
many possible linear projections by using projection pursuit [8]. Four different optimality crite­
ria were suggested including three that takes the spatial relations between neighboring pixels into 
consideration. 

A general problem with linear transform techniques is that it may be difficult, and in many cases 
impossible, to find a linear projection that differentiates between all the important clusters in fea­
ture space. In such cases nonlinear projection methods may be more appropriate. Manduca [13] 
recently proposed a nonlinear projection method which was based on Kohonens self-organizing 
map (SOM) algorithm [12]. A nonlinear projection was then made of the multi attribute image 
data onto a lD SOM. The lD SOM was then thought of as an ordered set of nodes spaced non­
uniformly along a curve in feature space, and a gray scale was mapped along this curve. The SOM 
algorithm places a pre-specified number of reference vectors into the feature space in an ordered 
fashion. The position of each reference vector is found iteratively using a simple gradient descent 
technique. In each iteration, a sample feature vector is presented to the map and the closest match­
ing node (called best matching unit - bm u) is found among all the nodes in the map. All nodes con­
tained in a neighborhood set centered around the bmu are then updated according to the presented 
feature vector. The result of the process is however very much dependent on the initialization of the 
map and also on several different parameters which is used in the updating of the reference vectors. 
The mathematical properties of the SOM is only known for very simplified cases [12]. 

In this paper we propose two new approaches to multi-spectral image visualization. We first present 
a method based on Sammon's nonlinear projection algorithm [11]; Sammon's algorithm is a gra­
dient descent technique that aims at preservation of inter pattern distances by minimizing a cost 
function which measures the so-called Sammon stress. The number of computations in each itera­
tion is however proportional to the square of the number of sample vectors which can be as many 
as 512 2 in a typical medical image. To reduce computational complexity, we first find a set of X 
reference vectors in feature space by using a standard clustering technique such as the c-means al­
gorithm [15]. Each feature vector in the N-space is associated with its nearest reference vector 
which we then map to a lower dimensional Af -space by using Sammon's algorithm. A neural net­
work version of Sammon's algorithm [9] was evaluated for image visualization in [14] and found 
to be a useful alternative to linear projection methods such as PCA. Both versions of Sammon's 
algorithm are however gradient descent strategies and does not necessarily yield the best solution 
to the optimization problem. 

We also introduce a new algorithm which can be used to create gray scale images when the suffi­
cient ·number of reference vectors is small. The original multi attribute data is then projected onto 
a curve in feature-space defined by an ordered set of reference vectors, and a gray scale is mapped 
along this curve. The optimal ordering of the reference vectors is then found as a minimal cost per­
mutation. Several different cost functions has been considered. Sammon's cost function measures 
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the preservation of inter pattern distances. In many cases, it is impossible to find a mapping that 
approximately preserves all the inter pattern distances. To illustrate this, consider a situation where 
a number of clusters is evenly distributed along a circle in a 2 dimensional feature space. In this 
case, it is obviously impossible to find a mapping to a 1 dimensional output space in which all inter 
pattern distances are approximately preserved. In image visualization, a reasonable criterion may 
be that reference vectors that are close to each other in feature space should preferably be mapped 
to gray scale values that are similar. The problem of finding an optimal ordering of reference vec­
tors has also been studied in communication theory [16] where the aim was to reduce quantization 
errors in transmission of the reference vectors over a noisy channel. 

2 Projection methods for multi attribute image visualization 

2.1 Principal Components Analysis 

Principal Component Analysis (PCA) is a commonly used technique for multi attribute image vis­
ualization [6]. Let e = (6 ... , eN) denote a multi attribute image e with N components. Fur­
thermore, let Cf denote the covariance matrix of the image vectors e. Correlation between the 
components ei can be utilized to compute a new image 1] = (171 ... , 17M) with a smaller number of 
components M. 17 can be computed as linear combinations of the components. 

(1) 

A is a matrix where the rows are the eigenvectors of Cf sorted by decreasing size of their associ­
ated eigenvalues ~f i. A is then an orthonormal matrix that represents a basis transformation of the 
n-dimensional space containing e. It can be shown that the variance of the components 17i is equal 
to the eigenvalues '"Yi. 171 is therefore the gray scale image with maximum variance. 171 , . . 173 can be 
mapped into a color image using the H SV or the RG B color models. 

2.2 Sammon's nonlinear mapping 

Sammon 's nonlinear mapping[l l] is a nonlinear projection technique that attempts to preserve all 
the inter pattern distances as well as possible. 
Let e ( T)' T E { 1 .. x} denote vectors in the N -dimensional feature space containing the multi at­
tribute image e. Furthermore, let 17( r)' T E { 1 .. X} denote vectors in the M -dimensional output 
space where M < N. Sammon defined the mapping error, called Sammon 's stress as follows: 

E = . r 1 ~ ~ [d*(r, v) - d(r, v)]2 
'\"x-1 '\"x d*( ') L L d*(r, v) 
L..,,7=l L..,,v=T+l · T, 1 . 7=1 v=T+l · 

(2) 

Where d* ( T, V) is the distance between the Vectors e ( T) and e ( V) in feature Space and d( T, v) is the 
distance between the vectors 17( r) and 17( v) in output space. 
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Usually the Euclidean distance is applied, but any other distance measure can be used instead. Sam­
mon 's stress measures how well inter pattern distances are preserved in the nonlinear projection. 
Sammon proposed a gradient descent technique to find a configuration of the X vectors in the M -
dimensional space, such that E is minimized. The algorithm involves computation of X ( X - 1 ) / 2 
distances in each iteration. The algorithm is therefore computationally expensive if X is large. 
In image visualization, the number of feature vectors in an image I will typically be in the range 
I E {256 2 

.. 5122
}, and it will therefore be impractical to use the algorithm directly. A simple solu­

tion to this problem is to find a smaller number of X reference vectors in the feature space contain­
ing e using a standard clustering algorithm such as the c-means algorithm. The c-means algorithm 
is also an iterative gradient descent technique, but the number of computations in each iteration 
is proportional to I · X, and the algorithm is thus computationally much lighter than Sammon's 
algorithm. Sammon's algorithm can then be used to find a mapping of these reference vectors to 
the l\J dimensional output space containing T/· For M = 1, X can be set to 256 or less since this 
is usually the largest number of gray levels that can be simultaneously displayed on a computer 
screen. To display the image, one may first label each sample vector with the index of the nearest 
reference vector using the nearest neighbor rule. The complete algorithm can be stated as follows: 

1. Find a set of X reference vectors in the N dimensional feature space, using a standard clus­
tering technique such as the c-means algorithm. Then label all feature vectors with the index 
of their nearest reference vector. 

2. Use Sammon's algorithm to find a mapping f of the X reference vectors from N space to 
M space: f: ~N ____,. ~M. 

3. Apply f to each labeled feature vector. 

4. Normalize the component values of the output vectors to lay in the range 0 .. 255 

If color images are desired (M = 3), the number of possible colors that can be displayed on a 
computer screen will typically be 2563 . Obviously, it will be impractical to use such a large number 
of reference vectors. A useful alternative is then to use a much smaller number of reference vectors 
and label each sample vector with the index of its three nearest neighbors. The color components 
of the projected sample vector can then be computed as linear combinations of the colors assigned 
to its neighbors. 

A general weakness of Sammon's algorithm is that it is a simple gradient descent technique which 
unavoidably will get stuck in a local minimum on the error surface. The algorithm can be run sev­
eral times with different random initializations, but there is no guarantee that the globally optimal 
configuration will be found. An artificial neural net version of Sammon's projection algorithm was 
proposed by Jain and Mao[9], and evaluated for image visualization in [14]. The neural algorithm 
is however also a gradient descent strategy. 
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2.3 Nonlinear projection of ordered reference vectors 

In this section we present a new algorithm for computing gray scale images (eg. M = 1). Gray 
scale images are of particular interest as the human eye is considerably more sensitive to spatial 
variations in intensity than it is to variations in chromaticity [3]. 

Assume that we have an ordered set of X reference vectors (or points) such that they define a piece­
wise linear curve in feature space. A gray scale can be mapped non uniformly along this curve with 
the value zero assigned to the lowest ranked reference vector. We then assign a gray scale value 
to each reference vector which is a function of arc length along the curve in feature space, as in 
the SOM algorithm presented by Manduca[13]. We have then defined a mapping f : ~N ----;. ~ 
from an N dimensional feature space to a 1 dimensional output space. The remaining problem is 
to find an ordering of the reference vectors which is optimal in some sense. This is a combinatorial 
problem which can be solved by computing a minimal cost permutation of the reference vectors. 
We have then used the following cost function: 

d*(r,v) 
(3) 

Here, I 7r 7 - 7r v I is the difference between the permutation indexes associated with the respective 
vectors. I is a constant factor. The cost function is thus a weighted sum of inter pattern distances 
in N -space, where each inter pattern distance d* ( T, v) is multiplied with a weight w = 

1 
_
1 

1
, • 

1rr ?T'v 

Distances between vectors that are close in the permutation are given heavier weights than dis-
tances between vectors that are far apart. As/' ----;. oo, the cost function reduces to a measure of 
the total distance along the curve. The corresponding optimization problem is then analogous to 
the problem of finding the shortest Hamiltonian cycle in a graph. This problem is known to be NP­
complete [ 4 ]. The minimal cost permutation can be found using exhaustive search, but the running 
time then grows exponentially with the number of reference vectors X, so this technique is only 
applicable if X is small. Branch and bound techniques [ 4] can be used to speed up the algorithm 
significantly. A lower bound L for the cost function defined in Eq. 3 can be found as follows: 

• Sort all X ( X - 1) / 2 N -space inter pattern distances in ascending order: [di .. d*x ( x _ 1 l 12] 

• SortallX(X-1)/2weightsinascendingorder: [w1 .. wx(X-l)/ 2] 

X(X -1)/2 * 
• Compute L = Li=l widi 

Alternatively, heuristic algorithms such as k-opting [ 4] can be used to find a pseudo-optimal order­
ing of a larger number of reference vectors. 

256 gray levels can still be used for display by projecting each feature vector onto the closest line 
segment defined by two consecutive reference vectors on the curve in feature space. The feature 
vector can then be mapped to a gray-level value which is a linear combination of the gray level 
values associated with the two reference vectors. Preferably, the path should connect all reference 
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vectors that are likely to belong to the same cluster before jumping to a new cluster. Since the distri­
bution of feature vectors within different clusters may vary, weighted Euclidean distance measures 
such as the Mahalanobis distance should be considered [15]. 

The algorithm presented in this section can be stated more formally as follows: 

1. Find a set of reference vectors e ( T)' T E 1 .. X in the N dimensional feature space, using a 
standard clustering technique such as the c-means algorithm. We want to find a correspond­
ing set of output values TJ( r), r E 1 .. X in the I-dimensional output space. 

2. Let 7r T denote the rank Of the VeCtOr e ( T) in an Ordering (permutation) Of the reference VeC­
tOrS. The ordered reference vectors define a piecewise linear curve in feature space. We de­
fine a mapping f : ~N --'- ~as follows: 17(7r7 ) = f(e(r)) = d+(7r7 ), where d+ is the 
arc distance along the curve in feature space defined by the ordered set of reference vectors. 
d+ ( 1) = 0, which means that the lowest ranked reference vector will map to the lowest gray 
level value. The algorithm seeks the permutation of reference vectors that gives the lowest 
cost. 

3 Numerical Experiments 

All experiments presented in this section were done with AVS (Application Visualization System) 
running on a SPARC IPX workstation. 

3.1 Experiment 1 

In our first experiment we created a multi attribute image with two components. The values in each 
component ranged between 0 and 255. The image consisted of seven different regions. All feature 
vectors within a region were drawn from the same Gaussian distribution. The seven distributions 
had different mean vectors but the same covariance matrix~ = a-I, (J' = 20.0. The cluster con­
figuration was chosen such that it was impossible to differentiate between all the clusters in any 
linear projection. A scatterplot which shows the configuration of the 7 clusters is shown in Fig. 1. 
The x-axis in the scatterplot is aligned with the first principal axis, and the y-axis is aligned with 
the second principal axis. The aim of the experiment was to verify how well each projection algo­
rithm was able to separate the 7 different clusters when the dimensionality was reduced to 1. The 
principal component images are shown if Fig. 2 and 3. It is not possible to separate all clusters in 
any of the components. 

The two nonlinear projection methods presented in this paper were applied to the synthetic image. 
In both algorithms, Euclidean distance was used as a distance measure, and the number of reference 
vectors X was set to be 7 or more. The reference vectors were found with the C-means algorithm. 
For X = 7, Sammon's algorithm resulted in an image were it was possible to separate all the 
different clusters very well. The result is shown in Fig. 4. As Sammon's algorithm is a simple 
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gradient descent strategy, it was necessary to run the algorithm several times with different random 
initializations and then choose the configuration with the lowest stress in order to get a satisfactory 
solution. As X was increased, Sammon's algorithm did only give a satisfactory result if a very 
large number of trials were made. For X = 15 approximately 1 out of 100 runs resulted in an 
image where it was possible to separate all the different clusters. 

The new algorithm described in section 2.3 resulted in an image where it was possible to separate 
all the different clusters. A branch and bound technique was used to speed up the algorithm. 

For X ::=; 10 the ordering was done in less than 1 second. The result of the algorithm (X = 7) is 
shown in Fig. 5 together with plots which shows the curves in feature space for X = 7 and X = 15. 

The lD SOM algorithm proposed by Manduca[13] also resulted in an image where it was pos­
sible to separate all the different clusters. The lD SOM map was then initially aligned with the 
first principal axis, and network parameters were set according to the recommendations given by 
Kohonen[12]. As X was increased, the algorithm resulted in different mappings from one run to 
another. 

3.2 Experiment 2 

In our second experiment we created a synthetic image of size 1502 with three different textured 
regions. In the first (background) region, each pixel value was drawn from a normal distribution 
N (µ 1 , o-i), with µ 1 = 100 and o-1 = 18. In the second region, each pixel value was drawn from a 
normal distribution with a different mean value µ 2 = 128 but with the same standard deviation o-1 • 

Finally, in the third region, each pixel was drawn from a normal distribution with the same mean 
value as in the second region µ 2 , but with a higher standard deviation o-2 = 36. The synthetic 
image is shown in Fig. 6. Region 3, which is circular and lies inside region 2, is barely visible in 
the original image. 

A multi attribute representation of the textured image was then made by computing local feature 
vectors for each pixel in the image. The intensity value of each pixel and the 8 closest neighbors 
were sorted and used as a 9 dimensional feature vector. The feature vectors then represented the 
local distribution around each pixel. The three different image regions then appeared as three dif­
ferent clusters in feature space, but with considerably overlap between each pair of clusters. The 
9 dimensional multi attribute image was transformed with principal component analysis. The first 
principal component is shown in Fig. 7. The contrast between the first and the second region has 
been enhanced from the original image, but it is still difficult to separate region 2 from region 3. 
The second principal component is shown in Fig. 8. In this image, the contrast between region 2 
and region 3 has been enhanced, but the contrast between region 1 and region 2 is low. The two 
nonlinear projection methods presented in this paper were applied to the image. In both algorithms, 
a weighted Euclidean distance measure was used. Each component was weighted with the inverse 
standard deviation. The nonlinear projection based on Sammon' s algorithm gave good contrast be­
tween the three different clusters for X = 3 but as in the first experiment, a substantial number of 
runs had to be made as X increased. The nonlinear projection algorithm described in section 2.3 
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resulted in an image with good contrast between the three different regions. The ordering of the 
reference vectors did only change locally as X was increased. The result of the algorithm (X = 12) 
is shown in Fig. 9 together with a plot which shows the corresponding curve in feature space pro­
jected onto the plane spanned by the first and second principal axes (See Fig. 10). The results of 
the lD SOM algorithm was dependent both on initialization and on different learning parameters. 
The parameters were adjusted according to the recommendations given by Kohonen[12]. A typical 
result achieved with the SOM algorithm is shown in Fig. 11 together with a plot of the correspond­
ing curve in feature space (See Fig. 12). In this case, the lD SOM was originally aligned with the 
first principal axis. 

3.3 Experiment 3 

In our last experiment, we wanted to evaluate our new algorithms on real MR images of a human 
brain. The MR images were acquired from a 53 year old male patient with diagnosis Ca. bronchiale 
with metastasis. The slice thickness was 5mrn and the pixel size about 1 mm2

• Four co registered 
channels were acquired by varying the parameter settings of the MR equipment. The channels were 
T2, Tl, proton density and Tl weighted in the presence of a contrast agent. The aim of this experi­
ment was to investigate how the different algorithms were able to produce single component images 
with good contrast between the different tissue types present in the brain. A visualization pipeline 
was made in the AVS system, where the user could mark one or more regions of interest inside the 
brain. All feature vectors inside the selected region(s) were then used as input to the algorithms. 
In this way, it was possible to tune the algorithms to perform particularly well within clinically in­
teresting regions. The nonlinear projection algorithms were compared with Principal Component 
Analysis. In most cases, the algorithms gave similar results. In other cases the nonlinear projec­
tion algorithm presented in section 2.3 gave a better differentiation between the interesting tissues. 
Such an example is shown to the left in Fig. 13. In the middle left of the brain there is a (dark) 
Metastasis surrounded with edema. White and gray matter appears with different gray shades. The 
central spinal fluid appears black. For comparison, the first principal component is shown in the 
middle of Fig. 13. The two images are similar, except that the contrast between edema and the 
other tissues are better in the non linear projection. The second principal component is shown to 
he right in Fig. 13. In this image, the contrast between edema and the other tissues is better than in 
the first principal component. The non linear projection contains important information from both 
components. 

4 Discussion 

In this paper we have presented new algorithms for visualization of multi attribute images. A non­
linear mapping is made from the original N -dimensional feature space to a M -dimensional output 
space where M E { 1 .. 3}. Two different nonlinear projection methods have been investigated for 
this purpose. We have developed one method based on Sammon's nonlinear projection algorithm. 
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Sammon's algorithm is a gradient descent strategy which aims at preservation of inter pattern dis­
tances by minimizing a cost function which measures the so-called Sammon stress. One of the main 
problems with Sammon's algorithm was that it had to be run several times with different initializa­
tions in order to get a satisfactory result. This is not surprising, since the cost function may have 
many different local minima. We have also developed a new algorithm which projects the origi­
nal multi attribute data onto a curve in feature-space defined by an ordered set of reference vectors. 
The ordering is found as a minimum cost permutation, where the cost function is a weighted sum of 
inter pattern distances. Other cost functions could be considered. The algorithm can be compared 
to Kohonens self-organizing map (SOM) algorithm. In the SOM approach the ordering process is 
integrated with the clustering. The process is heavily dependent on both initialization and learn­
ing parameters, and the mathematical properties of the algorithm is only known for very simplified 
cases. In our algorithm the clustering and the ordering problems are treated separately. The order­
ing process is transformed into a combinatorial problem which can be solved optimally for a small 
or moderate number of reference vectors. However, if the number of reference vectors is large, 
heuristic algorithms has to be used. 

Several experimental setups were made in order to evaluate the suggested algorithms. In all ex­
periments, the aim was to produce gray scale images with as much information as possible. The 
experiments showed that the nonlinear projection algorithms can provide information which is dif­
ficult or impossible to obtain from linear algorithms such as Principal Component Analysis. The 
drawback with the nonlinear algorithms is the increased computational complexity. In conclusion, 
we have found that the suggested methods are useful alternatives to linear projection methods such 
as Principal Component Analysis. 
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Figure 1: Scatterplot showing the configuration of 7 clusters in a 2-dimensional feature space 

Figure 2: First principal component of image Figure 3: Second principal component of im­
with 2 attributes containing 7 Gaussian clus- age with 2 attributes containing 7 Gaussian 
ters clusters 
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Figure 4: Sammon projection of image with 2 attributes containing 7 Gaussian clusters 

Nonlinear projection curve in f. space, X = 7 curve in f. space, X = 15 

Figure 5: Nonlinear projections of 2-attribute image 
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Figure 6: Synthetic texture image 

Figure 7: 1st principal component of texture Figure 8: 2nd principal component of texture 
image image 
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Figure 9: Nonlinear projection of texture im- Figure 10: Optimal curve in feature space 
age 

Figure 11: Nonlinear projection of texture im- Figure 12: lD SOM curve in feature space 
age onto lD SOM 
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Nonlinear projection First principal component Second principal component 

Figure 13: Projections of four channel MR image of a human brain 
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Abstract 

A general framework for fast visualization of multi.spectral volume data is presented. Ded­
icated hardware with a non-numeric coprocessor is utilized in the first step of the rendering 
pipeline to process the volume data and extract voxels according to feature characteristics. This 
capability is used to select voxels according to automatic classification results or real-time de­
scriptions of regions of interest supplied by the user in an interactive environment. By this step 
we can in real-time reduce the number of voxels that have to be considered in the rendering 
and increase the speed of the volume rendering accordingly. The selected voxels are generated 
in a front-to-back (or back-to-front) order and projected to the view plane where a 3D render­
ing is accumulated with an adaptation of the shell rendering technique proposed by Udupa and 
Odhner. The paper includes an overview of the underlying hardware architecture and presents 
numerical experiments with a software simulator. 

1 Introduction 

Three-dimensional (3D) display techniques have been studied extensively for medical applications 
for the past several years and are well established as a clinical tool in X-CT imaging [6, 18, 21]. 
Visualization techniques for MRI and PET have also been explored [1, 2, 10, 20, 23]. Ultrasonic 
3D and 4D acquisitions have also attracted much interest during the last years [14, 17, 22]. Volume 
rendering is used to give a 2D representation of the interior of a volumetric dataset. The usefulness 
of such methods relies on their ability to extract clinically useful information. Interesting structures 
are made opaque and obscuring structures are made transparent. The opacity assignment implies 
an underlying classification that is useful for the visualization quality. In addition, we will exploit 
this classification to reduce the processing requirements for volume rendering. Volume rendering 
with uniform opacity assignment reduces to average value projection which has been found to be 
an inferior technique in many applications [14]. Volume rendering techniques have been presented 
which are based on an initial classification of the voxels (volume elements) into different tissue 
categories. Simple thresholding can be used to render isovalue surfaces [5, 7, 9]. A more sophis­
ticated approach to volume rendering was presented by Drebin et. al. [4] An initial probabilistic 
classification is here used to classify voxels into different tissue categories. Drebin stressed the fact 
that binary classification schemes will usually result in artifacts, and he therefore allowed voxels to 
contain a mixture of materials. The amount of a material in a given voxel was then decided from 
a probabilistic classification. Some image modalities provide a sufficient signal-to-noise ratio to 
allow for a reliable unsupervised classification into the various materials or tissue categories of in­
terest. This is not the case in other important modalities such as ultrasonic imaging and seismic 
imaging. In MRI-imaging, the multi-parameter dependence of the MRI-data can be utilized to ob­
tain initial classifications into the various tissue types. Multi-dimensional statistical analysis has 
been used to estimate the probability density distributions for the different tissue categories from 
standard multi variate distributions such as the multi normal distribution [ 16]. The parameters for 
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these distributions are estimated from training sets. A general problem with this approach is that the 
classification parameters obtained from one dataset may not be directly transferable to datasets with 
different or additional tissue. Parameters for the additional tissue categories must then be specified 
and old parameters must be adjusted by some calibration procedure. 

There are two basic approaches to visualization of 3D objects: suiface rendering and volume ren­
dering. In surface rendering an explicit model of the imaged structure is extracted. Typically, a 
polygonal representation of the boundaries between the various materials or tissue categories is 
defined and used in the subsequent rendering of the 3D scene. This approach rely heavily on the 
robustness of the surface detection schemes. In contrast to surface rendering, volume rendering 
does not compute an explicit model of the imaged structure. The imaged scene is viewed as a 
semitransparent volume. Different characteristics can be extracted in the rendering by modifying 
the strategy for assigning opacity to each individual voxel. Volume rendering is therefore almost 
by definition a more fuzzy oriented technique than the surface rendering approach. This can be 
utilized to allow for more flexibility in the classification stage and in the specification of render­
ing characteristics through opacity assignment. The full power of this approach is not revealed 
before renderings are generated in real-time with 1-30 frames/s. The user can in this case do in­
teractive inspection/classification or modifications of the opacity assignment and have immediate 
visual feedback in the 3D scene. 

2 Ray casting vs. voxel projection 

Most volume rendering algorithms are based on the ray casting paradigm. This paradigm is illus­
trated together with the alternative voxel projection technique in Fig. 1. The ray casting paradigm 
loops through the pixels in the view plane and for each pixel a line through the 3D dataset is gener­
ated according to the selected viewing transformation. A I -dimensional density evolution is then 
extracted by trilinearly interpolation of voxels along the line that passes through the domain of the 
3D dataset. The rendering is then generated by assigning a color to the pixel in the view plane that 
reflects some properties of the extracted density evolution. 

The disadvantage of the ray casting approach is that the extraction of each of the individual den­
sity evolutions usually requires values spread all over the address space occupied by the 3D dataset. 
Modem RISC based workstations rely heavily on efficient utilization of their memory architectures 
with high speed cache-memories close to the CPU. Realistic 3D datasets are unfortunately usually 
too large to fit in cache and the almost randomized address generation caused by the ray casting 
principle makes it difficult to utilize the high speed memory architectures. Elaborate pre-fetching 
strategies in the operating system might in fact tum the presence of cache memory into a disadvan­
tage for ray casting. 

Voxel projection is an alternative data driven approach. The dataset is read in a systematic manner 
and each voxel is transformed into the associated location in the view plane based on the selected 
viewing transformation. The shell rendering algorithm [19] is based on voxel projection. 
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VOXEL 
CUBERILLE 

RAY 

VIEW PLANE 

.. 
OF RAY DENSITY EVOLUTION 

Figure 1: The ray casting and voxel projection paradigms for volume rendering. 

Volume rendering software has earlier usually preferred the ray casting principle because: 

1. It is easier to obtain high quality interpolations in the view plane if the resolution of the view 
plane image significantly exceeds the resolution of the 3D dataset. Voxel projection tech­
niques must solve this problem with anti-aliasing and proper adjustment of the resolution in 
the 3D dataset. 

2. The density evolutions extracted by the ray casting paradigm provide a greater flexibility in 
the definition of the actual rendering principle. The voxel projection paradigm can only guar­
antee that voxels arrive at a given pixel in the front-to-back (FTB) of back-to-front (BTF) 
order. The associated rendering principle is therefore constructed as an iterative updating al­
gorithm. On the other hand, most of the important rendering algorithms fall into this category 
including max rendering, average rendering and Drebins rendering method. 

3 Combining voxel projection with real-time data extraction 

It is generally recognized that speed becomes necessary - rather than just convenient - to further 
development of volume rendering. The data driven aspect of voxel projection is an attractive prop­
erty for both efficient utilization of dedicated hardware and interfacing with real-time data sources. 
Voxel projection can also handle non-uniform spatial sampling in a very direct and efficient man­
ner. Further speed improvements can be achieved if the stream of voxels is reduced before they 
enter into major computations. Udupa and Odhner have proposed a technique called shell render­
ing [19] which is based on voxel projection of a limited dataset extracted from the original com-
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plete 3D cuberille. Udupa and Odhners technique is a software based approach where the volume is 
preprocessed (a step reported to require approximately 5 min. on a high performance workstation). 
The preprocessing discards the voxels that a priori are known not make a significant contribution 
to the final volume rendering. The extracted voxels are rendered in software with 2-3 seconds per 
frame. The method is called shell rendering because the extraction principle can be thought of as a 
fuzzy generalization of a simple boundary extraction. Shell rendering allows for interactive manip­
ulation of the viewing parameters with almost immediate visual feedback. Hardware accelerators 
and the possibility to subsample the dataset can bring this methodology further to a truly real-time 
environment for volume rendering. 

The visualization speed of shell rendering is attractive, but the initial data extraction is slow and 
far from interactive rates even on powerful workstations. Immediate visual feedback in the 3D 
scene on the geometry of the extracted data will make volume rendering an efficient tool for auto­
matic and interactive exploration of the geometry of multispectral volume data. Immediate visual 
feedback on classification results will also allow for visual sensitivity analysis of the classifications 
results which is important for immediate validation of clinical findings. Before presenting a hard­
ware accelerator that offers real-time shell extraction we will explore some basic principles that 
can be utilized in the classification stage. 

3.1 Preprocessing techniques for automatic classification 

3.1.1 Multi-spectral classification 

Classification of voxels is used to define an appropriate opacity function w : V -----+ [ 0, 1]. Based 
on a given opacity function Udupa and Odhner [19] define a shell as 

B = {v Ev I w(v) > nz andw(v')::; nh} (1) 

where 0 < nz ::; Qh < 1 and v' is a voxel in a given neighborhood of v. A surface is extracted if 
nz = nh. Eq. 1 must be modified in order to allow for efficient data extraction with a general pur­
pose non-numeric coprocessor. The shell membership must usually be determined by an isolated 
multi-spectral analysis of the attributes recorded or computed at a given voxel. In MRI-imaging, 
the multi-parameter dependence of the MRI-data can in this way be utilized to obtain initial classifi­
cations into the various tissue types. Multi-dimensional statistical analysis has earlier been used to 
estimate the probability density distributions for the different tissue categories from standard multi 
variate distributions such as the multi normal distribution [16]. 

3.1.2 3D edge detection 

It is usually sufficient to obtain a good description of the implicit surface geometry inside the 3D 
cuberille in order to produce meaningful volume visualizations. Voxel elements far from significant 
transitions can therefore usually be discarded. Non-linear diffusion filters can be used to define 
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edges at the various levels in scale space. We have earlier reported how these filters can be explicitly 
used as a data extraction parameter within the shell rendering framework [14, 13]. 

3.1.3 Using the distance transform in 3D 

The neighborhood operator in Eq. 1 must be replaced by a preprocessing where for example the 
minimal element in the given neighborhood of vis recorded as an additional attribute on voxel v. 
A more flexible approach is to process the detected boundaries with a three-dimensional distance 
transform [3]. The shortest distance to features of interest can in this way be recorded as additional 
attributes and used in the real-time process for data extraction. We have earlier studied one applica­
tion of this approach combined with both automatic 3D edge detection filters and manual/automatic 
procedures for object recognition in 3D data sets [11]. 

3.1.4 Region growing with the Dijkstra algorithm 

Region growing can be used to either automatically segment the scene into separated components 
or the user can interactively extract specific objects. The volume rendering framework can han­
dle uncertainties explicitly through opacity assignments that increase the transparency of uncertain 
classifications. Fig. 2 and Fig. 3 illustrate two renderings generated with shell rendering of 3D ul­
trasonics. In both cases a number of seeds have been interactively positioned by the user inside the 
3D volume. The selected seeds are used as the source in a Dijkstra algorithm computing for every 
voxel the shortest path to one of the selected seeds. The volume is interpreted as a graph with a 
node for each voxel element and an edge between neighboring voxels. The cost is computed as a 
function of the difference inimage characteristics between each individual voxel and the set of vox­
els that are used as seeds. Finally, we use the shortest distance computed by the Dijkstra algorithm 
as a basis for opacity assignments. The drawback with this attribute is that the region growing is 
not accelerated and can only be modified interactively if the size of the volume is small. 

3.1.5 Utilizing specific voxel variations along a predetermined structure 

The underlying VLSI architecture can also do selection based on signatures found in a sequence 
of voxels that have been sent through the data extraction module in Fig. 5. The interpretation of 
this mode depends on the address generation which triggers the data reservoir. One possibility is 
to augment each voxel with the voxels found in a predetermined spatial 3D neighborhood. 

Some 3D applications, including seismic imaging, provide a rather unique direction in 3D space 
that can be used to formulate data extraction criteria. In seismic imaging the signatures recorded 
across a sequence of layers can be used as a basis for fuzzy data extraction in volume rendering 
highlighting similar layer sequences in the 3D scene. 
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Figure 2: Visualization of liver veins. 
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Figure 3: Visualization of hemangioma and portal vein. The visualization was made with a color 
encoding of the different objects.2 

E-7 



Shell rendering with hardware supported data extraction 

3.2 Interactive classification 

The speed of the visualization pipeline makes the presented volume rendering framework attrac­
tive for interactive classification procedures. Interactive methods can be used to extend, calibrate 
or replace the automatic classification procedures. Interactive classification will include real-time 
mouse tracking in arbitrary 2D slices with a statistical characterization of a preselected neighbor­
hood relative to the mouse position. Alternatively a region of interest (ROI) can be outlined by 
accumulation of voxel elements indicated in possibly different 2D slices. A mean feature vector 
is computed from the data within the selected ROI together with lower and upper bounds for each 
feature. These characteristics are used to discard voxels in the volume rendering pipeline. Only 
voxels similar to the specified ROI content are selected and assigned a non-zero opacity value. 

The ROI can be implicitly defined as a small neighborhood of the current mouse position. The 
renderings will then continuously change as the mouse cursor is moved between the various tissue 
categories in the original 2D slices. Hence, volume rendering becomes an interactive tool for ex­
ploration of the implicit geometry contained in the 3D dataset. The stability of the renderings will 
in addition give visual feedback on the sensitivity and stability of the classification results. Fig. 4 
illustrates a possible image display with a 2D slice from the original data set that can be arbitrarily 
positioned inside the complete 3D dataset. A ROI is indicated in the 2D slice with bright intensities 
and a 3D rendering from a coarse MRI study of the brain with only 15 parallel slices is shown in 
the 3D rendering window. 

The interactive tissue characterization can be repeated for different tissue categories and integrated 
in the 3D rendering. Each tissue is then separated by a specific color hue in the 3D rendering. 

4 A non-numeric coprocessor design 

Fig. 5 gives a block diagram of a PCI board implementing the necessary data routing and extrac­
tion facilities for efficient shell rendering [12]. White arrows indicate data paths for volume data 
and black arrows indicate control signals that can be specified by the host computer. The volume 
data is read through a stack of four non-numeric coprocessors with 264 Mbytes per second. The 
sequencing of the volume data is controlled by address generation from the host computer. The ad­
dresses are generated in such a manner that the voxels will accumulate in the view plane in either 
a Front-To-Back (FTB) or Back-To-Front (BTF) order. The FTB order is selected for efficiency 
reasons if the rendering is generated in software on the host computer. The non-numeric coproces­
sors are 4 MS160 [15] chips which perform general range queries on the multi-spectral voxel data 
in real-time. 

The MS 160 non-numeric coprocessor is a general purpose information filtering processor that has 
found applications in fuzzy, interactive free text searching, genetic databases, Internet servers (Archie 
and WWW), volume rendering and knowledge- I property-addressable image databases. The co-
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Figure 4: Prototype display in AVS 
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processor has a high bandwidth data input that can read 264 Mbytes per second3 and feed the data 
through a configurable parallel architecture of 256 processing elements (PEs). The PEs perform a 
total of more than 1010 comparisons per second. These comparisons are combined with match logic 
in order to provide a single hit indicator for the voxel element being analyzed. The final hit/no-hit 
decision is used to define which voxel elements that are included in the current volume visualiza­
tion. The decision can also include contextual information. 

The 256 PEs are grouped in 8 windows, each equipped with an array of 32 processing elements. A 
window is thus an evaluation unit for a byte-stream shared with, or distinct from, streams of other 
windows. Each PE is individually programmed to work on-the-fly. Programming modes include 
testing for equality, rank and range membership, the latter type having the former and don't care 
as special cases. To support various applications, the word-lengths of the operands are also made 
programmable. Lengths may vary from 1 to 8 bytes for operations involving e.g. lexical-ordering­
testing on textual/numeric strings, or simply large integers. A data distribution network can be 
programmed to feed input data to specific windows and pipeline the operation of multiple windows 
in order to handle complex queries. 

A MS160 window is performing a completely new evaluation of its resident data for each shift 
position of its stream. In principal, the window function could have been selected as a threshold 
operator on a selected metric measuring the distance from a reference vector to the resident window 
data. A good alternative for such a metric would be the Minkowski p-metric: 

k 

Lp: dp(u, v) =(LI Ui - Vi lpr~- (2) 
i=l 

L 1, L 2 and L 00 represent the Hamming-/Manhattan-, the Euclidean- and the Maximum-distance 
metrics respectively. L 00 can be viewed as a limiting case because all except the maximal vector 
component difference can be ignored when p -+ CX>. The Lp metric has two deficiencies related to 
fuzzy pattern matching: 

• Noise tolerance: Individual vector components might contain "garbage". It might for ex­
ample be interesting to extract patterns that agree in 80 % of the vector components with a 
reference pattern even if the remaining 20 % of the vector components contain large differ­
ences producing high Lp -distances. 

• Arithmetic: All the LP metrics, except L 00 , require heavy computations. 

In order to meet these challenges, the window function of the MS 160 is based on General Range 
Queries (GRQ) [15], for which acceptable vectors v relative to a reference vector u should satisfy: 

(3) 

30perating at 33 MHz. 
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The reference vector u and the slack parameters Lli are parameters that are down-loaded to the 
MS160 from the host CPU. Future versions of the MS160 will include fuzzy versions of the GRQ 
definition in Eq. 3 where a hit is reported when a specified number of the k inequalities are satis­
fied. If more computationally expensive metrics like the L 2 metric is needed, the GRQs can still 
be applied as a preprocessing step selecting the patterns elements that should be reevaluated with 
the desired algorithm/metric on for example the host computer. 

Finally, the MS160 contains match logic that can evaluate logical combinations of hits reported by 
individual windows. Arbitrary logical combinations of the 8 windows can be specified. In addition, 
individual hits reported by a given window can be remembered for a programmable number of input 
patterns. This property can be utilized to specify contextual selection criteria depending on how the 
spatial sequencing of the voxel data is organized. 

The GRQs and subsequent match logic can be utilized to perform a discrete, statistical classification 
by approximating a given density distribution with a set of overlapping GRQs. Voxels that don't 
satisfy the GRQs in the MS 160s are discarded. The selected voxels are transferred to a pipelined 
computation of the viewing transformation. Transformed voxels are finally clipped in the x, y and 
:: directions defined by the view plane before the results are stored in a large result buffer. For each 
selected voxel element v this result buffer will hold: 1) An attribute f( v). 2) A tag t( v) which 
holds the result of the range queries on the MS160's. The tag can usually be translated into a prob­
ability for membership in a certain tissue category and is therefore a useful parameter for opacity 
assignments. 3) Transformed coordinates relative to the selected view plane. (x, y and depth z) 

The result buffer with extracted voxel information including opacity information, screen location 
and depth is transferred to the host CPU or an accelerated PCI based rendering subsystem for ac­
cumulation of 3D visualizations with the shell rendering algorithm [19, 12]. 

5 Shell rendering 

5.1 A graphics accelerator on the PCI bus 

A PCI based accelerator is under development. The rendering engine offers shell rendering of 
16 M voxels per second. The voxel data is transferred on a direct link from the search engine and 
will therefore not compete for the bandwidth on the PCI bus. The maximal capacity of the com­
plete system is therefore given by S · 16 Mvoxels per second where S is the average data reduction 
obtained in the classification. The capacity is in addition limited by the maximal rate of 264 Mbytes 
that can be read from the data reservoir. If we for example assume that each voxel is labelled with 
eight bytes of information, then 33 Mvoxels can be rendered per second. 
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5.2 A software prototype based on AVS 

A software simulator for the rendering system has been developed using AVS 5.0 (Application Vi­
sualization System). The software prototype is currently not optimized for speed. The purpose of 
the prototype has so far been to validate and optimize algorithmic principles that are included in the 
hardware accelerators. Both the search engine and the shell rendering functionality of the rendering 
engine can on the other hand be embedded as general purpose modules in the AVS framework. Ex­
periments with shell rendering of X-CT data can be found in Udupa and Odhners paper [19]. Our 
contribution is mainly in terms of performance and making the classification/opacity assignment 
part of the interactive feedback-loop. 

5.3 Some aspects of shell rendering 

5.3.1 Irregular spatial sampling 

The voxel projection paradigm only requires that the spatial 3D world coordinates of every voxel 
can easily be determined. For regular cuberilles these coordinates can be computed by decoding of 
the voxd address inside the data reservoir. Irregular sampling can be processed if each voxel ele­
ment is labelled with attributes that hold the x, y and z world coordinates. These coordinates will 
in this case be extracted from the voxel and used as input to the transformation unit in Fig. 5. This 
mode of operation makes it possible to process digital data from medical scanners that record the 
images in non-regular geometries. The polar geometries usually encountered in ultrasonic scanners 
are such examples. The 3D acquisition can also consist of irregularly sampled 2D slices that are 
difficult to convert to a regular cuberille without loss of image detail. 3D acquisition with position 
sensoring is such an example. Even systematic acquisition strategies like tilting of a 2D scanplane 
with fixed angle increments generate 3D studies that are difficult to convert to a regular cuberille 
without loss of image detail. The convention into a regular cuberille might generate erroneous in­
terpolations that are included in the 3D renderings. 

5.3.2 Mixing 2D slices with 3D renderings 

Mixing 2D images with 3D renderings is especially important in medical applications for validation 
of findings in 3D scenes. A rendering based on surface shading is for example heavily dependent on 
the underlying boundary extraction mechanism. A hole in the 3D surface might for example either 
be a physical defect or a consequence of a slightly unfortunate opacity assignment. The interactiv­
ity obtained for classification/opacity assignment reduces this specific problem, but still many 3D 
scenes should be validated with 2D imaging. Fig. 3 illustrates a visualization of two tissue cate­
gories (a hemangioma and the portal vein) that are intercepted by a 2D slice from the underlying 
data set. The 2D slice can be arbitrarily positioned and interactively moved through the 3D scene. 

Orthogonal 2D slices can be included in the 3D scene by a proper sequencing of the voxel elements 
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behind and in front of the selected slice. Arbitrarily positioned 2D slices can be mixed with any 
number of 3D renderings if a z-buffer is associated with each rendering. In addition, it should be 
noted that the geometry transformation unit has been duplicated on the hardware accelerators. Both 
the search engine and the rendering engine include a transformation unit. This is partly to make 
each of the PCI boards more useful as individual accelerators. The two transformations can also 
be used to process 2D slices with the following procedure: 

1. The address generation to the data reservoir is computed such that a minimal number of vox­
els including the selected 2D slice are generated. 

2. The coordinates of the extracted voxels are transformed and clipped on the rendering engine 
such that a specified thickness around the selected 2D slice is selected. 

3. The extracted voxels are finally transformed on the rendering engine such that the 2D slice 
is properly adjusted to the selected viewing direction. 

5.3.3 Shading and computation of transparent renderings 

Transparent views can be constructed by using a scheme due to Levoy [8] where each sample lo­
cation the ray passes makes a contribution of emitted white light. The contribution is the sampled 
value p multiplied with the corresponding opacity value o. At the same time, incoming light from 
behind will be filtered by the factor ( 1 - o) Let the voxel elements arriving at a given location in 
the view plane be denoted by p which consists of the N samples p1 , p2 , .... , p N. The following 
attribute is then extracted: 

N i-1 

L = Pl 01 + L Pi Oi II (1 - Oj) (4) 
i=2 j=l 

A colored dataset can be rendered by treating each color component (R,G,B) separately using the 
same formula as above. Depth information can also be recovered by coding depth (D) as an at­
tribute. D can for instance be the distance t to the voxel with the maximal value M. An opacity 
based estimate of depth is given by: 

(5) 

where zi denotes the associated depth in the scene. 

In many cases, better understanding of the geometry of the structures can be obtained by shading 
the D image. Fig. 2 illustrates this principle. Shading of" z" -buffers is an attractive procedure for 
computation of diffuse and specular reflections with arbitrarily positioned light sources in the shell 
rendering framework. Alternatively, local image gradients can be computed and included with the 
voxel description. 
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6 Real-time data sources 

The data reservoir on the search engine has been designed as a plug in module for memory banks. 
The memory banks can on the other hand easily be replaced by smaller memory banks and com­
munication circuitry for direct data input from real-time digital data sources. Real-time 3D acqui­
sition of ultrasonic data is currently being explored with both electronic 2D arrays [22] and hybrid 
control mechanisms [17]. The acquisition rate of 3D ultrasound is limited by the speed of sound. 
Typically, 6000 beams per second can be used to sample a 3D object at normal depths (10-15 cm). 
Approximately 3 Mvoxels or 1.5 Mvoxels are generated each second if we assume that each beam 
is sampled with either 512 or 256 samples respectively. This number should be multiplied with the 
number of parallel beams that are utilized in the acquisition. 

Fig. 6 illustrates a possible architecture for truly real-time 3D in ultrasonic imaging. The figure 
gives details on the content of the data reservoir in Fig. 5 for real-time applications. The ultrasonic 
scanner fills the memory bank with a digital 3D study while the search engine reads the previous 
3D study into the rendering pipeline as in the post-processing mode of operation with conventional 
memory banks in the data reservoir. 

Fig. 6 indicates a possible attribute content for each of the digital voxel elements. 3 attributes (6, 
7 and 8) are used to give the true 3D coordinates in a world coordinate system. These values de­
pend on the beam steering principles and can be precomputed. The labelling of voxels with spatial 
3D coordinates makes it possible to render digital data recorded with an arbitrary scanner geometry. 
It might still be useful to utilize the polar-to-Euclidean scanconverter hardware found in all ultra­
sound scanners. The pixel resolution in the scanconverted, Euclidean 2D images should in this case 
correspond to the selected pixel resolution in the view plane where the rendering is accumulated. 
Five bytes are used to characterize the voxel content.4 In addition to displayed amplitude data, the 
ultrasound scanner can utilize this space to label the voxels with information extracted by digital 
signal processing of the RF signal. This information could include both related modalities and dig­
ital image processing like Power Doppler, color flow, blood/tissue characterization, contrast agent 
indicators, image gradients, distance transforms, etc. These attributes can then be utilized both for 
data extraction and as a basis for opacity and color assignments. This selection of parameter setup 
would give a rendering capacity of 33 Mvoxels per second if the subsampling factor obtained in 
the data extraction exceeds 2. 

The rendering capacity in this specific example should be compared with the acquisition rate of 3 or 
1.5 Mvoxels per second per beam. If we assume that each beam is sampled with 256 samples, then 
a maximum of 22 parallel beams can be utilized in the acquisition and still truly real-time display of 
3D visualizations can be achieved.5 For lower numbers of parallel beams the high rendering rates 
can be utilized to either render each acquisition from different views in each update or data from a 
long~r acquisition period could be integrated to a 3D or 4D study with better spatial and temporal 
resolution. 

4Different parameter setups for voxel characterization are of course possible. 
5The theoretical maximum is eight times higher: 8 · 22 = 176 parallel beams. 
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Figure 6: Example of possible modification of the data reservoir for digital interfacing with ultra­
sonic scanners delivering real-time 3D data. 

7 Conclusion 

This paper has presented a methodology and hardware accelerators for real-time volume rendering 
with interactive feedback on classification and opacity assignments. Dedicated hardware it utilized 
to extract voxels according to feature characteristics before volume renderings are generated with 
the voxel projection paradigm of shell rendering. Visual feedback in the 3D scene is obtained both 
for modification of viewing parameters and for modification of automatic or interactive classifica­
tion parameters. Typical performance figures are in the range of 33 to 264 Mvoxels per second. 
In particular, we describe how the hardware accelerators can be utilized to achieve truly real-time 
imaging with 3D ultrasonics. 
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An efficient algorithmic framework for fuzzy region oriented segmentation 

Abstract 

An algorithmic framework for fuzzy region oriented segmentation is presented. The frame­
work is aimed at volume rendering methods, which by definition are fuzzy display techniques. 
In several volume rendering methods, opacity values are assigned to voxels (volume elements) 
in order to emphasize the "interesting" parts of the data and make "uninteresting" parts more or 
less transparent. The opacity assignments may be thought of as a fuzzy segmentation or classi­
fication procedure which allows diffuse transitions between different materials. Opacity values 
are usually computed as a function of local feature vectors associated with each voxel. In many 
cases this kind of segmentation will be insufficient, as different objects may share similar local 
features. Still it may be possible to isolate an object as a region of spatially connected vox­
els. Traditional region oriented segmentation methods divide the image into disjoint regions 
and will therefore not fit well with the volume rendering paradigm. The algorithmic framework 
presented in this paper can be viewed as a fuzzy region growing technique. Each connection 
between neighboring voxels is given a weight which is a function of the difference in image 
characteristics between these voxels and a set of seed voxels. Dijkstras algorithm is utilized 
for computation of a minimum weight path from the seed voxels to all other voxels in the 3D 
image. The weight of this path is then mapped into an opacity value. Different weight func­
tions are discussed. The proposed framework is especially useful for interactive manipulation 
of 3D images. The practical utility of the algorithm therefore depends a lot on its efficiency. A 
simple and very efficient implementation of Dijkstras algorithm which exploits some properties 
specific to our application has been used. Numerical experiments have been conducted in or­
der to evaluate the proposed framework. Finally, the presented algorithm is demonstrated for 
visualization of tumor and vessel geometry using three dimensional ultrasonic images. 

1 Introduction 

Surface rendering and volume rendering are two approaches to visualization of 3D objects. In sur­
face rendering, an explicit model of the imaged structure is extracted by using a surface detection 
scheme. This approach relies heavily on the robustness of the detection scheme. On the other hand, 
volume rendering techniques do not rely on explicit models of the imaged objects. The imaged 
scene is rather viewed as a semitransparent volume, where transitions between different materials 
are allowed to be diffuse. A number of algorithms have been proposed for volume rendering of 
medical data [2, 15, 7, 10, 9, 8, 13, 11]. In several of these algorithms, opacity values are assigned 
to each voxel on the basis of local characteristics. In the simplest case, opacity values are given as 
the scalar voxel values multiplied by a global scaling factor. 

In Drebins algorithm [2], different opacity values are assigned to each material present in the im­
age. Statistical analysis of the scalar or vector valued voxels is used to decide the amount of each 
material present within a voxel. The opacity of a voxel is computed as a normalized sum of opac­
ities of all materials present within the voxel, where the opacity value of a material is weighted 
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by the probability that the material is present within the voxel. A specific material can be empha­
sized by assigning a high opacity value to it and low opacity values to other materials in the image. 
Drebin states that only probabilistic classification schemes should be used, since binary classifica­
tion may introduce artifacts in the rendered images. This is obviously true if the distributions of 
feature vectors from the different materials overlap. The uncertainty inherent in the outcome of the 
classification can be built into the opacity function with Drebins algorithm. 

In many cases it can be difficult to isolate an object purely on the basis oflocal features, since differ­
ent objects in the image may share the same local characteristics. Still, an object may be isolated 
as a region of spatially connected voxels. Region oriented segmentation methods [6] view seg­
mentation as a process of partitioning the image into disjoint regions. Since the regions have to be 
disjoint, traditional region oriented segmentation methods do not fit well with the volume rendering 
paradigm, since diffuse boundaries between different regions are not allowed. 

A well known strategy for region oriented segmentation is called region growing. A basic approach 
to region growing is point aggregation, where regions are grown from a set of seed points by iter­
atively appending neighbor points with similar properties until no more such points can be found. 
This approach eventually leads to a hard partition of the image into disjoint regions. 

In this paper we present an algorithmic framework which can be viewed as a fuzzy approach to 
region growing. Each connection between neighboring voxels is given a weight which is a function 
of the difference in image characteristics between these voxels and a set of seed voxels. Dijkstras 
algorithm [ 1] is utilized for computation of a minimum weight path from the seed voxels to all other 
voxels. The weight of this path is then mapped into an opacity value. 

Interactive adjustment of the segmentation parameters is a necessity in many applications. This re­
quires that the algorithm has a low computational complexity. In most practical applications we can 
map opacities into a set of discrete values. With this assumption in mind, we have made a simple 
and very efficient implementation of Dijkstras algorithm with a worst case running time propor­
tional to the number voxels in the 3D image. The work presented here is a further development of 
work which was presented in a preliminary paper [12]. 

Udupa and Samarasekera [14] have, independently of this work, recently presented a fuzzy-set the­
oretic approach to multidimensional image segmentation. In their framework, an imaged scene was 
represented as a fuzzy digital space. Udupa and Samarasekara based the notion of connectedness on 
the mathematical theory of fuzzy sets, and relations between voxels were restricted to be reflexive 
and symmetric. They developed an iterative dynamic programming scheme in order to determine 
fuzzy connectedness. However, no explicit analysis of the time complexity of the algorithm was 
given. The algorithm proposed in this paper can also be used to compute fuzzy connectedness as 
defined by Udupa and Samarasekara. 

In the next section we review some basic concepts on image representations, connectivity and seg­
mentation. In section 3 we introduce the concepts of weighted connectivity, weighted paths and 
fuzzy region oriented segmentation. Dijkstras algorithm is presented as an efficient algorithm for 
solving the fuzzy region growing problem. Numerical experiments are conducted in order to eval-
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uate the proposed algorithm. These experiments are presented in section 5. The presented algo­
rithm is also demonstrated for visualization of tumor and vessel geometry using three dimensional 
ultrasonic images. Appendix A describes a highly efficient implementation of Dijkstras algorithm. 
Finally, appendix B relates the algorithmic framework presented in this paper to the fuzzy segmen­
tation framework presented by Udupa and Samarasekara. 
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2 Image representation, J( -connectivity and region oriented seg­
mentation 

The following is partially taken from [6]. A 2D image is usually represented as a 2D array ofregu­
larly spaced image elements, called pixels. An attribute vector A (p( x, y)) is associated with each 
pixel p( ;r, y). A pixel p( x, y) at coordinates ( x, y) has four horizontal and vertical (nearest) neigh­
bors which are called 4-neighbors, denoted N4 (p( x, y) ). Similarly, a 8-neighborhood can be de­
fined by also considering diagonal pixels. 

f{ -connectivity is defined as follows: 

Definition 1 

Two pixels p( x, y) and q( s, t) are said to be f{ -connected if they are K -neighbors and if 
A(p(x, y)) EC and A(q(s, t)) EC, where C is the set of attribute values de.fining connectivity. 

Definition 2 

A K -path between two pixels p( x, y) and q( s, t) is a sequence of distinct pixels with coordinates 
(xo, Yo), .. , (xn, Yn) where (xo, Yo)= (x, y), (xn, Yn) = (s, t) and (xi-1, Yi-dis K-connected 
with (xi , yi), i E { 1.. n}. 

Two pixels p(x, y) and q(s, t) in an image subset Sare said to be connected in S if there exist a 
path between them consisting entirely of pixels in S. For any pixel p( x, y) in S, the set of pixels 
in S that are connected top( x, y) is called a connected component of S. 

A 3D image is usually represented as a 3D array of regularly spaced volume elements, called vox­
els, each with an associated attribute vector A ( v ( x, y, z)). A voxel v ( x, y, z ) at coordinates ( x, y, z) 
has six nearest neighbors denoted N 6 ( v ). A 26-neighborhood can be defined by also considering 
all the diagonal voxels. Definitions of]{ connectivity and K-paths are analog to the 2D case. 

2.1 Region oriented segmentation 

Given the entire image I, traditional region oriented segmentation methods partitions I into n sub­
regions, Ii, .... , In such that: 

• b) Ii , i E { 1 .. n} consist only of connected pixels (or voxels) 

• c) Pr(Ii) =TRUE, i E {1..n} 

• d) Ii n Ij = 0 for all i and j, i -=!= j 

where Pr( Ii) is a logical predicate defined over the points in Ii, and 0 is the empty set. 
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Condition a) means that the segmentation must be complete. 

Condition b) means that the all points in a region must be connected. 

Condition c) deals with the properties which must be shared by all points in a region. 

Condition d) means that the regions must be disjoint. 

Condition d) implies that diffuse transitions between different regions are not allowed. We there­
fore have to relax this condition in order to develop region oriented segmentation algorithms useful 
for volume rendering. 

3 Weighted !(-connectivity, weighted J(-paths and fuzzy region 
growing 

In this section we will introduce the concepts of weighted f{ -connectivity and weighted f{ -paths. 
Although we will relate the presentation to 3D images, all the concepts will be equally relevant for 
2D images. 

3.1 Weighted J{ -connectivity 

The basic definition off{ -connectivity does not account for situations where distributions of feature 
vectors within different materials overlap (which is the normal case for most imaging modalities.) 
We therefore introduce the concept of weighted J{ -connectivity: 

Definition 3 

Any two voxels p( x, y) and q( s, t) that are f{ neighbors are ]{-connected with a weight 
WM(p(x, y), q(s, t)) E 3f+. 

In general, no restrictions are given on w M except that it can not be negative. In practice, w M 

may depend on A(p(x, y)), A(q(s, t)) and maybe also on the coordinates of p(x, y) and q(s, t). 
In the following we will assume that the weight w M (p( x, y), q( s, t)) decreases as the probability 
that p( x, y) and q( s, t) belongs to the region which we are interested in, increases. 

For now, we will only mention two possible weight functions which are based on image statistics. 

Assume that the attribute values of voxels sampled from a material M are distributed according to 
a multidimensional normal distribution. The probability that a particular voxel q ( s, t) is a sample 
of Mare: 

P(q(s, t) sample of M) = (2. 1r) -2a I~ l-21 e -21 ((A(q(s,t))-µ)'~- 1 (A(q(s,t))-µ)) (1) 

Hereµ is the mean feature vector and~ is the co variance matrix which together define the distri-
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bution of attribute values sampled from the material A1. A possible weight function is: 

WM(p( X' y)' q( s, t)) = 1.0 - e -21 (( q(s ,t)-µ)'~-1( q( s ,t)-µ)) (2) 

Here q(s, t) = q(s, t) * Gmxm(s, t), where* is the convolution operator and Gmxm(s, t) is a 
Gaussian kernel of size m x m. By increasing m, the weight will be less influenced by noise, at 
the cost of less spatial resolution. Note that this weight function is non-symmetric. 

The following symmetric weight function is a modified variant of a scalar weight function proposed 
by Udupa and Samasekara [14]. 

WM2(p(x, y), q(s, t)) = 1.0 - e((q(s,t)+fi(x,y))·~-µ)'~-1((q(s,tJ+p(x,y))·~-µ)) (3) 

The multivariate student distribution may be used to derive similar weight functions if the distri­
bution of attribute values have heavy tails compared to the normal distribution. 

The parameters µ and ~ can sometimes be obtained in advance by training. In other cases, it may 
be difficult to perform a general training, and it will then be more appropriate to use the sample 
mean vector and sample covariance matrix computed directly from a user defined region within 
the object of interest. 

3.2 Weighted f{ -paths 

In the previous subsection we introduced the concept of weighted K -connectivity. We also need 
to define the concept of a weighted K -path. 

Definition 4 

A weighted]{ -path P between two voxels Pl and Pn is a sequence of distinct voxels p1. ·Pn. where 
Pi-1 isa J{-neighborofpi, i E {1..n}. 

Definition 5 

The weight of a path w(P) is a function f( w(po, Pl), ... w(Pn-1, Pn)) E ~+ of the weights along 
the path. 

In the previous subsection we assumed that the weight of a connection between two voxels p( x, y) 
and q ( s, t) decreases with the probability that p( x, y) and q ( s, t) both belong to the interesting re­
gion. To be consistent with this assumption, we only want to deal with weight functions that are 
monotonically increasing with the length of the path. This means that each time a path is expanded 
with an additional weighted connection, the weight of the path will either increase or remain the 
same. If the weight of a path between two voxels p( x, y) and q ( s, t) is large, then it is likely that 
at least some of the voxels along the this path do not belong to the interesting material. We have 
found the following functional form off useful for practical applications: 
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n-1 

w(P): f(w(po,p1), .. , w(Pn-1,Pn)) = (L w(pi,Pi+1)')~ (4) 
i=l 

We will later refer to this general weight function as the f 1 function. The f 1 function can be related 
to the Minkowski Lp metric, Lp : dp ( 17, O ---;. 5Rn for measuring the distance between two n­

dimensional vectors e and 17· 

As I increases, the weight of the path will be more and more influenced by the largest weight along 
the path. For "r = 1, the weight of a path is simply the sum of weights along the path. Hence, the Ji 
weight function will depend strongly on the length of the path. '"'/ = (X> can be viewed as a limiting 
case because all except the maximal weight can be ignored. 

In general, the number of paths between any two voxels p 1 , Pn will grow exponentially with the 
total number of voxels in the image. In the set 1· (p1 , Pn) of all possible paths connecting p 1 and Pn 
there are at least one with a minimum weight 6 ( Y (p1 , Pn)). This minimum weight 6 ( Y (p1 , Pn)) 
defines the weight of the connection between P1 and Pn. 

Definition 6 

fi(Y(p1,Pn)) = minpE Y(pi,Pn)w(P) 

3.3 Region growing on images with weighted connections 

According to the definitions of weighted K -connectivity and weighted K -paths, all voxels in a 
regular grid will be connected. In order to do segmentation, it is useful to define a threshold 6 Max, 

which limits the maximal weight of a path. 

Definition 7 

Two voxels Pl and Pn are said to be connected in a hard sense if 6 (Y (P1, Pn)) :::; 6 Max 

A fuzzy variant of the region growing problem can now be formulated as follows: 

Region growing on images with weighted connections 

Given a complete image I, a seeds, or more generally a set of seeds S, compute 6 ( }" ( S, p( x, y))) 
for all p(x, y) E Ls Max' where Io Max is the set of voxels satisfying b{"'Y'(S, p(x, y))) :::; DM ax 

For the purpose of volume rendering, 6 ( Y ( S, p( x, y))) can be mapped into opacity values for all 
p( x, y) E I by a simple scaling: 

o(u) = 0 if 6(Y(S,p(x, y))) > DMax 

( ) - (3. bMax-MY(S,p(x,y))) otherwise 
OU - 0Max 

(5) 

where f3 serves as a scaling constant. It is important that b Max is set sufficiently high so that all 
parts of the object of interest are assigned positive opacity values. 
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In many cases, it is useful to render different objects simultaneously. This can be done by assigning 
a color Ci and opacity scaling constant /3i to each individual object i E { 1 .. i Max}, as proposed by 
Drebin et. al. [2]. The following opacity function is useful for rendering of the colored objects: 

oi( u) = 0 if 8 CY (Si , p( X, Y))) > b Max, 
·( ) _ !3· OM ax, -o(Y(S,p(x,y ))) th . 

01. U - , 1 ' OMax; , 0 efWISe 
(6) 

Here Si is the seed region within object i and 8 Max; is the threshold used to define the extent of 
the object. Oi is the opacity "contribution" from object i. Given Oi for all i E { 1 .. iJvI ax}, the color 
C ( u) of a specific voxel u can be determined as follows: 

"\""''Max C, ·oi(u) 
C(u) - =L==,~=.1~--

, , - L::~llax o;(u) 

Similarly, the opacity of a given voxel can be determined by using the following equation: 

L'Max o;(u) 
o( u) - -=o'"""="'"""1 

--. - L::~flax Pi 

(7) 

(8) 

It is of course also possible to combine this opacity function with other opacity functions computed 
from local features. 

In the next section we will present an efficient solution to the fuzzy region growing problem, using 
Dijkstras algorithm for finding shortest paths in directed graphs. 

4 An efficient algorithm for fuzzy region growing 

In this section we will present Dijkstras algorithm as an efficient solution to our fuzzy region grow­
ing problem. Dijkstras algorithm works on directed graphs with weighted edges. We will therefore 
first review some basic graph related concepts. 

4.1 Basic graph related concepts 

Definition 8 

A directed graph G( F, £) with weighted edges consists of" 

• A set of vertices (or nodes) 1'". 

• A set of edges (or connections) E. 

• A weightw(e(u, v)) assigned to each edge e(u, v) EE. 

F-8 



An efficient algorithmic framework for fuzzy region oriented segmentation 

Notethat,sincethegraphisdirected,e(u,v) E Edoesnotimplye(v,u) EE. Also,ife(u,v) EE 
and e ( v, u) E E, w ( e ( u, v)) may or may not be equal to w ( e ( v, u)). 

An undirected graph, which is a special case of a directed graph, is a graph where e( u, v) E E-'­
e ( v, 11.) E E and w ( e ( u , v)) = w ( e ( v, u ) ) , for all e ( u, v ) E E. 

A 2D or 3D image can be directly mapped into a graph G ( V, E), where each image element is 
represented as a vertex u. E lr, and where each weighted connection between image elements is 
represented as an edge e( u., v) E E with a weight w( e( u, v) ). 

Definition 9 

A path P is a sequence of vertices Ui, i E { 1.. n} such that e ( Ui, u'i+ i), i E { 1.. n - 1} are edges 

In traditional graph related problem, the weight of a path is defined as the sum of all weights along 
the path. For our purposes, the weight of a path will be defined according to equation 4: 

n-1 

w(P) = (L w(e(u.i, U£+1))' )* (9) 
i=l 

For ·y = oo, the weight of a path can be computed efficiently as follows: 

n-1 
w(P) = ~axw(e(ui, U£+1)) 

z=l 
(10) 

4.2 Dijkstras algorithm 

The fuzzy region growing problem stated in section 3.3 can be transformed directly into the fol­
lowing graph problem: 

Given a source vertex s, or more generally a set of source vertices S, compute the minimum weight 
path 8(S, v) for all v E Vi Max• where vb Max is the set of vertices satisfying 8(S, v) :::; 8Max 

A well known solution to the shortest path problem is Dijkstras algorithm [1]. 

In the following, the set of vertices to which the minimum weight path from any vertex in S has 
been determined is denoted R. Q is the set of remaining vertices 1/ - R. 

Q is implemented as a priority queue. A priority queue is an abstract datatype which supports ba­
sic queue operations (such as Insert and Delete) and in addition the special operation ExtractMin 
which extracts the element from Q which has the highest priority (In our case, the vertex u with 
the currently smallest estimate for 8(S, u).) 

An array d[ u] is used to hold the current minimum weight estimate for all nodes u E lr. d[ u] is 
initialized so that for all vertices u E V except the source vertices u E S, d[u] are set to infinity. 
For all source vertices u E S, d[u] = 0. 
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In the following, N k [ u] is the set of the k neighbors of u. If the topology of the graph is a regular 
2D array, we may have k = 4 or k = 8. For 3D arrays, we may have k = 6 or k = 26. 

The algorithm can be stated as follows: 

(1) For all u E V - S, set d[u] = oo 
(2) For all u ES, set d[u] = 0 
(3) R .,___ 0 II Initially, R should be empty 
( 4) Q .__ V 11 Put all vertices from V into the queue Q 
(5) while Q # 0 
(6) do u "- ExfractM in( Q) 
(7) if d[u] > bMax then break 
(8) R .,___ R U { u} 
(9) for each vertex v E N k [ u] 
(10) do Relax ( u, v, w) 

By termination, the algorithm will have determined the minimum weight path from S to all vertices 
u. E l'bMax. The minimum weights are then given in d[u]' u E v'bMax. It is important to note that 
once d[u] have been determined for bl\ctax = T, d[u] can be determined for all bMax E [O, T] 
simply by thresholding d[ u] 

The relax operation compares the current weight estimate d[v] with the weight of the alternative 
path arriving at v through u. For instance, if Ji is used as weight function, the weight of the al­
ternative path will bed[ u] + w( e( u, v) ). d[ v] is then updated by the weight of the alternative path 
if the weight of the alternative path is smaller than d[v]. A very important property of the Relax 
operation is that it either decreases an estimate or leaves it unchanged. 

Dijkstras algorithm is known to solve the single source shortest path problem when the weight of 
a path is simply the sum of the weights w( e( u, v)) along the path. A crucial property of Dijkstras 
algorithm is that once a vertex u is included in R, there can be no other path to u with a smaller 
weight. To see why there can not be any other shorter path to u, imagine that a possible shorter 
path goes from Stoa vertex x E V - R, and then arrives at u. But if this is the case, the path 
from S to x must be shorter than the path from S to u and x would therefore have been selected 
by the ExfractM in operation (in line 5) before u. The key assumption here is that each time a 
path is expanded, the weight of the path either increases or remains the same. This assumption is 
also satisfied by the weight functions given in equation 9 and 10. A formal proof that Dijkstras 
algorithm really works can be found in [l]. 

There are at most I V I ExtractM in operations and I E I relax operations in Dijkstras algo­
rithm. The priority queue can be implemented as a binary heap [l]. Then each ExtractM in and 
Rel ax operation will execute in log ( V) time. The best known general implementation of Dijkstras 
algorithm uses a fibonacci heap [l] for the priority queue and thereby achieves a running time of 
O(Vlogl7 + E) 
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4.3 Efficient implementations of Dijkstras algorithm 

In some cases, it is possible to solve the single source shortest path problem more efficiently than 
in the general case. Ahuja et. al. [4] have reported an algorithm that runs in O(E + V y'log WM ax) 

time, which can be used if edge weights are integer values in the range 0 .. w Max. They also devel­
oped a simpler variant that runs in 0 ( E + Vy' w Max) time. 

In practical applications we can map each weight to a discrete value in the range 0 .. Wm ax. The 
algorithms due to Ahuja et. al could therefore be used. We may however also map the minimum 
path weights to discrete values in the range O .. bMax. since we are only interested in paths with a 
weight equal to or smaller than b Max. With this additional property in mind, we have developed 
an even simpler variant of the algorithm due to Ahuja et. al with a running time proportional to the 
number of edges in the graph. The algorithm is described in Appendix A. 

5 Numerical experiments 

5.1 Evaluation of weight functions 

In order to evaluate the proposed segmentation algorithm, we first made various synthetic 2D im­
ages to which we added Gaussian noise. A 2D version of the segmentation algorithm was used 
during the evaluations. Different weight functions were tested, but the one given in eq. 3, turned 
out to give the best results. The weight function given in eq. 2 turned out to be somewhat more 
noise sensitive. A Gaussian operator with a mask size of 3 x 3 was used in both cases. The J, 
function was used for computing path weights, with ~( E { 1, 2, oo} 

We created an artificial image of size 256 * 256 consisting of a background region with pixel values 
equal to 120 and several foreground regions with pixel values 136. The image is shown in figure 
2. The foreground regions are circular discs, some of which are connected, and some of which are 
close to be connected. In the middle of the image, there is a disc which is connected to another disc 
above and also one below it. The goal was then to isolate this region without connecting any of the 
other discs. 

In one experiment we blurred the image with a Gaussian mask of size 5 x 5 and added Gaussian 
noise with er = 8. 0. Different seed regions within the object and various threshold levels ( b Max) 

were used as input to the algorithm. Signal statistics were computed from the seed regions. The 
computed path weights were mapped into gray level values using the opacity function given in 
equation 5. As can be seen from figure 3 it was possible to isolate the object of interest using any 
of Ji, h or f, as a weight function by selecting an appropriate threshold value. The f 00 function 
gave, as expected, segmentation results which were least sensitive to the location of the seed region 
within the object of interest. The implementation turned out be very efficient. The algorithm spent 
less than 0.4 seconds in generating the results shown in the figures on a Sparc-10/51 workstation. 
In the worst case, when the threshold was set such that the whole image was included as a part of 
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the object, the algorithm spent less than 2.0 seconds. 

We repeated the previous experiment but with Gaussian noise with (j = 16. 0 added to the original 
image. (shown in figure 2). In this case, the segmentation results depended much more on the 
weight function used for computing path weights. Results are shown in figure 4. The f 1 weight 
function gave segmentation results which were more dependent on the location of the seed region 
within the object of interest, but were least sensitive to noise. The f 00 function gave, as in the 
previous experiment, segmentation results which were least sensitive to the location of the seed 
region within the object of interest, but several noisy pixels within the object of interest were not 
included. The f2 function gave segmentation results which were less sensitive to the location of 
the seed region compared the results obtained by using the Ji function, and was less sensitive to 
noise than the f 00 function. 

Several other experiments were made with both synthetic and real 2D images in order to evaluate 
the different weight function. From these experiments we conclude that the f = weight function 
seems to be most appropriate to use for object segmentation if the noise level is low. We have 
found the f2 weight function to be a better alternative if the noise level is higher, especially if the 
images contain impulsive noise. The f 1 weight function is least sensitive to noise and was found 
to give the best results in some cases where there were considerable signal variations within the 
object of interest. However, the segmentation results are generally sensitive to the location of the 
seed region within the object of interest with this weight function. The fi weight function can be 
used more successfully by giving several different seed regions within the object of interest as input 
to the algorithm. 

The fuzzy region growing algorithm can also be used interactively to erase parts of the 3D image 
which occludes an interesting object. In such cases it will be desirable that only voxels which are 
close to the location of the seed region are erased, and that no noisy voxels are left unerased. The 
Ji weight function may then be the best alternative. 

5.2 Experiments with ultrasonic images 

Udupa and Samarasekara demonstrated their fuzzy segmentation framework on 2D and 3D MR­
images and reported very satisfactory results for this application. In this paper we will focus on 
applications in medical ultrasound imaging. Ultrasound images are generally suffering from a low 
signal to noise ratio compared to MR-images, and automatic segmentation is therefore in general 
quite difficult [11]. 

The problem of finding useful visualization methods for display of tumor and vessel geometry from 
3D ultrasonic data is a clinically important but yet challenging problem. The interpretation of tu­
mor and vessel geometry is important for surgery, diagnosis and monitoring of tumor response to 
therapy [3, 5]. 2D ultrasound tissue and Doppler imaging is currently used for examinations of the 
liver function. Very often, important clinical decisions are based on these diagnostic images. To­
day, invasive methods (such as angiography) are necessary to determine the relation between tumor 
and the neighboring vessels. It is believed that 3D ultrasound imaging may replace some of these 
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invasive methods and add more safety to the diagnostic process. 

5.3 Fuzzy segmentation of tumors using ultrasonic images 

In our first experiments with ultrasonic images, we wanted to see if the proposed algorithm was 
useful for fuzzy segmentation of various kinds of tumors. In one experiment, a 3D image from the 
liver of a patient with two tumors was obtained by using a Vingmed Sound CFM-750 ultrasound 
scanner with a probe mounted in a motor steered tilting device (see for instance [11]). A cross 
section of the liver is shown in figure 10 with white curves indicating the boundary of the tumors. 
The curves were manually drawn by an experienced physician. The fuzzy segmentation algorithm 
proposed in this paper was applied to the same image by selecting a seed region within each tumor 
and using an appropriate threshold value. A segmentation of the largest tumor is shown in figure 11. 
The Ji weight function was used in this case, because of considerable variations in signal intensity 
within the tumor. The smaller tumor was only possible to isolate by using several seed regions. 
The proposed algorithm was also tested on other images with tumors. In some cases the algorithm 
worked satisfactory. In other cases the contrast between the tumor and the surrounding tissue was 
very low and part of the tumor boundaries were completely missing. In these cases the algorithm 
did not work satisfactory. 

5.4 Visualization of liver veins from 3D ultrasonic images 

3D in vivo acquisitions of liver from an experimental animal setup were conducted by connecting 
a Vingmed Sound CFM-750 with the Tomtec Echoscan system. After general anesthesia and in­
tubation, the liver of the pig was exposed and the ultrasound 3D probe placed directly on the pig 
liver. Image acquisition and machine parameters were optimized to the intra-operative situation. 
Only the tissue echo data was acquired. There was no need for any triggering as respiration was 
turned of during the few seconds of acquisition time. The video grabbed data was transferred to a 
workstation. A cross section of the liver is shown in figure 5. 

Our fuzzy segmentation algorithm was used to emphasize the vessels which were clearly visible 
from the 2D images. This gave a very precise definition of the vessels. A surface shading technique 
was applied to the segmented data. The resulting image is shown in figure 6. The image gives a de­
tailed interpretation of the geometry of the liver veins. For comparison, we computed a segmented 
volume based only on binary thresholding of the raw images. Due to shadowing effects some parts 
of the liver tissue was segmented as blood. This was clearly visible in the rendered image 7. 

5.5 Combined visualization of hemangioma and liver veins 

In another experiment, the CFM-750 scanner was used to acquire digital 3D data from the liver of 
a 36 year old female patient with a benignant hemangioma in the right liver lobe. A cross section 
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through the liver is shown in figure 8. The fuzzy segmentation algorithm was used to emphasize 
two fuzzily defined segments, namely the hemangioma and the portal vein. Different colors were 
assigned to the different segments, and a transparent rendering model was used. A transparent ren­
dering of the scene is shown in figure 9. 

6 Conclusion 

An algorithmic framework for fuzzy region oriented object segmentation has been developed. The 
framework is targeted at volume rendering methods where each voxel is given an opacity value 
which reflects the strength of connectivity between the voxel and a user defined set of seed voxels. 
The algorithm can also be used for interactive removal of voxels which occlude an interesting ob­
ject and even for fuzzy volume estimation. A very efficient implementation of Dijkstras algorithm 
has been developed to compute the shortest path between each voxel and the seed region accord­
ing the selected weight function. Numerical experiments were conducted in order to evaluate the 
proposed framework. From these experiments we conclude that the .f 00 weight function should be 
used if thenoise level is low. We have also found that the .f2 weight function is a better alternative 
if the noise level is higher. Due to the efficiency of the algorithm, the user can interactively isolate 
objects in 2D and even small 3D images. 

The computational framework presented in this paper can be used to compute fuzzy connectedness 
as defined by Udupa and Samasekara [14]. Udupa and Samarasekara demonstrated their fuzzy seg­
mentation framework on 2D and 3D MR-images and reported very satisfactory results for this ap­
plication. In this paper we have focused on applications in ultrasonic imaging. Ultrasound images 
are generally suffering from a low signal to noise ratio compared to MR-images, and automatic 
segmentation is therefore in general quite difficult [11]. The proposed algorithm was applied to 
ultrasonic images containing tumors and vessels. The algorithm turned out to work satisfactory in 
some cases but in other cases where the contrast between the object of interest and surrounding 
tissue was too low, the algorithm did not give satisfactory results. A possible improvement of the 
algorithm would be to incorporate a measure of region shape into the edge weight function. This 
should be considered in further work. 
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Array of linked lists 

Figure 1: Priority queue implemented as a table of linked lists 

Appendix A 

To speed up the implementation of Dijkstras algorithm we impose the following restrictions on the 
weights and the minimum path length: 

w(e(u, v)) E 0 .. VVMax, for all e(u, v) EE 

8(S, v) E 0 .. bMax, for all v EV 

We have implemented a priority queue as an array q [ 0 .. 8 Max + 1] of linked lists of vertex elements. 
Each vertex element contains an index which identifies the vertex and a pointer to the next and 
previous element. The q array is indexed by path weights. An auxiliary variable dMin keeps track 
of the currently minimum weight (initially 0. The q array is mainly used to speed up theExtractMin 
operation. 

In addition to the q array, we use an additional array vp [l .. I V IJ of pointers which give direct ac­
cess to all vertex elements in the queue. This array is mainly used to speed up the relax operations. 

Initially, all vertices in Sare placed in the queue as a linked list in q [O] (zero weight) and all vertices 
in V - S are placed in a linked list in q [ 8 Max + 1) (infinite weight). The data structure is illustrated 
in figure 1. 

The ExtractMin operation can be implemented as follows on the suggested data structure: 

function ExtractM in( q) 
(1) if dMin > bMaxreturn (NU LL) 
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(2) u = ExtractFirstN odeinList( q[dMin]) 
(3) while q[dkfin] = 0 and dMin <= DMax) do 
(4) inc(dMin) 
(5) dee( qSize) 
(6) vp[u] = REM01l ED 
(7) return ( u) 

The function ExtractFirstNodelnList extracts the first node in the linked list pointed to by q [ d Min]. 
The loop in lines (3-4) finds the next non-empty entry in q and updates d Min. The size of the queue 
q Size is then decreased and the pointer vp [ u] (which is used by Relax marks the node u as removed. 

All lines in the code above execute in 0( 1) time except for line (3), which in the worst case will 
execute in 0 ( b Max ) time. However, if we amortize the time spent in line (3) in all the necessary 
extractMin operations, we see that the total time spent inside (3) will not exceed ( 0 ( 8 Max). (If 
d Min > b Max, the queue is empty and no further action is taken.) There are at most I V I Extract­
Min operations and the total time spent in this function is then 0 ( v + 8 Max ) • 

The Relax operation involves several sub-operations. Relax checks if the weight of an alternative 
path through u to v is cheaper than the current minimum weight path estimate for v. If so, the 
function DecreaseKey is called. DecreaseKey updates the priority queue with the new estimate for 
v. DecreaseKey is simply a deletion of v followed by an insertion of v with the new weight. 

function Relax(q, u, v, w) 
(1) if (vp[v] == REMOVED) return "Node does not exist anymore" 
(2) if (weight( q, u) + w > weight(q, v) 
(3) DecreaseKey(q, v, weight(u) + w) 

function Decrease]{ ey( q, u, v, w) 
(1) Delete(q, v) 
(2) Insert(q, v, weight(u) + w) "insert v with new weight" 

functionDelete(q, v) 
(1) RemoveN ode(q[weight(v)], Vp [v]) 
(2) vp[v] = REMOVED 
(3) dee( qSize) 

q[weight( v)] identifies the linked list which holds v. vp[v] identifies directly the node within the 
list. The RemoveNode operation simply removes the specified node from the list and executes in 
0( 1) time. The whole Delete operation, can therefore be executed in 0( 1) time. 
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function Insert(q, v, weight) 
(1) if (weight < dmin )dmin = weight "update dmin if necessary" 
(2) vp[v] = Insertlv'ode(q[weight],v) 
(3) inc( qSize) 

The InsertNode operation simply inserts a new node in the front of the linked list q[weight(v)] or 
creates a new list, if q [ 1oe i g ht ( v) is empty. vp [v] is updated with a pointer to the new node. The 
Insert operation can therefore execute in 0( 1) time. The whole Relax operation involves several 
sub-operations which all execute in 0( 1) time, and Relax is therefore 0( 1 ). There are at most E 
Relax operations and the total running time of Dijkstras algorithm is then 0 ( V + 6 Max + E). If the 
topology of the graph is a regular 3D array, E = 6 · V and the algorithm will run in 0 ( 6 · ir + 6 Max) 

time. 

In the worst case (in terms of computational complexity), 6 Max is set so that all vertices in the graph 
can be reached by a path with a weight w ( P) :::; 6111 ax. It is interesting to find the running time of 
the proposed algorithm in this worst case scenario. 

If the weight of a path is given as in equation 10 ( r = 00 ), we Will have f'i Max = WM ax and f'i Max is 
therefore a (small) constant which is independent of the size and topology of the graph. The worst 
case runningtime ofDijkstras algorithm will in this case be 0(6 · V) which is amajorimprovement 
compared to the general 0 ( E + V log V) implementation, considering that the number of vertices 
in a 3D image may become quite large. 

If the weight of a path is given as in equation 10, 6 Max can not be assumed to be independent of the 
graph size. In the worst case, the number of connections between two vertices can be proportional 
to the number of vertices in the graph. -(For instance if the topology of the graph is a 1 D array.) If 
the weight of a path is defined as the sum of all weights along the path, an upper limit for 6 Max is 
\/ · WMax 

However, for most practical purposes, 6 Max can be regarded as a constant compared to the number 
of vertices V in the graph. We will justify this by an example: 

Consider that the original image is a regular 2D array of size V ~ · \/ ~, where all vertices are con­
nected with their 4 nearest neighbors. We want to find an upper limit for 6 Max as a function of \l. 
Such a limit can be found as the weight of the most expensive minimum weight path that can exist 
between any two vertices in V. In the "worst" case, w ( e ( u, v)) = TV Max, for all e ( u, v) E V. To 
realize why this is a worst case situation, consider that the weights of some edges in E are decreased 
below WM ax. The weight of the most expensive minimum weight path will then either decrease 
or remain the same, since the weight of any path will decrease if any of the edge weights along it is 
decreased. If all weights are equal to liVM ax, the longest possible minimum weight path will also 
be the most expensive one. The longest possible minimum weight path in a regular 2D array will 
be between two comer vertices. The longest possible minimum weight path between two comer 
vertices will therefore consist of 2 · V ~ - 1 edges. An upper limit for 6 Max can then be found: 

f', Max < ( ( 2 . v ~ - 1) . w-.;& ax)* < 2 . v ~ . WM ax. Since VVM ax can be regarded as a (small) 
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constant independent of V, 0 ( 8 Max + 4 · V) = 0 ( 2 · V ~ · WM ax + 4 · '/) = 0 ( 4 · V) 

AppendixB 

Udupa and Samarasekara have recently proposed a general framework for fuzzy image segmen­
tation based on the theory of fuzzy sets [14]. In this appendix we will review some of the theory 
presented in [ 14] and relate this to the work presented in this paper. 

A fuzzy subset A of a set X is a set of ordered pairs 

A= {(x, µA(x)) Ix EX} (11) 

where 
µA : X ___,. [0, l] (12) 

is a membership function of A in X. A fuzzy relation p in X is a fuzzy subset of X x X 

p = {((x, y), µp(x, y)) I (x, y) EX x X} (13) 

where µp : X x X .- [O, 1] pis called a similitude relation if it is reflexive, symmetric and tran­
sitive. 

U du pa and Samarasekara divides an n-dimensional image into spels with coordinates defining points 
in zn. A reflexive and symmetric fuzzy relation in zn a was called afazzy spel adjacency. The 
pair ( zn' a) was then called afazzy digital space. 

Given a pair C = ( C, {)where C = { c I -b ::; c ::; bf or some b E z+} and f is a function whose 
domain is C. C is called scene over a digital space ( zn , a). C is a membership scene over ( zn , a) 
if the range of f is a subset of [ 0, 1 J. A fuzzy relation K E C is said to be a fazzy spel affinity in C 
if it is reflexive and symmetric. 

Fuzzy K-connectedness is a relation in C: 

µK(c, d) = max[µN(P)] 
pEPcd 

(14) 

where c and d are spels in C, Ped is the set of possible paths between c and d, p is one such path, 
and µ.\r(p) is a membership function assigning the minimum of the pairwise spel affinity of spels 
in p. This means that the strength of a connection between two spels c and d is determined by the 
weakest link on the strongest path between c and d. It is important to note that a path in this context 
is an arbitrary sequence of spels within C. 

A membership scene can easily be translated into an undirected graph G ( V, E) with weighted edges 
using the following rules: 

Rules for translating membership scenes to graphs 
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• Map each spel c E C into a corresponding vertex Ve E \/ 

• Map each pair of spels c EC, d EC into an edge e( Ve, vd) EE= F x V 

• Assign the weight of each edge e( Ve, vd) E E as given by 8 M a,r - 8 .Max ·µIi ( c, d), where K 

is a fuzzy spel affinity 

Note that the graph has to be undirected, since K is a symmetric relation. 

The problem of computing µK ( c, d) for all c, d E C can now be directly translated into the problem 
of computing the minimum weight path 8(ve, va) forall 11e E t', vd E ll, where 8( Ve, vd) is defined 
as in equation 10. We can then apply our implementation of Dijkstras algorithm to this problem. 

The following rule can be used to map the minimum weights 8 ( v e, v d) into values µIi ( c, d): 
µK(c, d) = (8Max - 8(ve, Vd))/8max 
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Original image Blurred im. w/noise (a = 8.0) Blurred im. w/noise (a = 16.0) 

Figure 2: Synthetic images 

Ji weight function h weight function f oo weight function 

Figure 3: Results of fuzzy segmentation, noise level u = 8.0 

fi weight function h weight function f oo weight function 

Figure 4: Results of fuzzy segmentation, noise level u = 16.0 
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Figure 5: Cross section showing liver veins Figure 6: Visualization of liver veins 

Figure 7: Visualization of liver veins, opacity computed only from intensity values 

Figure 8: Cross section through human liver Figure 9: Vis. of hemangioma and portal vein 
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Figure 10: Ultrasound image of tumor Figure 11: Segmented tumor 

F-23 



( 

I 
! 

( 

I 
l 

~ 
l 

[ 

( 


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


