
OLA L0KBERG

PROCESSING STRUCTURES FOR
REAL TIME ANALYSIS OF MEDICAL
ULTRASOUND IMAGES

NTH·TRYKK
1992

Processing structures

for real-time processing

of medical ultra-sound images

by

Ola L0kberg

A thesis submitted for the degree of

Dr .in g.

University of Trondheim

Norwegian Institute of Technology

Division of Engineeiing Cybernetics

Trondheim, January 1992

Preface .. 7
Summary and conclusions .. 9

CHAPTER 1. Medical ultrasound basics l3

1.1. Scope of work ... 13
1.2. The tissue image ... 14

1.2.1. 2D tissue imaging .. 14
1.2.2. Imaging history .. 15

1.3. The flow image ... 20
1.3.1. Doppler techniques ... 21

1.3.I.a. Pulsed wave Doppler 22
1.3.l.b. Continuous wave Doppler 22

1.3.2. Doppler history .. 23

CHAPTER 2. The ultrasound system of today 24
2.1. Operational modalities .. 24

2.1.1. Image modes ... 24
2.1.2. Flow modes ... 25
2.1.3. Diagnostic support ... 25

2.2. Data archiving and review .. 25
2.2.1. Video recording ... 25
2.2.2. Digital data reviewing ... 26

2.3. Data analysis .. 26

CHAPTER 3. The ultrasound system of tomorrow27
3.1. The diagnostic environment ... 27
3.2. The ultrasound instrument.. ... 28

3.2.1. Data acquisition ... 28
3.2.2. Data pre-processing .. 29
3.2.3. Data post-processing ... 30

3.2.3.a. Tissue post-processing 31
3.2.3.b. Flow post-processing 32

3.2.4. Image display .. 32

CHAPTER 4. Specification guidelines 34
4.1. System basic blocks ... 35

4.1.1. Transducer frontend ... 35
4.1.2. Input processing ... 36
4.1.3. System processing .. 37
4.1.4. Display system .. 38

4.2. Design guidelines ... 41

CHAPTER 5. Computer taxonomies 43
5.1. Computer taxonomies ... 44

2

5.1.1. Rynn's taxonomy .. 44
5.1.2. Danielsson's taxonomy ... 45
5.1.3. Kidode's taxonomy .. 46
5.1.4. Preston's taxonomy .. 46
5.1.5. Duncan's taxonomy .. 47
5.1.6. Yalamanchili's taxonomy .. 48
5.1.7. Skillicom's taxonomy ... 50

5.2. A new taxonomy .. 51

CHAPTER 6. Selecting an appropriate architecture55
6.1. The types of processing elements 58
6.2. Memory structure .. 58

6.2.1. Shared memory .. 58
6.2.2. Distributed memory .. 60

6.3. Control structure ... 61
6.3.1. Control concept ... 63

6.3.l.a. Data driven architectures 63
6.3.l.b. Demand-driven architectures 65

6.4. Interconnection topology .. 66
6.4.1. Shared bus .. 68
6.4.2. Interconnection networks .. 70

6.4.2.a. Static networks .. 70
6.4.2.b. Dynamic networks 7 4

6.4.3. Multiport .. 76

CHAPTER 7. Ring bus specification outline 79

7 .1. Data transfer mechanisms .. 79
7 .1.1. Transfer word-width ... 82
7.1.2. Units of transfers .. 82
7.1.3. Data transfer modes .. 84
7.1.4. Data buffering ... 85
7.1.5. Signalling protocol.. ... 86

7.1.5.a. Synchronization schemes 86
7.1.5.b. Handshake protocols 87
7.1.5.c. Signalling schemes 89

7 .2. Control transfer mechanisms 90
7.2.1. Microlevel control .. 90

7 .2.l.a. Ring bus access control 90
7.2.1.b. Module handshake 98
7 .2.1.c. Destination addressing 100
7.2.1.d. Packet retransfer 102
7 .2.1.e. Exception handling 103
7 .2.l.f. Micro level control summary 103

7 .2.2. Macro level control ... 105
7 .3. System structure .. 107

7.3.1. Address/ arbitration bus widths 108
7.3 .2. Emergency message formats 108

3

7.3.3. Inter-cluster connection ... 109
7 .3.4. Packaging considerations 114

7 .3.4.a. Single cluster systems 114
7 .3.4.b. Multi-cluster system 114

CHAPTER 8. Ring bus specification 117

8.1. Basic definitions ... 117
8.2. Basic Ring bus structure ... 119
8.3. Ring bus transfer ... 119

8.3.1. Module connections ... 120
8.3.2. Signal lines ... 122
8.3.3. Ring-bus data transfer timing 123

8.4. Ring bus arbitration .. 124
8.4.1. Address bus ... 124

8.4.1.a. Signal lines ... 124
8.4.2. Arbitration bus ... 125

8.4.2.a. Signal Jines ... 126
8.4.3. Arbitration procedures .. 127

8.4.3.a. Transfer request 127
8.4.3.b. Transfer grant. 129
8.4.3.c. Transfer reject 131
8.4.3.d. Transfer release 133

8.5. Module handshake control ... 134
8.5.1. Signal lines ... 134
8.5.2. Timing diagrams .. 135

8.6. Ring bus transfer protocol.. .. 135
8.6.1. Packet tagging ... 136
8.6.2. Data packets .. 138

8.6.2.a. Local data packets 138
8.6.2.b. Remote data packets 140

8.6.3. Control packets .. 141
8.6.3.a. Local control packets 142
8.6.3.b. Remote control packets 143

8.6.4. Emergency messages .. 145
8.6.4.a. Module alert message 145
8.6.4.b. Controller high priority message 145

8.7. Inter-cluster communication 146
8.7 .1. Ouster connections .. 146
8.7.2. Signal lines ... 148
8.7.3. Inter-Cluster interface arbitration 150
8. 7.4. Inter-cluster data transfer protocol 152

CHAPTER 9. Ring bus arbitration mechanism ... 153

9.1. Documentation syntax ... 154
9.1.1. Electrical schematics .. 154
9.1.2. Logical equations, 155

9.2. Functional description ... 155

4

9.3. Arbitration timing ... 158
9.3.1. Transferrequest ... 158
9.3.2. Transfer release ... 160

9.4. Arbiter implementation .. 161
9.4.1. Compute & Compare Transfer Paths 163

9 .4.1.a. Modify Request 166
9 .4.1.b. Compute Src Mask 168
9 .4.l.c. Find Last Module on Left Transfer 169
9 .4.l.d. Find Last Module on Right Transfer 17 5
9 .4.l.e. Compute Left and Right Transfer Paths 177
9.4.l.f. Compare Paths 179

9.4.2. Select Transfer Path .. 180
9.4.2.a. Select Path ... 184
9.4.2.b. Update TR_BUSY Registers 186
9.4.2.c. Update Current Transfer Register File 190
9.4.2.d. Merge Release & Request Signals 192

9.5. Timing considerations ... 193

CHAPTER 10. The display system 197

10.1. Display system requirements 197
10.1.1. Display dynamics ... 197
1 0.1.2. 2D image .. 199
10.1.3. M-mode .. 202
10.1.4. Traces ... 203

10.2. Display system architectures 204
1 0.2.1. Frame buffer based display systems 205

10.2.l.a. Static RAM frame buffer 206
10.2.l.b. Video RAM frame buffer. 209

10.2.2. Object 01iented display systems 211
1 0.2.2.a. Display request/grant protocol 212

10.2.3. Hybrid systems .. 213
10.2.4. Multiple window support 214

10.2.4.a. One module - several windows 214
10.2.4.b. One window- several modules 214
1 0.2.4.c. Window identification 216

10.2.5. Image buffer timing requirements 217

CHAPTER 11. An actual display system design .. 221

11.1. Screen resolution ... 222
11.2. Ring Bus Interface ... 226

11.2.1. Data Path .. 229
11.2.l.a. Input Processor. 233

11.3. Image Buffer .. 235
11.4. Image Buffer Control .. 237
11.5. Display Window Select & Clip 238

11.5 .1. The basic philosophy .. 23 8
11.5.2. Display Window Select & Clip 243

5

11.5.3. Window Top/Bottom Detect 246
11.5.4. Window Left/Right Detect. 247
11.5.5. Window Select ... 249

11.6. Window Translation .. 250
11.7. Window Coordinate Transform 253
11.8. Bilinear Interpolator ... 257
11.9. Pixel Bus Interface ... 258

References ... 261

A. Modern digital buses .. 269

A.1. VME-bus .. 269
A.l.l. Data transfer ... 269

A.1.l.a. VME64 ... 270
A.1.2. Arbitration ... 270
A.l.3. Intenupt handling .. 271
A.l.4. Multiprocessing facilities 271
A.l.5. System configuration ... 271

A.2. Multibus II (IEEE 1296) .. 271
A.2.1. Data transfer ... 272

A.2.l.a. Burst transfer 272
A.2.2. The message passing protocol 272

A.2.2.a. Unsolicited messages 273
A.2.2.b. Solicited messages 273

A.2.3. Arbitration ... 273
A.2.4. Intenupt handling .. 274
A.2.5. Multiprocessing facilities 27 4
A.2.6. Interconnect address space 27 4

A.3. Micro Channel Architecture (MCA) 275
A.3.1. Data transfer ... 275

A.3.1.a. DMA transfer 276
A.3.2. Intenupt handling .. 276
A.3.3. Arbitration ... 276

A.3.3.a. Preemption .. 276
A.3.3.b. Fairness mode 277

A.3.4. Multiprocessing facilities 277
A.3.5. Geographical addressing 277
A.3.6. System configuration ... 277

A.4. Extended Industry Standard Architecture (EISA) . 278
A.4.1. Data transfer ... 278
A.4.2. Arbitration ... 278
A.4.3. Intenupt handling .. 279
A.4.4. Multiprocessing facilities 279
A.4.5. System configuration ... 279

A.S. NuBus 279
A.5.1. Data transfer ... 280

A.5.l.a. Single data transactions 280
A.5.l.b. Block data transactions 280

6

A.5.2. lntemipt handling .•........•...•.•.•.•.....•..•.••..•.••.•..•.... 280
A.5.2.a. Virtual intemipts ..•.....••...•.....•...•.......... 281
A.5.2.b. Physical intemipts•..•..•.... 281

A.5.3. Arbitration•............................... 281
A.5.4. Multiprocessing facilities•.....••................. 281

A.5.4.a. Bus locking•................. 282
A.5.4.b. Resource locking 282
A.5.4.c. Broadcast/broadcall.. 282

A.5.5. Geographical addressing 282
A.6. SBus .. 283

A.6.1. Data transfer ... 283
A.6.1.a. Bus sizing .. 284
A.6.l.b. Burst transfer 284

A.6.2. Arbitration ... 284
A.6.3. Intemipt handling .. 284
A.6.4. Multiprocessing facilities 285

A.6.4.a. Bus locking .. 285
A.6.4.b. Broadcast .. 285
A.6.4.c. Address translation 285

A.6.5. Geographical addressing 285
A.6.6. System configuration ... 285

A.7. TURBOchannel. .. 286
A.7.1. Data transfer ... 286

A.7.1.a. UO transactions 286
A.7.1.b. DMA transactions 286
A.7.1.c. Broadcast .. 287

A.7.2. Arbitration ... 287
A.7.3. lntemipt handling .. 287
A.7.4. System configuration ... 288

A.8. Futurebus+ (IEEE 896) .. 288
A.8.1. Data transfer ... 288

A.8.l.a. Compelled mode 289
A.8.1.b. Non-compelled mode 290

A.8.2. Arbitration ... 291
A.8.2.a. Arbitration messages 291

A.8.3. Intemipts ... 292
A.8.4. Bus locking .. 292
A.8.5. Geographical addressing 292

A.9. SCI (IEEE 1596) .. 293

B. Parallel contention arbitration 295

C. Ring bus system nomenclature 299

C.l. Alphabetical index .. 300
C.2. Listed by subjects .. 301

7

Preface

This thesis constitutes partial fulfilment of the requirements for the Dr.ing degree. The work
presented here can in fact be said to have started as early as in 1984, with the ''CFM-700"
project. The task of that project was to develop a 2-dimensional colour flow mapping
instrument for medical ultrasound diagnostics. Although Vingmed Sound NS, Horten, as the
project's industrial partner provided the financial support, the work was initiated and
supervised by the academic supervisor for this thesis, Prof. Bj0m Angelsen. During the next 4
years, up to 7 engineers and scientists (myself included) at SINTEF Automatic Control were

more or less engaged in the project, in close cooperation with Vingmed Sound's own engineers.
Today, the CFM-700 series of instruments are still serving the market as high-quality medical
ultrasound diagnostic equipment with cardiology as their prime area of application.

However, although there are still years left of their product lifetime, it is nevettheless clear that

the present architecture will be unable to suppott the requirements of tomonow. With the steady
emerging demands for higher image resolution, multiple image display, image quality
enhancement and advanced post processing features, a new architecture must be developed and
this thesis will hopefully be a contribution to that work. Even with the CFM-700 as an inevitable
professional background for the work canied out in this thesis, the instrument architecture as it
is presented here have very little in common with the previous system. Exceptions to this are

the data acquisition part of the system and of course, the application itself.

Due to several reasons, the submission of this thesis for the Dr.ing degree is the end of a rather

long stmy. I am therefore greatly indebted to those who made it possible for me to keep on and

complete my work. First of all the Norwegian Institute of Technology (NTH) and the Royal
Norwegian Council for Scientific and Industrial Research (NTNF) for their scholarship and
financial support, but not least my employer, SINTEF Automatic Control, whose support and
encouragement has been vety much appreciated. Further, thanks to my advisors, Prof. Odd
Pettersen, Prof. Bj0rn Angelsen and Prof. Kjell Malvig, for their support and help, and also to
my colleagues at SINTEF for all fruitful discussions during the work with this thesis. Last, but

by no means least, I would like to give a special thanks to Kjell Ktistoffersen and Hans

Christian L0nstad at Vingmed Sound for their many valuable comments.

8

9

Summary and conclusions

This thesis describes a processing structure, or system, aimed at processing medical ultrasound
images in real time. The term "real time" in this context means that the throughput of the total

system should be limited only by the rate by which it is possible to acquire ultrasound data, and
not by the time required for the subsequent processing or display of those data. Although the

processing structure presented is specified and designed from a medical ultrasound diagnostics
point of view, its scope of application should be much broader than that. All processing jobs
which can be partitioned into a set of more or less independent, pipelined sub-tasks should be

able to run efficiently within the framework of the presented architecture. Comprehensive
signal and image processing jobs are typical applications falling into this category.

The first part of the thesis (chapters 1 to 3) provides the necessary background as far as

ultrasound physics and diagnostics are concerned. This includes the nature of the data involved

in terms of type and amount, the type of processing capabilities required, necessruy display
features to provide a user intetface and a discussion of the clinical environment in which the
instrument is to be used. Due to the rapid development and implementations of Local Area
Networks (LANs), emerging standru·ds for medical (picture) data ru'Chiving and retrieval
coupled to the increasing demand as far as hospital cost reduction and efficiency are concerned,

this environment is not likely to be the same in ten years as it is today. One aspect of this may
be that the data acquisition and the data presentation/ interpretation phases of an ultrasound
examination will be separated to a much larger extent than it is today. This should therefore also
be reflected in the system's architecture and capabilities.

The outcome of this discussion (chapter 4) is a number of vital issues which should be
addressed in developing a real-time medical ultrasound processing structure. From the amount

of data involved, the rate by which they ruTive and the type of processing necessru·y, it is

immediately appru·ent that some sort of pru·allel processing is required. During the last decade,
numerous ru·chitectures for this kind of processing has been presented. To be able to determine

whether any existing ru·chitecture (or architecture feature) could be adapted to the particulru·

application discussed in this thesis, it would be advantageous to be able to systematically
classify par·allel ru·chitectures according to some set of defined chru·acteristics. To do this, some

formal classification tool is needed. Several computer taxonomies ru·e therefore discussed
(chapter 5), with the purpose of finding one suitable for selecting an architecture for a given
application having cettain chru·acteristics. A new taxonomy is then introduced based on a

classification scheme introduced by S. Yalamanchili.

According to this taxonomy and in view of the requirements of the application in question,
several par·allel architectures are discussed and compared (chapter 6). The result of this
discussion is a specification outline (chapter 7), presenting a coru·se sketch of a processing

structure for real-time acquisition and display of medical ultrasound images. Key features are:

• MIMD (Multiple Instruction, Multiple Data) organization.

• Modules grouped into clusters, each cluster consisting of one controller and
a number of Processing Elements (PEs).

10

• Local communication within each cluster is petformed by a bidirectional ring
bus.

• Module synchronization and control is implemented according to a data
driven, macro data-flow principle, making the availability of data and
appropriate processing elements determining for when a computation is to
take place.

• Global buffering facility managed by the controller within each cluster,
thereby relieving a sending module of the responsibility of keeping and taking
care of data intended for a (temporarily) busy destination module.

• Logically, all modules are interconnected as a dynamically reconfigurable,
logical pipeline, supporting context dependent reconfiguration, load
balancing as well as iterative processing.

To ensure a consistent use of language in describing the developed processing structure, a
nomenclature is included (appendix C), covering all vital system and ring bus related tetms and
expressions.

The specification outline is then refined into a more detailed Ring bus specification (chapter 8),

presenting the entire set of signal lines and the procedures by which information are transfened
over those lines. These procedures include different data transfer modalities, cluster control
operations like ring bus arbiu·ation procedures as well as emergency message transfers.
Procedures for inter-cluster communication are also described. Packet templates for
transfetTing data and control information as well as detailed timing diagrams are presented. The
disadvantage of long latency times commonly associated with packet based communication

systems is avoided as far as control packet transfers are concerned, by providing a special ring
bus access mechanism for those kind of packets. Data transfer timing is based on a two-phase,

source-synchronous non-compelled protocol as found in Futurebus+. Other protocol features
have also been inspired by features supported by already existing backplane buses. A
comprehensive survey presenting the key charactetistics of a number of modern digital buses
(Futurebus+, SBus, Turbochannel, NuBus, Multibus II, VMEbus etc.) can be found in

appendix.

The processing su·ucture developed in this thesis is presented from a system point of view,

discussing vital topics as interconnection stmctures and communication schemes. The detailed

design and function of the different modules are in this context therefore not important, what
matters are the role they play within the framework of the total system. One exception,
however, to this is made: The ring bus arbiter. The reason for this is the arbiter's vital

importance to conect system operation as well as petformance. A detailed gate-level arbiter
design is therefore presented (chapter 9), showing that an implementation according to the

functional specification is possible in a FPGA (Field Programmable Gate Anay) sized type of

integrated circuit.

Finally, the architecture of a display system supporting real-time presentation of the ultrasound

data to the user is developed (chapters 10 and 11). In accordance with the discussion catTied out

in chapter 3, the proposed display system is intended for data presentation duting data
acquisition rather than for data post processing interpretation. Display system key features are:

11

• Object-oriented implementation facilitating good display dynamics.

• Medium to high display screen resolution (in the range of 512 by 512 up to
1024 by 1024 pixels).

• Multiple window capability supporting up to 4 simultaneous, overlapping
image windows with independent graphics and look-up tables for each
window.

• Fast response to user interactions (one display frame time when moving
windows in side and depth).

• Display parameters broadcast on pixel bus during screen retrace periods
offering simultaneous update of all display modules automatically
synchronized to screen output.

12

13

CHAPTER l.Medical ultrasound basics

Literally speaking, the term "ultrasound" is used for sound frequencies above the audible range
of 15 - 20 khz. For medical applications, most ultrasound transducers operate in the interval of
2 to 10 Mhz. The actual frequency being used is selected based on a trade-off between high

resolution, requiting a high frequency, and high (deep) penetration into the body, obtained with
a low frequency transducer.

A modem ultrasound system supports a number of medical diagnostic techniques, all of them

based on the same basic principle:

The emission of ultrasound energy into the body for the purpose of observing
the reflected signal.

It is then up to the system to extract the necessary parameters from the reflected signal to
generate or compute the information we are seeking. If an image of the internal organs is what
we are aiming at, it is the amplitude of the reflected signal which are of interest. For the

measurement of some sott of velocity or blood flow, the necessary information is hidden in the
frequency and phase of the reflected signal.

1.1. Scope of work

Ultrasound diagnostics has many applications in today's clinical environment. Although based
on the same basic principle, ultrasound systems are, to some extent, customized to their actual

application. This is especially so as far as the data acquisition patt of the system is concerned.
Examples of such application specific parameters are the transducer type and frequency, and

the type of analog and digital frontend filteting. These vruiants have, however, no impact on the

system ru·chitecture as such, which will be the subject of this thesis. To avoid dealing with too
many terms and phrases describing vru·ious ultrasound applications, only ultrasound imaging of
the heart and its associated blood vessels will be considered. Such systems are called
cardiologic ulu·asound systems, and will be synonymous with the term "ultrasound system"
throughout this text.

The reason for concentrating on cardiologic imaging, is that this is the application of medical

ultrasound imaging offering the greatest challenges, seen from an image processing as well as

a system architectural point of view. A system solution capable of handling real-time
cru·diologic imaging is applicable for other types of medical ulu·asound diagnostics as well.

Ulu·asound imaging of the heatt and its related blood vessels is called echocardiography. A

real-time, 2D echocardiographic image is, depending on the type of system, assembled by two
main components: The tissue image, showing the moving cardiac (heart muscle) wall and valve

stmctures and the flow image, superposing an image of the flowing blood on top of the tissue
image.

14

1.2. The tissue image

The primary component in the echocardiographic image is the tissue image. Without the tissue

image, there would be no way of relating the 2D flow image to the actual valves and vessels
transporting this flow. On the other hand, a 2D tissue image has its own clinical value, it is not
depending on an accompanying flow image.

The tissue image is generated by firing pulses from a piezo-electric transducer element. The
emitted pulse will penetrate into the body, being reflected by the interface between organs and
by the structure within each organ. By knowing the speed by which the pulse travels
(approximately 1500 meter/second) and measuring the time elapsed from the pulse is fired until

a reflection is detected, the depth of the reflecting object can be calculated.

1.2.1. 2D tissue imaging

2D tissue imaging is obtained by scanning the ultrasound beam over an image field. This
scanning can either be mechanical, performed by a physical rotation of the u·ansducer element,

or electronic. Electronic scanning means that the direction of the ultrasound beam is steered
electronically instead of physically moving the transducer element. This is the technique used
by various kinds of electronic aiTay transducers.

For each emitted ultrasound beam (pulse), the amplitude of the reflected signal is sampled, the
number of samples per beam being dependent of pm·ameters as the u·ansducer frequency (image

resolution) and the total sampling depth. The samples m·e then coded into grayscale values, to
be displayed along the direction of each beam. After scanning the entire image field, the
sampled data from all beam directions are put together, forming a 2-dimensional tissue image.

The most important pm·ameter in tissue imaging is perhaps the transducer frequency,
detennining image resolution. The resolution can be said to have two components, radial and
lateral. The radial resolution (along the ultrasound beam) is a function of the minimum pulse

length, typically a couple of oscillations long. Increasing the frequency shmtens the pulse

length and the radial resolution is thereby increased. As fm· as the lateral resolution is
concerned, it is a function of the width of the u·ansducer beam, which is inversely propmtional

to the frequency when the diameter of the u·ansducer aperture is kept constant. A higher
frequency therefore means increased lateral resolution as well.

Therefore, the higher the u·ansducer frequency is, the better the imaging resolution will be,
radially as well as laterally. However, the attenuation of ultrasound energy within the body also
increases with the transducer frequency. The penetration is then reduced, thereby reducing the
maximum imaging depth. To go deep into the body, a low frequency u·ansducer is required.

Therefore,

choosing transducer frequency is a trade-off between image resolution,

requiring a high frequency transducer, and sampling depth, increased by a

low frequency transducer.

15

The actual frequency being used will therefore depend on the application. For adult cardiology,
2.5 to 5 Mhz transducers are used while 5 to 7.5 Mhz transducers are best suited to pediatric
(child) cardiology, due to the reduced depth requirements. Imaging peripheral vessels located
under the skin requires high resolution imaging without the need for deep sampling, a high
frequency transducer (7.5 to 10 Mhz) is therefore the obvious choice in that case. On the more
extreme side, up to 40 Mhz transducers have been used for intra-arterial imaging of
atheroscleroses.

1.2.2. Imaging history

According to [Angelsen 1990], the first application of medical ultrasound was to identify organ
structures like the mitral valve. The acquired data were displayed in a mode called A-mode
(Amplitude), showing a momentary, oscilloscope-like image of data (Y-axis) as a function of
time (X-axis). All data were acquired along the same direction.

I

Figure 1.1 . A-mode

16

To obtain 2-dimensional data, it was necessary to do some sort of scanning. Manual scanning,
done by hand, of the transducer was then introduced. Due to the limitation as far as scanning

speed was concerned, this was obviously only applicable for imaging non-moving organs. To
be able to image moving structures of the heart, theM-mode (Motion) was then invented: The

mechanical problems in conjunction with an automatically scanning transducer in this mode
were avoided by replacing the spatially second dimension by time. While the transducer was
kept still, the acquired data were displayed along the screen's vertical edge as gray-level coded
values as a function of depth (i.e. time elapsed from the emission of the pulse until the return of

the echo). Then by letting the image slide to the right while filling in new values along the
screen left edge, moving structures like cardiac walls and valves could be shown in a way easily

interpretable to the system user. The image height was equal to the maximum depth, while the

image width was equal to the total time span between the echo shown along the left edge on the
screen and the echo shown along the right edge of the screen.

17

depth--..

I

r \
I
I
\
I
I \ Ql

" l l E
E l \

+=>

"" €
;: j \
c: I .
" ! l E
Q) I > I Ol 0

i c: E 0
I ro
I i Q)
I I -g Q)

! I '8.~
~~

\
~:.;::
ro-

\ " "' \ "' E
\ >-ro
I ~ Q)

\
Ol.O

<!.) I "0 \ 0 s) ~

Figure 1.2. M-mode

18

To get a true 2 -dimensional (2D) image of a moving organ, however, showing the actual size

and shapes of its components, there was no way around an automatically scanning transducer.
Only in this way could an exact spatially relationship from beam to beam be ensured, a
necessity for reconstructing a geometrically correct image. This mode is also known as B-scan
(Brightness). The first systems used fast mechanical scanning transducers, later electronic

steering of the beam was introduced. A 2D image is in this mode generated by letting the
transducer scan the area of interest, displaying the acquired echo data as in M-mode, resulting
in a sector-shaped, gray-level image.

19

Figure 1.3. 20 imaging (mechanical transducer

20

~
Q)

E
Q)

Qi
Q5
u
:::J

"C
(/)

c
C1l
,::,

Figure 1.4. 2D imaging (linear array electronic transducer)

1.3. The flow image

An echo image does not, however, provide complete functional information as far as the heart
is concerned. Although showing the heart muscle in motion, one vital piece of information is

missing, namely information on how the blood is flowing in the heart as it moves. This flow

(i.e. the velocities of the blood elements) can be measured in the same way we are measming

the speed of a moving car: By utilizing the Doppler effect.

21

1.3.1. Doppler techniques

If a sound of source and a person listening to that source are moving relative to each other, the

sound frequency perceived by that person will depend on the direction and speed by which they

move: If the person and the source are moving towards each other, he/she will hear a frequency

higher than the actual frequency. If they are moving away from each other, the frequency will

be lower. The difference in frequency between the emitted and the perceived sound is

proportional to the speed component along the direction between the source and the listener. By

comparing the perceived frequency to the actual (emitted) frequency, the relative movement

between the sound source and the observer of that source can therefore be determined. This

phenomenon was first observed by the Australian scientist Christian Johann Doppler (1803-

1853) and it was therefore named the Doppler effect. This effect is subject to all types of waves

where the source and the receiver are moving relative to each other.

Observer

decreased wavelength

increased frequency

Figure 1.5. Doppler effect principle

increased wavelength

decreased frequency

Doppler measurements of blood velocity use lower ultrasound frequencies than is the case for

imaging. The main reason for this is that the lower frequency makes it possible to measure

higher velocities with pulsed Doppler without aliasing. Aliasing occurs when the Doppler shift

in the reflected signal is larger than the Nyquist frequency, being equal to half the frequency by

22

which the ultrasound pulses are emitted. The velocity of the sound source can then not be
reconstructed without ambiguity. Doppler sensitivity at deep depths also benefit from a lower
frequency.

For medical applications, two types of Doppler techniques are being used [Hatle 1982]:
Continuous Wave (CW) and Pulsed Wave (PW) Doppler.

1.3.l.a. Pulsed wave Doppler

In PW Doppler, a short burst of ultrasound (typically 8 to 10 cycles long, depending on the
signal frequency) is emitted with regular intervals. The emitted signal is reflected by the moving

blood elements back to the u·ansducer. Knowing the propagation speed of ultrasound in the

body, a time delay of Td from pulse emission until sampling the reflected signal then
con·esponds to a depth (also called range) R. For each pulse, the reflected signal is sampled once

at a time Td after pulse emission. To be able to determine the velocity, however, the moving
blood elements must be observed over a period of time. Data from several Doppler pulses, all
emitted in the same direction, must therefore be combined to determine the elements velocity.

The frequency fs of consecutive Doppler pulses is called the Pulse Repetition Frequency (PRF).
According to the well known Shannon sampling theorem, only frequencies less than half the
sampling frequency fs can be reconsuucted without ambiguity. If the reflected, Doppler-shifted

signal contains frequencies higher than fs/2, also known as the Nyquist frequency, frequency

aliasing occurs and the Doppler shift cannot be uniquely determined.

To avoid ambiguity in range, the Doppler pulse must be sampled before the next one is emitted.
Otherwise, with more than one pulse out in the body at a time, it is impossible to tell whether
the received signal is a first pulse reflection from a deep blood element or the second pulse
reflection from a shallower one. To go deeper into the body without risking range ambiguity,

the PRF must therefore be decreased. According to the sampling theorem, this in tum lowers

the maximum Doppler shift that can be detected.

The feature of range resolution is PW Doppler's main aru-action. This facilitates the

consu·uction of a 2-Dimensional flow velocity image.

1.3.l.b. Continuous wave Doppler

In CW Doppler, a continuous wave of ultrasound is emitted by the transducer towards the target
subject to examination. The signal is reflected back to the u·ansducer with a change in frequency

conesponding to the target's velocity relative to the u·ansducer. The main advantage with CW

Doppler is that there is no theoretical limit on the velocities that can be measured. On the other
hand, CW Doppler provides no range resolution. This is due to the fact that the reflected
Doppler shifted signal is influenced by the motion of all blood elements along the transducer

beam, regardless of their depth. Because the different blood elements have different velocities,
the result of a CW Doppler measurement is a spectrum of frequencies representing the

distribution of the blood element velocities.

23

Due to the lack of range resolution, the clinical applications of CW Doppler are where velocities
exceed what is measurable with pulsed Doppler. An example of such is looking at very high

velocity flow in conjunction with heart valve defects.

1.3.2. Doppler history

One of the first attempts to image real-time blood flow, described by [Omoto 1989], was called
contrast echocardiography: An echo contrast material was injected into the body to provide
information about the blood flow patterns. This method, however, had several disadvantages:
It was not completely non-invasive, due to the injection of the contrast material, and it was

generally suited to image flow in the right part of the heart only. To eliminate the contrast
material, attempts were done to use Doppler technology in combination with 2D

echocardiography to image intracardiac flow. The first approach to this was done in 1957, using
continuous wave Doppler (CW) [Satomura 1957]. CW, however, does not provide range

resolution, and efforts were therefore made to use pulsed wave Doppler instead. This was
introduced ten years later [Baker 1967].

In the beginning, only velocities inside a small sample volume were measured at a time. To be
able to have visual feedback of the location of the sample volume actually being measured, it
was necessary to integrate the flow image and the echo image in some way. This was achieved

by introducing the duplex-scanner mode, combining PW Doppler with 2D echo imaging using

the same ultrasonic probe (transducer). The instmment operator was now able to position the
sample volume freely within the 2D echo image, under full visual control.

In principle, the PW Doppler could easily be extended to measuring a contiguous row of sample
volumes along the emitted ultrasonic beam. To achieve a satisfactory frame rate, however, each
sample volume (range) must be processed in parallel. This technique is called multigated

Doppler and was first inu·oduced by [Fish 1975]. The data acquired was presented in several
ways, most successfully as a colour coded image, superimposed on top of an M-mode echo
image, today called Colour M-mode.

Due to the parallel processing of the multiple gates, a significant amount of exu·a hardware was

necessary compared to the single gate PW Doppler. To reduce this hardware, serial-time
discrete signal processing similar to MTI (Moving Target Indicator), known from radar
technology, was used. As increasingly faster and more complex electronic, integrated circuits

were developed, the technology were in the beginning 80's ready for the next step: From one
to two-dimensional Doppler. This was obtained by combining a multi-gated Doppler with a

sector scanning transducer. For each Doppler beam in the image, evenly spread over the image

sector, Doppler data were collected by all gates along the beam. In this way, a 2 -dimensional

flow image could be consuucted. To be able to maintain a satisfactory frame rate, doppler signal
processing time now replaced "hardware volume" as the critical factor. The first 2D colour flow
mapping systems were introduced by two independent research groups in 1982, Namekawa et
al. [Namekawa 1982] and Bommer et al. [Bommer 1982].

24

CHAPTER 2.The ultrasound system of today

Most available state-of-the-art ultrasound systems for cardiologic applications have more or
less the same features and operational modalities. The following description is therefore not

related to a specific system produced by a specific manufacturer, but more to be regarded as an
"a Ia carte like" pick-and-choose from several currently available systems. Further, having the
purpose of this thesis in mind, system features are omitted that are not related to and do not have
an impact on architectural issues. The purpose of this chapter is solely to provide a platform for

setting a specification for the processing architecture of the next generation, cardiologic
ultrasound system.

2.1. Operational modalities

Operational modalities can roughly be divided into two groups: Image related modes, showing
tissue structures like the cardiac walls and valves, and blood velocity (or flow) measuring
modes.

2.1.1. Image modes

Of the three imaging modes discussed in the previous chapter, the A-mode is no longer relevant
because it is covered by theM-mode. Image modes supported by ultrasound systems today are
therefore:

• 2D imaging or B-mode, providing a true 2-dimensional tissue image of the
heart. Depending on the transducer being used and the selected u·ade-off
between range and resolution, imaging depths are from a few up to about 30
centimeu·es. The image is usually sector-shaped (mechanical or annular aJ.Tay
u·ansducer), covering an angle somewhere in the interval from 30 to 90
degrees. If a linear anay u·ansducer is used, however, a rectangular image is
the result.

• M-mode acquires image data along one direction only. The data are
presented as a rectangular, horizontally sliding window. M-mode is mostly
used to study selected details, for instance valve motion, and is therefore very
valuable as a supplement to the 2D image: Having visual feedback in the 2D
image, theM-mode beam can be positioned with great accuracy to show the
detail of interest. This combinational operating mode is also called duplex
tissue.

2D imaging is by far the most impottant image mode in today's uiu·asound systems. This
because it provides a general view of the organ being imaged, forming a necessary "underlay"
for the 2D flow image. Besides, it serves as a map for navigation when looking around for

details in M-mode and Doppler.

25

2.1.2. Flow modes

These are related to some kind of blood velocity measurement. The theory behind the various
modes have already been discussed in the previous chapter and will therefore not be repeated
here.

• 2D flow is based on the Pulsed Wave (PW) Doppler technique and gives a 2-
dimensional image of the blood flow. Note, however, that due to the inherent
nature of the Doppler effect only velocity components directed along the
ultrasound beam are measured (i.e. the radial direction in a sector-shaped
image). Because PW Doppler is used, a 2D flow image is subject to aliasing.

• Pulsed Wave Doppler (PW) is the normal quantitative measurement mode
used at shallow depths and at greater depths for low to intermediate flow
rates. PW is always used when accurate range localization of the flow signal
source is desired.

• Continuous Wave Doppler (CW) is used for measuring high velocities.
Because CW does not provide range information, the signal source range can
be determined separately from velocity measurement by switching to PW
Doppler.

• High PRF PW Doppler is a sort of compromise between PW and CW
Doppler, trading off range localization accuracy against the ability to measure
higher velocities. It is used for measming flow velocities above the Nyquist
limit. However, due to nature of this method, some range ambiguity must be
tolerated when using HPRF PW Doppler.

2D flow is always used in combination with 2D (tissue) imaging and is the only 2-dimensional
blood flow measming mode. The remaining flow modes are all one dimensional and analog to
(tissue) M-mode as data acquisition as well as display are concerned. They are used either
stand-alone or in conjunction with 2D flow, to measure velocities at selected points. As forM
mode, the 2D tissue image can be used for visual guidance.

2.1.3. Diagnostic support

Synchronization of the 2D tissue and flow images with the cardiac cycle is provided for by
including ECG (ElectroCardioGram) and phono traces. They make it possible to relate each 2D
image to a specific point in the cardiac cycle.

2.2. Data archiving and review

To be able to do a more in-depth analysis of the data than it is possible to do in real time, some
sort of review capabilities must be supported. They can be divided into two categories:

2.2.1. Video recording

All systems have video recording, which is obtained by simply hooking the system up to a video
· recorder (VCR). Depending on the system's video interface, the VCR can often be connected

directly to the monitor's video signal. In case of an RGB interface, however, using separate
signals for the three primary colours Red, Green and Blue, a special composite sync signal must

be generated.

26

The VCR approach to data reviewing has its obvious advantage: It is the most standard way to
store image information that exists. Every other home has a video recorder, it is portable and
can be carried around. Often, especially in US clinics, it is ultrasound technicians, not
physicians, that do the actual ultrasound examinations. The results are then to be interpreted

later by the physicians. The "interface" between the two groups is the video cassette.

However, the disadvantages connected with video recording for data reviewing are just as
obvious. One is the inevitable degraded image quality, even if a Super VHS video system is
used. Often more unfortunate, however, is that with a video recording, it is the finally processed

end product, the displayed video image, that is recorded, not the acquired ("raw") data itself.
Therefore, no adjustment<> can be made whatsoever when reviewing the tape, no post processing
can be done and no parameters can be changed. To overcome this problem, a number of systems
support digital data reviewing.

2.2.2. Digital data reviewing

In this case, it is the acquired data that is stored. When reviewing, the data are sent through the

same processing path in the system as in live mode. All parameters related to image display and

post processing can therefore be manipulated just as if it was a live examination. Due to the
large bandwidth requirement (in the range of 5 MBytes/second) a large semiconductor memory

is required as storage medium. Replay loops, also called cineloops can also be set up. If the
memory capacity is large enough, a full cardiac cycle can be shown at a user selectable,
continuously variable speed. Synchronization to the cardiac cycle is done by using the ECG
trace.

One disadvantage with this method is that it requires a full system (actually except from the
acquisition part) to review the data. Another is the high bandwidth required to store the data on

a non-volatile, high capacity medium. This is also necessm·y to use the method for data
ar-chiving, not only for reviewing.

Therefore, video recording is cmTently the only available method as far· as data m·chiving is

concerned. Digital data reviewing has its application during the actual examination, for

example for previewing image sequences before storing them on the VCR for ar-chiving.

2.3. Data analysis

The term "analysis" is here used to describe some form of quantitative evaluation of the
acquired data. Cunently, only relatively primitive functions are suppotted, especially as far as

the 2D images (tissue and flow) m·e concerned. Typical examples m·e mean and max velocity

computation in Doppler and determining the heatt rate from the ECG u·ace. For the 2D images,
available functions have a more or less geometric nature, computing parameters like area,

distance and circumference. Note, however, that these functions m·e not fully automatic but

rather operator assisted: Before the computation take place, the m·ea or points of interest must
be identified by the operator by using some sort of tracking device (e.g. mouse, track ball or joy
stick). Automatic methods for edge detection or structure identification are cunently not
provided.

27

CHAPTER 3.The ultrasound system of tomorrow

The ultimate goal for most cardiologic, ultrasound system manufacturers is to be able to do true
3-dimensional, real-time imaging of a moving heart superimposing the flowing blood. This
will, however, due to the vast amount of data involved and the complex computations
connected with assembling those data into a 3-dimensional image, require an amount of
computing power several orders of magnitude higher than today's systems. In addition to the
computing power needed, this will also certainly affect the system structure involving multiple
buses for transportation of the huge amount of data. Another key issue will be how this 3D
image should be displayed, in real time on a 2D screen, in such a way that the user will be able
to extract and interpret all that information actually available. It is probably no wild guess to
say that this will require a display system structure that is totally customized for 3D imaging.
Because of these and other reasons, for instance related to transducer consuuction, real-time 3D
systems will be a topic of basic research for years to come.

3D imaging will therefore not be an explicit subject for this work, which will be restricted to
2D imaging. Many topics discussed will, however, be of equal impmtance to a 3D system. An
example of such will be the high bandwidth digital communication channel for image data
transpottation.

An ulu·asound system can be regarded as a collection of functional modules for data acquisition,
data pre-processing, data post-processing (pre- and post being related to the data actually being
displayed) and data display. The discussion about future development will therefore follow the
same guidelines. Having the scope of this thesis in mind, that is, processing suuctures at the
architectural level of the ulu·asound system, such unrelated topics will not be discussed. An
example of this will be issues concerning image quality only and not the system as such.

Before starting the discussion about the expected development of cardiac ulu·asound
equipment, however, it is impmtant to have a fair idea of the environment such a system will

be used in.

3.1. The diagnostic environment

Today, diagnostic equipment in a clinical environment is very much self-contained: The data
are acquired, processed and displayed on the same instrument. The various insuuments, even
those which ar·e of the same type and make, are seldom connected to each other. The only way
of u·ansfening data between instmments and "to the outside world" is by the video-tape. This
situation is not likely to remain for very long.

It is very hard to believe that the concept of LANs (Local Area Networks) eventually will not
be adopted by the hospital environment. All archived data are then accessible to every computer
and medical insuument via this high bandwidth data communication link. This situation will in
my view lead to a totally different direction in instrument development, at least as far as
insuuments at the level of complexity we are talking about here are concerned. A trend to

28

separate the acquisition part and the interpretation part of a cardiac ultrasound examination has
been seen for years, especially in US clinics. In a few years, when the physician has a full
graphic workstation at his disposal, with a large screen permitting features like multiple
cine! oops and a user interface not possible in a "standard instrument", this development is likely
to continue. Another benefit of a network-based system is the possibility to integrate image
material from examinations with the generation of medical reports.

Acquisition station

Paper output

Interpretation station

Figure 3.1. LAN-based clinical environment

Some years from now, medical instruments including top-of-the-line cardiac
ultrasound equipment will therefore in my view be much more specialized
towards either real-time data acquisition and examination support or data
presentation and inte1pretation containing advanced post-processing
functions. This will have a large impact on the systems' architectural design.

3.2. The ultrasound instrument

3.2.1. Data acquisition

Ideally, high beam density, deep sampling and a high frame rate are what we want to achieve.
These three parameters, however, are all related to the same physical limitation, namely the

speed of sound: Giving preference to one means degrading the other two. With a depth equal to

15 em and the term "real time" defined as at least 20 frames per second, this gives time to
acquire about 250 beams per image, tissue and flow together. Out of these 250 beams, a high

29

quality 2D tissue image will require 100 to 120 beams alone, depending on the angle covered.
Image quality, for tissue as well as flow, will be improved by increasing the beam density,
thereby improving the lateral resolution as well as the accuracy in determining the flow.
However, as the figures indicate, there is not much room for increasing the number of beams
beyond today's level without sacrificing either the frame rate or sampling depth.

The obvious solution to this problem is to introduce some sort of parallelism as far as data
acquisition is concerned. This can be done in two ways, at least in theory:

By using a phased array transducer, ultrasound beams can be emitted in several directions

simultaneously. The assumption for this approach to be successful, is that those directions are
sufficiently spread apart so that interference between the beams is avoided. In practice, this is
hard to do. Another factor in disfavour of simultaneous beam emission is that due to safety
reasons, the total amount of ultrasound power to be emitted into the body is limited. Using
several simultaneous beams means that the power of each beam must be reduced accordingly,
thereby decreasing the signal-to-noise ratio of the reflected signal.

The other approach possible in a combined Echo/Doppler instrument is to acquire tissue and
flow data independently and simultaneously in a frequency multiplexed way. According to
[Kristoffersen 1985], this method was patented in the US as early as in 1979. The large
bandwidth and dynamic range required make it, however, very difficult to avoid interference
between the two systems.

3.2.2. Data pre-processing

As explained earlier, the term "pre-processing" is in this context related to the data actually
being displayed. That is, the purpose of the pre-processing is to make the data display more
pleasing to the eye and, most important, easier for the operator to interpret. In image processing
terminology, this kind of processing is called image enhancement.

The goal of doing image enhancement is twofold: To remove (or at least reduce) noise without
losing details and structures contained in the image. This can only be done by using some a

priori knowledge about the image data. For a cardiac ultrasound image taken from an arbiu·ary

point of view it is difficult to make a mathematical model, describing the image data in itself,
which will be valid in all cases. The only practical approach when doing image enhancement
on these images is therefore to use some sort of conelation, in space and/or in time.

Spatial correlation

Spatial conelation algorithms utilize the fact that the value of evety given picture element
(pixel) will have a su·ong con·elation to its sunounding pixels. The "cmTect" value of a pixel
element can then be computed as a function of the values of the (original) pixel itself and its
neighbours. The actual function being used and the size and shape of the neighbourhood will
depend on the more specific goal of the enhancement being done and the properties of the
image. Due to the sector shaped data acquisition scheme used in cardiac ultrasound (the
exception being images acquired with a phased anay u·ansducer), the lateral distance between

30

two samples taken at the same (radial) depth will be smaller the smaller the depth is. The degree
of spatial resolution is therefore in case of a sector shaped image inverse proportional to the
actual depth.

However, due to the basic idea of this approach, all techniques using spatial correlation have
more or less the unwanted side-effect of degrading and blurring details in the original image,
details necessary for a correct image interpretation. Examples of such details in cardiac
ultrasound images are the valves and boundaries and walls of the heart muscle. Provided they
are not completely lost, they can, however, be reinforced through a subsequent step of
processing. In image processing terminology this is called edge enhancement and will in
principle be a kind of differentiation operation.

Time correlation

As far as cardiac ultrasound systems are concerned, the term "real time" implies that the frame
rate by which new images are acquired, is sufficiently high compared to the relative change
from one image to the next. Othe1wise, a very "jumpy" appearance will be the result when
displaying image sequences. Another most unfortunate aspect of low frame rate (or rather slow
scanning) would be the relatively large difference in time of acquisition between the data at the
left and light edge of the image. Besides, correlation between tissue and flow data, which
ideally should have been acquired simultaneously, will suffer. Therefore, a high (enough) frame
rate is an absolute prerequisite for real-time imaging.

The consequence of this is that the pixel value at a ce1tain location in one frame will have a
strong coiTelation to the pixel values, at the same location, in the preceding and the succeeding
frames. In the same way as for spatial con·elation, pixel values can be filtered by taking the
neighbouring pixels (but now in terms of time) into account. The side-effect of bluning is
equally valid with this kind of filtering, a subsequent step of edge enhancement processing will
therefore often be appropriate.

3.2.3. Data post-processing

To be able to do accurate ultrasound diagnostics, it is often necessary to have some form of

quantitative description of the ultrasound image. Depending on which kind of information we
seek, this analysis can be based on a single image, an image sequence (e.g. to do wall motion
analysis) or images taken from different examinations (of the same patient) over a period of
time if it is long time u·ends which are of interest. As already indicated, data post-processing is
of a more quantitative nature than pre-processing which is qualitative. Once again to draw the
analogy to image processing terminology, this kind of image analysis is often called feature
extraction.

Because the data pre-processing is done on image data to be displayed, with the purpose of
making that data more pleasing to the eye and easier to interpret, needless to say it must be done
in real time. Othe1wise, its only application will be as a "beautifier" for stored images, which
reduces its usefulness considerably. The data post-processing, however, has no impact on the
actual data being displayed and does therefore not require real-time execution. In fact, it is not
necessar-y to do the post-processing in the ultrasound (acquisition) insuument at all. Probably it
will be better to do this kind of processing off-line on a dedicated "ulu·asound diagnostic

31

station", having better graphic capabilities and a user interface that is more suited to this kind

of work. As described earlier, the diagnostic station will have access to the acquired ultrasound

data through some sort of local area network in a future diagnostic environment.

The scope of work for this thesis is the real-time processing part of the system. The data post
processing functions are beyond that scope, and will therefore have no direct impact on
architectural issues discussed. However, for the sake of completeness, a brief survey of relevant
post-processing topics is given. A general feature of post-processing functions is that, seen from

an algorithmic point of view, they are very sequential in nature. Edge detection, an absolute

prerequisite for many post-processing functions, is a good example of that. Usually, these
functions are therefore not equally well suited for parallel implementations as for instance the

typical image enhancement pre-processing functions are. Post processing may therefore be
implemented just as efficiently on a standard workstation as on customized hardware, which in
this case, due to the sequential nature of the problem, probably would be an off-the-shelf CPU

card anyhow.

Tissue post-processing

To be able to reveal long time trends towards some sort of heart malfunction, in order to take
care of the problem before that malfunction occurs, it is necessary to quantify the cardiac
function according to some set of parameters. These parameters can be related to motion (wall
and valves) as well as their ability to reflect the emitted ulu·asound pulses.

Tissue characterization

According to [Lee 1989], tissue characterization is perhaps the most relevant application of

tissue post-processing. The term tissue characterization is used for specific questions that can
be raised about the physical object being imaged. Examples of such questions can be to decide

the degree of ischemia in the heart muscle, the malignancy of a tumour etc. As far as ischemia
is concerned, one uies to characterize, or grade, the ischemic myocardium in terms of its
"reflectability". The reflectability of tissue is a function of its comparative compressability,
which again is related to the proportional fluid (collagen) and calcium compared to its
neighbours along the line of sound u·ansmission. The reflection of sound by a target is one out

of many factors which contribute to the attenuation of the sound as it u·avels from the

transducer, into the body and is reflected back to the transducer again. If it were possible to

detect changes in those parameters in some absolute and reproducible way, looking at the u·end
from one examination to the next, cardiac problems could have been diagnosed at a much

earlier stage than is possible today.

Volume computation

The ability to locate edges in the cardiac image is a key to many post-processing applications.
As far as the tissue image is concerned, this would open for the computation of auium and

ventricular volumes as a function of the cardiac cycle. These measures will be a valuable

complement to the tissue characterization, having the purpose of detecting long term changes

in the cardiac function.

32

3.2.3.b. Flow post-processing

According to [Linker 1989], analysis of 2D Doppler data can be coarsely classified as volume
integration, flow profiles and feature extraction.

Volume integration

The volume of flow is perhaps the impottant parameter as far as 2D flow analysis is concerned.
In principle, this can be calculated simply by multiplying a given area with the flow (velocity)
through it. Due to a non-uniform, parabolic like velocity profile, however, with larger velocities
near the centre of the vessel than at its periphery, the velocity profile must be integrated over
the vessel's area to compute the volume flow. A full-velocity profile would ideally require 3D
Doppler. This is because the measured Doppler shift is only affected by the blood elements'
velocity component along the direction of the ultrasound beam. The ideal 3D Doppler can be
approximated by measuring multiple flow profiles having different otientations. Because the
velocities also vary during the cardiac cycle, integration must be done over time as well.

Flow profiles

Flow profiles are velocity cross-sections taken at a single point in time (snapshots). The volume
flow desctibed above can then be obtained by integrating the flow profiles over time.

Ideally, to make a tme snapshot, all data covering the whole cross-section should be acquired
simultaneously. In practice, however, this is not possible. Data are collected setially, the
sequence being dependent on the type of u·ansducer being used. Phased anays are due to the
electronic steeling not resu·icted to collecting data from beams in a strictly, sequential manner,
but the data are nevertheless collected serially. The beam acquisition sequence must be known
to be able to compensate for the difference in acquisition time. Besides, the data from the
previous (in time) flow profile must be available. This is necessary for each point to determine
the direction (increase or decrease) of the compensation. Having this information, an
approximated "uue'' flow profile can be calculated, showing the blood flow at a single point in
time.

Feature extraction

Feature extraction is a very general term refening to extracting vatious kinds of quantified
information from the 2D flow data. Examples of such parameters are width, length and area of
flow jets. Another is the calculation of flow acceleration. This can be computed directly from
flow profiles taken parallel to the ulu·asound beam.

3.2.4. Image display

As accounted for earlier, future top-of-the-line ulu·asound systems will be more specialized
towards either data acquisition or data display than today's insu·uments are. In the data
acquisition system, the subject of this work, the display will serve as operator guidance for
doing the best possible examination, and recording the best possible images. To do this,
needless to say, the system must support the real-time display of image data as they are
acquired. This includes the 2D image data (tissue and flow) as well as data of more supportive
character as M-mode, lD Doppler and several types of traces (ECG, phono etc.).

33

A replay facility of some kind must be supported to determine which image sequences to
record. This makes it possible to review image sequences, preferably at a variable speed, prior

to recording. Simultaneous review of at least two separate image sequences should be supported
to be able to compare the sequence of interest to already recorded material.

34

CHAPTER 4.Specification guidelines

As a fundamental rule, the only limitation to system performance in a true real-time system,
should be the constraints imposed on the system by the environment in which the system is
designed to operate. Talking more specific about a medical ultrasound system, the system

capacity in terms of frame rate and data processing capability should be the rate by which new
data are available. Or in other words, the inherent physical limitations of doing data acquisition
by ultrasound.

This is an absolute demand when setting the specification for a real-time
ultrasound system.

Data rate

As explained earlier, the frame rate, number of beams per frame and sampling depth parameters
are closely related to each other through the physical value of speed of sound:

= tbeam * no_of_beams

tbeam > tsample_depth

tsample_depth = 2 * sample_depth/vspeed_of_sound

Increasing one of the three parameters means loweting the other two. To increase the frame

rate (1/trrame) while keeping the number of beams constant (no_of_beams), the acquisition time

available to each beam (tbeam) must be decreased. This will in turn reduce the maximum

sampling depth (sample_depth). No matter how sophisticated a transducer may be or the

amount of computing capacity contained in the system, the rate by which data are acquired is
therefore not likely to change much beyond today's level, which already utilizes the available

acquisition bandwidth very well.

As far as 2D image data are concerned, the typical rate by which data are output from the
frontend block of today's systems are:

Tissue
Flow

128 beams * 512 samples * 8 bit = 128 kbyte
64 beams * 128 samples * 16 bit 16 kbyte

144 kbyte

With the "real time" lower limit quantified to 20 frames per second, this means a total2D image

data rate of approximately 3 Mbyte per second. Compared to the 2D data, the amount of other
kinds of ultrasound data are so small that it need not be considered as far as data rate

35

calculations are concerned. Adjusting the bandwidth requirement according to good principles
for conservative design, the required bandwidth for the acquisition and processing of ultrasound
data can be set equal to 5 Msamples (Mbyte) per second.

4.1. System basic blocks

An ultrasound system can roughly be divided into four basic blocks as shown in Figure 4.1. The
term block is here to understand rather as a conceptual than a physical term, grouping a number

of modules functionally belonging together. Each module has a dedicated function and can,
depending on its size and complexity, be implemented on one or more physical cards.

Frontend

Transducer Input System Display

frontend --- processing --. processing --- system -

I Transducer I D
Figure 4.1. System basic blocks

The blocks shown in Figure 4.l.have the following functions:

4.1.1. Transducer frontend

The transducer frontend block contains the ultrasound transducer and all electronics necessaty

to control it. The actual realization of the frontend is strongly dependent on the type of

transducer being used. For a mechanical transducer, the ultrasound beam is steered by

physically positioning the transducer element before emitting the ulu·asound pulse, this
positioning being done by some sort of elecu·ical motor. One task of the frontend is to conu·ol

that motor to make the element point along the tight direction, and then fire the pulse. In the
case of an elecu·onic transducer, beam forming and steering are done electronically by the
vm·ious u·ansducer elements emitting ulu·asound signals slightly different in time and phase.

The signals from all u·ansducer elements will thereby interfere with one another, generating a

resultant signal. This resultant signal can elecu·onically be steered in direction and focused in
depth by vm·ying the relationships between the signals emitted from the various transducer

elements.

In addition to beam conu·ol, the transducer frontend contains all electronics related to the
emission and reception of the ultrasound signals. Generally speaking, the size and complexity

of the frontend block will be significantly lat·ger with an elecu·onic than with a mechanical

u·ansducer.

36

4.1.2. Input processing

The input processing block can be regarded as a sort of"level 0" processing, drawing analogies

to the hierarchical models known from other computer disciplines, for instance data
communication. In other words, it contains signal processing functions very closely related to

the physical properties of the emitted ultrasound signal as well as the objects being imaged.
Examples of input processing functions are

• envelope detection of the echo (tissue) signal

• estimation of Doppler frequency for velocity measurements

• gathering of velocity measurements from different directions into a 2D flow
image

The output of this block will be in the form of digital tissue and flow data, each organized as a
2-dimensional matrix with one dimension being equal to the beam number and the other equal
to the depth position within the beam.

1
%
Q)

8
ci
c
Q)

Ci
E
ell

"'

Figure 4.2. Raw data format

beam no. (angle)

With all transducer types except from the linear mny, the data output from the input processing
block describes a sector shaped image and will therefore be on polar f01m (angle vs. distance).
From now on these data will be refetTed to as the raw data. In addition to (scan) conversion into
a format more suitable for display, a lot can be done with the raw data to make them more

pleasing to the eye and thereby easier to interpret. The more quantitative post-processing

functions will also use the raw data as input.

In the rest of this work the transducer frontend and the input processing blocks will be regm·ded
as a self-contained module, simply called thefrontend. This block will provide input to the rest

of the ultrasound system, but will have no influence on the system m·chitecture as such other
than the f01mat and the rate by which it provides the (raw) ulu·asound data.

37

4.1.3. System processing

The system processing block is the main and the most complex block in the system, at least as
seen from a system level point of view. It will contain a variety offunctional modules, the actual
configuration being to some extent application dependent.

feedback

from Input (Display)

buffer
Analysis

fron!end pre-proc.
to display

bypass

Image -.
buffer

System control

Figure 4.3. System processing block

The main functions handled by the system processing block are:

Reception and buffering of raw tissue and flow data from the frontend. For live data, this is

the gate into the system processing block.

(Display) pre-processing. As already explained, ultrasound data are due to the very difficult

acquisition conditions by nature noisy and difficult to interpret. The purpose of the pre

processing is ideally to remove that noise without losing details and structures in the image. For

best results, it should be possible to customize the pre-processing according to the application
as well as the data being processed. Given a set of filtering modules contained in the system
processing block, these may be combined into different processing sequences, possibly

including a loopback feature if the image after processing does not comply with some specific
set of measures. As far as the modules contained in the display pre-processing patt m·e

concerned, some smt of dynamic reconfiguration capability should therefore be supported.

Quantitative analysis. The data must first be analysed to be able to adjust the pre-processing
algorithms to the chm·acteristics of the data being processed. The result of this analysis can have

the form of statistical measures like mean and variance values, or a histogram. Depending on
the actual purpose of the analysis, they can be global for the image as a whole or be individually
computed for different regions of the image. In case of an iterative processing scheme, it will
be the task of the analysis modules to provide data determining whether to let the image data

38

continue to the next stage in the processing sequence or to loop it back to repeat one or more of
the processing steps contained in the current stage. Real-time calculations of image parameters
as Doppler mean and maximum velocities will also be done by the analyse modules.

Buffering for image review. All ultrasound data together with a complete set of parameters

describing how that data were acquired (i.e instrument setup at acquisition time) should be

conceptually stored in a large ring-buffer. With today's storage medium technology, this ring
buffer must be implemented by semiconductor memory to obtain real-time storage as well as

real-time review. To have maximum flexibility as far as display pre-processing and quantitative
analysis are concemed, the data being stored are the raw data output from the frontend block.
On review, the data can then be replayed following the same path through the system as it did
during acquisition. In this way, review data can be manipulated as live data as far as display and
pre-processing are concemed.

System control. Depending on the implementation, this module may be more conceptual than

physical. The function of synchronizing the other modules and controlling the data transfer

between them may just as well be distributed onto each module, instead of using a dedicated,
centralized controller module. The best solution will depend on the chosen architecture and the
communication scheme by which the data are u·ansfened between the modules.

4.1.4. Display system

Needless to say, an absolute demand to the display system is that it is able to display data in real
time. A complete medical ulu·asound displayed image will be assembled by components from
several modules. These components can be grouped into static and dynamic parts.

The static prut contains text and graphics. The text is used for displaying information about the
cunent image. Examples of such information are patient information (name, date of birth etc.),
date, instrument operational mode and the value of relevant image parameters conceming
instrument setup (gain, reject) as well as continuously updated pru·ameters computed from the
acquired data (Doppler mean and max velocities). Graphics ru·e used to create image mru·kers

for depth, Doppler sample volume, visual feedback of the TGC (Time Gain Control) setting,

cursor etc. Due to its static nature, the text and graphics will have the character of being an
overlay to the dynamic prut of the display.

As the name implies, the dynamic part consists of data changing from frame to frame. Like the

static data, the dynamic data is assembled by components from several modules, the 2D tissue
and flow data being the most important. Additionally, the dynamic data also includes other
ulu·asound data (e.g. tissue M-Mode, Doppler) as well as various traces (ECG, phono etc.).

Several factors will have impact on the display system architecture:

Display modularity

It should be possible to freely compose vru·ious display modes, without any other constraint than

the display size, by (re)ruTanging the display components available in the system. There should
therefore be no such thing as "unfottunate" combinations being impossible to implement due
to processing power limitations. To be able to compru·e several 2D image sequences to each

39

other, the display system should support at least two 2D windows. This feature will basically
be used for comparing images rather than doing diagnostic interpretation of the recorded images
(which should be done on a dedicated, high quality graphic workstation).

Display dynamics

The components constituting the dynamic part of the display have very different characteristics
as far as image updating are concerned. The 2D image components tissue and flow have full
update by that a set of data describing the whole image component is transferred when the

component is to be updated. The display dynamics is therefore caused by changing the data
itself, and not by rearranging data that is already stored and displayed.

The contrast to this is the M-mode and Doppler spectrum display components, best supported
by a vector update mechanism. They can best be described as rectangular images sliding from
the left to the right side of the screen while new data are filled in as vertical vectors (bars) along
the right edge as the image is moved. Display updating is therefore mainly done by redisplaying

the old data in a shifted position compared to the previous image.

A similar mechanism is required for updating the traces, which are simply value-vs.-time
curves. On every update, the curves are shifted one position to the right with the new data value

plotted in the exu·eme left pixel position (pixel update). If the vertical (i.e. value) distance
between the previous and new data are more than 1 display image pixel, the intermediate pixels
must be filled in to get a contiguous curve.

value (y)

•

•

0

intermediate

points

• --- sample value

time (x)

Figure 4.4. Trace display

The display system architecture should support display component positioning by some kinds
of pointer mechanism to avoid the need for physically moving (i.e. copying) the displayed data

into the new position. Then there would be no danger of getting into "unfortunate" display

combinations requiring excessive computer power as earlier described.

40

Display response

While display dynamics is a term telling how the image display changes with the change of
image data, display response is used to describe a situation where the display must be changed
due to some sort of instrument - user interaction. This interaction might be by selecting a new
operational mode or changing a parameter which in tum will cause the display to change. This

parameter can be a data acquisition as well as an image display parameter. Even though the
execution of all actions the change involves may take some time, the display should change

momentarily to give the user the impression of a short response time. Because the frame rate in
some operational modes will be as low as a few frames per second, the time to change the
display should not be dependent of the current frame rate.

Resolution requirement

A 2D tissue image will typically have up to 512 samples per beam, distributed over a maximum
angle of 90 degrees.

512

Figure 4.5. Image sector geometrical format

41

To be able to display most of the data actually acquired, the display resolution should be at least

512 by 512 pixels. By shrinking the image somewhat, a full size 90 degree sector will then fit
into the screen together with the necessary text and graphics. By increasing the resolution up to

1024 by 1024, a full quality review of up to 4 simultaneous image sequences are supported.

1024

1024

Figure 4.6. Quad sector display

The usefulness of this feature will depend on whether a diagnostic workstation is available or

not. If not, high quality review of multiple image sequences should be supported by the
ultrasound acquisition instmment itself. For this reason, it should be possible to customize the
display system as far as the resolution of the display is concemed.

4.2. Design guidelines

It is always difficult to specify something where it is not completely known what it is. What can

be done, however, is to determine the kind of charactetistics and features a system should have
in order to suit the application(s) it is intended for in the best possible way. These characteristics

and features can then be summatized into a set of guidelines goveming the actual system
design.

As already accounted for, out of the four desctibed basic blocks the design of the "system
processing" and the ''display system" blocks m·e defined to be within the scope of this work.

The other two, called by their common name the "frontend" block, defines together with the

user itself the environment in which the system and display blocks must be designed to operate.

By extracting the essence of the discussion so far, a set of design guidelines for the next

generation ultrasound system can be expressed as follows:

42

Performance

• The system should be capable of handling a throughput of at least 5
MSamples of ultrasound data per second, measured at the frontend output.
Depending on the actual implementation, the required bandwidth of the
communication channel within the system processing and display blocks may
be significantly higher.

System structure

• To ensure optimum results for all applications within the instrument's scope
of operation, utilizing the processing resources actually available within the
system in the best possible way, dynamic (re)configuration of the functional
modules should be supported.

• For the same reason, it should be possible to dynamically adjust the actual
processing being done to the characteristics of the ultrasound data (data
dependent processing). This adjustment can have the form of reananging the
functional modules as well as changing various algorithmic parameters.

• Iterative processing should be suppotted.

• To be able to increase processing capacity, the system should be capable of
handling several identical functional modules as a "pool" of resources
selecting the first one available. Which module actually is used should be
invisible to the rest of the system.

Display system

• The display should have a resolution of at least 512 by 512 pixels. To be able
to adopt to the actual user's need, however, the display system architecture
should suppmt higher resolutions, possibly of up to 1024 by 1024 pixels.

• Special care should be taken to avoid the display system itself being a
limitation the system's operational capacity and petformance.

• The three types of display updating schemes (full, vector and pixel update)
should be suppotted to ensure maximum display dynamics.

• Display response as it appears to the user should be independent of the cunent
frame rate by which the ultrasound data are acquired.

43

CHAPTER S.Computer taxonomies

When trying to select a computer architecture for a given application, there are a number of
candidates to choose from, each one having its own vices and virtues. To help making the right
choice, it is important that the different architectures are systemized according to some criteria
or features. In other words, some sort of architecture classification scheme, or taxonomy, is
needed.

Generally speaking, there are at least three reasons for classifying architectures [Skillicorn 88]:

• The number of systems with different kinds of parallelism has been explosive
since the introduction of the von Neuman machine. Classifying the various
architectures makes it easier to understand what has already been achieved.

• A good, and for the purpose in question, appropriate classification scheme,
might reveal architectural permutations and combinations of existing
architectures, creating new architectures with other (and may be useful)
features.

• Implicitly, the very fact that an architecture is classified according to some
smt of classification scheme means that certain things about that
architecture's features and charactetistics can be said. This facilitates the
building of useful models of the architecture's petformance, for instance for
the purpose of doing petformance analysis and comparison with other
architectures.

Most impottant in this context, however, is to have an appropriate classification scheme as a
tool for selecting the best system architecture for a given application. With that in mind, to be
"approptiate", the classification scheme should have the following properties:

System level. The scheme should be high-level in nature to serve as a system classification
scheme, reflecting the system behaviour as well as its characteristics. That is, the emphasis
should be on system related issues as module connectivity, topology and inter-module
communication. The different modules themselves can in this context be treated as "black
boxes", but with clear specifications as far as their intetface to the outside world (that is, the

system) is concerned.

Completeness. The taxonomy should cover all relevant architectures, including possible
permutations and combinations. One way to ensure this is to organize the classification ctiteria
as levels in a hierarchy, where each level is covering the full set of architectures presented by
the level above. The vatious at·chitectures as defined by the permutations of the different
classification ctiteria will then come out as leaf nodes from the bottom level. Not all leaves will
have a name in terms of a specific, existing architecture. They may, however, represent
(hopefully useful) combinations of at·chitectural properties from the levels above those not yet
implemented as a system at·chitecture.

44

Consistency. The term "consistency" implies that the grouping in categories should be well
defined and non-overlapping. The hierarchical model outlined above is well suited to achieve

this. Consistency also means that all architectures should have their "natural" place in the
chosen classification system. There should be no need for creating special categories for

architectures not fitting into the scheme, thereby disrupting the whole classification system.

Classification properties. Classification properties should be selected according to the
purpose of the classification scheme. In this context, it is to select the best suited architecture
for a given type of application. The classification should be done on the basis of system

behavioural features rather than lower level issues such as implementation techniques and
module design.

Having this in mind, we can now consider some of the numerous attempts at doing computer

architecture classification.

5.1. Computer taxonomies

5.1.1. Flynn's taxonomy

The first (and now classic) systematic approach to classify various computer architectures
according to some set of critetia was done by Michael J. Flynn in 1966 [Flynn 66], [Flynn 72].
His work was inspired by the development of the large-scale scientific computers and the
different computer architectures proposed to overcome the so-called von Neuman bottleneck.

Flynn's classifications scheme is based on the information floating around in a computer being

decomposed into two separate streams: Insuuctions to be executed by some sort of Processing
Unit(s) (PU) and data being operands to those instructions. Depending on whether the two

su·eams are common or separate to all PUs, a computer architecture can be classified into one

out of four categ01ies:

SISD: Single Instruction stream, Single Data stream. This is the conventional von Neuman

architecture. Only one instruction can be decoded in a unit time, thus, no more than one

instruction can be executed in the same time quantum.

SIMD: Single Instruction su·eam, Multiple Data stream. All PUs execute the same instruction
at the same time working in complete lockstep with each other, but on their own (and most often

exclusive) patt of the total set of data.

MISD: Multiple lnsuuction su·eam, Single Data stream. In computers of this category, every

PU executes its own instructions but on the sante data. It is difficult to imagine a practical,

realizable ru·chitecture fitting completely into this category, but by su·etching the definition a
bit, pipeline at-chitectures can be said to belong to this group.

MIMD: Multiple Insuuction su·eam, Multiple Data su·eant. A MIMD machine consists of a set

of more or less autonomous PUs, each one executing its own set of insuuctions on its own set
of data.

As a general computer ru·chitecture classification scheme, Flynn's taxonomy has several

shortcomings:

5.1.2.

45

• The scheme does not include a classification of how the two streams,
instructions and data, interact.

• It is based on large-scale scientific computer architectures, making it difficult
to fit some of the more modern architectures (e.g. pipeline machines).

The classification scheme is restricted to a shared memory, static
configuration. The PUs are organized in a homogeneous, single level
hierarchy, that is, all PUs are equal and interchangeable.

• The aspect of input and output channels is ignored.

Danielsson's taxonomy

Danielsson's way of architecture classification [Danielsson 81] is based on the different types
of parallelism possible in image processing operations. According to [Daniels son 81], there are

four orthogonal dimensions of parallelism:

Operator parallelism is equivalent to pipelining: The computational task is divided into a set
of consecutive stages, each stage executing its own operator (program). A stage receives its
input data from the previous stage and delivers its output (result) data to the next stage in the
pipeline. All operators, that is, the processing within each stage, are executed in parallel.

Image parallelism means that the PUs are computing separate output pixel values for separate

neighbourhoods in the same output image and in full synchronism with each other.

Neighbourhood parallelism means that each PU computes the values of several output pixels
within the same neighbourhood at the same time. This requires immediate parallel access to at
least one bit-plane at the same time.

In computations utilizing pixel-bit parallelism, all bits constituting the pixel value (typically 8
bit), are processed simultaneously in a word-parallel fashion known from most conventional

computers.

Each of the four parallelism dimensions can be assigned a value giving the degree of parallelism

along that dimension. By multiplying the 4 values, the architecture's total degree of parallelism

K can be computed as

K = ko * ki * kn * kp

Provided that the task's degree of parallelism along each of the four dimensions are equal to or

greater than the architecture's degree of parallelism along the same axis, the computed total

degree of parallelism K can be regarded as a measure for the architecture's potential of parallel

computation.

Danielsson 's approach is therefore useful for quantifying an architecture's potential as far as its
parallel processing capability is concerned. As a qualitative or descriptive instmment for
classifying computer architectures on the system level, however, it is less suited. The reasons

for this are:

• The classification (degree of parallelism) is dependent on which architectural
level you look at.

46

5.1.3.

• The parallelism criteria including terms such as neighbourhood, pixel-bit etc.
makes the scheme better suited for classifying low level structures than
system level descriptions.

Kidode's taxonomy

Masatsugu Kidode [Kidode 83] uses the image memory structure of the processing system as
the cla<>Sification criteria. The rea<;on for this is that the time spent for transferring data between
mass and core memory for some tasks may be higher than the computation time itself. It will
then be more relevant, at least as far as potential processing power is concerned, to group
systems according to the organization of their image memory than to the (inter- or intra-)
structure of the processing elements. Image processing systems should therefore have either
large core memory or high speed transfer mechanisms. Existing systems can be classified as
belonging to one out of 7 categories according to their memory structure.

As for the previous two schemes, Kidode's approach is not very well suited as a general, up to
date taxonomy for the classification of computer architectures:

• It does not contain any information about control stmcture or topology.

The classification criteria is itself more or less obsolete due to the availability of low cost, high
speed and high capacity semiconductor memory. The majority of cmTent image processing
systems will therefore fit into one out of a few (2 or 3) groups.

5.1.4. Preston's taxonomy

Preston [Preston 83] inu·oduces a classification scheme for cellular logic computers (CLC).
CLC computers are used for computation of two- and three-dimensional logical neighbourhood
operations in image processing. A CLC is distinguished from an "ordinary" computer by that
the CLC only pelforms logical rather than numerical transforms. A CLC image processing
system is therefore by nature best suited for operations on binary images. Gray-level image
processing requires the image to be divided into a stack of binary images using multi
thresholding. After processing, the binary images must be put together into a gray-level image

by some sort of arithmetic recombination.

The basic idea behind Preston's classification scheme is the distribution of processing power:
The total anay of image data can be divided into a number of sub-anays. According to the
number of processing elements, PEs, doing simultaneous processing on the image sub-arnys,
image processing architectures can be divided into three categories:

Single-element sub-array machines. The image is processed in a serial manner by one single
processing element. The output from each processing operation is the (cenu·e) pixel value of one

neighbourhood.

Multi-element sub-array machines. To speed up execution, these architectures use multiple
processing elements, processing multiple neighbourhoods (one neighbourhood pr. processing

elements) in parallel.

Full-array machines. Full anay machines contain a large number of processing elements,

interconnected as an aiTay.

47

The absolute distinction between the multi-element and the full-array machines is from [Preston
83] not clear, except that the full-array machines contain a considerably larger number of PEs
(hundreds to thousands) than the multi-element machines (in the order of tens).

As is the case for a number of other classification schemes, pipeline machines do not fit well
into this one either. Pipeline machines are therefore included as their own (the fourth) category.
However, this represents a break with the scheme's original idea: A pipeline machine
implements parallelism in the time domain while the first three categories are based on
parallelism in the space domain.

Due to its restriction to a special subset of computer architectures as well as to its non-consistent
classification (i.e. the pipeline machine), Preston's scheme is not particularly suited as a system
classification taxonomy. It seems to be a better choice for classifying low level image
processing architectures, for example SIMD machines (see [Flynn 66]).

5.1.5. Duncan's taxonomy

Duncan's approach to computer taxonomies [Duncan 90] is based on [Flynn 66], a
classification according to instruction and data streams. Several modern architectures which are
not easily accommodated by Flynn's scheme, nevettheless seem to intuitively merit inclusion
as parallel architectures. An example of such an architecture is the pipelined vector processor
which according to a pure Flynn classification would be a sort of MISD (pipeline) and SIMD
(vector) hybrid. One of Duncan's goals in defining a taxonomy of his own was to include those
architectures. On the other hand, architectures that only incorporate the low-level parallelism
commonly found in most computers of today, should be excluded as parallel architectures.
Low-level parallelism in this context means features such as instmction pipelining, multiple
CPU functional units (e.g. dedicated co-processors for mathematical computations) and
separate CPU and I/0 processors. Although they all make significant conu·ibutions to the
machine's overall petformance, they do not justify the architecture being classified as a parallel
architecture as such.

The result of Duncan's effort is a rather pragmatic and informal approach to computer

classification based on three main categories of architectures:

Synchronous parallel architectures coordinating concunent operations in lockstep through
global clocks, a central control unit or vector unit controllers.

MIMD architectures employ multiple processors that can execute independent insuuction
su·eams on local data. These architectures are most often implemented as asynchronous
computers, with (task) synchronization through software by some sott of message passing
scheme and decentralized hardware conu·ol.

MIMD-based architectural paradigms accommodate architectures based on the MIMD
ptinciples of independent, asynchronous operation and concunent manipulation of multiple
insuuction and data su·eams. However, they also possess their own distinct and individual
characteristics making them hard to classify as pure MIMD architectures in the classical point
of view.

48

-E
Vector

-{
Processor array

Synchronous SIMD

Associative memory

Systolic

MIMD -{
Distributed memory

Shared memory

MIMD/SIMD

Dataflow

MIMD paradigm

Reduction

Wavefront

Figure 5. 1. Duncan's taxonomy

In my view, the weakness of Duncan's taxonomy as a system classification scheme is its lack

offormality. In most taxonomies, the grouping of architectures is done on the basis of some sort
of a more or less systematic and formalized idea. Although based on the Flynn taxonomy, the

result of Duncan's effort has more the nature of an ad hoc approach. The attempt to include
modem, parallel architectures is in my opinion the main reason for this. By not taking system

topology into account, the classic Flynn's taxonomy may simply not be the optimum basis for

a system classification scheme to include today's parallel architectures?

5.1.6. Yalamanchili's taxonomy

A multiprocessing, image processing system can be thought of as assembled by two
fundamental type of elements [Y alamanchili 85]:

• Processing Elements (PE) and

• Communication Elements (CE)

As far as memory organization is concerned, a processing element can either have its own local
memory or share a global memory with other, but not necessarily all, PEs. The combination of
local and global memory is also possible. Depending on the chosen architectural philosophy,

the PEs in the system can be classified as

49

Homogeneous. This will be the case if the system is a general purpose, programmable system
where the concept of multiprocessing is applied with the purpose of achieving load distribution
and thereby (at least intentionally) execution speed-up. Because the PEs all are identified, one
element can be replaced by another without changing the functionality of the system.

Heterogeneous. In a system built of heterogeneous or different processing elements, each (type
of) element will have its own dedicated function and can not be replaced by another element of
a different type.

To connect the processing elements together, making a system, several kinds of interconnection
structures are possible. It is important here to distinguish between a physical and a logical

interconnection structure: By appropriate control and reconfiguration mechanisms, one
physical interconnection structure can realize a number of logical PE interconnection structures

(e.g. tree, ring, pipeline etc.). Three major classes of physical interconnection structures can be
identified:

Fixed Interconnection Structures. Each PE module is connected to a fixed number of

neighbouring PE modules through a set of CE modules.

Bus Interconnection Structures. All PE modules are interconnected through a single CE
module. This stmcture facilitates direct contact between any two PE modules. Any type of
logical interconnection structure can therefore be realized with the Bus Interconnection
Structure. Because all transfers are done on the same physical transmission medium, there will

obviously be a bandwidth penalty compared to a cmTesponding fixed interconnection structure.

Reconfigurable Interconnection Structures. By reprogramming the approptiate CE modules,
the PE modules can be configured through dedicated links to realize any one of several fixed
interconnection suuctures. The requirement that the interconnection is done by dedicated links
excludes the bus interconnection stmctures, the most reconfigurable of all structures, from this
category.

By combining the two classification criteria for the processing elements and the interconnection

topology, respectively, a global taxonomy for multiprocessing computer systems can be

expressed. As a system classification scheme, such a taxonomy has a number of advantages

compared to the other approaches described:

• The taxonomy is symmetrical as well as hierarchical, with the type of
processing elements as the first level and the interconnection topology by
which they are interconnected as the second level.

• All multiprocessing architectures can be included in this classification
scheme without having to break with its basic idea.

• It reflects the overall, principal system architecture more than, in this context,
implementation details of lesser impmtance.

• It focuses on the physical backbone of the system rather than on its cunent
configuration (may be one out of several possible). Thereby, the basic
capabilities of the systems in terms of performance as well as possible
applications are easy to evaluate.

50

5.1.7. Skillicorn's taxonomy

Skillicom's approach to defining a computer architecture taxonomy [Skillicorn 88] has many
similarities to [Yalamanchili 85]. Both propose a two-level hierarchy, reflecting a functional
view of the architecture and on how information flows between the processing elements.

Skillicom, however, combines Yalamanchili's both two levels into one. By including the

processing elements as well as their interconnection, an abstract model of the architecture is
formed. This makes it easier to focus on the essence of a particular architecture, without hiding

important issues behind, in this context, irrelevant details.

Any abstract computer architecture model can as suggested by Skillicom be built from four
types of functional units:

• An instruction processor, acting as an interpreter for instructions.

• A data processor, performing data transforms, usually as a sequence of basic
arithmetic operations.

The instmction and data processor as a unit is equivalent to what usually is called a processing
element.

• A memmy hierarchy, an intelligent storage device that passes data to and
from the processors.

The term intelligent implies that the memmy hierarchy may have its own conu·oller. Hierarchy

means that the functional unit can be regarded as a collection of one or several levels of memmy

storage with different "near-ness" to the processors. The term near-ness in this context relates
to parameters such as ease of access and access time. The model may have one or a number of
memory hierarchy units, facilitating local as well as global memory models.

A fourth type of functional unit is inu·oduced to be able to desctibe how these three functional
units are interconnected:

• A switch, an absu·act device providing connectivity between the instruction
and data processor(s) and the memory hierarchy(ies).

To include pipelined execution in the abstract machine model, each functional unit is labelled

as one out of two types: "simple" or pipelined. In this way, pipelined behaviour, at least on the
inu·a-functional unit level can be desctibed without adding any new functional units.

To distinguish variants or different implementations of a given abstract architecture, a second
level in the hierarchy is included. Parameters relevant to this level are the kind of technology
being used, implementation size etc. To draw an analogy to programming, the second level can
be regarded as the machine seen from an "assembly language" programmer's point of view.

As already mentioned, Skillicorn's model is very similar to Yalamanchili's. In fact, it can be
regarded as an augmentation. From the point of view of my putpose of trying to find or describe

a suitable computer classification scheme, I find Yalamanchili's is best. There are two reasons

for this:

• In my view, a multiprocessing system's interconnection topology is a very
important (if not the most important) aspect of an architecture. The

51

interconnection topology is more emphasized in Yalamanchili's model than
in Skillicom·s.

• The greater level of detail makes Skillicom's model better suited as a
classification tool for existing architectures than a structured method for
searching for computer architectures with certain properties, which is my
intention of looking into architecture taxonomies.

5.2. A new taxonomy

As mentioned earlier, the whole purpose of going through these different architecture
taxonomies has been to find, or if necessary specify, a classification scheme to be used as a tool
for selecting the right architecture to a given application. With that in mind, the hierarchical

model introduced by Yalamanchili represents in my view the best approach to this.

Yalamanchili's scheme has one shoncoming, however. It only covers the aspect of system
communication at the lowest, physical (topological) level. That is, how the valious modules are

physically inter-connected. But system communication is influenced by far more than the
physical interconnections, they only represent roads on which it is possible to drive. The need

for driving, however, is determined by the stream of data and control information through the
system. Therefore, something must be said about the memory and control structures as well.
Y alamanchili' s hierarchical model should therefore be augmented with two more levels to
cover the gap between the PE su·ucture and the interconnection topology:

Memory structure

Seen from an image or signal processing point of view, which is the actual application as far as

this work is concerned, there are two basic configurations of system memory: Shared or
disu·ibuted.

In a shared memory structure, "system data" are conceptually stored in one large memory
structure, accessible in some way or another by all processing elements, PEs. The term system
data means in this context image data as well the conu·ol data suuctures necessary to handle the
shared memory mechanism. The "transfer" of data between two or more PEs are done by

exchanging pointers, no physical movement of the anay of data itself is involved. Whether the

receiving PE chooses to actually u·ansfer the data, as one or several blocks, into a local, on

board memory for easier access dming processing, is a matter of implementation and does not
make it a disuibuted memory system.

Synchronization in a shared memory system is done by some smt of mailbox mechanism: By
writing a message, using a pre-defined format, into a predefined location in the (shared) system
memory, the sending module notifies the receiving module(s) that new data are available. The
location of the actual data will either be predefined or a pmt of the mailbox message format.
The mailbox mechanism is often suppo1ted by a so-called software intenupt, an intenupt is then

issued whenever the mailbox location is written to. Otherwise, the receiving module(s) must

poll the mailbox at regular intervals to see if new data has aiTived.

52

In a distributed memory system, there is no single memory containing all system data. Instead,
the storage of data is distributed over the PEs. Each PE then has a local, on-board storage of the
data that this particular PE needs to do its processing. A distributed memory scheme in an image
processing system therefore inevitably involves the physical movement of large amounts of
data, especially if the same data are to be copied to a number of different receiving modules.

Synchronization in a distributed memory system is done by message passing: Messages of
predefined formats are transferred between the modules involved, either in the way that the
receiver module is notified that new data is about to arrive (issued by the sending module) or as

a request for new data (issued by the receiver module). Messages are transferred directly
between the local memories of the PEs involved, not through any global mailbox system. The

messages can either be transferred as a patt of the data or as a separate entity. In the latter case,
they may be transfetTed on the same physical interconnection medium as the data, or they may
be transfened on a separate interconnection medium dedicated to conu·ol purposes.

Control structure

As far as system conu·ol is concerned, there are two alternatives: Cenu·alized or local control.

Centralized control implies, as the name says, that all PEs are conu·olled by a common
conu·oller module. The meaning of the term "controlled by", however, will to a certain extent

be context dependent and therefore needs some further explanation. In a computer system
consisting of several processing modules, control exists on two levels:

• Control of processing activity (instmction execution) within each module
(inu·a-module conu·ol).

Conu·ol and coordination (i.e. synchronization) of processing activities
between modules (inter-module conu·ol).

One possible implementation of a homogeneous PE system is that all PEs execute the same

program in complete lockstep with each other. This will be the case for a SIMD classified
system [Flynn 66]. The PEs will then probably be of relatively low complexity with a limited
set of insu·uctions. For such a system, the term conu·ol means ''program conu·ol", the control of

instmction execution.

Another type of a homogeneous PE system will be a system where high petformance is aimed

at by distributing the total processing load over a number of identical PEs (CPUs). The PEs will

execute separate patts of the task's code and must therefore obviously have their own program
conu·oller. In that case, the term "conu·ol" is therefore equivalent to inter-module (e.g.
synchronization) rather than inu·a-module conu·ol.

In a heterogeneous PE system, needless to say, lockstep execution of programs is no viable
mode of operation. When dealing with heterogeneous PE systems, therefore, the term control
will unambiguously refer to inter-module control and synchronization.

53

It may be objected that since the control structure classification criteria is context dependent
represents a weakness to the whole classification scheme. In my view this is not the case. It can
easily be handled by augmenting the homogeneous PE branch to explicitly take care of the two
types of homogeneous PE systems, without disrupting the classification scheme as such.

To sum up, computer architectures suitable for image parallel processing will now be
investigated according to a four level, hierarchical taxonomy. These levels are:

The types of Processing elements. Homogeneous or heterogeneous.

Memory structure. Shared or distributed.

Control structure. Centralized or local.

Interconnection topology. Fixed, bus or reconfigurable network.

Finally, it should again be emphasized that the sole purpose of developing this computer

taxonomy was to provide a tool or an investigation scheme to be used in the process of finding
and discussing a suitable (system) architecture for the application in question. Because the

developed taxonomy is qualitative rather than quantitative in nature, it will however not be used
to work out a petformance compadson between the vadous architectural candidates. To do this,
a load model for the application must also have been developed, in itself a comprehensive task

due to the large amount of flexibility and iterative, data dependent processing allowed.

54

55

CHAPTER 6.Selecting an appropriate architecture

Generally, a state-of-the-art system level architecture for real-time image processing should
confirm to the following requirements:

High performance

As far as the ability to do a specific job within a specific time is concerned, petformance is the
key issue. But, performance in this context means more than just processing power from a

single device or a processing element expressed as a number of MIPS or Mhz clock rate. Real
time image processing applications are so complex and have so high performance requirements
that they must be suppmted by a system of processing modules. The actual petformance
achieved from a given architecture is therefore heavily influenced by how well the architecture
is adapted to the application. That is, how well the (system) algmithm is mapped onto the
architecture. Performance is therefore also a function of the way the processing modules are
interconnected, how they communicate with each other and the bandwidth of this

communication. Additionally, petformance is also strongly influenced by the degree of success
by which the total processing load is pattitioned and distributed over the processing modules.

Flexibility

Flexibility with respect to which operations the system is able to petform, is important from
three reasons:

First, developing a real-time image processing system is a very expensive project, in terms of

time as well as personnel. It will therefore be of great advantage if the final product has as many
potential applications as possible. This will improve the chance of eventually getting the
development money back, which again will improve the chance of the project being struted in

the first place.

On the non-commercial side, it is important to have an ru·chitecture that is as flexible as possible

simply because not all applications, or the entire processing suucture, needed to serve a given

application can be predicted at the time of system development. There must always be made
room for "surprises" and new ideas.

What we have been talking about so far, is flexibility as fru· as a system's static configuration

is concerned. That is, how a system is configured to conform to a specific application or set of
applications. This configuration job is done either by the system manufacturer or the personnel

mnning the system. A dynamic configuration capability, however, requires that the system can

be reconfigured "on the fly", with the system up and running and without the manual assistance
from an operator. Physical reconfiguration by changing cru·ds or moving cru·ds to other

backplane positions is then prohibited. Dynamic (re)configuration therefore requires that the

system's processing su·ucture is programmable rather than determined by its physical structure.

56

Scalability

The term "scalability" is used to describe how well the system's performance scales with the

addition of more processing elements. Ideally, the relation between system performance and the
number of processing modules should be linear. When this is not so in nearly all cases, it is due

to several reasons:

• To obtain a linear relation, the added PE(s) must be perfectly balanced with
the original PEs, no PE must be idle at any time. In practice, this is very
difficult to achieve.

• Fmther, adding PEs means that the total computation task is even more
divided, increasing the amount of necessary inter module communication.
This increased communication need goes for exchanging data as well as
synchronization and control infmmation.

Consequently, in addition to reducing the effect of the added PE(s), the increased
communication will also lower the pelformance of the PEs already in the system.

This is an inevitable effect of a multiprocessing system's nature and can

therefore not be avoided.

The most important issue as far as poor scaling is concerned, however, is a product of bad
architectural design: An unsuitable communication system, inu·oducing saturation effects when
adding more processing elements. To avoid this, high perfmmance system communication

should not only be enforced through raw transfer power in terms of Mhz and wide datawords
but equally impmtant through efficient and flexible interconnection and transfer schemes.

Fault tolerance

In the world of computer science, "fault tolerance" is a field of its own, having its own
nomenclature. We will therefore first define some of the established terms used when

desctibing fault tolerance characteristics of computer architectures ([Johnson 1989]):

Fault

Error

Failure

A physical defect, imperfection or flaw that occurs within some hardware or
software component.

The manifestation of a fault. Specifically, an enor is a deviation from

accuracy or conectness. The result of a fault is therefore an etTor.

Non-performance of some action that is due or expected, or the performance
of some function in a subnormal quantity or quality. Therefore, if an enor
results in the system performing one of its functions inconectly, a system
failure has occuned.

The cause-and-effect relationship between faults, etTors and failures are shown in: Faults

results in errors, and enors may lead to systemfailures.

57

.__F_a_u_lt___.l ~ _E_rr_o_r___.l i Failure

Figure 6.1. Faults, errors and failures

A fault tolerant system means that the system is able to continue its operation in a more or less

degraded way even if an error occurs with a system component, without leading to system
failure. This implies that architectures relying on single, non-replicated components vital to

system operation should be avoided. Examples of such components will be centralized system

and bus controllers.

However, fault tolerance must always be paid for in terms of added complexity and cost. By
nature, the electronics added to achieve fault tolerance will be more or less redundant during
normal system operation. Consequently, they will therefore not conu·ibute to the system's
performance. By sacrificing the fault tolerance requirement, this elecu·onics can often be

applied in another way, to increase pelformance. When feasible, the best of those two worlds

are of course to be able to take advantage of the added electronics during normal system
operation (increased pelformance), allowing the petformance to be reduced in case of a

component (module) enor. This is, however, not always possible. Due to this frequent trade-off
between these two prope1ties, fault tolerance and pelformance, the following question must
therefore be answered:

Given the actual application, how tolerant does the system have to be against

component errors?

Obviously, systems for aeroplane control or supervision of oil production will have an entirely

different requirement as far as fault tolerance is concerned than an imaging system for medical
ultrasound diagnostics. In the latter case, a failure will have no other implication than that the
examination will have to be restarted, or in the worst case, be disrupted. No danger either for

man or matelial will be involved. This fact should therefore also be reflected in the level of fault

tolerance chosen, which I for this application will uy to express as follows:

There should be no single component or module in the system who's error

would cause the operator to totally lose contact of the system. In case of a
failure, system diagnostics can then still be run, the fault identified and

corrected. To the greatest possible extent, retrieval of system status

(including image data) prior to the failure should be possible, facilitating

system restart at the point of failure after the fault has been corrected.

58

With the requirements of performance, flexibility, scalability and fault tolerance in mind, what

would then be a suitable architecture for a real-time, image processing system aimed at medical

ultrasound diagnostics? Using the cla~sification tool developed in the previous chapter, the

following architectural sketch can be made:

6.1. The types of processing elements

As explained earlier, the processing elements can be either homogeneous or heterogeneous.

Homogeneous processing elements means that all elements are equal and of the same type.

Consequently, they can be interchanged without altering system operation. Homogeneous PEs

are mostly used in general purpose multiprocessor systems to achieve increased performance

through load disttibution and balancing. Failure of one processing element will only result in a

performance reduction, the degree of that reduction being smaller the higher the number of

processing elements is.

Heterogeneous processing elements are used in systems where each element has its dedicated

function and is specially designed with that in mind. Whatever design technique appropriate can

therefore be used to optimize each and every element with respect to its dedicated function.

Because each PE has its own place in the logical processing chain, the failure of one element

will break the chain and conupt system operation.

From the specifications outlined in chapter 4, it should be fairly obvious that a system

consisting of dedicated, specially designed processing elements will be the most appropriate

basis for a real-time system of this kind. Due to the real-time requirement and the large amount

of data involved, the various algorithms involved must be implemented by dedicated hardware

as look-up tables and custom designed integrated circuits rather than as programs mnning on

some sort of CPU. To implement the system by using general purpose processing elements will

therefore be a very inappropriate way to do it. To obtain the petformance required, each subtask

(algorithm) in the system must then be distributed over a number of processing elements,

resulting in an unnecessary large and complex system compared to the dedicated PE approach.

The system will therefore be based on a collection of dedicated, specifically

designed processing elements.

6.2. Memory structure

As far as how the system's memory structure is concemed, there is basically two alternatives:

Shared and distt·ibuted memory.

6.2.1. Shared memory

The shared mem01y minimizes, at least in the01y, the need for u·ansfening data over the system

interconnection network and thereby reduces the risk for performance degradation due to

network contention. This is because data are "u·ansfetTed" from one processing element to the

next by the exchange of pointers rather than physically moving the bulk of data. However, this

implies that data are read from the shared memory into the PEs dming alg01ithm execution,

using word-by-word transfer modes far less efficient than u·ansfer modes available for bulk data

59

transfer. Of course, the inefficient word-by-word transfer can be avoided by transferring data
from the shared memory to the PE in blocks. e.g. containing one column or row of image data.
The local PE storage will then function as a sort of cache for the data in the shared memory.
Due to the regularity of the data access patterns of most image and signal processing algorithms.

there will in many cases be possible to have the data ready in the local PE memory when needed

by the processing algorithm. In this way. processing can be done at full speed without being
delayed by slow transfers from the global, shared memory.

p p p

I M

p p

Figure 6.2. Shared memory

This scheme will function well under the following conditions:

• A regular access pattern, facilitating the need for specific data to be predicted
long enough in advance to transfer the data from the shared to the local
memory before they are actually needed by the processing algorithm.

• "Neighbourhood" processing. Only a small p01tion of the total amount of data
is needed at a time. The size of the local buffer will grow with the size of the
neighbourhood.

• Each set of data is needed by one PE only. If not, the problem of cache
coherency will occur.

The last point is specially imp01tant: If the same data are to be used by several PEs, aPE cannot

write the data back into the same location in shared memoty after processing. The result would

be an inconsistent data set, containing both processed and unprocessed data. There are two
generally applicable solutions to this problem: static and dynamic partitioning of the shared

mem01y.

Static partitioning

The shared memory is in this case pattitioned into a set of separate memory segments. Each PE
is allocated its own segment into which output data generated by that PE is written. If a PE is

generating more than one type of output data (e.g. a processed image as well as a set of
parameters describing some features of that image), one segment for each data type must be

60

allocated to these PEs. The segments should therefore be of variable size. This partitioning of
the shared memory will then represent a more or less one-to-one map of the logical processing
structure of the whole system, with input and output memory segments corresponding to the
communication paths between the different modules. In other words, it is implementing a

distributed memory structure by the partitioning of one, globally accessible shared memory

module. If iterative processing is to be supported, however, the exact logical processing
structure, and thereby the number as well as the "connectivity" of the memory segments

required, will not be known before run-time. To take care of the time-varying memory segment
requirements created by iterative processing, the static partitioning scheme must therefore be
supplemented by a dynamic memory allocation mechanism.

Dynamic partitioning

In a dynamically prutitioned, shru·ed memory system, the entire memory module is regarded as
one big pool of memory where segments ru·e allocated and deleted as required. Segments ru·e
naturally allocated on request by the PE producing the data by which the segment is to be

loaded. Segment deletion, however, is more difficult to handle. In the most general case, the set
of data contained in a particular memory segment will have several consumer PEs. Further, in

case of iterative processing, each consumer PE may need to read the set of data several times.
A mechanism should therefore be included telling if all the consumer PEs have finished reading
the data or not. The actual segment deletion could then either be petformed by a special "house

keeping" task or the consumer PE being the last to issue the "finished" signal.

To be able to identify the type of data contained in a specific segment, as well as in which
segment to find a specific set of data, a data structure containing these kinds of informations
must also be maintained as a prut of the dynamic partitioning scheme. Needless to say, a
complex logical processing stmcture with iterative processing suppott may yield a very
complicated, and unpredictable, segment structure.

Additionally, because the data transfers are initiated by the PE requesting data, the same data

must be u·ansfened as sepru·ate transfer operations to all PEs requiring these data.

6.2.2. Distributed memory

In a disu·ibuted memmy system, each PE has its own local memmy stming data dming

algorithm execution. This local memory is typically a dual-port memory with one port
connected to the system network and the other pott to the PEs local bus. Because the data
transfer in this case can be initiated by the PE generating the data rather than by aPE requesting

them, data can be transferred to all PEs needing the data as one single transfer operation, using

61

an appropriate broadcast or multicast transfer mechanism. In practice, the load on the system

interconnection network may therefore be less in a distributed memory than in a shared memory

system.

Figure 6.3. Distributed memory

The only possibility I can see for a shared memory structure in a system of this kind, is if each

PE sharing the memory is connected to it through its own communication channel, facilitating

the memmy to be accessed as easy as if it was local to the individual PEs. This will, however,

be prohibitive in terms of cost, complexity as well as lack of flexibility. In a distributed memmy

system, data will therefore be ''nearer" to the PE during processing. Thereby the access of data

will be faster as well as purely local to the PE: No complex synchronizing and protecting

mechanisms are then necessary if several PEs must have access to the same set of data, simply

because they will all have their own copies. Consequently,

the system will be based on a distributed memory scheme.

6.3. Control structure

In a distributed memmy system consisting of a number of heterogeneous Processing Elements

(PEs), each PE will contain its own control unit and execute its own program. To petform

according to a specified algorithm, these PEs must be orchestrated into a complete task force,

requiring some sott of master control. This master control can be either cenu·alized to a single,

dedicated module or distributed over a number of modules.

In a centralized control system, all task synchronization and communication are petformed via

the central conu·oller module. Depending on which module, the conu·oller or the PE, taking the

initiative to the action in question, this is done in two ways:

Controller driven

In this case, the controller is either able to monitor the state of the different

PEs directly by the means of dedicated backplane signal lines or it

intenogates PE status variables at regular intervals. Based on this "map" of

system status, the controller will initiate the appropriate actions.

62

PE driven

With this approach, the PEs themselves will take the initiative to inform the
controller about (a change in) their current status. Based on this information,
the controller will effectuate the necessary synchronization and
communication actions.

In a distributed control system. there is no dedicated control module, at least not on the
(higher) levels of control we are discussing here. Instead, every PE will be equipped with the

means and mechanisms needed to communicate directly with the involved PE(s), that be

exchange of control information for synchronization purposes or transfer of data. The use of a
cenu·al controller for lower levels of control (e.g. bus arbitration and global buffer management)
is, however, not precluded by a disu·ibuted control scheme for task synchronization and
communication.

As emphasized by [Saponas 1980] in his description of the FDPS system (Fully Disuibuted
Processing System), it will be very difficult for a central controller to maintain a consistent and
deterministic view of the status of the different PEs at all times and during all processing phases.
This will be necessary for the central conu·oller to do its job. Futther, this status view collected

by the controller must be communicated down to the involved PEs in conjunction with
synchronization and communication operations. To guarantee all PEs at any time to have a
consistent view of the entire system will therefore, due to the amount of explicit
synchronization necessary, imply a significant reduction in performance compared to the
situation where the PEs were allowed to "run free".

As far as system scaling is concemed, the number of PE pairs being potential candidates for

synchronization and communication will grow exponentially with the number of PEs. So will
also the complexity of the cenu·alized conu·olmechanism. The cenu·alized control approach will
therefore scale very poor when the number of PEs increases. Distinguishing between the
conu·oller and the PE driven conu·ol schemes, this will especially be the case as the conu·ol

dtiven scheme is concemed, which is the "purest" cenu·alized scheme of the two. The number

of PEs in a cenu·ally conu·olled MIMD machine will therefore be very limited.

Another aspect of central vs. disu·ibuted control is fault tolerance. A central controller module

being responsible for all task synchronization and communication in the system will introduce
a very vulnerable point in the architecture. Although fault tolerance should not be exaggerated

as far as this application is concemed, it is nevertheless another factor in favour of a disu·ibuted
conu·ol scheme.

When it comes to the implementation of an actual communication mechanism, disuibuted
systems are in nature very related to the message passing scheme. A feasible alternative to that

would be to do the communication through a set of shared variables, contained in a common,
globally accessible memory. In addition to requiring a dedicated memory module with an

integrated resource manager conu·olling the access of that module, the number of required

variables will grow very fast as the number of PEs increases. The reason for this is that due to
the dissimilarities of the PEs, each (or at least many) PE pair combinations may require their
own set of variables. Another potential obstacle is multicast and broadcast u·ansfers, requiting

63

a number of shared variables, belonging to the PEs to be involved in the transfer, to be updated/

interrogated "simultaneously". To support this, the shared variable access arbitration

mechanism must be augmented by a higher level access control scheme, allowing several
variables to be read or written by one module without being interrupted by other modules. To
ensure this, some sort of test-and-set or semaphore mechanism is required, altogether leading

to a mechanism far more complex than that of the message passing scheme.

The conclusion as far as the system's conu·of structure is concerned must therefore be:

6.3.1.

The system is to be based on a distributed control scheme where the different
PEs themselves, through direct PE-to-PE message passing, are responsible
for taking the necessary actions in conjunction with task synchronization and
data transferring.

Control concept

Up to now, it has been determined that the architecture we are seeking should have the

following key features:

• Heterogeneous Processing Elements (PEs).

• Disu·ibuted memory.

• Distributed control based on a message passing communication scheme.

As far as selecting a scheduling and control strategy for a system architecture having these

features, there are two alternatives: Data driven or demand driven.

Data driven architectures

In a data driven architecture, the natural flow of data is controlling the operation of the system.
Data driven architectures are therefore also called dataflow machines. The key concept of

operation of a dataflow machine [Stini 1980] is that

the execution of commands (tasks) are detetmined by the availability of the
required data (that is, the input operands), and not by the explicit sequence

as specified by some traditional computer language program.

Dataflow computation has for long been a well established region within the field of computer
architecture. It can be said to be based on the following two principles:

• Asynchrony. All operations are executed when and only when the required
operands are available.

• Functionality. All operations are functions; that is, there are no side effects.

The first denotes an execution mechanism where the "program" to execute is specified as a
graph connecting a number of nodes. Each node, representing a particular operation, will

receive its operand data on its input arcs and produce results out on its output arcs, being in tum

64

connected to the input arcs of other nodes. As far as the second principle is concerned, it implies

that any enabled operations (that is, operations having their input data ready) can be executed

in either order or concurrently.

Basically, there are two types of dataflow architectures:

Static architectures

All nodes of a program graph are then loaded into memory before the

computation begins, and at most one instance of a node is enabled for firing

at a time.

Dynamic architectures

A dynamic architecture facilitates simultaneous firing of several instances of

a node, being created at runtime. A loop can thereby be unfolded at runtime

by creating multiple instances of the node representing the loop body. These

instances can be executed concurrently.

Fmther, depending on the grain of computation, dataflow machines can be divided into two

groups: instruction level and task level machines.

Instruction level dataflow machines

Initially, the dataflow concept was introduced to exploit parallelism on the instruction level in

"ordimuy" computer programs: By assembling all input operands required by one instruction

into a packet and tagging that packet with the type of the insuuction (add, multiply etc.), a

scheduler could assign each packet to one out of a set of parallel processing units.

The best known examples of this kind of dataflow computers are the Manchester machine

([Gurd 198011 and 2] and [Watson 1982]), the MIT TTDA computer [Arvind 1987], TIP

([Hanaki 1982] and [Guena 1985]). Today, the largest activity as far as fine grained dataflow

computers are concerned is may be taking place at the Electrotechnical Laborato1y (ETL) in

Japan, known for its SIGMA-I and EM-4 computers [Kahaner 1990].

The problem with the fine-grained dataflow architectures, however, is that the overhead

required for assembling and scheduling the packets tends to outweigh the speed gained by the

parallel execution. The research effott put into fine-grained dataflow architectures therefore

seems to have decreased somewhat during the last years.

Task level dataflow machines

Instead, the activity has tumed to macro dataflow architectures, partitioning the computational

problem into a set of tasks rather than basic instructions. The nodes in the dataflow graph then

represent asynchronous tasks and the arcs connecting the nodes represent communication paths

for the messages (tokens) generated by the nodes or supplied by the external environment. The

dataflow p1inciple is then used for managing these set of asynchronous tasks into a working

computer, solving a specified problem. Compared to instruction level dataflow machines, the

node firing rules will be more complicated for a task level machine. This is due to the fact that

the basic operations in this case may be relatively complex. There will therefore often be

possible to start execution before all operands are available on the input arcs, which is a

65

fundamental rule in instruction level dataflow machines. In addition, the concept of streams

should be included. A node then does not have to wait for an entire data structure to anive, but

may process (fire) as the components of the stream anive on the input arc. In this way, the use
of streams introduces another level of asynchrony in the system. Examples of task (or macro)

dataflow architectures are TOPPSY [Engbersen 1983], DDM [Srini 1986], EDFG [Srini 1986],
PDFP [Sawkar 1983] and DCS [Srini 1985].

6.3.l.b. Demand-driven architectures

In a demand-driven architecture, it is the need for data, and not the availability which triggers
an operation. Each Processing Element (PE) must therefore have a list of which data it needs to

perform a specific task and where (that is, on which other PEs) these data can be found. When
the PE then is ready to start execution, it must go out to these other PEs and request the data. If
the requested data are not "raw" data already received from the environment, but the result of

some intermediate (not yet petformed) computation, this request will in tum cause a new
request to be issued to the PE responsible for producing that result. In this way, an operation
initiated by the system's environment (e.g. the operator) will cause requests for data to be

propagated backwards through the whole system straight up the system's frontend where the
raw data are acquired. Then data will start flowing forwards, following the same path as the
requests but in the opposite direction, until they eventually reaches the user intetface PE making

the original request. A requesting PE must therefore very often wait until data becomes
available. Examples of demand-driven architectures are presented in [Treleaven 1982].

Compared to data-driven architectures, a demand-driven machine will inherently imply a larger

amount of execution overhead to perform the same computation due to the explicit generation
of demands and demand propagation. In addition, the load on the communication system will
be much larger. This is due to two factors:

• Demand and demand propagation messages.

• Less utilization of broadcast and multicast transfers.

In an application of the kind we are dealing with in this thesis, the same data will often be

needed by several PEs. The point in time when the need for these data actually occurs, however,
will most probably be different for the different PEs. This means that the transfer of a set of data
which in a data-dtiven machine would have been petformed as one multicast transfer, in a
demand-driven machine will be done as several single destination transfers, creating extra (and

unnecessary) load on the communication system.

In this author's opinion, a demand-dtiven scheduling strategy is only suited for applications

where the producer of a set of data does not know whether there is actually any use for these

data or not. If it is not, a demand-driven strategy will then prevent an otherwise unnecessary
computation and u·ansfer from taking place. For a real-time system, however, this is not an

actual approach because it is indeterministic in terms of computing time.

To make the picture complete, however, it must also be said that a demand-driven architecture
has one advantage over a data-driven architecture: For the system regarded as a whole, it will
most probably require less buffer space. This is because the modules in a demand-driven system

66

will only receive data when they are ready to process it, no buffering on input is thereby
required. As far as output is concerned, however, the modules are responsible for keeping the

data until they are fetched (consumed) by the next modules in the processing chain. Data must
therefore be buffered on output. For data-driven architectures, the situation is opposite: Data
must be buffered on input, not on output. Because most processing operations will imply a data

reduction of some degree, or at least a one-to-one transformation from input to output, the
required size of an input buffer will in most cases be larger than the size of the corresponding
output buffer. It can therefore be argued that a demand-driven architecture will require less

buffer space than the equivalent data-driven architecture.

In an attempt to combine the best features from the two models, the lesser amount of overhead

associated with the data-driven model and the prevention of useless value calculation and
transfer related to the demand-driven model, hybrid systems have been proposed [J agannathan
1984]. In a hybrid system, the most appropriate of the two models are selected on an individual
sub-computation basis: Whenever possible (and useful), sub-computations are data-driven,
only sub-computations that are only potentially useful are demand-driven. But again, the
indeterministic nature represented by the term "potentially useful computation" has no place in

a real-time system. For a system for off-line data post-processing, however, a hybrid model

could prove useful: A module doing image analysis may, depending on the actual quality of the

image data, need more or less statistical data, produced by another module, to support its
analysis. The co-operation between these two modules, the analysing and the statistical, may in

this case be demand-driven.

As far as the real-time part of the ulu·asound system is concerned, however, being the subject
of this thesis, the conclusion must be:

the scheduling and control strategy is to be based on a data-driven model.

6.4. Interconnection topology

The interconnection topology is the backbone of any processing system. No matter the

processing power of the individual modules, the performance of the total system will suffer if

the way the modules are interconnected is not matched to the communication pattern of the
application. Among all parameters determining a system's performance and "suitability" with
respect to a given application, the interconnection topology is may be the most important.

When u·ying to describe a given interconnection topology, this is often done according to a
number of key characteristics. Some of these characteristics will be universal in the sense that

they are valid and applicable for any communication system, others will be application specific.

That is, they will only make sense for the specific type of system in question.

Universal features by which an interconnection topology can be characterized are:

Transfer rate

The maximum rate by which data can be transfeiTed from one module to
another, usually measured as a number of MBytes/ second.

67

Scalability

A measure, or may be a qualitative expression, of the topology's ability to

support an increased number of modules. Ideally, perf01mance should grow
linearly with the number of modules in a multi-processing system. Due to
required communication overhead, synchronization as well as saturation of
the communication channels, this will never be the case. On the contrary,
systems operating at the limit of their capacity may experience a reduction in
the overall performance when adding one more module to the system.

Flexibility

Just as important to a system's total throughput as the transfer rate of its

individual communication channels, is its ability to adapt to the processing
structure of the application in question. More specific, this adaptability can be
related to

• Smooth scaling, up as well as down. Does the interconnection topology
support any number of modules (at least up to a certain limit), or must the
system be augmented/ reduced in steps of multiple modules?

• How well is the topology suited for hierarchical prutitioning? As the size of
the computational problem is growing, it is often advantageous to prutition
the total system into a hierru·chical stmcture.

• Communication channel utilization. Are the communication channels
statically assigned to specific modules, or can they be regarded as a pool of
resources, allocatable on request? If they are statically assigned, and this
assignment is not well matched to the communication pattern of the
application, petformance will suffer.

• Symmeuy. To achieve maximum flexibility, all modules should have the
same communication capabilities, no matter their position in the total system.
To some extent, this may represent a conflict to the feature of hierarchical
prutitioning.

Fault tolerance

Fault tolerance is always an issue as far as multi-processing systems are

concerned. As already discussed, however, the resources put into fault
tolerance must always be viewed in the light of which consequences a fault
may have, and how the same amount of resources otherwise may be used, e.g.

to increase the system's pelformance.

Simplicity

Needless to say, a simple system will both be cheaper and more reliable than
a complicated system.

68

All these features are selection criteria generally valid for any computer system. Because,
however, the application is known and a coarse outline of the system architecture already have

been sketched (heterogeneous PEs, distributed memory and data flow control), some
application specific features can be added to the universal ones:

Pipeline execution

The total computational job, from the acquisition of "raw" data from the
ultrasound transducer up to the display of those data can logically be divided
into a set of sequential, more or less independent, sub-tasks. The processing
of these tasks may therefore be overlapping in time, organized as a sort of
macro pipeline [Briggs 1982].

Multidestination transfers

Especially at the beginning and at the end of the processing pipeline,

multidestination transfer support (multicast, broadcast) will be impottant to
system performance as well as minimizing the load on the communication
channel(s). In this respect, an interconnection topology where the data
"passes by" all modules will clearly be easier to handle than a topology where
data must be routed explicitly to each of the destination modules. Explicit

routing is more complicated as far as channel allocation is concerned, and an
efficient implementation may also require buffering on the intermediate

nodes.

In view of all these features, both the universal and the application specific, the different
alternatives for an interconnection scheme will now be discussed. Every altemative will have
both its advantages and disadvantages. Because these are difficult to quantify, the individual
features as absolute measures as well as their relative significance by which their quantitative
rating should be weighted, the final selection must be based on a rather qualitative discussion.

Basically, there are two fundamentally different approaches to the implementation of a

multiprocessor interconnection scheme: The shared bus and the interconnection nenvork. In
addition, not logically belonging to any of these, is the multipart approach.

6.4.1. Shared bus

The shared bus is probably the most common interconnection topology, both because it is
simple and because commercially available modules always support a standard bus interface
(see Appendix A). In a shared bus system, all modules (P) are connected to the same set of

signal lines (the bus), by which both control and data information are transfened.

69

p p p

I

p p

Figure 6.4. Shared bus

Because the bus is a resource global to all modules, its use must be regulated according to some

set of generally agreed specifications (module priorities, response time requirements etc.). This

can be done in two different ways.

The most usual approach is to regard the bus as a resource "always" being available to all

modules. When a module wants to petform a transfer, it must ask for permission to use the bus

by issuing a bus request. The request is either addressed to a dedicated bus module called the
bus arbiter (centralized arbitration), or the modules resolve any conflicts themselves without

the assist from a central module (distributed arbitration). If the bus is idle, a bus grant is

momentarily issued (centrally or locally), signalling to the requesting module that it is allowed

to start using the bus. If the bus is busy, the request is coordinated with any other pending

requests according to their relative priorities and the specific arbitration algorithm being used.

Eventually, when the bus becomes idle and no higher priority modules are waiting, the bus is

granted to the requesting module.

The alternative approach is to divide a ce11ain period of time into a fixed number of times/ices.

Each processing module connected to the bus is then allocated its own timeslice, in which the

bus is to that module's exclusive disposal. An example of such a system is the TAMIPS

machine vision system [Viitanen]. The advantage with this approach is simple arbitration logic

and implicit transfer source identification (through the timeslice in which the u·ansfer is done).

A significant disadvantage, however, is that it requires that the system's total need for

communication is evenly disuibuted over all processing modules for the available bandwidth

of the bus to be fully utilized. If not, modules needing the bus must wait for more or less empty

timeslices to elapse before they can start transfening data. Even with all modules having equal

communication needs, it is shown by [Bain 1981] that fixed timeslice arbiu·ation incurs much

higher waiting times than all other bus arbitration algorithms, especially during light load

conditions. The bus is then idle most of the time and a bus request being serviced according to

other arbitration alg01ithms (e.g. First Come First Served, Round Robin, Fixed Priority) will

usually be granted immediately.

70

Speaking in general terms, the shared bus has many advantages: It is simple (and thereby cheap

and reliable) as well as efficient. Because all modules have equal communication capabilities,
it is also very flexible. The fact that all transfers can be simultaneously observed by all modules,
provides an excellent support for multidestination transfers. Several image and signal
processing systems are therefore based on the shared bus approach, among them the PICAP II

system being described in [Danielsson 1980], [Kruse 1980] and [Antonsson 1981].

The shared bus has one significant disadvantage, however, and that is its poor scalability: As
the number of connected modules increases, so will the electrical load on the signal lines and

the maximum transfer rate will thereby decrease. Measured in terms of available bandwidth pr.
module, this will be further reduced when the number of modules increases. To overcome this
problem, several approaches have been taken. In [Vranesic 1991], a system tying a number of
small bus sections together through hierarchical, bit-parallel rings is presented. Another
solution is to use multiple buses, with either all or a subset of the modules connected to each

bus. In the latter case, special gateway modules must be used to connect the buses to each other.

An example of a multiple bus system is presented in [Hasegawa 1981], using two uni
directional buses for the two directions of transfer. As far as bus arbitration is concerned, the
timeslice scheduling scheme is used.

6.4.2. Interconnection networks

In an interconnection network, the communication paths are provided by more or less direct
one-to-one links rather than common access to one or more shared buses. Depending on its

reconfigurability, an interconnection network can either be classified as static or dynamic

[Hwang 1984].

Static networks

As suggested by its name, a static network is made up of dedicated, fixed communication links
connecting the modules. Static networks can be classified according to the dimensions required

for layout. An example of a one-dimensional network is the linear anay, two-dimensional

topologies include the ring, star, tree and mesh networks and the n-cube is a representative of

then-dimensional network. Of these, we will take a closer look at the linear anay, ring bus, star
and n-cube networks.

Linear array

In a linear anay architecture, the global, shared bus is replaced by a number of dedicated one
to-one links, each link connecting one module (P) to its immediate left and right neighbours.

p p p p

Figure 6.5. Linear array

71

Because the communication channel is broken at both ends, the links must necessarily be bi

directional. Compared to a system of uni-directional links, bi-directional links means lower

speed and more complex control. To avoid this, the last module of the linear array may be
connected back to the first. By adding this single link, we then have a 2-dimensional network,

the

Ring bus

Figure 6.6. Ring bus

The communication path is now closed and we can therefore make the links unidirectional.
Because the links are unidirectional, connecting one module (P) to one other module, using the

word "bus" about this connection may seem somewhat misleading. Usually, a bus is used in the
sense of a shared bus, describing a number of modules sharing the same set of signal lines

through open-collector or three-state intetfaces. The term ''ring bus" is however to be used

because it is a commonly accepted and recognized name of this type of interconnection.

Compared to a shared bus solution, the ring bus approach shares many of its positive

characteristics:

• It is simple, implying low cost and high reliability due to the uni-directional
communication link rather than a three-state bus intetface.

• It is symmeuic in the sense that all modules have equal communication
possibilities.

• High degree of utilization even with a non-uniform pattern of
communication.

• Very suitable for multidestination transfers, no explicit routing is required.
The data are transfened to the most remote destination module while copied
"on the fly" as they passes by into the intermediate destination modules.

A N-module ring bus system consists of N separate and independent communication links,

connecting the N modules. The theoretical bandwidth of such a system will therefore be equal

to the bandwidth of each link times the number of links (N). However, this will only be the case

if all modules operate in a carefully balanced and tuned synchronism to each other. Or in other

words, as a SIMD machine (Single Instruction Multiple Data Stream). In our case, with an

architecture more resembling a free-running M/MD-machine with randomly disuibuted

u·ansfers between the different modules, the effective bandwidth will be considerably lower.

72

The exact figure will of course depend very much on the communication pattern and the applied

load model, but works carried out indicates that it will be in the order of one [Gaillat 1983] to

two [Spragins 1979] times the bandwidth of the individual links.

In addition, due to the simplified intetface logic and the reduced electrical load of a ring bus

link compared to that of a shared bus, the achievable transfer rate will be significantly higher.

Compared to a "defacto standard" 21 slot backplane using equivalent technology, a speed

improvement of two to three times is realistic. Multiplied with a concurrency factor between

one and two, a total improvement in performance compared to a shared bus implementation in

the order of 3 to 5 should therefore be achievable. Furthermore, the scaling properties of the

ring bus are much better than that of the shared bus.

In this author's opinion, the ring bus has only one disadvantage compared to the shared bus:

The larger transfer latency. In a N-module system, the average distance between any two

communicating modules is N/2. That is, the transfer must as an average pass through (N/2-1)

intermediate modules before reaching the destination module. The significance of this depends

on the length of the latency time compared to the length of the total u·ansfer time: For large

(block) u·ansfers, the latency time can be ignored while it for single word transfers will be

prohibitive. In our application, this will represent no problem because both data and conu·ol

information will be u·ansfened as larger entities of data (blocks and messages, respectively).

Besides, measures can be taken to reduce the transfer latency: By adding another ring bus

u·ansfening data in the opposite direction, the average transfer latency is reduced to N/4. A

ptiOiity mechanism preventing large data u·ansfers from blocking smaller conu·ol transfers

could further be included.

Star network

In the star network, each module is connected to a central server (the centre of the star) via a

bidirectional link. All communication must therefore go through the central server.

Figure 6.7. Star network

73

To perfonn a transfer between any two modules, two links are needed: The link between the
source (requester) module and the server, and the link between the server and the destination
module. While the status of the fonner is known to the source module, the status of the latter is
not. Before a transfer can take place, the source module must therefore request the server for

access to the destination module. In this way, the transfer procedure of a star network very much

resembles that of a shared bus: Only one transfer can take place at a time (depending on the
implementation of the server), and its use must be regulated by a centrally located resource.

From a fault tolerance point of view, the star is probably somewhat better. Even if the star server
necessruily must be more complicated than the corresponding shared bus arbiter (due to the
switching elements), a single con11pt bus interface can not block the entire communication as
in the case of the shared bus. Another advantage of the star is that the central server may be

equipped with buffers, pennitting high-speed source modules to transfer their data at full speed
regardless of the (lower) speed of the actual destination module. The destination module may

even be busy, temporal storage is then provided by the cenu·al server buffer. In this way, by

enhancing the server from a simple switch into an intelligent buffer, temporal fluctuations in
transfer activity can be efficiently handled. It is also well suited for multidestination transfers.

The problem with the star network is that it does not match the layout of a conventional
backplane very well. An high petformance solution with minimum length communication links
requires some form of cylinder shaped consuuction. Another difficulty is the large number of
potts required on the cenu·al server.

n-cube

Another static network topology is the n-cube. A total of 211 modules, each having n potts, are
connected as an-dimensional cube as shown in Figure 6.8 (n=3).

110 111

100

011

000

Figure 6.8. n-cube

74

In the n-cube, the addresses of any two connected modules will only differ in one bit, and the

maximum distance between any two modules will be n.

As far as the last "hop" in the communication path between any two modules is concerned, there
is n alternatives. Depending on the modules' relative positions, there is also a number of
alternative paths up to this last hop module. Altogether, for a free-running multiprocessor

machine with randomly distributed transfers, the n-cube topology represents a considerable
routing challenge if optimum utilization (minimum transfer distance, maximum number of

concurrent transfers) is to be achieved. The requirement of multidestination transfer support
makes this even harder. On the positive side, the n-cube is from a fault tolerance point of view
very good due to the multiple ports.

6.4.2.b. Dynamic networks

A dynamic network contains no direct module-to-module communication links. Instead,
programmable switching elements is included in the communication paths. By changing the
setting of the switches, the communication paths are rea1nnged. Depending on how this
switching is implemented, we distinguish between single-stage and multistage dynamic

networks.

Single-stage networks

A single-stage network is a switching network for inter-connecting a number of processing
elements. To provide communication paths between N elements, N input selectors (IS) and N
output selectors (OS) are required. Each input selector is essentially a 1-to-D demultiplexer

(l~D~N), while the output selectors are M-to-1 multiplexers (l~M~N).

IS

0

IS

0

IS

0

OS
0

OS
0

OS
0

Figure 6.9. Single-stage network [Hwang 1984]

75

The larger the values of D and M are, the larger the connectivity of the network is. Full

connectivity, that is a direct path between any pair of processing elements, requires D=M=N.

This configuration is called a crossbar system. Because all possible communication paths then
have their own dedicated communication channel, there will in a crossbar system be no waiting
for an available communication channel (but the module at the other end of the communication
channel, however, may of course be busy, causing the data u·ansfer to be defened). Examples
of crossbar systems are the IDA TEN ([Sasaki 1985], [Gotoh 1985]) and BASIS [Andersen
1990] machines.

Because there are no conflicts in a crossbar network, it is providing the highest performance of
any interconnection topology. However, it has a very high cost which may be prohibitive
already for a moderate number of modules. In addition, the high potential performance,

required to justify the high cost, is only utilized in applications where the communication need
is evenly dist!ibuted over the modules. Work has therefore been done in trying to achieve the

same level of petformance at a lower cost by using multiple buses [Lang 1982]. It is there shown

76

that under a certain set of assumptions, aN processor multi-bus system with a number of busses
slightly larger than N/2, provides an effective bandwidth less than 5 percent smaller than that
produced by the crossbar.

Multistage network

By implementing the switching function by a number of subsequent switch boxes rather than a

demultiplexer/ multiplexer pair, we have a multistage network. Each switch is basically a 2-

input, 2-output element with possible functions as shown in Figure 6.10.

:1

... 1 :

--~-~: .. : -

i········· ·····1 :

~~···· :><·····!------+

Straight Exchange

Lower broadcast Upper broadcast

Figure 6.1 0. Multistage network switching element [Hwang 1984]

A four-function switch will support all four functions, while a two-function switch only

contains the straight and exchange modes.

Obviously, an interconnection network, whether it is a single-stage or a multistage network,
will be a very complex unit with a large number of connected signals, and with a

co11'espondingly high cost. To justify this cost, such networks are therefore best suited for
architectures requiring direct, "zero-delay" communication paths between the processing
elements. In other words, SIMD machines, with the processing elements operating in complete

lockstep with each other. For a system consisting of a number of free-running, heterogeneous

processing elements, this cost and complexity can in the author's opinion not be justified.

6.4.3. Multiport

Like a crossbar system, a multipmt machine is based on dedicated one-to-one communication
channels between the different modules. The difference lies in the switching element, which for

a crossbar system is realized as a separate, centrally located switch. In a multi port system, there

77

is no such switch. Instead, the output from all modules are connected to the input of every other

module. In aN-module system, each module must therefore have a N-to-1 multiplexer on its
input. An example of a multi port machine is the FLIP system ([Luetjen 1980], [Gemmar 1982]),
consisting of 16 8 bit Processing Elements, with each element connected to all other by an 8 bit
path.

Due to the similarity to the crossbar, all arguments applied to the crossbar are equally applicable
to the multipart approach: High performance on the positive side, high cost and complexity on

the negative side. Because of the removal of the central switch, a multi port implementation has

better fault tolerance properties than the corresponding crossbar system. Like the crossbar,
however, a multipOit system requires the communication need to be evenly distributed over the

modules to fully utilize the available bandwidth.

Conclusion

To make a conclusion, every interconnection scheme has its own vices and virtues: The

simplest and most flexible is the shared bus, suffering, however, from its poor scalability. On
the other side we have the multipott and interconnection networks, providing the highest
possible petformance but at a prohibitively high cost. A compromise between the two is the ring
bus, with better performance, better scalability, better fault tolerance properties (but to a

somewhat higher cost) than the shared bus. The ring bus' only disadvantage compared to the
shared bus is its long transfer latency, making single word transfers ineffective. In our

application, however, transfen·ing data and control information as packets, this argument has

little or no significance. The conclusion must therefore be:

The architecture is to be based on a ring bus interconnection topology.

78

79

CHAPTER 7.Ring bus specification outline

When describing a complex system, necessarily by using of a lot of more or less familiar terms
and expressions, it is important to be consistent in the use of words. Although it is generally

considered good writing style to vaty the language using synonyms and alternative expressions
when possible, this is not a good idea as far as writing a system specification is concerned. A
nomenclature explaining all vital words and expressions used throughout the ring bus
specification part of this thesis is therefore presented in appendix C The reader is strongly

encouraged to use this nomenclature for reference.

According to the discussion cat1ied out in the previous chapter, the interconnection system
selected for the real-time imaging system presented in this thesis will be a ring bus. Generally

speaking, the interconnection system must provide mechanisms for managing two types of

information flow: Data and control. The distinction between data and control information is
based upon the at"t as well as the amount of the information. All transfers involving bulks of
information will be treated as data information, regardless of the nature of that information.

Examples of such will be image data (obviously), but also program and lookup-table
downloading to the individual modules, even if the latter two according to their at't just as well
could have been handled as control information.

7.1. Data transfer mechanisms

As already explained, a 1ing bus system is based upon !-dimensional, point to point

communication links between each module and its immediate left and right neighbours. Some
people might oppose to the term "bus" being used here, thinking of a bus only in the context of

a shared bus, where all modules ru·e connected to the same physical set of signal lines. As

defined in the included nomenclature, bus can also be used in a much broader sense, which is
adopted here.

Every word to be transfeiTed between a source and a destination module must therefore in most

cases be relayed through one or more intermediate modules, the number of intermediate
modules being equal to the distance between the source and the destination module. The total

transfer time can then be regarded as being equal to the sum of two components:

• The delay through the intermediate modules until the first transfen·ed word
reaches the destination module (transfer laten,~g¥c')l-.-------

• The actual transfer time, being proportional to the number of transfened
words.

The effective communication bandwidth will be equal to the number of words transfeiTed
divided with the total transfer time. To minimize the reduction in effective bandwidth due to the

transfer latency overhead, data should therefore be transfeiTed as packets, each consisting of a
relatively lru·ge number of words. Single word transfers would be extremely inefficient in a ring

bus system.

80

A ring bus system can be unidirectional or bidirectional. In a unidirectional ring bus system,

all information flow is following the same direction along the ring, from source to destination,

no matter the relative position of the two modules involved. In a N module system, the direction

of transfer will be from module ··n" to "(n+ l)modulo N". The average transfer distance

(defined as the number of intermediate modules) between two modules in a N module

unidirectional ring bus system will be N/2, assuming that the need for communication is evenly

distributed over the modules.

Figure 7.1. Unidirectional ring bus system

In a bidirectional ring bus system, however, the transfer can go both ways, to the left as well

as to the right. The transfer mechanisms for the two directions can be operated fully

independently, each ling bus module can therefore pruticipate both in a left and a right direction

transfer simultaneously. Between any pair of source and destination modules, there will exist

two possible transfer paths, one left and one right. Provided that both paths ru·e free to use, the

shortest transfer path should be selected, assuming that no a priori information about the

communication pattern suggesting anything else is available. The average transfer distance in

a bidirectional ring bus system will compared to the unidirectional system be reduced to N/ 4.

A bidirectional system will therefore be more balanced with respect to "forwru·d" and

"backward" transfers, and the average transfer latency will be reduced to the half compared to

a unidirectional system.

Figure 7 .2. Bidirectional ring bus system

81

However, keeping the width of the transfer words constant, a bidirectional system will require

nearly twice the number of signal lines (some control lines may be shared) as a unidirectional

system. An obvious alternative to the use of those extra lines would be to simply double the

transfer word width, keeping the system unidirectional. In theory, both approaches would

double the communication bandwidth. Compared to bidirectional solution, doubling the

transfer word width will have the following advantages and disadvantages:

Advantages

Simple implementation. Bidirectional ring bus transfers requires more
complex control hardware on nearly all levels (additional control signal lines,
more complex arbitration mechanisms and algorithms, larger data structures
to store the current state of the ring bus system etc.). Doubling the transfer
word width of a unidirectional ring bus system, however, has no fmther
implication than simply doubling the number of data lines and its associated
hardware (buffers, FIFOs etc.). The control hardware is not affected at all by
the increased word width.

• Bandwidth pr. transfer doubled. Even if the potential system bandwidth is
equal for a bidirectional and a double word-width/ unidirectional ring bus
system, the double word-width system transfers twice as many bytes pr. time
unit as the bidirectional system does. The bandwidth pr. transfer is therefore
doubled.

Disadvantages

• Increased transfer latency. Due to the fact that the average transfer distance
in aN module uni-directional system increases from N/4 to N/2 compared to
a equal sized bidirectional system, the average u·ansfer latency will increase
co1Tespondingly. The transfer latency is the delay from the transfer starts until
the first u·ansfeiTed word is received by the destination module. When
u·ansfening large packets of data, the u·ansfer latency will for all practical
purposes be negligible. As far as smaller packets are concerned, e.g. for
transfening control information between modules, this increase in transfer
latency can be of impo1tance. This is due to the simple fact that the latency
time will count for a larger portion of the total u·ansfer time the smaller the
number of transferred words is.

• Increased access latency. Access latency can be defined as the time from a
ring bus transfer is requested until it is granted. If the ring bus segments
forming the transfer path from the source to the destination module(s) are not
all idle, the grant will be defened until so is the case. With two alternative
u·ansfer paths as we will have in a bidirectional system, the chance of finding
one available will be larger than with only one path. On the other hand,
however, the double word-width of the unidirectional system will imply that
a u·ansfer of a given size (in bytes) will occupy the 1ing bus segments only
half the time compared to transfening the same amount of data on the left or
the right bus in a bidirectional system. What these two conu·adictory factors
actually sums up to, will be application dependent and have no single answer,
valid for all situations.

82

Taking all factors into account, it is therefore not possible to make a unique decision on which

system to prefer: The bidirectional or the unidirectional, double word-width ring bus system.
The optimum solution will depend on the actual communication need in conjunction with the
physical location of the communicating modules. As earlier explained, the processing path

through the system will be allowed to be data dependent. This will be the situation if the result
of a processing operation must be qualified by some sort of analysing module before the data
(the result) is permitted to enter the next stage in the processing path. In addition to being

application and configuration dependent, the pattern of communication can therefore also vary
dynamically within the same application. From these reasons, simulations will be of little value

as far as choosing between a bidirectional and a unidirectional, double word-width ring bus

system is concerned.

To modify a unidirectional system into a bidirectional system will imply severe changes to the
various ring bus control mechanisms. Doubling the transfer word-width, however, will be a
considerably easier task, only involving a duplication of the hardware involved (signal lines,
buffers etc.). To make room for future enhancements and modifications, the decision taken is
therefore:

For high speed data transfers, a bidirectional ring bus system is chosen,
ensuring a balanced communication capability between the two directions of

transfer. In case of a later demand for higher communication bandwidth, this

can easily be accomplished by increasing the transfer word-width, without
changing the underlying control structure.

7.1.1. Transfer word-width

To comply with available integrated circuits as well as the '"defacto" standard characteristics of
image data, the transfer word-width should be a multiple of 8 bits. Preferably, it should also be
a power of two. The size (in number of bytes) of the data to be transfened is usually a power of

two. If the transfer word-width is a power of two as well, padding of the last transfened word
is avoided. A bidirectional 8 bit system will require 32 signal connections to each module (8 bit

* 2 directions * both input and output), a 16 bit system 64 connections and a 32 bit system 128
connections. Inclusive an additional number of control lines a 16 bit system will fit into a single

96 pin connector, it can therefore be regarded as a suitable basic unit of construction.

The ring bus transfer word-width is chosen to be 16 bit.

7.1.2. Units of transfers

A packet always consists of a header and a data pa1t. The header identifies the sending (source)

module, the receiving (destination) module(s), additional information necessary to identify the
data contained in the data pmt and, in many cases, what to do with it. The data pan contains the
actual data being transfeiTed, the header can therefore be regm'ded as a so1t of necessary

"bureaucracy'' to get the data u·ansfened.

83

The packet size is the sum of the header and the data part size. When changing the packet size,
the size of the header will remain constant. The change will therefore be in the size of the data

part. Accordingly, a suitable packet size will be a trade-off between:

• High effective bandwidth. The effective bandwidth is equal to the number
of data bytes transferred divided by the packet transfer time. The larger the
data part is compared to the header, the higher the effective bandwidth will
be. For a ring bus system, the transfer latency also makes large packets
advantageous as far as high effective bandwidth is concerned.

• Short ring bus access latency. Assuming that an ongoing packet transfer can
not be intenupted, large packets inevitably implies that other modules
requesting access to the ring bus must wait longer to get their requests
granted. The larger each packet is, the longer the ring bus access latency will
be.

When determining the packet size, the logical structure of the data to be transfeiTed should also
be considered. In our case, the bulk of data will be ultrasound image data. Each ultrasound
image is acquired as a number of beams, with each beam consisting of a number of samples.

(/)
PJ
3
"0
ro
~
0

Beam no.
0 1 N-1

. . .

M-1
~~~~~~~----------------~ 

Figure 7.3. Ultrasound image data organization 

If the processing of an image must be distributed over several processing elements (PEs) due to 

the amount of processing power necessa1y to comply with the real-time requirement, beams 
will constitute the natural dividing lines. Preferably, a packet should therefore contain an 

integral number of beams, or the transfer of one beam should fill an integral number of packets. 

In addition to the aspect of sharing the processing load, this will also be advantageous with 
respect to the PE hardware design: Local address calculations, data buffering and memory 



84 

segmentation. All these issues will be easier to implement if the packet size is tuned to the 
logical structure of the data. For several image processing algorithms (e.g. Fast Fourier 
Transforms FFf, edge detection algorithms), the beam will also be a suitable macro-unit of 
operation. 

One beam in a medical ultrasound image will typically consist of 512 bytes, equal to 256 
transferred words in a 16 bit ring bus system. Due to the uninterruptable nature of a packet 
transfer, this is too much to transfer as one packet. I therefore choose to divide one beam of 
image data into two packets. 

7.1.3. 

Data are transferred in packets consisting of 256 bytes ( 128 transferred 
words) of data. In addition comes the packet header. 

Data transfer modes 

To obtain effective system communication, it is important that the transfer modes available for 
moving data from one module to another is adapted to the characteristics of the underlying 
communication system as well as to the application's communication pattem. Due to the nature 
of a ring bus system, the only type of transfer in question is the block or packet transfer. Single 
word transfers will imply an intolerable overhead due to the access and transfer latencies. 

When ultrasound image data enters the system from the frontend, the same data are in many 
cases to be transfened to several destination modules: One module may petform some sort of 
preprocessing removing noise or adjusting the contrast of the image. Another may do a 
statistical analysis of the data with the purpose of computing filtering parameters to be used by 
a module at a later stage in the processing path. A third module may store this (original) image 
data for later retrieval and replay. It will be a waste of communication bandwidth to transfer this 
data as separate transfer operations to each and every one of the destination modules. By 
transfetTing the data to the most distant destination module, counted along the direction of 
u·ansfer, the intermediate destination modules can make their own copies of the data on the fly 
as the data passes by. Provided available buffer space, this eavesdropping mechanism will 
imply no u·ansfer speed penalty compared to not making intermediate copies. 

Transfer modes supporting multiple destination transfers will therefore be of 
vital importance to overall system pnformance. 

There are two types of multiple destination transfer modes: 

Multicast. The simultaneous transfer of data from one source module to several (but not all) 
other modules. 

Broadcast. The simultaneous transfer of data from one source module to all other modules. 

Broadcast is most often used for transfening conu·ol information (reset, intenupt disable etc.) 
from a conu·oller to its slave modules, transfening the same data to all other modules is a more 
unusual situation as far as data transfers are concemed. Multicast transfers, however, will be 
vety useful for the u·ansfer of both conu·ol as well as data information. 



85 

7.1.4. Data butTering 

Each module will have a limited amount of local buffer space, large enough to handle temporal 
fluctuations in the real-time flowing stream of image data. However, due to the data dependent 
processing feature, involving iterative processing until some quality criteria is met, the stream 

of data is no longer fully predictable. There will then always be a chance of the local buffers 

going full. A handshake mechanism must therefore be established ensuring that data is not 
transferred to a destination module unless it is able to take care of it. How should the situation 
where a module is not ready to accept new data, especially in connection with multiple 
destination transfers, be handled? 

There are three possibilities: 

Wait until all ready. The entire transfer operation is postponed until the destination module 

(all destination modules) are ready to accept the data. Whether it is some controller's or the 
sending module's responsibility to initiate a transfer reu·y, is a matter of discussion. Until the 
u·ansfer can be executed, the data must be kept in the sending module's local buffer. 

Transfer when module is ready. In case of a multiple destination u·ansfer, the busy module(s) 
are deleted from the destination list and the transfer is done to the remaining (not busy) 
destination modules. As far as the busy modules are concerned, a reu·ansfer must be done when 
those modules become idle. Implementation issues like whether to reu·ansfer the data to a 
destination module as soon as it becomes idle, or to wait until all remaining destination modules 
become idle so that only one reu·ansfer is required, will be discussed later. The same applies to 

whose responsibility it is to initiate the reu·ansfer(s). Regardless of the chosen strategy, the data 
must be stored in the sending module's local buffer until it is successfully transfened to all 
destination modules. 

ButTer data for modules not ready. The busy module(s) are removed from the destination list 
and the address of a buffering module capable of storing the data being u·ansfened is added to 

the list. The u·ansfer operation is executed, then it is the responsibility of the buffering module 

or a conu·oller to retransfer the data to the busy modules whenever they become idle. 

There is one important difference between the first two methods and the third: As far as the first 

two are concerned, it is the responsibility of the sending module to buffer the data until the 
u·ansfer operation is complete (that is, the data have been u·ansfened to all destination modules). 
If this buffering fills the module's available buffer space, this will block for incoming u·ansfers 

and a chain reaction of busy modules may statt to propagate backwat·ds the processing path, 

towat·ds the data acquisition module(s). Due to the iterative processing feature, this will create 

a great danger of system deadlock. 

By using the third method, however, the sending module's local buffer is released when the data 

are transfened, whether it is to the destination module(s) originally requested or some 
intermediate buffer. The sending module is then free to accept new data. The need for extra 
buffer space will, depending on the type and amount of processing being done, be unevenly 
disu·ibuted over the modules. Due to the data dependent processing, the amount of buffer space 
required, and where it is needed, will also Vat)' dynamically. It will therefore be a fat· better 

solution to have one lat·ge buffer, accessible as a global resource to all modules, than to 



86 

distribute the same amount of buffer space over all modules resulting in a static and inflexible 
configuration. Not burdening the sending module with the responsibility of data buffering and 
retransfer to busy destination modules, is also more in accordance with the principles of data 
flow computing: When a processing element has executed its operation and a result is 
computed, its only responsibility is to deliver that result to some controller module. The 

controller then transfers that result, along with any other data needed, to the next processing 
element in the data flow path where it will be used as operands for that processing element's 
operation. Conclusion: 

7.1.5. 

Data buffering is done in a global buffer resource, accessible by all modules. 

In case of any busy destination modules, the data transfer to those modules 

are readdressed to the buffer module, thereby releasing the sending module 
for the responsibility of storing and retransferring the data. A protocol with 

an underlying hardware mechanism supporting efficient handshake between 
controller and processing elements as well as destination address remapping 

must be developed. 

Signalling protocol 

When u-ying to set down the specifications for an appropriate signalling protocol, the first issues 
to be discussed are: The type of synchronization scheme to use to maintain proper timing 
relationships between the module supplying and the module receiving the data and the 
handshake protocol between the two modules ensuring that no data are lost during the transfer 

process. 

Synchronization schemes 

Basically, there are two fundamentally different ways to implement the synchronization 
mechanism, centralized-synchronous and source-synchronous: 

Centralized-synchronous 

All signal timing is then refened to a cenu·al clock source. In the Ring bus system, this clock 

may be global to all modules or local to each Ring bus segment. 

With a clock global to all modules, the perception of the clock on each module will be subject 
to spatial skew: It will not be Ul!ly simultaneous from module to module. It will therefore be an 

uncertainty in the timing relationship between the clock signal and the data which timing is 

refetTed to that clock. This is caused by spatial separation of the two signal sources, the clock 
is generated by a cenu·al clock generator while the data is supplied by any one out of the Ring 
bus modules. The minimum spatial skew for a cenu·alized-synchronous backplane, occuning 

when the clock generator is localized in the middle of the backplane, is one end-to-end 
backplane delay. In addition to the skew inu·oduced by the physical separation of modules, there 
will also be a skew component due to the inter-device skew between clock receivers, obviously 

located on physically distinct devices on the different modules. 



87 

If the clock is local to each Ring bus segment, the spatial skew will be reduced due to the 
reduced geographical distance between the (two) modules involved. Besides, because a Ring 
bus segment is a uni-directional one-to-one link, it must necessarily be the same module which 
supplies the data as generates the clock. As far as the electrical characteristics are concerned, 
they will therefore be as for the source-synchronized scheme. 

Source-synchronized 

In a source-synchronized timing scheme, there is no central system clock to which signal timing 

is related. Instead, the module supplying the data onto the bus also emits a synchronizing signal 

to which the timing of the data signals is related. Because the synchronization and the data 
signals are now emitted by the same physical module, the spatial skew is significantly reduced. 
It can not be totally eliminated, however, due to the potential different load conditions for the 
synchronizing and the data signals as well as inter-device skew between physically distinct 
devices. Examples of source-synchronized protocols can be found in various asynchronous 
buses. The VMEbus [Motorola 1985], for instance, uses source-synchronization for its address 

as well as its data signals, each having its own synchronization (strobe) signal. 

In summary, an inherent charactetistic of a centralized-synchronous clocking scheme is an 
uncertainty in timing relationship between the synchronizing signal (the clock) and the signals 
to be synchronized (the data). This uncettainty, called skew, will limit the maximum speed by 
which data can be transferred. The only reason to use a centralized-synchronous clocking 

scheme is that intetface design is simplified. To accommodate for slower modules or modules 
temporatily busy, a wait-state protocol must be included. This will inu·oduce petformance 
degradation in terms of reduced u·ansfer speed in discrete steps, inserting one or more wait

states. A cenu·alized-synchronous clocking scheme with clocks local to each Ring bus segment 
will, as in fact implied by the name, be a sort of self-contradictory solution. The simplicity of 
the central clock is lost, and nothing is gained compared to the source-synchronous scheme. On 

the contrary, more control signals are needed to implement the centralized-synchronous 

scheme. Another issue is that there is no reason whatsoever to force two otherwise totally 
independent modules to synchronize to a common clock only to transfer data between them. 

Conclusion: 

The transfer of data on the Ring bus will be implemented by a source

synchronous transfer scheme. 

7.1.5.b. Handshake protocols 

Having selected the source-synchronous u·ansfer scheme, there m·e two possible protocols for 

implementing handshake between the two modules involved in the u·ansfer: The compelled and 
the non-compelled protocols. 



88 

Compelled protocol 

The basic idea behind the compelled protocol is that no module is required to have any explicit 
knowledge about the timing requirements of the module it communicates with. Instead, the 
speed of transfer is dynamically adapted to the speed of the communicating modules. 
Asynchronous buses like the VMEbus [Motorola 1985] operates in this way. 

The advantage of a compelled protocol is that the sending as well as the receiving module is in 
full control of the transfer. Timing is dynamically adapted to the two participating modules. The 

inevitable disadvantage, however, is that the speed of transfer is limited by the round-trip delay 

introduced by the handshake protocol. 

Non-compelled protocol 

To avoid the speed penalty introduced by the handshake round-trip delay, the receiver module 

must abandon its power to dynamically control the speed of transfer as it does with the 
compelled protocol. Instead of having a handshake signal acknowledging every transfer, the 
u·ansfer speed must not exceed a maximum value, included in the protocol's specification, 
which all modules must be capable of handling. The non-compelled, source-synchronized 

protocol is in many senses like the cenu·alized-synchronous protocol except that the source of 
the synchronizing signal (the ''clock") changes with time. With the former, however, the 
u·ansmitter of data emits both the synchronizing signal and the data. Another difference is that 
a non-compelled u·ansfer is not constrained to follow a single, periodic data rate but can 

dynamically slow down. A non-compelled transfer mode is included in the Futurebus 
specification [IEEE 1987]. 

However, the lack of receiver control of the transfer may in certain cases cause the maximum 
transfer speed to be set to a lower limit and/or the units of u·ansfer (packet size) to be decreased 
compared to a situation where the receiver dynamically is able to conu·ol the u·ansfer speed. To 
achieve maximum petformance without reducing flexibility, the key issue is therefore: 

How can the receiver be made able to control (that is, slow down) the transfer 

without sacrificing maximum transfer speed? 

This can be done if the receiving module does not require an instant response to a slow down 

request, but can handle a few words (typically one or two) being u·ansfened after the request 

has been issued. In other words, the receiving module must be able to issue an ''early warning" 
when its internal buffer is about to go full, early enough to give the u·ansmitting module time to 
react and hold the transfer until the receiver eventually signals that the transfer may continue. 

By using FIFOs or RAM-based ling buffers to buffer data input to a module, this can easily be 
accomplished. In this way, the receiver will be in full control of the u·ansfer even if it is done at 

full speed as long as there is buffer space available. Conclusion: 

Data transfer should be based on a modified, non-compelled transfer 

protocol. The modification consists of a "transfer hold" mechanism making 

a receiving module able to freeze the transfer when or if its internal buffer is 

about to go full. 



89 

7.1.5.c. Signalling schemes 

As described by Charles L. Seitz in his chapter "System Timing .. in [Mead 1980], there are two 

alternative signalling schemes in self-timed systems: Four-phase (RZ) or two-phase (NRZ) 
signalling. 

Four-phase (RZ) signalling 

In a system using four-pha<;e, or Return-to-Zero, signalling, signals must return to an inactive 
state between each time they are asserted. This is the signalling scheme used by most modern, 
industrial buses (VMEbus, Multibusii, NuBus etc.) and tends to result in a very simple and 

natural implementation. Actions are only related to one of the two signal transitions, usually the 
falling edge when the signals changes from a high to a low value. Because the names "four
phase" and "two-phase" is detived by counting the necessary phases for transfeiTing one word 

using a compelled mode transfer scheme, such a transfer is used to illustrate four-phase 
signalling as shown in the following timing diagram. 

Strobe* ~~-;-J/i \._ __ _, 

Acknowledge* ; , I ..______.r--
Data (O:n) tr\:;d..i:fi,J:i:,_.%1.aifu:;;-, .1-)

1
~

3
...;

1
L

4
---i~( d~j~~<il{d ) 

Figure 7.4. Four-phase (RZ) signalling 

Two-phase (NRZ) signalling 

With two-phase (Non-Return-to-Zero) signalling, both transitions of the signals, the rising and 

the falling edge, have the same meaning. Two-phase signalling is therefore also called 

transition signalling [Sutherland 89]. The same timing sequence as used to illustrate four-phase 

signalling, but now implemented by two-phase signalling, is shown in Figure 7.5. 

Strobe* 

Acknowledge* .___ _ __,( 

Data (O:n) 

2 

Figure 7.5. Two-phase (NRZ) signalling 



90 

Compared to four-pha<;e signalling, two-pha<>e signalling only uses half the number of signal 

transitions to signal a certain action. Because there are time and energy costs with driving a 

transition onto a wire, generally speaking it is advantageous to use as few transitions as possible 
in self-timed signalling conventions. All responses to transition signals are edge-triggered, and 
triggered both on rising as well as falling edges. Due to the fact that both edges are used as 
trigger events, transition signalling may offer twice the speed potential of the conventional, 
four-phase clocking scheme. To my knowledge, only Futurebus [IEEE 1987] of today's digital 
buses uses a two-phase signalling scheme. 

Two-phase signalling is the optimum scheme as far as speed and energy efficiency are 
concerned. This must be paid for, however, by a more difficult and costly implementation: 

Because logic devices tend to be sensitive to logic levels or transitions in a particular direction, 
extra logic is required to make the interface implementing the two-phase signalling scheme 
symmetric with respect to signal transitions. Nevertheless, 

To achieve maximum transfer speed, the source-synchronized, non
compelled mode synchronizing signal is implemented by using two-phase 

signalling. 

Because it is to be regarded as an exception event, it is nothing to gain by implementing the 
already desctibed "u·ansfer hold" line by two-phase signalling. A simple level-sensitive 
mechanism will suffice. 

7 .2. Control transfer mechanisms 

Depending on the level of conu·ol, the control mechanisms required to handle a ring bus system 
as desctibed can be divided into two groups, micro- and macrolevel control. 

7.2.1. Microlevel control 

This is the low level conu·ol mechanisms managing the various hardware resources in the 
system. They are implemented by the use of dedicated hardware, either cenu·ally located (on the 

conu·oller) or disu·ibuted over the processing elements. The microlevel control mechanisms 

required to run the ring bus system are: 

• Ring bus access control. 

• Module handshake, including destination address remapping. 

• Packet reu·ansfer. 

• Exception handling. 

Ring bus access control 

As already explained, all modules are connected to their immediate left and right neighbours by 

a ring bus. Each ling bus segment connecting two modules is a unidirectional point-to-point 

link. To transfer data between two modules, all intermediate segments must be available for the 



91 

transfer to take place. The ring bus must therefore be regarded as a global resource, whose 

access and use must be controlled by some sort of arbitration mechanism. Two main approaches 

to sharing this kind of resource are available: 

Time slot scheduling 

In aN-module ring bus system, the bus is allocated to each of the modules liN of the total time. 

The allocation is done on a round robin (circulating) basis, controlled by a global clock and a 

global counter, whose value is visible by all modules: At any moment of time, the module 

having the identity (address) equal to the counter's current value, has the bus to its disposal. 

Alternatively, the time slot scheduling mechanism may be implemented as a sort of circulating 

baton (the short stick used in relay races) or token passing procedure. The module currently 

having the baton (token) in its possession has access to the bus. 

0 1 2 N-1 0 

time 

Figure 7.6. Time slot scheduling 

Because the actual data transfer is done during a module's time slot, the size of the time slot 

must at least be equal to the time needed to transfer one packet. The data transfer from any 

module is then fixed to certain periods of time where the module has exclusive disposal of the 

bus. An arbitration mechanism of its own is therefore not necessary in this case. However, due 

to the length of the timeslots involved, this will imply a prohibitively large access latency. 

Time slot scheduling, especially with the length of the time-slots involved in this case, therefore 

has the major disadvantage of being ineffective in non-symmetrical load situations, where the 

need for doing data transfers are unevenly disttibuted over the modules: Time-slots belonging 

to modules not requesting data transfers still have to elapse before the baton can be passed on 

to the next module along the scheduling line. 

Request when needed 

Alternatively. the ting bus system may be regarded as a common resource to be requested and 

used by a ring bus module whenever it has a need for it. Compared to time-slot scheduling, this 

will imply a far better utilization of the available bandwidth when the modules have unequal 

needs for doing data transfers, which will be the general case in a system as flexible and 

reconfigurable as this is intended to be. Conclusion: 

Ring bus access and use is to be based on "request-and-use-when-needed" 

principle. 



92 

However, this means that a dedicated ring bus arbitration mechanism is needed to control the 
access and use of the bus. When designing this kind of mechanism, several important issues 

must be addressed: 

• Efficiency. The process of requesting and granting the use of a resource must 
in nature be regarded as an overhead, decreasing the overall performance of 
the system. It is therefore important that this process is as efficient as possible, 
preferably taking place in parallel with the data transfer itself. 

• Fairness. The selected arbitration mechanism must ensure that each module 
competing for the bus get its fair amount of bus usage. What is "'fair" will be 
application and system dependent: In some systems, some of the modules 
may have a more urgent need for bus transfers, for instance by being subject 
to hard real-time requirements, than other modules. They must therefore be 
given priority to as far as bus usage are concerned. In other systems, all 
modules are symmetrical with respect to their communication needs. ''Fair" 
in that case therefore means that all modules should get equal shares of the 
available bus bandwidth. 

• Flexibility. With reference to the above discussion, the "fairness" criterion 
may be dynamic rather than static: It may change according to the cull"ent 
operating mode of the system. The arbitration algorithm, including the bus 
allocation philosophy and the fairness criterion, should therefore preferably 
by programmable rather than hardwired into fixed logic and backplane signal 
lines. 

• Ease of implementation. Needless to say, the lesser amount of hardware 
resources (signal lines, electronics) necessary to implement a given function, 
the better. 

Having those four ptincipal guidelines in mind, we will now discuss some of the most important 

issues in arbiu·ation mechanism design: 

The hemt of every m·bitration mechanism is a logical, functional unit called the arbitration 
controller. Physically, the m·bitration controller may be either centralized to one module or 

distributed over several (all) modules. When a ring bus access request is issued, the m·biu·ation 

conu·oller must decide whether to grant or reject that request. To be able to do that, two kinds 
of information must be available to the conu·oller: 

What is the current state (busy or idle) of the ring bus segments required to 

take part in the transfer? 

Because any ring bus segment can handle only one transfer in each direction at a time, a busy 

segment will block for another transfer through that segment until the first transfer is released. 
It is therefore necessm·y for the conu·oller at any time to have a complete, consistent picture of 
the state of all ring bus segments. 

Benveen which t\Vo modules (source and last destination module) are the 

transfer to take place? 



93 

A module requesting access to the ring bus must therefore identify itself as well as the last 

destination module down along the transfer path. As already discussed, however, we will use a 
bidirectional ring bus. In case of a multiple destination transfer (multicast), the "'last destination 
module" will then depend on the direction of the transfer. The requesting module must therefore 

either specifically ask for a particular direction of transfer, or it must supply a complete 
destination list to the controller, which then will be able to figure out which module will be the 
last destination module for a given direction of transfer. The best solution will to a certain extent 
depend on whether a distributed or a centralized controller implementation is chosen. 

Distributed arbitration controller 

In this case, the controller function is distributed over all modules with no centralized storage 

of a system state vector. A protocol must therefore be included where the source module asks 
all modules to be involved in the transfer (destination module(s) as well as intermediate 
modules), if they are able to participate in the transfer (that is, whether they are idle or not). This 

may easily lead to requested transfers being blocked unnecessarily when several requests are 
issued by different (source) modules at the same time. This is shown in Figure 7.7. 

Q) 

E 
-~ 

Figure 7.7. Multiple request situation 

The first request (5 to 7) is immediately granted while the second ( 1 to 6) will be defened until 

the first transfer is terminated. The third request (2 to 4), however, will also be blocked because 
segments 2 to 4 already has been allocated to the defened second request. This request may 
have been granted and the transfer petformed in parallel with the 5 to 7 transfer. One solution 

would be to demand requests which can not immediately be granted to be withdrawn and the 

already allocated ting bus segments released until a later point in time. They will then not cause 
other requests with all required segments actually available to be rejected. However, an 
inevitable side-effect of such a scheme would be that long transfers would expetience a lower 
bus usage priority than shott transfers, mnning the risk of being blocked entirely by two 
alternating short transfers. With the arbitrating function distributed over all (requesting) 
modules, it will be very difficult to implement a mechanism being both fair and efficient. In 
short, the mechanism needed to implement a distributed arbitration controller will be both 

complex and time-consuming, and may yield less than optimum petformance as far as bus 

usage faimess and efficiency are concerned. 



94 

Centralized arbitration controller 

The controller function is in this case located on one single module, presumably a local 

controller. Because all requests then are serviced by the same physical module, a state vector 
showing the current state of all ring bus segments is easily maintained. When servicing a 

request, it is then not necessary for the controller to go out and ask the segments to be involved 

in the transfer whether they are busy or not, this information is already in the state vector. 
Further, because the controller function will reside on the same module all the time, it is 
possible to use dedicated backplane signal lines instead of a software protocol for implementing 
the necessary handshake between the controller and the ring bus modules. In practice, this is not 
possible when the controller function is distributed over all modules. Needless to say, an on
module accessible state vector together with hardware handshake lines means a significantly 

faster request service than what obtained by the software based scheme described for the 
disu·ibuted arbiu·ation controller. Another benefit of servicing all requests by one single 

conu·oller module is that there is then no danger of system inconsistency leading to possible 
deadlock situations where two (or more) modules are blocking each others request. 

From this discussion, the following conclusion should be fairly obvious: 

The arbitration mechanism for controlling the access and use of the ring bus 

system should be based on a centralized arbitration controller. 

Because the arbiu·ation controller at any time will have a complete, general view of the state of 

all ring bus segments, it will be better to let the controller decide whether to perform a requested 

u·ansfer on the left or the right ring bus instead of having the source module to ask for a specific 
transfer direction. This implies that the controller must know the complete list of destination 
modules, or at least the destination modules to the immediate left and right of the source 
module, prior to granting a request. If both transfer paths are available for servicing the request, 
the conu·oller should choose the shortest one, assuming that the need for communication is 
evenly distributed over all modules. 

However, to transfer the necessary arbitration information (identity of requesting module, 

destination list) to the conu·oller, a communication channel other than the ring bus would be 

desirable. Although the arbitration information could have been transfened on the ring bus 
using the control packet scheme as described in Section 7.2.2., this would lead to poor 
performance due to the transfer latency. Because of the small amount of data involved, an 

ordinary shared bus will be the simplest and most effective way of u·ansfening the necessary 
arbitration information. Because this information will be a list of addresses, this shared bus will 
be called the address bus. In addition to a (small) number of data lines required to specify 
module addresses (M = log2N for N modules, a single line is needed to signal when the bus is 

busy 

The required address information to be supplied by a source module, 

requesting the ring bus, to the controller, is to be transferred to the controller 

by a dedicated, shared bus called the Address bus. 



95 

Figure 7.8. Address bus 

Like the ring bus, the address bus itself will be a resource global to all modules and must 

therefore have an arbitration mechanism of its own. No matter whether it is a shared bus or a 
ring bus which is the global resource to arbiu·ate for, the four principal guidelines for arbitration 
mechanism design already discussed is still valid. We will now take a look at the various 
alternatives for implementing the address bus arbitration mechanism: 

Time slot scheduling 

Time slot scheduling can also be used for bus arbiu·ation purposes, rather than for doing actual 
data transfers. Due to the reduced amount of required information involved in a bus arbiu·ation 

rather than a data transfer process, the length of each time slot may in this case be considerably 
shortened, resulting in reduced access latency compared to data u·ansfer time slot scheduling. 
Time slot scheduling can therefore be said to be an approach better suited for doing bus 
arbitration than u·ansfening relatively large amounts of data. As already discussed, to keep track 
of the module cun·ently possessing the time-slot, an actual implementation must be based either 

on a global counter or a circulating baton. 

However, even though somewhat reduced due to the shorter length of each time slots, time slot 
scheduling has still the major (and inevitable) disadvantage of being ineffective in non

symmeu·icalload situations. This is because time slots belonging to modules not requesting data 
transfers have to elapse, wasting communication bandwidth due to the idle bus, before the next 
module along the line can request the bus. 

Request/ grant arbitration 

This mechanism is based on a number of backplane signal lines upon which a protocol is built 
whereby a module can signal its need for doing a bus u·ansfer. Several implementations are 
possible with this scheme: 

Single line request. The simplest approach is to let all modules share the same bus request line. 
Each module must then be connected to this line through an open-collector like interface, 

permitting simultaneous assertion by several (all) modules. The assertion of the shared request 

line is detected by a cenu·ally located arbitration controller. Due to the use of a single line, the 



96 

controller is unable to determine the identity of the requesting module. The grant is signalled to 
the modules through a dedicated bus grant line. To be able to handle a situation with several 
simultaneous requesting modules, the bus grant line must be daisy-chained from module to 
module. A module not requesting the bus will pass the grant signal to the next along the chain, 
while a requesting module will remove the grant signal and start using the bus. In case of several 

simultaneous requesting modules, the modules will therefore have mutual priorities according 
to their placement relative to the arbitration controller: The nearer the controller, the higher the 
priority. 

Arb. 

Control 

Grant 

Figure 7.9. Single line bus request mechanism 

An obvious deficiency with this mechanism is that it is impossible for the arbitration controller 

to know the identity of the requesting module. Consequently, it is also impossible to implement 
arbitration algorithms giving different priorities to different modules, or algorithms ensuring 
equal treatment of all modules. Due to the method of resolving conflicts in case of simultaneous 

requests, heavy load situations may imply a great danger of starvation for the modules having 
the lowest priotities (that is, the modules furthest away from the controller). This will be totally 

beyond the control of the arbitration controller. In addition, the single line request/ grant 

mechanism will be slow due to the long bus grant daisy-chain line. 

Multiple line request. Extending the described single line request/ grant scheme to a 
mechanism where the requesting module is identified, every module is required to have its own 
bus request line. As far as bus grant signalling is concerned, one solution is to let every module 
have its own grant line as well. Alternatively, a single, shared bus grant line can be used in 

conjunction with a relatively small number of lines coding the identity of the module being 

granted. Knowing the identity of the requesting module and being able to grant each module 

individually makes it possible to implement any arbitration algorithm. The disadvantage with 
this approach, of course, is the large number of backplane signal lines required. 



97 

Arb. 

Control 
0 1 N-1 

-
N N 

Request 

Grant 

Figure 7.1 0. Multiple line bus request mechanism 

The compromise. A compromise between the two methods would be to partition the modules 
into several groups, each group having its own request/ grant signal line pair. By assigning 
different priorities to each group, either on a fixed or a rotating basis, different arbitration 

algmithms can be implemented. Simultaneous requests from several modules within the same 
group is resolved by daisy-chaining the bus grant lines. 

Distributed arbitration 

In contrast to the centralized request/ grant mechanism, where bus usage is regulated by a 
central arbitration conu·oller, a disu·ibuted arbiu·ation scheme has no such controller. Instead, 
every module is able to observe all bus requests issued by all modules as well as the identities 

of the requesting modules. This is possible by assigning each module one or a set of arbitration 

codes, each one being unique to a specific module. Implicit in the arbitration code value is also 
a request piiority. With several simultaneous requests, a module is therefore able to decide 
whether the highest priority request is its own request or if it is a request from another module. 

In that case, the module having the lowest priority will withdraw its request. Eventually, only 

the module having the highest priotity request will remain requesting the bus. The disuibuted 

arbitration scheme is desctibed in Appendix B. 



98 

0 1 2 N-1 

M M M M 

: M-1) 

Arbitrate 

Figure 7.11. Distributed arbitration 

A condition for this mechanism to work is that two (or more) modules never requests for the 

bus using the same arbitration code. One way to ensure this is to use the module ·s identity 

(address) as a patt of its arbitration code. The rest of the arbitration code may be formed by bits 
signalling the purpose of the module· s request. In this way, different module activities may 
have different priorities as far as bus usage are concerned. 

One special application of the distributed arbitration scheme, is for high priority message 
passing. Due to the fact that an asserted arbitration code can be observed by all modules, 
messages can be broadcasted by reserving a set of codes for this purpose rather than actually 

requesting the bus. Emergency messages signalling master clear, power fail and other exception 
events are candidates for this kind of signalling. 

The distributed arbiu·ation scheme has the advantage of being fast, compact (a small number of 

arbiu·ation lines) and flexible. Several arbitration algmithms may be implemented and the 
mechanism offers the additional benefit of facilitating a high priority emergency message 

transfer scheme. Conclusion: 

For controlling the access and use of the shared address bus, a distributed 

arbitration mechanism will be used. This mechanism should support transfer 

request, transfer release as well as broadcasting emergency messages. 

7.2.l.b. Module handshake 

To make the conu·oller able to decide whether a requested destination module is ready to accept 

new data, a handshake mechanism must be established between the controller and the other ring 

bus modules (that is, the processing elements, PEs). As previously mentioned during the 
discussion of the arbiu·ation mechanism, there are two principal ways of implementing such a 

handshake: 



99 

Software protocol 

By reading a status word on board each PE, it can be decided whether the PE is ready for new 
data or not. This reading can be done by the source module or the controller. If it is done by the 
source module, the source module must in case of any busy destination modules inform the 
controller about their identity so that the controller knows for which modules to buffer the data. 
Therefore it will probably be a better solution to let the controller take care of the software 
handshake procedure. In any case, the handshake procedure must be carried out sequentially, at 

least as far as the answers from the destination modules back to the controller or the source 
module is concemed. It may be implemented by transferring small packets on the ring bus, or 
better, by using the shared address bus. 

Hardwired control lines 

Having already decided that ting bus arbitration should be carried out by a central controller, it 
is natural to let the conu·oller take care of the module handshake, too. This especially so because 

the outcome of the handshake procedure in case of any busy destination modules will be are
routing of data intended for those modules. This re-routing must also be handled by the 
conu·oller. As already mentioned during the discussion about a cenu·alized vs. a disu·ibuted ring 
bus arbiu·ation mechanism, it is feasible to let each PE have its own, dedicated hardwired 

handshake line directly interconnecting the PE with the controller. If each Pe then is driving its 
handshake line according to its busy/ idle status, the conu·oller can by reading all handshake 
lines in parallel get an instant picture of the status of all associated PEs. Further, if those 
handshake lines are accompanied by a few extra signal lines, dtiven by the controller and 
connected in parallel to all PEs, the controller is able to dynamically control the function of the 

handshake lines through the state of these exu·a lines. Finally, by doing the handshake lines 
bidirectional, they will rather than being dedicated lines for monitoring PE status be 
multipurpose status/ control lines facilitating direct interaction between the conu·oller and its 
PEs. Conclusion: 

Direct interaction between the controller and its PEs are implemented 

through a single, hardwired backplane multipurpose status/ control line 

connecting the controller to each one of its PEs. The current function of this 
line is determined by the state of some additional lines, driven by the 

controller and monitored by all PEs. 



100 

Control 0 1 N-1 

N M M M 

Figure 7.12. Hardware handshake mechanism 

7 .2.l.c. Destination addressing 

Initially, a list of destination modules is provided by the source module when requesting a ting 

bus transfer. In case of a destination module not being able to receive new data due to lack of 
local buffer space or some other reason, the data intended for that module must be buffered for 
later retransfer when the module eventually becomes ready. As already discussed, it is the 
controllers responsibility to take care of that data as well as initiating a retransfer at a later point 
of time. The initial destination list may therefore be modified by deleting one or more 
destination modules and a adding a buffer module (presumably the controller) to the list. As far 

as destination addressing is concemed, this may be implemented in two different ways, 
depending on which module is doing the actual addressing: 

Source module controlled 

Based on the outcome of the module busy/ ready handshake operation, the controller must then 

send some sort of control message back to the source module, informing the source module 
whether some of its requested destination modules are unable to receive data. The source 

module must then modify the packet header, containing the addresses of the destination 
modules according to the buffering scheme described in section 7.1.4.: The addresses of the 
busy destination modules are removed from the destination list and replaced by the address of 
the buffer module In addition, the header must contain the address of the last destination 

module. This is because the last destination module, unlike the other destination modules, must 
remove the data from the ring bus after making a local copy. The control message from the 

controller containing the modified destination list can be transfened either on the ring bus, or 

better, on the shared address bus. 

Controller controlled 

Information whether a destination module is busy or not is collected by the controller from all 

modules simultaneously via the multipurpose status/ control line. By changing the code on the 
associated control bus, the controller can change the function of this line to enable the 



101 

(destination) modules which have their status/ control line asserted. Correspondingly, by 

applying yet another code on the control bus, the module being the last destination module can 

be noticed. Only two additional status/ control line cycles are thereby necessary to set up the 
destination modules to receive data. 

In this way, destination addressing is completely taken care of by the controller after the source 
module has provided the initial destination list. The source module will therefore not know, and 
do not need to know, to which of the destination modules the data is actually being transferred 
and for which modules the data are buffered for later retransfer. This is because the source 

module as already discussed has no responsibility for the data whatsoever after the (initial) 
transfer, whether they reached their intended destination or were buffered for later retransfer. 

Dynamic load sharing 

Another aspect of this discussion is the possibility of doing address mapping with a central 
controller: If a certain module in the system is very heavily loaded and thereby represents a 
bottleneck to the overall system operation, this bottleneck can be removed by insening 

additional, physically identical modules into the system, and sharing the processing load among 
them. As far as the source module supplying the data is concerned, it is of no interest to know 
which one in the set of identical modules actually receiving and processing this data. The 

destination address supplied by the source module to the controller can therefore be interpreted 
by the controller as a logical rather than a physical address, specifying either one of a number 

of identical modules. No special means or modes of addressing is necessruy to accomplish this: 
When the controller receives a destination address addressing one in a set of several identical 
modules, it implicitly knows that it can direct the data to either one of them. It is up to the 

controller to select the actual module to use. If all modules ru·e busy, the data are buffered and 
eventually retransfetTed to the first module being ready. 

To implement a feature like this with a distributed control mechanism, it would require all 
modules to have a complete map of the physical rather than the logical resources in the system. 

In addition, allocating and releasing those resources must be done by software controlled packet 
transfers, implying lru·ge delays and thereby increased possibilities of deadlock situations 

compru·ed to the centralized control method. 

This scheme of dynamic load sharing must not be confused with the conesponding static 
approach: In that case, a processing task is statically divided between several modules, e.g. the 

processing of one image frame is done in pru·allel by several filtering modules, each one 

processing its own patt of the total image ru·ea. From a system point of view, each module is 
then statically allocated to a specific set of data, leading to a much less flexible (and thereby 
powerful) system stmcture than if the modules ru·e allocated dynatnically at need. In 

conjunction with iterative processing, it might for example be better to allocate different 
modules to different iterations rather than to different parts of the image. Because iterative 
processing will be data dependent, the optimum solution can not be decided until mntime, 
thereby requiring a dynatnic allocation scheme to be used. 



102 

As a termination of this discussion of a centralized vs. a distributed control approach, the 

conclusion should be fairly obvious: 

After providing the initial destination list, the responsibility of destination 

addressing is taken over by the controller. By using the multi-purpose status/ 
control line, the destination modules are enabled to take copies of the next 
packet being transferred on the ring bus. The last destination module are 
notified via the same line that it is the last module along the transfer path. 
This means that the packet it is about to receive shall not be transferred to the 
next ring bus module. To avoid certain modules being bottlenecks to overall 

system pnformance, these modules may be off-loaded by inserting 
additional, physically identical modules into the system. If a source module 
is specifying one of those identical modules as destination for its data, it is at 

any time the responsibility of the controller to select the particular module to 
which to direct the data. 

7 .2.l.d. Packet retransfer 

When a packet is buffered due to a module being busy, it is the responsibility of the conu·oller 
to reu·ansfer the packet, that is, to initiate the pending transfer, when the module eventually 
becomes ready. A module becoming ready can be detected by monitoring the multi-purpose 
status/ conu·ol line with the appropriate code asserted on the associated control bus. Two 
different approaches to packet reu·ansfening are possible: 

Transfer-when-ready 

As soon as the module becomes ready, data are u·ansfetTed to the module. This works fine for 

a single destination module, but if the buffered data are going to be transfened to several 

modules, the chances are great that this method will result in the data being u·ansfened to one 
module at a time. 

Periodic retransfer 

The alternative approach is to sample the module status/ conu·olline at periodic intervals to see 
if any modules having a pending transfer waiting have become ready. If so has happened, the 
data are u·ansfened to those modules. In this way, the possibility of servicing more than one 

module with one (each) pending u·ansfer is much higher than when using the "transfer-when
ready" scheme. Conclusion: 

Packet retransfer is implemented by using both mechanisms: "Transfer
when-ready" if only one module is waiting for the pending transfer, and by a 
periodic retransfer mechanism if the pending transfer is destined for more 

than one module. This must be supported by the pending transfer queue 
mechanism. 



103 

Exception handling 

Exception handling is a common denominator of the process of events requiring immediate 
action, either from the controller only or from all modules. Examples of such events are 

• System reset. 

• Power fail. 

• Module fail. 

• Buffer overflow. 

In case of a power fail situation, it is of vital importance that preparing for the later recovery is 
initiated as soon as possible. Exception handling signalling must therefore be ensured the 
highest possible priority. Among the mechanisms available for message transfer in the ring bus 
system, the distributed arbitration bus is obviously the one best suited for this purpose. By using 
this bus, a message can be transferred with a maximum delay equal the time it takes to perform 
one arbiu·ation. This will be in the order of 30 to 100 nanoseconds, depending on the 
implementation and the technology chosen. Another benefit of using the arbitration bus is that 
the messages can be observed by all modules simultaneously. 

Exception handling events are signalled by transferring emergency messages 

on the arbitration bus. 

Microlevel control summary 

The following mechanisms supporting microlevel conu·ol within a cluster has been described: 

Address bus. Transfening address information (source address, destination address list) 
between a PE module requesting the ring bus and the conu·oller module. 

• Address. TransfetTing the actual addresses. Shared bus, size equal to 
log2(number of modules). 

• Busy. Address bus status line (busy I idle). 

Arbitration bus. Used by the PE modules and the controller module according to a disuibuted 
arbiu·ation scheme to request access to the address bus or to issue an emergency message. 

• Arbitration code. Identifying the requesting module or the emergency 
message. Shared bus, size dependent of the number of modules and 
emergency messages. 

• Arbitrate. Asserted by the requesting module(s) signalling to the other 
modules that an arbitration is in progress. 

Status/control bus. Transfening control information from the controller to the PEs and status 
information from the PEs back to the controller. 

• Function code. Determining the cmTent function of the status/control line. 
Driven by the controller, received by the PEs. Number of lines dependent of 
the number of implemented functions. 



104 

• Status/control. TransfetTing the actual status/ control information. Single, 
bidirectional line directly connecting the controller and each PE in the cluster. 

0 

arbitration status/contr. 
bus bus 
~~ 

address 
bus 
~ 

Figure 7 .13, Inter-cluster microlevel control 

.... 
Q) 

'7 e 
z c 
.._ 0 

() 

C\J 
I z 



105 

7.2.2. Macrolevel control 

While the term "microlevel control" has been used to denote control of system hardware 

resources, macrolevel control is applied as a common denominator for global task level 

management. Global is here used in the sense that more than one module is involved. Control 
local to a single module, whether it is on the micro- or macro level, will not have any impact on 

the ring bus system as such and is therefore not discussed here. 

According to this definition, one example of macrolevel control will be the coordination of 

processing on the various modules. Others are operations as system initialization and 
(re)configuration. Unlike the microlevel control, macrolevel control mechanisms are not 
implemented by dedicated hardware constructs but rather by software algorithms running on 

some sort of microcontroller, locally located on each module. As discussed in section 6.3., the 
responsibility of macrolevel control is distributed over all modules. The reason for this is that 
it will be impossible for a centralized conu·oller at any time to have a consistent and up-to-date 

status of all modules throughout the system. 

Because macrolevel conu·ol by definition encompasses several modules, a macrolevel conu·ol 
event will always involve some sott of module communication. Due to the variable amount and 
nature of the information necessary to exchange between the modules participating in the macro 
level control event, this communication can not be carried out by dedicated signal lines but must 

be implemented by some kind of software protocol. A control packet signalling a macro level 
conu·ol event must include the following information: 

• The identity of the module issuing the conu·ol event (source). 

• The identity(ies) of the module(s) to be notified by the conu·ol event 
( destination(s) ). 

• An operation code specifying the purpose of the command, or what action to 
take in response to the command. 

• Additional parameters, number and nature depending on the particular 
command issued (the operation code). 

• If the command has a variable number of accompanying data or parameters, 
the size of the conu·ol packet must be included. Otherwise, the size will be a 
function of the particular operation command issued. 

If not a new communication channel is to be introduced, there are two possibilities for 
u·ansfening these control packets: 

Address bus 

The address bus is a shared, synchronous bus, used for transferring destination module 

addresses from a source module, issuing a ting bus transfer request, to its local conu·oller. 
Because only addresses are intended to be u·ansfened on this bus, only a few bits of data-width 

is necessary. As an example, to be able to address 16 modules, a 4 bit address bus is necessary. 



106 

Ring bus 

The ring bus is the main data highway in the system. Its access and use is restricted and 

controlled through a dedicated arbitration mechanism, involving address transfers on the 
address bus. The ring bus is 16 bit wide. 

Due to its significantly larger bus width, the ring bus will be a better alternative for control 
packet transfers than the address bus. However, ring bus latency time may a problem, especially 
because the control packets will be relatively small (typically 4-6 words of transfer). As 

previously mentioned, the ring bus latency can be regarded as consisting of two components, 
the access latency and the transfer latency. The transfer latency is an inherent characteristic of 
any ring bus system and can not be avoided. The access latency is the delay from a transfer is 
requested until the transfer actually begins. The minimum value of this delay is the time it takes 
to go through the arbitration procedure. However, if the ring bus segments required to do the 
transfer should be busy, the u·ansfer must be made pending until the cmTent u·ansfer is 
terminated. If this is a just started 128 word data packet, the total latency for u·ansfeiTing the 

small control packet will be intolerable. It is no solution to allow an ongoing transfer to be pre
empted, this will only create a lot of administration overhead back and fonh. To temporarily 
terminate the transfer and then restmt it, disabling and enabling of all involved modules must 
be pe1formed. 

To let conu·ol packets have priority over data packets on the ring bus without a pre-emption 
capability, will in practice be of little value. This will only have effect when conu·ol and data 

packets are requesting a ring bus transfer simultaneously. 

The access latency can be avoided, however, by letting control packets enter the ring bus in a 
way transparent to an already ongoing data packet transfer. For this to be possible, three 

conditions must be satisfied: 

• Each ring bus segment inte!face must include a mechanism for temporal 
storage of incoming data. This will be necessary to hold back an ongoing data 
packet while u·ansfening the conu·ol packet. The size of this temporal storage 
does in p1inciple not need to be more than the length of the lm·gest conu·ol 
packet. 

• To be able to detect a control packet intervening a data packet as described, 
data belonging to the two types of packets must be tagged differently. 

• Conu·ol packets must, unlike data packets, have their own addressing 
mechanism, included as a pmt of the packet header. The requirement of 
transpm·ency towards an ongoing data packet transfer prohibits the use of the 
conu·oller conu·olled module enable/ disable addressing mechanism. 

As far as tagging is concerned, this must be implemented by exu·a backplane signal lines, 
mnning in pm·allel with the Iing bus data lines. Needless to say, it is advantageous to keep the 
number of extra lines as small as possible, that is, use as few tag bits as possible. To distinguish 
between conu·ol and data, only one bit is required. Control packets will then not be allowed to 
dismpt other conu·ol packets. However, because conu·ol packets are so short and at least as a 
starting point can be regarded as being of equal impoltance, this will be of little use anyhow. 

Conclusion: 



107 

Control packets are to be transferred on the ring bus. They are permitted to 

enter the ring bus without prior arbitration, and without any other restriction 

than that they are not allowed to disrupt another ongoing control packet 
transfer. 

7.3. System structure 

There should be no fixed limit on the number of modules in the total ring bus system. However, 

it will not be a good solution to expand the system by just inserting new modules into the ring 

bus. There are two main reasons for this. 

• Dedicated backplane lines are used for handshake signalling between the 
processing elements (PEs) and the controller. These lines are connecting the 
local controller, which must reside in a fixed location on the backplane, to all 
its PEs. If new PEs are to be included, beyond the number by which the 
system is originally designed, more handshake lines must then be added and 
the controller's intelface to these lines changed. 

• Ring bus u·ansfer latency is increasing linearly with the number of inter-
connected modules. 

The total system should therefore be implemented as a hierarchy consisting of groups of 
modules. Such a group will from now on be refened to as a cluster and will consist of one 
conu·oller module and a number of PEs. No matter how clever the inter-connection between 

clusters are designed, the access of modules of modules outside the local cluster is bound to be 
slower than accessing a module within the cluster, that is, a local module. Among other things, 
two ring bus arbiu·ations must be petformed when accessing a remote module, one for the local 

cluster bus and one for the remote cluster bus. The number of modules contained in each cluster 
will therefore be a trade-off between keeping the latency low and having a small number of 
handshake lines at one hand and a large number of easily accessible modules at the other. 
Because the number of modules actually needed to be easily accessible will depend very much 

on the application, the cluster size must be determined by some sort of ad-hoc approach. 
Assuming that it from practical reasons (addressing, width of data paths in integrated circuits 

etc.) will be advantageous to let the number of modules be a power of two, 16 seems to be a 

good compromise. 16 slots (including the controller) is enough to room all necessary modules 
up to what can be called a medium sized system, and without at the same time having to drag 
around with too much supetfluous cabinet space when designing a small system. Conclusion: 

Ring bus modules are grouped in clusters, with one controller and 15 PEs in 

each cluster. A cluster will therefore be a self-contained ring bus system, 
supporting all features brought forward in the qualitative discussion carried 

out in this chapter. 



108 

7 6 1 0 

8 9 14 Control 

(15) 

Figure 7 .14. Ring bus cluster 

7.3.1. Address/ arbitration bus widths 

By choosing the maximum number of modules in each cluster to be 16, this determines at the 
same time the width of the address bus to be 4 bit. Only module addresses are to be u·ansfened 

on the address bus, and 4 bit is needed to represent 16 different addresses. 

As far as the disu·ibuted arbiu·ation bus is concerned, 4 bit is now needed to represent the 

module's address. In addition, one bit should be included to be able to distinguish between low 

(request) and high (release) priority arbiu·ation. Yet another bit is required to implement the 
emergency message mechanism. That gives an arbitration bus of a total of 6 bit. 

7.3.2. Emergency message formats 

Only a limited number of arbitration code combinations are available for message u·ansfers on 

the arbitration bus. As is the case for the bus arbiu·ation procedure, it must be ensured that no 
two modules at any time will access the arbiu·ation bus with the same arbitration code. As far 

as the disuibution of the available code combinations is concemed, there are two possibilities: 

Symmetric distribution 

In this case, the mechanism will be fully symmetric in the sense that all modules, the controller 

as well as the PE modules, can issue the same number of emergency messages on the arbitration 
bus with the same ease and access ptimity. Strictly speaking, this will not be u·ue if two or more 
modules simultaneously wants to issue an emergency message, but this will be a very rare 

situation. 



109 

Controller biased 

With a controller biased distribution, the controller is assigned a larger share of the total number 
of emergency message code combinations than the other (PE) modules. However, the principle 
that all PEs should be equal with respect to their communication capabilities should be 

maintained. This means that every PE module must be allocated the same number of code 
combinations. 

With a 6 bit wide arbitration bus, a total of 32 code combinations are available for emergency 

message signalling. According to the symmetric distribution scheme, all modules, including the 

controller, will have two code combinations each. If the controller shall be able to use the 
arbitration bus as a mean of broadcasting high priority messages as system reset, power fail etc. 
to the modules in its local cluster, two code combinations will clearly not be enough. The 
symmetric distribution scheme will therefore not be suited for implementing the emergency 
message mechanism. 

Looking at the controller biased approach, maintaining the principle that all PEs should be equal 
with respect to their communication capabilities, then leaves two alternatives: Either half (16) 

or all (32) of the communication codes are allocated to the controller alone. If all 32 codes are 
to be used by the controller, there will be no codes left to the PE modules for emergency 

signalling. Because far less hardware and software resources will be involved when using the 
arbitration bus than if the message must be formatted as a control packet and transfened on the 
ring bus, it is highly desirable that the PE modules have the possibility of using the arbitration 
bus as a simple and reliable way of emergency signalling, for instance in case of "module 
failure". The obvious compromise is therefore: 

7.3.3. 

As far as emergency message signalling is concerned, 16 of the 32 available 
message codes are allocated to the controller. The remaining 16 codes are 

evenly distributed over the modules with one code to each module, using the 

module's address as the 4 least significant bits of the message code. 

Inter-cluster connection 

As already discussed in a previous chapter, there are numerous ways of connecting a group of 

computing elements to each other. The term "computing element" is in literature used to denote 
an entity canying out some sott of computation, this entity's construction and complexity may 
vary from a simple PE doing a set of basic arithmetic operations up to complex computer 

substructures. In this context, the cluster is the computing element. 

Before starting on a detailed discussion about the pros and cons of different inter-connection 
topologies, it can be useful to try to extract some of the characteristics of the cluster as a basic 
building block for a larger network, and their implications for the construction of such a 

network. 



110 

Bandwidth requirement 

The cluster is a very powerful computing element, facilitating very complex computational 

tasks to be pe!formed within the cluster itself. Consequently, the cluster can from the total 

system's point of view be regarded as a simple input/ output black box, producing output results 
on the basis of input data. The communication bandwidth requirement will most probably be 
lower for inter-cluster communication than for intra-cluster communication. There are several 
reasons for this: 

• Because the computing power, in terms of performing complex operations, of 
the cluster as a whole will be much larger than that of a single PE, a lot more 
multi-destination transfers, with an increased possibility of retransfer, and 
iterative processing will occur within a cluster than between clusters. 

• By assigning modules functionally being ''close" to the same cluster, the data 
needed to transfer between clusters will have more the nature of high level 
computed image parameters than raw image data, implying a significant data 
reduction. 

Size of system 

Due to the power contained within each cluster itself, a total system will rather consist of one 
or a few than many clusters. However, the system should not be designed in a way imposing a 

fixed limit on the number of connected clusters. The optimum inter-connection topology is 
likely to be a function of the number of clusters as well as the characteristics of the actual 
application. 

The cluster inte~face should therefore be flexible enough to allow several 

inter-connection schemes to be implemented. 

Remote cluster addressing 

Because a local cluster controller will have no direct control over modules in remote clusters, 

it will be very inconvenient and time consuming to cany out the same module handshake 

procedure towards a set of destination modules in a remote cluster as pe!formed by the 
controller when doing a local cluster transfer. In a large system consisting of many clusters, 
there will also always be a possibility that this handshake procedure must be relayed through 

several intermediate clusters before reaching the destination cluster. 

However, it is no reason why a local cluster controller should have to deal with busy modules 
in a remote cluster. This should be the responsibility of the remote cluster controller entirely, 

which also should be responsible for any buffering and retransfer of data destined for modules 
located in its own cluster. Therefore, 

When transferring packets to a remote cluster, the packet is transferred from 

the source module in the local cluster to the remote controller, under control 
of the local controller. It is then the remote controller's responsibility to take 

care of the handshake procedure towards the destination modules, residing 



111 

in its own cluster, including any buffering and retransfers. Handshake 

between the local and remote controller prior to the transfer is carried out by 

control packets. 

System organization 

Another consequence of the assumption that the majority of systems will contain one or a few 
clusters is that a flat organization should be allowed, permitting two clusters to communicate 
directly with each other without assistance from some kind of "master cluster". 

Having in mind that we are essentially looking for a topology with a limited number of 
elements, the most relevant inter-connection schemes are the linear array, the ring and to a 

certain extent the hierarchical tree. These are shown in Figure 7.15. to Figure 7.17. 

~ ........ D 
Figure 7.15. Linear array topology 

Figure 7 .16. Ring bus topology 



112 

Figure 7.17. Hierarchical tree topology 

To implement the linear array and the 1ing bus, each cluster must have two bidirectional ports. 

The hierarchical tree, however, will require at least three pmts for connecting a node in a tree 
directly to the levels above and below as well as the neighbouring node at the same level. 
Because the hierarchical tree will be most appropriate for systems having a relatively large 

number of clusters, it seems not to be wmth the extra cost and complexity introduced by adding 
a third port to achieve a more efficient implementation. 

Other topologies which can not be implemented by dual-port, bidirectional cluster interfaces 

are mesh and cube interconnection schemes with dimension larger than two (a two-dimensional 

cube is actually a four-element 1ing). However, these topologies have, like the hierarchical tree, 
their strength when the number of elements to interconnect are considerably larger than in our 

case. Conclusion: 

The mechanism for inter-cluster communication and connection should be 

flexible in terms of choosing a topology, and optimized towards small to 

medium sized systems in terms of number of connected clusters. This is 
obtained by equipping each cluster with a dual-port, bidirectional link for 

inter-cluster communication. Furthermore, in a two cluster system, the two 

clusters should be able to communicate directly with each other without the 
assistance of any additional master cluster controller. 

Inter-cluster arbitration 

To ensure completely independent operation of the two ports, each pmt should have its own 

arbitration mechanism. The arbitration task is here very simple, because on each inter-cluster 
connection link, only two units competing for mastership are involved. By using a time slot 



113 

scheduling mechanism, only a few signal lines is needed to do the arbitration. It is therefore not 
hard to justify the extra amount of hardware needed to implement two independent arbitration 

mechanisms. Besides, sharing itself also requires extra resources compared to a mechanism 
dedicated to one port only. 

In addition to independent port operations, an extra benefit of equipping each port with its own 

arbitration mechanism is that selection of the current cluster to arbitrate can be done on a port
by-port basis, rather than based on the cluster's address or some other form of cluster 
identification. With a cluster based addressing scheme in a system containing an odd number 
of clusters with all ports connected (e.g. ring), problems will arise when trying to find a 
consistent scheme for selecting which cluster to arbitrate. This is shown in Figure 7 .18., where 
the extreme (left and right) end clusters both have even addresses (0 and 4): If clusters 0 and 4 

both should request the 0-4 connection at the same time, the clusters identity (even) can not be 
used to determine the winner of the arbitration contest, simply because both clusters have the 

same identity. To change one of the cluster's identity to odd would only move the problem to 
the 0-1 or 3-4 arbitration, depending on which cluster's identity is changed. 

0-4 connection 

Figure 7 .18. Cluster even/odd addressing 

However, when the ports rather than the clusters are individually named and arbitrated, a port 

of "one" kind (even) can always be connected to a port of the ''other" kind (odd) as shown in 

Figure 7.19.,and a consistent arbitration scheme can then always be found. 

Each inter-cluster port should have its own, independent arbitration 
mechanism. 

Figure 7.19. Port even/odd addressing 



114 

7.3.4. Packaging considerations 

To obtain the best possible performance, it is important to keep the length of the communication 

paths to a minimum. 

7.3.4.a. Single cluster systems 

If we are positioning the modules in a cluster along a single, linear array, we will get a very long 
"feedback path" from the last back to the first module. Due to the much shorter path between 

all other modules, this will create an imbalance in the system and may be limiting to the overall 
system's performance. 

The problem can easily be avoided, however, by dividing the maximum of 16 modules 

constituting one cluster (15 PEs and one controller), into two equal-sized arrays, with separate 
backplanes mounted back-to-back and connected at both ends. As we will see when going to 
multi-cluster systems, it is advantageous to position the controller at the end of one of the two 

arrays. 

7 6 1 0 

8 9 14 Control 

(15) 

Figure 7.20. Single cluster system 

7.3.4.b. Multi-cluster system 

The principle of keeping the communication paths to a minimum applies equally well to the 

paths between clusters (that is, between the cluster conu·ollers) as it does to the paths between 
modules. By positioning the cluster conu·oller into a "corner", a four-cluster system can then be 

assembled by mitToring the clusters, ve1tically and horizontally, as shown in Figure 7.21. 



115 

Figure 7.21. Four-cluster system 

When increasing the number of clusters beyond 4, however, the clusters must be stacked 
vettically to maintain a short path between the cluster controllers. By stacking the clusters as 
four-cluster assemblies, we will get a vety compact communication "backbone" in the centre 
of the system. Figure 7.22. shows this for a sixteen-cluster system, containing a total of 256 
modules. 

Figure 7.22. Sixteen-cluster system 



116 



117 

CHAPTER S.Ring bus specification 

The Ring bus specification defines a communication system to interconnect a number of data 
processing modules in a closely coupled hardware configuration, primarily intended for doing 
real-time image processing. The system has been conceived with the following objectives: 

• To provide a flexible, high speed mechanism for transferring data between 
modules in the system. 

• To provide means for efficient inter-module synchronization and control. 

• To specify protocols that precisely define the interaction between modules 
interfaced to the Ring bus. 

• To provide terminology and definitions that describe the system's protocol. 

To be a complete bus specification, the mechanical and elecu·ical system charactetistics 
required to do a design should also have been included. However, this is considered to be 
beyond the scope of this thesis, which will focus on the logical and behavioural aspects of the 
system rather than the lower level implementation details. 

8.1. Basic definitions 

As far as the more high-level and generic ring bus terms are concerned, these can be found in 
chapter 8, '"Ring bus system nomenclature". To set down a bus specification for this system, 
however, a precise nomenclature describing module interaction at a lower level is required. The 
following set of guidelines and definitions are u·ied used in consistent manner throughout the 
text: 

Left and right convention 

Due to the bidirectionality of the ring bus, many signals must include the letter "L" for left or 

''R" for right in their names. Each of the two buses have an input port as well as an output pott, 
meaning that a total of 4 groups of signals are connected to each module. In the entire text, "left" 
and '"right" are used as if the 16 modules in the cluster are connected as a linear, one

dimensional anay, with module 0 at the exu·eme left and module 15 (the conu·oller) at the 
exu·eme right. To close the ling, module 15 is then connected back to module 0. 



118 

left right 

Figure 8.1. LefUright convention 

Signal naming 

The connections for the two ring buses are named according to their direction of transfer. 
Although it intuitively may be a good idea to name signals according to which side of the 
module they are physically connected, this would create problems when trying to find 
approptiate names for the signal lines inter-connecting two neighbouring modules. Therefore, 
to be consistent with bus naming conventions, 

module connections are named according to which direction of transfer they 

serve. 

As far as the output potts are concerned, the direction of u·ansfer and the physical location of 
the connection will be the same, while they for the input ports will be opposite. 

A bus or bus connection, encompassing multiple signal lines, is named by a text followed by 
the lower and upper signal line numbers, separated by a hyphen, put in parenthesis, e.g. DLI(0-
15). When refening to the entire bus, in this case all lines 0 to 15, the line number patt can be 

omitted, using only the text patt of the name (DLI). 

A signal can be active low or active high, where active high is considered the default case. If a 
signal is active low, this is indicated by appending a"*" (asterisk) at the end of the signal name 

(e.g. LSI*). 

Signal states 

As fat· as signal states m·e concerned, it must be distinguished between signals which have a 
cleat·ly defined active state, implying some action being initiated, and signals to be interpreted 

as representing some sort of value. To the first category belongs the control signals. They will 
be either in the active or inactive state. To the second category belongs the bus signals. They 

will be either in the valid or non-valid state. Because a bus can exhibit any value, represented 

by its signal lines, a set of bus signals must always be qualified by a clock or a control signal. 

Signal transitions 

When going from the in-active state (conu·ol signals) or in-valid state (bus signals) to the 

conesponding active or valid states, the signal(s) is said to be asserted. 



119 

When going from the active state (control signals) or valid state (bus signals) to the 

corresponding in-active or in-valid states, the signal(s) is said to be released. 

Some signals have actions associated with both their edges rather than one of their levels. An 

example of this will be the Ring bus strobe signals where a transition, high-to-low or low-to

high, notifies that the data on the Ring bus data lines are valid. Such signals are called toggle 

signals. 

8.2. Basic Ring bus structure 

The Ring bus system is based upon modules grouped into clusters. Each cluster consists of a 

total of up to 16 modules, one controller and 15 general purpose Processing Elements (PEs). 

Within each cluster, data are transferred on a bidirectional Ring bus system, connecting each 

Ring bus module to its immediate left and right neighbours. To inter-connect several clusters, 

each cluster controller is equipped with a dual port. This facilitates the construction of higher 

level interconnection topologies as rings, trees or linear arrays. 

The Ring bus functional suucture can be divided into four categories, with each category 

consisting of a bus (a set of related backplane signal lines) and a protocol for exchanging 

information over those lines. The following categories can be defined: 

• Ring bus u·ansfer. 

• Ring bus arbitration. 

• Module handshake conu·ol. 

• Inter-cluster communication. 

8.3. Ring bus transfer 

The Ring bus is a 16 bit, bidirectional module-to-module communication channel u·ansfening 

data as well as control information formatted as packets between the two connected modules. 

In accordance to their direction of transfer, the two buses are named the left Ring bus and the 

right Ring bus. The left bus are transfeuing information from module "n" to "n-1" ( n = 0-15) 

and the right bus from module "n" to "n+ 1". 

The u·ansfer of data on the Ring bus is done according to a source synchronized, non-compelled 

protocol. Source-synchronizing means that the module supplying the data onto the Ring bus 

data lines also supplies a signal qualifying these lines. To achieve maximum speed, both edges 

of the qualification signal is used for validating the data lines. By using a non-compelled 

protocol, u·ansfers are not required to be acknowledged on a word-by-word basis. However, to 

be able to handle temporal fluctuations in the incoming data stream relative to the consumption 

or reu·ansfer of data to the next module, a signal line is provided by which the receiving module 

can control the stream of data from the sending module. Asse1ting this line will freeze the data 

stream (and the qualification line), by releasing it the stream will continue. 

To be able to distinguish between control packets and data packets, the content of the Ring bus 

data lines are qualified by a tag. Three additional signal lines are used for tagging purposes. 



120 

8.3.1. Module connections 

Right Ring bus, output port 

DR0(0-15) 

Data bus Right Output, 0 to 15. Totem-pole. 16 data lines connecting a 

module's output (n) to the input of its right neighbour (module n+ 1). 

TR0(0-2) 

RSO 

RHI* 

Tag bus Right Output, 0 to 2. Totem-pole. 3 tag lines giving information 

about the data currently presented to the module's right neighbour on data 
lines DR0(0-15). 

Right Strobe Output (toggle). Totem-pole. Whenever a module presents new 

data on the DRO and TRO bus lines, it signals this to its tight neighbour by 
toggling RSO. 

Right Hold Input (low). Asserted by the module's right neighbour whenever 
it wants to put the su·eam of information from the module on the DRO and 
TRO bus lines to a hold. When RHI* is released, the module will continue the 

information stream from the point where it was disrupted. 

Right Ring bus, input port 

DRI(0-15) 

Data bus Right Input, 0 to 15. 16 data lines connecting a module's input (n) 
to the output of its left neighbour (module n-1 ). 

TRI(0-2) 

RSI 

RHO* 

Tag bus Right Input, 0 to 2. 3 tag lines giving information about the data 
currently presented by the module's left neighbour on data lines DRI(0-15). 

Right Strobe Input (toggle). Whenever new data is presented to the module 
on the DRO and TRO bus lines by its left neighbour, the left neighbour 
signals so by toggling RSI. 

Right Hold Output (low). Totem-pole. Asse1ted by the module whenever it 

wants to put the stream of information from its left neighbour to a hold. When 

RHO* is released, the information stream will continue from the point where 
it was disrupted. 



121 

Left Ring bus, output port 

DL0(0-15) 

Data bus Left Output, 0 to 15. Totem-pole. 16 data lines connecting a 
module's output (n) to the input of its left neighbour (module n-1). 

TL0(0-2) 

LSO 

LHI* 

Tag bus Left Output, 0 to 2. Totem-pole. 3 tag lines giving information about 
the data currently presented to the module's left neighbour on data lines 
DL0(0-15). 

Left Strobe Output (toggle). Totem-pole. Whenever the module presents new 
data on the DLO and TLO bus lines, it signals this to its left neighbour by 
toggling LSO. 

Left Hold Input (low). Asserted by the module's left neighbour whenever it 

wants to put the stream of information from the module on the DLO and TLO 
bus lines to a hold. When LHI* is released, the module will continue the 
information stream from the point where it was disrupted. 

Left Ring bus, input port 

DLI(0-15) 

Data bus Left Input, 0 to 15. 16 data lines connecting a module's input (n) to 

the output of its light neighbour (module n+ 1). 

TLI(0-2) 

LSI 

LHO* 

Tag bus Left Input, 0 to 2. 3 tag lines giving information about the data 

culTently presented by the module's right neighbour on data lines DLI(0-15). 

Left Strobe Input (toggle). Whenever new data is presented to the module on 

the DLI and TLI bus lines by its right neighbour, the light neighbour signals 
so by toggling LSI. 

Left Hold Output (low). Totem-pole. Assetted by the module whenever it 
wants to put the stream of information from its tight neighbour to a hold. 

When LHO* is released, the information stream will continue from the point 

where it was disrupted. 



122 

DRI(0:15) 
TRI(0:2) 

RSI 
RHO* 

DL0(0:15) 
TL0(0:2) 

LSO 

LHI* 

AB_BUS(0:5) 
AB_REQ* 

16 

3 

16 

3 

6 

16 

3 
Right Ring bus 

interface 

16 

3 
Left Ring bus 4 ' 

< 

interface 

16 

Arbitration Address 

bus bus 

interface interface 

Figure 8.2. Module Ring bus interface 

DR0(0:15) 

TR0(0:2) 

RSO 
RHI* 

DLI(0:15) 
TLI(0:2) 

LSI 

LHO* 

AD_BUS(0:3) 
AD_BUSY* 

TR_REQ* 
TR_GRANT* 

TR_REJ* 

TRL*_R 

SYS_CLK 

8.3.2. Signallines 

The modules are interconnected by connecting a module's input port to the neighbouring 

module's output port and the con-esponding strobe and hold lines. Due to the established 
naming convention, the names of the connected module connections will only differ in the "I" 
and "0" designating an input or output connection, respectively. By removing that "I" or "0", 

the names of the signal lines connecting two neighbouring modules will therefore be: 

Right ring bus 

DR(0-15) 

TR(0-2) 

RS 

Data bus Right. The interconnection of one module's Data bus Right Output 
port DR0(0-15) and its right neighbour's Data bus Right Input port DRI(0-
15). 

Tag bus Right. The interconnection of one module's Tag bus Right Output 

port TR0(0-2) and its right neighbour's Tag bus Right Input port TRI(0-2). 

Right Strobe (toggle). The interconnection of one module's Right Strobe 

Output RSO and its right neighbour's Right Strobe Input RSI. 



RH* 

123 

Right Hold (low). The interconnection of one module's Right Hold Input RHI 

and its right neighbour"s Right Hold Output RHO. 

Left ring bus 

DL(0-15) 

TL(0-2) 

LS 

LH* 

Data bus Left. The interconnection of one module's Data bus Left Output port 
DL0(0-15) and it'> left neighbour's Data bus Left Input port DLI(0-15). 

Tag bus Left. The interconnection of one module's Tag bus Left Output p01t 
TL0(0-2) and its left neighbour's Tag bus Left Input port TLI(0-2). 

Left Strobe (toggle). The interconnection of one module's Left Strobe Output 
LSO and its left neighbour's Left Strobe Input LSI. 

Left Hold (low). The interconnection of one module's Left Hold Input LHI 
and its left neighbour's Left Hold Output LHO. 

8.3.3. Ring-bus data transfer timing 

Data and control information are transfened between neighbouring modules on the Ring bus 
formatted as packets. Within each packet, the individual words are transfened using a source
synchronized, non-compelled u·ansfer protocol. To achieve maximum transfer speed, a 

transition signalling scheme [Sutherland 89] is used as far as data strobe timing is concerned: 
Every time new data is presented on the DL (DR) and TL (TR) lines, the LS (RS) su·obe line is 
toggled. Handshake is only required from the receiving module when it is unable to receive 

more data. The receiving module then asserts the data hold signal LH* (RH*), which will be 

held active until the module again is able to receive data. Until then, the connection will be 
frozen and no further data will be output by the sending module. This is shown in the following 
timing diagram. 

DL(0:15) 

TL(0:2) 

LS 

LH* 

Figure 8.3. Ring bus data transfer timing 



124 

8.4. Ring bus arbitration 

The Ring bus arbitration procedure is implemented by using two separate buses, each one in 
tum required to perform a complete Ring bus arbitration cycle. 

8.4.1. Address bus 

For a (source) module to get access to the Ring bus to transfer data to one or more destination 
modules, the module must first present a list of requested destination modules, identified by 
their addresses, to the controller. This list of addresses is transfened to the controller over a 

shared, synchronous bus called the Address bus. 

8.4.l.a. Signallines 

Because the Address bus with its associated control lines are shared between all modules, the 
signal lines will have the same names as the module connections they are connected to. 

Signal lines driven by the controller 

SYS_CLK 

SYStem CLocK. Totem-pole. All signal transitions on the Address bus and 
its associated control signals are related to the SYS_CLK signal. 

TR_GRANT* 

TRansfer GRANT (low). Totem-pole. By assetting this signal, the controller 
notifies the requesting module that the requested Ring bus transfer is granted. 

TR_REJ* 

TRansfer REJect (low). Totem-pole. By asserting this signal, the controller 

notifies the requesting module that the requested Ring bus transfer is rejected. 

TRL*_R 

TRansfer Left*/Right. Totem-pole. Through the state of this signal, the 
requesting module is told the direction of the granted transfer, that is, whether 

to use the left or the right Ring bus. Values: 

0 The module is granted a left transfer. 

The module is granted a right transfer. 

Signal lines driven by the requesting module 

AD_BUS(0-3) 

ADdress BUS. Output - open collector or three-state. After winning the 
Address bus arbitration contest, the module is allowed to use the Address bus 
and its associated control signal lines to request a Ring bus transfer. The four 

AD_BUS lines are used to transfer the list of requested destination module 

addresses to the controller. Value: 

0-15 : Module address. 



125 

AD_BUSY* 

ADdress bus BUSY (low). Output - open collector. A module winning the 

Address bus arbitration contest is not allowed to start driving the Address bus 
until AD_BUSY* is inactive. Values: 

0 The Address bus is currently in use. 

The Address bus is currently not in use. 

TR_REQ* 

TRansfer REQuest (low). Output- open collector. By asserting this signal, a 

module notifies the controller that it requests a Ring bus transfer. 

8.4.2. Arbitration bus 

Because the Address bus, like the Ring bus, is a resource common to all modules, its use and 
access must be controlled by an arbitration mechanism. The Address bus arbitration mechanism 
is implemented by a 6 bit Arbitration bus, suppmting a distributed arbitration algorithm. The 
distributed arbitration algorithm and its implementation is described in detail in Appendix B. 

When a module wants to access the Address bus, it signals this, visible to all other modules in 

the cluster, by asserting the AB_REQ* line and outputting the appropriate arbitration code 
ab _bus(0-5) onto the Arbitration bus lines AB_BUS(0-5). The 6 bit arbitration code is 
formatted according to the following template: 

5 4 3 0 

I 
~od"le •~dm" (~15) 

L Request = o, Release = 1 

Arbitration = o, Message= 1 

Figure 8.4. Arbitration code template 

As shown in the Figure 8.4., the arbitration code can be divided into three separate fields: 

Adr 

Address. Bits 0 to 3. Value: 

0-15 : Arbitrating module's address ("address"). 



126 

Priority 

Priority. Bit 4. Makes it possible for a module to do arbitrations with two 
levels of priority. Value: 

0 Low priority arbitration ("low"). 

High priority arbitration ("high"). 

Mess/Arb 

Message/ Arbitration. Bit 5. Distinguishes between an emergency message 
and an ordinary arbitration cycle. 

0 Arbitration cycle (''arb"). 

Emergency message cycle "mess"). 

OBSERVATION: Because the arbiu·ating module's address is included as a part of the 
arbiu·ation code, it is ensured that in the case of several modules arbitrating at the same time, 
all arbitration codes will be unique. 

OBSERVATION: With the two most significant arbitration code bits ( 4 and 5) being equal, the 
conu·oller module (address= 15) will always have priority over all other modules in the cluster. 

OBSERVATION: By setting the priority bit to "high", any module will have priority over all 
other modules having this bit set to ·'Jow". 

OBSERVATION: Emergency message broadcasts will have primity over any ordinary 
arbiu·ation cycles. 

After a stabilizing period, necessary for the arbitration algotithm to settle, the arbitrating 
module(s) will check the value on the AB_BUS lines. If this value is equal to the module's own 
arbitration code ab _bus, this means that no other module is requesting access to the Address 
bus with a higher priority than the module itself, and it may therefore start using the Address 
bus (possibly after waiting until signal AD_BUSY* is released). 

8.4.2.a. Signallines 

Because the Arbiu·ation bus and its associated control line are shared between all modules, the 

signal lines will have the same names as the module connections they are connected to. All lines 
are driven by the module requesting the bus. 

AB_REQ* 

ArBiu·ation REQuest (low). Output- open collector. By asserting AB _REQ*, 

a module signals a wanted access to the Address bus. The signal stays 
asserted until the arbiu·ation contest is decided and a single module remains 

as winner. 



127 

AB_BUS(0-5) 

8.4.3. 

ArBitration BUS. Output - open collector. After asserting AB_REQ*, a 
module outputs its arbitration code ab _bus(0-5) onto the AB_BUS(0-5) lines, 
and the arbitration contest begins. In case of several arbitration being issued 

simultaneously, the module having the highest arbitration code number wins 

the arbitration contest. 

Arbitration procedures 

There are four different arbitration procedures, the term "arbitration procedure" being here used 
as a common denominator for the use of the arbitration mechanism to get access to the Ring 
bus. In addition, there will also be a fifth arbitration procedure, namely the transfer of 
emergency messages. This will be discussed in a later section. 

The four Ring bus access arbitration procedures are: 

• Transfer request. 

• Transfer grant. 

• Transfer reject. 

• Transfer release. 

Because all four arbitration procedures involves signalling on the Address bus, the procedures 
will consist of two distinct phases: One arbitration phase to get access to the Address bus and 

a subsequent Address bus transfer phase where the approptiate information is transfened on the 
Address bus. 

8.4.3.a. Transfer request 

To signal to the controller that a module wants to transfer data on the Ring bus, the module 

petforms a "transfer request" procedure. 

AB_BUS(0:5) -{rr~·.~W\P:~.• •• ~:J.)f..----------------

AB_REQ* 

SYS_CLK 

AD_BUS(0:3) 

AD_BUSY* 

TR_REQ* 

TR_GRANT* 

Figure 8.5. Transfer request procedure 



128 

OBSERVATION: Because arbitration and address transfer are done on separate bus lines, the 
two operations are allowed to overlap in time (pipelined). 

Arbitration phase 

In case of a transfer request, the module uses the arbitration code "arb/low/<address>" to 

compete for the Address bus. 

5 4 3 0 

0 0 ~oOOie a~Offi' (0;15) arb/req/(0-15) 

Figure 8.6. Transfer request arbitration code 

Address bus transfer phase 

Following the arbiu·ation phase, the requesting module must u·ansfer an address list to the 
conu·oller of modules to which it wants to u·ansfer data (destination modules). A destination 
module address is u·ansfened on the AD_BUS(0-3) lines each SYS_CLK cycle. A valid value 
(address) on the AD_BUS lines is qualified by signal AD_BUSY* being active. In addition, the 
transfer request operation must be indicated by asserting the TR_REQ* line. The AD _BUSY* 
and TR_REQ* lines will stay active until all destination module addresses are u·ansfened to the 

conu·oller. 

OBSERVATION: Because the activity on the arbiu·ation lines AB_BUS can be observed by all 
modules (including the controller) during the entire arbitration phase, the identity of the 
requesting module will be known to the controller prior to the address bus transfer phase. It is 
therefore no need to explicitly u·ansfer the identity of the requesting module to the conu·ol!er 
during the address bus transfer phase. 

When the address bus u·ansfer phase is terminated by releasing the TR_REQ* line, the 

conu·oller will start checking the status of the requested destination modules. If one or more of 

the requested destination modules cunently are unable to receive new data (because they are 
busy), these modules will be removed from the destination list and replaced by the cluster's 
buffer module located on the conu·oller module. On the basis of this modified destination list, 
the controller will check all Ring bus segments required to service the requested transfer, 
performed as a left as well as a right direction transfer. If there is a contiguous path of free 
segments from the source to the last destination module, either in the left or the tight direction, 

the requested transfer is granted. In case of both paths, left and right, being open to the requested 
u·ansfer, the shorter path is selected. 

If a requested transfer can not be granted, this is from one out of two possible reasons: 

• Both transfer paths (left and right) are busy. 

• The cluster buffer module is needed for data buffering, but is out of buffer 
space. 



129 

In case of being unable to grant the requested transfer, the request is not immediately rejected 

but made pending. This means that it is placed on a list containing requested, but not yet granted 
transfers (pending transfer list) for later retry. 

OBSERVATION: Note that it is the original destination list supplied by the requesting module 
which is saved in the pending transfer list, not the modified destination list. This is because the 
latter is to be regarded as a snapshot of the modules' state of processing at the very moment it 
is taken, and will therefore could have changed at a later time when the requested transfer is to 
be retried. 

Whenever a transfer is released, the pending transfer list is checked, starting with the oldest 
request, to see whether one or more transfers on the list can be granted. If a pending, requested 
transfer can not be granted within a specified timeout period, the transfer is removed from the 
list and a transfer reject message is sent back to the requesting module. 

OBSERVATION: Because the fact that a u·ansfer can not be granted within the timeout pe1iod 
in itself is an indication of something being wrong, the cause of the reject should be investigated 
by the controller and measures be taken to remove that cause. 

8.4.3.b. Transfer grant 

If the requested transfer can be pe1formed, either by a left or right direction transfer, the 
conu·oller signals this back to the requesting module by a "transfer grant" procedure as shown 
in the following timing diagram: 



130 

AB_BUS(0:5) -{~oo~ntrol~tat~) ----------------

AB_REQ* 

SYS_CLK 

AD_BUS(0:3) ----~~--------------------------------

AD_BUSY* 

TR_REQ* 

TR_GRANT* 

TR_REJ* 

TRL*_R ----~~~----------------------------------

PE_FUNC(O: 1 )----------1~~-----------------------------

PE_STCT*n --------~~~------------------------------

I (j) I (2)1 

Figure 8. 7. Transfer grant procedure 

Arbitration phase 

The controller requests access to the Address bus by using the "arb/low/15" arbitration code, 
presented on the arbitration lines AB_BUS(0-5): 

5 4 3 0 

0 0 1 1 1 1 arb/req/15 

Figure 8.8. Transfer grant arbitration code 

OBSERVATION: Because the controller's module address is equal to 15 and thereby higher 
than the addresses of all other modules (PEs) in the cluster, a transfer grant arbitration will have 
ptiority over any transfer request arbitration as far as Address bus access is concerned. Both 
transfer request and transfer grant arbiu·ation codes have the priority bit set to "low". 



131 

Address bus transfer phase 

As shown in the timing diagram, the transfer grant procedure is executed as two consecutive 
Address bus SYS_CLK cycles. In the first cycle, the particular request being granted is 
identified. To allow several pending transfers within the same cluster, the originating request 
must be identified because requests are not necessarily granted in the same order as they are 
issued. The request is identified by that the address of the module having requested the transfer 
(the source module) is presented on the Address bus, qualified as usual by asserting signal 
AD_BUSY*. At the same time, the transfer grant operation is signalled by asserting the 
TR_GRANT* line. Finally, the direction of the transfer being granted is identified through the 
state of the TRL * _R line: A logic zero (0) means that the transfer is to be performed as a left 
transfer, a logic one (1) means a right transfer. 

OBSERVATION: Because the protocol is unable to distinguish one out of several transfer 
requests issued by the same module, a module is allowed to have only one pending transfer 
request at a time. If a module already has a pending request, it is therefore not allowed to issue 
another transfer request before the first one has been served. However, due to the possibility of 
transferring the same data to multiple destinations in one u·ansfer, this is not likely to be a 
practical limitation to system operation and petfotmance. 

In the second SYS_CLK cycle, all modules to be destinations for the data are notified. This is 
done through the module handshake mechanism: By placing the appropriate (command) code 
on the PE_FUNC(0-1) lines and asserting the individual status/ control lines PE_STCT*n 
connected to the modules to be selected as destination modules, these modules are enabled for 
the upcoming u·ansfer. The patticular Ring bus to be used is indicated by the state of the 

TRL * _R line. The module being the last destination module according to the selected direction 
of u·ansfer can identify itself by that its address is found on the Address bus during this second 
SYS_CLK cycle. 

OBSERVATION: To be able to verify cotTect operation of the transfer request and grant 
mechanisms, all modules should latch the source module address from the Address bus 
presented during the first SYS_CLK cycle. The destination modules, selected in the second 
cycle, should then check this latched address against the Source Module Address (SMA) found 
in the header of the next packet entering the module on the Ring bus indicated by the state of 
TRL * _R line. If the two addresses do not match, a system failure has occmTed and the 
controller must be notified. 

8.4.3.c. Transfer reject 

If the requested u·ansfer can not be petformed within the specified timeout petiod, the controller 

signals this to the module which requested the transfer by a ''transfer reject" procedure, shown 

in the following timing diagram: 



132 

AB_BUS(O:S) --{control!"' )r------------------

AB_REQ* 

SYS_CLK 

AD_BUS(0:3) ---~~~------------------------------------

AD_BUSY* 

TR_REQ* 

TR_GRANT* 

TR_REJ* 

Figure 8.9. Transfer reject procedure 

Arbitration phase 

The controller requests access to the Address bus by using the "arb/low/15" arbitration code, 
presented on the arbitration lines AB_BUS(0-5): 

5 4 3 0 

0 0 1 1 1 1 arb/req/15 

Figure 8.1 o. Transfer reject arbitration code 

OBSERVATION: Transfer request, grant and reject procedures have equal priority as far as 
Address bus arbitration is concerned. 

Address bus transfer phase 

The Address bus transfer phase takes one SYS_CLK cycle. It is recognized by the asse1tion of 
the TR_REJ* signal. The identity of the request being rejected is signalled by that the address 

of the module having issued the request (the source module) is placed on the Address bus during 
this phase. The address is as usual qualified by the AD_BUSY* signal being active. 

OBSERVATION: As already mentioned, a transfer reject is to be regarded as a system exception 
event. Measures should therefore be taken by the controller to identify and remove the cause of 
the reject, and thereby restore no1ma! system operation. 



133 

OBSERVATION: The specific action to be taken by a module receiving a ··transfer reject" from 
its controller in response to a ''transfer request" will depend on the actual application and system 
configuration. It is therefore not included as a part of the Ring bus specification. 

8.4.3.d. Transfer release 

When the last destination module receives the last word of a data packet, the transfer is 

terminated. It is the responsibility of the last destination module to signal this to the controller, 

so the controller can release all Ring bus segments allocated to that particular transfer. The 
transfer release procedure consists of an arbitration phase only and is shown in the following 

timing diagram: 

AB_BUS(0:5) --{~·1~~···.··~d~~)~<~§~J~------------------

AB_REQ• 

Figure 8.11. Transfer release procedure 

Arbitration phase 

The last destination module signals to the controller that the transfer is to be released by placing 

the "arb/high/<source address>" arbiu·ation code onto the arbitration lines AB_BUS(0-5): 

5 4 3 0 

0 1 ~od,le a~d<ess (0~15) arb/rel/(0-15) 

Figure 8.12. Transfer release arbitration code 

OBSERVATION: Intuitively, it may seem more appropriate and consistent with other system 
operations to let the source module do the u·ansfer release instead of the last destination module. 
However, it must be ensured that the u·ansfer (and thereby the allocated Ring bus segments) is 
not released before the transfer has been completely terminated. The u·ansfer can therefore only 
be released after the last destination module has received the last word in the packet. Due to the 
indeterminacy inu·oduced by conu·oJ packets allowed to enter the Ring bus without prior 
arbitration (and notification of the controller), the only module that can detect the termination 
of a transfer with complete certainty is the last destination module. 

OBSERVATION: Transfer release is the only arbitration procedure using high pnonty 
arbiu·ation. In case of several modules entering the arbiu·ation procedures simultaneously, the 
u·ansfer release(s) will therefore be serviced first. The reason for giving the release procedure a 
higher priority is that there may be situations where Ring bus segments being released by a 
u·ansfer release operation is needed to grant a simultaneous transfer request. 



134 

OBSERVATION: Unlike any other arbitration procedure, a module performing a transfer 
release procedure is not placing its own address onto the Arbitration bus lines AB_BUS during 
the arbitration phase, but the address of the module being the source of the transfer. Because the 
transfer release procedure is the only procedure using high priority arbitration, and each module 
only can have one transfer active (or pending) at a time, it is therefore no danger of conflicting 
arbitration codes. 

OBSERVATION: The destination modules are not disabled or unselected explicitly (by the 
controller) when the transfer is terminated. End of transfer must be detected and acted upon by 
the modules themselves when receiving a transfer word tagged as ELDP (End of Local Data 
Packet). 

8.5. Module handshake control 

To provide a fast and reliable way of checking module status as well as broadcasting a limited 
set of module control commands to all modules in the cluster simultaneously, each module is 
connected to its local controller by its own dedicated status/ control line. The current function 
of this line is determined by two additional signal lines, connected to all modules in parallel. 
Signal transitions on all lines are synchronized to the system clock, SYS_CLK. 

8.5.1. Signallines 

All signal lines have names equal to the module connections they are connected to. This is the 

case for the PE modules as well as the controller. 

PE_FUNC(0-1) 

Processing Element status/ control line FUNCtion. Input- totem pole. At any 
time, the two bit value presented on these lines determines the cunent 
function of the status/ control lines PE_STCTn* (n=0-14). The function is 
selected according to the following table: 

PE_FUNC Function Signal driven by 

0 PE ready PE 

1 PE select controller 

2 spare () 

3 spare () 

Figure 8.13. Module handshake function select codes 



135 

PE_STCTn* 

8.5.2. 

Processing Element STatus and ConTrol. Bidirectional. "n" is equal to the PE 
module address and will therefore be in the range of 0 to 14. The current 
function is determined by the value of PE_FUNC. 

Timing diagrams 

SYS_CLK 

PE_FUNC(0:1) ------i( commlli# )1----------

PE_STCT*n (i aa.i:<i < ) 

t._______ controller presents command/ data 

PE/control!er samples data 

Figure 8.14. Module handshake timing 

8.6. Ring bus transfer protocol 

A complete Ring bus u·ansfer cycle, from a module signals that it wants to do a u·ansfer until 

the transfer is terminated and the allocated Ring bus segments released, will consist of four 
phases (numbers are refening to Figure 8.15.): 

• Transfer request (1). The module wanting to do the u·ansfer (the source 
module) is requesting the conu·oller's permission to u·ansfer a data packet to 
a specified set of destination modules. This is done by executing the already 
described transfer request procedure via the Arbitration and Address buses. 

• Transfer grant (2). Upon receiving a transfer request, the controller will 
check the status of all Ring bus segments necessary to pelform the transfer, 
from the source module to the requested destinations. If there are a contiguous 
line of free segments either in the left or the right direction, and all destination 
modules are ready or there is space available in the global buffer, the 
requested u·ansfer is granted and can then be initiated by the requesting 
(source) module. If the u·ansfer can not be granted within the specified 
timeout period, the u·ansfer request is rejected. A reject, however, is not a part 
of the system's normal mode of operation, but indicates a failure of some 
kind. In addition to issuing a transfer reject to the requesting module, 
measures should therefore also be taken by the controller to find and remove 
the cause of the reject. 

• Data transfer (3). The data packet is transferred on the Ring bus. To be able 
to detect the last word in the packet, the last word has a different tag than the 
other words in the packet. 

• Transfer release ( 4). When the last destination module receives the last word 
of the packet, tagged as ELDP (End of Local Data Packet), it is the 



136 

responsibility of this module to notify the controller that the packet transfer is 
completed. This is done by using the arbitration mechanism. The controller 
can then release all Ring bus segments allocated to the transfer. 

A complete Ring bus packet transfer is shown in Figure 8.15.: 

AB_BUS(0:5) --{ r<!<\cf:>J:; 

AB_REQ* \._ _ _, \ I \ r 
SYS_CLK 

AD_BUS(0:3) --~~~---~~·~---------------

AD_BUSY* LJ LJ 

Figure 8.15. Ring bus packet transfer cycle 

Inf01mation are transferred on the Ring bus as packets. Two types of packets are supported, 
data packets and control packets. Both types of packets are assembled by a header part and a 

data part. The header prut contains information necessru-y for the purpose of packet addressing 
and identification, while the data prut contains the actual data. The two types of packets ru·e 
distinguished by their tagging. 

8.6.1. Packet tagging 

Through the associated 3 bit Tag bus, information transfened on the Ring bus can be identified 

as belonging to a data packet or a control packet. Tagging is done according to the following 
scheme: 

Tag 0 1 

Bit2 local packet remote packet 

Bit 1 data packet control packet 

Bit 0 default last word in packet 

Figure 8.16. Packet tagging scheme 

Coded into three bits, the following 8 tags ru·e used: 



LDP 

ELDP 

LCP 

ELCP 

RDP 

ERDP 

RCP 

ERCP 

137 

Tag code 0. Local Data Packet. Tags all but the last word in a local data 
packet. 

Tag code 1. End of Local Data Packet. Tags the last word in a local data 

packet. 

Tag code 2. Local Control Packet. Tags all but the last word in a local control 
packet. 

Tag code 3. End of Local Control Packet. Tags the last word in a local control 
packet. 

Tag code 4. Remote Data Packet. Tags all but the last word in a remote data 
packet. 

Tag code 5. End of Remote Data Packet. Tags the last word in a remote data 
packet. 

Tag code 6. Remote Control Packet. Tags all but the last word in a remote 
control packet. 

Tag code 7. End of Remote Control Packet. Tags the last word in a remote 
control packet. 

OBSERVATION: Start-of-packet is not explicitly coded. This means that each module's Ring 
bus intetface need to maintain a state variable telling whether a data or a control packet u·ansfer, 
or both, is taking place at the moment. The state variable is set when detecting the first data or 
control packet word with the vatiable cleared, it is cleared by system reset or detecting a word 
tagged as ExxP (End-of-local/remote-control/data-Packet). 

When detecting a word tagged as ELDP (End of Local Data Packet), it is the responsibility of 

the module selected as the last destination module to notify its local conu·oller so that the Ring 
bus segments allocated to the transfer can be released. 



138 

8.6.2. Data packets 

Data packets are used for transferring image data, lookup tables, program code to load into the 
various PE modules and other kinds of information. Prior to transfeiTing a data packet, the 
module wanting to do the transfer must request its local controller for permission to use the 

Ring bus. When the request is granted, the transfer can take place. 

8.6.2.a. Local data packets 

Local data packets are data packets transferred to destination modules within the local cluster, 
that is, to destination modules located in the same cluster as the source module. 

Packet tagging 

Local data packets can be identified by their associated tags LDP (Local Data Packet) and 
ELDP (End of Local Data Packet). 

Packet addressing 

As a part of the Ring bus arbitration procedure, the requesting module must supply a list of 
destination modules to which it wants to u·ansfer the data. By reading the modules status/ 
conu·ollines PE_STCfn* (n=0-14) with the appropriate code output on the function conu·ol 

lines PE_FUNC, the conu·oller can decide whether the destination PE modules are ready to 

accept the data or not. By applying another code to the PE_FUNC lines and asse1ting the status/ 

conu·ol lines connected to all ready destination PEs, the conu-oller will enable those PEs to 
receive the packet being u·ansfened. The last destination PE along the transfer path is notified 
by a second asse1tion of the status/ control line with the appropriate code output on the 

PE_FUNC lines. 

If there are one or more requested destination modules not ready to receive the data, they will 
not be enabled for reception by the conu·oller. Instead, it will enable the cluster buffer module, 

located on the conu·oller module, which will buffer the data for later retransfer. In this way, the 

module requesting the transfer is released from the responsibility of keeping the data as soon as 
the data is transfened. This will be the case no matter whether the data actually reaches the 

requested destination modules or is buffered in the cluster buffer module, waiting for the 

destination module(s) to be ready. 

Packet format 

Data packets have a fixed, maximum size of 128 transfened data words (256 bytes) pr. packet. 

In addition comes the packet header. The packet header is formatted according to the following 

template: 



139 

2 15 11 7 3 

LOP Type SCA I SMA 

LOP Operation Size 

LOP 
"Type" and "Operation" dependent 

part of header 

. 
LOP 

. . . 
ELOP 

Figure 8.17. Local data packet template 

The local data packet header contains the following fields of information: 

Type 

SCA 

SMA 

Type of data contained in packet. 

Source Cluster Address. Address of cluster in which the source module is 
located. 

Source Module Address. Address of module within the cluster. 

Operation 

Identifies the operation to pelform on the data in the packet. 

Size 

Number of transfened words contained in the data part of the packet. 

Although the actual format layout will depend on the kind of data contained in the packet, the 

following points should be noted: 

• Destination module addressing is not included as part of the header, but is 
pelformed during the module handshake procedure prior to the actual packet 
transfer. 



140 

• To avoid padding packets to fill up to the maximum size (e.g. in conjunction 
with the last packet in a series of packet transfers), the packet header contains 
information of the packet's actual size. 

• The actual header format is determined by the header's type and operation 
fields, specifying the type of data contained in the packet and what to do with 
it. 

8.6.2.b. Remote data packets 

Remote data packets are data packets transferred to destination modules in a remote cluster, that 
is, to destination modules located in another cluster than the source module. 

Packet tagging 

Remote data packets can be identified by their associated tags RDP (Remote Data Packet) and 

ERDP (End of Remote Data Packet). 

Packet addressing 

When u·ansferring packets to a remote cluster, the handshake procedure towards destination 

modules in the remote cluster is canied out by the remote cluster controller. A data packet 
destined for a remote cluster must therefore be equipped with an additional header, called the 
remote cluster header, preceding the (local cluster) packet header desctibed in the previous 

section. The remote cluster header must contain the address of the (remote) destination cluster 
as well as the addresses of the destination modules within the remote cluster. 

When the data is transfetTed to its final destination modules in the remote cluster, the remote 

cluster header is removed. The packet words must then be retagged to LDP and ELDP, 

respectively, before the packet is u·ansfened onto the remote cluster Ring bus. 

OBSERVATION: No change or reformatting of the local cluster header is required. Within the 
remote cluster, multicast and broadcast transfers are thereby supported in the same way as for 
local data packet u·ansfers. 



141 

Packet format 

2 

RDP 

RDP 

RDP 

RDP 

ERDP 

15 11 7 3 

I DCA 

DMM 

. . . . 

. . . . 

Figure 8.18. Remote data packet template 

::r::rJ 
(!)(!) 
IJ)3 
a. a 
(!)...+ -.ro 

::rr 
(!)0 
IJ)C"l 
a.IJ) 
~-

The remote data packet header contain the following fields of additional information: 

DCA 

Destination Cluster Address. The address of the cluster m which the 

destination module(s) reside. 

DMM 

8.6.3. 

Destination Module Mask. A 16 bit mask identifying the destination 

module(s) in the remote cluster, each bit conesponding to the module with 

address equal to the bit's position within the 16 bit mask. Values: 

0 The module is not a destination module for the cmTent transfer. 

The module is a destination module for the cunent transfer. 

Control packets 

While data packets are used for t:ransfening what with a common denominator can be called 
"bulks of data", control packets are transfening limited amounts of information to be used for 

system or module control. This can be information needed for synchronization between 

processing tasks on different PEs, system (re)configuration commands issued by the controller 

to the PEs and other control related issues. 

Unlike data packets, control packets are transfened on the ting bus without any prior 

arbitration. However, two requirements must be met when transfening a control packet: 

• The module issuing the control packet must monitor its own Ring bus input 
buffer, ensuring that a simultaneous incoming data packet will not cause a 



142 

buffer overflow. If that is about to happen, the control packet transfer must be 
temporarily halted until there is again free space in the input buffer to 
accumulate any incoming data. 

• The tagging scheme employed does not support more than one control packet 
transfer simultaneously. In other words, one control packet is not allowed to 
disrupt another. Therefore, if the module wanting to issue a control packet 
already is relaying a control packet from another module through its Ring bus 
interface, it must wait until the transfer of that packet is terminated. 

8.6.3.a. Local control packets 

Local control packets are control packets being transferred to destination modules within the 
local cluster, that is, to destination modules located in the same cluster as the source module. 

Packet tagging 

Local control packets can be identified by their accompanying tags LCP (Local Control Packet) 
and ELCP (End of Local Control Packet). 

Packet addressing 

OBSERVATION: Because control packets are not subject to a controller conu·olled arbiu·ation 
cycle before the actual u·ansfer takes place, packet addressing can not be accomplished by using 
the same select/ unselect mechanism as the data packets. 

Conu·ol packet addressing is implemented through the packet header: Included in the header is 
a 16 bit Destination Module Mask, DMM. Every bit in the DMM con·esponds to the module 
within the cluster having the same address (0-15) as the bit's position in the DMM. Values: 

0 This module is not a destination for this control packet. 

This module is a destination for this conu·ol packet. 

A module being destination for the control packet, must clear its own DMM (address) bit when 
it receives the packet. If the entire DMM thereby gets cleared, this means that the module is the 

last destination module for this packet and the packet is therefore removed from the Ring bus. 
However, if there are still one or more bits set in the DMM, the module immediately transfers 

the packet to its neighboming Ring bus module along the direction of transfer. 

Packet format 

Conu·ol packets have a length varying with their actual operation, but is typically less than 10 

u·ansfen-ed words pr. packet, including the header. The packet header is formatted according to 

the following template: 



143 

2 15 11 7 3 

LCP DMM 

LCP Type SCA I SMA 

LCP Operation Size 

. 
LCP 

. . . 

ELCP 

Figure 8.19. Local control packet template 

The local control packet header contain the following fields of information: 

DMM 

Type 

SCA 

SMA 

Destination Module Mask. 16 bit mask used for destination module 
addressing. 

Type of data contained in packet. 

Source Cluster Address. Address of cluster in which the source module is 

located. 

Source Module Address. Address of module within the cluster. 

Operation 

Identifies the operation to petform. 

Size 

Number of u·ansfened words contained in the data part of the packet. 

8.6.3.b. Remote control packets 

Remote control packets are control packets transfened to destination modules in a remote 
cluster, that is, to destination modules located in another cluster than the source module. 



144 

Packet tagging 

Remote control packets can be identified by their accompanying tags RCP (Remote Control 
Packet) and ERCP (End of Remote Control Packet). 

Packet addressing 

A remote control packet transfer is identified through its RCP tagging. For addressing, a 
complete remote control packet address is assembled by a cluster part, the Destination Cluster 
Address (DCA), and a module pmt (DMM), giving the module address(es) within the remote 
cluster. 

Like data packets, control packets destined for a remote cluster must therefore have a remote 
cluster header, supplying the Destination Cluster Address DCA. The remote cluster header 
precedes the (local cluster) packet header described in the previous section, containing among 

other things the DMM. 

When the control packet in transfer reaches the remote cluster controller, the remote cluster 
header is removed. The words contained in the packet are then retagged to LCP and ELCP, 
respectively, before the packet is transferred onto the remote cluster Ring bus. 

OBSERVATION: No change or reformatting of the local cluster header is required. Within the 
remote cluster, multicast and broadcast transfers are thereby suppmted in the same way as local 
control packet transfers do. 

Packet format 

2 

RCP 

RCP 

RCP 

ERCP 

15 11 7 3 

I DCA 

. . . 
. . . . 

Figure 8.20. Remote control packet template 

:::T:O 
(!)(!) 

Ol3 
a. a 
(!).-.. 
... (!) 

0 
!:a 
Ol 

The remote control packet header contain the following field of additional infmmation: 



145 

DCA 

Destination Cluster Address. The address of the cluster in which the 
destination module(s)s reside. 

8.6.4. Emergency messages 

Emergency messages are transferred on the 6 bit Arbitration bus AB_BUS(0-5). An error 
message is distinguished from an ordinary arbitration cycle by having the most significant 
AB_BUS bit (5) set. 

Any emergency message has priority over any arbitration signalling. 

The total of 32 different messages are shared between the controller ( 16) and the ordinary Ring 
bus modules (one each). 

8.6.4.a. Module alert message 

Module alert is signalled by a module whenever a situation occurs which the module can not 
handle without external (controller) assistance. The actual cause of the alert being issued must 
be investigated by the use of Ring bus control packets, if possible. Otherwise, the alerting 
module must be resat. 

A module alett message is ptimarily intended for the controller, but can, like all other arbitration 
bus activity, be observed by all modules. 

5 4 3 0 

1 0 mess/0/(0-15) 

Figure 8.21. Module alert message code 

8.6.4.b. Controller high priotity message 

Controller high priotity messages are messages issued by the controller, broadcasted to all other 
Ring bus modules within the cluster. These messages are used to signal events as system reset, 

power fail and other events requiring immediate action to be taken and/ or a very reliable 

transfer mechanism. 

5 4 3 0 

1 1 Messa~e (0~15) : me,,;H(D-15) 

Figure 8.22. Controller high priority message code 



146 

8.7. Inter-cluster communication 

The purpose of the inter-cluster (IC) interface is to be a simple, efficient and flexible way of 

connecting a number of clusters. To be able to connect the clusters according to the topology 

best suited for the actual application, each cluster interface is equipped with two identical, 

bidirectional ports. By having two ports, topologies as linear arrays and rings can easily be 

implemented. 

The IC interface is shared between the two connected clusters by using a simple time-slot 

arbitration mechanism. This mechanism determines which of the two clusters currently 

controlling the arbitration mechanism, thereby having the possibility to request to use the 

interface for doing a data transfer. The cluster in control is called the arbitration master, the 

other cluster the arbitration slave. 

Each of the two ports have its own arbitration mechanism. In this way, a totally independent 

operation of the two ports is achieved. The data transfer itself is, like the intra-cluster data 

transfer, based on a source synchronized, non-compelled protocol, supported by a pair of 

request/ grant lines. To match the intra-cluster Ring bus, the width of the inter-cluster data bus 

is 16 bit together with a 3 bit tag-bus. 

8.7.1. Cluster connections 

Inter-Cluster port A arbitration connections 

IC_SELAB 

Inter-Cluster intelface SELect p01t A or B. Output- totem pole. IC_SELAB 

is a 50/50 duty-cycle clock signal used to implement the time slot scheduling 

mechanism. Value: 

0 Pott A is selected. 

P01t B is selected. 

IC_ARBEN* 

Inter-Cluster interface ARBitration ENable (low). Output - totem pole. 

IC_ARBEN* is a 75/25 (low/high) duty-cycle clock signal. It is low 

whenever arbitration is enabled. 

IC_AREQ* 

Inter-Cluster intetface port A REQuest (low). Bidirectional - open collector. 

Asserted when a cluster wants access to the inter-cluster intetface port A. 

IC_AGRANT* 

Inter-Cluster intetface p01t A GRANT (low). Bidirectional- open collector. 

Asserted as a positive acknowledge to an IC intetface request. 



147 

Inter-Cluster port A data connections 

IC_ABUSY* 

Inter-Cluster interface port A BUSY (low). Bidirectional - open collector. 
Active when IC port A is in use. 

IC_ADAT A(0-15) 

Inter-Cluster interface port A DATA, 0 to 15. Bidirectional - three state. IC 
interface port A data lines. 

IC_A T AG(0-2) 

Inter-Cluster interface port A TAG, 0 to 2. Bidirectional - three state. IC 
interface port A tag lines. 

IC_ADS 

Inter-Cluster intetface port A Data Strobe. Toggle, bidirectional - three state. 
Toggled by the cluster currently driving port A when valid data is placed on 
the IC_ADATA and IC_ATAG lines. 

IC_ADH* 

Inter-Cluster interface pott A Data Hold (low). Bidirectional - three state. 
Asserted by the cluster cunently receiving data over port A, requesting the 
driving cluster to temporatily hold the data stream. 

Inter-Cluster port B arbitration connections 

IC_SELAB 

Inter-Cluster intetface SELect port A or B. Input. IC_SELAB is a 50/50 duty
cycle clock signal used to implement the time slot scheduling mechanism. 
Value: 

0 

1 

IC_ARBEN* 

Port A is selected. 

Port B is selected. 

Inter-Cluster intetface ARBitration ENable (low). Input. IC_ARBEN* is a 
75/25 (low/high) duty-cycle clock signal. It is low whenever ru·biu·ation is 
enabled. 

IC_BREQ* 

Inter-Cluster interface port B REQuest (low). Bidirectional- open collector. 
Asserted when a cluster wants access to the inter-cluster interface port B. 

IC_BGRANT* 

Inter-Cluster intetface port B GRANT. Bidirectional - open collector. 
Asserted as a positive acknowledge to an IC intetface request. 



148 

Inter-Cluster port B data connections 

IC_BBUSY* 

Inter-Cluster interface port B BUSY (low). Bidirectional - open collector. 
Active when IC port B is in use. 

IC_BDAT A(0-15) 

Inter-Cluster interface port B DATA, 0 to 15. Bidirectional - three state. IC 
interface port B data lines. 

IC_BT AG(0-2) 

Inter-Cluster intetface port B TAG, 0 to 2. Bidirectional - three state. IC 
intetface port B tag lines. 

IC_BDS 

Inter-Cluster intetface pott B Data Strobe. Toggle, bidirectional - three state. 
Toggled by the cluster currently driving port B when valid data is placed on 
the IC_BDATA and IC_BTAG lines. 

IC_BDH* 

Inter-Cluster intetface pmt B Data Hold (low). Bidirectional - three state. 
Asserted by the cluster currently receiving data over pott B requesting the 
driving cluster to temporarily hold the data stream. 

IC_BSELAB 

IC_BARBEN* 

IC_BREQ* 

IC_BGRANT* 

IC_BDATA(0:15) 

IC_BTAG(0:2) 

IC_BDS 

IC_BDH* 

IC_BBUSY* 

8.7.2. Signallines 

16 

3 

Inter-cluster Inter-cluster 

port B port A 
16 

interface interface 3 

Figure 8.23. Inter-Cluster interface 

IC_ASELAB 

IC_AARBEN* 

IC_AREQ* 

IC_AGRANT* 

IC_ADATA(0:15) 
IC_ATAG(0:2) 

IC_ADS 

IC_ADH* 

IC_ABUSY* 

The clusters are interconnected by connecting one cluster's port A to another cluster's port B 
connections. The names of the connected cluster connections will only differ in the "A" and "B" 
designating pmt A orB, respectively. By removing that "A" or "B", the names of the signal 
lines connecting the two clusters will therefore be: 



149 

Inter-Cluster arbitration lines 

IC_SELAB 

Inter-Cluster connection SELect port A or B. Signal line driven by the 
connected port A, input to port B. 

IC_ARBEN* 

Inter-Cluster connection ARBitration ENable (low). Signal line driven by the 
connected port A, input to port B. 

IC_REQ* 

Inter-Cluster connection REQuest (low). Output (arbitration master) or input 
(arbitration slave). The connection of the IC_AREQ* and IC_BREQ* lines. 

IC_GRANT* 

Inter-Cluster connection GRANT (low). Output (arbitration slave) or input 
(arbitration master). The connection of the IC_AGRANT* and 
IC_BGRANT* lines. 

Inter-Cluster data lines 

All lines are driven by the master cluster, except IC_DH*, which is driven by the slave cluster. 

IC_BUSY* 

Inter-Cluster connection BUSY (low). The connection of the IC_ABUSY* 
and IC_BBUSY* lines. 

IC_DAT A(0-15) 

Inter-Cluster connection DATA, 0 to 15. The connection of the IC_ADAT A 
and IC_BDATA lines. 

IC_TAG(0-2) 

IC_DS 

Inter-Cluster connection TAG, 0 to 2. The connection of the IC_ATAG and 
IC_BTAG lines. 

Inter-Cluster connection Data Strobe. The connection of the IC_ADS and 
IC_BDS lines. 

IC_DH* 

Inter-Cluster connection Data Hold (low). The connection of the IC_ADH* 
and IC_BDH* lines. 



150 

8.7.3. Inter-Cluster interface arbitration 

Arbitration is done according to a time slot scheduling mechanism based on the signals 
IC_ARBEN* and IC_SELAB. The inter-cluster interface is a direct port-to-port connection, 
always connecting the A port of one cluster to the B port of the other cluster. The IC_ARBEN* 
and IC_SELAB signals are always driven by the A port, with input to the B port. 

This is the one and only instance in which the two (A and B) ports sharing the 

IC interface is asymmetric. 

According to the cun·ent state of the IC_ARBEN* and IC_SELAB signals, each IC_SELAB 

cycle can be divided into two distinct phases enabling arbitration for the two connected ports 
(A and B) in tum. Between each enable phase, there is an intermediate arbitration disable phase. 
The previous definition of an arbitration master/ slave can now be expressed as follows: A port 
being enabled for arbitration, that is, being within its own enable phase, is called the arbitration 

master. The other port is called the arbitration slave . 

IC_SELAB 

IC_ARBEN* 

_j 

j+ Port A arbitration +j 
phase 

..__ ____ __.! 

J.- Port 8 arbitration +l 
phase 

Figure 8.24. Inter-Cluster arbitration phases 

The various arbitration phases can be summarized as follows: 

IC_ARBEN* IC_SELAB 

low high 

low Port B arb. phase Port A arb. phase 

high arb. disabled arb. disabled 

Figure 8.25. Table, Inter-Cluster arbitration phases 

A pmt is only allowed to make a request to use the inter-clustet connection if it is the current 
arbitration master. Provided that the port is free to use, that is, the connection's status line 
IC_BUSY* is inactive when entering the port's arbitration enable phase, a request can be made 



151 

by the arbitration ma~ter asserting the IC_REQ* line. If the connection is busy, the port must 

wait until the on-going transfer is terminated and the busy line released before making the 

request. 

OBSERVATION: The state of the IC_BUSY* line is sampled by the arbitration master only 
once during each IC_SELAB cycle, at the very beginning of the enable phase. In this way, a 
master cluster doing a inter-cluster transfer is not required to synchronize the release of the 
IC_BUSY* with the IC_SELAB and IC_ARBEN* signals, but is allowed to release 
IC_BUSY* whenever the transfer is finished. 

Before any data transfer can take place, an issued request must be acknowledged by the 
arbitration slave by asserting the IC_GRANT* line. Finally, before leaving its enable phase, the 
arbitration master must assert the IC_BUSY* line to signal that it actually starts using the 
requested port. 

After asserting the IC_BUSY* line, the IC_REQ* line may then be released, with a subsequent 
release of the IC_GRANT* line by the arbitration slave If the arbitration master does not 
receive an acknowledge or does not have time to assert the IC_BUSY* line before its enable 

phase expires, it is forced to withdraw its request. No request is allowed to be active during the 

arbitration disable phase. A new request may then be issued at the earliest the next time the 
port becomes arbitration master, with the danger being, of course, that the connection is then 
already taken by the other cluster. 

When a cluster is granted the connection and has asserted the IC_BUSY* line, this cluster 
becomes the master cluster of the connection until the transfer is terminated and IC_BUSY* 

released. The other cluster will accordingly be named the slave cluster. The IC_BUSY* line 
must stay active during the whole transfer. When the master cluster wants to release the 

connection, it does so by releasing the IC_BUSY* line. 

As an example, a timing diagram is shown where pmt A is the arbitration master. 

IC_SELAB 

IC_ARBEN* 

IC_REQ* 

IC_GRANT* 

IC_BUSY* 

, .. Port A arbitration phase 

Figure 8.26. Port A arbitration 



152 

OBSERVATION: In a two cluster system, or for clusters being located at the edge of a larger 
configuration, only one of the inter-cluster ports are probably needed. The cluster controllers 
should therefore include provisions for individually disabling each one of the two ports. 

8.7.4. Inter-cluster data transfer protocol 

Data and control information are transferred between clusters formatted as remote data packets 

and remote control packets as already described. The protocol used is a source-synchronized, 
non-compelled, transition signalling [Sutherland 89] transfer protocol like the one used on the 
Ring bus: The master cluster supplying the data toggles the IS_DS strobe line when new data 
is presented on the IC_DAT A and IC_ TAG lines, a handshake is only issued by the slave cluster 

when the slave cluster is (temporarily) unable to receive more data. The slave cluster will then 
assert the data hold signal IC_DH*, which will be held active until the slave cluster again is 
ready to accept new data. Until then, the connection will be frozen and no further data will be 
output by the master cluster. This is shown in the following timing diagram. 

IC_DATA(0:15) 

IC_ TAG(0:2) 

IC_DS 

IC_DH* 

Figure 8.27. Inter-cluster data transfer timing 



153 

CHAPTER 9.Ring bus arbitration mechanism 

As described earlier, the communication within each 16 module cluster is implemented by a 
bidirectional ring bus. This means that a transfer from one source module to one or more 

destination modules can take one out of two alternative paths, transferring data in the left or 

right direction, respectively. Each of the two communication paths are resources globally 
accessible to all modules in the cluster, their use must therefore be controlled and regulated by 
an arbitration mechanism. For reasons already accounted for, the ring bus arbitration 
mechanism is implemented as a centralized arbiter, located on module 15, the controller 
module. 

Right direction transfer 

Left direction transfer 

Figure 9.1. The bidirectional ring bus system 

Even if Figure 9.1. may suggest that each communication path, left and right, has its own bus 

interface, this is true only as far as the Ring bus part is concemed. The arbitration mechanism 
itself with its associated backplane lines (the Arbitration and the Address bus) is common to the 

two paths. 

Scope of design 

Although the design presented in this chapter at least by a superfluous look may seem to be a 
fully detailed, ready-to-implement solution, this is by no means so. The description is aimed at 
showing that the arbitration specification possible to extract from the preceding chapters easily 

and with a relatively small amount of hardware resources can be implemented in silicon. The 
scope of the presented design is therefore 

to show the logic and the various functional blocks necessary to build a 

mechanism according to the described algorithm. 



154 

9.1. Documentation syntax 

The design and function of the Ring bus arbitration mechanism is presented in two ways, 
electrical schematics and logical equations. 

9.1.1. Electrical schematics 

The electrical schematics show how the arbitration mechanism is constructed, and the 
interconnection structure connecting the different functional blocks. The schematics are 
presented on two levels of detail, the block level and the logic level. 

On the block level, functional blocks are shown as squares or rectangles with a piece of text 
indicating the function of the block. To be able to tell the direction of signal flow, connections 
on this level are therefore equipped with arrows. 

Schematics on the logic level are assembled by basic components as gates, decoders, encoders, 
multiplexers etc. Their inputs and outputs are implicitly defined by their function, connections 
on this level are therefore non-arrowed. The only arrows on the logic level schematics are used 
in conjunction with PLA- or PAL-like components where input/ output is not implicit in the 
component's function. 

New signals will always be explained at the time of introduction, in other words at the block 
level. No signals will be introduced at the logic level. To help understanding the schematics, the 
following symbols for signal connections are used: 

Terminator, input/output to arbitration mechanism 

Input/output to other schematic 

Single line connection 

n 
--r- multiple (n) lines 

T Single line tapping from multiple line 

Multiple (m) line tapping from multiple line 

Figure 9.2. Signal connection notation 



155 

9.1.2. Logical equations 

To describe the function of various control blocks, as well as a supplement to the gate-level 

design used in the logic level schematics, logical equations are used. The syntax is equal to the 
notation used in logic description languages as ABEL [DATA VO 1989] and CUPL, and is 

based on the following set of operators: 

assignment 
logical (bitwise) negation (one's complement) 

& logical (bitwise) AND 
# logical (bitwise) OR 

•is identical to• 
!= •is not identical to" 

9.2. Functional description 

By using the Arbitration and Address buses, a (source) module issues a request to transfer data 

on the Ring bus to a specified set of destination modules. Which Ring bus to use, the left or the 

tight, is not to be specified by the requesting module, this is up to the controller to decide. After 
some necessaty conversion and reformatting through the Ring bus intetface, the following 

signal lines are presented to the Ring bus arbitration mechanism: 

,.., MOO_REQ 

16 

MOD_BUSY* 
..... REJECT* ..... 

16 ... 
.... TR_REQ* RING BUS GRANT* 
~ ... 

~ 

,..., MOO_SRC ARBITRATION 
MASK ..... 

4 ... 
TR_REL* MECHANISM 16 

~ 

... 
LEFT _RIGHT*,..., ..... 

RESET* 
..... 

Figure 9.3. Ring bus arbitration mechanism 



156 

Input signals 

MOD_REQ(0-15) 

MODule REQuest. The list of destination module addresses provided by the 
requesting module is assembled into the 16 bit mask MOD_REQ, each bit 
corresponding to the module having the same address as the bit's position in 
the mask. Values: 

0 The module is not requested as a destination module. 

1 The module is requested as a destination module. 

MOD_BUSY*(0-15) 

MODule BUSY (low). A 16 bit mask telling whether the corresponding 
module is busy or not. Busy in this context means that the module is unable 
to receive data input due to insufficient local buffer space or other causes. 
Each bit in MOD_BUSY* cotTesponds to the module having the same 
address as the bit's position in the mask. 

MOD_BUSY*(l5), corresponding to the cluster controller, has a slightly 

different meaning, and thereby influence on system operation, than the other 
15 bits. It tells whether the global buffer, located on the controller module, is 

able to receive more input data. If it is not, and at least one of the destination 
modules are unable to receive input data (and thereby needs assistance from 
the global buffer), the request must be rejected. Values, bits 0 to 14: 

0 The module is unable to receive input data. 

The module is able to receive input data. 

Value, bit 15: 

0 The global buffer is unable to receive more data. 

The global buffer is able to receive more data. 

MOD_SRC(0-3) 

MODule SouRCe. A 4 bit value identifying the requesting (source) module. 

Value: 0 to 15. 

TR_REQ* 

TRansfer REQuest (low). Asserted to signal a transfer request. 

TR_REL* 

TRansfer RELease (low). Asserted to signal termination of a transfer with a 
coiTesponding release of all Ring bus segments allocated to that particular 

transfer. 



157 

RESET* 

RESET arbitration mechanism (low). When asserted. all status information 
contained in the arbitration mechanism is cleared to the initial state: No 
ongoing transfers, all Ring bus segments are idle and free to use. 

Output signals 

GRANT* 

transfer/release GRANT (low). Asserted when the requested transfer is 
granted, or when the transfer release has been successfully serviced. 

REJECT* 

transfer/release REJECf (low). Asserted when the requested transfer ts 
rejected, or when the u·ansfer release can not be serviced. 

LEFT _RIGHT* 

u·ansfer/release LEFf or RIGHT (low). The interpretation of this signal is 
depending on whether it is issued in conjunction with a transfer request or a 
transfer release. Value, transfer request: 

0 Use light Ring bus for the requested transfer. 

Use left Ring bus for the requested transfer. 

Value, u·ansfer release: 

0 

MASK(0-15) 

The transfer released was a right Ring bus transfer. 

The u·ansfer released was a left Ring bus transfer. 

transfer/release MASK. In conjunction with a transfer request, this 16 bit 
mask shows which modules to participate in the u·ansfer, from the source to 
the last destination module (both inclusive). Values: 

0 The module is not to patticipate in the u·ansfer. 

The module is to participate in the transfer. 

For a u·ansfer release, the mask shows which modules were used by the 
transfer. Values: 

0 The module was not used by the transfer. 

The module was used by the transfer. 

MASK is therefore a 16 bit value consisting of a contiguous sequence of 
either 1 's orO's. The latter is the case if the transfer path is going "round" the 
ring, called a wrap-around u·ansfer. 



158 

Direction of transfer (right) 

Last destination module: 1 0 

3 7 11 15 

lololol 1 11 l 1 l 1 l 1 11 l 1 l 1 l 0 l 0 l 0 l 0 l 0 l 
l l l l 

Source 
module Destination modules 

Figure 9.4. MASK, non wrap-around transfer 

Direction of transfer (left). Last destination module : 7. 

3 7 11 15 

1
1

1
1

1
1

1
1

1°1°1°1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1 

l l l l 
Source 
module Destination modules 

Figure 9.5. MASK, wrap-around transfer 

9.3. Arbitration timing 

As far as the operation of the Ring bus arbitration mechanism is concemed, u·ansfers are either 
requested or released. 

9.3.1. Transfer request 

When requesting a u·ansfer, the requested (destination) modules, the state of those modules 
(including the global buffer) and the identity of the requesting module must be available to the 

arbitration mechanism to be able to make a decision. The signals supplying this infmmation 
must therefore be valid and stable before assetting the TR_REQ* line, starting the u·ansfer 
request procedure. After some amount of time, typically in the order of some hundreds of 
nanoseconds depending on the actual implementation and technology usedO, the requested 
u·ansfer is either granted or rejected. 



159 

Transfer grant 

"Transfer grant" is signalled through the assertion of the GRANT* line. To tell which modules 
to take part in the transfer as well as the direction of transfer, the signal lines MASK and 
LEFf _RIGHT* must be valid and stable before asserting the GRANT* line. The GRANT* line 
and the MASK and LEFf _RIGHT* lines must remain valid and stable for as long as TR_REQ* 

is asserted. First when TR_REQ* eventually is released, MOD_REQ, MOD_BUSY* and 
MOD_SRC may take invalid values and GRANT* may be released together with MASK and 
LEFf _RIGHT*. No signals are guaranteed to be valid after the release ofTR_REQ*, the output 

signals MASK and LEFf_RIGHT* must therefore be latched by hardware external to the 
arbiter mechanism on the rising (back) edge of TR_REQ* at the latest. 

TR_REQ* 

MOD_REQ --{.__' ~~~~~~· .,;;;.;.., ...•• ;;;.;.iia;;;.;.lld"". :.;;;.;.. ~~~~ ........... ~..-J}-

MOD_BUSY* }---

MOD_SRC --{:· .. :· . . . / .. '''.'::.: •. } ........ i..lid ............... \'.·.· ·' ''''· ·''}--
~··~~~~~~~~~~···'···. 

REJECT* 

GRANT* 

MASK ---------~( <i/ y)jli~< t--

LEFT _RIGHT* ( i ,,,,.i. i~~li~ >}-

Figure 9.6. Transfer grant timing 

Transfer reject 

A u·ansfer may be rejected from two reasons, path busy or module busy. Path busy occurs if 

there are no contiguous line of free Ring bus segments between the source and the last 

destination module in either direction. Module busy is the situation where at least one of the 
modules are busy and at the same time the global buffer is incapable of receiving more data. It 

is then no buffer space to store data destined for the busy module(s), and the transfer must 

therefore temporatily be defetTed. ''Transfer reject" is signalled by asserting the REJECT* 
signal line. The MASK and LEFf _RIGHT* signals remain invalid. 



160 

TR_REQ* 

MOD_REQ --{ >Jalkl }---

MOD_BUSY* --{ valid }---

MOD_SRC --{ valid )-

REJECT* 

GRANT* 

Figure 9.7. Transfer reject timing 

9.3.2. Transfer release 

When a transfer is terminated by the transfer's last destination module, this must be signalled 
to the Ring bus arbitration mechanism in order to release all Ring bus segments being allocated 
to that transfer. This is done by asserting the TR_REL * line. Prior to assertion, the identity of 
the source module for the transfer being released is signalled through the MOD_SRC lines. 

Acknowledge from the arbitration mechanism that the release request has been serviced is given 
by asserting the GRANT* line. The modules participating in the transfer being released as well 
as the direction of u·ansfer are presented on the MASK and LEFT/RIGHT* signals, 
respectively. 



TR_REL* 

MOD_SRC 

REJECT* 

GRANT* 

MASK 

LEFT _RIGHT* 

Figure 9.8. Transfer release/grant timing 

161 

·w11d·. ·•····t-
.••. yalk( +--

If no active transfer is registered on the module identified by the MOD_SRC lines, the release 
request cannot be serviced and must therefore be rejected. This is done by asserting the 
REJECT* line. In this case, the MASK and LEFT_RIGHT* signals remain invalid. 

TR_REL* 

MOD_SRC ~""-·.· .... ·.•.·· .. ··.··~···~~~··~·····~···~···~~~~=~······.·.·.·.· .. · .. )----·. ----.__ Vii!~ . 

REJECT* 

GRANT* 

Figure 9.9. Transfer release/reject timing 

The GRANT* or REJECT* line must remain asserted until TR_REL * is released. 

9.4. Arbiter implementation 

The task of servicing a transfer request is a two-step procedure: First, based on the location of 
the source module and the list of destination modules, the two alternative transfer paths are 
computed. Then, the "best" of the two paths is selected. This two-step procedure is also 
reflected in the arbiter architecture as shown in Figure 9.10.: 



162 

,....MOD_REQ TR_RIGHT REJECT* ..... 
~ 

16 16 -
,... MOD_BUSY* COMPUTE TR_LEFT SELECT GRANT* ..... 

16 & 16 OR -
NO_BUFFER" MASK ..... COMPARE RELEASE 

16 -
TRANSFER RIGHT_ SHORTER TRANSFER LEFT _RIGHT~ 

PATHS THAN_LEFT PATH 

-+ 

MOD_SRC 

4 

TR_REQ* 

TR_REL* 
.... 

RESET* ..... 
~ 

Figure 9.1 0. Arbitration mechanism architecture 

The intetface between the two sections consists of four signals, or signal groups, all output from 
the "Compute & Compare Transfer Paths" section. These are: 

TR....RIGHT(0-15) 

TRansfer RIGHT. This 16 bit mask shows which modules to pmticipate in the 

requested transfer, from the source to the last destination module (both 

inclusive), if the transfer is petformed as a right direction transfer. Values: 

0 The module is not to participate in the transfer. 

The module is to pmticipate in the transfer. 

TR._LEFT(0-15) 

TRansfer LEFT. Conesponding to TR_RIGHT, except that the transfer is 
now to be petformed as a left direction transfer. Values: 

0 The module is not to patticipate in the transfer. 

The module is to pmticipate in the transfer. 

NO_BUFFER* 

NO BUFFER available (low). In case of one or more requested destination 

modules being busy and the global buffer unable to receive more data, signal 
NO_BUFFER* is assetted. The transfer request being serviced must then be 
rejected. 



163 

RIGHT _SHORTER_ THAN LEFT 

This signal is the result of the comparison between the two alternative transfer 
paths, left and right. Value: 

0 The left path is the shortest. 

The right path is the shmtest. 

9.4.1. Compute & Compare Transfer Paths 

The function of the "Compute & Compare Transfer Paths" (C&C) section is to compute and 
then present the two alternative transfer paths to the subsequent "Select Transfer Path" section, 

which will select the actual path to use. The C&C section is in tum assembled from 6 blocks as 
shown in Figure 9 .11. 



., 
<iS" 
c 
(i) 

!"' _.. 
_.. 

0 
0 
3 
"0 s. 
<D 

Sl<> 
0 
0 
3 
"0 
Ill 
(i) ..., 
iil 
::J 
en 

~ 
-u a 
:::T 
en 

MOD REQ -
[:: 

16 

r: MOD _BUSY* 

~ 16 

TR_REQ* 
[::::> 

MOD SRC -.... 
4 

I 
MODIFIED REQ -

16 

MODIFY 

REQUEST 

I> 

COMPUTE 
16 ____. SRC 

MASK SRC_MASK 

FIND PROP RIGHT -
LAST 

16 
MOD. ON 

LAST_LEFT 
LEFT 

+ 4 
TRANSFER 

SRC MASK - ; 

16 

FIND 
PROP_LEFT 

LAST 
16 

MOD. ON 
LAST_RIGHT 

RIGHT 
4 

TRANSFER 

L 

COMPUTE 

RIGHT 

AND 

LEFT 

TRANSFER 

PATHS 

COMPARE 

PATHS 

NO BUFFER" 

TR_RIGHT 

16 

TR_LEFT 

16 

RIGHT SHORT - ER 
~ 

THAN_L EFT 

0> 
~ 



165 

Signal descriptions 

MODIFIED_REQ(0-15) 

A 16 bit mask containing only non-busy, requested destination modules. If 
one or more destination modules were busy (and thereby removed from the 
original destination list), this (these) modules are replaced by the global 
buffer in the modified destination list (bit 15). Values: 

0 The module is not to be enabled as a destination module. 

1 The module is to be enabled as a destination module. 

SRC_MASK(0-15) 

A 16 bit mask obtained by decoding the 4 bit MOD _SRC value. SRC_MASK 
has only one bit set, which position (0 to 15) within the 16 bit mask is equal 
to the source module address. Values: 

0 The cmTesponding module is not the source module. 

1 The con·esponding module is the source module. 

PROP _RIGHT(0-15) 

A 16 bit mask with all bits set equal to 1 from the source module up to the 
first destination module (both inclusive), moving in the right direction. All 
other bits are set equal to 0. 

LAST _LEFT(0-3) 

A 4 bit value equal to the address of the destination module nearest to the right 

of the source module. In other words, the position of the first destination 
module bit in the PROP _RIGHT mask. 

PROP _LEFT(0-15) 

A 16 bit mask with all bits set equal to 1 from the source module up to the 

first destination module (both inclusive), moving in the left direction. All 
other bits are set equal to 0. 

LAST_RIGHT(0-3) 

A 4 bit value equal to the address of the destination module nearest to the left 
of the source module. That is, the position of the first destination module bit 
in the PROP _LEFT mask. 

Functional description 

The list of requested destination modules is presented to the "Modify Request" block as a 16 

bit mask (MOD_REQ). According to the 16 bit status mask MOD_BUSY*, any requested 

destination modules which are busy is removed from the destination list and replaced by the 
global buffer. The result of this is a modified, requested destination list (MODIFIED _REQ). 

The NO_BUFFER* signal is also generated by the "Modify Request" block. 



166 

Together with the source module address, represented as a 16 bit mask (SRC_MASK value, 
computed by the "Compute Src Mask" block), the modified destination list is presented in 

parallel to two blocks computing the last destination module in case of a left and right transfer, 
respectively. This is done by the "Find Last Mod. on Left Transfer" and "Find Last Mod. on 

Right Transfer" blocks. 

The outcome of these two blocks are in turn input to the "Compute Right and Left Transfer 
Paths" block, along with SRC_MASK, identifying the location of the source module. The 
masks of the two alternative transfer paths, TR_RIGHT and TR_LEFT, can now be computed. 

By doing a modulo 16 subtraction between the source module (MOD_SRC) and the last 
destination module addresses (LAST_LEFT and LAST_RIGHT for left and right direction 

transfers, respectively), the shorter of the two altemative u·ansfer paths can be determined. This 
is done by block ''Compare Paths", producing the signal RIGHT_SHORTER_THAN_LEFT. 

The vruious blocks contained in the "Compute & Compru·e Transfer Paths" section will now be 
desctibed in greater detail. 

9.4.l.a. Modify Request 

The function of this block is to remove all busy modules from the original list of destination 
modules requested by the source module. "Busy" in this context means that a module cmTently 

is unable to receive input data. This may be due to lack of local buffer space or heavy processing 
load. The busy modules ru·e removed from the destination list by executing the operation 

MODIFIED_REQ(i) 
= MOD_REQ(i) & MOD_BUSY*(i); i = 0-14 

As far as module 15 is concemed (the controller, containing the global buffer), it is added to the 

destination list if any module is removed from the original list. That is, 

MODIFIED_REQ(15) 
MOD_REQ(15) # "any module removed" 

= MOD_REQ(15) # ((MOD REQ(0-14) & !MOD_BUSY(0-14)) 

The MODIFIED _REQ(15) bit now says if the global buffer is a destination for the transfer 
request being serviced. If it is, it is because some other destination module is busy or because 

the module is explicitly requested as a destination module, which it can be as any other module. 
If the global buffer is busy (expressed by the state of signal MOD_BUSY*(15)), being a 

destination module, the u·ansfer request must be rejected. This is told through signal 

NO_BUFFER*. 

NO BUFFER* 
= ! (!MOD_BUSY*(15) & MODIFIED_REQ(15)) 

The implementation of block "Modify Request" is shown in Figure 9.12. 



167 

MOD_susv· 15 NO_BUFFER• 
16 

15 

MOD_REQ 

16 

14 

13 

15 

14 
MODIFIED_REQ 

5 16 

13 

Figure 9.12. Modify Request 

For better to be able to explain the function of the arbitration mechanism, we will now introduce 
a concrete transfer request example which will be followed step by step through the entire 

mechanism: 

Source module 
Destination modules 
Last dest. module (left transfer) 
Last dest. module (right transfer) 
Modules busy 

8 
4, 6, 9 and 11 
9 
6 
2, 3, 7 and 9 



168 

3 7 11 15 

LEFT SRC RIGHT 

3 7 11 15 

MOD_REQ 
3 7 11 15 

I I I o I o I I I I o I I o I I I I I I I 

J 
MOD_BUSY* 

3 11 15 

MODIFIED_REQ 

Figure 9.13. Transfer request example 

MOD_REQ and MOD_BUSY* values will then be as shown in Figure 9.13. The busy module 

9 will be removed from the destination list and replaced by the global buffer, module 15 

(MODIFIED_REQ). To avoid overcrowding the figures, only assetted bits (1 's for active high 
signals and O's for active low signals) will be shown. Further, bit position 8 will be shadowed 

to help keeping track of the source module. 

9.4.l.b. Compute Src Mask 

This block is an ordinary 4 to 16 decoder, generating the 16 bit SRC_MASK from the 4 bit 
MOD_SRC value. 



169 

,.... MOD_SRC 4: 16 
C>--~-----4 ~------~------. 
- Decode 16 

SRC_MASK 

Figure 9.14. Compute Src Mask 

With source module address equal to 8, SRC_MASK value will be as follows: 

3 7 11 15 

I I I I I I I I 11
1 I I I I I I I 

Figure 9.15. SRC_MASK value 

9.4.l.c. Find Last Module on Left Transfer 

The basic idea behind this and the cotresponding "tight" block is to determine the last 

(destination) module for a given u·ansfer by finding the first module going in the opposite 

direction. This is done by propagating the single "1" in SRC_MASK in the direction opposite 
to the direction of u·ansfer until the first'' 1" in MODIFIED _REQ is encountered. 



170 

lrt 
...-- .----
~ PROP_RIGH 

MODIFIED_ 1--- ..-- & 
15 

REQ 15 ~ 
16 

T 

16 '--- 1---
'-- ,___ 

15 
& 

'---
(propagate) 

rrt- ...--
~ 

s1 

~ ..,__ & 
14 

~ 
s2 

14 ....___ t--
'-- t-- 14 s3 & 

..__ 

~ 
. . . . . 

LEFT . . . 
16 

~ 
(VALID) 

rrt- r---

~ .....--
1--- ~ & 

0 LAST_ 

~ r 164 
LEFT 

0 EncodE 
'--- 1-

4 

'--t-
& 0 '---

'--
SRC_MASK 

0 

16 

(ENABLE) 

Figure 9.16. Find Last Module on Lett Transfer 

Basically, a propagation line daisy-chained from bit to bit needs a start condition and a stop 

condition. The start condition must be unique while there can be several stop conditions, the 
one encountered first will then terminate the propagation line. The left transfer propagation 
process from a source module "n" (n= 0-15) to the last destination module "m" is shown step 

by step in Figure 9.17. 



ENABLE 

MODIFIED_REQ --f 

SRC_MASK --{ 

s1(0-15) 

s2(0-15) 

s3(0-15) 

PROP_RIGHT 

LAST_LEFT 

VALID 

Figure 9.17. "n" to "m" propagation timing 

171 

···•·····•·•· >}---
... }-----

Back to our example: The modified destination list (module 9 removed, 15 added) is presented 

to the left transfer propagation line, shown in Figure 9.18. The propagation line is initially 
disabled by keeping signal ENABLE low. Signals sl, s2, s3 and PROP _RIGHT will then have 
the following initial state: 



172 

s1 

s2 

s3 

PROP_ 
RIGHT 

3 

MODIFIED REQ 
- 3 

7 

7 

11 15 

11 15 

I I I I I I I I (tl I I I I I I I 
SRC_MASK 

3 7 11 15 

I; 
1 1 1 1 1 1 I~ 1 1 1 1 1 

all bits equal to o 

all bits equal to 0 

Figure 9.18. Left transfer propagation line, initial state 

After setting up the MODIFIED_REQ and SRC_MASK values, the propagation process is 

stmted by asserting the ENABLE signal. sl(i) and s2(i) will always both be equal to 1 for "i" 

equal to the source module (8) and for this bit position only. Assetting ENABLE will then cause 
the corresponding PROP _RIGHT(8) to be equal to 1 (step 1 ). 

s1 

s2 

s3 

PROP_ 
RIGHT 

3 7 11 15 

1 1 1 1 1 1 1 1 1 1 1 

all bits equal to o 

Figure 9.19. Left transfer propagation line, step 1 

PROP _RIGHT(8) is connected to the input of the upper OR-gate of bit position 9, sl(9) will 

therefore go to 1 (step 2). 



s1 

s2 

s3 

PROP_ 
RIGHT 

1 1 

173 

3 7 11 15 

1 1 

1 1 1 1 1 1 1 1 1 1 

all bits equal to 0 

1 ·:.· 

Figure 9.20. Left transfer propagation line, step 2 

The propagation process will not stop until the first s2(j)=O is encountered. s2(9) is equal to 1, 

signal s1 (9) going to 1 therefore causes PROP _RIGHT(9) to go to 1, too (step3). 

3 7 11 15 

s1 1 

s2 1 1 1 1 1 1 1 1 1 1 1 

s3 all bits equal to 0 

PROP -
RIGHT 

Figure 9.21. Left transfer propagation line, step 3 

This process will go on through steps 4, 5 and 6 until s 1 (11) goes to 1 (step 6 ). 

3 7 11 15 

s1 1 1 

s2 1 1 1 1 1 1 1 1 1 1 1 

s3 all bits equal to o 

PROP -
RIGHT 

Figure 9.22. Left transfer propagation line, step 4 



174 

s1 

s2 

s3 

PROP_ 
RIGHT 

s1 

s2 

s3 

PROP_ 
RIGHT 

3 7 11 15 

1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

all bits equal to 0 

~~--._~--~~--~_.--~~--~~--~~--~~~~ 

Figure 9.23. Lett transfer propagation line, step 5 

3 7 11 15 

I> J\ 1 1 1 
I> .,,,, 

1 1 1 1 1 1 I \ 1 1 1 1 1 
1\ ,,.,,. 

.•.•.. , 1 

H 
b 1 1 

Figure 9.24. Lett transfer propagation line, step 6 

For the first time since the propagation process started, the con-esponding s2 bit, s2( 11 ), is equal 
to 0 and the 1 on s1(11) is therefore not propagated through the triple-input AND-gate to 
PROP _RIGHT(ll), and the propagation is thereby terminated. The stop condition, a high s1 

and a low s2, causes the conesponding s3, in this case s3(11 ), to be set, as the only s3 bit. The 

location of the last destination module in case of a left transfer, has now been determined by 
finding the first destination module searching in the right direction, starting from the source 

module. By encoding s3, the 4 bit value LAST_LEFT will be equal to the location of that last 

destination module. 

Upon termination, signal PROP _RIGHT will be a "recording" of the travelled propagation line, 

having all bits set from the source module (inclusive) up to the last destination module (not 

inclusive). 

Because all16 possible values LAST_LEFT can take are valid, and termination neither can be 

detected by from the state of PROP _RIGHT, a dedicated "output valid" signal is needed to 

notify the next block in the arbiter mechanism that it may start processing its input signals (that 



175 

is, LAST _LEFT and PROP _RIGHT). Unlike the other blocks, the "Find Last Module on Left 
(Right) Transfer" blocks will not have a fixed delay from input to output, but the delay will be 
data dependent. If a fixed delay nevertheless is used to provide timing between input and output, 
it must be set to the worst case value which will be 30 propagation steps (15 bits times 2 steps 

if there is only one destination module, located to the immediate left of the source module). 
However, a valid output can easily be signalled as soon as it occurs by detecting s3 going from 
zero to non-zero. This is done through a 16 input OR-gate, producing signal VALID. 

In our example, output from the "Find Last Module on Left Transfer" block is the 16 bit 
PROP _RIGHT as shown in Figure 9.25. and LAST_LEFf equal to 11. 

3 7 11 15 

Figure 9.25. PROP _RIGHT output 

9.4.l.d. Find Last Module on Right Transfer 

This block's function and constmction is completely analogue to the cotTesponding left block 

already described in detail. 



176 

L~ 
0 

r-

MODIFIED rt=2- 15 
PROP_LEFT 

- r- & 
REQ 15 ~ 

16 

16 L- t---
'--f--

& 
15 

...__ 
(propagate) 

[.--- r--

rt2- s1 

~ & 
14 

~ 
s2 

14 

L- 1---..._ t-
& 

s3 14 

..__ 

+ 
. . 
. 

RIGHT . 
. 

16 

~ 
(VALID) 

,..._ r---
L,__ 

~ rt 
.---

- ~ & 
LAST 

~ 
16 16:4 RIGHT 

0 [Encode 
~ 

4 
f---..._ t-

& 0 ,____ 

SRC_MASK 
..___ 

16 

(ENABLE) 

Figure 9.26. Find Last Module on Right Transfer 

By applying input data according to our example, output from the block will be equal to 

PROP _LEFT as shown in Figure 9.27. and LAST_RIGHT equal to 6. 



177 

3 7 11 15 

I I I I I I I 11 11 I I I I I I I I 
Figure 9.27. PROP _LEFT outpU1 

9.4.l.e. Compute Left and Right Transfer Paths 

The purpose of this block is for each of the two transfer paths to set all bits corresponding to 

modules to be involved in the transfer (the source and last destination module included) equal 
to I. This is obtained by executing the function: 

TR_RIGHT(i) 
= ! (PROP RIGHT(i) & !SRC_MASK(i)); i 0-15 

TR LEFT(i) 
= ! (PROP_LEFT(i) & !SRC_MASK(i)); i = 0-15 

Implementation and output applying example data input are as shown in Figure 9.28. and Figure 
9.29.: 



178 

PROP_LEFT 

16 

PROP_RIGHT 

16 

SRC_MASK 

16 

TR RIGHT 

16 

TR_LEFT 

16 

Figure 9.28. Compute Left and Right Transfer Paths 



179 

3 7 11 15 

I I I I I I I I I f 11 11 I I I I I I 
PROP_RIGHT 

3 7 11 15 

I I I I I I I 11 1·11 I I I I I I I 
PROP _LEFT 

3 7 11 15 

I I I I I I I I l~il I I I I I I I 
,! 

SRC_MASK 

3 11 15 

TR_RIGHT 
3 7 11 15 

11 
1

1 
1

1 
1

1 11 
1

1 
1

1 
I 1~1 1 

1
1 

1
1 11 

1
1 

1
1 

1
1 

I 

TR_LEFT 

Figure 9.29. "Compute Left and Right Transfer Paths" output 

Compare Paths 

If the necessary Ring bus segments for both paths are free so either one can be used, the shorter 

of the two will be selected. Because no a pri01i information is available as far as future requests 

are concemed, the most "intelligent" selection strategy possible is simply to select the shortest 

path. This is done by calculating the distance between the source and the last destination 
modules for the left and right transfer alternatives, and then comparing the results. 

ltd (LAST_LEFT - MOD_SRC)modulo 16 
rtd (LAST_RIGHT - MOD SRC)modulo 16 

if (rtd < ltd) 
RIGHT SHORTER THAN LEFT 1 

else 
RIGHT SHORTER THAN LEFT 0 

Implementation is done with two subtracters feeding a subsequent comparator as shown in 

Figure 9.30. 



180 

LAST_RIGHT 
B 

4 Right transfer 
distance (rtd) 

B-A p 

MOD SAC 
4 

-.... A 
4 subtract 

P<O 
RIGHT _SHORTER 

THAN_LEf:' T 

....___ B Left transfer 
distance (ltd) 

B-A Q 

LAST_LEFT 
4 

A 
4 subtract compare 

Figure 9.30. Compare Paths 

In our example, LAST_LEFT is equal to 11 and LAST_RIGHT equal to 6. With MOD_SRC 
equal to 8, this gives a rtd of 14 and ltd of 13. The left transfer path is thereby the shorter and 
RIGHT_SHORTER_THAN_LEFT will be equal to 0. 

9.4.2. Select Transfer Path 

After computing and comparing the two alternative paths, one of the paths is selected. Selection 
is done on the basis of the length of the paths and which Ring bus segments are available. The 
"Select Transfer Path" section consists of four blocks and is assembled as shown in Figure 9 .31. 



181 

GRANT' ... 
~ 

TR REQ• REJECT' 
...... MERGE -
,.IR_REL• MASK 16 
...... RELEASE ...... 

& 
LEFT_RIGH~ 

TR REQ MASK REQUEST 
REQ_LEFT _RIGHT' 

1 16 I 

~ 
SIGNALS 16 I 

....... I+-

TR_REL_ 
1-- REJ• 

MOD SRC -.... 
4 

TR_REL -
TR_REQ UPDATE GRANT' 

-
REJ• CURRENT 

TR_RIGHT TR REL 
TR_REQ - TRANSFER MASK- t 

16 GRANT' 
16 + TR_LEFT REGISTER 

REL_LEFT_t 
16 REQ LEFT FILE RIGHT' 

RIGHT _SHORTER SELECT RIGHT' 
-

THAN_LEFT TR REQ RESEr 
PATH MASK 16 I NO BUFFER" T REL_REQ· 

4 _. 
~ ~ I 

UPDATE 16 

16 TR_BUSY 

REGISTERS 
TR_BUSY_LEFT 

TR_BUSY _RIGHT 16 

16 

RESET' -
Figure 9.31. Select Transfer Path 

Signal descriptions 

TR_REQ_GRANT* 

TRansfer REQuest GRANT (low). Asserted when the requested transfer is 
granted. 



182 

TR_REQ_REJ* 

TRansfer REQuest REJect (low). Asserted when the requested transfer is 

rejected. 

TR_REQ_MASK(0-15) 

TRansfer REQuest MASK. This 16 bit mask shows which modules to 
participate in the requested transfer, from the source to the last destination 
module (both inclusive). Values: 

0 The module is not to participate in the transfer. 

The module is to patticipate in the transfer. 

REQ_LEFT_RIGHT* 

REQuested transfer LEFf or RIGHT. Tells whether the requested transfer 
being granted is to be pelformed as a left or right transfer. Value: 

0 Right u·ansfer 

Left u·ansfer 

TR_REL_GRANT* 

TRansfer RELease GRANT (low). Assetted when the u·ansfer release is 
serviced. 

TR_REL_REJ* 

TRansfer RELease REJect (low). Asserted when the u·ansfer release can not 

be serviced. 

TR_REL_MASK(0-15) 

TRansfer RELease MASK. The mask shows which modules were used by the 
transfer and now are released. Values: 

0 The module was not used by the transfer. 

1 The module was used by the transfer. 

REL_LEFT _RIGHT* 

RELeased u·ansfer LEFf or RIGHT. Tells whether the u·ansfer being released 
was a left or right u·ansfer. Value: 

0 Right transfer 

Left u·ansfer 

REL_REQ* 

RELease or REQuest. Tells whether the operation now being executed is a 
u·ansfer release or a u·ansfer request. Value: 

0 Transfer request 

Transfer release 



183 

TR_BUSY _LEFT(0-15) 

TRansfer BUSY LEFT. This 16 bit mask shows which Ring bus left direction 
transfer segments (modules) are already in use by one or more currently 
active transfers. Values: 

0 Ring bus segment (module) is available for transfer. 

Ring bus segment (module) is not available for transfer. 

TR_BUSY _RIGHT(0-15) 

TRansfer BUSY RIGHT. Status for currently active right transfers, analogue 

to TR_BUSY_LEFT. Values: 

0 Ring bus segment (module) is available for transfer. 

Ring bus segment (module) is not available for transfer. 

Functional description 

The purpose of the ··select Transfer Path" block is twofold: First, in case of a transfer request, 
to select one out of the two alternative transfer paths (TR_RIGHT and TR_LEFT) computed by 

the ''Compute & Compare Transfer Paths" (C&C) block. The selection is based on the 

comparison done by the C&C block (RIGHT_SHORTER_THAN_LEFT) as well as the idle/ 
busy status of the Ring bus segments (TR_BUSY_RIGHT and TR_BUSY_LEFT). The Ring 
bus status is stored in a register file in the "Update TR_BUSY Registers" block. 

Secondly, the transfer release mechanism is also contained in this block. When a pruticular 
transfer is to be released (there may be several transfers active simultaneously), the transfer 
must be identified in some way. This is done by applying the address of its source module. The 
appropriate TR_BUSY register (left or right) must then be updated clearing (de-allocating) all 
segments used by the u·ansfer. Because the identity of the segments to be cleared is not 
explicitly presented by the release procedure as an input pru·ameter, they (that is, the transfer 

mask) must be stored within the ru·biu·ation mechanism for as long as the u·ansfer remains 

active. This is done in the "Cunent Transfer Register File", contained in the "Update Cunent 

Transfer Register File" block. Together with the transfer mask, a single bit telling whether a 

u·ansfer is a left or right direction transfer is also stored. 

Both u·ansfer requests and -releases ru·e acknowledged by the arbitration mechanism by an 
asserted GRANT* or REJECT* signal. In case of a u·ansfer release, a REJECT* is issued if the 

transfer, identified by its source module (MOD_SRC) is unknown to the ru·bitration mechanism. 
For the sake of symmetry and possible external use, the stored u·ansfer mask (MASK) and left/ 
right direction bit (LEFT_RIGHT*) ru·e output on transfer release as well as transfer request 
operations. The merging of release and request acknowledges and other output signals are done 
by the "Merge Release & Request Signals" block. 

We will now take a look at the blocks in greater detail: 



184 

9.4.2.a. Select Path 

Because nothing is known about future transfer requests, the most intelligent criterion to apply 
when selecting a transfer path is simply to select the shortest one. The ··select Path" block 

should therefore implement the following algorithm: 

Select Path() 
{ 

if (buffers available) 
{ 

else 

if (both paths are available) 
select the shortest 

else if (one path is available) 
select the one available 

else 
reject transfer request 

reject transfer request 

Figure 9.32. Select_Path algorithm 

If necessary buffers are unavailable, this is told by the state of signal NO_BUFFER*. A path 
(left or right) is available if all necessary Ring bus segment~, as specified by the u·ansfer masks 
(TR_LEFT and TR_RIGHT) are idle (TR_BUSY _LEFT, TR_BUSY _RIGHT). An 

implementation of the "Select Path" block can therefore be as shown in Figure 9.33. 



TR_BUSY _RIGHT 

16 

TR_RIGHT 

16 

TR BUSY _LEFT 

16 

NO_BUFFER* 

RIGHT _SHORTER_ THAN_ LEFT 

TR_RIGHT 16 

TR_LEFT 16 

Figure 9.33. Select Path 

LEFT 

OR 

RIGHT 

SEL 

185 

TR_REQ_ 

GRANT* 

TR_REQ_ 

REJ* 

REQ_LEFT_ 

RIGHT* 

TR_REQ 
2: 1 MASK 

MUX 16 



186 

The ''Select Left or Right" control block contains the following logic: 

TR_REQ_GRANT* 
! (( TR RIGHT ENABLE# TR_LEFT_ENABLE) 

& NO_BUFFER*) 

TR REQ_REJ* 
!((!TR_RIGHT ENABLE & !TR_LEFT ENABLE) 

# !NO_BUFFER*) 

REQ_LEFT RIGHT* 
= ! ( TR RIGHT ENABLE & RIGHT SHORTER_THAN_LEFT) 

Figure 9.34. "Select Left or Right" control block 

The REQ_LEFf_RIGHT* signal multiplexes the mask of the selected path onto the 
TR_REQ_MASK signal lines. 

9.4.2.b. Update TR BUSY Registers 

The "Update TR_BUSY Registers" block consists itself of three blocks, one for each of the two 
TRBUSY registers and a control block. This is shown in Figure 9.35. 



TR_BUSY _LEFT 

TR REO.,.. UPDATE 16 

MASK 16 UPDATE_ TRBUSY _LEFT* 

TR_REL 
TR_BUSY 

I 
MASK 16 LEFT REL REQ• 

I 

TR_BUSY _RIGHT 

UPDATE 16 
4 

UPDATE TRBUSY RIGHT* 
TR_BUSY 

I ~ RIGHT REL REQ* 

TR_REQ_ GRANT* 

t REL REQ* 
REQ_LEFT _RIGHT* 

UPDATE 

TR_BUSY 

TR REL_GRANT* CONTROL t 
REL LEFT RIGHT* 

,_RESET* i 
~ 

Figure 9.35. Update TR_BUSY Registers 

Update TR_BUSY Control 

This is a simple decoding of the input signals and implements the following logic: 

REL_REQ* 
!TR_REQ GRANT* 

UPDATE TRBUSY LEFT* 
! ((!TR_REQ_GRANT* & 

# (!TR_REL_GRANT* & 
# ! RESET) 

REQ_LEFT_RIGHT*) 
REQ_LEFT_RIGHT*) 

187 



188 

UPDATE TRBUSY RIGHT* - -
!((!TR_REQ_GRANT* & !REQ_LEFT_RIGHT*) 

# (!TR_REL_GRANT* & !REQ LEFT_RIGHT*) 
# ! RESET) 

Figure 9.36. "Update TR_BUSY Control" logic 

Update TR...BUSY Right 

In addition to the TR_BUSY _RIGHT register itself, this block contains the logic necessary to 
individually set (on request) and clear (release) each bit in the register. This is done by a read

modify-write mechanism implementing the logic 

new_value(i) 
= old_value(i) & !TR_REL_MASK(i); ( i 0-15, clear) 

new_value(i) 
= old_value(i) # TR_REQ_MASK(i); (i = 0-15, set) 

The TR_REQ_MASK is provided by the "Select Path" block, while the corresponding release 

mask TR_REL_MASK is supplied by the "CutTent Transfer Register File", indexed by the 

address of the source module. 

Upon initialization, the TR_BUSY _RIGHT register must be reset (all bits cleared) by asserting 
the input signal RESET*. This forces the output of the 2: 1 multiplexer to zero and then pulses 
the UPDATE_TRBUSY_RIGHT* signal. 



189 

TR_REQ_ 

MASK 16 

TR_BUSY _RIG HT 

TR_BUSY _RIGHT 
16 

register 
r--- 15 r--

.........--- ~ 1'-- ~ ~ 
,BESET* f-- 14 1--
..... 

lr- ~ ~ ~ "---
CLEAR 1- 1---

'-- 2: 1 

MUX I-< 
,..--

SEL 

f-- 0 1--
L---

0 
~ 

0 
I-- I'-- r---

I-i'- ...._____ 
set bits 

15 r--

1'-- & ~ 
REL_REQ• 14 1--

~ 1'-- & 
1--

UPDATE_TRBUSY _RIGHT* 

TR_REL_MASK 
/ 0 1--

16 & ~ ..._ ..___ 
clear b1ts 

Figure 9.37. Update TR_BUSY Right 

Update TR_BUSY Left 

This block is identical to the conesponding TR_BUSY Right block. 



190 

TR_REQ_ 

MASK 16 

RESET" 
.... 

TR_BUSY_LEFT 
register 

r--

- ~ 
r-

~ ~ 
CLEAR t---

2: 1 

MUX 

SEL 

TR_BUSY _LEFT 

16 

0 1---
L--1---~ 0 

f'-- ~ 1---

'- set bits 

REL_REQ• 

UPDATE_ TRBUSY _LEFT" 

TR_REL_MASK / ol-
+-------------~16~--------------------~-+--~ & ~ 

clear b1ts 

Figure 9.38. Update TR_BUSY Left 

9.4.2.c. Update CmTent Transfer Register File 

The "Cunent Transfer Register File" contains 16 entries with 17 bits each (a 16 bit mask and a 
single left/ light direction bit). Each time a transfer request is granted, the tr·ansfer mask 
(TR_REQ_MASK) and the bit telling whether it is a left or tight tr·ansfer 
(REQ_LEFT_RIGHT*) are stored into the register entry with address equal to the source 

module address (MOD_SRC). 



191 

MOD_SRC .... .... 
i4 4 

16 15 0 

Register 0 1(1~1) SEL 

,.---

...--- Register 1 I (1;;1) 

...--- Register 2 I (1~1) 

...--- Register 3 ~ 

~ 
16 : 1 

4 : 16 .-- Register 4 
MUX 

Encode & REL LEFT RIGH r . 
LATCH . . TR_REL_MASK 

. 16 . . . . 

~ ENABLE Register 15 
ALL ~ 

I 1~·· .. I 
I L- 0 

I & r--- 17 
TR_REQ - WRITE* 

I SELl GRANT* '-
2 : 1 GEN. ~ MUX r TR_REL 

REQ LEFT RIGHT* 117 17 
GRANT 

TR REL REJ* 

TR REQ MASK & TR REL GRANT 
REJECT 

16 GND 

REL REQ* 

.... t RESET* 
~ 

t 

Figure 9.39. Update Current Transfer Register File 

When a transfer is released, the 17 bit register entry addressed by the MOD _SRC input 
parameter is output and latched onto the TR_REL_MASK and REL_LEFf_RIGHT* signal 
lines, connected to the "Update TR_BUSY Registers" block. After latching, the enu·y is cleared 

by resetting all 17 bits to zero. The u·ansfer release operation is either granted or rejected. This 

is done on the basis of the value of TR_REL_MASK: 



192 

TR REL REJ* 
= ! (REL REQ* & (TR_REL_MASK 0)) 

TR REL GRANT* 
= ! (REL_REQ* & (TR_REL_MASK != 0)) 

If all bits in TR_REL_MASK is equal to 0, this means that no active transfer is registered on 

the source module with address equal to MOD_SRC. Because the transfer is not registered, it 

can neither be released. The attempted transfer release operation must therefore be rejected. 

The entire register file is cleared by asserting the RESET* signal: All outputs of the 4: 16 
encoder then goes active, thereby enabling all register entries for the writing of new data. The 

data input is set to all zeroes by selecting the appropriate input of the 2:1 data input multiplexer 
and the WRITE* signal line is then asserted, thereby writing all zeroes into the register file. 

9.4.2.d. Merge Release & Request Signals 

As already described, the request and release operations are generating their own acknowledge 

(GRANT* or REJECT*) and data output signals (MASK and LEFf_RIGHT*). These must be 

multiplexed into a single set of signals, constituting the output inte1face of the arbiu·ation 

mechanism. This multiplexing is done by the "Merge Release & Request Signals" block. 



193 

TR REL" ... - p-
ENABLE 

TR REQ GRANT" 

TR REL GRANT" 
2:1 GRANT' ... 
MUX ~ 

TR REQ_REJ' 
REJECT' 2:1 ... TR REL REJ' ~ MUX 

TR_REQ_MASK 
MASK ..... 16 2:1 ,_ 

16 
TR_REL_MASK MUX 

16 

REQ LEFT RIGHT' 
LEFT RIGHT",_ 2:1 

REL LEFT RIGHT" MUX 

SEL 

TR REQ* 1 
~ 

Figure 9.40. Merge Release & Request Signals 

9.5. Timing considerations 

Beyond the scope presented in the beginning of CHAPTER 9., however, is a detailed solution 
of timing relationships between the functional blocks constituting the Ring bus arbitration 
mechanism. This issue has thus so far not been discussed. Let us, however, go through some 
general remarks concerning timing considerations before leaving the arbitration mechanism. 

Except from the propagation line blocks searching for the last destination modules ("Find Last 
Module on Right Transfer" and do. left), all blocks have a fixed, data-independent delay from 

input to output. Basically, there are then two approaches to ensure con·ect timing between the 
blocks: 

Synchronous timing 

In this case, each block must include an output register, clocked by a clock global to all modules 
contained in the arbitration mechanism. All output signals generated by the block must be 
clocked through this output register, before connected to the input of the next block. The clock 

period must be greater than the input-to-output delay of the block having the largest delay, plus 

the necessaty setup and delay times in conjunction with the register operation itself. If the delay 
of one (or a few) blocks m·e prohibitively Im·ge, thereby slowing down the whole m·bitration 
mechanism, inter-mediate registers within this (these) blocks may be inserted. To be able to 



194 

notify a block whenever its input is valid, and thereby is ready to start processing, each block 
must generate a "VALID" signal, to be connected to the ··ENABLE" input of the succeeding 

block. 

With the synchronous timing scheme, a grant/ reject acknowledge will be issued a fixed number 
of clock cycles after the transfer request/ release command has been presented to the arbitration 
mechanism. 

BLOCK 1 BLOCK 2 BLOCK n 

INPUT OUTPUT 

ENABLE VALID 

CLK 

Figure 9.41. Synchronous inter-block timing 

Asynchronous timing 

Like the synchronous approach, asynchronous timing is based on pairs of VALID and 
ENABLE signals, allowing a ready result from one block to enable this result to be processed 
by the next block in the chain. In this case, however, the VALID to ENABLE delay will not be 

implemented by the means of clocked registers but by a dedicated delay element, contained in 
each block. The delay of this element must be greater than the delay of the logic part of the 

block, allowing for the necessruy setup and delay times when u·ansfetTing data from one block 
to the next. 

BLOCK 1 BLOCK 2 BLOCK n 

INPUT 
LOGIC 1 LOGIC 2 -+ - LOGIC n OUTPUT 

ENABLE 
DELAY 1 DELAY 2 f--t. - DELAY n 

VA In 

::i 

Figure 9.42. Asynchronous inter-block timing 



195 

As far as blocks having data-dependent delays are concerned, the simple (and brute force) 

solution would be simply to assume the worst-case condition. In our case, the two propagation 

line blocks, although connected in parallel, will then contribute to approximately half of the 
total delay of the arbitration mechanism alone (asynchronous case). A synchronous 

implementation without intermediate registers would simply be prohibitive, enforcing this 
worst-case delay onto every block. Therefore, the design of the propagation line blocks do in 
fact contain the ENABLE/ VALID mechanism, described together with the block logic. 

What is best, synchronous or asynchronous timing? The synchronous approach is conceptually 

the simplest and results in a very "clean" design, but requires more hardware to implement. The 
asynchronous design, at the other hand, can be tuned to optimum performance and requires less 

hardware, but is regarded as "more difficult" to deal with by most designers. As far as the 

ENABLE/VALID mechanism included in the two data-dependent delay blocks are concerned, 
this is best suited for asynchronous timing. However, by including inter-mediate registers, the 

synchronous scheme can also be used. 



196 



197 

CHAPTER lO.The display system 

The final stage in an ultrasound processing pipeline is the display system, presenting the data 
acquired by the ultrasound transducer to the user (operator). The main task of the display system 

is of course to present an image as crisp and clear as possible, making it easier to interpret the 

data. However, another aspect of the display system is just as important: To provide visual 
feedback and guidance to the user in operating the system when carrying out the examination. 
The display system must therefore serve two functions, as an image data presentation device 
as well as an operator intetface. As we will see during the following discussions, these two 
functions will each have their specific set of requirements as far as the underlying display 

system architecture is concerned. 

10.1. Display system requirements 

As already discussed in the inu·oductory part of this thesis, the data acquisition phase and the 

data interpretation phase of an ulu·asound examination will to a much larger extent be separated 
in future clinical environments than it is today. Probably, they will also be canied out by 
different people: The actual examination by an ultrasound technician while physician interpret 
the data and make the diagnosis. Used in this mode of operation, 

the purpose of the ultrasound instrument's own display system is to provide 

guidance during data acquisition. 

This in conu·ast to the data interpretation phase, which will have its own set of display system 
requirements. For one, processing and display are done off line and is therefore not subject to 
the real-time resu·iction as imposed by the ultrasound data acquisition rate. Fmthermore, 
coming features as feature extraction capabilities, tissue characterization, trend analysis and the 
simultaneous display of multiple image sequences will require high-end graphic workstation 

capabilities to provide satisfactory results. 

Limiting ourselves to the acquisition insU'Ument's display system, however, the requirements 
can be somewhat lowered. Let us take a look at some of the key issues in this respect: 

10.1.1. Display dynamics 

If we define display dynamics as "change in the image as displayed on the screen", this change 

may have two reasons: 

• The change in the image data itself. As new data is acquired, the displayed 
image will change with it. 

• The change of any parameter, initiated either automatically or u·iggered by 
the system operator, changing the transformation from the set of acquired 
ultrasound data to the display of the same data. 



198 

Although the effect of a change (that is, the displayed image) in some cases may look similar 

(for instance changing the TGC-setting, causing the data to change, compared to changing the 
compress/ reject transformation parameter), the mechanism behind it is totally different and 

impose their own requirements as far as providing satisfactory display dynamics are concerned. 

The most important aspects when designing a display system is to ensure 

that the characteristics of the display dynamics of the application are fully 

supported by the underlying display system architecture. 

This means that the display system should not only take parameters as the amount of data to be 
displayed and the rate by which they arrive into account, but also how these data are organized 
and how the update is actually done. As already discussed, the implication of the term "real 
time" is that the display system itself does not limit the pe1formance of the total system. This 

should solely be determined by the rate by which it is possible to acquire the ultrasound data. 
To be able to come up with a more precise definition of the real-time requirement, we will now 
introduce the following terms: 

data acquisition time 

The time between successive acquisitions of 1 unit of data of a display 

component. The size of a unit will depend heavily on the component in 
question: A full 2D frame for a 2D tissue or flow image, a vector for a M
mode image and a single data sample for a trace. 

display frame time 

Equal to the rate by which the display (screen) is refreshed. Usually equal to 
I/ 50th or 1/60th of a second. 

Refening to the previously made distinction between the two types of display dynamics, caused 
by data and parameter change, respectively, the real-time requirement can now more precisely 
be defined as: 

In case of a data change, the change should be effective in the image as 
displayed on the screen within one data acquisition time measured from the 

point of time the new data was presented to the display system. 

In case of a parameter change, the change should be effective in the image as 

displayed on the screen within one display frame time measured from the 

point of time the new parameter was presented to the display system. 

In other words: Upon receiving new data, the display system should be able to receive and 
process those data by whatever rate they are generated. When a change is initiated, affecting 

image data already stored in the display system, the change should be effective on the next 

display frame. This also implies that the execution of the change should be synchronized to the 
screen output. 



199 

10.1.2. 20 image 

A 2D image as displayed on the screen will consist of a tissue 2D image component and an 
optional flow image component. Each image component will in tum consist of a number of 

beams, determining the angular distribution of data. Finally, each beam contains a number of 
samples, determining the radial (depth) distribution of the ultrasound data. Depending on the 

particular type of transducer being used, the true geometrical shape of the image will either be 
like a circle sector or rectangular. 

A rectangular image is the result when using a linear array transducer, having a large number 
of discrete transducer elements organized, as the name says, as a linear array. The pattern by 
which the data are acquired will in this case have the form of a rectangular grid. To display such 

an image on a raster scan display, organized as a number of vertical columns by a number of 
h01izontal rows, the only geometrical transformation necessary is therefore a rescaling to fit the 
image data into the space available on the screen. 

In case of a sector shaped image, however, we face a totally different approach to the problem 
of image display because the acquisition pattern is very different from the raster scan display 
pattern. As already explained, the image data are acquired, transfetTed and stored as a number 
of beams, each consisting of a number of samples. In system memory, the most effective way 

of storing these data will be in a rectangular fashion as shown in Figure 10.1. 

l 
:2 a. 
Q) 

~ 
0 
c 
Q) 

a. 
E 
t1l 
(/) 

Figure 1 0.1.Polar data storage format 

beam no. (angle) 

Because the sector shaped image represents the greater challenge to the display system 

compared to the rectangular image, the discussion will from now on be limited to the sector 
image. By changing the appropriate transformation tables, a display system handling real-time 
sector images can easily be set up to display rectangular images also. 



200 

The process of displaying the data must then re-construct the original image as shown in the left 
pan of Figure 10.1. The value of each and every screen pixel p(x,y) encompassed by the outline 
of the sector must therefore be computed, based on the stored sample values. As shown in 
Figure 10.2.and Figure I 0.3., the number of sample values ''behind" each screen pixel will 

depend on the distance from the centre of the sector to the pixel being computed. 

Figure 1 0.2. Near-field sample distribution 

Figure 1 0.3. Far-field sample distribution 

Because all beams are originating from the same point (the transducer element), every screen 
pixel near the cenu·e will be covered by a number of sample values (Figure 10.2.). In theory, 
disregarding noise and the fact that the organ being imaged (the herut) is constantly moving, all 
these samples should have (approximately) the same value. An obvious solution would 

therefore be to compute the average value of a number of these samples to obtain the screen 

pixel value. 

As far as pixel values distant from the cenu·e are concerned (Figure 10.3.), the approach of the 
problem is opposite: The samples are spread so far apart that the position of the samples do not 
coincide with the positions of the screen pixels. In addition, not every pixel position will have 

its "own'' sample value, the pixel values conesponding to these intermediate pixel positions 
must therefore be computed by some sort of interpolation between the sample values available. 

One approach to this is to use bilineru· interpolation. 



201 

Bilinear interpolation 

The principle of bilinear interpolation is shown in Figure I 0.4. 

Figure 1 0.4. Bilinear interpolation 

With bilinear interpolation (also called box interpolation), the pixel value in question (from now 

on called the refresh pixel) is computed by interpolating its 4 nearest neighbours ((A,A), (B,A), 

(A,B) and (B,B)). The first step is, through coordinate transformation, to compute the image 
buffer addresses (beam and sample number) of the 4 neighbour samples. In addition to the x,y
coordinate of the refresh pixel, this transformation is also a function of parameters as the 
sector's location (offset) and angular and radial size (scale). By using the addresses generated 
by the coordinate transform, the 4 neighbour sample values are then read from the image buffer. 

In addition to the sample addresses itself, the coordinate transformation process also computes 

the 4 interpolation coefficients CO to C3. These coefficients express the distances from the 
position of the refresh pixel to the 4 image sample positions along the directions as indicated in 

Figure 10.4. Compensated for any embedded scaling factor, the sum of these coefficients will 

always be 1.0. 

By interpolation between the 4 neighbouring samples, the value a sample (theoretically) would 
have had, if taken exactly at the refresh pixel position, can now be computed. This is done in 

two steps: First, the sample values from the same depth A and B, but laying on an imaginary 
beam going through the refresh pixel position is computed. 

(NB,A) = (A,A)*CO + (B,A)*C1 
(NB,B) = (A,B)*CO + (B,B)*C1 

Then, by interpolating these intermediate sample values in a second step, the value of the 

imaginruy sample in the refresh pixel position can be computed: 



202 

P(x,y) = (AIB,A)*C2 + (A/B,B)*C3 

Having the implementation of such a scheme in mind, the following observations can be made: 

OBSERVATION: Regardless of the actual position of the refresh pixel, the 4 sample values 
required for the bilinear interpolation will always be 

• one even beam/ even sample 

• one even beam/ odd sample 

• one odd beam/ even sample 

• one odd beam/ odd sample 

As a consequence, for optimum perfmmance the image buffer can therefore be organized as 4 
separate banks, with each bank containing all sample values in each of the above mentioned 
categories (odd/ even beam, odd/ even sample). This allows parallel access to all 4 required 
sample values, independent of the actual refresh pixel position. 

OBSERVATION: By setting all coefficients CO to C3 equal, the outcome of the bilinear 
interpolation will be the average value of the 4 neighbour sample values. 

In this way, the same mechanism can therefore be used for near-field as well as far-field pixel 

value computations. 

OBSERVATION: The scanning process required to compute all pixel values inside a given 
sector image is easiest implemented by successively scanning the x,y coordinates of the image 
to be displayed. The altemative, scanning the original (raw) data in a beam/ sample fashion, 
requires a two-pass solution: First the value conesponding to the refresh pixel position most 
"closely" matching (according to some criteria) each 4 sample value set must be computed. In 
a second pass, the intermediate values in the sector far field can then be filled in as required. 

In a raster scan display system, the x,y-based scanning process is already inherent in the system, 

for generating output to the screen. Therefore, if a sufficiently high bandwidth can be supported, 

the most effective way to implement the bilinear interpolation would be to do it "on the fly" 
when generating refresh pixel output to the screen. This is possible in an object-oriented display 
system where pixel output is generated directly from the image buffers without going through 

a cenu·alized frame buffer. 

10.1.3. M-mode 

The M-mode image, with several hundreds of vettical vectors sliding hmizontally across the 
screen, presents quite another approach to the problem of image updating: On each update, the 

entire M-mode image is shifted one vector to the left, resulting in the "oldest" vector falling off 
the left edge of the screen while a new vector is inserted at the tight edge. 



moving direction 

depth 

Figure 1 0.5. M-mode image 

base line 
(time) 

203 

Implemented on a conventional frame buffer based system, on every update, the entire M-mode 
data matrix must be physically moved one column to the left to make room for the new vector 
on the right. In contrast, in a display system specially designed for this kind of application, 
vector data will be organized as a ring buffer with length equal to the total number of vectors 

contained in one M-mode image as displayed on the screen. On update, the data belonging to 
the oldest vector is replaced by the new vector data, and the pointer identifying the left-most 

vector on the screen is incremented by one. That is, only the data which actually is to be 
replaced (one vector out of several hundreds) is affected, the rest remains unchanged. 
Needlessly to say, this gives a far better performance than the physical move bmte force 

approach. 

The display of M-mode data should be supp01ted by a dedicated display module. The design of 
such a module should be fairly straight-forward and will therefore not be discussed any fmther 

in this thesis. 

10.1.4. Traces 

To support clinical features as ECG and phono, the display system of a medical ultrasound 
diagnostic instmment must be able to generate u·ace curves. A u·ace curve is a one -dimensional 

curve where a signal's value is displayed as a function of time. Like M-mode, the trace curves 
are sliding to the left, dumping the oldest data off the left edge while adding new data, entering 
the image on the right edge. The most general approach to storing u·ace data would be store the 

data as a sequence of x/y coordinate pairs. In most cases, however, a fixed sampling rate (i.e. 

increment along the x (time) axis) can be assumed, making it necessary to store only the y 
(value) coordinate component. 



204 

X 

Yo~--~~------------------------------~ 

y 

value 

trace curve moving direction 

base line 
(time) 

YN-1 L------------+-1------1--+----++--------' 

screen 

Yo 

___. Yn 

YN-1 ..__ ____________ ...... 

trace curve coordinate 
table 

Figure 1 0.6. Trace curve display 

The original, fixed x-increment trace coordinate sequence can then be reorganized into a 
datastructure based on and sorted by increasing screen y (value) components according to the 
screen refresh pattern (top-left to bottom-right). This is shown in the tight patt of Figure 10.6 .. 
With the input taken from this datasuucture, special hardware can now be designed to generate 
pixel output directly from the u·ace data "on the fly" with refresh pixel output to the screen. The 

required pixel filling feature illusu·ated in Figure 4.4. can easily be implemented as a ''sample
and-hold" mechanism using the cmTent x-value until the previous (next) x-value is 
encountered. However, because of the comparatively small amount of data involved, the task 

of generating the traces can easily be handled by the systems graphic processor, responsible for 
generating all other graphics to be displayed on the screen. No special-purpose hardware for 
u·ace generation is therefore to be included in the display system. 

10.2. Display system architectures 

For computer graphics and image processing applications ([Newman 1979], [Hearn 1986], 

[Foley 1990]), there are two basically different approaches available for implementing display 

systems: Raster scan and random scan displays. 

In a raster scan display system, the display screen can be viewed upon as a raster consisting of 
a number of (vettical) columns and a number of (horizontal) rows. Every displayable point 

(picture element, pixel) on the screen are identified by its unique column (x) and row (y) address 
pair. Output to the screen is generated by scanning the screen raster in a regular fashion, row by 

row, left to right, statting in the upper left and ending up in the lower tight corner. The pixel 

values from which the screen is refreshed are either stored in a centralized, dedicated memory 
module called a frame buffer or is distributed over several modules in the system. 



205 

A random scan display system does not have a pixel memory, storing every pixel value of the 

display screen. Instead, the displayed image is stored a<> parameterized graphic commands in a 

display list. Examples of such commands are instructions for displaying vectors and text 
strings. The actual display as seen on the screen is generated by that the list of commands 
contained in the display list is continuously executed by the system's display processor, in an 
endless loop. To avoid a flickering display, the display screen must be (re)generated at least 30 
to 60 times pr. second [Foley 1990], which sets a limit to the length of the display file. Random 
scan display systems are also called vector display systems. 

Due to the principle of storing the display as parameterized commands rather than pixel maps, 
random scan display systems are not suited to our kind of application where the data to display 

has the form of 2 -dimensional arrays of data values. In the rest of this thesis, the discussion will 
therefore be restricted to raster scan display systems. As already indicated, raster scan display 
systems can further be divided into two groups, depending on whether they are based on a 
centralized frame buffer memory or not. 

10.2.1. Frame buffer based display systems 

In a frame buffer based display architecture, the displayed image is stored in a dedicated 
mem01y module called aframe buffer. This is shown in Figure 10.7. 

System bus 

MODULE MODULE 

n 

DISPLAY 

PROCESSOR 

f""'"''~·;·;;~·;;i·······] 

buffer 
···········]'···········' 

FRAME 

BUFFER 

HS,VS.CLKJ DATAl 

Figure 1 0.7. Frame buffer based display architecture 

All screen refresh is done from the pixel map stored in the frame buffer. As far as frame buffer 

updating is concemed (that is, wtiting new data into the frame buffer), this is handled by a 

display processor. If a module wants to display data, these data must therefore first be 
transfened to the display processor via the system bus, formatted as a raster primitive. A raster 



206 

primitive may either have the form of a graphic command similar to the display list commands 
found in random scan systems, or it may be an array of data to be loaded into the frame buffer 
(and thereby displayed) at a specified location. 

To increase buffer update speed, the function of the display processor can be distributed over a 
number of Processing Elements (PEs), with each PE responsible of its own part of the frame 
buffer. Determined by the position it will have on the screen, a raster primitive is processed and 
the buffer updated by one or more PEs. Several systems are using variants of this technique 

([Torborg 1987], [Akeley 1988], [Runyon 1987], [Potmesi11989]). Developed into its extreme, 
each pixel could be equipped with its own local processing capability as in the Pixel-Planes 5 

machine [Fuchs 1989]. 

The display is usually refreshed at a rate of 50 to 70 frames pr. second by scanning the frame 
buffer row by row, left to tight, from top to bottom. To be able to manipulate the image data 
''on the fly" as they are displayed on the screen without actually altering the contents of the 
frame buffer, the data values stored in the frame buffer data are mapped through a table called 

the Video Look-Up Table (VLUT) before they are displayed on the screen. Functions as 

histogram equalization, data tresholding and image double buffering can be implemented 
simply by manipulating the contents of the VLUT. The length (number of enu·ies) of the VLUT 
is determined by the number of frame buffer planes (that is, the number of bits used to represent 
each pixel value), while its width is determined by the number of colour shades the display must 
support. Typically, each primaty colour (Red, Green, Blue) is displayed using 8 bit each (256 

shades), giving a total VLUT width equal to 24 bits. 

As already explained, screen refresh is done independently of frame buffer updating. However, 

because the frame buffer is a global resource, to be shared by the refresh mechanism (reading 
data out from the frame buffer) and the display processor (wtiting data into it), its access and 
use must be regulated. This can be done in several ways, depending on the technology by which 
the frame buffer mem01y is implemented. In practice, there are two altematives: Static RAM 

(SRAM) or Video RAM (VRAM). 

10.2.l.a. Static RAM frame buffer 

Cunently (October 1991), state-of-the-att SRAM technology can offer 1 Mbit memory chips 
organized as 128k*8 or 256k*4 with 25 ns random access time. With such chips, large, high

bandwidth frame buffers can be implemented. As far as access sharing is concemed, three 
different solutions to this problem is possible: Double buffering, split-phase access and screen 

retrace update. 



207 

Double buffering 

In a double buffered system, there are two totally symmeoic frame buffers. While the screen is 

refreshed from one buffer (the refresh buffer), the display processor writes new data into the 
other buffer (the update buffer). When the update is finished, the two buffers exchange roles 

and the screen is then refreshed from the newly updated buffer while the other buffer is 
available to the display processor for further update. 

update 

Buffer 

A 
Buffer 

B 

select NB· 

Figure 1 0.8. Double buffering 

The double buffering scheme has the following prope1ties: 

• Buffer update and screen refresh is totally invisible to and independent of 
each other, both in terms of the speed by which the update is done and the 
time it takes. 

• Because the amount of memory required is actually doubled compared to the 
other schemes, this approach is very resource demanding. In addition to the 
extra amount ofmem01y, the data and address paths must also be doubled and 
multiplexed to implement full symmeuy between the two buffers. 

Double buffeiing can in practice only be used in situations where the entire contents of the 

frame buffer is reloaded on each update. In case of a prutial update, the update buffer must first 

be initialized to the state of the refresh buffer, requiring either a shadow mem01y of some form 
(e.g. display list) or a physical copy of the refresh buffer to be made. In the latter case, a third 
type of access must be accommodated (refresh, update, copy), creating a more complex 

problem than the one we 01iginally started with. 



208 

Split-phase access 

With split-phase access, every other access cycle is allocated to screen refresh (refresh cycle) 
and frame buffer update (update cycle), respectively. 

CLK 

Operation ( relresh X update X refresh )( IJj)date ) 

Figure 1 0.9. Split-phase access 

Key features of the split-phase access approach are: 

• Simple implementation compared to the double buffer scheme. The required 
multiplexing of the refresh and update address and data paths can easily be 
done by controlling the output enable mechanism of the respective drivers/ 
transceivers. 

• In a medium-grade display system, the bandwidth necessary to refresh the 
screen will typically be in the area of 40 Mpixels pr. second (peak rate), or in 
other words, 1 new refresh pixel value each 25 ns. With frame buffer access 
time equal to 25 ns, in each refresh cycle two refresh pixel values must 
therefore be accessed/ produced in parallel to suppott the required bandwidth. 

Screen retrace access 

Depending on physical display characteristics as screen resolution and refresh rate, 25 to 30% 

of the time is used for screen retrace, horizontal and vertical ([Perez 1988], [Foley 1990]). 
During this period of time, the refresh mechanism is not accessing the frame buffer and buffer 
update can therefore freely be done without intetference from the refresh process. 

time 

Figure 1 0.1 0. Screen retrace access 

This approach to the problem has the following advantages and disadvantages: 

• As for the split-phase access scheme, controlling the output enable 
mechanism of the data and address drivers will do the multiplexing job, 
resulting in a simple implementation. 

• The full bandwidth of the frame buffer memory is available for screen refresh. 

• Only a limited time is available for frame buffer update. 



209 

The significance of the latter point depends on the rate and pattern by which data enters the 

display system. If the average data rate is less than the sum of the retrace periods, the scheme 
is in principle feasible. However, a large portion of the time available for frame buffer update 
will be concentrated to the vertical retrace period. A large intermediate buffer (e.g. FIFO) may 
therefore be necessary to accommodate data received outside this period. 

10.2.l.b. Video RAM frame buffer 

A Video RAM (VRAM) is a Dynamic RAM (DRAM) containing a serial output port in addition 
to the usual random access port. Data from all columns (typically 512) are loaded in parallel 

into the serial port shift register and can then be clocked out serially at high speed (up to 40 
Mhz). Compared to an ordinary DRAM's access times of typically 200 and 55 ns (random 
access and fast page mode), the serial output port benefits system performance in two ways: 

• Increased output bandwidth. The possible data output rate is considerably 
higher (at least 100%) than what is achievable with a standard DRAM, even 
when used in the fast page mode. 

• Increased average input bandwidth. Except from the parallel load 
operation of the serial output port, the random access pott can be accessed 
totally independent of screen refresh. Most of the time (in the order of 95%) 
is therefore available to the display processor for frame buffer update. The 
peak input bandwidth compared to a standard DRAM is however unchanged. 

Therefore, even when utilizing the fast page mode, input bandwidth may not suffice for some 
applications. Therefore, another high speed serial port has been added ([Bursky 1990], [Wilson 

1990]). This port can be used either for data input or data output, making it possible either to 

double the output bandwidth or to do high speed frame buffer update. The two serial p01ts have 
their own clock and can therefore operate in total asynchronism with each other. One possible 

application of the second serial port is therefore to synchronize an incoming pixel stream to the 

screen refresh rate. 

Although doubling the peak and average input bandwidth compared to the fast page mode of a 

standard DRAM, the same limitation applies to the serial input port as it does to fast page mode 

access: Data must be accessed one row at a time. The random access time is still in the order of 
200ns. For applications having an inegular frame buffer update access pattern, making it 

impossible to utilize the fast access modes, this may be too slow. However, this problem of 
large frame buffer access times can in some situations be alleviated by using a virtual buffer. 

Virtual buffer 

The primary motivation for a virtual buffer memory is to achieve increased petformance by 

exchanging the large and slow frame buffer memory for a smaller and faster virtual buffer 

memory to. All display processor access of the frame buffer will then be performed through the 
vittual buffer, which in turn is loaded into the frame buffer by using some high speed, block 

transfer mode. A random, low speed access pattern prescribed by the display processor 

algorithm is thereby converted to regular, high speed frame buffer updates. The vittual buffer 

can then be reused to build another part of the screen display. In this way, the whole image can 

be consttucted, one piece at a time. 



210 

As described by [Gharachorloo 1989], virtual buffers can be used in two distinct ways: to 

support sweep algorithms and as a pixel cache. 

Sweep algorithms makes one pass over the entire image and assigns the virtual buffer to 
successive portions of the image in tum. For each assignment, the virtual buffer is cleared, and 
all primitives to be output to the portion of the screen covered by the virtual buffer's current 
position are rasterized and written into the virtual buffer. The contents of the virtual buffer is 
then copied into the frame buffer, and the virtual buffer is moved to another portion of the 

screen, repeating the same procedure until the entire image is updated. 

Needless to say, to obtain maximum performance, the primitives must be sorted in a way that 
allows all primitives corresponding to the same virtual buffer to be rasterized together. The size 
of the virtual buffer is a trade-off between cost and speed for a large buffer compared to the 

increased transformation and clipping overhead associated with a small buffer. Depending on 
the characteristics of the pruticular application in question, there are several virtual buffer 
organizations possible. Due to their application specific properties, they will, however, not be 
discussed any further here. An example of a sweep algorithm virtual buffer is shown in Figure 
1 0.11. 

virtual buffer 

display processor 

screen refresh 

frame buffer 

Figure 1 0.11. Sweep algorithm virtual buffer 

The virtual buffer shown in Figure 10.11. is in size equal to one forth of the frame buffer and 
can be positioned to cover each of the four frame buffer quadrants in turn. On each position, 
(preferably) all primitives to be displayed in this quadrant is rasterized by the display processor 
and written into the virtual buffer before the virtual buffer in tum is loaded into the frame buffer. 

As far as screen refresh is concerned, this is done directly from the frame buffer. 



211 

As far as virtual buffers used as pixel caches are concerned, this is equivalent to the use of 
caches to speed up main memory access. Unlike the sweep algorithm approach, the resolution 

by which the pixel cache can be positioned in the frame buffer is greater than the size of the 
cache itself. In other words, the pixel cache can take overlapping positions. During the 

rasterization of a scene, the contents of the cache can be exchanged with the contents of the 
frame buffer many times. One system using the pixel cache scheme is the Stellar GSlOOO 
graphic engine [Apgar 1988], integrating the pixel cache with the main memory cache for 

increased flexibility. 

10.2.2. Object oriented display systems 

In an object oriented display system, there is no dedicated frame buffer memory containing a 
complete pixel map of the displayed image. The total image is instead assembled from a number 

of image components. Rather than having a centralized, dedicated display processor, the task of 
updating and refreshing those components on the screen is distributed over a number of display 
modules. During display refresh, the pixel values are transferred in real time over a dedicated 
pixel bus from the display modules to the display controller, and further to the display screen. 
The outline of an object oriented display system is shown in Figure 10.12. 

System bus 

DISPLAY 

MODULE 

request bus 

grant bus 

pixel data bus 

DISPLAY 

MODULE 

n 

diSplay timing (HS,VS,CLK) 

n 

n 

DISPLAY 

CONTROLLER 

DISPLAY 

ARBITER 

o~ 
.... · .. ·.·.··.····. . ... 

Figure 1 0.12. Object oriented display system 

As far as refresh timing is concemed, evety display module must be in total synchronism. 

Therefore, the screen timing signals as hotizontal and vertical sync as well as the pixel clock 
must be distributed to all modules taking pat1 in the display refresh. Based on these signals, each 



212 

display module is able to maintain its own pair of X- and Y -counters, at any time keeping track 
of the position of the pixel being refreshed. Because the display screen in an object oriented 

display system is a shared resource, global to several modules, its access and use must be 
regulated. This is done by a functional module within the display controller called the display 

arbiter, according to a 

1 0.2.2.a. Display reguest/grant protocol 

Each image component to be displayed on the screen has a specified position, size and shape, 
defining the component's active area. When the refresh pixel position is inside the component's 
active area, the display module signals this to the display arbiter by asserting a display request 

line. To make the display arbiter able to distinguish requests from different display modules, 
each display module will have its own request line, all connected to the display arbiter. 

Because the entire screen area in principle is to each individual display module's disposal, 
conflicts may occur in case of overlapping active areas. Such conflicts will be resolved by the 
display arbiter, based on a display priority table. Multiple requests can then be resolved and a 

display grant issued to one and only of the requesting modules. After receiving the grant signal, 
the granted module is allowed to output its pixel value onto the pixel bus. 

Display arbitration is in this way achieved on a pixel-by-pixel basis. 

Like frame buffer based systems, display data to be output to the screen are mapped through a 

Video Look-Up Table (VLUT) before they are displayed. However, due to the disu·ibuted 
organization of the object oriented system, the VLUT may in this case be implemented as a two 

stage mechanism: In addition to the global VLUT located on the display conu·oller, mapping 

the data received from every display module, each display module may in turn contain its own 
VLUT. The local VLUT will map the pixel data before they are output to the pixel bus. 

Compared to a frame buffer based system, an object oriented display system has the following 

characteristics: 

• Better dynamic properties. Because no physical movement of data is 
involved, image components can easily be moved around within the total 
screen area simply by changing the conesponding display module's X- and 
Y -pointers, determining the position of the image component on the screen. 

• Better depth arbitration dynamics. By manipulating the contents of the 
display ptiority table, the mutual priorities (e.g. foreground, background) of 
the image components can easily be changed 

To achieve similar petfmmance with a frame buffer based system, each image component must 
have had its own set of frame buffer planes, facilitating depth arbiu·ation by manipulating the 
contents of the Video Look-Up Table (VLUT). However, this approach is prohibitive already 

for a small number of image components due to the amount of memory required. Alternatively, 
there must be included an additional number of dedicated frame buffer planes to support 
functions as clipping, display modes and overlays [Rhoden 1989]. 

• Local VLUT suppott. 



213 

• Instead of having one, more or less general purpose, display processor, the 
hardware of the individual display modules can be tailored to the properties 
of the image component(s) they support. 

• As a consequence of this, on-the-fly processing directly on the refresh pixel 
stream to the display is more feasible with an object oriented system than it is 
with a frame buffer based system. 

• Unlike a frame buffer system, the refresh pixel stream has to be transferred 
over a bus connecting several modules. In addition, display arbitration must 
be supported at the same rate. This may limit the display's bandwidth, or in 
other words, the display's resolution. 

The bandwidth limitation may however, to some extent be alleviated by pipelining the "request/ 
grant/ output data" cycle as shown in Figure 1 0.13. 

CLK 

DISPL_REQ 

DISPL_GRANT 

PX_DATA 

I request J grant I data I 

Figure 1 0.13. Pixel bus pipelining 

An alternative approach to increasing the bandwidth would be to widen the pixel bus, 
permitting several pixel values to be transferred simultaneously. An inherent implication of this 

latter approach is that the resolution of display arbitration is reduced to the number of pixels 

transfened in parallel over the pixel bus. As far as display modules representing blocks of data 
are concemed, this reduction of arbitration resolution is of no practical importance. For text and 

graphics, however, arbitration should be done on a pixel-by-pixel basis. The problem can be 
solved by placing the text/ graphics generator on-board the same physical module as the display 
controller. Text and graphics data can then be merged into the pixel stream just before output 
to the VLUT with one pixel resolution. However, all things taken into consideration, it is in the 

author's opinion nevertheless fair to say that high resolution requirements are easier supp01ted 
by a frame buffer based system than with an object oriented display system. 

10.2.3. Hybrid systems 

A hybrid display system as defined here is an object oriented display system where one (or 

more) of the display modules contains a frame buffer. The data output from the frame buffer is 
merged with the display data from the other display modules according to some pre-defined 

p1iority assignment. Typical application examples of such local frame buffers are for text and 

graphics support. 



214 

10.2.4. Multiple window support 

The display layout of a medical ultrasound diagnostic instrument will vary with its current 

mode of operation: 2D imaging, Colour Flow, M-mode, combined modes, replay of data 

already acquired and stored etc. To be able to accommodate the different modes, at any time 

utilizing the available screen area in the best possible way, multiple windows should be 

supported. In a multiple window display system, windows can be created, moved, resized and 

closed at need. 

Due to its distributed nature, object oriented display systems are well suited to support multiple 

windows. The simplest way to implement a multiple window system is to let each window be 

handled by its own display module. Each module could then, within the framework of a set of 

pre-defined restiictions, freely manage its own window. The only action affecting several 

windows would be a change in the windows' mutual priority, done by changing the contents of 

the display priority table. 

However, often this "one module- one window" approach is not optimal. Two variations of the 

scheme is possible: 

10.2.4.a. One module- several windows 

If the display image contains several windows of the same type, it will many times be possible 

to share hardware resources between those windows. In such cases, one module must be 

capable of supporting more than one window. 

An example of this can be the display of multiple 2D image windows. If the scan conversion is 

done "on the fly" during screen refresh, the different windows' use of the bilinear interpolation 

mechanism with its related hardware would be exclusive in time and can therefore be shared 
among the windows. 

10.2.4.b. One window- several modules 

If one window is to contain several image components, each component having different 

display charactetistics, it could be advantageous to let the different image components, 

belonging to the same window, be handled by different display modules. Each module could 

then be tailored to one type of image components. Consequently, the support of each window 

is then disu·ibuted over several display modules. 

As far as 2D image windows are concerned, they must in addition to an image component 

contain a graphics component. The latter would include the window outline, depth markers, any 

textual description of the data cunently being displayed in the window as well as necessary 
graphic markers for measurement and analysis suppmt. However, in sum this not enough to 

justify one graphic generator dedicated to each window, it should be shared between several 

windows. In this way, a set of 2D image windows would then be handled by two different 

display modules, one image module and one graphic module. 

From a system point of view, the problem of keeping window descriptions consistent between 

the two modules now atises. Or, in other words, 



215 

how to guarantee that the different image components belonging to the same 

window, generated by different modules on the basis of the same set of display 

parameters, behave as they were one image component, generated by one 
module? 

To ensure that the entire screen is refreshed on the basis of a consistent set of display 
parameters, display parameter update should be synchronized to the screen vertical retrace. 
Refening to the example of distributing the image and graphics components in 20 image 

windows, it would be most unfortunate if the two components did not move or scale together. 
Principally, it is two ways of ensuring that this will not happen: 

Update synchronism 

If updating the display parameters is done in such a way that 

and 

• the display parameters on all (involved) display modules are updated at the 
same time. 

• they are made effective on all (involved) display modules as soon as they are 
received, 

the required synchronization is embedded in the point of time by which the new display 
parameter set is u·ansfetTed to the display modules. 

The approach of update synchronism has the following implications: 

• The distiibution of display parameters must be done on a dedicated bus, 
guaranteed to be available when it is needed. 

• A broadcast protocol should be used, ensuring that all modules receive the 
same message at the same time. 

• Synchronization to screen vertical reu·ace can be done by the point of time by 
which the display parameters are distiibuted. 

The obvious solution, meeting all three requirements listed above, would be to broadcast the set 

of display parameters to be updated from the display conu·oller to the display modules by 
utilizing the pixel bus during the vertical retrace period. The pixel bus is in this period idle, and 

the synchronization to vertical retrace is automatically achieved. To make the display modules 
able to detect display parameters being output on the pixel bus, a dedicated signal line 
(DP _VALID) must be used. This is shown in Figure 10.14. 



216 

CLK 

DP _VALID 
"---------1 --------J' 

PX_DATA --cJ~X~ 

Figure 1 0.14. Display parameter broadcast 

Execution synchronism 

Execution synchronism must be applied when it can not be guaranteed that all display modules 
will receive the new set of display parameters simultaneously or within a specified interval of 

time. This would be the case if a shared bus without broadcast capabilities is used for 
transfetTing the display parameters. 

This scheme will have the following consequences to system design: 

• A handshake mechanism to make the display modules able to signal when 
they have received and effectuated the new set of display parameters must be 
included. 

• Each module must individually synchronize the effectuation of the new 
display parameters to the screen vertical retrace. 

As a conclusion, the method of update synchronization is, when it can be implemented, by far 
the one to prefer. 

10.2.4.c. Window identification 

In addition to the issue of synchronization, the distribution of image components over several 

modules raises another question: 

How is the identity of the window currently being displayed communicated 
between these modules during screen refresh? 

Basically, there are two alternative approaches for doing this: 

Identification by position. If a window's identity is implicit in the window's position on the 

screen, no explicit tagging of the window's identity is required. A prerequisite for this scheme 

to work is that display parameter updating can be synchronized as previously discussed. 

Identification by tagging. In this case, the pixel bus is augmented by a window tag, identifying 

the window whose data is cunently on the bus. 

The impottant difference between the two schemes, is that identification by tagging allows 
overlapping windows: If multiple windows are to be suppotted by a single module, e.g. one 
scan converter generating image data for four different windows, window arbitration must take 



217 

place before the data are output onto the pixel bus. With overlapping windows, position alone 

is no longer enough to determine which window the pixel currently being refreshed belongs to. 
Of course, the window select & clip mechanism can be duplicated on the two modules. A much 
better way of taking care of this problem is to use identification by tagging by including window 

tag lines in the pixel bus signal lines. With a maximum of four windows, two tag lines are 

needed. 

Window tagging schemes are also used in frame buffer based systems. In that case, a small 
number of bitplanes are reserved for tag storage, identifying the window (drawing process) to 
which the pixel value having the same location in the frame buffer belong. By including the 
window tag in the (pixel) value input to the Video Look-Up Table (VLUT) during screen 

refresh, each window can then have its own look-up table [Voorhies 1988]. This is also feasible 
in an object oriented display system. 

10.2.5. Image buffer timing requirements 

One of the most impmtant parameters when specifying any kind of data buffering system is its 

access time. However, in many applications, another parameter has often greater influence on 

the buffer's bandwidth (which this is actually all about), namely the access pattern. 

The access pattem determines how (or if) the buffer can be parallelized in order to increase its 
performance. From the discussions carried out in preceding sections of this chapter, the 
following conclusions can be made: 

• The image data should be organized as 4 separate banks according to the least 
significant bit of their sample and beam addresses (even/ odd beams, even/ 
odd samples). 

• The scan conversion procedure should preferably by done directly on-the-fly 
during screen refresh due to the scanning mechanism required. 

• As far as the issue of buffer update/ screen refresh sharing is concerned, this 
should preferably be solved by that the buffer is updated during the screen 
reu·ace periods. 

As a coarse estimate, the reu·ace time are accounting for 25 to 30% of the total refresh cycle and 
is mainly concentrated to the vettical reu·ace period. Being restricted to do buffer update during 

the reu·ace periods only, large buffers (FIFOs) may therefore be necessary to accommodate 

cases where large amounts of data are received immediately after a vettical reu·ace period has 
elapsed. To achieve the average buffer update rate required, assuming a 25% reu·ace petiod and 

that the number of data samples to be updated is equal to the number of pixels to be refreshed 
from the same buffer, peak buffer update rate should be at least 3 times the pixel refresh rate. 
This can be achieved by utilizing the 4 bank organization originally determined by screen 

refresh requirements also for buffer update. Image data can then be loaded into the image buffer 

4 samples at a time, which will be enough to accommodate the average buffer update bandwidth 
required. 



218 

However, to avoid the need for large FIFO buffers, the image buffer update time should be more 

evenly distributed over the entire display cycle. Instead of restricting the buffer update time to 
the retrace periods, this can be obtained by augmenting the update time available to encompass 
the total time the buffer's data is not displayed on the screen. 

In addition to the retrace periods, this definition will also include the time when the screen is 

refreshed from another source than the buffer in question. For a multiple window system, the 
maximum size of each window can without losing to much functionality be limited to an area 
(or actually a width) somewhat less than the total width of the screen. Sticking to the assumption 
of a 4-parallel input path and disregarding the horizontal retrace period, 

a ma.timum window width equal to 80% of the total screen width will ensure 
that image buffer update will keep up with screen refresh on a line-by-line 

basis. 

In other words, a FIFO deep enough to store the number of image data samples received from 
the Ring bus during one scan line time will be sufficient. An important assumption for this to 

work is that the rate by which the FIFO can be unloaded (into the buffer) is greater than the rate 
by which it is loaded from the Ring bus. 

What still is left to decide, is the implementation of the image buffer. As discussed earlier in 
conjunction with frame buffer based systems, there are two alternatives when designing large, 
high-speed buffers. Video RAMs (VRAM) or Static RAMs (SRAM). 

Video RAM 

The use of Video RAMs (VRAM) for image buffer implementation can unfmtunately in 
practice be excluded from the very beginning by the mere fact that we want to do on-the-fly 
scan conversion, duting screen refresh. The reason for this implication is that the unlinear 
access pattem required by the polar-to-rectangular scan conversion algorithm precludes the use 
of regular (and high speed) access mechanisms as the VRAM's serial output pmt and the fast 

page mode. This leaves the random access po1t, having an access cycle time in the order of 150 

to 200 nanoseconds, which is at least 6 times to slow to support the refresh bandwidth required 

(25 ns pr. pixel). Even though the possibility of multiplexing the required number of banks into 
a single, high speed data stream feeding one bilinear interpolation mechanism is theoretically 

feasible, it would lead to a very complex and costly implementation. 

Additionally, the problem of slow access must also be dealt with on the image buffer's input 
side. With an access time of 200 nanoseconds, the maximum rate by which 512 by 512 (beams, 
samples) images can be loaded into the image buffer will be 20 images pr. second. If we for a 
moment disregard the fact that the image buffer's total bandwidth must be shared between input 

and output, this is at least a factor of two too slow to comply with the real-time requirement of 

the total system. Fortunately, the effective access time as far as buffer update is concerned can 
be reduced in two ways: 

• By splitting the buffer into separate banks. Ideally, this splitting should 
support both data input from the Ring bus as well as refresh data output. 
Although coinciding requirements can be found, the even/ odd sample 



219 

partitioning will for instance be suitable in both cases, conflict of interests 
will probably arise. 

• Utilizing the fast page access mode. Because image data are transferred beam 
by beam, they can be loaded into the buffer page by page. Alternatively, the 
second serial port of the triple port VRAM can be used. 

However, all things taken into consideration, a VRAM (DRAM) implementation of the image 

buffer is in the author's opinion not a optimum solution when scan conversion is to be 
performed in real time during screen refresh. 

Static RAM 

As far as the implementation of screen refresh scan conversion is concerned, state-of-the-art 
SRAM technology offering 1 Mbit/ 25 nanosecond random access time memories is 
representing a petfect match for available 40 Mhz coordinate transformation and bilinear 
interpolation chips. The usual SRAM disadvantages of high cost, high power dissipation and 
low density compared to VRAMs are of course still valid, but at a level not preventing an actual 

implementation. The image buffer is therefore to be implemented by the use of Static RAM 
memory. 



220 



221 

CHAPTER ll.An actual display system design 

In the previous section, the properties of different display system architectures were discussed. 
A comparison of the altemative architectures, based on the requirements of a medical 
ultrasound diagnostic instrument, gave the following coarse outline of a suitable display system 

architecture: 

• Object oriented system architecture. 

• Multiple, overlapping window support. Window identity tagged by dedicated 
signal lines on the pixel bus. 

One module - several windows: To optimize utilization of expensive 
hardware resources, expensive in terms of cost, board real estate as well as 
backplane slot usage. 

• Several modules - one window: Consistency is ensured through broadcasting 
display parameters on the pixel bus during the vertical retrace period. 

• Image data scan conversion is peif01med on-the-fly during screen refresh. 

• Static RAM based image buffer. Buffer update is done when the buffer is not 
supplying refresh data to the screen (that is, outside the window's active area 
as well as during the horizontal and vertical retrace periods). 

• To support bilinear interpolation, the image buffer is organized as 4 
individually accessible banks. The partitioning is done according to the two
bit combination of the least significant bit of the beam and sample addresses, 
respectively (even/ odd sample, even/ odd beam). 

As far as the graphics part of the display system is concemed, the requirements will be relatively 
modest, measured in terms of the number and vectors and characters which must be 

(re)generated every second. Compared to the capacity of a state-of-the-art graphics controller 
together with a high-speed frame buffer, an implementation satisfying the performance and 
display dynamics requirements imposed by the rest of the system will represent no problem. 

The graphics part of the display system will therefore not be discussed any further in the 

remaining part of this thesis. 

For the 2D image part, however, responsible for supplying image data to the display screen by 
doing multiple window scan conversion of ulu·asound data in real time, no off-the-shelf 

hardware can offer satisfactory performance. In the last section of this thesis, a relatively 
detailed design of a 2D image part, complying with the above listed set of specifications, is 

therefore presented. 



222 

11.1. Screen resolution 

Other than the less specific term "medium to high grade resolution", the resolution of the 

display screen has not yet been specified. Starting with being a a bit more precise, a resolution 
in the order of 512 by 512 pixels (medium) up to 1024 by 1024 pixels (high) is what we are 
aiming at. 

The reason for not bringing the screen resolution into the discussion until now, is that in the 
design of a display system, there will often be a conflict of interest: Between the always present 
demand, or wish, for a resolution as high as possible on one side and other display system 

prope1ties on the other side. An example of such a trade-off is high resolution vs. good dynamic 
characteristics: The former is best served by a frame buffer based system while the latter is 
easier achieved in an object oriented system. As far as our specific application is concerned, we 

have focused on the dynamic properties of the system, the resolution must then be determined 
within the framework of that decision. However, the resulting resolution must of course satisfy 
the need of the application, otherwise the system must be redesigned so that need is met. Some 
element of iterative processing will therefore often be involved in the development of a system 

as described in this thesis. 

From the display system parameters specified, the following boundary conditions exists as far 
as the screen resolution is concemed: 

• Maximum window size: 512 by 512 pixels. 

• Horizontally, the window size should be less than 80% of the total length of 
a scan line to allow sufficient time for update (section 10.2.5.). 

With 512 pixels being equal to 80%, the total length of each scan line must therefore be at least 

640 pixels. To make additional room for "secondary" display components as patient id-data, 

Colour Flow maps and TGC-settings located beside the image windows, 800 pixels pr. line is 
suitable as an initial selection. It is also a standard figure as far as horizontal display resolutions 

are concemed (PC VGA). Sticking to the defacto standard of an aspect ratio equal to 4:3, 

assuming quadratic sized pixels, this means a vettical resolution of 600 scan lines. To get a 
flicker-free display, a refresh rate equal to 60Hz non-interlaced is chosen. 

• Refresh rate equal to 60 Hz non-interlaced is chosen.The question is however: How do 
these figures comply with what is practically realizable using available technology? 

With 800 by 600 pixels, 60 frames pr.second refresh rate and a retrace overhead factor equal to 

1.3, pixel values must be transfetTed over the Pixel bus during screen refresh at a rate of 27 ns 
pr. pixel. This represents an almost exact match to 25 ns. SRAM chips and 40 Mhz coordinate 

transform and bilinear interpolation chips. As far the Pixel bus is concemed, 40 Mhz may be 

too fast because arbitration is to be done on a pixel-by-pixel basis, implying that the transceivers 
must be turned on and off at the same rate. By transferring the pixel values two by two, the 
necessary bandwidth is reduced to 20 Mhz, which will represent no problem to a bus with a 
small number of closely spaced modules. The conclusion is therefore: 



223 

The display system as specified in the preceding chapter can, by using current 

state-of-the-art technology, be implemented with a screen resolution equal to 

800 pixels by 600 lines. The refresh rate is assumed to be 60 Hz. non

interlaced. 

Architecture outline 

An image display system architecture, conforming to the key features listed, is shown in Figure 

11.1. 

2D image 
request 

display 
module grant Display 

pixel data controller/ 
arbiter 

timing 

· ... ·.·· .·.···. ,.··o····. .· · . 

. ·_·: ":· 

" . •. • . • " 

Figure 11.1. Image display system architecture 

According to the discussion canied out in section 1 0.1., the display of the 2D image 

components must be can·ied out by a dedicated display module, capable of supporting up to a 

maximum of 4 simultaneous windows. Traces and other vector and textual image display 
information are generated and displayed by the display conu·oller/arbiter module. In addition 

(not shown in Figure 11.1. and not discussed any fmther), a module for the display of M-mode 

data is needed. 



224 

image 
data 

input processor request 

input processor grant 

IMAGE 

BUFFER 

CONTROL 

IMAGE BUFFER 
control 

display request 

window no. 

RING 

BUS 

INTER F. 

BILINEAR 

2 
~ ........................ ~ data 
~ INPUT ~~--------~~+-----~~--------~4.~8~ 
L~~.~.~~.~~.~.~jl----add __ r_es_s ____ ....,I---------.L----, 

WINDOW 

TRANSL. 

DISPLAY 

WINDOW 

SELECT 

X' 

Y' 
WINDOW 

COORD. 

buffer 
display 
address 

TRANS F. interpclation coefficients 

'n 

2 
window number 

DELAY 

display 
~~ameter 

display parameter 
valid 

pixel 
bus 
data 

display request 

& 

CLIP 
global display timing (CLK, VS, HS) 

Figure 11.2. 2D display module architecture 



225 

The heart of the 20 display module is the Image Buffer block. The image buffer contains 4 
separate window buffers, to be loaded with 20 ultrasound data via the Ring Bus Input block. 
Access to the Image Buffer is regulated by the Image Buffer Control block, ensuring that access 
conflicts between Ring bus buffer update on one side and display refresh on the other side are 
resolved. When simultaneous update and refresh requests do occur, the refresh request will 
always have priority. 

For display refresh, the Image Buffer address is set up by the Window Coordinate Transfmm 

block. The buffer display address is calculated on the basis of the X' and Y' coordinates 
received from the Window Translation block, maintaining the local X andY coordinates for all 
4 windows. Input to the Window Translation block is a 2 bit value identifying the window 

currently being refreshed. This is computed by the Display Window Select & Clip block, on the 
basis of the global display timing parameters generated by the display controller. Whenever the 
position of the pixel being refreshed (the refresh position) is within one of the 4 windows, a 
display request is issued to the display controller module and the Image Buffer Control block. 
However, to accommodate for the number of cycles it takes to compute the refresh pixel value, 
the display request issued to the display controller is delayed a number of clock cycles through 
a Delay block compared to the request issued to the Image Buffer Control. The actual length of 
the delay is determined so that the computed pixel value is ready at the time the display grant 

signal is received from the display controller. To maintain the windows' absolute position on 
the screen, the delay between the two requests must be compensated by reducing the windows' 

horizontal position value accordingly. In this way, the display request will be issued the 
necessary cycles in advance to have the computed pixel value ready on time. The only practical 
implication of this is that the windows can not be positioned at the extreme left edge of the 
screen. 

Along with the display request, the 2 bit window number is presented to the Image Buffer 
Control, causing the 4 samples required to compute the value of the refresh pixel to be output 

to the Bilinear Interpolation block. The required 4 interpolation coefficients are generated by 

the Window Coordinate Transform block. The coefficients can be regarded as being the 

fractional part of the result of the coordinate transform computation. 

Finally, the refresh pixel value is output to the Pixel Bus Inte~face block, multiplexing two 
succeeding 8 bit pixels into one 16 bit value. If no other display module requests the Pixel bus 

with higher priority than the image display, the display controller then issues a display grant 
signal to the image display and the pixel data is output onto the Pixel bus. 

As far as display parameter broadcast is concerned, this is pelformed on the Pixel bus during 
the screen vettical retrace peliod. The presence of valid data is signalled to the display modules 

by the means of a dedicated "display parameter valid" signal line. On board each module, the 
parameter data must be distributed by an internal (Display Parameter) bus. The display 

parameters are transfetTed as packets, containing a header identifying the address of the 

module(s) to receive the packet as well as the specific type and amount of data contained in the 
packet. Since the detailed implementation of this scheme will be module as well as application 

dependent, it is therefore not discussed any further in this document. 



226 

We will now take a look at the functional blocks contained in the image display architecture in 
greater detail. To ease interpretation of the schematics, all blocks implementing an algorithm 

of any kind (processing, table look-up etc.) is shadowed. 

11.2. Ring Bus Interface 

The Ring Bus Interface as shown in Figure 11.3. is connecting the Ring bus to the Image Buffer. 
Both directions of transfer are supported, the input of (unprocessed) image data to the Image 
Buffer as well as the read back of (processed) image data from the Image Buffer to the Ring bus. 



e 
E 
0 
() 
en 
:::l 
CD 
Ol 
c 
0: 
E ,g 

( image buffer 
readback (to 
Ring bus 
tranceivers) 

/, 

Ring bus data 
input (from 
Ring bus 
tranceivers) 

CURRENT 
SAMPLE 

ADDRESS 
COUNTER 

CLR 

t 

CURRENT 
BEAM 

ADDRESS 
REGISTER 

CURRENT 
WINDOW 

REGISTER 

2.16 
EBB_ DO I" 

I OBB_DO 

2 EBB OR 
B 

I OBB_OR 

I/ 
16 EBAB_DI " 2 EB lA 

I OB lA 
A 

2 EB Sl 

I OB_SI 

I/ 
INC CSAC 

DATA 
CBA(O) 

CWR(1) 
PATH 

I 

CSA(0-7) 

+ 

; CBA(O) CONTROL 

CSA(0-7) 

CWR CBA(1-8) 
INPUT 

ADDRESS 
2 

CWR(O) 
DEMUX 

SEL 

CWR(1) 

227 

D01EE 

8 
D01EO 

8 4.8 
DOlOE 

8 

D0100 

8 

D23EE 

8 
D23EO 

8 4.8 
D230E 

8 

D2300 

8 

EB OR 

OB OR 

EBB lA 

OBB_IR 

BUF GRANT 

I 

EB OR 

OB OR 

EBB lA 

OBB lA 

INP RREO 

INP WREQ 

'"-"""' J 
RTH01EE,EO,OE,OO J 

4.16 

RTH23EE,EO,OE,OO 

4.16 

image 
buffer 
data 

image 
buffer 
control 

image 
buffer 
address 

Figure 11.3. Ring Bus Interface 



228 

The Ring Bus Interface can logically be divided into two main sections, a data path and an 

address path. The Data Path, essentially containing a number of FIFOs and a large look-up 
table, will be described in detail on the coming pages and is therefore not discussed any further 
here. 

The function of the address path is to provide the necessary addressing while writing data into 
(or reading data back from) the Image Buffer. As already discussed in detail in chapters 9 and 
10, data are transferred on the Ring Bus formatted as packets, each packet containing one or 

two beams of data. As far as the sample address is concerned, it is therefore implicit in a data 
elements relative position within a packet. A counter being cleared at the beginning of each 
packet (beam) and incremented for each sample value being read or written will therefore do 
(Current Sample Address Counter). 

The beam address of the data to be loaded, however, must be contained in the packet header. 
The module's Ring Bus Control block (not described in this document) will decode the packet 

header and load the beam address information into the Current Beam Address Register. With 
two beams contained in each packet, the Ring Bus Control must also detect the u·ansition 
between the two beams, upon which the Cun-ent Sample Address Counter must be cleared and 
the CmTent Beam Address Register incremented. As far as the number of the window in which 
the data are to be stored (displayed) is concerned, this may either be included as a part of the 
packet header or stored as a display parameter. In both cases, a two bit register (Current 

Window Register) is necessary, from which the window identity can be disu·ibuted to the rest 

of the module. 

Due to the mechanism chosen for sharing access to the Image Buffer, the Input Processor, 

contained in the Data Path block, must issue a request (INP _RREQ (read) or INP _ WREQ 

(write)) whenever it wants to access the Image Buffer. The request is generated by the Control 

block and issued when data are ready to be written into the buffer (EB_OR (Even Beam -
Output Ready), OB_OR) or read from the buffer (EBB_IR (Even Beam pmt B- Input Ready), 

OBB_IR). Because of the memory chip organization, the two buffer banks, containing windows 
0/1 and 2/3, respectively, can be accessed independently. Which bank being requested, 011 or 

213, is signalled through the state of the most significant bit of the CmTent Window Register, 

CWR(l). The request is granted (INP _GRANT asse1ted) on the ve1y first cycle the requested 
bank is not needed for screen refresh. 

A complete buffer address is assembled by the sample (pair) address CSA(0-7), the beam 
address except the least significant bit (CBA(1-8)), and the least significant bit of the window 
number (CWR(O)), selecting either the lower (windows 0 or 2) or the upper (windows 1 or 3) 

half of the memory chip. The address is assembled and multiplexed onto the 4 paths of the 

appropriate Image Buffer address bus, RTH01 or RTH23, depending on the most significant bit 
of the window number, CWR( 1 ). The 4 paths of each address bus corresponds to each of the 4 

memmy chips needed to store the data for one window. The address assembly/ demultiplexing 

is done by the Input Address Demux block. Upon receiving an input grant, the assembled buffer 

address is driven onto the bus. 



229 

11.2.1. Data Path 

In addition to the bidirectional port connecting the Data Path block to the Image Buffer, the 
Data Path block has two other port5, A and B, Through these port5, data input (A) and data 

readback (B) are performed. 



230 

s 
a. 
. 5 

~ 
"0 
<t: 
t:: 
0 c.. 

/, 2'8 

2 

2 ,-

: 

J, .... 
Dl EBA_OR I . 

IR OR 

EVEN 
BEAM < 

EBA SO •· Sl so 
DO 

" ·•··•••••••••••••· 

I EBA DO 

2'8 

.l. :j~'i;}:\1';~ Dl OBA OR 
~ IR OR 

ODD .(I>~> 
BEAM 

OBA SO 
··••• > ·..•• ) Sl so 

·······•· \ 

DO 

I OBA DO ,• .. / < 
2'8 )<~~sL:si 

, EBB IR .· X>J~ > I OBB IR ';:;~ 
2 8 .l. 

i!!li~iif1 "--
Dl EBB OR 

IR OR 

... EVEN 
BEAM i >< 

f>············ iii 
4 Sl 

EBB SO so 

• . i '.··········· DO • J, 

.F ········ 
2'8 EBB DO 

2'8 ... 
.!. 

? ········· 

Dl OBB OR - - IR OR 

• i > < ODD 
BEAM 

•·•••••···· ) ~ Sl so 
OBB so ··.··· ••··•··•·••·•• + ······I ···.····· DO 

2'8 J, OBB DO <I ) 

+ ?'i 
EBB Sl, OBB Sl 2 I 
EBB Dl, OBB Dl 4'8 

xBB OR 2 ~ 
:~ ( t xBB SO 4'8 

; < 

input processor control 

Jf 

EOB Dl 2'8 

+ .!. 
EB IR Dl 

~ IR OR 

EVEN 
BEAM 

EB Sl 
Sl so ~ f--

DO 

I 8 

I 8 

INP WRITE 

EOB Dl .- 2'8 

J, 
OB IR Dl 

IR OR ....__ 

ODD 
BEAM 

OB Sl 
Sl so '-----

DO 

I 8 

8 

BDATA SEL 

t EOB Dl 2'8 

•5'BB Dl 2'8 

OBB Dl 2'8 

C"' DO,.. 
.. OBB DO 2'8 

INC CSAC 

CBA(O) 

2 xB OR 

2 xBB IR 
; ' .. 

INP GRANT 

INP WRITE 

1 
ENABLE 
~ 
- ~ 
- ~ 
- ~. 

4'8 

2: 1 

DEMUX 

x 
-ft. 
- ~ 
- ~ 
- ~. 

>< 
C') 

J 
~ 
C\i 
~ 
0 
"0 
c 

4'8 '§: 

SEL 

t CWR(1) 

J. 
D01 

4'8 

XX 

SEL 
~ 
~ 
~ 
~ B_DATA D23 XX 

SELECT 4'8 

~ 
~ 
~ 
~ 

Figure 11.4. Data Path 



231 

Port A 

By using the A port, image data are transferred from the Ring Bus and into the Input Processor 

block. The port contains two FIFOs, loaded by even beam and odd beam data, respectively. 
Each FIFO is 16 bits wide to accommodate sample pairs, in accordance with the format by 

which 8 bit samples are transferred two by two over the Ring Bus. The depth should be at least 
256 16 bit values, large enough to contain one full beam of data. The control interface towards 
the Input Processor is a set of Output Ready (xxx_OR) signals, telling when new data can be 
read from the FIFO and a set of Shift Out (xxx_SO) signals, causing data to be shifted out of 

the FIFO. In the same way, the control interface towards the Ring Bus is a set of Input Ready 
(xxx_IR) and Shift In (xxx_SI) signals. 

PortB 

While the A port is used for data input to the Input Processor from the Ring Bus, port B handles 
data readback from the Image Buffer. This may be used for two purposes: 

• The readback of processed data from the Image Buffer out on the Ring Bus. 

• Making it possible to generate new data to be loaded into the Image Buffer as 
a function of the data received from the Ring Bus and the (old) data already 
stored in the Image Buffer. 

As far as the first point is concerned, the Image Buffer is normally the last module in the 
processing chain. However, in principle, it is nothing preventing the input processing features 
of the image display system to be used as a sort of generic processing facility, allocating one 
(or more) of the 4 Image Buffer windows as intermediate storage. By manipulating the 
appropriate display parameters, the display of this (those) window(s) may be turned off, 

permitting the buffers to be used as general purpose data buffers. After processing, the data can 
then be read back onto the Ring Bus and transferred to other modules for fmther treatment. 
Eventually, the data are transfened back to the display system into another window of the 

Image Buffer to be displayed. 

Another actual use of data readback from the Image Buffer is for test purposes. As a general 

rule, or at least a desired goal of any design, no part of a module should be hidden from 

inspection through software. 

The aspect of modifying the image data with data already stored in the Image Buffer is however 

the most important, at least seen from an image processing point of view. Due to the use of 
FIFOS for intermediate storage of the readback data by which the new data are modified, the 
location in the Image Buffer from which data are read back is totally independent of the location 

into which the (processed) new data are to be loaded. This fact has the following implications: 

• By modifying the data with data from the same window as well as the same 
location within the window, a time recursive filtering operation is performed. 
This makes the displayed image less susceptible to sudden variations in the 
data values (e.g. noise). 

• By using data from another window but from the same location, data from 
two different images can be combined into one new image. One application 



232 

of this mode of operation will be to compare the two images, visualizing the 
result as the difference between them. 

• Instead of image data, the other window may be loaded by a full 2-
dimensional set of position dependent coefficients. 

The source of the read back data is determined by the B _Data Select block (selecting window 
011 or 2/3) in conjunction with the contents of the Current Beam Address Register and the 
Current Window Register contained in the Ring Bus Intetface block. 

If the coefficients are constant with respect to the angular (beam) coordinate of the image, it is 

however not necessary to dedicate an Image Buffer window for storing these coefficients. 
Instead, the port B FIFOs may be loaded directly from the Ring Bus by propagating the data 

received on the xBA_DO data lines straight through the Input Processor, out on the EOB_DI 
lines and then back to the port B FIFO input port on the xBB_DI lines, through the B_Data 
Select block. During Input Processor operation, the coefficients are then circulated from the 
port B FIFO output potts back to their input ports via the xBB_DO to xBB_DI path in the 
B_Data Select block. In this way, the pmt B FIFOs will contain all coefficients, while the 4 
Image Buffer windows are available for image data. Because separate paths are provided for 

the two pott B FIFOs, different sets of coefficients for even and odd beam data are supported. 

The port B input port is intetfaced to the Input Processor block by the two sets of Input Ready 
(xBB_IR) and Shift In (xBB_SI) signals, permitting (readback) Image Buffer data to be loaded 

into the FIFOs under the control of the Input Processor. Coefficient loading is petformed in the 
same way. As far as the port B FIFO output pmts are concerned, they will in some cases be 
controlled by the Ring Bus Intetface (data readback to Ring bus) and in some cases the Input 
Processor (input processing). The conesponding Output Ready (xBB_OR) and Shift Out 
(xBB_SO) signals must therefore be connected to both the Input Processor and the Ring Bus 

lntetface. 

As data are read from the input pmt FIFOs, they are processed by the Input Processor and 
written into the output port FIFOs. The process of storing these data into the Image Buffer, 

however, must due to the access shating mechanism with screen refresh be granted on an 

access-by-access basis by the Image Buffer Control. The approptiate buffer request signal is 
generated by the Control block in the Ring Bus intetface: A wtite request INP _ WREQ 

whenever there is a pending buffer write (xB_OR active), a read request INP _RREQ in case of 
a pending buffer read (xBB_IR active). 

Depending on the value of the Cunent Beam Address Register's least significant bit (CBA(O)), 

data from the even beam or odd beam FIFOs are selected for processing. To fully utilize the 

buffer access bandwidth, however, data are not actually written into the Image Buffer before 

both output FIFOs (even and odd beam) contains data. Data are therefore always written (and 
read) 4 samples at a time (odd/ even beam, odd/ even sample). 



233 

When the buffer request can be serviced, the INP _GRANT signal is asserted. In case of a buffer 
write, INP _WRITE then goes active, causing data to be written into the buffer and the output 

FIFOs to be popped, preparing for the next write operation. By asserting INC_CSAC, the 
Current Sample Address Counter (CSAC) is then incremented. CSAC is supplying the least 

significant bits of the complete buffer address. 

The data to be written into the Image Buffer must be directed onto the right data bus according 
to which window (011 or 2/3) they are to be written into. This is accomplished by the 2:1 
demultiplexer block, controlled by the Current Window Register's most significant bit 
(CWR(l)). 

11.2.l.a. Input Processor 

The task of the Input Processor is to transfmm the received image data according to some 

defined function before the data are wtitten into the Image Buffer. Due to the FIFOs used on 

input as well as output, the processing speed of the input processor is not related either to the 
rate by which the data are received (Ring Bus) or to the rate by which they are to be loaded into 

the Image Buffer. The implementation of the Input Processor itself can therefore freely be 
chosen without regards to processing speed. This of coarse, with the implied restriction that the 
average bandwidth of the Input Processor at least must be large enough to keep up with the rate 
by which data are entered from the Ring Bus. If not, it would represent a limitation to the overall 
system performance. In the design presented in this thesis, a lookup table implementation is 
used, having the advantage of being both simple and fast. More complex input processing 

algorithms may however require other solutions. 



234 

TABLE_SELECT 

(D-7) 
0 

(8-15) 

4: 1 A_DATA 

OBA_DO (D-7) 
2 MUX EVEN 

2'8 
REG. 

(8-15) 
3 

SEL 

2 
A_SEL EOB_DI 

2'8 
(D-7) 

0 

(8-15) 
ODD 4: 1 B_DATA 
REG. 

OBB_DO (0-7) 
2 MUX 8 

2'8 

(8-15) 3 

SEL 

EBA-OR DATA_SEL 

OBA_OR LTD_LATCH 

EBB_OR 

Q) 
(.) EBA_SO <1l 
't: 

OBA_SO 

-~ EBB_SO 
0 CONTROL 
u. OBB_SO u:: 

OBB_OR EB_IR 

] OB_IR 

cutout FIFO 

EB_SI interface 

OB Sl 

"5 
a. EBB_IR .!: CBA(O) 

OBB_IR INC_CSAC 

EBB_SI control 

OBB_SI 

CLK 

Figure 11.5. Input Processor 

As shown in Figure 11.5 ., the transformation performed by the Input Processor has two in put 
operands: The data value to be transformed (A) and a second value (B). As explained in the 

previous section, the B value may be 

• a multiplication coefficient. 



235 

• a data sample from the previous frame in the same image sequence (as to 
which the A value belongs). 

• a data sample from a different image sequence. 

Input to each one of the A and B operand 4: 1 multiplexers are a complete even/ odd beam, even/ 

odd sample 4 value set. Which one of the 4 values being used is determined by the A_SEL and 
B _SEL select signals. The most significant bit of the A_SEL and B _SEL signals, selecting even 
beam or odd beam data, will be equal to the Current Beam Address least significant bit CBA(O), 

while the least significant bit of A_SEL! B_SEL will alternate between logic 0 and I. 

The actual transformation is defined by the contents of the lookup table. By using a larger 
memmy than actually required by the size (i.e. number of bits) of the operands, several table 

sets can be stored and dynamically selected by the T ABLE_SELECT signal(s). 

The lookup table design as shown in Figure 11.5. is producing one data value at a time. To form 
an even/ odd sample pair, the data values must therefore be assembled two by two before they 
are written into the data path output FIFOs. This is done by the Even and Odd registers, latched 

on the rising and falling edges of the LTD_LATCH signal, respectively. 

Input to the Even and Odd registers are selected by a third 4:1 multiplexer, controlled by the 2 
bit DA T A_SEL signal. The following options are available: 

0 The "A" value, making it possible to feed the A value straight 
through the Input Processor. Via the B_Data Select block in the 
Data Path, the A value may then be routed back to the B input port 
FIFOs. 

Lookup table output. This is the normal setting during Input 
Processor operation. 

2 All bits grounded. To be used for FIFO and buffer clear 
operations. 

3 The "B" value. Actually a spare input, but may be included to 
make the Input Processor symmeuical with respect to the two 
operands. 

The Input Processor is intetfaced to the Data Path input FIFOs through the xBx_OR (Output 
Ready) and xBx_SO (Shift Out) signals (buffer write operation), and the xBB_IR (Input Ready) 
and xBB_SI (Shift In) signals (buffer read). On each access to the buffer, the INC_CSAC signal 

is pulsed to make the CmTent Sample Address Counter to point to the next location. 

11.3. Image Buffer 

The Image Buffer is assembled by 8 Static RAM chips as shown in Figure 11.6. Each chip is 
containing 128 kBytes of data. 



236 

D01xx 

• D01EO 

8 

(J) 
(J) 
Q) 

-l5 
"0 
ttl 0 
~ '!il 0 0 
:;; e-
0 Q) 
"0 -c: .~ 
·~ Cii 00100 Q) 

§ 
:0 
.8 

WEN23 

Figure 11.6. Image Buffer 

Each of the 4 possible windows is limited to 512 by 512 8 bit sample values. To achieve 
maximum performance from the bilinear interpolation mechanism, the even/ odd beam, even/ 
odd sample values are stored in separate memory chips. The maximum amount of data pr. 



237 

window pr. chip is therefore 64 kByte, each chip containing data from two windows. As we will 

see later, the bilinear interpolation mechanism requires that each of the 4 memory chips 
containing data for the window in question can be independently addressed. Each chip must 
therefore have its own set of address lines, in the schematics named RTHxxEE, RTHxxEO, 
RTHxxOE and RTHxxOO. Which one of the two windows contained in each chip being 
accessed is selected by the most significant chip address line (WSEL0/1 and WSEL2/3, 
respectively). Needless to say, to suppmt parallel read-out of data from the 4 chips, each chip 

must also have its own data bus (DxxEE. DxxEO, DxxOE and DxxOO). 

To support 4 windows, two such two window banks must therefore be used, each bank 
containing 4 memory chips as desctibed in the previous paragraph. Each of the two banks, 
containing data for windows 011 and 2/3 respectively, must also have its own set of address and 
data lines. The are named RTHOlxx/DOlxx and RTH23xx/D23xx in the schematics. 
Refreshing the screen with data from a window contained in one bank can therefore take place 

in parallel with updating one of the windows contained in the other bank. Each bank must 

therefore have its own output enable signal (WENOl and WEN23). 

The Image Buffer 4 sample data buses D01xx and D23xx are connected to the B_Data Select 
block contained in the Data Path block (Input Processor access), and the 4 2:1 multiplexers on 

the Image Buffer output, connecting the Image Buffer to the Bilinear Interpolation block. 
Output to the Bilinear Interpolation block is selected detetmined by the most significant of 
WIN_NO, the 2 bit value identifying the window from which the screen cunently is refreshed. 

11.4. Image Buffer Control 

The task of the Image Buffer Control block is to regulate access to the Image Buffer. Two 

independent processes are competing for access, using their own set of dedicated control signals 
as shown in Figure 11.7. 

refresh 

request 

input 

processor 

request 

( 
DISPL REO WSEL0/1 

WIN_ NO 

2 IMAGE 
WEN01 

INP RREQ BUFFER 

CONTROL 
WSEL2/3 

INP WREQ 

CWR WEN23 

~ 
INP_GRANT 

Figure 11.7. Image Buffer Control 

J 
bank 0/1 

control 

J 
bank 2/3 

control 



238 

Display refresh access (read) is requested by asserting the DISPL_REQ signal. The window 
(0 to 3) from which the refresh data is going to be read is identified by the two bit WIN_NO 

signal. Because the refresh process always will be granted access to the buffer the next cycle, 
an image buffer display grant signal is not necessary. 

Input Processor access (read or write) is requested through the assertion of the INP _RREQ or 

INP _ WREQ signal, the buffer window being requested is identified by the two bit CWR 
(Cun·ent Window Register) value. As soon as the request can be accommodated (that is, the first 

cycle when there is no conflict with display refresh), signal INP _GRANT is asserted. 

Corresponding to the two types of requests, two pairs of control signals are generated: WSELx/ 
x, selecting one of the two windows contained in each memory chip, and WENxx, connected 
to the memory chips' output enable. In case of simultaneous Input Processor read and display 
requests (to different banks), both banks will be enabled. 

11.5. Display Window Select & Clip 

Before describing the implemented mechanism for window selection and clipping in detail, we 
will first go through the basic philosophy behind the design: 

11.5.1. The basic philosophy 

Within the framework of the rest of the display system, the design goal for the window selection 
and clipping mechanism was to come up with a solution having the following features: 

• To supp01t 4 independent, possibly overlapping windows. 

• No restrictions on window position and size other than the maximum size of 
512 by 512 pixels. 

• A change in a window's position and/or p1i01ity (depth) should be 
synchronized to and effective on the next refresh frame. 

• The amount of hardware required should be minimized. 

The latter two points requires that the amount of data necessary to process and/ or move in 
conjunction with a window operation is kept to a minimum. This prohibits the use of a complete 

map of the screen, for each pixel showing which window it belongs to. Instead, the windows 

must be parameterized. 

To describe a window's position and size, four parameters are needed: The position of the upper 
left comer (Xrnin, Y min) and the position of the lower tight comer (Xmax, Y max). An example 

showing the position parameters of two non-overlapping windows A and B is shown in Figure 
11.8. 



239 

YBm1n 

2 

YAmin 

3 
YBmax 

4 

YAmax 

5 

Figure 11.8. Window position parameters 

According to their vertical position, the screen area from top to bottom can be divided into 5 
parts: 

Y > YBmin(l) 

No window active. 

YBmin > Y > Y Amin(2) 

Window B active between XBmin and XBmax. 

YAmin > Y > YBmax(3) 

Both windows active: Window A between XAmin and XAmax, window B 

between XBmin and XBmax. 

YBmax > Y > YAmax(4) 

Window A active between XAmin and XAmax. 

Y > YAmax(5) 

No windows active. 

If a refresh position monitor was set up to continuously compare the position of the pixel 
cmTently being refreshed against the window parameters, its output signal would look 

something like the diagrams shown in Figure 11.9. for the 5 different parts of the screen area. 



240 

1: 

2: 

3: 

4: 

5: 

Y <Y8min 

Y8min < Y <YAmin 

YAmin< Y < Y8max 

Y8max < Y < YAmax 

YAmax<Y 

start 
of 

line 

1----+ 
XAmm XAmax XBmtn XBmax 

8 L 
A LJ 8 L 
A 

f.- Win. A -.j f.- Win. B -.j 

Figure 11.9. Refresh position monitor output 

Depending on the output of the refresh position monitor, 

• a display request to the display controller module would be generated 
whenever the refresh position was inside any of the defined windows. 

• the output of the position monitor could directly be used as a pointer into the 
Image Buffer to select the window currently being refreshed. 

A more comprehensive example is illustrated in Figure 11.10., showing 4 differently sized, 
non-overlapping, partly overlapping and fully overlapping windows. Some of the window 

parameters are common to more than one window (e.g. y=375 is common to windows 0, 1 and 
3). 

(0,0) 100 175 275 350 475 600 700 

50 

I 125 
2 

250 ........... 
300 

~ 375 

G 525 

(799,599) 

FIG. WINDOW LAYOUT 

Figure 11.1 o. 4 window screen layout 



241 

As far as systemizing the window parameters into a table is concerned, there must be one entry 

for each row having a different set of column parameters compared to the preceding row. With 

4 possible windows, and 2 entries for each window (top and bottom), the table will have a 

maximum of 8 row entries. The maximum number will be used if all windows have their 

horizontal (top and bottom) lines at different y- positions. This table, containing the numbers of 

the rows on which a window is entered or left, is called the Row Table. 

Correspondingly, each row entry will need a maximum of 8 column entries, to accommodate 

the positions of the left and right edges of 4 windows. In total, an 8 by 8 entry table is needed 

to store the diagonal comer coordinates of all4 windows. This table is called the Column Table. 

The screen row number corresponding to each row in the Column Table is stored in the Row 

Table. 

Each table entry, in the Row Table as well as in the Column Table, is a value pair. The first 

element of each pair contains the (row or column) position, the second which window(s) are 

involved. Because more than one window may be positioned at the same coordinate, the 

window identity can not be decoded into a single 2 bit value but must be represented by a 4 bit 
mask "xxxx", with each bit position 3 to 0 corresponding to the window with the same number. 

Each of the 4 bits will have the following interpretation: 

0 Screen position is outside window "n". 

Screen position is inside window "n". 

As far as the position elements of the table entries are concerned, they may be given as either 

absolute or relative values. If the positions are expressed as absolute screen position values, a 

counter/ register/ comparator mechanism is required to detect when the refresh position is equal 

to a window position as specified in the Row or Column table. 

By reloading the counter when detecting a window edge with the distance to the next window 

edge, the comparators may be omitted. By counting the counter down, all it takes is to detect 

when it reaches zero. The positions must then be given as incremental values, relative to the 

previous window edge. This approach requires less hardware than the absolute value method, 

and it is therefore preferred in this design. The Column and Row tables for the screen layout 

from Figure 11.10. is shown in Figure 11.11. Because several windows have one or more edges 

in common, the tables are only partly filled. 



242 

7 6 5 4 3 2 

7 

6 

5 

4 

3 

2 

0 

COLUMN TABLE 

Figure 11.11. Column and Row tables 

0 

. 

175/0001 

75/1001 

50/1000 

125/0100 

75/0010 

50/0100 

ROW 

TABLE 

In addition to the tables defining the windows' position and size, a table defining their mutual 
display priority is needed. Because the windows are allowed to be overlapping, a window may 

be partially or fully covered by other windows. This situation is resolved through the Priority 

Table, containing one entry for each possible window combination. To support 4 windows, 16 
entties are therefore needed. In accordance with the display layout as shown in Figure 11.10., 
the window primities are window 3 (highest), 1, 0 and 2 (lowest). The contents of the Priority 
Table for this set of primities is shown in Figure 11.12. 



0 

2 

3 

4 

5 

6 

7 

8 

9 

10 
11 

12 

13 

14 

15 

3 2 1 0 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

~ 

(no window) 

0 

2 

0 

3 

3 

3 

3 

3 

3 

3 

3 

Priority 1 

Priority 2 

Priority o 

Priority 3 

Figure 11 .12. Priority Table 

243 

After this introduction to the basic philosophy behind the display window select & clip 
mechanism, we will now take a look at a possible hardware implementation of the scheme: 

11.5.2. Display Window Select & Clip 

The select and clip mechanism is built around the (Column, Row and Primity tables, together 
with the necessary electronics to supp01t them (Figure 11.13.). 



244 

1 
v 

CURRENT / · ... · ........ , ... ·· ... . 
LINE ~ 

SELECT 

it> ..... ·. •.· ... · 
.·.·.··· < •·••·•··••· i .. · ..... ·.··.· COUNTER 
· .. · ••·······• < <........ I· > >. 

i < <> ( . •. ··.··•· /. ••.········ 
CLR i< ····•·{.. >I <>> 

vs T .... 

I TB DET 
1 CO.L~~~ .T~~~E 1 

HS 
[:.C>-----II>ICLR 

WINDOW 

LEFT/RIGHT 

DETECT 
CLK 

CLK/2 

r--- ,...lh-__ l.__rs-_o,Er 
~----;: 

,..._,... • i-- WINOY 

~ • i-- WINDOW WIN1 Y 

~ •• ·i > : - TOP/BOTIOM WIN2Y 

~ • - DETECT t--W-IN_3_Y-II>f 

p : ...... 

~---~ CLR 
ROW Lo2-T..L...-r--T-'2--1 

TABLE VS HS 

LR_DET 

WINO X 

WIN1X 

WIN2X -
WIN3X 

Figure 11.13. Display Window Select & Clip 

Theory of operation 

As already described, the Column and Row tables will consist of sequences of incremental 
values, each value giving the distance from one edge to the next. The distance is either 

measured as a number of scan lines (Row Table) or as a number of pixels along a scan line 
(Column Table). The two tables contain the same number of entries, with each entty being a 
single value in the Row Table and a vector in the Column Table. 

The select & clip mechanism is resat by the screen vertical sync (VS) signal. The entire Row 
Table is then loaded into an 8 element shift register in the Window Top/ Bottom Detect block 
(WTBD), and the pointer to the CutTent entty of the Column Table (Cunent Line Select 

Counter) is cleared, making the first entty of the Column Table cunent. The WTBD counter is 

loaded with the first entty of the Row Table, and for each scan line, the counter is decremented 

by the screen horizontal sync signal HS. When the counter eventually tuns out, the screen 



245 

refresh has reached the top edge of the upmost window. The WTBD block signals this event by 

asserting the TB_DET signal (Top/Bottom-DETected). Through the shift register mechanism, 

the WTBD counter is then loaded with the next entry of the Row Table. 

By the asserted TB_DET signal, the Window Left/ Right Detect block (WLRD) is loaded by 
the first entry (vector) of the Column Table, and the WLRD counter by the first value in that 

vector. This value contains the distance (number of pixels) from the screens left edge to the first 
windows left edge. The WLRD counter is counted down by the pixel clock CLK, and when it 
expires, it means that the vertical (left or right) edge of a window is reached. The signal 

LR_DET (Left/ Right Detected) is then asserted, causing the WLRD shift register to load the 
next value contained in the same Column Table vector into the counter. 

Each time a counter (WTBD or WLRD) expires, the corTesponding 4 window enable signals 
(WINiY or WINiX) are set equal to the mask value accompanying the value by which the 
counter was loaded. The position of the current scan line (that is, the scan line currently being 
refreshed) vs. the vertical positions of the 4 windows 0 to 3 are reflected through the state of the 

signal lines WINiY, generated by the Window Top/ Bottom Detect block (i = 0-3): 

0 The (vertical) position of the current scan line is outside window 
i, that is either above its top edge or below its bottom edge. 

The (vertical) position of the cmTent scan line is inside window i, 
that is between its top and bottom edge. 

In the same way, the Window Left/Right Detect block WLRD signals whether the pixel 

cunently being refreshed is lying between any of the 4 windows' side (left and right) edges. 
This is reflected through the state of the signal lines WINiX (i = 0-3): 

0 The (horizontal) position of the cunent pixel is outside window i, 
that is either to the left of its left edge or to the right of its right 
edge. 

The (horizontal) position of the current pixel is inside window i, 
that is between its left and right edge. 

By combining the conesponding WINiX and WINiY signals, it can then be determined whether 

the refresh pixel position is inside window i or not. This is done by the Window Priority Select 
block. If the refresh pixel position is inside any of the defined windows, the DISPL_REQ signal 

is asserted, signalling to the display controller that the Image Buffer module wants to supply the 

refresh data for this pixel. The identity of the window to supply the data is to be coded into the 
two bit value WIN_NO. If more than one WINi signal pair (i=0-3) is active simultaneously, 

there is overlapping windows at this position. The conflict is resolved by the Primity Table 
contained in the Window Priority Select block, presenting the winning window's identity on the 
WIN_NO lines. 

As shown in Figure 11.13., the select & clip mechanism consists of three major components: 
The two detect blocks and the Window Priority Select block. 



246 

11.5.3. Window Top/Bottom Detect 

The Window Top/Bottom Detect block (WTBD) consists of an 8 element shift register. a down 

counter and 4 toggle flip-flops as shown in Figure 11.14. 

from Row table 1 0 •• 0 •••• 0 

TB DET 
-t PL so 

10 WINY_POS 
0 

WINY_MASK 

4 
COUNTER r--. cr-LOAD 

,_ VS ~JL 
.J, .J, 

CLR T 

0 WINDY 
E 0 

~ 1 WIN1Y 
E 0 

2 WIN2Y 
E 0 

3 
E 0 

WIN3Y 

HS i r Toggle flip-f 

-
Figure 11.14. Window Top/Bottom Detect 

(/) 

"iii 
c: 
.Ql 
(/) 

Q) 

:0 
Cll 
c: 
Q) 

Q) 

Ol 
"0 
Q) 

"iii 
u 
"€ 
Q) 

> 

~ 
"0 
c: 
"§: 

lops 

On vertical sync (VS). the entire Row Table is loaded into the shift register, the flip-flops are 

cleared and the first value of the Row Table is loaded into the counter via the 10 bit WINY _POS 
lines. On every horizontal sync (HS), the counter is decremented. This goes on until the counter 
reaches zero. A high pulse is then generated on the counter's carry (C) output (signal TB_DET), 



247 

connected to the flip-flops' toggle (T) input. All flip-flops enabled by its corresponding 

WINY _MASK bit, contained in the Row Table, are then toggled. This causes the flip-flop 
outputs (D), clocked by the horizontal sync signal HS, to switch to a logic 1 (inside window) or 

logic 0 (outside window), depending on their previous state. 

Signal TB_DET is also connected to the shift output (SO) terminal of the shift register, causing 
the next WINY _POS/ WINY _MASK value pair to appear on the shift register output. The 
counter is then loaded with the WINY _POS value, while the WINY _MASK will enable the 
flip-flop toggling the next time the counter expires. 

The flip-flop outputs will all be equal to a logic 0 at the top of the screen (initial condition, 

cleared by VS) and at the bottom of the screen (provided that the Row Table has been correctly 
programmed). 

11.5.4. Window Left/Right Detect 

The Window Left/Right Detect block (WLRD) is in construction identical to the Window Top/ 
Bottom Detect block. 



248 

TB_OET 

fr~~ ~~~~~~ t~~le l 
PL SO 

LR_OET 

10 WINX_POS 
1-->''----"----~ 0 

WINX_MASK 

LLLLLLJLLJrt4~ COUNTER 

p LOAOC~ 

,...C>-Hs _____ --+-------1~ JL 
~ J+ 

CLR T 

0 
'----+! E 0 

WINOX 

'----+! E 0 
WIN1X 

2 
'----+1 E 

WIN2X 
0 

3 
'-----.! E 

D WIN3X 

(/) 

Cii 
c 
Ol ·c;; 
Q) 

:a 
ctl 
c 
Q) 

Q) 
Ol 
-o 
Q) 

I§ 
c 
0 

.!::! 
0 
.c 
~ 
0 
-o 
c 
-~ 

CLK i ~ Toggle flip-flops 
+------------------------------J-----~ 

Figure 11.15. Window Left/Right Detect 

The signals by which the block is controlled is however different: Each vector entry contained 

in the Column Table describes the screen layout along a scan line. The counter and the 4 toggle 
flip-flops must therefore be cleared by the horizontal sync (HS) signal, clocked by the pixel 

clock CLK signal. Every time the WLRD counter runs out, signal LR_DET (Left 

Right_Detected) is asserted and the counter is loaded with the next value of the vector. Before 
starting to refresh the next scan line, signal HS is asserted and the WLRD counter is reloaded 

with the first value of the same vector. 



249 

When a new window top or bottom edge is encountered, the WTBD counter runs out, signal 

TB_DET (Top Bottom_ Detected) is asserted and the shift register is loaded with the next vector 
from the column table. On the next horizontal sync (HS) signal, the first value of this vector is 
loaded into the WLRD counter. 

11.5.5. Window Select 

The task of the Window Select block is, on the basis of the 4 pairs of window enable signals 
generated by the WTBD and the WLRD detect blocks, to select one of possible several enabled 
windows for display. 

CLK/2 

Figure 11.16. Window Select 

The windows' mutual priority is defined in the Window Prio1ity Table, addressed by the 4 
composite window enable signals WINO-WIN3. WINO-WIN3 are generated by 4 dual-input 
AND-gates, combining the 4 pairs of window enable signals WINiX, WINiY (i=0-3) produced 

by the detect blocks. 

If at least one window is enabled, a display request (DISPL_REQ) is issued to the display 
controller. The DISPL_REQ signal is generated by the 4-input OR-gate/ register combination. 

Because the pixel values are transfened two by two on the Pixel bus, the resolution of the 
display arbitration is equal to two pixels. The DISPL_REQ register must therefore be clocked 
by half the pixel clock, CLK/2. 



250 

11.6. Window Translation 

The Window Translation block consists of 4 pairs of counters, one X- and one Y -counter for 

each window. The X-counters are cleared on the horizontal sync signal HS and clocked by the 

pixel clock signal CLK. The Y -counters are cleared on vertical sync VS and clocked by 
horizontal sync HS. 



251 

~X~-~C_E_NT_E_R_i ________ ~r-------------~~~ 8 
L----1 

9 
SEL 

WINOY 2 WIN NO -

LE 
WIN1Y 

E 

WIN1 
'---

WINO A 
9 YO' 

r+ --. A-8 ~ CLR CLR 
---+ B 

i i 
WIN2Y A 

9 Y1' 

LE 

A-8 
~ Y' 

,.,-.. 8 
4: 1 

WIN3Y 
E MUX 9 

WIN3 
1-

WIN2 
A 

9 Y2' 
vs 

---
A-8 ~ CLR CLR 

~8 
HS t i 

A 
9 Y3' 

A-8 ~ Y CENTERi 4.9 
8 SEL 

WIN NO 
2-r 

2 

Figure 11.17. Window Translation 



252 

Each counter is enabled by the corresponding window enable signal WINiX or WINiY {i=0-3), 
generated by the Window Left/ Right Detect block or the Window Top/ Bottom Detect block, 
respectively. The 9 bit output values of a counter pair will therefore at any time during screen 
refresh be equal to the 

X!Y position of the refresh pixel position, measured in the window's local 
coordinate system with the window's upper left corner as origo. 

However, the rectangular coordinates to be input to the Coordinate Transform block, 
performing the rectangular to polar conversion, must be given relative to the centre of the circle 

sector, not to the position of the window itself. 

Figure 11 .18. Coordinate system origo 

Before output to the Coordinate Transform, the coordinate values of the image (sector) centre 

must therefore be subu·acted from the values output by the counters. To be able to display the 
image at any position within the window, the subu·action is done be a subtracter (one for each 
coordinate, giving a total of 8 subtracters) instead of coding a limited number of selected image 
positions into a look-up table. The windows' origo coordinates (X_CENTERi and 
Y _ CENTERi) are either stored in a register integrated with the B port of the subu·acter or 
supplied on dedicated lines as shown in Figure 11.17. Output from the subtracters are the 4 

coordinate pairs Xi '/Yi', giving the refresh pixel position relative to the image display position 

(sector cenu·e) in each of the 4 windows. 

At any pixel position on the screen, only one window at a time can be displayed. The Coordinate 

Transform block may therefore be shared between the four windows. The window currently 
being displayed is identified through the 2 bit value WIN_NO, generated on the basis of the 
contents of the Window Priority Table, contained in the Window Select block. WIN _NO selects 
one of the 4 coordinate pairs Xi'/Yi' through the two 4:1 multiplexers, producing the X'/Y' 

final output of the Window Translation block. 



253 

11.7. Window Coordinate Transform 

The function of the Window Coordinate Transform block is to map the rectangular coordinate 
pair X ·;y· into a (polar) beam/ sample address pair directly to be used for addressing the data 

contained in the Image Buffer. 

DISPL_REQ 

WIN_N0(1) 

Rl 

9 

"J 
en 

RTH01EE en 
E:: 

RTH01 EO 16 -o -o 
16 

(13 
RTH010E .--
RTH0100 6 0 

-o 
c 
·~ 

RF 

RTH23EE 

"J 
en 
en 
Q) 

RTH23EO 16 i5 -o 
RTH230E 16 (13 

RTH2300 16 £2 
C\J 

-o 
9 

c ·:;: 

RI(O) 

THG 
CEE 

0 THI(O) 
co 

R 0 
E CEO e-
G 

-~ I 
s 
T COE cr; 

WIN NO 2 

E Q) 

R :§ 
coo :.a 

BAT _SEL 
.s 

CLK 

Figure 11.19. Coordinate Transform 

The first step in this process is, by applying pure geometric conversion formulas, to map the 

rectangular coordinates X'/Y' into a conesponding set of bipolar values RG and THG: 

RG SQRT(X'**2 + Y'**2) 
THG ARCTAN(Y'/X') 



254 

From the geometrical RGrfHG coordinates the corresponding beam and sample address of the 

pixel to be refreshed can be computed. In that computation, the format of the image data must 
also be considered: The number of beams and the value of the sector angle as far as the beam 
address is concerned, and the number of samples and the value of the sector depth to compute 
a specific sample's address. Irrespective of the total number of beams and samples an image 
contains, it is stored in the Image Buffer within the corresponding window's local address space 
from location (0,0) as shown in Figure 11.20. 

(0,0) m 

n 

(511,511) 

Figure 11.20. Image data storage 

This mapping is done by the Beam Address Transformation Table and the Sample Address 
Transformation Table, respectively. Sector scaling is done through the contents of the 

transformation tables. Each window must have its own set of tables, the 2 bit window identity 

WIN_NO is used to select the particular table set. 

To obtain a fastest possible response to image (re)scaling, requested by the system operator, it 

would be advantageous if transformation tables conesponding to several scale factors could be 
(pre)computed and stored in the table. When the operator requests image rescaling, the 

transformation tables conesponding to the scaling factors next to the cunent choice can be 
computed. Then, when the operator issues the next scaling request, the appropriate 
u·ansformation table is (hopefully) already computed and stored. It can thereby be made 
effective simply by altering the value on the table select lines, SAT_SEL (Sample Address 

Transformation table - SELect) or BAT_SEL (Beam Address .. ) for the sample and beam 
address u·ansformation tables, respectively. To avoid transfetTing large amounts of table data 

over the Ring bus (or alternatively the Pixel bus), the Image Buffer module should include a 
processor capable of computing the necessary table data. If necessary to achieve the required 
update bandwidth, the u·ansfonnation tables must be implemented by a double buffeting 

scheme. 



255 

The output values of the two transformation tables can each be regarded as consisting of an 
integer part (RI, THI) and a fractional part (RF, THF). For better to explain the coordinate 

transform process, we will first take another look on the figure showing the principle of bilinear 

interpolation: 

Figure 11.21. Bilinear interpolation principle 

The integer part RI and THI is equal to 

the sample and beam address of the image sample located immediately above 

and to the left of the position of the pixel to be computed (refreshed), 

indicated by a shadowed circle. This assumes an addressing scheme with beam 0 along the left 

edge and sample 0 at the top (centre) of the sector. The output of the transformation tables will 

then be equal to the address of sample (A,A) in Figure 11.21. To address a maximum number 
of 512 samples and/ or 512 beams, RI and THI must both be 9 bits values. 

If the beam number of sample (A,A) is denoted b, and the sample number (within beam b) s, 
the address of the 3 other samples can be computed by adding 1 to the sample and/ or beam 
address of sample (A,A): 

adr (A,A) 
adr (A,B) 
adr (B,A) 
adr (B,B) 

(b, s) 

(b,s+l) 
(b+l,s) 
(b+l,s+l) 



256 

One of these addresses will be an even beam/ even sample (EE) address, one an even beam/ odd 

sample (EO) address, one an odd beam/ even sample (OE) address and one an odd beam/ odd 

sample (00) address, corresponding to the partitioning of the image data over the 4 memory 
chips in the Image Buffer. But, which one of the 4 samples which is the EE sample, the EO 

sample, the OE sample and the 00 sample will change as the position of the pixel being 
refreshed moves. With (A,A) being the even beam/ even sample address, the beam and sample 
addresses of the 4 samples will only differ in their least significant bit. In other cases, (A,A) is 
the odd beam/ odd sample address. Depending on the particular b and s values, the even and 

odd addresses may then differ in a number of (maximum all) bits. Therefore, 

the EE, EO, OE and 00 memory chips each need their own address path for 

sample addressing during bilinear interpolation. 

In the schematics, the four address paths are labelled RTHxxEE, RTHxxEO, RTHxxOE and 
RTHxxOO. 

Each of the 4 sample addresses are output onto the appropriate address path as determined by 
the value of the least significant beam and sample address bits. The values on each of the 4 
paths, being a complete 16 bit sample address, are put together according to the following 
algorithm: 

RAA RI; THAA THI 
RAB RI + 1; THAB THI 
RBA RI; THBA THI + 1 
RBB RI + 1; THBA THI + 1 

for (XX = AA, AB, BA, BB) do 
{ 

if (THxx's LSB -- 0) 
if (Rxx's LSB 0) 

RTHEE 
else 

RTHEO 
else 

if (Rxx's 
RTHOE 

else 
RTHOO 

compute RTH(R,TH) 
{ 

compute RTH(Rxx, 

compute_RTH(Rxx, 

LSB -- 0) 
compute RTH(Rxx, 

compute RTH(Rxx, 

THxx)# EE 

THxx)# EO 

THxx)# OE 

THxx)# 00 

return (ISHFT(R,-1) + ISHFT((TH & Ox1fe),8)) 

The complete, composite 16 bits address is thereby assembled by taking the 8 most significant 
bits (out of 9) of the sample (R) and beam (TH) address. The sample palt is put into the least 
significant byte of the 16 bit address while the beam part is put into the most significant byte. 



257 

As will be described in detail earlier, the Image Buffer is organized as two separate banks, 
containing data for windows 011 and 2/3, respectively. To allow that the update of one bank can 

be performed in parallel with refresh data being read from the other, each bank have its own set 
of address (and data) lines, labelled "01" and "23". The four composite address paths RTHxx 

supplying the refresh address must be directed onto the appropriate set of address lines 
RTHOl xx or RTH23xx, depending on from which window (buffer) the screen is refreshed. The 
refresh window is identified by the 2 bit WIN_NO signal. Controlled by the most significant bit 

of WIN_NO, the address paths RTHxx are demultiplexed onto the right address lines. 

Because the address lines are shared on a cycle-by-cycle (or actually a two-cycle-by-two-cycle 
basis) between buffer update and refresh, the output from the 2:1 address demultiplexer can 

only be enabled in cycles where refresh data is actually to be read from the buffer. This is 
signalled by the DISPL_REQ signal, controlling the demultiplexer's output enable. 

The fractional part RF and THF of the output from the transformation tables is 

a measure of the distance between the position of the image sample (A ,A) and 
the position of the refresh pixel (shadowed circle), along the radial and 

angular dimensions, respectively. 

By normalizing the two distance values with respect to the distance between two neighbouring 

samples along the two dimensions, a set of 4 coefficients CO to C3 can be computed 
(Coefficient Table). These coefficients will be equal to the weights by which the 4 individual 
sample values sunounding the refresh pixel ((A,A), (A,B), (B,A) and (B,B)) must be 
multiplied. By adding the outcome of these 4 multiplications, the mathematically conect value 
for the refreshed pixel is obtained. 

Before output to the Bilinear Interpolator, the coefficient values CO to C3 must be reorganized 
according to which of the 4 sample values (EE, EO, OE or 00) they conespond. This is 
determined by the least significant bits of the (integer parts of the) sample and beam buffer 

address, RI(O) and THI(O). The algorithm is equivalent to the one computing the RTHxx values. 

11.8. Bilinear Interpolator 

The Bilinear Interpolator can be implemented by an off-the-shelf, integrated circuit computing 
the weighted sum of 4 sample values (DEE, DEO, DOE and DOO) and 4 coefficients (CEE, 
CEO, COE and COO) into a single output value (IM_DATA). 



258 

/ DEE 8 

DEO 8 

sample 

values DOE 8 

DOO 8 

" BILINEAR IM_DATA 

/_GEE INTERPOL. 8 

CEO 

coefficients 
COE 

coo 

" 
CLK T 

Figure 11.22. Bilinear Interpolator 

Although the computation must be performed in real time (that is, 40 Mhz), producing one 
result every clock cycle, it may be internally pipelined. That is, the output from the Bilinear 
Interpolator may be a number of clock cycles delayed compared to when the input data were 
presented. As any other delay embedded in the display refresh path on board the Image Buffer 
module, it may easily be compensated for by adjusting the h01izontal positioning of the 
windows. 

11.9. Pixel Bus Interface 

The Pixel Bus Intetface block has two functions: 

• to output image data onto the Pixel bus during display refresh. 

• to receive any display parameters, broadcasted by the display controller 
during the display retrace periods. 



CLK 

/" DP_S ....fU1_ 
& 
~ 

DP_TAG(0-1) 
CONTROL 

l A 
DP _DATA(0-15) 18 

l i l 
OE OE DIR 

WIN NO 2 2 
REG. .... 
f 
~ PIXEL 

OE 
8 BUS 

~ REG. ~ DATA 

f TRANS. 

1M_ DATA 

8 
~ 

OE 

___. REG. 
8 

ff+. 
A 

j 

CLKJ2 Divide 

by 2 

.. 

Figure 11.23. Pixel Bus Interface 

• 
DP VALID..-,'\ 

-... 

DISPL_ GRANT ..., 

PX_DATA(0-17) 

-l><l 

i CLK _, 
..... 

DISPL REQ - <I 

259 

(/) 

:::J 
Ill 
a; 
>< a: 

As far as the display refresh function is concerned, pixel values are before output to the Pixel 
bus assembled two by two into 16 bit values. This is done by clocking a pair of registers on both 
edges of the CLK/2 signal. CLK/2 is generated by dividing the pixel clock signal CLK by two. 

In addition, the 2 bit value WIN_NO, identifying the window from which the refresh data are 
cunently being read, must also be included in the Pixel bus. As earlier explained, this is 

necessary information for the display module responsible of generating the graphic overlays for 
the windows. In total, the Pixel bus will therefore be 18 bits wide. Pixel bus arbitration is 

controlled through a display request/ display grant mechanism, located on the display 
controller. Upon receiving a display grant (DISPL_GRANT), the 18 bit value contained in the 

Pixel Bus Data Transceiver is output onto the Pixel bus data lines PX_DAT A(0-17). 

To notify the display modules on display parameter broadcast, a dedicated signal line 
DP _VALID (Display Parameter_ VALID) is included in the Pixel bus. DP _VALID is asserted 

whenever there is valid display pa!'ameter data present on the Pixel bus lines. By gating 



260 

DP _VALID with the Pixel bus clock signal CLK, DP _VALID is .. chopped" into a sequence of 
contiguous pulses (DP _S, Display Parameter_Strobe), available as a control signal for loading 

the display parameters into a FIFO or RAM memory. The 18 bit display parameter values 
transferred over the Pixel bus are divided into a 16 bit data value (DP _DATA) and a two bit tag 

(DP _TAG). Each display parameter broadcast transfer will consist of one or more packets, each 
packet containing a header part and a data part. To make it possible for the display modules to 
synchronize to the start of a new packet, "start-of-packet" and "end-of-packet" are coded into 
the DP _TAG value. By decoding the DP _TAG lines together with the contents of the packet 

header, a display module will then be able to decide whether the packet is intended for itself or 
for another module. 



261 

References 

Akely K. and Jermoluk T. (1988). High-Performance Polygon Rendering. Proceedings from 

ACM SIGGRAPH '88 Conference August 1-5, 1988, Atlanta, Georgia, pp. 239-246. 

Andersen V .S. (1990). BASIS: Grunnleggende, men langtfra trivielt! (in norwegian). 

PIKSEL'n nr.4- desember 1990- side 8. 

Andrews Warren (1989). Data transfer scheme breaks 40-Mbyte/s VMEbus barrier. Computer 
Design, September I, 1989, p.58. 

Andrews Warren (1989). 32-bit buses contend for designers' attention. Computer Design, 
November 1, 1989, p.78. 

Andrews Warren (1990). Open buses broaden foothold at all levels. Computer Design, May 1, 
1990, p.55. 

Andrews Wanen (1990). DECs Turbochannel architecture: another contender in the open-bus 

war? Computer Design, 1 une 1, 1990, p.46. 

Andrews Wanen (1991). Will petformance win over sophistication in workstation busses? 
Computer Design, February 1, 1991, p.78. 

Annaratone M., Amould E., Gross T., Kung H.T., Lam M., Menzilcioglu 0. and Webb J.A. 
(1987). The Warp Computer: Architecture, Implementation, and Petformance. IEEE 
Transactions on Computers, vol. C-36, no. 12, pp. 1523-1537, December 1987. 

Antonsson D., Danielsson P.E., Gudmundsson B., Hedblom T., Kruse B., Linge A., Lord P. and 

Ohlsson T. ( 1981 ). PI CAP - A system approach to image processing. Proceedings from 
the 1981 IEEE Computer Society Workshop on Computer Architecture for Pattern 

Analysis and Image Database Management. Hot Sptings, Virginia, Nov.11-13, 1981. 

Apgar B., Bersack B. and Mammen A. (1988). A Display System for the Stellar (TM) Graphics 

Supercomputer Model GS 1000 (TM). Proceedings from ACM SIGGRAPH '88 
Conference August 1-5, 1988, Atlanta, Georgia. 

Apple Computer, Inc. ( 1987). Designing Cards and Dtivers for Macintosh II and Macintosh SE. 
From the series 'inside Macintosh Library'. ISBN-0-201-19256-X. Addision-Wesley 

Publishing Company, Inc. 

Arvind and Nikhil R.S. (1987). Executing a Program on the MIT Tagged-Token Dataflow 

Architecture, pp.I-29. Source unknown. 

Bain W.L. and Ahuja S.R. (1981). Petformance analysis of high-speed digital buses for 

multiprocessing systems. Proceedings from The 8' th Annual Symposium on Computer 

Architecture (IEEE). May 12-14, 1981. 

Baker and Watkins. (1967). A phase coherent pulse Doppler system for cardiovascular 
measurement. Proceedings from thelO'th Annual Conference on Engineering in 

Medicine and Biology, vol.27, 1967. 



262 

Bommer W. and Miller L. (1982). Real-time two-dimensional color-flow Doppler flow 
imaging in the diagnosis of cardiovascular disease. Journal of the American College of 

Cardiology, 49:944, 1982 (abstract). 

Borrill Paul L. (1989). High-speed 32-bit busses for forward-looking computers. IEEE 
Spectrum, July 1989, p.34. 

Borrill Paul L. (1990). Future bus+ : A tutorial. (Part 1 ). From 'VMEbus Computer 
Applications', a quarterly publication for the VMEbus usergroup society. Vol.4, no. 2, 
06-90, pp. 25-34. 

Borrill Paul L. (1990). Futurebus+ : A tutorial. (Part 2). From 'VMEbus Computer 
Applications', a quarterly publication for the VMEbus usergroup society. Vol.4, no. 3, 

09-90, pp. 25-30. 

Briggs F.A., Fu King-Sun, Hwang K. and Wah B.W. (1982). PUMPS Architecture for Pattern 
Analysis and Image Database Management IEEE Transactions on Computers, vol. C-31, 
no.10, October 1982. 

Bursky D. (1990). Triple-P01t Dynamic RAM Accelerates Data Movement. Electronic Design, 
May 24, 1990, p.37. 

Cantoni V. and Levialdi S. (1983). Matching the Task to an Image Processing Architecture. 
Computer Vision, Graphics, and Image Processing, Vol.22, pp.301-309. 1983. 

Cantoni, V. (1985). Classification schemes for image processing architectures. NATO ASI 
series, vol. F18 - Computer architectures for spatially distributed data. H.Freeman and 

G.G. Pieroni (editors), pp. 37-55. Springer-Verlag Berlin Heidelberg 1985. 

Danielsson P.E. ( 1980). The time-shared bus - a key to efficient image processing. Proceedings 

from the 5'th International Conference on Pattern Recognition, Miami Beach, Florida, 

December 1-4, 1980. 

Danielsson, P.E, and Levialdi, S. (1981). Computer Architectures for Pictorial Information 

Systems. IEEE Computer, pp. 53-67, November 1981. 

Data VO Corporation (1989). ABEL V3.1. January 1989. 

DeJager Greg (1990). Push a 32-bit Micro Channel bus to the limit. Electronic Design, July 12, 

1990, p.61. 

Digital Equipment Coorporation (1990). TURBOchannel Hardware Specification. Order 
number: EK-369AA-OD-006. October 1990. 

Dowden, T. (1990). Inside the EISA Computers. ISBN-0-201-52397-3. Addison-Wesley 

Publishing Company, Inc. February 1990. 

Duncan, R. (1990). A Survey of Parallel! Computer Architectures. IEEE Computer, pp. 5-16, 

February 1990. 

Engbersen A.P.J. (1983). TOPPSY: A Time Overlapped Parallel Processing System. Computer 
Vision, Graphics and Image Processing, vo1.24, pp.97-106, 1983. 



263 

Farrell E.P., Ghani N. and Treleaven P.C. ( 1979). A Concurrent Computer Architecture and a 
Ring Based Implementation. Proceedings from the 6'th Annual Symposium on Computer 
Architecture (IEEE). 1979. 

Fish J.P. (1975). Multichannel, direction resolving Doppler angiography. Second European 

Congress of Ultrasound in Medicine, 1975 (abstract). 

Foley J.D., van Dam A., Feiner S.K. and Hughes J.F. (1990). Computer Graphics, Principles 
and Practice. Second Edition. Addison-Wesley Publishing Company, ISBN 0-201-
12110-7. 

From 'Textbook of Color Doppler Echocardiography' ed. by Navin C. Nanda. Lea & Febiger. 

Flynn, M.J. (1966). Very High-Speed Computing Models. Proceedings of the IEEE, vol.54, 
no.12, pp. 1901-1909, December, 1966. 

Flynn, M.J. ( 1972). Some Computer Organizations and Their Effectiveness./£££ Transactions 
on Computers, vol. C-21, no. 9, September 1972. 

Fuchs H., Poulton J., Eyles J., Greer T., Goldfeather J., Ellswotth D., Molnar S., Turk G., Tebbs 
B. and Israel L. (1989). Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics 
System Using Processor-Enhanced Memories. Proceedings from ACM SIGGRAPH '89 

Conference 31 July- 4 August, 1989, Boston, Massachusets. pp. 79-88. 

Gaillat G. (1983). The Design of a Parallel Processor for Image Processing on-board Satellites: 
An Application Oriented Approach. Proceedings from the 10' th Annual Symposium on 
Computer Architecture (IEEE). Stockholm, 1983. 

Gemmar P. ( 1982). Image correlation: Processing requirements and implementation stmctures 
on a flexible image processing system (FLIP). From 'Multicomputers and Image 
Processing' edited by K. Preston and L. Uhr.ISBN 0-12-564480-9. Academic Press Inc. 

Gharachorloo N., Gupta S., Sproull R.F. and Sutherland I.E. (1989). A Characterization ofTen 
Rasterization Techniques. Proceedings from ACM SIGGRAPH '89 Conference 31 July -

4 August, 1989, Boston, Massachusets, pp. 355-368. 

Giacomo, J.D. (1990). Digital Bus Handbook. ISBN-0-07-016923-3. McGraw-Hill Publishing 
Company. 

Glass L. Brett (1989). Inside EISA. Byte, November 1989, p.417. 

Gotoh T., Sasaki S. and Yoshida M. (1985). Two image processing systems challenging the 
limits of local parallel architecture. Source unknown (CH2229- IEEE conference 1985). 

Guena C. and Levialdi S. (1985). Computational models for image understanding. From 
'Progress in Pattern Recognition 2', pp.39-56, L.N. Kana! and A. Rosenfeld (Editors). 
Elsevier Science Publishers B.V. (No1th-Holland), 1985. 

Gurd J. and Watson I. (1980). Data driven system for high speed parallel computing- Pan 1: 

Stmcturing software for parallel execution. Computer Design, p.91, June 1980. 

Gurd J. and Watson I. (1980). Data driven system for high speed parallel computing- Part 2: 
Hardware design. Computer Design, p.97, July 1980. 



264 

Halstead Jr. R.H., Anderson T.l., Osborne R.B. and Sterling T.l. (1986). Concert: Design of a 
Multiprocessor Development System. Proceedings from the International Symposium on 

Computer Architecture. Tokyo, 1986. 

Hanaki S. and Temma T. (1982). Template-Controlled Image Processor (TIP) Project. From 
'Multicomputers and Image Processing' edited by K. Preston and L. Uhr.ISBN 0-12-
564480-9. Academic Press Inc. 

Hasegawa M., Nakamura T. and Shigei Y (1981). Distributed Communicating Media - a 
Multitrack Bus - Capable of Concurrent Data Exchanging. Proceedings from The 8'th 

Annual Symposium on Computer Architecture (IEEE). May 12-14, 1981. 

Hatle L., Angelsen B. (1982). Doppler Ultrasound in Cardiology, Lea & Febinger 

Hearn D. and Baker M.P. (1986). Computer Graphics. Prentice-Hall International, ISBN 0-13-
165598-1. 

Hewlett Packard (1990). HP Vectra 486125 Hardware Technical Reference Manual. HP Part 
No. 5959-5094. January 1990. 

Hindin Harvey J. (1985). Bus selection for 32-bit systems limited to two choices. Computer 
Design, September 15, 1985, p.23. 

Hwang K. and Briggs F.A. (1984). Computer Architecture and Parallel Processing. McGraw
Hill Book Company, ISBN 0-07-031556-6. 

IBM (1991). Micro Channel Architecture. Matetial received from IBM in Febmaty 1991. 72 
pages. 

IEEE (1987). IEEE Standard Backplane Bus Specification for Multiprocessor Architectures: 
Futurebus. ANSVIEEE Std. 896.1-1987 

Intel Corporation (198911). A Multibus II overview: Article Reptints and Technical Papers. 
From the series 'Real-time microcomputing'. 

Intel Corporation (1989/2). Multibusll Hardware Concepts. 

Intel Corporation (1989/3). Multibusl/ Software Concepts. 

Jagannathan R. and Ashcroft E.A. (1984). Eazyflow: A Hybrid Model for Parallel Processing. 
Proceedings from the 1984/nternational Conference on Parallel Processing, August 21-
24, 1984,. 

James D.V., Laundrie A.T., Gjessing S. and Sohi G.S. (1990). Disu·ibuted-Directmy Scheme: 
Scalable Coherent Intetface./EEE Computer, pp. 74-77, June 1990. 

Johnson, Bany W. ( 1989). Design and Analysis of Fault Tolerant Digital Systems. ISBN 0-201-

07570-9. Addison-Wesley Publishing Company, Inc. 

Jones, S.L.P. and Hardie M.S. (1991). A Futurebus Interface from Off-the-Shelf Parts. IEEE 

Micro, p. 38, February 1991. 

Kahaner D. (1990). ETL Dataflow project 7 pages, July 2 1990. Posting reuieved from the 
USENET 'comp.resear·ch.japan • news group. 



265 

Kartashev S.I. and Kartashev S.P. ( 1979). A Multicomputer System with Dynamic 

Architecture. IEEE Transactions on Computers, vol. C-28, no.IO, pp. 704-721, October 

1979. 

Kidode, M. (1983). Image Processing Machines in Japan. IEEE Computer, pp. 68-80, January 

1983. 

Kristoffersen K. (1985). On the Processing of Doppler Signals in Ultrasonic Blood Velocity 
Measurements. Dr.Techn thesis at the Division of Engineering Cybernetics, The 

Norwegian Institute of Technology, Trondheim. 

Kruse B., Gudmundsson B. and Antonsson D. (1980). FIP - the PICAP II filter processor. 
Proceedings from the 5'th International Conference on Pattern Recognition, Miami 
Beach, Florida, December 1-4, 1980. 

Lang T., Valero M. and Alegre I. ( 1982). Bandwidth of Crossbar and Multiple-Bus Connections 
for Multiprocessors. IEEE Transactions on Computers, vol. C-31, no.12, December 
1982, pp. 1227-1234. 

LeeR. (1989). Physical Principles of Flow Mapping in Cardiology. From 'Textbook of Color 
Doppler Echocardiography' ed. by Navin C. Nanda. Lea & Febiger. 

Linker D.T., Angelsen B.A.J., Torp H.G., and Samstad S.O. (1989). Digital Collection and 
Analysis of two-dimensional ulu·asonic Doppler Flow Data. From 'Textbook of Color 
Doppler Echocardiography' ed. by Navin C. N anda. Lea & Febiger. 

Lougheed Robert M. (1987). Advanced image-processing architectures for machine vision. 

SPIE Vo/.755 Image Pattern Recognition: Algorithm Implementations, Techniques, and 
Technology. pp.35-51. 1987. 

Luetjen K., Gemmar P. and Ischen H. (1980). FLIP : A flexible multiprocessor system for 
image processing. Proceedings from the 5'th International Conference on Pattern 
Recognition, Miami Beach, Florida, December 1-4, 1980. 

Lyle Jim, Gutienez Michelle (1991 ). SBus versus TurboChannel. Sun Tech Journal, Febmary 

1991, p.57. 

MatTin Ken (1985). Bus differences more significant in principle than in practice. Computer 

Design, November I, 1985, p.23. 

Mead, C. and Conway, L.A. (1980). Introduction to VLSI Systems. ISBN-0-201-04358-0. 
Addison-Wesley Publishing Company, Inc. 

Motorola Microsystems (1985). VMEbus Specification Manual Revision C, Februat)' 1985. 

Mamekawa K., Kasai C., Tsukamoto M., Koyano A. and Omoto R. (1982). Imaging of blood 
flow using autocotTelation. Ultrasound in Medicine and Biology, 8:138, 1982 (absu·act). 

Newman W.M. and Sproull R.F. (1979). Principles of Interactive Computer Graphics. Second 

Edition. McGraw-Hill Publishing Company, ISBN 0-07-046338-7. 

Perez R.A. ( 1988). Electronic Display Devices. TAB Professional and Reference Books, ISBN 

0-8306-2957-2. 



266 

Peterson C., Sutton J. and Wiley P. (1991). iWarp: A 100-MOPS, LIW Microprocessor for 
Multicomputers./£££ Micro, p. 26, June 1991. 

Potmesil M. and Hoffert E.M. ( 1989). The Pixel Machine: A Parallel Image Computer. 
Proceedings from ACM SIGGRAPH '89 Conference 31 July - 4 August, 1989, Boston, 

Massachusets. pp. 69-78. 

Preston, K. Jr. ( 1983). Cellular Logic Computers for Pattem Recognition./£££ Computer, pp. 
36-46, January 1983. 

Rhoden D. and Wilcox C. (1989). Hardware Acceleration for Window Systems. Proceedings 

from ACM S/GGRAPH '89 Conference 31 July- 4 August, 1989, Boston, Massachusets, 
pp. 61-67. 

Runyon S. (1987). AT&T goes to 'Warp speed' with its graphics engine. Electronics, July 23, 
1987, p.54. 

Saponas T.G. and Crews P.L. ( 1980). A Model for Decentralized Control in a Fully Distributed 
System. Proceedings from Distributed Computing, COMPCON Fall 80 (the 21' th IEEE 

Computer Society International Conference), September 23-25, 1980, Washington. 

Sasaki S., Gotoh T., Satoh T. and Iwase H. (1985). High speed pipeline image processor with 
a modifiable network. Proceedings of the First International Conference on 

Supercomputing Systems: SCS 85. St. Petersburg, Florida, Dec.16-20, 1985. 

Satomura S. ( 1957). Ultrasonic Doppler method for the inspection of cardiac functions. 

Journal! Acoustical Society of America, vol.29, pp.l181-1185, 1957. 

Sawkm· P.S., Forquer T.J. and Pen-y R.P. (1983). Programmable modular signal processor- a 
data flow computer system for real time signal processing. Proceedings from the 1983 
IEEE international Conference on Parallel Processing, August 23-26, 1983. 

Sha L., Rajkumm· R. and Lehoczky J.P. (1991 ). Real-Time Computing with IEEE Futurebus+. 
IEEE Micro, June 1991, p.30. 

Spragins J., Jafm·i H. and Lewis T. (1979). Some simplified pelformance modeling techniques 

with applications to a new ting-structured microcomputer network. Proceedings from the 

6'th Annual Symposium on Computer Architecture (IEEE), 1979. 

Srini V .P. and Shriver B.D.( 1980). Abstract dataflow protocol for communication in disu·ibuted 

computer systems. Proceedings from Distributed Computing, COMPCON Fall 80 (the 
2J'th IEEE Computer Society international Conference), September 23-25, 1980, 
Washington. 

Srini V.P. (1985). A Fault-Tolerant Dataflow System. IEEE Computer, pp.54-68, vol.18, 
Mm·ch 1985. 

Srini V.P. (1986). An Architectural Compm·ison of Dataflow Systems. IEEE Computer, pp.68-

88, Mm·ch 1986. 

Sun Microsystems, Inc. (1989). The SBus Specification, Revision A. September 1989. 



267 

Skillicom, D.B. (1988). A Taxonomy for Computer Architectures./£££ Computer, pp. 46-57. 

November 1988. 

Sutherland, I.E. (1989). Micropipelines. Communications of the ACM. pp. 720-738, vol.32, 

June 1989. 

Taub D.M. (1984). Arbitration and Control Acquisition in the Proposed IEEE 896 Futurebus. 

IEEE Micro, August 1984, p.28. 

Taub D.M. (1987). Improved Control Acquisition Scheme for the IEEE 896 Futurebus. IEEE 
Micro, June 1987, p. 52. 

Texas Instruments, Inc. (1990). NuBus Interface Products Data Book. 

Torborg J .G. ( 1987). A Parallel Processor Architecture for Graphics Arithmetic Operations. 

Proceedings from ACM SIGGRAPH '87 Conference July 1987, pp. 197-204. 

Torp H. (1990). Signal Processing in Real-time, two dimensional Doppler Color Flow 
Mapping. Thesis submitted to The N01wegian Institute of Technology, div. of 

Engineeling Cybernetics for the degree of Dr.Techn. Trondheim 1990 (preliminary 

issue). 

Treleaven P.C., Brown bridge D.R. and Hopkins R.P .. (1982). Data-Driven and Demand-Driven 

Computer Architecture. ACM Computing Surveys, Vol.l4, No.I, pp.93-l43, March 1982. 

Turley James L. (1990). The indivisible RMW cycle: Or is it? The Supermicro Journal, no.5, 
summer 1990, p.6. 

Tune! Don (1989). VME64: Double your VMEbus speed. From 'VMEbus Computer 

Applications', a quarterly publication for the VMEbus usergroup society. Vol.3, no. 4, 
12-89, pp. 31-32. 

Vernon M.K and Manber U. (1988). Distributed Round-Robin and First-Come-First-Serve 

Protocols and Their Application to Multiprocessor Arbitration. Proceedings from 15'th 
International Symposium on Computer Architecture, 1988, Honululu, pp.269-277. 

Viitanen J., Vanni P., Salo J. and Saarinen J. TAMIPS- A parallel processor for machine vision. 

Source unknown. 

Voorhies D., Kirk D. and Lathrop 0. (1988). Virtual Graphics. Proceedings from ACM 
SIGGRAPH '88 Conference August 1-5, 1988, Atlanta, Georgia, pp. 247-253. 

Vranesic Z.G., Stumm M., Lewis D.M. and White R. (1991 ). Hector: A Hierarchically 

Stmctured Shared-Memory Multiprocessor. IEEE Computer, January 1991, p.72. 

Wanen Andrews (199011 ). Future bus+ spec completed - almost. Computer Design, Febmary 

1, 1990, p. 22. 

Wanen Andrews (1990/2). Bridging today's busses to Futurebus. Computer Design, Febmary 

1, 1990, p. 72. 

Wanen Carl. (1990). Micro Standards: The Scalable Coherent Interface. IEEE Micro, pp.80-

82, June 1990. 



268 

Watson I. and Gurd J. (1982). A Practical Data Flow Computer. IEEE Computer, p.51, 
February 1982. 

Whang Min-Hur, Kua Joe (1990). Join the EISA Evolution. Byte, May 1990, p.241. 

White George (1989). A Bus Tour. Byte, September 1989, p.296. 

Wilson R. (1990). DRAM vendors address increasing specialization. Computer Design, 
December 1, 1990, p.63. 

Yalamanchili, S., Palem, K.V., Davis, L.S., Welch, A.J., and Aggarwal, J.K. (1985). Image 
Processing Architectures: A Taxonomy and Survey. Progress in Pattern Recognition 2, 
L.N. Kanal and A. Rosenfeld (editors), pp. 1-37. Elsevier Science Publishers B.V. 
(North-Holland), 1985. 

Zhang X. (1991). System Effects of Interprocessor Communication Latency in 
Multicomputers./£££ Micro, p. 12, April 1991. 



269 

A. Modern digital buses 
From economical as well as many other reasons, it will be advantageous to base the design on 
an already accepted and in-use bus standard. Looking at today' s situation, there are in that case 
several to choose from: 

• VME bus. 

o Multibus II (IEEE 1296). 

• Micro Channel Architecture (MCA). 

• Extended Industry Standard Architecture (EISA). 

o NuBus. 

• SBus. 

• TURBOchannel. 

• Futurebus+ (IEEE 896). 

• Scalable Coherent Intetface, SCI (IEEE 1596). 

A.l. VME-bus 

In 1981, Motorola, in collaboration with Mostek, Signetics/Phillips and CSF Thompson of 
France, announced the VMEbus as nonproptietary standard in the public domain. The VMEbus 
specification was not a made from scratch, it evolved from VERSAbus, the proptietary 
Motorola bus standard used in their MC68000 family systems in the late seventies. 

Today, VMEbus is by far the most widely used 32 bit bus system, specially for industtial 
applications, with more than 300 board and system manufacturers. Key features: 

• Non-multiplexed data (16/32 bit) and address (23/32 bit) lines. 

o Asynchronous operation 

• Standard version fits in a single 96 pin DIN connector, extended version (32 
bit data and 31 bit address) uses a second connector. 

• Multiple address spaces due to a 6 bit address modifier code tagging each 
transaction. 

• Theoretical bandwidth: 40 Mbytes/second (32 bit data). 

• Centralized 4-level arbitration. 

• Seven intenupt lines with vectored intenupt acknowledge. 

A.l.l. Data transfer 

VMEbus data transfers can be done in units of bytes, words ( 16 bit) or long words (32 bits). In 

addition to ordinaty read and wtite, a read-modify-wtite cycle is included, making it possible 
to implement semaphore operations in a multiprocessor system. 

For efficient transfers of contiguous blocks of data, block read and wtite transfers are provided. 
Only the start address is initially transfened over the bus, it is then the addressed slave's 

responsibility to generate addresses with a local counter for the individual data units within the 



270 

block. Block transfers are not allowed to cross 256 byte boundaries, the block transfer 

maximum length is therefore also 256 bytes. Except from this, the addressed slave gets no 

advance information about the actual length of the block transfer. 

A special kind of data transfer is the address-only cycle. As the name implies, only an address 
is transferred (set up on the address lines), no data is presented on the data lines. This is the only 
VMEbus transfer which does not require a response (handshake) of any kind. The application 
of this feature is system specific and is not defined in the VMEbus specification. 

Due to the asynchronous bus protocol using an open-collector, active low handshake line 
(DTACK*), broadcast operations is impossible to implement and therefore not a part of the 
VMEbus specification. To implement a handshaken broadcast operation where the master wait 

for the slowest slave module, an inverse handshake line is required (release-when-ready). 

A.l.1.a. VME64 

In an ordinary VMEbus block transfer, the address lines will be idle after the initial start address 
setup. By using these lines for transfening data, a total of 63 lines (32 data and 31 address lines) 
are available for data transfer in a 32 bit VMEbus system. The 64'th line is obtained by using 

the L WORD* control line, usually used for signalling whether the cunent transfer is a 32 bit 
(long word) transfer or not. In the 64 bit mode, this signal therefore has no meaning as a control 

signal. Because the timing of a VME64 block transfer is compatible with an ordinary 32 bit 
block transfer, the VME64 is compatible with conventional VMEbus hardware and software. 
In this mode, the theoretical VMEbus bandwidth capacity is 80 Mbytes pr. second. The 
maximum length of a VME64 block u·ansfer is 512 bytes. 

The VME64 transfer mode was first presented by Performance Technology (Rochester, NY). 
Later, Hanis has developed its own semi-synchronous version stretching maximum 
performance even higher. VME64 is expected to be included as a part of the VMEbus standard 

in the next revision. 

A.1.2. Arbitration 

The VMEbus uses a cenu·alized, four-level arbitration scheme, each level having its own bus 

request/ bus grant signal line pair. Each potential master module is connected to its request bus 

line through an open-collector interface, several modules can therefore use the same bus 

arbitration level. The four bus grant lines are daisy-chained from slot to slot. In case of 
simultaneous bus requests on the same level, the module located in the slot nearest to the arbiter 
module (slot 1) will therefore have priority. 

Three types of arbitration philosophies are described by the VMEbus specification: 

Prioritized arbitration assigns the bus according to a fixed priority scheme where each of the 
four levels has a priority in the range of 3 (BREQ3*, highest) to 0 (BREQO*, lowest). 

Round robin arbiu·ation assigns the bus on a rotational priority basis where each of the four 

levels in turn has the highest priority. 



271 

Single level arbitration only accept~ request~ on one bus request line (BR3*). Used in small 

system with few potential bus masters. 

If there is a pending bus request on a level with a higher priority than the current bus master, 
the arbitration module will inform the current bus master about this by asserting a dedicated 

signal line (BCLR*, Bus CLeaR). This is a request to the master to relinquish bus mastership 
at "an appropriate stopping point". No timeout limit is included in the VMEbus specification, 
an assetted BCLR* is therefore more to be regarded as a polite request than an order. 

A.l.3. Interrupt handling 

The VMEbus includes 7 level-sensitive dedicated interrupt lines. Due to the open-collector 
interface, several modules can be connected to the same interrupt line. 

The interrupt lines are serviced by one or more interrupt handlers. Each handler services an 

exclusive subset of the seven interrupt lines. When detecting an interrupt, the interrupt is 
serviced by the appropriate interrupt handler by executing an intetTupt acknowledge cycle. The 
3 least significant address lines are then used for signalling the interrupt number being serviced, 
while a daisy-chained interrupt acknowledge signal assures that only one module responds to 

the interrupt acknowledge cycle (in case of several simultaneous intenupts on the same 
intetTupt level). The responding intenupter module responds to the acknowledge cycle by 
presenting an 8 bit intenupt vector on the data lines D7-0, identifying the cause of the interrupt. 

A.1.4. Multiprocessing facilities 

Except from the already described read-modify-write data u·ansfer mode, facilitating 
semaphore like operations, the VMEbus provides no specific suppott for multiprocessing 
applications. 

A.l.S. System configuration 

The VMEbus does neither suppmt geographical addressing, nor control and status registers for 
module configuration. 

Reference: [Motorola Microsystems 1985]. 

A.2. Multibus II (IEEE 1296) 

The Multibus II is, as indicated by its name, a multiple bus architecture. Three bus suuctures 

are defined exclusively by Multibus II. These are the Parallel System (iPSB), the Local Bus 
Extension (iLBX II) and BITBUS. Two buses, the iSBX VO Expansion bus and the 

Multichannel DMA (Direct Memmy Access) VO bus are canied over from the Multibus I 

architecture. 

The main bus in the Multi bus II architecture is the Parallel System Bus (iPSB ). This is the 
Multibus II system highway, conveying data and control information between the various bus 
modules. In the rest of this document, the Multi bus II discussion will be resu·icted to the Parallel 
System Bus. The term "Multibus II" will accordingly be used as a synonym for the same bus. 

Key features: 

• Synchronous operation, 10 Mhz system clock. 



272 

• Multiplexed 32 bits data and address lines. 

• Data transfers as 8, 16, 24 or 32 bit items. 

• Supports up to 20 bus masters. 

• Maximum bus capacity: 40 Mbyte pr. second (burst transfer). 

• Message passing protocol included in the bus specification. 

• Geographical addressing. 

A.2.l. Data transfer 

Data transfer operations on the bus can be divided into three phases: 

In the first phase, the request phase, a bus module (the requester) emits a request for an 
operation. The requested operation is specified by 10 status/ control lines SC(9:0)*. These lines 

tell whether the operation is a read or a write, the data size, which address space to use and 
whether to perform bus locking or not. Additionally, two lines are parity for the other eight. The 

status/ control lines must be decoded before the UO interface can interpret the address used for 
the transaction. The request phase last for a single clock cycle and is followed by the 

reply phase. In this phase, the actual data transfer takes place between the requester and the 
addressed slave (the replier). The replier is responsible for generating status information out on 
5 of the 10 status lines SC(9:0)*. This five wire handshake consist<; of a single line ready signal, 
telling when it is ready so that the requester may proceed with the cycle three status lines to 
indicate the failure or success of the operation. Additionally, parity for the 4 lines must be 

generated. In case of a multiple byte transfer, the requester and the replier will remain in the 
reply phase until all bytes are transfetl'ed. 

Finally, when the transfer is terminated, the exception phase may be entered. This is the case if 

the requester detects any reply errors from the replier. Most transactions will be enor-free, and 
the exception phase will not be entered. The Multibus II protocol is a very resuictive protocol, 

and the specification details numerous state diagrams to track and control the requester-replier 

operation. 

A.2.l.a. Burst transfer 

In case of a multiple byte (burst) transfer, the handshake protocol is executed each u·ansfer 
cycle. The replier's UO intetface does not know in advance the length of the burst u·ansfer, this 
is signalled by the requester through the state of one of the status/ conu·ollines. However, the 
message passing protocol, build on top of the data transfer mechanism will give advance 

information about the length of the u·ansfer. 

A.2.2. The message passing protocol 

The Multibus II message passing protocol is aimed to remove the task of passing messages 
between intelligent boards from each board's CPU, and delegate this to the bus intetface logic. 
To ensure efficient utilization of bus bandwidth and reduce the amount of board real estate 

needed to implement the bus interface logic, a dedicated VLSI chip called the Message Passing 
Coprocessor (MPC) is designed. 



273 

The MPC's major features the support of inter-processor communication.This is implemented 
by two types of messages: Unsolicited and solicited messages. 

A.2.2.a. Unsolicited messages 

Unsolicited messages are used as a signalling mechanism between boards, replacing traditional 

system interrupts. They have the following characteristics: 

• They are short, with a fixed length of 32 bytes allowing up to 28 bytes of user 
data. 

• They can arrive unexpectedly. 

• Consequently, no buffer allocation or sender/ receiver synchronization is 
necessary previous to the message transfer. 

Unsolicited messages can be any of five types: General interrupt, broadcast intenupt, buffer 

request, buffer grant or buffer reject. An unsolicited message has a format specific to the actual 
message type. 

A.2.2.b. Solicited messages 

Solicited messages are used to u·ansfer large amounts of data. They have the following 
charactetistics: 

• Variable length, up to 16 Mbytes. 

Buffer space must be allocated in advance (through the exchange of 
unsolicited buffer request/ buffer grant messages). 

The actual data u·ansfer is done as a series of solicited packets on the bus, each packet 
containing 32 bytes of data. This splitting is done to ensure that arbitration contests for the bus 
can be done at least every 1 microsecond. Otherwise, long message transfers could cause other 

(and possibly higher ptioritized) Multibus bus masters to be unacceptably delayed. 

A.2.3. Arbitration 

The Multibus II uses a distributed, Parallel arbitration mechanism, executed in Parallel with 
data transfer: All boards request use of the bus through a common bus request line BREQ*. In 

case of several simultaneous requests, the bus is granted to the numetically highest board as 
identified by its 6 bit priority value, output on lines ARB(5:0). The priority value consists of a 

5 bit software assignable identity code and a high priority bit. Priorities can therefore be 

changed dynamically while the bus is operating. 

Two arbiu·ation alg01ithms are supported: Fairness and high priority. The selected algorithm is 

signalled through line ARBS. 

The fairness mode is used for data u·ansfer and is "polite". That is, if the bus is busy when a 
board is about to issue a bus request, the board will hold the request back until the bus is free. 
Due to the maximum packet size of 32 bytes, this will never take more than 1 microsecond. In 

case of simultaneous requests, a board who has been granted (and used) the bus, will not request 
the bus again until all other requestet's are serviced. 



274 

The high priority mode is used for interrupt'> and is "impatient": A board issuing a high priority 

bus request is then allowed to "barge" into an already ongoing bus arbitration cycled and be 
guaranteed the next access to the bus. If more than one board issues a high priority bus request, 
the boards will be processed in numerical order according to their priority value. 

A.2.4. Interrupt handling 

Unlike most other buses, Multibus II does not have dedicated interrupt lines, but implements 

"intenupts" by the already described mechanism based on unsolicited packets in combination 

with high priority bus arbitration. Two types of interrupt packets are implemented: General 

intenupt, issued to a specific board, and broadcast interrupt, to all boards. In almost all cases, 

this interrupt mechanism will give a latency of less than 1 microsecond. 

A.2.5. Multiprocessing facilities 

The Multibus II multiprocessing facilities are implemented solely within the frame of the 

message passing concept: No explicit mechanisms for usual features like bus locking and 

broadcasts are provided. 

A.2.6. Interconnect address space 

The concept of the interconnect address space is aimed to solve three major problems: 

• Board identification. 

• System configuration. 

• Diagnostics. 

The interconnect address space consists of a special set of registers located on each board in a 

Multi bus II system. The interconnect address registers are always dual-ported. That is, they can 

be accessed from the local on-board CPU as well as from other Multibus boards. The registers 

can be divided into three groups: 

The board identity registers are read-only and contain formatted information about that 

specific board such as board type, manufacturer, its revision level, what optional components 

are installed and other board-specific information. 

Board configuration registers are read/write registers that allow the system software to set the 

configuration of many of the hardware options on the board. They therefore replaces the 

traditional jumper fields and facilitates the board (and thereby the whole system) to be 
dynamically reconfigurable. 

The diagnostic registers are used for statting, stopping and status reporting of self-contained 

diagnostic routines on the board, otherwise known as built-in-self-tests (BIST). 

The interconnect address space is accessed by a geographical addressing scheme: A complete 

16 bit interconnect address is formed by a boat·d slot identity value and a register offset, 

addressing a specific register on the board located in a specific slot. 

Reference: [Intel 1989]. 



275 

A.3. Micro Channel Architecture (MCA) 

When time was due for IBM to extend the PC AT bus to 32 bit, they chose, from technical as 

well as policy reasons, to design a bus not compatible with its predecessor. Today, this bus is 
being used predominantly in the IBM PS/2 product line. Its name is MCA, the Micro Channel 
Architecture. Key features: 

• Asynchronous data transfer protocol, not related to a system clock. 

• Non-multiplexed 32 bits address and data buses. 

• Separate address spaces for VO (64 Kbyte) and memory (4 Gbyte). 

• Central arbitration control supporting up to 16 devices to compete for the bus. 

• Direct Memory Access (DMA) procedure supporting multiple DMA 
channels with burst capability. 

• Level-sensitive intenupts with intenupt sharing on all levels. 

• Theoretical transfer rate up to 20 Mbyte/second. 

A.3.1. Data transfer 

MCA uses a synchronous data transfer protocol where waitstates can be insetted on all 
transfers. Three signals are vital to the data transfer protocol: The controlling master tells that 
the address- and status lines are valid by assetting the Address Decode Latch (ADL) signal. The 

Command signal CMD is used by the master to signal valid data on data lines (write cycle) or 
request for data (read cycle). To make a slow slave able to extend the transfer cycle, a 

handshake signal CarD CHannel ReaDy CD CHRD is provided. 

A transfer cycle is always initiated by that the master outputs the address and type of transfer 
(memory/IO, read/write) on the address and status lines, respectively. The ADL signal is then 
asserted telling the slaves that they may latch and decode these lines. If the slave is capable of 
servicing the access within a cettain time specified by the MCA specification, it does so and the 
data is u·ansfened by what is called a basic transfer cycle. 

However, if the addressed slave is unable to finish the cycle within the specified time limit, the 

u·ansfer cycle can be extended by the slave by asserting the handshake signal CD CHRDY. 
There are two types of extended u·ansfer cycles, they are distinguished by the time CD CHRDY 

is unasserted to its normal (inactive) state. 

A synchronous extended cycle occurs when CD CHRDY is released within a 30 ns after the 
leading edge of CMD. This causes the cycle to be extended by 100 ns or 1 waitstate. In case of 

a read cycle, the slave provides the data within a specified time from CMD. 

If one waitstate is not sufficient, the slave may assert CD CHRDY up to a maximum of 3 

microseconds. No resu·ictions are then applied to the release of CD CHRDY, it will be fully 

asynchronous to the CMD signal. This is called an asynchronous extended cycle. 



276 

A.3.l.a. DMA transfer 

The DMA controller executes single-data transfers unless the addressed DMA slave requests a 
burst transfer by pulling the *BURST signal low. Note that a burst transfer is requested by the 
DMA slave, not initiated by the DMA controller. The controller will execute burst transfer until 
the slave unasserts the BURST* signal. 

The DMA transfer will use basic, synchronous extended or asynchronous extended transfer 

cycles depending on the capabilities of the participating DMA slave. 

Termination of the DMA transfer is indicated by the controller by a<;serting the Terminal Count 

(*TC) signal during the last data transfer. A DMA transfer may be disrupted by another device 
on the bus. This is done by the use of the *PREEMPT signal (see the "Arbitration" paragraph). 

A.3.2. Interrupt handling 

The inten·upt mechanism supports a total of 11 level-sensitive, active low intenupt lines. The 

lines are shared by all slots, they must therefore be driven by open-collector drivers. To be able 
to identify the source of a signal on a specific interrupt line, each card capable of generating 
intetTupts must maintain an ''intetTupt asserted'' bit, readable by software on the intenupt 

controller. This bit must explicitly be cleared by the intetTupt service routine. 

A.3.3. Arbitration 

The MCA implements a combination of a centralized and a disttibuted arbitration scheme: 

A Central Arbiter is located on the system card and is responsible for controlling the arbitration 

cycle. That is, issuing a bus grant (ARB/*GRANT low) in response to a bus request 
(*PREEMPT low) from a MCA card. The requesting card signals its own priority by driving 
their 4 bit ptimity code onto the lines ARB(3:0). These lines are shared among all MCA bus 

masters and can be dtiven independently through open-collector drivers. The Local Arbiter on 
each MCA card is therefore responsible for comparing the state of the ARB(3:0) lines with its 
own priority vector, withdrawing the request if any higher ptioritized card requests the bus. 

A.3.3.a. Preemption 

Usually, bus masters must arbitrate before each bus u·ansfer. However, drivers requiting 
multiple data u·ansfers will by asserting the BURST* signal keep the bus until BURST* is 
released (all transfers are complete). A bursting device may also stop a transfer if a second 

device requests the bus by asserting PREEMPT*. A bursting device may not ignore an asserted 
PREEMPT* more than 7.8 microseconds. If it does so, the Cenu·al Arbiter will forcibly take the 

bus away from the bursting device by raising the ARB/GNT* signal. 



277 

A.3.3.b. Fairness mode 

A programmable fairness feature ensures each device a fair share of the channel time: If a 

device completes a bus transfer while other bus requests are active, this device is not allowed 
to request for the bus again until all other active requests have been serviced. All arbitrating 
devices will therefore be serviced in order of priority before the same device can regain control 
of the bus. 

A.3.4. Multiprocessing facilities 

Except from the more conventional mechanisms as far as arbitration and interrupt handling are 
concerned, the MCA has no specific support for synchronization and communication between 

multiple devices on the bus. By the use of other MCA mechanisms, however, this limitation can 
to some extent be overcome: 

Broadcast and multicast can be implemented by mapping several devices into the same address 
space. Every MCA slot has its own CD CHRDY line. The individual CD CHRDY lines are 

gated together on the MCA system card, producing the signal CHRDYRTN. This signal will be 
high if all the individual slot lines are high, i.e all cards are ready. In this way, the controlling 

master is able to monitor all slaves participating in the transfer. The slowest slave will then 
detennine what transfer cycle to use (basic, synchronous or asynchronous extended). Note that 
because the data lines are driven with three-state and not open-collector drivers, several devices 
can not drive the data lines at the same time. Broadcall (i.e. multiple source read) can therefore 
not be implemented. 

By using the BURST* signal, bus locking can be obtained. Each transfer within a burst transfer 

can, by programming the status/control signals SO and S 1 accordingly, independently be a 

memory or I/0 access, read or write. Test-and-set and read-modify-write mechanisms can then 
be implemented as burst transfers. 

A.3.5. Geographical addressing 

Each MCA slot is connected to the MCA system card (slot) via a unique line called CarD 

SETUP (CD SETUP). When this line is activated, a specific channel card is selected and access 
to the card's configuration data space is obtained. 

A.3.6. System configuration 

To eliminate the tedious, and often etToneous, task of installing jumpers and toggling switches, 

their functions are replaced by a set of registers called the Programmable Option Select 
registers, POS.The POS registers are accessible through the geographical addressing scheme, 

and make it possible for the MCA system conu·oller to poll each card to determine the car·d's 
char·acteristics and write configuration data to it. Due to this ''programmable jumper" approach, 
car·ds can be dynamically relocated and reconfigured while the system is running. Also, each 

car·d stores a unique identification number in the POS registers so that the system can identify 
each car·d. 

Reference: [IBM 1991]. 



278 

A.4. Extended Industry Standard Architecture (EISA) 

As already discussed, IBM's new 32 bit PC bus (the Micro Channel Architecture, MCA) is not 

compatible with its predecessor. Due to the vast number of available boards built for the "old" 
bus, this opened an attractive possibility for other computer manufacturers: To defme a 32 bit 
enhancement of the old bus while maintaining downward compatibility with the old PC, XT and 
AT bus structures. The result of this effort became EISA, developed and supported by a 

consortium of over 50 leading manufacturers, led by a core of nine members: Wyse, AST 
Research, Tandy, Compaq, Hewlett-Packard, Zenith, Olivetti, NEC and Epson (mnemonically 
watchzone, also called "the gang of nine"). Key features: 

• Fully synchronous operation with an 8 Mhz system clock. 

• Non-multiplexed 32 bit data and 32 bit address lines. 

• Peak burst transfer rate equal to 33 Mbyte/second. 

• 15 intenupt lines. 

• Switchless autoconfiguration. 

A.4.1. Data transfer 

When designing the EISA bus, the main objective was to make it compatible through the whole 
range of personal computers from the basic PC up to the 32 bit EISA machines. Therefore, the 
bus protocol must be fully adaptive as far as bus width is concerned: Any bus master can access 
any slave in the system, even if their bus widths differ. To make the addressed slave able to 
inform the bus master which bus width it supports, dedicated signal lines are used. When 
incompatibility between the master and the slave occurs, the EISA bus controller intervenes 

into the cycle through a mechanism called cycle translation. The u·ansfer requested by the 
master is then converted into u·ansfers supported by the slave, e.g. a 32 bit transfer can be 
executed as four separate 8 bit transfers. This mechanism is fully invisible and transparent to 
the master. 

Data are transfetTed in 8, 16 or 32 bit units. Even if the protocol is synchronous (no handshake), 

slow slaves may by asserting the signal line EXRDY insett waitstates to get more time to finish 

the cunent transfer. 

Burst u·ansfers are also supported as 8, 16 or 32 units. Before a burst u·ansfer can take place, the 
bus master and addressed slave exchanges information about their burst u·ansfer capabilities 

ensuring that both parties support this u·ansfer. This is done through two dedicated signal lines, 
MSBURST* (driven by master) and SLBURST* (slave). End-of-u·ansfer is signalled by the 
signal line T-C (Tenninal Count). In case of a write burst (master to slave), this line is asserted 
by the master, on a read burst by the slave. 

A.4.2. Arbitration 

The EISA bus implements an arbiu·ation scheme centralized around the bus conu·oller: Each 

EISA slot is connected to the bus controller by its own bus request/ bus acknowledge 
(MREQx*/ MACK*) signal line pair. Additionally, DMA transfers can be requested (and 



279 

acknowledged) on 7 channels, each channel having its own request and acknowledge signal 

pair. All DMA channel lines are connected to all slots, as a bus. Finally, the refresh controller 

has it~ own bus request line for memory refresh (REFRESH). 

The memory refresh controller, the highest priority DMA controller and the EISA bus masters 
compete for bus mastership through a three-way rotating arbitration scheme. Among the EISA 
bus masters, priorities can be either fixed or rotated (round robin). This scheme ensures a fair 
amount of access to the bus both for the bus masters and the refresh controller. As far as the 
DMA channels are concerned, however, it is possible for a low priority DMA channel to be 
starved for use of the bus. 

A.4.3. Interrupt handling 

The EISA provides a total of 15 shared, level-sensitive interrupt lines (note, however, that ISA 
boards must have exclusive use of intenupt lines they are connected to). To identify the source 
of a generated inteiTupt, the interrupt controller responds to an inten·upt by executing two 
intetTUpt acknowledge cycles. On the second cycle, an intenupt vector is read from the data 
lines D(7:0). 

A.4.4. Multiprocessing facilities 

To ensure exclusive access to the bus during indivisible operations (e.g. test-and-set, read
modify-write), a bus lock mechanism is supported through a dedicated signal line LOCK*. By 

asserting this signal, the cutTent bus master is guaranteed that no other board will be able to 
access the bus until LOCK* is released. 

Broadcast and broadcall is not supported. 

A.4.5. System configuration 

Like a number of other digital buses, EISA supports a geographic addressing scheme where 

boards can be addressed by the location of the slot in which the board resides instead of its 
mem01y address. Each board contains, in a fixed geographically addressed location, 

information about the board and the resources located on the board (potts, memoty etc.). 

Together with programmable switches and configuration registers instead of hardwired jumpers 
this allows for system configuration totally through software control. 

References: [Dowden 1990] and [Hewlett Packard 1990]. 

A.S. NuBus 

NuBus was the first standard 32-bit bus, developed by a research group at MIT, Massachusetts 

Institute of Technology in the late 70'ties. The commercial tights to NuBus was first purchased 
by Western Digital and finally by Texas Instruments. Despite this heavy industtial support, no 
significant commercial products emerged with NuBus until Apple Computer selected the bus 

for its second generation Macintosh computer, the Mac II, in 1987. Later, the bus was also 
adopted by Steve Jobs for his NeXt computer. Key features: 

• Synchronous operation based on a 10 Mhz system clock. The clock has a 75% 
duty cycle, both clock edges are used for timing reference. 



280 

• System architecture independent of any particular microprocessor family. 

• Multiplexed 32-bits address and data bus. 

• Handshakes on all data transfers, slow slaves may insert wait<;tates. 

• Maximum theoretical block transfer capacity: 37.5 MBytes/second. 

• Virtual as well as physical inten'llpts. 

• Distributed, Parallel arbitration scheme based on a fairness algorithm to 
prevent starvation. 

• Geographical addressing. 

A.5.1. Data transfer 

The NuBus suppotts single data as well as block transfer transactions, read and write. 
Handshake (acknowledge) from the responding slave is required for all transfers. 

A.5.l.a. Single data transactions 

A single data transaction conveys one data item (32 bit word, halfword or byte). Which part of 

the addressed word to transfer, is told by the two least significant address bits ADl,O, the type 

of transfer by the u·ansfer mode/status bits TMO, 1. All u·ansfers are unjustified: No matter the 
transfer mode used to access it, a specific byte of data is always conveyed on the same signal 

lines. 

Each single data transaction must be handshaked by the addressed slave by assetting an 
acknowledge signal. At the same time, the slave also outputs status information on the transfer 
mode/ status lines, signalling whether the transaction was successful or an enor (bus enor, 
timeout etc.) occmTed. 

Due to the handshake protocol, a u·ansaction can take any number of cycles up to a system 
specific timeout. 

A.5.1.b. Block data transactions 

A block data u·ansaction consists of a start cycle specifying the start address, followed by 
multiple data cycles moving data to or from sequential address locations on the selected slave, 
and an acknowledge cycle. Allowed block lengths are 2, 4, 8 and 16 words, the actual block 

length is signalled by the lower address lines during the start cycle. Only 32 bit NuBus word 
transactions is supported in this mode. Refened to the block data bus master, the block transfer 

can be both read and wlite. 

Acknowledge is given by the responding slave for each word u·ansfer within the block as well 

as for the block as a whole. The (final) block acknowledge supplies status information telling 
whether the block u·ansfer was successful or not. 

A.5.2. Interrupt handling 

NuBus supports two types of intetTUpt mechanisms, virtual (memory mapped) inten'Upts and 
physical intetTUpts associated with dedicated bus signals. 



281 

A.5.2.a. Virtual interrupts 

The virtual interrupts are implemented as write transactions into an area of (local) memory 

monitored by the NuB us board. Any address range on the board can be defined as its interrupt 
space. This allows interrupts to be posted to individual boards. Additionally, it allows the 
intetTupt priorities to be software specified by memory mapping the priority level. 

No dedicated bus lines or protocols are needed to implement virtual interrupts. 

A.5.2.b. Physical interrupts 

Each slot is through an open collector wired-OR interface connected to a common inte!Tupt line 
INMREQ. To determine the source of an interrupt, the system interrupt controller must poll 

each slot (board) capable of generating the interrupt. 

In addition to the two described intenupt mechanisms, the Apple MacH computer implements 
a third scheme: Each slot has its own dedicated INMRQ line, connected to the slot where the 
intetTupt controller (i.e. the CPU board) is located. The need for the individual poll of potential 
intetTupt sources is thereby eliminated. 

A.5.3. Arbitration 

NuBus implements a Parallel, distributed arbitration scheme: Each NuBus slot is assigned its 
own unique 4 bit identification (ID) number, the slot number (for further details, see the 
"Geographical addressing" paragraph). When a NuBus master wants to use the bus, it signals 

this by asserting the dedicated IRQST line along with its ID number on the arbiu·ation bus lines 

I ARB3-0. The boards are connected to the bus request line as well as the arbitration bus lines 
through open collector intetfaces. That is, several boards are allowed to drive these lines 
simultaneously. The board(s) requesting the bus, will during the arbiu·ation period continuously 
compare the state of the arbiu·ation bus lines I ARB3-0 to its own 4 bit ID number. According 

to a specified algorithm, boards with non-matching IDs will then withdraw their requests and 
the highest ptiority board (i.e. the board with the highest ID (slot) number) will eventually 

remain as the bus winner. 

However, to prevent board starvation and to disu·ibute bandwidth more evenly than a strict 
priority arbiu·ation scheme will give, a faimess arbiu·ation policy is implemented: All boards 

patticipating in an ru·bitration contest ru·e serviced before any new (and possibly higher) ptiority 

boards is allowed to compete for the bus. 

A.5.4. Multiprocessing facilities 

To facilitate synchronization between bus modules, some sort of indivisible operations must be 
implemented. NuBus supports two types of locking schemes to obtain this: Bus locking and 

resource locking. 



282 

A.5.4.a. Bus locking 

If the NuB us is the only channel or path to access a board, indivisible operations on that board 
can be ensured by locking this channel. That is, to prevent other bus masters from getting access 
to the bus until the current bus master has finished its operations on that board. This is done by 
that the (current) master does not withdraw its bus request after it has won the arbitration, but 
simply continues to request for the bus. This will prevent other masters from getting access to 
the bus until the current bus master withdraws its request. 

A.5.4.b. Resource locking 

If a resource, which can be a board as well as a module on a board, can be accessed through 

other channels than the NuBus, it is not enough to lock the NuB us itself. This is the case for a 
dual pmted RAM module located on a NuBus CPU-board, the RAM module is accessible from 
the NuB us as well as from the local processor bus. Therefore, the lock must be implemented on 

the resource itself. 

NuBus accomplishes this by a special resource-lock-cycle. The addressed resource is then 
locked to NuB us (i.e. it can not be accessed by other than the NuB us), until the lock is explicitly 

released by a similar operation called a null-cycle. Both the resource-lock and the null-cycles 
belong to a set of special NuB us cycles called attention-cycles. 

A.5.4.c. Broadcast/broadcall 

This is not supported by NuBus. Because handshake from the addressed slave is required on 
each u·ansfer, an inverted, open collector acknowledge line would there be needed to implement 
a multi destination/ multi source protocol. 

A.5.5. Geographical addressing 

This is accomplished by each slot having four identification signals /ID3 to liDO, hardwired to 

logic high or low on the backplane. This 4 bit code, unique for each slot, serves two purposes: 

• It is used as the 4 bit ID p1iority code during arbiu·ation. 

• By substituting 4 of the NuBus address signals by the 4 ID signals in the 
address decoding logic on each board, each slot can be mapped into its own 
unique block in the memmy address space. Depending on which address 
signals are substituted, two such schemes are supported: The slot space 
allocating 16 MByte to each slot and the super slot space allocating 256 
MByte to each slot. 

Through these mechanisms, a NuBus board can be accessed solely based on its slot location on 
the backplane. 

References: [Apple 1987] and [Texas 1990]. 



283 

A.6. SBus 

SBus is developed by Sun Microsystems for use in their RISC-based workstations whereas 
SPARCstation 1 was the first. SBus is, unlike the other buses treated in this survey, not 
primarily intended to be a general backplane bus, but rather a direct chip-level interconnect 
scheme for the use on a CPU mother-board. 

The main design goal was that high speed IO-devices, such as FDDI and Ethernet, could rely 

on the same high-performance, low-latency access to the memory that is available to the central 
processor. This IO-devices could then be implemented without large private buffers. Further, it 
was desirable to allow for a system clock of 20 to 25 Mhz, because this range would be 
compatible with fast-page-mode cycle times of 1- and 4-Mbit dynamic RAM's. 

To achieve these goals, three main principles have been used as guidance to the SBus design: 

• Synchronous operation with all timing related to the rising edge of the clock. 
Allowed clock speeds are the range of 16.67 to 26 Mhz. 

• Active drive. All bus signals are actively driven to their inactive states before 
the drive is removed. Most buses simply remove the drive while the signals 
still are active and thereby let the termination network pull the signals to their 
inactive state. 

• No driver overlap. Except from the open-collector (intenupt) lines, no signal 
is driven by the same source during the same cycle. 

Other key features: 

• Supports a memory management mechanism called address translation. For 
each transaction, a 32 bit virtual address is mapped into a 28 bit physical 
address by the system controller. 

• 32 bit data path multiplexed with the 32 bit virtual address path. 

• Dynamic bus sizing on a transfer by transfer basis. 

• Seven intetTupt lines, allowed to be asynchronous with the system clock. 

• Geographical addressing. 

• Peak burst transfer rate: 80 Mbyte/second with a 25 Mhz system clock. 

A.6.1. Data transfer 

A complete SBus, or DVMA (Direct Virtual Memory Addressing) cycle, can be divided into 
two distinct phases: 

The translation cycle. A 32 bit virtual address is placed onto the multiplexed address/ data bus 
for exactly one cycle. The system controller translates the virtual address into a 28 bit physical 

address, then this physical address is placed onto the lines PA(27:0) and the Address_Strobe* 

signal is assetted. 

The slave cycle. Data is now transfen·ed between the master and the selected slave. The slave 
has up to 255 clock cycles to petform the requested transfer and issue an acknowledgement on 

the acknowledge lines Ack(2:0)*. 



284 

A.6.l.a. Bus sizing 

A special SBus feature is the concept of dynamic bus sizing. This allows a master to initiate a 
word or half-word transfer to a slave device without regard to whether the slave supports a 

transfer size that large or not. 

When the selected slave responds to a transfer by indicating bus (re)sizing through the code 

placed on the acknowledge lines, the requested transfer is automatically splitted into two or four 

bus cycles. Each bus cycle is then transferring a byte or half-word, depending on the slave 
acknowledgement. 

A.6.l.b. Burst transfer 

By using burst transfer, the master can transfer 2, 4, 8 or 16 words (32 bit) to the selected slave 
at a rate of one word pr. cycle. The length of the burst transfer is indicated to the selected slave 

through the data size lines Size(2:0). The slave must acknowledge each word transfer, failing 
to do so will insert waitstates until a implementation dependent timeout is reached. 

Only 32 bit word transfers is allowed in burst mode, dynamic bus sizing is not 

supported. 

A.6.2. Arbitration 

SBus arbitration is done by the arbitration module, centrally located on the system controller. 
Each SBus master has its own Bus Request (BR*) and Bus Grant (BG*) signal pair. A bus 

master indicates to the system controller that it wants the bus by asse1ting its BR * line, it is 
granted the bus when the system conu·oller asse1ts the requesting bus master BG* line. 
Arbiu·ation is done for each u·ansaction on the bus, except from atomic operations. 

Arbiu·ation priorities are system specific. To ensure a certain amount of fairness among 

competing SBus masters, however, the most recent bus master is not allowed to use the bus 

again until all other masters who have requested the bus have been served. Within this 

constrain, bus requests need not necessarily be processed in chronological order. 

A.6.3. Interrupt handling 

Intenupts are suppmted by seven open-collector intenupt lines IntReq(7: 1)*, by which SBus 
slaves asynchronously can signal the intenupt handler located on the system controller. By 
convention, IntReq(7)* is the highest primity inten11pt, Int.Req(l)* is the lowest. 

Any SBus slave may asse1t one or more of the intenupt lines at any time. Upon asserting an 
intenupt, the slave must set a bit in an internal register, readable by the system conu·oller, 

indicating that the slave is generating an interrupt at that level. 

To identify the source of a generated inteiTupt, the system controller must therefore check all 
possible intenupt sources until it finds one with that particular bit set. 



285 

A.6.4. Multiprocessing facilities 

Although SBus is not intended as a general purpose backplane bus, several multiprocessing 

capabilities are supported: 

A.6.4.a. Bus locking 

The SBus will be locked to the current bus master as long as the master keep its bus request BR * 

line asserted. BR * is released when the master receives bus grant for the very last cycle. If the 

accessed resource is not accessible through other channels than the SBus, this mechanism will 
ensure atomic operation on that resource. 

A.6.4.b. Broadcast 

Each SBus slot is connected to its own SlaveSelect* (Sel*) line, asset1ed whenever that slot is 
accessed as a slave. This allows individual and Parallel access of all slots, regarding the physical 
address presented on the SBus address lines PA(0:27) as a local address within each slot. 

Therefore, a completely individual and selective broadcast mechanism could have been 

implemented based on that scheme. 

But: As mentioned earlier, each transfer requires acknowledgement on the Ack(2:0)* lines. 
These lines are not shared (open-collector) lines, broadcast is therefore not supported by SBus. 

That is, only one slave may be selected at any time. 

A.6.4.c. Address translation 

Because each master is identified to the SBus controller through which Bus Request* (BR*) 
line it is connected, separate translation tables for each master can be maintained. 

A.6.5. Geographical addressing 

The SBus is a geographically addressed bus. It is the responsibility of the system conu·oller to 

decode the virtual address presented by the master into the approptiate SlaveSelect* signal and 

the physical address PA(27:0). Because the SlaveSelect* signal is unique for each SBus slot, 

the physical address can be regarded as local to the slot. The slaves therefore do not need to 

know their place in the global address space. 

A.6.6. System configuration 

For system (re)configuration purposes, each SBus board is self-identifying. Located at physical 
address 0, with size typically in the range of 4 to 128 Kbytes, each board has a PROM. This 
PROM contains board identification information in addition to optional driver software. This 

will allow the board to be used as a boot device or a display device dming booting. 

Reference: [Sun 1989]. 



286 

A.7. TURBOchannel 

The TURBOchannel is a high performance communication channel developed by Digital 
Equipment Cooperation (DEC) for use in their new generation, RISC-based workstations. A 
TURBOchannel system consists of one system module and some number of option modules. 
Key features: 

• Synchronous, asymmetrical 10-channel. It is asymmetric in the sense that the 
system module must participate in all transfers, transfers can not be 
performed directly between two option modules. 

• System clock in the range of 12.5 to 25 Mhz, selected to be compatible with 
fast-page-mode access of the fastest DRAMs. 

• Multiplexed 32 bits address/data bus. 

• Max. burst transfer petformance: 100 Mbyte/second. 

• Synchronous handshake, slow option modules may insett waitstates. 

A.7.1. Data transfer 

The TURBOchannel suppmts two types of data transactions, I/0 and DMA (Direct Memory 

Access). 

A. 7 .La. I/0 transactions 

An I/0 transaction is used when the system module performs a single word read or write to an 

option module. Data is then addressed and accessed as a 32 bit word, with a 4 bit "byte enable 

mask" permitting selective byte write within the word. The addressed option module is 
acknowledging the requested operation by two handshake signals, indicating whether the 
operation was successful or not. 

I/0 modules are addressed geographically. That is, every option module is connected to the 
system module by its own dedicated "option module select'' line SEL *. The transaction address 

presented by the system module on the multiplexed address/ data bus can therefore be regarded 

as local to the selected option module. The address range for I/0 transactions is 512 Mbyte, with 
4 address/ data bus lines used for the byte enable mask. 

A.7.1.b. DMA transactions 

DMA transactions are option module read or wtite onto the system module. They are block 
transfers in units of 32 bit words only, no byte enable mask occupies address signals on the bus 
and the address space is therefore larger than for I/0 transactions, 16 Mbyte. The transfer can 
be of any length from 64 words up to an implementation-defined limit, but must, however, 

always be a power of 2. To obtain maximum petformance, data is transfened by one word each 

cycle. Once the DMA transaction is established, a new data word must therefore be supplied 
(read) and accepted (write) each cycle. There is no handshake mechanism available at a word
by-word basis within a DMA transaction. 



287 

The length of the transfer is not signalled before the transfer starts, but as an "end-of-transfer" 
signal from the option module during the last word of the block transfer. Together with the 
missing handshake possibility within the transfer, this requires the system and option module 
capabilities as far as block transfers are concerned to be closely matched. 

Due to the speed, DMA transactions are usually done between FIFO's or directly to/from high 
speed dynamic RAMs, utilizing the fast-page access mode. In that case, the DMA transactions 
must not cross the byte boundaries of the DRAMs. 

A.7 .l.c. Broadcast 

Broadcast transfers are not supported neither by the VO nor the DMA transaction modes. This 
is in correspondence with the design philosophy behind the TURBOchannel: To be a high 
performance point-to-point communication link (like a port) rather than a general purpose 
multiprocessor bus. 

A.7.2. Arbitration 

The TURBOchannel is no symmetric, multimaster bus, the arbitration mechanism is therefore 
very simple. 

As far as VO transactions are concerned, these are initiated by the system module. There is only 

one system module in the system, and no arbitration is therefore necessary. However, the 
addressed option module may be occupied with a DMA transfer thereby being unable to service 

the VO transfer request from the system module. This will be signalled by the option module 
by assetting a dedicated signal line (CONFLICT*). 

In conu·ast, DMA transactions may be requested by any one of the option modules. Two signal 
lines are provided for channel arbitration, Read REQuest* (RREQ*) and Write REQuest* 

(WREQ*). They are processed by the system module, granting access by assetting the signal 
line ACKnowledge* (ACK*). Evety option module has its own set of WREQ*, RREQ* and 
ACK* lines. The option module indicates the length of the block be the number of cycles that 

it continues to assett signals WREQ* or RREQ* after signal ACK* is asserted by the system 

module. 

The system module is in full control of which option module requests the channel for what 
operation. Which arbiu·ation philosophy (in terms of fairness, ptiority etc.) to use, is therefore 
solely up to the system module and is implementation dependent. The TURBOchannel 

hardware specification does not prescribe anything specific as far as this is concerned. 

A.7.3. Interrupt handling 

Evety option module has its own level-sensitive interrupt (INT*) line. Once assetted, the option 
module may not release INT* until the intenupt condition is dismissed by software. Slot 

ptiority is not a part of the TURBOchannel specification but is implementation dependent. 



288 

A.7.4. System configuration 

System configuration is supported by a ROM on every TURBOchannel option module. This 
ROM contains formatted information about itself and various board-specific parameters 
describing the option module. It may also contain additional option module firmware. 

Reference: [Digital Equipment Corporation 1990]. 

A.S. Futurebus+ (IEEE 896) 

In 1983, the IEEE P896 Futurebus Working Group was formed, aimed to develop innovative 
technology and protocols for a scalable multiprocessor bus. As work progressed, it draw 

attention from other bus specification work groups which partly joined (Rugged Bus, 1988) and 

partly supported The Futurebus+ work by basing their own bus extensions on the Futurebus+ 
specification. This is the case for VITA (VME International Trade Association, 1988) and 
Multi bus Manufacturers Group (1989). The work has also been su·ongly influenced by the US 
Depru1ment of Defence's (Pentagon) selection of Future bus+ as the basis for all future US Navy 

mission critical computers (1988). 

According to Dr. Paul Bon·ill, chairman of the IEEE Future bus Committee and director at SUN 
Microsystems: 

"Futurebus+ takes its name from its goal of being capable of the highest 

possible transfer rate consistent with the technology available at the time the 
modules are designed, while ensuring compatibility with all other modules 

designed to this standard before and after. The plus sign ( +) refers to the 

extensible nature of the specification, and the hooks provided to allow further 
evolution to meet unanticipated needs of specific application architectures." 

Key features: 

• Scalable data bus widths from 32 up to 256 bits. 

• Transfer protocols suppotting single data u·ansfers as well as high speed block 
u·ansfers, handshaked or not handshaked. 

• Multiplexed address/data lines. 

• Fully distributed arbitration scheme. 

• Pruity protection on all lines. 

• Multiple level of bus locking and mutual exclusion suppmt. 

A.S.l. Data transfer 

Each Futurebus+ data transaction, regardless of the selected u·ansfer mode, consists of three 
subsequent phases: 



289 

During the opening connection phase. a connection is established between a master and one or 

more slaves. All slaves take pa11 in the connection phase. which is a fully handshaken broadcast 

operation. In the connection phase, the master provides information about the following data 
transfer to the slaves (transfer protocol, data size etc.). It also allows the slave(s) to return status 
information to indicate their response to the requested operation. 

The connection phase is followed by the data transfer phase. In this phase, the actual data 
transfer is done between the master and its connected slaves. 

The transaction is terminated by a disconnection phase, the connection between the master and 
the connected slaves is then broken. Breaking the connection must not be confused with 
relinquishing bus mastership: After terminating a transaction, the master module may retain 

mastership of the bus and begin new transactions with the same, or other slaves on the bus, 
without having to perform a new bus arbitration. 

For the data transfer phase, the Futurebus+ specification supports two fundamentally different 
data transfer protocols, compelled and non-compelled. 

A.8.l.a. Compelled mode 

The compelled data transfer protocol is a basically asynchronous protocol where the selected 
slave(s) is compelled (obliged) to provide a response before the master is allowed to proceed to 

the next transfer. 

The Futurebus+ specification supports three compelled transaction types: Address-only, single 
address and block transactions. The three u·ansaction types are distinguished by the number and 
the direction of the transfeiTed data. 

In the Address-Only transaction. an address is transfeiTed from the master to one or more 
slaves. There is no subsequent data transfer phase, hence no data are transfeiTed. A typical 

example of use of this type of u·ansactions are system event messages broadcasted to a number 

of modules (slaves). 

To transfer one or more items of data to a single address, the Single Address transaction should 
be used, It allows the flexibility for each transfer to be in a different direction, useful 

implementations of this feature can therefore be operations like read-modify-write and write
read-verify. If the Futurebus is the only path by which the addressed slave can be accessed, 

these operations will be indivisible. 

The Block Transfer transaction mode is highly efficient and provides the maximum 
peiformance, but resu·icts the u·ansfers to the same direction - either all read or all write. In this 
mode, only the start address is set up via the bus, the addressed slave(s) must keep track of the 

cuiTent address (if necessary) by incrementing its local address counter or load the data into a 
FIFO. The length of the block u·ansfer is not told to the slave(s) prior to the u·ansfer, but is 

determined by the actual length of the transfer. A slave may, however, return an end-of-data 

status to the master to indicate that the slave will be unable to accept the next requested data 
u·ansfer. Because the addressed slave(s) does not know the length of the block transfer in 



290 

advance and the unaddressed slaves do not track block transfers in which they do not 

participate, a block transfer should never cross module (slave) boundaries. In that case, data 

intended for other than the first module will be lost. 

These three transaction modes may be orthogonally combined with three different handshake 
modes, single-slave, broadcast and three-party, yielding a total of 9 possible transfer protocols. 

Single-Slave Handshake mode. Mostly, slaves will have a unique address range in the system 
and only one slave will then participate in the transaction. The data transfer will then proceed 

at a speed that is limited by only the master and the slave it<>elf. 

Broadcast Handshake mode. If several slaves are mapped into the same area of memory, all 
these slaves will participate in the transaction, and thereby respond together, when this area is 
accessed by the master. To make handshaking from multiple slaves possible, an additional 
invetted acknowledge signal line (AI*, address Acknowledge Inverse) is included. This 
handshake mode is used with broadcast (write) and broadcall (read). On broadcall, several 

slaves drive the data lines simultaneously. This is possible due to a "open-collector like" 
connection to these lines. 

Three-party Handshake mode. This type of u·ansaction is used in copy-back caching systems 
when data in the selected slave may be inconect and a caching module is responsible for 

providing the cotTect data. A three-pruty transaction involves one master and two slaves and can 
be of two types, intervention and reflection. 

An intervention occurs when an unselected slave (in a single-slave u·ansaction) inhibits the 
selected slave and replaces the selected slave by itself for the rest of the transaction. 
Intervention must be done during the address transfer phase of the transaction. 

Altematively, the unselected slave can become a reflecting slave, causing the data on the bus to 

be written (reflected) into the selected slave itself. Even though the master may be reading data 
from the reflecting slave, the selected slave interprets the transaction as a wtite u·ansfer, and 

stores the data. 

Intervention and reflection can be combined: First, the intervening slave provides the master 

with conect data, then it updates the selected slave (the data is already on the bus) by reflecting 
the data into the slave. 

A.8.l.b. Non-compelled mode 

For high-speed block u·ansfers, broadcasts and broadcalls, an optional non-compelled u·ansfer 

mode is supported. As indicated by the name, no handshake from the selected slave(s) ru·e 
required in this mode. The data placed on the bus is not made synchronous to a system clock, 

but synchronized by an own sync signal, always emitted by the same module emitting the 
information (data) signals. This mode of operation is called source-synchronization. Because 
there is no retum handshake, this is Ullly a packet-type transfer mechanism. All transfers must 
be of fixed length, and status is retumed only at the end of each transaction. All modules 
supporting this mode may monitor all data being transfened over the bus. 



291 

A.8.2. Arbitration 

Basically, Futurebus+ uses the same distributed parallel contention arbiter scheme as Multibus 
II and NuBus. No central arbitration controller is involved, modules compete for the bus by 
presenting a unique arbitration number onto the 6 bit open-collector arbitration bus. In case of 

simultaneous requests from other modules, all modules not having the highest arbitration 

number will detect a mismatch between their own number and the number on the bus lines and 
eventually withdraw their request. In this way, the module with the highest arbitration number 
will gain bus mastership and no central controller is needed to resolve arbitration conflicts. The 

arbitration operation takes place on dedicated signal lines and is therefore executed in Parallel 
with data transfers. 

As far as arbitration is concerned, Futurebus+ modules can be of two types, fairness and 
priority. The type of module is distinguished by the most significant bit in its arbitration 
number. Fairness modules have this bit set to 0 while priotity modules have this bit set to 1. 

Thus priority modules always have higher arbitration numbers than fairness modules, a priority 
module will therefore always win an arbitration where the two classes are competing against 
one another. All arbitration numbers must be unique, to ensure this it is recommended to use 

the 5 bit geographical address as the 5 least significant bits of the arbitration number. 

To avoid starvation of modules with low arbitration numbers, a fairness module relinquishing 

bus mastership is not allowed to compete for the bus again until no other modules are seeking 

control. This is the reason for using the term "fairness". Priotity modules are not subject to this 
restriction, they may request for the bus whenever they like. All modules may dynamically 
reclassify themselves as fairness or priority modules, depending on the cmTent operation. 
Ordinary data transfers should use the faimess mode while the exchange of synchronizing 
information could use the priority mode. 

A unique feature of the Future bus+ arbitration scheme is its optional idle bus approach, used 
when there is only a single board requesting mastership. In the idle-bus mode, the system uses 

the address/data lines to signal a request when the bus is idle. This minimizes latency for a 

module to access a memory subsystem. If two or more masters are detected during this request 

phase, the scheme automatically defaults to the parallel contention arbiter method. 

A.8.2.a. Arbitration messages 

A full Futurebus+ backplane consists of21 modules. With a 6 bit arbitration number, this means 
that there will be 22 unique numbers "left-over" after assigning each module its own fairness 

and priority arbitration number. Because all modules can observe all requests on the arbitration 
bus, these spare numbers can be utilized as an efficient way of sending "messages" to other 

modules in the system, the message being the number presented on the arbitration bus. The 

interpretation of these messages are system specific, the only one defined in the Futurebus+ 
specification are number 63 (all ones), signalling power fail. The arbitration procedure sending 
an arbitration message is performed exactly like an ordinary bus arbiu·ation, the only difference 

being that the module issuing the message aborts the arbiu·ation instead of taking bus 

mastership when it has won the arbitration contest. 



292 

In this way, it is possible to communicate with other modules, for instance for synchronization 

purposes, without using dedicated lines or using the system data bus. 

A.8.3. Interrupts 

The Futurebus+ has no dedicated interrupt lines. Instead, two other mechanisms are used for 

signalling events. The first is the already described arbitration, or emergency, messages. These 

are conceptually not unlike ordinary shared interrupt lines: When first triggered, the interrupt 

signal can be observed by all modules while the sender remains anonymous. No data is included 
in an emergency message, the only piece of information is the emergency (arbitration) number 

it5elf. 

The other mechanism is the targeted interrupt, that is, the interrupt is targeted for a specific 

destination (module). These are sent like ordinary write u·ansactions, but to a specific address 

on a single module. Futurebus+ reserves 32 locations in each module's Control and Status 

Register (CSR) space, addressed by the module's slot location (geographical addressing), for 
this purpose. 

A.8.4. Bus locking 

In a single bus system where the modules are accessible only through their Futurebus+ 

intetface, indivisible operations are automatically guaranteed because the cmTent master 

module has always exclusive conu·ol over the bus. It can therefore cany out whatever 

indivisible operations necessary before releasing the bus. 

With a multiple bus system, however, it is not sufficient to lock the bus to ensure indivisibility, 

but the module (slave) itself must be locked to prevent accesses via other channels than the 

Futurebus+. This is done by a dedicated Futurebus+ lock (*LK) signal: A slave accessed with 

this signal set, is not allowed to accept accesses via other channels until it is accessed again with 
the lock signal resat, or the master which issued the lock relinquishes bus mastership. 

A.8.5. Geographical addressing 

The Futurebus+ address space is divided into two areas. The maj01ity of the address space is 

ordinary memory address space, accessible through the various types of available data 

u·ansactions. The top 32 Mbytes, however, are reserved for system conu·ol and configuration 

purposes and is called the Control and Status Register space (CSR). 

This block of 32 Mbytes is in tum divided into 256 blocks of 128 Kbytes each, called bus space. 
These blocks are primarily intended for use in systems connecting multiple Futurebus+ crates 

via bus repeaters. One block is then assigned to each crate by a unique number. Of the 256 bus 

space blocks, two are of special interest: Bus space 0 maps into the CSR of every backplane, 

allowing system-wide broadcasts of conu·ol information. On the other hand, bus space 255 

always maps into the local backplane, making it un-necessmy to assign a backplane number in 

case of a single crate system. 

Each bus space block is in tum divided into 32 module space blocks of 4 Kbytes each. These 

32 blocks are addressed through the Future bus+ geographical addressing scheme: Connected to 

each slot of the backplane is a 5 bit switch, providing a unique, location-determined address for 



293 

that slot. Every slot in a Futurebus+ crate will then have a geographic address in the range of I 
to 21 (the maximum number of slots in one crate), by which its CSR module block can be 

accessed. As for bus space blocks, module space block 0 maps into the CSR of every module 
and is reserved for broadcast transactions (read or write) to the equivalent locations of every 
module. 

Each module space block contain module identification information, 32 event registers used for 
targeted interrupts and 32 addressable switches. The addressable switches are used to control 

some basic module functions and replaces the more conventional jumper fields used for this 
purpose. This allows dynamic module (re)configuration without powering the system down. 

Reference: [IEEE 1987], [Taub 1984]. 

A.9. SCI (IEEE 1596) 

In the very near future, the limiting factor to performance in a multi-node, parallel processing 

system will not be the processing capacity of the individual nodes itself, but the rate by which 
they are able to communicate. To support a shared mem01y system consisting of 100M-Flops 
processors, each processor (node) must be capable of transfeiTing data at a rate of at least 1 
GByte pr. second. Given the physics (distributed capacitance and the speed of light) and the 
once-at-a-time nature of a backplane bus, obviously other communication schemes must be 
investigated. 

In November 1987, an IEEE working group was initiated to process these thoughts further into 
a specification for a high peiformance communication system. The group was named Superbus 

and was formed under the IEEE Computer Society's Microprocessor Standards Committee. 

Most of the members joining the group came from other high-speed bus design activities as 
Fastbus (IEEE 960) and Futurebus (IEEE 896). The work in the Superbus group, which 
eventually was leading to the Scalable Coherence Inteiface (SCI) specification, had the 
following design goals: 

• Support transfer rates of 1 GByte pr. second with the capability of scaling 
upwards to meet future needs. 

• Allow complete interconnection among all types of system modules: 
Processors, mem01y and I/0 nodes. 

• One up to an "infinite" number of nodes. 

• Provide for modular growth, thus reducing processor and system cost. 

To achieve these goals, peiformance far beyond that of buses and backplanes was needed. 

Rather than using bused backplane wires, SCI therefore employs a point-to-point 

interconnection technology based on uni-directional, optical fibre links. Data are transferred as 
packets using a requester/ responder u·ansaction scheme, handshaked by a packet protocol. Due 
to the problem of routing broadcasts efficiently in a complex network, the concepts of broadcast 

transactions and eavesdropping third parties are abandoned. Instead, the cache coherence 
protocols are based on directed point-to-point u·ansactions. Other key features are: 

• Up to 64 K processor, mem01y or I/0 nodes. 

• Address width: 64 bits. 



294 

• Data width: 64 bits (logical) and 16 bits (physical). 

• Multiplexed protocol. 

• Driver technology: ECL. 

References: [Warren 1990], [James 1990] and [Borrill1989]. 



295 

B. Parallel contention arbitration 
The method of parallel contention arbitration has been very popular during the last few years 
and is adopted by a number of major bus standards like Multibusll, NuB us and Futurebus. Its 
first applications, however, was in the IEEE Standard 696 - Interface Devices and in the US 
Department of Energy's Fastbus. 

Background 

In a multi-master bus system, the modules connected to the bus can be divided into two 
categories, masters and slaves. As the name indicates, slaves only play a passive role during bus 
transfers, they are incapable of initiating bus transactions themselves. A typical example of a 
slave module is a memory board, being written to or read from as a result of an initiative taken 

by another module. This other module will be a bus master. Several modules (from now on 

called Potential Master modules, PMs) being connected to the same bus may have master 
capabilities, a mechanism is therefore needed to ensure that any conflicts due to simultaneous 

requests are resolved in an approptiate manner. This is the task of the system's arbitration 

mechanism. Such a mechanism can be implemented in many ways, distinguished by parameters 
as 

• Centralized or distributed control. 

• The number of ptiority levels. 

• The type of arbitration protocol. 

One possible implementation is the parallel contention arbitration scheme described here. 

Functional description 

In a parallel contention arbiu·ation system, each potential master is connected to the bus by the 
following open-collector, active low signal lines: 

ARBITRATE 

The arbitration qualification (su·obe) line. When asserted, it tells all PMs that 

an arbitration procedure is in progress. 

ARB(O- (n-1)) 

A number of lines eventually signalling the identity of the PM winning the 
arbiu·ation contest. Values: 

0 unasserted (high voltage). 

asserted (low voltage). 

Every PM is allocated one or several unique n-bit arbitration numbers, arb(O- (n-1 )). When a 
PM wants to take control of the bus, it asserts the ARBITRATE signal line and outputs its 
arbiu·ation number arb onto the bus arbitration lines ARB. The basic algorithm is then as 

follows: 



296 

All PMs taking part in the arbitration contest will now compare, bit by bit, the 

value of its own arbitration number arb against the state of the arbitration 

bus lines ARB. If, for any bit k, arb( k) is equal to 0 while the corresponding 
bus line ARB( k) is equal to I, a PM will withdraw all its lower order bits 

(arb(O) to arb(k-1 ), both inclusive) from the arbitration bus lines ARB(O) to 

ARB(k-1 ). 

When the ARB bus lines eventually settle, there will remain one and only PM module, having 
an exact match between its own arbitration number arb and the state of the ARB bus lines. This 
module is the winner of the arbitration contest. As shown by [Taub 1984], the maximum delay 

to reach a steady state for a system consisting of 2° PMs is n/2 end-to-end bus propagation 

delays, plus a small amount of delay for the monitoring logic. One possible implementation of 

the described algorithm is shown in Figure B.l., taken from [Taub 1984]'s description of the 
arbitration mechanism in the IEEE 896 Futurebus. An absolute demand as far as the design of 
the arbitration mechanism is concemed, is that it is purely combinatorial. That is, it must 
contain no feedback paths. The reason for this is that the value present on the arbiu·ation lines 
at any time must depend only on the bits being applied to them and not on any past history. 



arb(n-1) 

arb(n-2) 

arb(O) 

ARBITRATE 

GRANT 

ARB(n-1) 

ARB(n-2) 

ARB(O) 

Figure. 8.1. Arbitration mechanism 

297 



298 

Arbitration protocols 

With a n bit arbitration number, there is a total of 2°-1 valid arbitration number combination 
(the algorithm will not work with an arbitration number equal to "0"). This pool of numbers can 
either be allocated as a single number to each module, alternatively may each module be 

assigned several numbers, distinguished by the value of the most significant arbitration number 
bit(s). Because bus access is granted strictly on basis of the numerical values of the arbitration 

numbers involved in the arbitration contest, low/ high priority arbitration may be implemented 
by varying the higher order arbitration number bit(s). 

An obvious danger with an arbitration protocol as described, is that frequent requests from high 
numbered (ptiority) modules may cause starvation of lower numbered modules. To avoid this, 
the bus modules are often made subject to the following restriction as far as issuing several, 
subsequent bus requests is concerned: A module winning the arbitration contest is not allowed 

to issue a new request until all requests issued within the same batch as its previous request have 
been serviced. A request batch is here defined as the period of time from the arbitration process 
is initiated by the first request being issued to an idle bus until the arbiu·ation contest is 
terminated and the winner is taking control of the bus. 

Compared to a more conventional, cenu·alized arbiu·ation scheme, parallel contention 
arbiu·ation has the following advantages: 

• It requires vety few wires on the bus to carry out the arbitration algorithm. 

• Priority scheduling of urgent requests can easily be integrated with 
mechanisms for fair scheduling of non-priority requests. 

• The state of the arbiter is available and can be monitored by all modules on 
the bus. 

In addition to being useful for diagnosing system failure, the latter point also makes it possible 
to use the arbitration bus for the broadcast of emergency messages. This is done by reserving a 
subset of the total pool of arbitration numbers to be interpreted as message rather than module 

identifiers. When an arbitration procedure is petformed using one of the reserved numbers, the 

module issuing the number (e.g. the system controller) is not requesting the bus. Instead, the 

"arbiu·ation procedure" is actually a message being broadcast to other modules connected to the 
bus arbiu·ation lines, with the information contents of the message laying in the specific 

arbiu·ation number by which the arbiu·ation procedure is petformed. 



299 

C. Ring bus system nomenclature 
A nomenclature explaining all vital words and expressions used throughout the ring bus 

specification part of this thesis is presented. The included items are alphabetically sorted, as 
well as organized according to their subject, listed following a more or less logical sequence 
within each subject group. The subjects themselves are alphabetically listed. An overview of 
the main system components and how they are related are given in Figure C. I .. 

CLUSTER -------- .... -.......... ~ .................................................................... --- ............. . . . 
Bidir. ~ 
Ring ~ 
bus :\ 

'• '• 

!\ 
" ,, .. ,. 
'' '' '' :: 
'' '' 

rM,+o~lll~•'' \ 

::---:---:-:../ 

CLUSTER 

Figure C.1. Main system components 

Controller 



300 

C.l. Alphabetical index 

ITEM 

Address bus 
Arbitration 
Arbitration bus 
Bidirectional ring bus 
Bus 
Cluster 
Cluster address 
Cluster control bus 
Control packet 
Controller 
Controller address 
Data packet 
Destination module 
EOCP 
EODP 
Emergency message 
Global broadcast transfer 
Header 
Inter cluster bus 
Last destination module 
Left transfer direction 
Local broadcast transfer 
Local cluster 
Local controller 
Local header 
Local multicast transfer 
Local packet 
Mask 
Master controller 
Module busy/ready 
Module control bus 
Neighbouring module 
Non wrap-around transfer 
PE 
PE address 
Packet 
Pending transfer 
Pending transfer queue 
Remote broadcast transfer 
Remote cluster 
Remote controller 
Remote header 
Remote multicast transfer 
Remote packet 
Right transfer direction 
Ring bus 
Ring bus module 
Ring bus segment 

SUBJECT 

Intra-cluster communication 
Intra-cluster communication 
Intra-cluster communication 
Ring bus terminology 
Ring bus terminology 
System components 
Addressing issues 
Intra-cluster communication 
Transfer entities 
System components 
Addressing issues 
Transfer entities 
Ring bus terminology 
Transfer entities 
Transfer entities 
Intra-cluster communication 
Transfer modalities 
Transfer entities 
Inter-cluster communication 
Ring bus terminology 
Ring bus terminology 
Transfer modalities 
System components 
System components 
Transfer entities 
Transfer modalities 
Transfer entities 
Addressing issues 
Inter-cluster communication 
Ring bus terminology 
Intra-cluster communication 
Ring bus terminology 
Ring bus terminology 
System components 
Addressing issues 
Transfer entities 
Ring bus terminology 
Ring bus terminology 
Transfer modalities 
System components 
System components 
Transfer entities 
Transfer modalities 
Transfer entities 
Ring bus terminology 
Ring bus terminology 
Ring bus terminology 
Ring bus terminology 



SOCP 
SODP 
Segment busy/ready 
Segment select 
Segment unselect 
Slave controller 
Source module 
Tag 
Total system 
Transfer grant 
Transfer path 
Transfer reject 
Transfer release 
Transfer request 
Transfer request message 
Wrap-around transfer 

301 

Transfer entities 
Transfer entities 
Ring bus terminology 
Ring bus terminology 
Ring bus terminology 
Inter-cluster communication 
Ring bus terminology 
Transfer entities 
System components 
Ring bus terminology 
Ring bus terminology 
Ring bus terminology 
Ring bus terminology 
Ring bus terminology 
Ring bus terminology 
Ring bus terminology 

C.2. Listed by subjects 

ADDRESSING ISSUES: 

PE address 

Local 

Remote 

APE's (local) address conesponds to its position along the ring bus and will 
be in the range of 0 to 14 (both inclusive). The same address is used for both 
left and right ling bus transfers. 

Address within the cluster. 

Another cluster (than in which the source module is located). 

controller address 

The controller's (local) address is always 15. 

cluster address 

mask 

The total system can have up to 16 clusters, the cluster address will therefore 

be in the range of 0 to 15. 

A 16 bit value where each bit conesponds to the module or cluster with 

address equal to the bit's position (0 to 15) within a 16 bit word. All 16 
modules in a cluster, alternatively all 16 clusters in the system can then be 

enabled/ disabled through a single 16 bit value. 



302 

INTER-CLUSTER COMMUNICATION: 

Inter Cluster bus 

Bidirectional link connecting two neighbouring clusters. 

master controller 

The controller currently in control of the inter cluster bus. 

slave controller 

The controller currently not in control of the inter cluster bus. 

INTRA-CLUSTER COMMUNICATION: 

Cluster Control bus 

Shared bus connecting all ring bus modules. Consist<> of three buses: The 

Arbitration bus, the Address bus and the Module Conu·ol bus. Additionally, a 
number of related signal lines is also a part of the cluster control bus. 

arbitration 

The process of selecting one out of (potentially) several modules 
simultaneously competing for a common resource of some kind or another. 

Arbitration bus 

Signal lines implementing the arbiu·ation mechanism used for getting access 
to the Address bus. 

emergency message 

5 bit, high priority broadcast message transfened on the Arbitration bus. 

Typical use are for signalling urgent events as power fail and system reset. 

Address bus 

Used for u·ansfetTing the address information needed to set up a Ring bus 
transfer. 

Module Control bus 

Each PE module is connected to its local controller through its own dedicated 
signal line. This line is bidirectional and is used by the conu·oller for giving 
commands to as well as reading status from the individual PEs. The cunent 

function of this line is determined by the state of three associated shared 

signal lines. 



303 

RING BUS TERMINOLOGY: 

bus 

A number of signal lines functionally to be regarded a<> an entity, transferring 
control or data information. 

Ring bus 

Interconnection network built from unidirectional, point-to-point bus links. 
Each ring bus module has an input port and an output port, the output port of 
module "n" being connected to the input port of module "n+ 1 ".Coming to the 

end, the output port of the last module is looped back and connected to the 
input port of the first. 

bidirectional ring bus 

Double ring bus system, permitting simultaneous transfers in both directions, 
left and 1ight. 

right transfer direction 

TransfeiTing data from ring bus module "n" to module "n+ 1 ". 

left transfer direction 

TransfeiTing data from ring bus module "n" to module "n-1 ". 

wrap-around transfer 

A left direction transfer where the address of the last destination module is 
greater than the address of the source module, or a right direction u·ansfer 
where the address of the last destination module is less than the address of the 
source module. That is, when the 1ing is visualized as a linear aiTay of 
modules 0 (exu·eme left) to N-1 (exu·eme right), with modules 0 and N-l 

connected together to form a ring, a wrap-around transfer will ''go around" 
the ring transfening data between modules 0 and N-l in either direction. 

non wrap-around transfer 

Transfers not including the transfer of data between modules 0 and N-l, in 
any direction. 

Ring bus module 

Processing Element (PE) or controller. 

Ring bus segment 

The mechanism for u·ansfening Ring bus data from a module's input port to 

its output port. Each Ring bus module has two Ring bus segments, one for left 
u·ansfers and one for light transfers. 



304 

segment busy 

The Ring bus segment is cutTently taking part in a Ring bus transfer. This 

transfer can be a pure forwarding of data received from the preceding Ring 
bus module, or, if the module is selected as destination for the data, the data 
is copied into the module's local buffer before it is transferred to the next 
module. In both cases the segment is "busy" as far as other transfer requests 
are concerned. 

segment ready 

If a segment is not busy, it is ready (to take part in a Ring bus transfer). 

segment select 

The process of allocating a ready segment to a requested transfer, moving the 

segment to the busy state. 

segment unselect 

The process of de-allocating a busy segment, moving it to the ready state. 

module busy 

A module is busy if it is unable to receive new data. This will be the case if 

the module is still occupied with processing (old) data and no more local 
buffer space is available to buffer incoming new data. 

module ready 

If a module is not busy, it is ready (to receive new data). 

NOTE. Beware of the difference between segment busy and module busy: Segment busy is 
related to Ring bus transfers and means that the module's Ring bus intetface (left or right) is 
blocked as far as participating in new Ring bus u·ansfers ar·e concerned. Module busy, however, 
means that the module is unable to accept new data for local processing. The module's Ring bus 
(left and right) segments, however, may well be ready and available for data forwarding to other 
Ring bus modules. 

transfer path 

All Ring bus segments involved in petforming a par·ticular· Ring bus transfer. 
All these segments (left or right) will be busy during the entire transfer. 

neighbouring module 

The next module in the u·ansfer path, that is, the module to the immediate left 
or right of the module in question, depending on the direction of u·ansfer. 

source module 

The module requesting and supplying the data in the u·ansfer. 

destination module 

A module receiving (and possibly forwarding) data in the u·ansfer. 



305 

last destination module 

The destination module being the last along the transfer path. The last 
destination module removes the data from the Ring bus after storing it in its 
local memory, it does not forward the data to its neighbouring module. 

transfer request 

To perform a data packet transfer to one or several destination modules, a 
Ring bus module must first request the controller to use the Ring bus. 

transfer request message 

Message transferred on the Address bus requesting permission to perform a 
Ring bus data packet transfer to a specified set of Ring bus (destination) 
modules. 

transfer grant 

Permission issued by the controller to petform the requested transfer. 

transfer reject 

Permission to petform the requested transfer is denied by the controller. 

pending transfer 

A transfer requested, but not yet granted nor rejected. 

pending transfer queue 

The list of pending transfers. 

transfer release 

When the data packet transfer is finished, the transfer must be released. All 
Ring bus segments being allocated to the transfer are then unselected, thereby 

going from the busy to the ready state. 

SYSTEM COMPONENTS: 

PE 

Processing Element. A module doing some kind of processing of the image 

data. The term processing is here to be interpreted in the broadest possible 
way, including vatious types of image filtering, image reformatting, 

statistical computations as well as feature exu·action type of operations. 

controller 

A dedicated module executing control and service functions for the PEs in the 

cluster. 



306 

cluster 

A collection of up to a maximum of 15 PE modules and one controller 
module. The PEs and the controller are interconnected by two unidirectional 
ring bus systems. One ring bus permits transfers in the right direction, the 

other in the left direction. 

total system 

A collection of up to 16 clusters. 

local cluster 

The cluster in which the source module of a data transfer is located. 

remote cluster 

Another cluster than in which the source module of the data transfer is 

located. The remote cluster is the destination of the data transfer. 

local controller 

The local cluster's controller. 

remote controller 

The controller of the remote cluster being the destination of the data transfer. 

TRANSFER ENTITIES: 

tag 

packet 

Two extra bits accompanying the 16 bit Ring bus data values. The tag is used 
to identify the type of packet and to distinguish the last word in the packet 

from the rest of the packet. 

An entity of data to be transfened on the Ring bus. Each packet consists of a 
header patt, containing information about the packet, and a data part. There 
ar·e two types of packets, data and control packets. 

local packet 

Packet addressed to one or several destinations, all residing within the local 

cluster. 

remote packet 

Packet addressed to one or several destinations, all residing within a remote 
cluster. 



307 

data packet 

SODP 

EODP 

Packet containing relatively large quantities of image or ··general purpose" 

data. To transfer a data packet, access to the Ring bus must first be requested 
and granted by the controller. 

Start-Of-Data-Packet. First word in data packet. Not explicitly tagged, but 
must be decoded by the module when receiving the first word tagged as a data 
packet. 

End-Of-Data-Packet. Last word in data packet. Explicitly tagged. 

control packet 

SOCP 

EOCP 

header 

Packet containing a small quantity of data intended for module 
synchronization and conu·ol. The u·ansfer of conu·ol packets on the Ring bus 

does not require permission from the conu·oller. 

Statt-Of-Control-Packet. First word in control packet. Not explicitly tagged, 

but must be decoded by the module when receiving the first word tagged as a 
conu·ol packet. 

End-Of-Control-Packet. Last word in control packet. Explicitly tagged. 

First pat't of packet, containing information about the packet. Depending on 

whether the packet is a local or a remote packet, the header consists of a local 

header only or a remote and a local header. 

local header 

Contains destination address information for addressing within the local 

cluster. 

remote header 

Contains destination address information for addressing a remote cluster. The 

remote header is removed by the remote controller before forwarding the 
packet onto the remote cluster Ring bus. 



308 

TRANSFER MODALITIES: 

local broadcast transfer 

Data or control packet transfer from one Ring bus module to all other Ring 
bus modules within the same cluster. 

remote broadcast transfer 

Data or control packet transfer from one Ring bus module to all other Ring 
bus modules in another cluster than in which the sending module is located. 

global broadcast transfer 

Data or control packet transfer from one Ring bus module to all other Ring 
bus modules in all clusters. 

local multicast transfer 

Data or control packet transfer from one Ring bus module to several other 
Ring bus modules (but not all) within the same cluster. 

remote multicast transfer 

Data or control packet transfer from one Ring bus module to several other 
Ring bus modules (but not all) in another cluster than in which the sending 
module is located. 


