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PREFACE 

The bulk of this work was carried out at the Norwegian Institute 
of , Technology, div. of Engineering Cybernetics, and SINTEF, 
div. of Automatic Control, in the period 1981-1983. I left 
Trondheim for a new assignment the late fall of 1983, so that a 
large portion of the material has been "sleeping" for two years 
prior to publication. This is unfortunate in view of the rapid 
development of digital technology that has taken place in the 
meantime; a different approach to some of the hardware related 
issues (spectrum analysis using BBDs, e.g.) would certainly have 
been taken today. A positive aspect of the delay is that during 
the time passed, some of the results and techniques derived in 
this thesis have been incorporated into commercial equipment. 
This has allowed for the presentation of some practical results 
in the summary of this thesis, which would not have been avail
able two years ago. 
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1. INTRODUCTION. 

During the past two decades, ultrasound-based techniques have 
become indispensable tools in several areas of noninvasive 
diagnostics. Echo amplitude imaging, the ~medical sonar~, came 
i~to common clinical practice already in the early 1970~s, 
primarily in obstetrics and cardiology. It is now used routinely 
in a variety of fields. There has also been a growing interest 
in the clinical application of Doppler ultrasound far the 
measurement of blood velocity in humans. The underlying prin
ciple is the Doppler effect. i.e., the change in frequency that 
occurs when a soundwave is scattered by the red cells of flowing 
blood. By measuring this frequency shift, the velocity of blood 
in most of the larger vessels and in the heart can be measured 
noninvasively. A number of diseases in the circulatory system 
can be detected and assessed using Doppler ultrasound. A 
typical example of its usefulness is in the diagnosis of obstruc
tions to blood flow, which can be detected from a local increase 
in the blood velocity. 

The subjects of this dissertation are the design, analysis and 
evaluation of methods for signal processing in Doppler ultrasound 
blood velocity meters, with some emphasis on applications in 
cardiology. A number of different topics is covered; optimal 
filtering of the received Doppler echos, processing of the 
Doppler signal for extraction of its information contents 
(frequency estimation, spectrum analysis>, and, finally, a method 
for the real time combination of Doppler measurements and echo 
imaging. The thesis is divided into several self contained 
parts, which are summarized in detail in Section 3. However, to 
provide necessary background for the reader who is not familiar 
with Doppler techniques, a brief review of the basics of diag
nostic ultrasound will first be given. 

2. BASICS OF DIAGNOSTIC ULTRASOUND 

The use of continuous wave <CW> Doppler for the measurement of 
blood velocity was reported by Satomura as early as 1957 [1]. 
The CW Doppler instrument is simple, but it gives no range 
resolution in the measurement. This deficiency was overcome by 
the pulsed wave <PW> Doppler instrument, first reported by Baker 
in 1967 [2]. The sampled nature of the pulsed Doppler introduces 
a limit on the maximum frequency or, correspondingly, the maximum 
blood velocity that can be measured. Later on, effort has been 
put into the development of different types of instruments that 
give range resolution with maintained ability to measure high 
velocities <the correlation Doppler principle [3J, PRBN codes 
[4]). However, in spite of considerable effort, no clinically 
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useful device based on any of these concepts has been presented, 
and they have, therefore, been omitted from this review. 

2.1.1 Continuous w•v• Dcppl•r 

Fig. 1 shows a block diagram of a simple CW Doppler instrument 
[5]. A soundwave with frequency f

0 
(in the range 1-20 MHz) is 

emitted continuously towards a vessel containing blood flowing 
with velocity ~ <time steady plug flow assumed). The back
scattered ultrasound then has the center frequency f 0 + fd, 
where the Doppler frequency fd is given as [6] 

( 1) 

cb 

where ~t' ~r are the axes of the transmitting and receiving 
transducers, respectively (see Fiq. 1>, and cb is the speed of 
sound in blood <1560 m/s). When nt and ~r are colinear with 
the angle « to the blood velocity, the magnitude of the Doppler 
shift becomes 

cos (X (2) 

Thus, the Doppler shift is proportional to the axial velocity 
component l~lccs cc, that is, the component of the velocity that 
is parallel with the soundbeam direction. The angle «, there
fore, needs to be known to determine the velocity from the 
measured Doppler shift. By convention, blood moving towards the 
transducer has a positive axial velocity, since it gives a 
positive Doppler shift. 
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Fig. 1 Measurement of blood velocity using CW Doppler ultrasound. 

The received Doppler echos may be written on the form [6] 

a<t> = Re<~<t>ejwot} 
= l (~(t)ejwOt+ x*(t)e-jwOt) 

2 (3) 

where * denotes complex conjugate and w0 • 2wf 0 is the angular 
ultrasound frequency. The scattering of ultrasound from blood is 
incoherent, and it can be shown that the echo from blood is a 
Gaussian stochastic process [8J. The process is narrowband, 
since the blood velocity is much smaller than the speed of sound. 
The complex variable x(t) in <3> is referred to as the complex 
envelope of •<t>, or simply the complex Doppler signal. The 
complex exponentials in <3> are known entities~ determined by the 
reference oscillator. Hence, all information about the blood 
velocity in the received signal is contained in its complex 
envelope. 

It is convenient to perform the signal analysis on the complex 
envelope K(t) (baseband processing>, rather than using the 
received RF signal •<t>. The complex Doppler signal can be 
extracted from the received echo using compl•x <or quadrature> 
demodulation: The RF echo is multiplied by 2•xp(-jw0 t>, 
yielding the product terms x(t) + x*<t>exp(-j2w0 t>. The second 
term is narrowband, centered around -2w0 , and it can be removed 
by lowpass filtering the product at a cutoff frequency fc << 2w0 
<see Fig. 1>. The cutoff frequency determines the noise band
width of the CW instrument, which must be higher than the maximum 
Doppler shift that is to be measured. Since v/cb << 1, it is 
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easy to implement CW Doppler systems with sufficient bandwidth to 
measure velocities up to 6-7 m/s. This is the upper limit of 
blood velocities that may occur in the human body. 

A high-pass filter with cutoff frequency fhp is inserted into the 
signal path in Fig. 1. It is required because the Doppler 
signal from blood is obscured in the received signal by high
intensity echos from tissue and vessel walls. Tissue structures 
move more slowly than the blood (possible exceptions are valve 
motions in the heart>, and these clutter signals can, therefore, 
be removed by high-pass filtering. Nevertheless they represent 
problems, as they may be as much as 80-100 dB stronger than the 
desired signal from the blood, thereby causing dynamic range 
problems. The cutoff frequency of the high-pass filter is 
normally chosen in the range 100 Hz - 1.5 kHz, depending on the 
ultrasound frequency and the application. The fractional 
scattering crossection of blood increases as f~ C8J, whereas the 
intensity of the echos from tissue <specular reflections> stay 
largely unchanged with frequency. Therefore, the requirements to 
dynamic range of the receiver and efficient highpass filtering 
reduce rapidly with increasing ultrasound frequency. - An 
unfortunate side-effect of the high-pass filtering is the 
removal of low frequency Doppler shifts from blood. This may 
cause systematic errors in measurements of blood flow on the 
basis of the mean Doppler frequency [6]. 

In the plug flow situation shown in Fig. 1, each red blood cell 
that travels through the intercept region of the transmitting and 
receiving beam <the sample volume> generates a Doppler burst of 
finite time duration or, correspondingly, nonzero bandwidth. 
This is referred to as the transit time affect C7J. At any time 
instant, the backscattered echo signal is formed as the sum of 
individual contributions from a large number of randomly located 
blood cells within the sample volume. The power spectrum 
of ~(t), therefore, becomes a narrow frequency distribution 
centered around f 0 + fd, rather than a single Doppler line. 

Velocity gradients in the blood vessel cause the power spectrum 
to become broader than in the plug flow case. If the transit 
time effect is neglected and the sample volume is insonified 
uniformly, the power spectrum of the complex Doppler signal 
corresponds directly to the velocity distribution in the sample 
volume C7JC8J. The constant of proportionality between velocity 
and frequency is given by the Doppler equation. Sp•ctrum 
analysis, therefore, has became the common processing method for 
the extraction of velocity information from the Doppler signal. 
Alternately, single frequ•ncy •stimatcrs may be employed for this 
purpose. These are simpler processing devices, implemented in 
the time domain, which extract a single parameter from the power 
spectrum of the Doppler signal <or equivalently, the velocity 
distribution>. Parameters which relate to the center frequency 
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of the spectrum are mean [9][10] and root mean square Doppler 
shift [5][11][12]. Other parameters of interest are the maximum 
Doppler shift [13], or the mean square bandwidth of the spectrum 
[55]. 

The Doppler shift from blood is in the audible range for the 
ultrasound frequencies that are used in diagnostic ultrasound. 
Thus, by listening to Ra<x<t>> or Im<x<t>> <or both, in stereo>, 
the operator can detect the presence of a Doppler signal and 
evaluate its characteristics qualitatively <e.g., center fre
quency (pitch>, narrowband vs. broadband signal). The presence 
of an audio signal greatly reduces the problem with the angular 
dependency of <2>: In clinical practice, the transducer may be 
angulated until the maximum frequency shift is heard; most 
often a small angle to the vessel has then been obtained. Errors 
due to a small angle offset may then be neglected, since 
cas a = 1 - ~w2 = 1 when a is small. 

The ultrasound carrier frequency in CW Doppler is normally chosen 
such that the signal-to-noise ratio is maximized. The loga
rithmic attenuation of ultrasound per unit length of tissue 
increases linearly with fa [14] whereas the scattering of ultra
sound from blood increases as f~. This has led to the use of 
relatively low-frequency ultrasound (1-3.5 MHz> for measurements 
on vessels deeper than 4-5 em, and higher frequencies (up to 
20 MHz) for use on the more shallow peripheral vessels and 
peroperative applications. 

The blood velocity in arteries has pulsatile time variations, 
with period given by the heart rate. If the instantaneous 
blood velocity is to be measured, scarce time is available for 
analysis; the blood velocity may change significantly over a 10 
ms time interval. The finite analyzing time inevitably leaves 
errors (bias, variance) in the velocity estimate. It is, there
fore, important to derive methods that extract a maximum of 
information contents from the signal. 

2.1.2 Pulsed Dapplar 

A block diagram of a pulsed wave <PW> Doppler instrument is shown 
in Fig. 2, together with some associated timing signals [16]. In 
pulsed measurements, bursts of ultrasound with center frequency 
fa and duration Tg, are emitted at a constant pulse repetition 
frequency <PRF> ~. • 1/T5 • The bursts are phase coherent with 
respect to the internal reference oscillator. A common trans
ducer is employed for both transmission and reception. The 
tquadrature demodulator serves the same purpose as in CW Dopp
ler. The demodulated echo from each burst is filtered through a 
low-pass receiver filter prior to range-gating <sampling) an 
elapsed time Td after the pulse emission. If finite bandwidth 
effects are nelected, this signal sample originates from a loca-
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lized sample volume, extending longitudinally from ctTd/2 to 
ct<Td-Tc>/2 from the transducer~s ·face, where Ct denotes the 
speea a~ sound in tissue (z 1540 m/s). Thus, the PW Doppler 
gives range resolution. As in CW Doppler, the lateral dimensions 
of the sample velum~ are determined by the width of the sound
beam. 

xmit 

trans
ducer 

xmit 

emitted 
signal 

sample 

Fig. 2 

oscillator 

fo 

quadrature demodulator 

sample 

saoothing filter 

Block diagram of a pulsed Doppler instrument. 

i<t> 

The emitted soundbursts are phase coherent. The signal sequence 
(x(kT5 >> can, therefore, be regarded as samples of the continuous 
Doppler signal x(t) that would have been measured if the selected 
sample volume were insoniffed by a CW Doppler with no inter
ference from the surrounding environment [8]. It follows from 
complex sampling theory that x(t) can be reconstructed without 
errors by lowpass filtering <smoothing> of the sampled sequence, 
provided that the total bandwidth of x(t) is smaller than the 
pulse repetition frequency f 5 [18]. The smoothing filter is 
normally an analog low-pass filter with a symmetric frequency 
response that rolls off at the Nyquist frequency <Fig. 3<a>>. 
Correct reconstruction is obtained when the magnitude of the 
maximum Doppler shift in the CW Doppler signal, fmaX' is less 
than the Nyquist frequency, i.e., 

(4) 
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The high-pass filter in Fig. 2 serves the same purpose as in CW 
Doppler. 

Fig. 3 

L I ~ • f t 
-f./2 f

1
/2 

a) b) 

Frequency responses of smoothing low-pass filters for a 
pulsed Doppler instrument. 
a> Symmetric frequency response. 
b) Asymmetric frequency response. 

A pulsed Doppler system is always associated with some degree of 
range ambiguity. The echo sampled at the elapsed time Td from a 
pulse emission may contain components from several sample 
volumes, located at the ranges ct<Td + nT5 >12, where n = 0,1, ••• 
It was initially assumed that the predominant component origi
nated from the first <closest> range cell, n • 0. This holds if 
the signal from then • 1,2, •• ranges are so attenuated that. they 
become obscured by the signal from the closest range cell. This 
may, however, not always be the case; this situation will be 
described later. 

A necessary condition to avoid spurious sample volumes between 
the transducer and the range of interest is that the echo from 
one burst has arrived before a new one is emitted. If the sample 
volume of interest is located at a range d, this is equivalent to 
requiring 

(5) 

Equality is attained if the emission of a soundburst follows 
immediately after the sampling of the echo of the previous one 
<~optimal PRF~>. Combining <2>, <4>, and <5> now yields the 
well-known formula for the maximum unambiguous range-velocity 
product of a pulsed Doppler instrument [6J, 

dl~lcos a i (6) 
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This equation is plotted in Fig. 4 for various ultrasound fre
quencies [18J. In cardiology, velocities up to 7 m/s may be 
encountered in ranges down to 12-15 em. As would be expected 
from the figure, violation of the range-velocity product fre
quently occurs, even when the very low carrier frequency 1 MHz is 
employed. When (6) is violated, the smoothed signal ~(t) in 
Fig. 2 becomes an aliased version of the continuous time Doppler 
signal x(t) from the selected range cell; its power spectrum no 
longer corresponds to the velocity distribution in the sample 
volumem This effect may lead to a severe underestimation of the 
velocity, or even an apparent reversal of its direction; it has 
caused extensive confusion and misinterpretations in the clinical 
literature in the past [18]. 

Fig. 4 
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Maximum unambiguous axial velocity component <corre
sponding to the Nyquist limit) versus range in pulsed 
Doppler. Reprinted from [18]. 

The resolution of a PW instrument can be taylored to suit 
different needs by the manipulation of variables such as carrier 
frequency, transducer focusing and bandwidth, burstlength, and 
the bandwidth of the receiver. Resolution and sensitivity are, 
however, conflicting requirements in pulsed Doppler [17]. In 
situations with sensitivity prDblems <which are common in cardio
logy>, it is an advantage to use a relatively large sample 
volumec A large sample volume may also help to keep some 
fraction of the sample volume within the area of interest <e.g., 
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a small jet> throughout the entire cardiac cycle. This may be 
impossible if a small sample volume is employed, due to disloca
tions when the heart contracts [18]. 

The velocity limit of a pulsed Doppler instrument can be in
creased in several ways: 

i) An obvious method is to lower the carrier frequency f 0 as 
much as possible <see (6)). However, this reduces the 
fractional scattering crossection from blood, so that a 
reduction cannot be extended indefinitely without severely 
degrading the signal-to-noise ratio of the measurement. A 
low ultrasound frequency also gives dynamic range problems, 
because of the relative increase of clutter echos from 
tissue. The lowest useful ultrasound frequency for cardiac 
Doppler seems to be on the order of 1 MHz. 

ii) A different principle can be used when the axial velocity 
component of the blood is of mainly one direction: A smoo
thing filter with an asymmetric frequency response can then 
be employed, Fig. 3(b). If the axial velocity in the sample 
volume is of one sign only, this approach increases the 
range velocity product (6) with a factor of two. This 
particular approach has not been used in practice, but 
equivalent techniques have been applied in spectrum analysis 
<see Fig. 3.8 in the report "Real Time Spectral Analy-
sis.. reprinted in chapter V of this thesis>. 

iii) A third possibility is to increase the PRF above the limit 
<S> and run the pulsed Doppler with deliberate range 
ambiguity, i.e., with one or more spurious sample volumes 
located between the transducer and the sample volume of 
interest. If the increased velocity is confined to a small 
region in space (as is the case in valvular stenoses or 
insufficiencies), the ambiguity can most often be resolved 
using independent information: Using pulsed Doppler with a 
normal, nonambiguous PRF, the range(s) where <4> is vio
lated can be determined, but the magnitude of the Doppler 
shift cannot be quantified. By switching to a higher, 
ambiguous, PRF, the high Doppler shifts can be measured 
without frequency aliasing. In the latter case, the 
associated ambiguous sample volume<s> must be checked 
out one by one, using a normal PRF, to exclude the possi
bility that the high velocity recorded originated from any 
of them. This method was first reported by Hatle et al. 
[18, pp. 171J, and it is now commonly referred to as ~High
PRF~ technique. 

The velocity information can be extracted from the smoothed 
signal ~(t) in Fig. 2 using the same methods as in CW Doppler. 
If the dimensions of the sample volume are small compared to the 
vessel, the velocity gradients within it become small, and the 
use of single frequency estimators for signal analysis may be 
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acceptable <the Doppler spectrum is narrow-band in this situa
tion>. 

Note from Fig. 2 that it is possible to sample the echo from each 
soundburst at several different ranges, and process the Doppler 
signals from the different range cells in parallel. In this way, 
the entire axial velocity field along the soundbeam may be 
examined. This type of instrument is referred to as a Multi
Gated Doppler with parallel signal processing. It has not 
come into widespread use, because of the relatively large amount 
of hardware that is required. 

A digital approach to multigated Doppler has been developed by 
Brandestini [19J-[21J. He substituted the analog highpass 
filter and the smoothing lowpass filter in Fig. 2 with a discrete 
time high-pass filter, and employed discrete time single fre
quency estimation to extract the velocity information. The 
combination of discrete time signal processing and high-speed 
hardware allowed the processing units of his instrument to be 
timeshared <multiplexed) between the Doppler signals from a large 
number of range gates. This type of instrument is referred to as 
a multi-gated Doppler with serial signal processing. In concept, 
it is similar to the Moving Target Indicator used in Radar C22J. 
It has the attractive property that the amount of hardware 
becomes largely independent of the number of range gates. 
The digital approach to multi-gated Doppler has later been 
refined by Hoeks C23J. 

In cardiac ultrasound, a relatively low carrier frequency is 
required to obtain deep penetration and a high range-velocity 
product. As previously pointed out, the power ratio between 
tissue clutter and Doppler signal from blood may then become 
extremely unfavorable. While an analog high-pass filter with 
100-120 dB stopband attenuation is relatively simple to design, a 
comparable performance of a digital multigated instrument with N 
gates requires 16-20 bits A/D convertion 2N times <complex 
signal> per T5 time units. Typically, T5 is in the range 25-
200 ps, depending on the depth of the vessel. This kind of AID 
converter performance is not yet easy to obtain, which is 
probably the reason why the majority of the digital Doppler 
instruments so far reported have employed high ultrasound 
frequencies, intended for measurements on peripheral vessels. 

2.1.3 Flow imaQinQ 

A two dimensional still-image of blood flow (arteriography, flow 
map, 2D Doppler image> may be formed by scanning the sample 
volume of a PW Doppler over a crossection of a vessel and map the 
corresponding two-dimensional distribrution of the velocity 
C24JC25J. The technique is illustrated in Fig. 5, where a multi-
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gated Doppler instrument is employed in order to speed up the 
data acquisition. The parameters mapped may several, e.g., the 
the mean Doppler frequency, the bandwidth of the Doppler spec
trum, or simply the power of the Doppler signal in each pixel of 
the image. The magnitude of the parameter<s> is displayed in 
color or grayscale coding. 

The data acquisition time for a 2D flow image may be redLtced 
strongly by the combined use of an electronically swept beam and 
a multigated Doppler. Using this approach, Pourcelot reported 
real-time flow imaging of the carotid arteries already in 1979, 
mapping the mean Doppler shift in 10 x 10 spatial pixels at a 
rate of 15 imgs/s [27J. His system employed 10 transducers in a 
linear array configuration and a 10 channel multi-gated instru
ment with parallel signal processing. A similar approach, 
employing CW Doppler, has been reported by Arenson et al. [41J. 

Fig. 5 
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Block diagram of 2D flow imaging based on a multigated 
Doppler instrument. Reprinted, with permission, from 
[26]. 

The real-time combination of 2D echo imaging and flow imaging of 
the heart was accomplished more recently by two different groups; 
Namekawa, Omoto et. al [53J-[55J, and Bommer [56]. Both systems 
employ the combination of phased array sector scanning and a 
multi-gated Doppler with serial signal processing. The approach 
of the Japanese group is especially interesting, as both magni
tude and bandwidth of the Doppler shift are mapped simulta
neously. The mapping of bandwidth is motivated by the fact that 
in regions with disturbed flow, there are large velocity gra
dients in the sample volume and correspondingly, a large band-
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width of the Doppler spectrum. The combined mapping of mean 
frequency and bandwidth reduces problems due to aliasing, which 
are inherent in any PW Doppler system, under conditions of 
disturbed flow. The japanese flow imaging system maps a positive 
mean Doppler shift to red, a negative shift to blue, whereas the 
mean square bandwidth of the signal controls the amount of green 
in each pixel of the image. The intensity of a color is propor
tional to the magnitude of its associated spectral parameter. 
The color-flow image is presented as an overlay to the B&W echo 
image. 

2.2 Clinical applications of Doppl•r ultrasound 

Doppler methods are currently used in a variety of clinical 
applications. Some of the most important are listed below; 

detection and assessment of valvular stenoses, regurgita
tions, shunts, and similar defects that give disturbed flow 
patterns in the heart; 

detection and assessment of peripheral vascular disease; 

measurement of blood flow; 

real time flow mapping of the heart. 

One of the most successful applications of Doppler ultrasound 
has been in cardiology, where the pressure drop across an 
obstruction to flow, ~' can be estimated noninvasively from 
measurement of the spatial maximum velocity, vmAX' of the blood. 
This maximum velocity occurs in the center of the orifice of 
the obstruction. If the pressure drop is high enough to have 
clinical significance, it can be estimated from the Bernoulli 
equation in the very simple form [301 

2 2 
hp = 4 Vmax Cmm Hg/(m/s) l (7) 

Both mean and peak pressure drop may be estimated from the time 
course of the spatial maximum velocity over the cardiac cycle. 
Thus, a measure for the additional load on the heart caused by 
e.g. a valvular stenosis can be obtained by noninvasive means. 
The maximum blood velocity in the sample volume can be extracted 
from the Doppler signal using spectrum analysis [30], or by 
simpler analog tracking filter techniques [131. 

Localized stenoses in peripheral arteries can be detected from a 
local increase in blood velocity [261. Smaller plaques give 
disturbed flow near the vessel walls, which causes broadening of 
the velocity distribution or, correspondingly, ~spectral broade
ning' compared to normals [291. 
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Volume flow measurements using Doppler ultrasound may be per
formed in several ways; the simplest is to use a wide sample 
volume that covers the entire vessel crossection. If the vessel 
is insonified uniformly, it can be shown that the mean Doppler 
frequency f then becomes proportional to the spatial average 
velocity over the vessel crossection [7]. The constant of 
proportionality is given by the Doppler equation <2>, regard
less of the velocity profile. If the angle a and the area A of 
the vessel can be measured by some independent technique <e.g., 
echo imaging>, the volume flow can be calculated from the simple 
relation 

Q - (8) 

Alternately, volume flow can be calculated by measuring the 
entire spatial velocity field and integrate it over a vessel 
crossection [6J. The use of the latter method is limited 
to relatively large vessels, since the measurement of the 
velocity field becomes inaccurate if any of the linear dimensions 
of the sample volume becomes comparable to the vessel diameter. 

Examples on other successful applications of Doppler ultrasound 
are the measurement of blood flow in the human fetus [32J, intra
operative guidance for surgeons during brain- or open heart 
surgery [33J[34J, and post surgical monitoring of cardiac output 
using implantable transducers [50]. Also, PW Doppler has been 
employed as a measurement device in a pneumatic servo system 
for the noninvasive measurement of human arterial pressure 
waveforms [35]. 

Real-time color-flow mapping is a new technique, and its final 
role in the clinical practice has not yet been established. 
However, the method has already proven to be very useful in the 
detection of multiple lesions of the heart [54]. Also, it is 
currently the only noninvasive method that can actually visualize 
jet flow. This gives invaluable information about the angle 
between a high-velocity jet and the soundbeam, information that 
can be used to improve the accuracy of a subsequent quantitative 
CW or High-PRF PW examination. When the sensitivity of the flow
map systems approaches that of conventional Doppler systems, it 
seems likely that the time required for the examination of a 
patient with a suspected flow anomaly will be reduced. 

2.3 Echo amplitud• imaging 

Ultrasound echo imaging is based on the emission of short pulses 
of ultrasound <2-10 MHz> into the body. When the pulse encoun
ters a tissue boundary, a change of acoustical impedance occurs. 
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A fraction of the pulse energy is then reflected. These reflec
tions can be picked up as echos on the surface of the body. By 
measuring the time-of-flight from pulse emission to echo return, 
the depth of the tissue inhomogeneity can be determined. Various 
im~ging modalities are used in diagnostics. The simplest is 
the A-mode <~mplitude>, which is simply an oscilloscope display 
of the echo amplitude vs. time. 

Echos from a beating heart change position during the heart 
cycle. These movements can be visualized using M-mcda <Motion>, 
a display format where time runs along the horizontal axis and 
tissue depth (i.e., elapsed time from pulse emission to the 
echo return> along the negative vertical axis. The display is 
intensity modulated with the amplitude of the received echos, 
giving the type of display shown in the right part of Fig. 6. 
M-scan provides excellent time resolution of, e.g., valve 
motions, because of its high line update rate <PRF ~ lOOO'Hz>. 

Fig. 6 Combined B-scan (left> and M-mode <right} of the 
heart. The B-scan shows the left atrium, mitral valve, 
left ventricle and the aorta. The M-shaped echo in 
the M-mode is the movement of the mitral leaflet. The 
M-mode is recorded along the dotted line near the 
middle of the sector. 
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However, the by far most useful imaging modality is two dimen
sional real-time imaging, orB-scan <Brightness>. A 20 image 
with an update rate on the order of 3o images per second can be 
formed by repeated scanning of the soundbeam across the area 
imaged. The echos intensity modulate the display in the same way 
as in M-mode. In obstetrics and abdominal imaging it is common 
to use a set of transducers configured as a linear array. Each 
transducer may be selected for transmit and receive by means of 
electronic multiplexing. This approach yields an image with a 
rectangular format. For cardiac applications, the best acous
tical window available is the small space between two adjacent 
ribs in the thorax. In this situation, a sector scan (shown in 
Fig. 6) is a better choice, as the faceplate of a sector trans
ducer can be made much smaller than that of a linear array with 
the same field of view at larger depths. A sectorial scan can be 
obtained by either mechanically sweeping a transducer across the 
sector <using an electrical motor>, or by electronically steering 
the soundbeam from a multielement transducer <the phased array 
method). Both methods are used in practice. A more complete 
review of imaging techniques can be found in numerous textbooks, 
e.g. Wells [28]. 

2.4 Sam• limiting factors in ultrasonic imaaina syst•m• 

From a clinical perspective, the ultimate cardiac diagnostic 
ultrasound instrument would provide high resolution, three
dimensional real time images <at least 15 imgs/s) of both tissue 
structures and the blood flow in the heart. One may think that 
such a device can be implemented simply by scanning the soundbeam 
sufficiently rapid over the area to be imaged. However, there 
are physical limitations to this. The speed-of-sound and the 
maximum depth range of such an instrument limit the PRF along 
each direction in space to the value given by <5>, i.e., approxi
mately 5 kHz for a 15 em depth range. With an image update 
rate of 15 per second, this allows for the acquisition of echos 
from 330 bursts per image. For comparison, a high-quality 20 
echo image alone consists of data from 120 bursts, typically. 

The acquisition of echo amplitude information for imaging must be 
considered as a relatively efficient process, since only one 
ultrasound pulse is needed to collect the data for an image 
vector. For cardiac imaging, this time is on the order of 
200 vs. The beam, in contrast, must remain stationary for a much 
longer time period if the blood velocity along the beam axis is 
to be estimated with any reasonable degree of accuracy <multi
gated Doppler processing assumed>. A 2 ms Doppler signal segment 
may be analyzed with ~ 500 Hz frequency resolution, which 
corresponds to 20 cm/s velocity resolution with 2 MHz ultra-
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sound. If 2 ms of data is acquired per beam, the data acqui
sition process for flow imaging becomes 10 times slower than that 
for regular 2D imaging. 

The data acquisition rate may be increased by transmitting bursts 
into several directions of the field of view at the same time, 
but the number is strongly limited in practice: For one, it is 
hard to avoid interference, between the ·different beams. Another 
problem is the maximum spatial peak temporal average <SPTA> 
ultrasound intensity at the transducer~s face, which is limited 
to 100 mW/cm2 for safety reasons [36]. If several beams enter 
the body through a common surface, as would be the case in 
cardiac imaging, the acoustic intensity for each beam must be 
reduced accordingly. - Consequently, the signal-to-noise ratio 
degrades in direct proportion with the number of beams employed. 

Alternately, it is tempting to claim that the data acquisition of 
a combined echo/Doppler system may be speeded up by running 
independent echo and Doppler equipment simultaneously in a 
frequency multiplexed system. This approach has in fact been 
patented C49J. However, in practice, the large bandwidth and 
dynamic range required make it very difficult to obtain the 
necessary degree of isolation between the two systems. During 
Doppler measurements, therefore, the echo scanning must seize; 
otherwise phase-shifted echos from the sweeping soundbeam 
interfere with the highly sensitive Doppler measurement [57]. 
All clinically useful schemes for the combination of Doppler and 
2D imaging yet presented have either been based upon some kind of 
timesharing between the imaging and Doppler data acquisition, or 
simply extracted both amplitude and phase <Doppler> information 
from the echo of the same soundburst. 

Regardless of timesharing problems, pulsed Doppler systems have 
intrinsic limitations of their own. One limitation is that only 
the axial blood velocity component is measured. This may be 
solved by insonifying each sample volume from different direc
tions and measure different projections of the velocity. 
However, the limited number of acoustical windows in the thorax 
again makes this approach difficult in measurements on the 
heart. The uncertainty of the angle between the soundbeam and 
the flow reduces anyway when a two- or three-dimentional flow map 
is present, since the direction of the velocity vector often can 
be assessed from it <see Fig. 5). Other potential problems are 
violation of the range-velocity product, and inadequate signal
to-noise ratio. The latter problem may be reduced by trading off 
resolution for sensitivity. 

The above discussion indicates that real time measurement of 
three-dimensional velocity fields in the heart is a very diffi
cult task. The real time combination of 2D echo imaging with a 
low velocity-resolution flow image of the type presented by 
Namekawa et al. [53JC55J extracts about as much information as 

- 16 -



can be obtained with a single-beam system. Although the velocity 
resolution of their system is limited, it has nevertheless added 
value and insight in cardiology, because of its unique ability to 
visualize the presence, direction, extension and the dynamics of 
flow jets caused by obstructions or leakages in the heart [54J. 

3. SUMMARY AND CONCLUSIONS 

At the time this work was started, its main objective was to 
prepare grounds for the design of a multi-gated Doppler instru
ment to be used in real-time flow mapping. As is apparent from 
the preceding sections, cardiac flow mapping became a reality 
more than two years before this thesis was submitted. However, 
it is to be hoped that some of the results obtained may contri
bute to the design of systems with improved performance in the 
future. 

The work was concentrated in two main areas; 

i) improvement on signal processing in Doppler systems in 
general, with especial emphasis on discrete time methods 
that can be applied in pulsed multi-gated instruments with 
serial signal processing; 

ii) improve timesharing methods for the real time combination of 
conventional PW/CW systems with 2D echo imaging. 

The multi-gated Doppler system is the single most critical 
subsystem in a real-time flow imaging system. The method 
employing serial signal processing is a cost effective way of 
implementing such a system, although the performance of an all
digital implementation is still limited by the speed/accuracy 
product and cost of current AID converters. Also, the concept of 
serial signal processing superimposes severe restrictions on the 
complexity of the arithmetic operations that can be performed. 
The reason is the very large amount of data that must be pro
cessed. For example, a multi-gated Doppler instrument with 1 mm 
resolution and 15 em depth-of-field generates some 1.5 megawords, 
each of at least 12 bit width, that must be filtered and analyzed 
every second. The demand for simplicity of the signal processing 
algorithms is, thus, very strong. 

Within the general framework above, the dissertation consists of 
six self contained parts: 

I. K. Kristoffersen, 11 0ptimum Receiver Filtering in Pulsed 
Doppler Ultrasound Blood Velocity Measurements .. , IEEE 
Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, vol. UFFC-33, pp. 51-58, Jan. 1986. 
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II. "Discrete Time Estimation of the ·Mean Doppler Frequency 
in Ultrasonic Blood Velocity Measurements," IEEE Trans. 
Biomed. Eng., val. BME-30, pp. 207-214, Apr. 1983. 

III. "A Comparison between Mean Frequency Estimators for Multi
gated Doppler Systems with Serial Signal Processing," IEEE 
Trans. Biomed. Eng., val. BME-32, pp. 645-657, Sept. 1985. 

IV. "Time Domain Estimation of the Center Frequency and Spread 
of Doppler Spectra in Diagnostic Ultrasound," accepted for 
publication in IEEE TransActions on Ultrasonics, Ferro
electrics, and Frequency Control. 

V. "Real Time Spectrum Analysis in Doppler Ultrasound Blood 
Velocity measurements," SINTEF report * STF48 F84030, Nov. 
1984. 

VI. "A time shared 
imaging system, .. 
Biomed. Eng. 

ultrasound 
submitted 

Doppler measurement and 2D 
for publication in IEEE Trans. 

Individual summaries of these publications are given below. 

3.1 Paper I: Optimal receiver filtering in pulsed Doppler 

The importance of efficient receiver filtering in a pulsed 
Doppler system has been recognized by a number of investigators. 
There has been a general consensus in that the best tradeoff 
between axial resolution and signal-to-noise ratio is obtained 
when the bandwidth of the receiver filter is of the same order as 
that of the transmitted soundburst [6J[7J[23J[37J. However, this 
conclusion seems to have been reached in a rather intuitive 
manner. Based upon Angelsen's model of the scattering process 
from blood [8], Paper I derives the impulse response of the 
optimal receiver filter; i.e., the impulse response that gives 
the best signal-to-noise ratio for a given length of the sample 
volume. The time duration of this impulse response is denoted 
the range-gating interval in the following. The optimal impulse 
response becomes an eigenfunction of a covariance kernel, 
associated with its largest eigenvalue, over the range-gating 
interval. The covariance kernel is proportional to the envelope 
of the echo received from a point scatterer convolved with 
itself. 

In current medium-to-low resolution Doppler systems, the envelope 
of the echo from a point scatterer is approximately rectangular. 
In this case, it turns out that the impulse response of the 
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optimal receiver filter becomes nearly rectangular also, with 
time duration equal to that of the transmitted burst. This 
result is appealing, since a filter with a rectangular impulse 
response is simple to implement in hardware; it requires only an 
integration of the quadrature components of the received echos 
over the range-gating interval. Moreover, the bandwidth of such 
a filter may be varied simply by varying the length of the 
integration period. This type of input filter has previously 
been proposed by Peronneau et al. [37]. 

It is well known that the optimal receiver filter in Radar and 
Sonar reception is the matched filter [38J. The reason why the 
solution is different in diagnostic Doppler is that the envelope 
of the echo from blood is not known: The scattering of ultra
sound from blood is incoherent, caused by random fluctuations in 
its density and compressibility, whereas specular reflection from 
a <plane> distinct target <as is a common case in Radar> yields 
an echo with the same envelope as that of the emitted pulse. 

It is also shown in Paper I that when the bandwidths of the 
transmitted burst and the receiver filter are significantly 
different, the attainable signal-to-noise ratio is solely 
determined by the larger bandwidth. This result means that 
methods for combined echo/Doppler that are based upon the 
extraction of image (envelope) and Doppler information from the 
echo of the same soundburst easily become compromized: If a 
short soundburst (i.e., large bandwidth> is employed to get a 
good axial resolution in the image, it is impossible to obtain 
the same signal-to-noise in the Doppler measurement as if a 
longer burst of the same energy was used. 

3.2 Papers II-IV: Discrete time estimation of spectral param
•ters 

This part of the dissertation contains an evaluation of time 
domain methods for estimating parameters of the Doppler spectrum 
<mean frequency, bandwidth>. The advantage of using time-domain 
metods for this purpose is their computational efficiency: The 
spectral parameters are estimated directly, without need for an 
intermediate spectrum analysis. The basis for the first two 
papers <II,III> was methods previously established in the con
tinuous time domain [6J[7](9][10J, and the discrete time fre
quency estimators presented by Brandestini [19](20]. Brande
stini~s frequency detection scheme averaged a discrete time 
approximation to the instantan•ous fr•qu•ncy of the Doppler 
signal over the estimation interval. This estimator, however, 
suffers from a severe deficiency: it exhibits aliasing phenomena 
for signals with maximum frequencies well below the Nyquist 
frequency [39]. This deficiency was more recently overcome 
by Hoeks [23], who employed an adaptive interpretation of the 
instantaneous frequency to correct for aliasing. 
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In Paper II, a discrete time estimator of the mean Doppler fre
quency was derived and evaluated <computer simulations and 
experiments>. It has a simple structure, and it is well suited 
for a recursive implementation in a multigated instrument 
with serial data processing. The mean frequency estimate is 
formed as a weighted sum over samples of the complex Doppler 
signal's autocorrelation function at different lags. With 8 
lags, the estimator can be made practically unbiased for fre
quency shifts in the range <-0.43 PRF+w, 0.43 PRF+w), where 
the interval offset w can be chosen arbitrarily. Thus, in a case 
where the axial velocity field is of one sign only, velocities up 
to 90 percent of the PRF may be analyzed. 

In the next paper <III>, eight different implementations of 
the same estimator were studied in terms of bias and variance 
<numerical calculations only>. The purpose of that work was to 
quantify the tradeoffs involved when estimator simplifications 
are done. Simplifications are important to minimize the amount 
of hardware in a high-speed realization of the estimator. The 
paper investigated both the effect of structural simplifications, 
taking advantage of some symmetry relations in the correlation 
function of a complex Gaussian process, as well as hard limiting 
of one of the signal components prior to the correlation (sign
multiplication>. The estimator proposed in Paper II had the 
simplest structure possible, and it also employed hard limiting. 
Paper III revealed that this implementation is nat a very good 
one, as the combination of hard limiting and a simple structure 
yields a poor performance (high variance) when the signal-to
noise ratio is low. Hard limiting can, however, be advised if 
more complex estimator structures are employed. This still gives 
substantial savings in hardware compared to the case when 
ordinary multiplication is employed, at the cost of increa
sing the standard deviation of the estimate with about 12 
percent. 

The last paper in this group, Paper IV, was written in response 
to two papers that were published just recently: Barber et. al 
presented a new ~instantaneous frequency~ estimator which, 
they claimed, had properties superior to those of the true mean 
frequency estimator in the case of adverse signal-to-noise 
ratios and high Doppler shifts. In the subsequent parts of this 
thesis, this estimator is referred to as the carr•l•tian-angle 
estimator, since its output is proportional to the phase angle of 
the autocorrelation function of the complex Doppler signal at 
unity sample lag. Although not spelled out very explicitly, this 
estimator appears to have been used earlier by Namekawa, Kasai et 
al. [53][54]. In a recent work, they presented a cardiac color
flow map system made on the basis of estimating the correlation 
angle and an approximation to the mean square <MS> bandwidth of 
the spectrum C55J. The latter estimator is referred to as the 
carrelatian-decay approximation to the MS bandwidth. 
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Neither the work of Barber et. al nor that of Kasai et. al made 
any attempt to investigate the statistical properties of their 
estimators. This analysis is carried out in Paper IV, which 
compares the new estimators to the true mean frequency frequency 
estimator derived in II and III, the instantaneous frequency 
estimator of Hoeks, and an alternate estimator of MS bandwidth 
derived in the paper. It turns aut that for estimation of the 
center frequency of the Doppler spectrum, the ~true~ mean 
frequency estimator yields by far the lowest variance for 
wideband signals or/and low signal-to-noise ratios. This result 
is not entirely in conflict with the conclusion of Barber et al., 
because they reported problems at small Doppler shifts, where 
the signal-to-noise ratio of their system was the lowest. The 
reason why they got better results with the correlation-angle 
estimator for higher Doppler shifts could have been that their 
mean frequency estimator was different from the one investigated 
in Paper IV. 

For estimation of MS bandwidth, however, the simple correlation
decay estimator turns aut to give good results. This estimator 
is simpler to implement than the alternate estimator derived in 
the paper, and it yields a low variance estimate that is essen
tially unbiased for bandwidths less that 50 percent of the 
sampling frequency. 

3.3 Raport V: Spectrum analysis 

As previously mentioned, the maximum blood velocity across 
obstructions to blood flow is an important parameter in the 
diagnosis of various heart diseases [18]. In a large fraction of 
these situations, the sample volume of a pulsed or CW Doppler 
cannot be made small enough to be put into a region of flow 
without velocity gradients, meaning that the mean Doppler shift 
bears little relation to the maximum velocity. Spectrum analysis 
is then a better approach to velocity estimation, from which 
information about the entire velocity distribution in the sample 
volume can be deduced. Spectrum analysis allows for the use of a 
relatively large sample volume in these situations; this simpli
fies the aiming problems and gives an increased signal-to-noise 
ratio [18]. 

Report V covers a number of topics related to real-time spectral 
analysis of the complex Doppler signal. It concentrates on the 
averaged modified periodogram spectrum estimator developed 
by Welch [40], which was chosen because of its ease of implemen
tation. Its statistical properties (bias, variance> was origi
nally derived by Welch for real Gaussian signal inputs. Report V 
derives expressions for bias and variance of the spectrum 
estimate in the case of complex Gaussian signals. It turns 
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aut that the difference between the real and the complex case 
is rather small. Other subjects analyzed in the report are the 
averaging of individually compressed periadagrams to reduce the 
dynamic range requirements to a hardwired spectrum averager, and 
the use of thresholding (~reject~) to suppress white noise in the 
spectrum estimate. It is shown that thresholding is an efficient 
method to remove the white noise spectrum component only when the 
variance of the spectrum estimate is relatively low, such as when 
a small number of relatively uncorrelated spectrum estimates have 
been averaged. 

The use of complex spectrum analysis to resolve aliases in PW 
Doppler systems is also discussed in the report. Practical 
measurements resolving Doppler shifts up to nearly two times the 
PRF (i.e., four times the Nyquist limit> is demonstrated, using a 
conventional pulsed Doppler instrument with analog smoothing 
filters. Smoothing filters with optimal frequency responses for 
pulsed Doppler instruments are also derived in the report. 

The report gives a recommended system architecture for a hard
wired 64-sample spectrum analyzer with a computation time on 
the order of 128 vs. The design employs analog Bucket Brigade 
Devices in a Chirp Z Transform configuration, which allows far a 
very compact hardware design. Time compression is used to take 
full advantage of the processing capacity of the BBD devices. 
The high speed of the spectrum analyzer makes it well suited for 
use in flow mapping applications <calculation of 32 different 
power spectra can be done in only 4.1 ms>. 

A spectrum analyzer has later been designed on the basis of the 
report1. This analyzer computes a moving average of eight 
compressed power spectra, calculated from segments of up to 64 
samples of the complex Doppler signal. The output spectrum is 
updated every millisecond. Examples of the analyzer~s output are 
shown in Fig. 7 and Fig. 8. The panels show spectral displays 
of signals from the human aorta, measured with 3 MHz PW Doppler 
on a healthy person in steady-state physiological conditions. 
The acoustical power output of the instrument was deliberately 
reduced in the measurements, so that the signal-to-noise ratio of 
the measurement was poor. In the lower panel, the spectrum was 
passed through a threshold device prior to display, to reduce the 
background noise. Note the difference in quality between Fig. 7 
and Fig. 8. The latter figure shows analysis using non-over
lapping signal segments and no averaging. As is obvious from the 
figure, the thresholding removes both the signal and the noise in 
this case. These results were predicted in the report. 

!Integrated part of the "SD-100" and "PCD-4" diagnostic Doppler 
products, VINGMED a/s, Harten, Norway. Spectrum analyzer 
hardware designed by Hans Tarp, SINTEF, div. of autam. control. 
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Fig. 7 

I 
I 

~ I 

Performance examples of the spectrum analyzer designed 
on the basis of the report. The vertical span of the 
figures is equal to the sampling rate, f = 8 kHz. 
Each spectral line is the average of eight in~ividually 
compressed, 64-sample modified periodograms, calculated 
on the basis of 64-sample consecutive signal segments 
spaced 1 ms apart <87 percent overlap>. The 64-sample 
spectrum estimate was interpolated linearly to 128 
samples prior to display. 

Upper panel: Direct display of the spectrum. 
Lower panel: Thresholding is employed to remove 

the background noise. 
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The signal is similar as in Fig. 7, but no averaging 
and no overlap is employed in the analysis. 

Upper panel: Direct display of the spectrum. 
Lower panel: Thresholding is employed to remove 

the background noise. 
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3.4 Paper V: Echo/Doppler combination 

In cardiology, it is essential to have image guided location of 
the Doppler sample volume, preferably in real time. Precise 
location of the sample volume within the complex geometry 
of the heart is, nevertheless, possible without echo guidance, 
as the characteristic click-like Doppler signals from the 
valves can be used as aural landmarks [18J. Near-zero angle to 
flow can most often be obtained by angulating the soundbeam until 
the highest Doppler shift <pitch> is 
~blind~ technique is time consuming to 
learn. Also, it is solely based upon the 
so that after the examination, no hard 
patient file to prove that the operator 
what he/she claimed to do. 

heard. However, this 
use and not too easy to 
skill of the operator; 
evidence exists in the 
actually was measuring 

The early combinations of echo and Doppler technology all 
suffered from deficiencies. The first approach was the M/Q-mode, 
where Doppler and M mode information was extracted from the echos 
of the same soundburst [42J. One drawback with this method is 
that the Doppler and M-mode have different design requirements: 
While resolution is important in M-mode, resolution and sensi
tivity are conflicting requirements in Doppler. Secondly, useful 
M-mode and Doppler recordings can rarely be obtained from the 
same acoustical windows. Far better in this respect is the 
Duplex-principle [43][44], where every other soundburst is used 
alternately for full 2D imaging and Doppler measurement. The 
deterioration of image quality that results from the Duplex 
operation can be tolerated, since the image only serves as a 
guide for location of the Doppler sample volume. More severe 
problems follow from the reduction of the Doppler PRF by a factor 
of 2, since aliasing is a problem even with a full PRF. By 
~freezing~ a a-scan image recorded immediatetely prior to the 
Doppler examination, full quality Doppler registrations with 
still-image guidance can be obtained. This is, however, not 
entirely satisfactory, since the distance between the heart and 
the transducer changes with both heart contraction and breathing. 

It was felt that the above principles did not represent the 
best approach to image guided Doppler measurements, and a 
successful combination between a phased array sector a-scanner 
and a single range PW/CW Doppler on the basis of a fast-alter
nating timesharing scheme has previously been reported by 
Angelsen and Kristoffersen [45]. Using this method, the 
a-scanner first performs a full image scan <z 20 ms>, followed by 
a somewhat longer period of time where it is turned off, and 
Doppler information is acquired. The timesharing cycle is 
repeated 15 times per second typically, corresponding to 15 Hz 
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image guidance. Using this scheme, the image quality becomes 
similar as in the Duplex situation, whereas the reduction of PRF 
for the Doppler device does not occur; it may, in fact, be run 
even in CW mode. Instead, dropouts occur in the measurement of 
the temporal velocity waveform, but this can be tolerated if the 
imaging period is short. The main problem with the scheme is 
that the periodical interrupts of the Doppler signal cause a so 
strong modulation of the audio output from the instrument that 
most of its value as an operator~s aid in aiming is lost. Even 
if the presence of a real-time 2D echo/Doppler combination in 
itself simplifies aiming, an audible Doppler signal is still 
necessary; the angle between the soundbeam and the flow direction 
cannot always be assessed from the image. 

To remove the signal dropouts, an estimate of the missing Doppler 
signal can be filled in during the imaging interrupt. In the 
original paper [45J, a rather crude method for signal filling 
was employed: The signal segment that preceded an interrupt was 
repeated during the interrupt, and windowing was used to remove 
discontinuities in the transitions between the measured and the 
replayed signal segments. An improved method for performing 
signal filling of the Doppler signal in timeshare operation is 
developed and evaluated experimentally in Paper VI. The basic 
principle is to synthesize an artificial Doppler signal with 
properties that approximate those of the signal segment gated 
out. The synthesis is done by FIR filtering of white noise; a 
windowed version of the last 10 ms of Doppler signal prior to an 
interrupt is used to form the complex coefficients of the 
filter. This yields an artificial Gaussian signal with power 
spectrum proportional to the magnitude squared frequency response 
of the coefficients, i.e., the periodogram of the coefficients. 
The method gives a ~filled~ signal with an audible sound that is 
a better approximation to the real Doppler signal than that 
resulting from the repetition scheme. 

A hardwired implementation of this method has been implemented in 
a commercial phased array sector scanner2. An example of its 
performance is given in Fig. 9, which shows a pulsed 2 MHz 
real-time image guided measurement on the aortic outflow tract, 
apical view. The rightmost part of the velocity panel coincides 
in time with the image shown to the left. 

2"Meridian," Johnson & Johnson Ultrasound, Ramsey, N.J., USA. 
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Fig. 9 Examples of real-time image guided PW Doppler measure
ment in commercial equipment using the method from 
Paper VI. The position of the Doppler sample volume is 
indicated by the square box. ihe image updating rate 
was 15 Hz. 
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Optimal Receiver Filtering in Pulse~ Doppler 
Ultrasound Blood Velocity Measurements 

KJELL KRISTOFFERSEN 

Abstract-In pulsed Doppler blood velocity measurements, coherent 
bursts of ultrasound are emitted at a fixed repetition rate. The complex 
envelope of the received echos is extracted b.y complex demodulation, 
passed through a receiver filter for noise reduction, and finally range
gated to yield samples of the Doppler signal from a localized depth. This 
paper shows that during a time interval of length equal to the duration 
of a transmitted ultrasound burst, the envelope of the echo from blood 
may be regarded as a sample function from a stationary stochastic pro
cess. The power of the process is proportional to the energy of the emit
ted soundburst, and the shape of its covariance function is equal to the 
envelope of the echo from a point scatterer convolved with itself. Opti
mum signal-to-noise ratio in the range gated Doppler signal is obtained 
when the impulse response of the receiver filter is chosen as an eigen
function of this covariance function, corresponding to its maximum ei
genvalue over the range-gating interval. When the signal envelope is a 
rectangular pulse, it turns out that the optimal impulse response of the 
receiver filter also becomes nearly rectangular. A receiver filter with a 
perfectly rectangular impulse response yields, for all practical pur
poses, performance equivalent to that of the optimal filter in this case. 
It is also shown that when the bandwidths of the emitted soundburst 
and the receiver filter are significantly different, the signal-to-noise ra
tio is solely determined by the largest of the two. 

I. INTRODUCTION 

THE RECEIVED signal in pulsed Doppler blood veloc
ity measurements is formed by incoherent scattering 

of ultrasound from a large number of randomly located 
blood cells [ 1]. The shape of the returned echo is therefore 
not known. This is different from radar applications with 
distinct targets, where the echo is a scaled and delayed 
replica of the emitted signal, possibly with some distortion 
from the propagating medium. It is well known that the 
matched filter maximizes the signal-to-noise ratio (SNR) 
in radar reception [2]. In general, this does not hold in the 
incoherent scattering situation one faces in blood velocity 
measurements. 

The receiver filter in a pulsed Doppler instrument af
fects both its axial resolution and the noise bandwidth of 
the system. Although a number of investigators have 
pointed out its importance, their reasonings seem to have 
been done on a rather qualitative basis. Perroneau [3] sug
gested a receiver filter that averaged (integrated) the out
put from the Doppler signal quadrature demodulator over 
a time period equal to the duration of the emitted sound-
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burst. This view has later been adopted by Atkinson and 
Woodcock [4]. Brody [5] and Angelsen [6] both pointed 
out that the filter should have a bandwidth comparable to 
that of the emitted pulse. Hoeks stated that 'the effective 
duration of the impulse response of this combined filter 
(transducer, receiver, and filter) should be equal to the du
ration of the emission to achieve the best axial resolution 
with the highest signal-to-noise ratio' [7]. 

Although all of the above statements agree qualitatively, 
it is the objective of this paper to give a more analytical 
treatment of the subject. To do so, a review of the scat
tering theory from Angelsen [ 1] is given in the next sec
tion. On this basis, the receiver filter that maximizes the 
signal-to-noise ratio for a given duration of its impulse 
response is derived. 

II. TRANSDUCER OUTPUT IN PULSED DOPPLER 

MEASUREMENTS 

A. Review of a Scattering Model 

Angelsen modeled the blood as a continuum, with ran
dom fluctuatiOnS in COmpressibility K ( r, t) and mass den
sity p ( r, t) [ 1]. The ultrasound scattering is caused by 
interaction between the incident soundwave and these 
fluctuations. In this model, the time-varying spatial cell 
concentration nc ( r, t) in blood was written as 

nc (r' t) = no( r' t) + n ( r' t) ( 1) 

where n0 = ( nc> is the local ensemble average, and n is 
the fluctuation of nc around its mean. Angelsen also ar
gued for the validity of a delta correlation for the fluctua
tions, 

(n(r, t)n(r + ~. t + r)) 

= (n2(r, t)> o(~ f(r, t, r)) (2) 

where -r + F is the position of the fluid element at time r 
+ T which at time t had the position r. The assumption 
of delta correlations is valid when the correlation lengths 
of the fluctuations are much smaller than the dimensions 
of the resolution cell through which they are observed; i.e. 
the Doppler sample volume. 

In this paper the ultrasound transducer is assumed to be 
large compared to the wavelength, so the plane wave ap
proximation to the sound field can be applied. It is as
sumed that bursts of ultrasound with angular carrier 
frequency w0 and pulse repetition frequency (PRF) Is 

0885-3010/86/0100-0051$01.00 © 1985 IEEE 
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l!Ts, are emitted and received by the same transducer. Let 
z be the distance between the transducer and the sample 
volume along the beain axis nl; i.e. z = 1 zl = ct/2, where 
t is the elapsed time between pulse emission and recep
tion, and c is the speed.of sound. The complex envelope 
of the received Doppler signal (the complex Doppler sig-
nal) from burst k can then be written as · 

xk(Z) = q ~ d3~ R(f)s(i f - zl) 

·exp[-j
2
;

0 n1 • f]n(f.~+kTs). (3) 

The integration extends over the entire region of a non
zero integrand. The quantity q is a complex constant of 
proportionality, and R ( ·) is related to the acoustic field 
of the transducer and the scattering properties of blood 

K(r, a) = lql
2 ~ d3~ R<f)s(jr - ~(t~ - r) -n~l) 

· R(f)s(j F - ~(t~ - a) n~l) 

· exp [- j :o iJ (f) · ii 1 ( -r - a) J ( n2
( f)) (8) 

where 

F = f + ! "ii (f) (r - a). 

The complex exponential in this formula represents the 
Doppler effect, while the remaining terms determine the 
bandwidth of the back-scattered echo, In blood velocity 
measurements, the Doppler shifts are considerably smaller 
than l!TP (underspread targets). Moreover, the transmit 
duty cycle is small (Tp << Ts), and the velocities of the 

2 

R(f) = ' IA(f)l
2 

{'yK - ';'p} 
scatterers are much smaller than the speed of sound. In 

(4) combination, this allows for simplifications of (8). The fol
lowing approximations can be made. 

where IAI 2 is the combined transmit/receive spatial sen
sitivity of the transducer. The constants 'Y K and 'Y P relate 
to the scattering from fluctuations in compressibility and 
mass density,Jespectively. 

In (3), s(! ~ - zl) is the normalized envelope of the 
received echo from a point scatterer, with the argument 
scaled in length units. Its shape is determined by both the 
excitation waveform and the bandwidth of the transducer. 
In the following, the notation becomes simpler if the tem
poral pulse shapes (t) (the signal signature) is introduced, 

s(t) = s(ct/2) t > 0 (5) 

Unless otherwise stated, it shall be assumed that s (t) is 
nonzero only on the finite time interval (0, Tp), with en
ergy normalized toE, i.e. 

1) It is valid to set f = F. 
Proof: As a consequence of v << c, the two terms that 

contains(·) will overlap only if 1-r - al < TP; otherwise 
the integrand becomes zero. Within the region of a non
zero integrand one then has the bound 

(9) 

where Vmax is the maximum velocity in the sample volume. 
The axial length of the sample volume (as viewed from the 
output of the receiver transducer) is cTP/2, with TP typi
cally corresponding to 5-20 oscillations of the ultrasound 
frequency. Now Vmax is on the order of 1 m/s, whereas c 
= 1560 m/s. The quantity (9) therefore spans only a tiny 
fraction of one wavelength, and the approximation is fully 
justified. 

~ Tp 1 ~ 00 

dt ls(t)l 2 = -
2 

dw !S(w)l2 = E (6) 2) The complex exponential in the integrand may be ap-
proximated with unity. 0 7r -oo 

where S(w) = F{s(t)} is the Fourier transform of s(t). 
When the PRF is constant, E is proportional to the average 
emitted acoustic power density. In clinical measurements 
the emitted acoustic power density should be limited 
( < 100 mW/cm2 SPTA) for patient safety considerations 
[8]. 

B. Autocorrelation Function of the Received Signal 

The autocorrelation function of the backscattered signal 
must be known to perform an analysis on the effect of re
ceiver filtering. The autocorrelation function, or the co
variance function, of the signal from the range z = ct112 
is defined as 

Proof: The magnitude of its argument is bounded by 

1:0 
iJ(f) · n1(T - a)l !5 27r f;ax Tp = 27r ~tx t· 

ir - al < TP (10) 

where 

Vmax 
fmax = 2 --JoCOSa 

c 
(11) 

is the maximal Doppler shift in the backscattered signal, 
and a is the angle between . Vmax and the beam axis. In 
meaningful situations fma/!s < 1 (no frequency aliasing), 

(
?) and the ratio T/Ts is very small, typically 0.005-0.05. One 

obtains the worst case bound 
This may be expressed in terms of the signal signature 
s(t). Based on the assumption given in (2), Angelsen was 
able to calculate the correlation ( xt (z 1)xm (z2)) [1, (29)]. 
Setting k = m, z1 = c(t 1 - r)/2 and z2 = c(t1 - a)/2 in 
his expression yields 

1 /max Tp 
21r 2 ~ T. !5 o.o57r. 

Js s 

(12) 

The approximation is therefore valid in the actual velocity 
range. 
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Fig. l. Model for receiver filtering and range gating in pulsed Doppler ul-
trasound measurements. 

3) The attenuation of the soundbeam over the axial 
length of the sample volume is neglected, i.e. 

R(f- ~(t1- r)n) = R(f- ~ t1n), 
lt1 - rl < Tp. (13) 

4) The entire sample volume is locateg in blood with 
uniform scattering properties. Then < n2

( ~)) = < n2
) can 

be put outside the integral sign in (8). 
Finally, assume that the coordinate system is oriented 

such that the beam axis is parallel with the ~raxis. Using 
the above approximations then yield the simplified auto
correlation function 

where 

ks(t) = ~ lql 2 
(n

2
) ) d~1 ) d~z R2

(fl + f2 + t ctii,). 

(15) 

Equation (6) has been used to substitute the spatial pulse 
s (z) with the temporal pulse s (t). The scaling factor ks (t) 
is a slowly varying function oft, incorporating both the 
effects of attenuation and diffraction of the soundwave in 
tissue. For simplicity, ks(t1) is set to unity in the rest of 
the paper. 

Several observations can now be made. 

• When observed for a short period of time (on the or
der of Tp), the back-scattered signal approximates a 
sample function from a covariance stationary sto
chastic process. This follows because ks varies slowly 
with t 1; for a short time frame the autocorrelation 
function then varies essentially with IT - a! only. In 
this approximation, the echo from a soundburst may 
be regarded as the output from a linear filter with 
impulse response s(t), excited by complex valued 
white noise. This model yields the same autocorre
lation function as (14). 

• If the pulse length is finite, (14) shows that K ( T, a) 
= 0 for lr - a! > TP. The backscattered signal is 
then a moving average (MA) stochastic process. 

• The autocorrelation function is real. Consequently, 
the real and the imaginary parts of the complex en
velope are uncorrelated. 

• The autocorrelation function of the echo from one 
soundburst is independent of the blood velocity. 

• When ks is unity, the following relation holds 

K(r, r) = E (16) 

stating that the power of the back-scattered echo from 
blood depends only on the energy of the signal sig
nature; it does not vary with neither shape nor dura
tion of the signature. 

It should be emphasized that the above statements are 
valid only for the conditions under which eq. (14) was de
rived. 

III. RECEIVER FILTERING IN DOPPLER BLOOD 

VELOCITY MEASUREMENTS 

A. The Optimal Receiver Filter 
A model for the range gating in a pulsed Doppler in

strument is shown in Fig. 1. The output from the de
modulator is modeled as a sum of the signal from blood 
xk(t) and complex valued white noise nk (t). The output 
from the receiver filter is sampled at time t 1, yielding a 
sample of the Doppler signal originating from the range 
-ct112. 

The noise sources in the Doppler reception are of dif
ferent types. Clutter echos from tissue and spurious echos 
caused by reverberations yield strong, undesirable signals 
with low Doppler shifts. This type of noise has a high 
sample-to-sample correlation, and may therefore be re
moved by subsequent highpass filtering of the range-gated 
Doppler signal. A second· type is thermal noise from the 
preamplifier and the receiver transducer. Its contribution 
is strongly affected by the characteristics of the receiver 
filter. Thus, provided the receiver/demodulator/highpass 
filter chain is not saturated by low-frequency clutter, only 
the thermal noise is of importance in the evaluation of the 
receiver filter. Viewed in this context, the white noise 
model seems reasonable. The correlation function of the 
noise is then 

<nt(t)lim(r)) = N0o(t- r)okm· (17) 

The axial amplitude weighting of the sample volume of a 
pulsed Doppler instrument is determined by the shape of 
the received echo from a point scatterer, as observed on 
the output of the receiver filter in Fig. 1, i.e. 

w(t) = )~oo dr h(r)s(t - r) (18) 

The length of this echo is TP + Tn where Tr is the dura
tion of the receiver filter impulse response h ( r). The cor-
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responding axial length of the sample volume becomes 
c (Tp + Tr)/2. The axial resolution of the instrument 
therefore degrades linearly with Tr. In the derivation of 
the impulse response of the optimal receiver filter, it shall 
be assumed that Tr is finite (FIR filtering). Note that the 
term sample volume has different meanings if the echo 
is sampled prior to or after the receiver filter. This occurs 
because the receiver filter smears out the backscattered 
echos. 

When the sample gate closes at time tl> the signal and 
noise components of the receiver filter output are 

xk(tl) = I:r dr h(r)xk(tl - r) (19) 

nk(tl) = I:r dr h(r)iik(tl - T) (20) 

The resulting sample is a weighted average of the input 
signal to the receiver filter during the time (t1 - T" t1). 

In the rest of this work this is referred to as the range 
gating interval. It is straightforward to show that the sig
nal and noise powers become 

(' rTr 
Ps = <lxk(t1)j

2
) = Jo du Jo dr h*(r) K(r, u) h(u) 

(21) 

(22) 

where the covariance kernei K ( T, u) has been defined in 
(7). Note that from the definition, the kernel is Hermitian, 
i.e. K(r, u) = K* (u, r). Using operator notation, maxi
mizing the signal-to-noise ratio is equivalent to maximi
zation of the functional 

Ps i (Kh, h) 
SNR = Pn = No lihjj2 

where the inner product and the norm are defined as 

rTr 
(g, h) = Jo dt g(t) h*(t) 

llhll = .J(h, h). 

(23) 

(24) 

(25) 

From the theory of functional analysis it then follows by 
definition that 

(Kh, h) m:x lihjj2 = IlK II (26) 

stating that the maximum attainable signal-to-noise ratio 
is proportional to the norm of the kernel K. Because it is 
nonnegative (being a covariance kernel) and Hermitian, 
its eigenvalues are real and nonnegative [9]. It can be 
shown that the norm of a Hermitian kernel is equal to its 
maximum eigenvalue A 1, and that it is attained when h ( r) 
is the corresponding eigenfunction [9]. Therefore, the op
timum impulse response h0( r) is the solution of the inte-

gral equation 

rTr 
Jo du K(r, u) h0(u) = A 1h0(r), 0 ::;; T ::;; Tr (27) 

that corresponds to the maximum eigenvalue A 1• 

An expression for the covariance kernel has already been 
derived in (14), showing that K(r, u) is real. Moreover, 
Hermitian kernels always have real eigenvalues, and it fol
lows that the impulse response of the optimal receiver fil
ter is real. In the previous section it was shown that the 
blood velocity does not enter into the expression for the 
covariance kernel, and, consequently, the optimal receiver 
filter also becomes independent of the blood velocity. 

The optimal receiver filter can now be calculated for an 
arbitrary signature by solving the eigenvalue problem (27) 
with the kernel (14). Unfortunately, this is not always an 
easy task, but the calculations are carried out in Section 
IV for the special case when the signature is rectangular. 
At this stage, further general observations regarding SNR 
and receiver filtering shall be made. 

B. SNR Versus Axial Resolution 

It is of interest to investigate the effect of a change in 
axial resolution, while keeping the emitted acoustic en
ergy constant. The lengths of the soundburst and the im
pulse response of the receiver filter should then be changed 
proportionally, i.e. T; = {3TP, and T; = f3Tr. The burst 
energy is kept constant by the scaling s' (t) = s(t/{3)/Jli. 
Combining with (14) and (27) yield the relations 

K' (r, u) = K(r/{3, u/{3) (28) 

h0 (t) = h0(tl {3) (29) 

(30) 

stating that signal-to-noise ratio increases proportionally 
with the axial length of the sample volume when the 
acoustic energy is kept constant. The result holds for any 
type of receiver filter (shown by setting h' (t) = h (t/{3) in 
(21) and (22), combine with (28) and substitute into (23)). 
Sensitivity and resolution are therefore conflicting require
ments in pulsed Doppler measurements, a point which has 
been recognized by a number of investigators [10, p. 111] 
[11, pp. 229]. The underlying mechanism is that the power 
of the back-scattered signal is constant when the pulse en
ergy is kept constant, whereas the noise bandwidth of the 
receiver decreases with increasing range-gating interval. 
The improvement in signal-to-noise ratio stops when the 
resolution is decreased to a point where the entire sample 
volume no longer is fully embodied in blood or no longer 
covers the region of interest, e.g. a stenotic jet in heart 
measurements. 

A bound can be established for the attainable signal to 
noise ratio vs. axial resolution. The kernel K(r, u) is Her
mitian, and it follows from Mercer's theorem that [2] 

(31) 
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where /1. 1 > /1. 2 > · · · 2: 0. Therefore, for any type of 
receiver filter the signal-to-noise ratio is bounded by 

l E 
SNR !S No A 1 !S No Tr. (32) 

The left equality applies if the optimum filter is used, 
while the right applies if the kernel possesses only one 
nonzero eigenvalue. The bound increases linearly with the 
product of the range gating interval and the pulse energy. 
Moreover, it can be shown that the largest eigenvalue is a 
nondecreasing function of Tr for any covariance kernel of , 
the convolution type; i.e. K(r, a) = K(r - a) [2]. 

Section III-C will show that the signal-to-noise ratio is 
entirely symmetrical with respect to s (t) and h (t); if they 
are interchanged, the SNR does not alter. Equation (32) 
then implies that 

1 E 
SNR !S No /1. t !S No min { Tr, TP} (33) 

i.e. the SNR is bounded by the smallest of Tr and TP, 
whereas the axial length of the sample volume is deter
mined by their sum. Viewed on this background, Hoeks' 
statement on receiver filtering (cited initially) seems rea
sonable. 

Equations (31) and (33) indicate that when Tr + TP is 
fixed, there exists an optimal signal signature/receiver 
filter design combination which maximizes the ratio 
/1. 1/E;"'= 1 A;. It is not clear what this design actually is, but 
in Section 4 it is shown that the rectangular pulse/opti
mum filter combination approaches the bound (33) fairly 
closely for all combinations of TP and Tr. 

C. A Frequency Domain Formulation for SNR 

The time domain approach used in the previous sections 
does not give much insight when s (t) or h (t) is of the IIR 
class, e.g. exponentially decaying. A frequency domain 
formulation is better suited in this case. Equation (21) and 
(22) may be Fourier-transformed and substituted into (23) 
to yield 

1 
)~oo dw IS(w)l 2 IH(w)l2 

SNR = M roo 
0 J -oo dw IH(w)l

2 

E )~oo dw IS(w)l
2 

IH<wW 

= 271' M roo roo (34) 
0 J -oo dw IH(w)l

2 J -oo dw IS(wW 

where H(w) = F.{h(t)}. The transition between the two 
versions follows by multiplying the numerator and the de
nominator by E, and then substitute ( 6) for E in the de
nominator. Note that the signal signature and the receiver 
filter impulse response enter into the expression in exactly 
the same way; the SNR does not alter if they are inter
changed. Even time reversed versions of these waveforms 
may be employed, because 

IF {s( -t)} 12 = IS* (w)l 2 = IS(w)l 2 (35) 

However, such a time reversal would in general change 
the axial weighting of the sample volume. 

Both S ( w) and H ( w) are normally well behaved lowpass 
functions. They may then be described in terms of their 
equivalent noise bandwidths (ENBW), defined as 

(36) 

(37) 

If Bs and Bh are significantly different, the one with the 
larger bandwidth may be assumed to be constant, equal to 
its de value, over the entire bandwidth of the other. By 
substituting the above expression for S(O) or H(O), which
ever belongs to the greater bandwidth function, into (34), 
one obtains the relation 

SNR = E , 
N0 max {Bs, Bh} 

Bs << Bh or Bs >> Bh (38) 

stating that the signal-to-noise ratio then is solely deter
mined by the largest of the receiver and the signature 
ENBW's. 

For a given signature, it has already been shown how to 
derive the optimal receiver filter. A different, suboptimal, 
approach may instead be taken: Based upon (38) it seems 
reasonable to select a receiver filter that satisfies Bh = Bs. 
The best resolution is then obtained if the filter with the 
shortest impulse response is selected among all filters with 
the same ENBW. This filter is the pure averager; it has a 
purely rectangular impulse response of duration Tr = 
11 Bs. The latter statement can be proved by rewriting (37), 
using Parseval's theorem, to 

(39) 

where the Schwarz inequality has been employed on the 
denominator. Apparently, equality is obtained if h (t) is 
rectangular. This proves that no other impulse response of 
duration Tr has an ENBW that is smaller than l!Tr; i.e. 
that of the pure averager. Note that when (38) is valid, 
(39) implies that the combination of a rectangular signa
ture and the averager receiver filter attains the bound (3 3). 

D. The Matched Filter in Blood Velocity Measurements 

In most radar and sonar applications the shape of the 
returned echos equals that of the transmitted signal, with 
a delay determined by the range of the target. With an 
underspread target at the range ct1/2, the covariance ker
nel (7) then takes the form 
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This kernel is separable. Its only eigenvalue is )1. 1 = E, 
with the associated eigenfunction (normalized) 

l 
hm(T) = JE s(t1 - r). (41) 

This impulse response is referred to as the matched fil
ter for the real valued pulse s (t). It was first derived by 
North [ 12]. The fundamental difference from the inco
herent case is that the kernel K ( r, a) has one single eigen
value, meaning that )1. 1 is independent both of the duration 
and the shape of the pulse. In the frequency domain, (41) 
translates to 

It is of interest to evaluate the matched filter in inco
herent scattering reception. Setting t 1 = 0 in (41), substi
tuting into (23) and combining with (14) yield 

1 )Tp )Tp 
SNR =- dr da 

N0E o o 

· i:"" dt s( -r)s(t - r)s(t - a)s( -a) 

1 i"" =- dt K 2(t, 0) 
N0 E -oo 

(43) 

The signal-to-noise ratio thus is proportional to the "en
ergy" of the correlation function, whereas in the coherent 
case it is solely determined by the energy of the signature 
(compare with (7)). 

The frequency domain equivalent to ( 43) follows from 
(34) and (42) 

where 

E 
SNR = -

NoBss 
(44) 

able from a patient safety point of view. An alternative 
solution is to use pulse compression by emitting coded 
pulses or chirps, and increase resolution by matched fil
tering. The signal-to-noise performance of such a concept 
can be found from (43) and (44). Note that these equa
tions are valid only under the assumptions that led to (14). 
If, for example, long codes (duration on the order of T5 ) 

are employed, both the matched filter and the covariance 
kernel become functions of the velocity. 

It is worth noting that matched filtering in blood veloc
ity measurements in principle maximizes the unwanted 
clutter echos from tissue. This occurs because specular 
reflectors give echos that are replica of the signal signa
ture. The matched filter thus enhances the unwanted sig
nals from tissue, rather than the desired signal from blood. 
However, the next section shows that the difference be
tween the matched and the optimal receiver filter is very 
small in the common situation, where rectangular-like 
bursts satisfying TP << Ts are employed. 

IV. THE RECTANGULAR PULSE SIGNATURE 

The signal signature is now assumed to be rectangular 
with duration TP and energy E. This is a good approxi
mation to the situation in medium-to-low resolution pulsed 
Doppler systems (Tp - 10-20 cycles of the ultrasound 
carrier frequency). The signature is given by 

[

.JE/TP, 
s(t) = 

0, 

O<t<TP 

elsewhere 

with the associated covariance kernel 

(46) 

K(r, a)= max [o. E(l - lr ~ ai) J. (47) 

The solution of tlie eigenvalue problem (27) with the 
above kernel has been given by Kailath when E = TP = 1 
and T, s 1 [13]. He showed that the set of eigenvalues 
{)1.[} of the normalized kernel were solutions of the tran
cendental equation 

2)1.[ 
(48) 

1 
(L dw IS(w)l

2
)' 

Bss = 271" \"" 
(
45

) with associated eigenfunctions (not normalized) 

J -oo dw IS(w)l
4 

The quantity Bss also arises in the context of spectral anal
ysis, where it has been referred to as the "statistical 
bandwidth" of the time "window" s(t) [14]. For the class 
of windows used there (e.g. Hanning), its size is typically 
45 percent greater than the 3-dB bandwidth. 

There may be situations where the matched filter re
ceiver is preferable, although it does not guarantee opti
mal signal to noise ratio for a given T,. One such case is 
when very high axial resolution is needed. This can be 
obtained by using a short rectangular pulse with a high 
energy. However, this approach may not always be toler-

h!(t; T,) =cos~ t ± (49) 

For the largest eigenvalue (i = 1), the positive sign ap
plies. From (29) and (30) one then has for general E, TP 
and T, < TP: 

h0(t; T,) = h( (t/TP; T,!Tp) (50) 

)1. 1 ETp)l.( 
SNRmax - No = -;:;;- (51) 

Equation (48) is easy to solve by iteration. The resulting 
optimal impulse responses h0(t), normalized to llholl = l. 
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r: •) . .,: 
I l1 .J 

(a) (b) 

Fig. 2. (a) Impulse responses of the optimal and the pure averaging receiver filters for T ,ITP = 0.5 and T ,ITP = 1. (b) Corre
sponding axial amplitude weighting of the sample volume. 

Fig. 3. Maximum eigenvalue of the covariance kernel for the rectangular 
pulse vs. duration of the range gating interval. 

are plotted in Fig. 2(a) for the cases Tr/TP = 0.5 and 
Tr/TP = 1. They differ little from rectangular pulses; for 
comparison these are also shown in the figure. Fig. 2(b) 
shows the envelope of the output from the receiver filters 
in Fig. 2(a) when the input is the echo from a single scat
terer. 

The maximum attainable ~ignal-to-noise ratio using the 
rectangular pulse signature is proportional ~o the maxi
mum eigenvalue A 1• This is plotted vs. TriTP in Fig. 3, 
together with the bound A 1 "= E min { T, Tp} . As ex
pected from (33), the figure reveals that an increased range 
gating interval gives little incremental improvement in 
signal to noise ratio wnen Tr!TP approaches unity. Jn the 
limit, the following result Qolds for covariance stationary 
processes [2] 

lini At = max ('' dt K(t, t1)e-jw1 
Tr ..... oo w J -oo 

= max {IS(w)l}2 

w 

(52) 

I I ~.I 

-0. ~2 

r0.~ ... 
t-il.'le 
.[_0. 08 

i-o ' 

0.9 

Fig. 4. Loss in signal to noise ratio (in dB units) using the averager receiver 
filter, with reference to an optimal receiver filter with an impulse re
sponse of the same duration. 

Therefore, increasing Tr!TP significantly above unity 
degrades resolution, while the improvement in signal to 
noise ratio is very small (A 1 increases from 0.68 ET P to 
ETP, i.e. 1.7 dB). The limiting mechanism is that both 
signal and noise add incoher-ently in the receiver filter 
when TfiTt >> 1. 

For comparison, the pure averaging filter has also been 
studied. Its impulse response is 

ha(t; Tr) = [
11../f;, 
0, 

O<t<Tr 

elsewhere. 

Substituting (37) and (43) into (14) yields 

ETr ( Tr) 
SNRa = No 1 - 3 Tp , 

(53) 

(54) 

When Tr = Tp, this becomes the matched filter for the 
rectangular pulse; the SNR could then have been derived 
more easily from (43). Tne ra~io between the signal-to
noise ratios (51) and (54) .is plotted in Fig. 4 when Tr!TP 
vaqes. The signal-to-noise ratio cleteriorates very little 
fro~ the case when the optimum filter is used. For Tr/T" 
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1, the averager performs only 0.06 dB worse than the 
optimal filter. 

V. CONCLUSION 

When the rectangular pulse model is valid (medium-to
low resolution systems), the performance of the averager 
filter is nearly indiscernible from that of the optimal. From 

- a hardware design point of view this is very appealing. 
The averager is simple to implement, requiring only an 
integration of the demodulator output over the range-gat
ing interval. The choice of integration time becomes a 
resolution vs. signal-to-noise ratio tradeoff. The sugges
tion of Peronneau (Tp = T,) seems to be a good compro
mise. Selecting T, =1= TP gives loss in sensitivity for a given 
axial resolution, but provides a more even axial weighting 
of the sample volume, see Fig. 2(b). This may be desirable 
in blood-flow measurements based on estimation of the 
mean Doppler shift over a vessel cross section [5]. 

When T, = TP, no combination of signal signature and 
receiver filter can exceed the bound ETPIN0 • A rectangular 
signature and a pure averager filter then exhibits only 
l.7-dB loss in sensitivity compared to the bound. This 
means that the simple combination of a rectangular pulse 
and integration of the output from the demodulator has 
near optimum resolution vs. sensitivity properties. It 
seems unlikely that the bound ET P can be fully attained 
for any combination of a real signal envelope and receiver 
filter with T, = TP. This would require the existence of a 
real covariance kernel of the convolution type with only 
one nonzero eigenvalue. 

For high resolution Doppler systems, the rectangular 
pulse model is no longer valid. Less conclusive results 
have then been obtained. However, it has been indicated 
that the ENBW of the receiver filter should be matched to 
that of the pulse, and that the averager filter seems to be 
a good choice even in this case. 

A general observation has been that high resolution and 
good signal-to-noise ratio are conflicting requirements in 
pulsed Doppler blood velocity measurements. The conflict 
between resolution and SNR is of special importance in 
combined M-mode/Doppler systems. Short bursts are then 
required to obtain good M-mode recordings. Compared to 
medium resolution Doppler systems, this gives a loss in 
the signal to noise ratio attainable. The loss cannot be re
covered by any type of receiver filtering (follows from 
(38)). 

When the sample volume is fully embodied in blood, 
the SNR increases in direct proportion with the pulse en
ergy. A Doppler system employing constant acoustic power 
output and a variable PRF requires the functional relation
ship E - ll.fs. Assuming that the sample volume is left 
unchanged, this means that the signal-to-noise ratio and 
the PRF become inversely related. Most pulsed Doppler 
systems extract velocity information by spectral analysis 
of the range gated Doppler signaL When the PRF is in
creased, the bandwidth of the noise in this signal increases 
correspondingly. The signal bandwidth, however, is un
changed. The ratio between the signal and the noise spec-

tral densities (the spectral signal-to-noise ratio) therefore 
remains the same when the PRF changes. 

The existence of an optimal signal signature/receiver 
filter combination when the axial length of the sample vol
ume is fixed, has been indicated. It is not clear what this 
combination is, but a rectangular pulse and the corre
sponding optimal receiver filter yield a signal to noise ra
tio that closely approaches a bound derived in this paper 
for the optimal combination. 
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Discrete Time Estimation of the Mean Doppler 
Frequency in Ultrasonic Blood 

Velocity Measurements 

BJ«l)RN A. J. ANGELSEN, SENIOR MEMBER, IEEE, AND KJELL KRISTOFFERSEN 

Abstract-A new Doppler frequency estimator operating in the dis
crete time domain is derived from an analysis of the Doppler signal 
statistics. It is shown that the estimator gives a nearly unbiased esti
mate of the mean frequency of the signal spectrum, regardless of the 
spectrum shape. The discrete time implementation gives the advantage 
that, under specified conditions, the range-velocity product of a pulsed 
Doppler velocity meter can be increased. 

Manuscript received Apri128, 1982;revised September 29,1982. 
The authors are with the Division of Engineering Cybernetics, Nor

wegian Institute of Technology, University of Trondheim, N-7034, 
Trondhcim, Norway. 

I. INTRODUCTION 

I N ULTRASONIC Doppler blood velocity measurements, 
the velocity v is coded in a frequency shift fd of the back

scattered ultrasound given by the Doppler effect. It is diffi
cult to make the region of observation small in both pulsed 
and continuous wave measurements. It will therefore contain 
a distribution of blood velocities which gives a spectrum of 
Doppler-shifted frequencies in the signal. Full spectrum anal
ysis retrieves all information in the backscattered signal, but 
is fairly costly to perform. Also, in many cases it is sufficient 

0018-9294/83/0400-0207$01.00 © 1983 IEEE 
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to use a single spectral parameter like the mean [ 1] - [ 5] , rms 
[6], [7], or maximum Doppler shift [8], [9]. In this paper, 
we derive a new mean frequency estimator that works in dis
crete time on samples of the Doppler signal. The estimator has 
the property that under certain conditions, the usual Nyquist 
rate can be exceeded. 

The received RF signal in the continuous wave ultrasonic 
blood velocity instrument can be modeled by 

e(t) = Re {x(t) e1
w 0 t} (1) 

where Wo is the transmitted angular frequency and X(t) is a 
complex signal called the complex envelope. It contains both 
amplitude and phase information of the RF signal and can be 
split into its real and imaginary parts by 

x(t) = x(t) + iy(t). (2) 

x andy ar~ called the quadrature components of the process. 
In the pulsed instrument, the situation is somewhat more 

complicated. However, by range gating we obtain time sam
ples x(kTs) of x(t) from a defined range cell, where Ts is the 
period between pulse transmissions. Using a low-pass filter, 
the continuous time signal x(t) can be regenerated from the 
samples, provided the maximum Doppler shift is less than the 
Nyquist rate Ws/2, where Ws = 21r/Ts. 

The complex envelope x(t) is a complex Gaussian process 
since it is composed of the sum of contributions from a large 
number of uncorrelated scatterers [ 10] . For time-steady ve
locity fields, the process is stationary. 

For the RF signal e(t) in (2) to be stationary, the quadrature 
components must have the following property: 

(3) 

where we have defined 

Rpq(r) = (p *(t) q(t + r)) (4) 

and ( ) denotes ensemble averaging. The autocorrelation func
tion of x(t) then takes the form 

Rxx(r) = 2{RxxCr) + iRxy(r)}. (5) 

The power spectrum of x(t) is defined by the Fourier trans
form of Rxx(r) 

Gxx(w) =I: dr Rxx(r) e iwor (6) 

The mean angular frequency w of the process is defined as the 
first moment of Gxx, i.e., 

w= 
Jca dw w Gxx(w) . 

-ca -= _!_~xx(O) 

J 
ca i Rxx(O). 

dw Gxx(w) 

(7) 

Practical estimators based on (7) have been reported by several 

The mean frequency estimator derived in this paper works 
on samples of the Doppler signal. It can theoretically analyze 
frequencies in the interval f(w)=(-ws/2+w, Ws/2+w) 
where w is arbitrary. The mean frequency is obtained by an 
infinite series, which for the practical estimator, has to be 
truncated to a finite number of terms. By this, the estimator 
will be in error near the end points of !(w), but the error can 
be made negligible over 90 percent of the interval. Using w =I= 
0 in I(w), a special version of the sampling theorem is obtained 
for complex signals. By this, angular frequencies above Ws/2, 
the Nyquist rate, can be analyzed. 

In fact, by setting w = w, the estimator will track the mean 
frequency for values well beyond the Nyquist frequency ws/'2, 
provided the signal bandwidth is less than Ws· 

II. THEORY OF THE ESTIMATOR 

A process x(t) is said to have spectral support in $ C R if 
w fi $implies Gxx(w) = 0. 

Theorem 1: Suppose that a process x has spectral support 
in l(w) = (- Ws/2 + w, Ws/2 + w ). Then, for Ts = 2rrfws 

Rxx(O) = f akRxx(kTs) 
k=-ca 

a0 = iw 

(-ll-l -ikwTs 
ak =---e k=I=O. 

kTs 
(8) 

Proof' We use similar techniques as in the proof of the 
sample theorem and define 

Rxx(r) = Rxx(r) L o(r- kTs). (9) 
k=-"" 

Then, 

- 1 00 

1{Rxx(r)} = -- L Gxx(w- kws) 
Ts k=-ca 

(10) 

where 1 { } denotes the Fourier transform. 
If x(t) is complex, its power spectrum can be asymmetrical 

around zero. We can then use an asymmetrical filter to 
smoothe the sampled function to obtain the continuous 
function 

{ 
Ts wEI(w) 

H(w)= 
0 w ttl(w). 

(11) 

Using this filter in (9), we obtain the interpolation formula 
for an asymmetrical spectrum 

(12) 

authors [1]- [5]. These estimators all operate on the continu- Differentiating term by term and setting r = 0, (8) is obtained. 
ous Doppler signal. Corollary: Suppose that x(t) has spectral support in l(w). 
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Then, the mean frequency of x defined in (7) is given b;: 

- 2 00 {-lt-1 
w=w+- L ---

Ts k=l k 

where 

Pxx(r) = Rxx(r)/Rxx(O) 

Pxy(r) = Rxy(r)/Rx,x(O). 

{13) 

Proof' From {3) and (5), we have R.xx{O) = 2Rxx(O) and 

R.xx(r)- R;;;;( -r) = i4Rxy(r). 

Since by {8), a_k =a;, we obtain 

00 

R;;;;(O) = i2{ wRxx(O) + 2 L [bn (ak) Rxx(kTs) 
k=l 

{14) 

Inserting this into (7) proves {13). 
For practical estimation, we have to truncate the series to a 

finite number of terms. We shall then show that under speci· 
fled assumptions, different coefficients fik than those given 
above will give a better approximation of R.xx(O). We seek a 
representation of the form 

"' n 
R.xx(O) = L fikR;;;;(kT9 ) {15) 

k=-n 

so that R;;x(O) is a good approximation of R.xx(O) in some 
sense. To define the quality of the approximation, we study 
an ensemble of spectra G.xx{w, a), where a is the ensemble 
variable. We then minimize the mean square error over this 
ensemble, i.e., 

" 
n:in Ea{iRxx(O)- R;;;;(O)i 2

}. (16) 
ak 

From elementary properties of the Fourier transform, we 
obtain 

':" . 1 J R.xx(O)- R_x;;(O) =- dw Dn(w) G.xx(w) 
21T [(\•) 

{17) 

where 

Dn(w) = £ fik e -ikwTs- iw = iPn(w)- iw. (18) 
k=-n 

The mean-square error of this ensemble of spectra will be 
"' 

Ea {I R;;_x{O)- R.xx(0)! 2
} 

= ~J dw 1 dw 2 D*(wt)D(w2 )K(w1 , w2 ) (19) 
41T I(w) 

where we have defined 

(20) 

209 

the frequency is uniformly distributed in an interval J C I(w), 
i.e., G.xx(w, a)= o(w- a) and a has the probability density 
Pa(a) = 1/1 for a E J and zero else. The length of J is l. This 
gives 

K(wl 'w2) = T L dao(wl -a) o(w2 -a) 

={t5(w, -w,) 
{21) 

Wt ,W'J. EJ 

else. 

Inserting {21) into {19) gives, for this ensemble of spectra, 

This gives the following theorem. 
Theorem 2: Let x(t) be a single frequency signal with fre

quency uniformly distributed in J C I (w ). Then, the coeffi· 
cients in ( 15) which minimize the mean-square error in ( 16) 
co"espond to the coefficients of the trigonometric poly
nomial which approximate iw best in the mean-square sense 
inJ. 

The question now is how the ~ 's are changed when x has 
a nonzero bandwidth. Given K{w 1 , w2), we can determine 
the optimum ak 's by minimizing {19). In practice, it is diffi
cult to specify K(w1 , w2 ) since the situations we are faced 
with vary. However, G.xx{w) is a positive function and the 
error Dn(w) in (18) will oscillate around zero. Due to the 
integration in (17), we see that the peak error is reduced 
when the signal has a nonzero bandwidth. We can therefore 
optimize the estimator for a single frequency signal, and we 
then know that the bias error is less for signals with nonzero 
bandwidths as is demonstrated below. 

Ill. NUMERICAL DETERMINATION OF THE COEFFICIENTS 

P n(w) in {18) is periodic with period w9 • The fundamental 
region in w we define as I(O) = (- w9/2, w9/2). We first derive 
approximations of iw when J = {(- w2 ,- w1 )} n (w 1 , w2 )} C 
I(O) and then extend the result to arbitrary w. 

Since w is odd, Pn(w) must be odd, which implies fi_k = 
-~.giving 

n 
Pn(w) = L bk sin kwT9 {23) 

k=t 

where bk = 2ak. The optimum coefficients are then obtained 
by minimizing 

l zl I n 12 = dz .I: c k sin kz -. z 
z1 k=l 

{24) 

To proceed, we specify to a single frequency spectrum where where z; = w; Ts and ck = Tsbk. This gives fik = ck/2 T9 • 
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Pn(z) 

it' 
2 

Zz=3.0 

z=wTs 

Fig. 1. Approximating polynomials Pn(Z} for n = 8 and various values 
ofz 2 • 

We note that if z 1 = 0 and z 2 = 1T, ck are the Euler coeffi
cients 'of the Fourier series expansion of z on (-TT, 1r). These 
correspond to the coefficients in (8). Due to periodicity, P n 

will approximate a sawtooth function equal to z when z E 

(-TT, 1r) and make jumps of 21T for every (2k + 1)1T. The os
cillations in the polynomials will be large near the discontinui
ties (Gibb's phenomenon). However, as our calculations will 
show, the error will be drastically decreased if we allow z 2 < 1T. 

The approximating polynomials obtained for n = 8 with 
z 1 = 0 and various values of z 2 are shown in Fig. 1. Increasing 
z 1 from zero has little effect on the error in (z 1 , z 2 ), while the 
error in (0, z 1 ) increases. We see that good approximation 
may be obtained if we allow z 2 to be small enough. However, 
decreasing z2 decreases the interval of frequencies that can be 
analyzed, so that a tradeoff has to be made. 

The ratio of the estimated frequency to the actual mean fre
quency has been calculated for three different spectra 

(- B _ B) wE w-- w+-2, 2 
Gx_x(w) ={~ 

. 0 else 

B = 0, 0.1 W 8 , 0.25 W 8 • (25) 

The results are shown in Fig. 2. We note that the error is dras
tically reduced when a signal of nonzero bandwidth is present. 

The coefficients for actual values of n and z2 are given in 
Table I for w = 0. When w =I= 0, the coefficients can be ob
tained from those with w = 0 as follows: 

il'n(w, w) = iw + iPn(w- w, 0) 

= iw + L ak(O) e -ikwTs e ikwTs. (26) 

By this, we obtain 

ao(w) = iw 

~(w) = ak(O) e -ikwTs k =I= 0. (27) 

When wT8 =1=prr,p=O, 1,· · · ,lm{ak(w)}=FO and in analogy 
with (13), we see that we have to estimate both Pxx(kT8 ) and 
Pxy(kT8 ). For wT8 = prr, Im {ak(w)} = 0 and it is sufficient to 
estimate Pxy(kT8 ) only. 

The trigonometric approximation to f(w) = w is shown in 
Fig. 3. Due to the sampling with angular frequency w8 it is 
possible to obtain a representation over a range w8 only. For 
complex signals, whose spectrum is asymmetric around zero, 
we can offset the approximation as shown in the figure. 

If we set w = 0 we can analyze frequencies in the range 
(- W 8/2, w 8/2). This gives the well-known limit of the range
velocity product of a pulsed Doppler meter. For w = w8 /2, 
e.g., we can analyze frequencies in the range (0, w 8), but we 
then need to be sure that we have only positive Doppler shifts 
present. If there are some negative Doppler shifts present, 
these will introduce errors in the estimate, so care has to be 
taken. 

IV. PRACTICAL ESTIMATOR AND EXPERIMENTS 

In analogy with (14), we obtain the following approximation 
to Rx_x(O): 

Rx_x = i2 {wRxx(O) + 2 f (Im (ak) Rxx(kT8 ) 

k=l 

+ Re (ak) Rxy(kT8)]}. (28) 

The Doppler signal will be a Ga.1ssian process [10], which 
implies [7] 
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Fig. 2. Ratio of the expected value t'J of the estimated mean frequency 
to the true mean frequency w for the spectra in (27). B is the signal 
bandwidth. 

TABLE I 
COEFFICIENTS FROM MEAN-SQUARE ERROR MINIMIZATION 

N " 12 N = 8 N = 4 

z
2
22,9 z

2
•2. 8 z

2
=2.8 z

2
22,6 z

2
=2.2 

l.9827E+O 1.9747E+O l. 9644E+O 1.941SE+O l,8176E+O 

-9.6574E·l ·9. 50l9E+l ·9. J018E-l -8 .8700E-l -6. 7Jl9E·l 

6 .l605E-l 5. 9377E-l 5 .6514E-1 5 .0678E-l 2.5766E·l 

-4. 3394E·l -4 .06lOE-l -3. 7038E-1 -3 .034SE-l -7. J679E-2 

J .196SE-1 2 ,8770E·l 2 .4678E-l l. 7843E•1 

-2 .4009E·l -2.0563E-l -l.6160E·l -9.8530E-2 

1.8ll5E-1 1.4585E·l 1.0086E-l 4 .8420E·2 

-1.3583E•l ·1.0133E•1 -5. 7451E-2 ·l.8996E•2 

1.0025E·1 6.8022E·2 

-7 .2062E·2 -4.J375E·2 

4. 9754E·2 2. SS6lE·2 

-3. 2258E-2 -1. 3l74E-2 
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w 

Fig. 3. Trigonometric approximation to f(w) = w. Due to the sam· 
piing with angular frequency w", a representation is obtained over a 
range w 3 only. 

Rxy(kTs) R(sgnx)y(kT3 ) 

Rxx(O) - R(sgnx)x(O) ' 

Rxx(kTs) _ R(sgnx)x(kT3 ) 

Rxx(O) - R(sgnx)x(O) 

(29) 

where sgnx = ± 1 for x ~ 0. By this, digital D-type flip-flops 
may be used to produce the delays in estimating R(sgnx)§(kT3 ) 

fork =1=0. 
For averaging, we use a first-order recursive low-pass filter. 

By this, we get the following equations: 

Ti('+l) 
-('+l)=w+-1 -
w I N(j + 1) 

n 
T(j + 1) = o:T(j) + 2 L ak(O) [cos (wkTs) y(j + 1) 

k=l 

-sin (wkTs)x(j + 1)] sgnx (j + 1 - k) 

N(j + 1) = o:N(j) + IYU + 1)1 

o: = exp (- T3 /T,). (30) 

T1 is the time constant of the low-pass filter. If T1 is suffi
ciently large, the variance in N wilJ be small and 

-} <T> (w ~w+·-
(N} 

n 
= w + 2 L ak(O) [cos (wkTs) Pxy(kT,) 

k=l 

- sin (wkT,) Pxx(kT,)]. (31) 

Thus, the bias of the estimate is obtained through (17). 
A block diagram of the estimator is shown in Fig. 4. Fig. 5 

shows the output of this estimator and the estimator presented 
in (3] for a Doppler signal from the ascending aorta. Eight de
lays are used in the estimator and z2 = 2.8. The discrete time 
estimator uses a first-order fllter with fc = l/(2rrT1) = 15 Hz, 
while the continuous estimator uses a three-pole filter with 
fc ~ 22 Hz for averaging. Taking this into account, both esti
mators have fairly equal performance in the systoli. In the 

diastole, the signal power is so low that both estimators give 
incorrect estimates of the frequency. 

The variance of the estimator has been obtained by com
puter simulations for the following spectra [ 10] : 

Gxx(w) 

{
4~ _1_ (1 -_e_ __ ~)(2/p)-1 

= w p+2 p+2 w 

0 

[ 
p+2)-wE 0,-p- w 

else. 

(32) 

In the simulations, we chose n = 12, z2 = 2.8, and o: = 0.98. 
The results are shown in Fig. 6. 

V. DISCUSSION 

We can look upon (15) as an FIR transversal filter working 
in discrete time to perform differentiation. It uses both posi
tive and negative lags. Using a_k =a: and the properties of 
Rxx given in (3) and (5), we are able to use only positive lags 
in (28), and this gives the simplified structure of the estimator 
in (30) and Fig. 4. The imaginary part of the frequency trans
fer function of the transversal filter in (30) approximates iw. 
Since we are using one-sided lags only, the frequency trans
fer function wilJ also have a real part. However, the signal 
which is generated by the real part of the transfer function dis
appears in the correlation process. Therefore, the transversal 
fllter in Fig. 4 is not a differentiator, but combined with the 
correlation process, the total effect is a differentiation. We 
could, of course, use both positive and negative lags in the 
fllter, by which we would do a differentiation of the signal as 
in other continuous time estimators [ 1] - [ 4] , but then it 
would not be sufficient to use the sign of x only in the filter
ing process to obtain the derivative of the signal. 

The coefficients in the transversal filter will depend upon w. 
This introduces a delay in the triangular function in Fig. 3 and 
adding w at the output lifts the function so that it approxi
mates f(w) = w. When w = 0, 1m (ak) = 0 and we are left with 
the upper transversal filter only. This simplifies the estimator, 
but the possibility of analyzing signals with angular frequen-
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Y(k) 

Fig. 4. Block diagram of the estimator. 

u . ... e ~4-~~~+Y~~~~~~4-~~~+4~~ 
u 

. 
e 

> 

Fig. 5. Output of this estimator with w = 0 (lower trace) and estimator 
presented in [ 3 J (upper trace) for a Doppler signal from the ascend· 
ing aorta. 

cies outside the range (- Ws/2, Ws/2} emphasizes to leave the 
ability to use w ::/= 0. The angular Doppler frequency often ex
ceeC:s ws/2 in flowjets in the heart and even in peripheral 
v~ssels. 

We can either set w manually to a certain value or we can 
use feedback from w, say w(k} = w(k- 1}. Feedback has sev
eral advantages. If the blood velocity does not change too fast 
we will have w(k) ~ w(k}, and we are then analyzing signal 
frequencies in the range (w(k)- Ws/2, w(k) + Ws/2). White 
noise will then give zero bias in the expectation value of the 
estimator since it is evenly distributed on both sides of the 
signal mean frequency. Also, if the total signal bandwidth is 
less than Ws, we can theoretically track signal frequencies to 
unlimited range, if the frequencies increase continuously from 
low values. However, in practice, the signal bandwidth in
creases as w increases and this sets a limit on the maximum 
frequency that can be tracked, depending on the practical situ
ation. However, the tracking will at least enable us to mea
sure signals with maximum frequencies up to Ws instead of 

the Nyquist rate which is half that value, provided we have 
only one sign of Doppler shifts present. 

As shown in Figs. 1 and 2, the estimator will have a bias 
error in its expected value depending on how many taps are 
used in the fllter and how large a portion of /(w) we want the 
estimator to cover. The trigonometric polynomial in (18) has 
a period of Ws· Therefore, the best we can do is approximate 
f(w) = w with a triangular function shown in Fig. 3. If we 
want a good representation of this triangular function with a 
trigonometric polynomial, we need a high order of the poly
nomial, due to the discontinuities in the triangular function. 
However, if we allow the polynomials to have a free variation 
in the vicinity of the discontinuity, we obtain a better approxi
mation of the triangular function outside this vicinity, as dis
cussed in Section III. This is demonstrated in Fig. 1 where we 
see that the error for z < z 2 is reduced when z 2 is decreased 
from 11'. However, the total mean-square error from 0 to 11' 

increases. For z2 = 11', we obtain the Fourier polynomials for 
the triangular function. 

The bias is also largest for a single frequency signal and de
creases with increasing signal bandwidth. In Fig. 2(a) and (c), 
we see that for a relative bandwidth of 0.2 the bias is less than 
0.5 percent for n = 8, z2 = 2.6, and for n = 12, z 2 = 2.8. In
creasing z2 to 3.0 for n = 12 increases the maximum bias for 
this signal to about 8 percent [Fig. 2(b)]. However, the maxi
mum bias occurs for zero angular frequency and due to the 
instrument high-pass fllter, we will not have angular frequency 
components below 0.05 Ws to 0.1 Ws· This reduces the maxi
mum bias to 3-4 percent for n = 12, z2 = 3.0;~and a relative 
signal bandwidth of 0.2. · 

The output of this estimator is compared in Fig. 5 to the 
estimator in [3] for a Doppler signal from the ascending aorta. 
This last estimator uses a three-pole low-pass filter (~22Hz) 
for averaging, while the present estimator uses a single-pole 
low-pass filter ( ~ 15 Hz). This is part of the reason why the 
present estimator has a noisier output than the other. Since 
we are using only one-sided lags in the transversal filter of the 
estimator, we introduce an unwanted signal part in the corre-
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500 1000 1500 2000 2500 
!-mean frequency (Hz) 

Fig. 6. Estimator variance from computer simulations for the spectra 
in (32). Nyquist frequency = 2500 Hz, w = 0. 

lation from the real part of the filter frequency transfer func
tion as discussed above. This signal part introduces no bias 
in the expectation value of the estimator, but will increase 
the variance in finite time estimation. Apart from the ·larger 
variance, the traces are very similar in systole. In diastole, 
the signal power is too low for both estimators to function 
properly. 

From Fig. 6 we see that the relative standard deviation of 
the estimator is about lO percent for signal frequencies above 
600 Hz. This is larger than for the continuous time estimators 
calculated in [4]. Also, we note that the relative standard de
viation does not have the typical 1/..Jl variation which is 
found for the continuous time estimators presented in [4]. 
The reason for this can partially be due to the single-sided lag 
used ih the transversal filter as discussed above, but using the 
sign in the correlation may also have an effect. The detailed 
explanation is left for a separate study. 
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A Comparison Between Mean Frequency Estimators for 
Multigated Doppler Systems with Serial 

Signal Processing 

K. KRISTOFFERSEN AND B. A. J. ANGELSEN, SENIOR MEMBER, IEEE 

Abstmct-Eight dilferent discrete time mean frequency estimators 
for complex Doppler signals are derived and analyzed. The estimators 
are well suited for use in multigated Doppler ultrasound measurements 
of blood velocity promes. Approximate expressions for bias and vari
ance of the estimators are derived. A general scheme for extending the 
analyzing range or discrete time Doppler frequency estimators above 
the Nyquist limit is also outlined. 

The estimators are evaluated by numerical computations of bias and 
variance, both for wide-band and narrow-band input signals. The per· 
formance or the best of the discrete time estimators is roughly equiv
alent to that of continuous time versions, provided frequency aliasing 
does not occur. 

I. INTRODUCTION 

MULTIGATED pulsed (PW) Doppler ultrasound in
struments permit the real-time measurement of ve

locity profiles in blood vessels. An elegarit way of design
ing a multigate system is to use serial signal processing 
[1]-[5]. Using serial design allows the signal processing 
units, e.g., the high-pass filter, to be shar~d between the 
signals from the different range gates in a time multi
plexed system. Several investigators have reported efforts 
in developing ·discrete time Doppler frequency estimators 
for multigated systems. The detectors presented have es
timated the mean frequency [5], [9] or other parameters 
relating similarly to the Doppler power spectrum [1]-[3], 
[7]. Frequency estimation is also an important issue in the 
development of real-time blood flow imaging systems [6]. 

The fractional bandwidth (the ratio between bandwidth 
and center frequency) of the Doppler spectrum varies 
greatly in different clinical situations. In a high-resolution 
system, the minimum value is typically 10-20 percent, 
limited by the transit time effect [8]. When there are ve
locity gradients in the sample volume, the fractional band
width may be much larger. A mean frequency estimator 
should ideally yield an unbiased, low-variance estimate of 
the mean Doppler shift, regardless of the signal band
width. 

In a pulsed Doppler instrument, there is a limit on the 
magnitude of the maximum frequency that can be de
tected. This limit has been commonly recognized to be 
the Nyquist limit, i.e., half the pulse repetition frequency 

Manuscript received December 18, 1983; revised March 25, 1985. This 
work was supported by grants from the Norwegian Institute of Technology. 

The authors are with the Division of Engineering Cybernetics, Norwe
gian Institute of Technology, N 7034 Trondheim-NTH, Norway. 

(PRF) of the instrument. However, in direction sensitive 
systems, the received RF Doppler signal is sampled in both 
amplitude and phase. A looser requirement is then suffi
cient to ensure unambiguous detection: the signal band
width must not exceed the PRF [9], [18]. Based on this 
looser requirement, Doppler frequency estimators that 
work for the asymmetric frequency interval ( -wsf2 + w, 
wsf2 + w) have been designed, where w1 is the angular 
PRF of the system. The interval offset w may either be 
chosen constant (from prior knowledge of the Doppler 
spectrum) or varied adaptively by feedback from the Dopp
ler frequency estimate itself. In the latter case, it is pos
sible to track signals with time varying mean frequency 
over a frequency range larger than ws. Hoeks investigated 
an adaptive scheme based on a discrete time instantaneous 
frequency estimator [5]. This worked well for narrow to 
medium bandwidth signals (relative to w1). However, be
cause the width of the probability distribution for the in
stantaneous frequency is considerably greater than the 
bandwidth of the corresponding signal spectrum, the 
tracking broke down when the signal bandwidth exceeded 
ws/2. For optimal tracking performance, a discrete time 
frequency estimator should be able to handle a signal with 
(approximately) known center frequency w, as long as the 
total signal bandwidth is less than ws. 

In an earlier paper [9], a discrete time estimator was 
derived that approximately satisfies the requirements 
stated above. There is, however, a number of different es
timator structures that may be used to implement the ideas 
presented there. A simple structure is desirable in high
speed hardware implementations of the estimator. The aim 
of this work is to quantify the tradeoffs between complex
ity and estimator performance in terms of bias and vari
ance. The implementation structure originally suggested 
is not a good choice since it may lead to excessive variance 
for narrow-band signals. 

II. DISCRETE TIME EsTIMATION oF THE MEAN 
DoPPLER FREQUENCY 

A. Estimators for Symmetrical Analyzing Intervals 

The Doppler signal .f(t), in Doppler ultrasound blood 
velocity measurements, is a zero mean complex Gaussian 
process [8]. In a PW instrument with discrete time signal 
processing, only samples {x(kTs)} are available where Ts = 

0018-9294/85/0900-0645$01.00 © 1985 IEEE 
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llfs = 27rlws is the interval between pulse emissions. 
Without loss of generality, Ts is set to unity in the follow
ing. The Doppler signal can then be decomposed into its 
real quadrature components by 

x(k) = x(k) + jy(k). (1) 

approximate equation 

N 

2: a(n)[Rxy(n) - Ryx(n)] 
W = ~n=~-~N~--------------

Rxx(O) + Ryy(O) 
(8) 

The cross-correlation function between two stationary dis- Consequently, a discrete time mean frequency estimator 
is given by 

([x(k) JN a(n) y(k + n) ]- r(k) '~N a(n) X(k + n)]) 

wl = (xl(k) + y(k)) (9) 

crete time complex processes {p(k)} and { q(k)} is 

Rpq(n) = (p*(k) q(k + n)) 

In a practical estimator, the ensemble averages must be 
substituted with time averages. The above estimator is then 

where * denotes a complex conjugate and ( ) denotes 
ensemble expectation. Stationarity of {x(k)} is assumed 
throughout this work. Setting p(k) = q(k) = x(k), and 
combining (1) and (2), then yields the autocorrelation 
function of the complex Doppler signal 

(2) the discrete time equivalent of the continuous time "dou
ble correlator" mean frequency estimator originally pro
posed by Brody [11]. Its properties have been investigated 
by Gerzberg and Meindl [17] and Angelsen [10]. The 
properties of the discrete time estimator will differ from 
those of the continuous time version, due to both sampling 
effects and nonideal response of the discrete time differ

(3) entiator filter when the signal has frequency components 
close to the Nyquist limit (e.g., when the signal-to-noise 
ratio is small). The power spectrum of the Doppler signal is the Fourier 

transform of the autocorrelation function of the continu
ous time Doppler signal x(t) 

It is possible to perform several simplifications of the 
expression (9). For time invariant velocity fields, the RF 
Doppler signal is stationary [8]. This is approximately true 

G,et(W) = ~:"" dT R,et(T) e-jwr. (4) also for pulsatile velocity fields when the observation time 
is short compared to the rise time of the velocity. Then the 
relations R:u(T) = Ryy(T) and Rxy(T) = -Ryx(T) hold [14]. 
Thereby (9) can be simplified to 

If the continuous time Doppler signal has spectral support 
on the interval (- 1r, 1r), the mean angular Doppler fre
quency is defined by 

~: .... dw wG,et(w) 

w= 
~: .... dw G,et(w) 

(5) 

Using elementary properties of the Fourier transform it 
has been shown tha! [ 10] 

~(k) n~N a(n) y(k + n)) 
Wz = <r<k>> (10) 

which corresponds to the simplified analog single corre
lator estimator of Arts and Roevros [ 12]. 

_ _ _ . R.et (0) _ Rxy (0) - Ryx(O) 
w - J R.et(O) - R.u(O) + Ryy(O). 

The discrete time implementation allows for additional 
simplifications. One always has a(n) = -a( -n) because 
the transfer function of an FIR differentiator filter is imag
inary. Furthermore, both Rxy(T) and Ry;c(T) are odd func

(6) tions. This implies that the ratios (9) and (10) will not 
change if the differentiator filter is truncated by setting 
the upper limit of the summation to zero, if the remaining 
coefficients are multiplied by 2. The imaginary part of the 
transfer function of the truncated filter is still equal to that 
of the differentiator. However, the truncation generates a 

The above equation forms the base for time domain analog 
mean frequency estimators [11], [12]. In [9], an odd-order 
finite impulse response (FIR) differentiator filter was used 
for approximate discrete time calculation of the deriva
tives in (6) 

N 
nonzero real part of the transfer function which contrib
utes to the filter output with a component in phase with 

= 2: a(n) Rxy(n). 
n=-N yx 

(7) its signal input. This component will generate a zero mean 
term in the correlation process (Rxy(O) = Ry;c(O) = 0). The 
truncation may therefore lead to increased estimation un
certainty when the averaging time is short. 

Appropriate differentiator coefficients { a(n)} can be de
rived from a number of different criteria [9), [13]. For a 
given set of coefficients, the quality of the approximation 
depends on the signal bandwidth and the maximum fre
quency of the power spectrum. This problem is discussed 
at a later stage. Equations (6) and (7) now lead to the 

The size of the real part of the transfer function of an 
odd-order FIR filter can be manipulated, without affecting 
the imaginary part, by varying the coefficient a(O). One 
may thus tailor a(O) to minimize the variance of the esti-



KRISTOFFERSEN AND ANGELSEN: MEAN FREQUENCY ESTIMATORS FOR MULTIGATED DOPPLER SYSTEMS 647 

mator for a signal with a known Doppler spectrum. When 
full length differentiator filters are used, one should choose 
a(O) = 0; this ensures a purely imaginary transfer func
tion. With truncated filters a reasonable choice is 

-1 

a(O) = - 2: a(n). (11) 
n=-N 

The transfer function of the truncated filter then has a zero 
for w = 0, which prevents low-frequency zero mean com
ponents from leaking through the correlator. This choice 
greatly reduces the variance of the estimate at low Doppler 
frequencies. 

None of the above estimators is ideal for applications in 
multigated Doppler systems, because the FIR filter com
putations are fairly complex. Increased execution speed 
and calculation simplification result from using Buss
gang's relation for Gaussian signals, stating [15] 

~ R (n) 
(x(k) sgn y(k + n)) = ~ 

vRyy(O) 
(12) 

where sgn ( ·) is the signum function. This leads to the 
following alternative to the double correlator estimator (9): 

K 

D· = 2: b(k) d·(k) 
I k=l I 

i = 1, 2, 3, 4. (14) 

The numerator kernels n 1 are 

n1(k) = [ 1 - ~] n~N a(n) 

· [x(k) y(k + n) - y(k) x(k + n)] (15a) 

[ N'] N' 
n2(k) = 2 1 -

2
N n~N a(n) x(k) y(k + n) (15b) 

n,(k) = ~ ../Ru(O) [I - ~] 
N' 

· 2: a(n)[x(k) sgn y(k + n) 
n=-N 

- y(k) sgn x(k + n)] (15c) 

( [x(k) n~N a(n) sgn y(k + n)] - [y(k) n~N a(n) sgn x(k + n)]) 
&3 = ------------------~~~--~~-------------------- (13) 

<lx(k)l + ly(k)l> 

The continuous time version of this estimator was sug
gested by Angelsen [ 10]. The filter part of the above equa
tion can be computed very efficiently using ROM arith
metics. Utilizing the symmetry of the coefficients, the first 
filter equation can be rewritten to 

N N 

2: a(n) sgn y(k + n) - 2: a(n) sgn y(k - n). 
n=l n=l 

The sets {sgny(k + n)} and {sgny(k- n)} now form two 
N-bit binary words. These may form the addresses to ROM 
look-up tables where the two partial sums are tabulated. 
The same look-up tables may be multiplexed to also com
pute the second filter equation in (13). 

The structure simplifications that were suggested for (9) 
can also be applied to (13). The resulting single correlator 
version is denoted w4• With the truncated differentiator 
filter and a(O) = 0, this corresponds to the original dis
crete time estimator evaluated in [9]. 

One is now left with a variety of discrete time mean 
frequency estimators that basically are variations over the 
same theme. In the following, it is assumed that the nu
merators and the denominators of all estimators are aver
aged by identical FIR low-pass filters of order K, with 
coefficients { b(k)}. The estimators under investigation are 
then described by 

A Ni 
W· =-

1 Di 
K 

Ni = 2: b(k) ni(k) 
k=l 

N' 

· 2: a(n) x(k) sgn y(k + n). (15d) 
n=-N 

The two-valued parameter N' indicates whether the FIR 
differentiating filter is truncated or not. Allowed values 
are N' = 0 and N' = N. The numerators have, for con
venience, been scaled to the same expectation value 

N 

(ni(k)) = 2: a(n)Rxy(n) = Rxy(O) 
n-N 

i = 1, 2, 3, 4 

N' = OorN. 

The corresponding denominator kernels di become 

(16) 

dt(k) = !(r(k) + l<k)J (17a) 

d2(k) = x2(k) (17b) 

d,(k) = ~ ../J1d.O) [ix(k)l + ly(k)IJ (17c) 

d4(k) = ~ ../Ru(O) lx(k)l. (17d) 

The expectation values of the denominators are normal-
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Fig. l. Structures of different mean frequency estimators. 

ized to 

(d;(k)) = R.a(O) i = 1, 2, 3, 4. (18) 

For a given set of coefficients, one has 8 possible ways of 
implementing the discrete time mean frequency estimator, 
as illustrated in Fig. 1. The letters t (truncated) or d (dif
ferentiator) behind the estimator-type number are used to 
indicate whether N' = 0 or N' = N. Estimator 3t thus 
denotes the double correlator estimator with sign multi
plication and truncated differentiator filter. Unless other
wise stated, a(O) is always given by (11) when the trun
cated filter is employed. 

B. Extension to Arbitrary Analyzing Intervals 

In [9], a more complex version of estimator 4t was de
rived that could analyze Doppler signals with spectral sup
port on the asymmetric frequency interval ( -11" + w, 
1r + w). Using this version, signals with frequency com
ponents above the Nyquist limit could be analyzed without 
aliasing errors, provided that the total signal bandwidth 
was less than the sampling rate. By simple means, the same 
can be obtained also with the symmetric interval (w = 0) 
estimators outlined in the previous section. To show this, 
we initially define the normalized correlation functions. 

Rpq(n) 
Ppq(n) = R.a(O) (19) 

where p, q can be x or y. Let w denote the approximate 

mean frequency 

1 N 
w = -

2
. :E a(n)p_u(n) 

':] n=-N 

N 

= :E a(n)pxy(n) = Pxy(O) = w. (20) 
n=-N 

Because of the symmetry a(n) = -a( -n), the above 
equation may be rewritten as 

1:1f dwA(w) G_u(w) 

w = -j (21) 

where 
N 

A(w) = :E a(n)einw 
n=-N 

(22) 

is the frequency response of the differentiator. Note that 
A(w) is periodic with period 27r. An idealized differentia
tor frequency response is shown in Fig. 2(a). 

Fig. 2(b) shows the spectrum of a stationary Doppler 
signali(t). The spectrum of the sampled sequence {x(k)} 
becomes [ 16] 

Gfi(w) = :E G_u(w - 2mr) (23) 
n=-CI> 
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Fig. 2. Principles of mean frequency estimation when the signal contains 
frequency components exceeding the Nyquist limit. 

as indicated in Fig. 2(c). In the example, the maximum 
frequency of G.u(w) exceeds the Nyquist limit w:/2. Still, 
all information is contained in the power spectrum of the 
sampled signal because the partial spectra in the sum (23) 
do not overlap. However, G.u(w) also has spectral support 
outside the interval (- 'll", 1f'), and large aliasing errors will 
occur if {.f(k)} is analyzed by an estimator with a ditfer
entiator filter of the type in Fig. 2(a). In [9], such errors 
were avoided by employing a ditferentiator filter with an 
asymmetric frequency response (FIR filter with complex 
coefficients). A simpler approach is to form a sampled 
sequence{f.(k)}, with power spectrum Gt,t(w) = G.u(w + 
w), see Fig. 2(d). If the power spectrum of the continuous 
time Doppler signal .f(t) has spectral support on (- 'll" + 
w, 'll" + w), the power spectrum of the corresponding con
tinuous time signal f.(t) has spectral support on (- 'll", '11"). 
One may, therefore, estimate the mean frequency of 
Gu(w) by analyzing the discrete time process {f.(k)}, 
using a symmetric interval estimator. The sequence {t(k)} 
is constructed by the simple transformation 

f.(k) = .f(k) e-ikw. (24) 

This leads to the analyzer structure in Fig. 3. The estimate 
of the mean frequency of Gfi(w) is formed by adding w to 
the estimate of the mean frequency of Gu(w). The figure 
also shows how nonaliased audio Doppler information may 
be retrieved from the sampled Doppler signal. This is 
achieved by smoothing the quadrature components of 
{t(k)} by ordinary analog low-pass filters, with cutoff at 
the Nyquist frequency, and multiplying the smoothed sig
nal t(t) with the continuous time complex exponential exp 
Uwt). A signal .f(t) with true frequency (pitch) informa
tion is then generated [see Fig. 2(e) and (f)]. This opera
tion is motivated by the fact that it is essential to use the 
audio Doppler signal as an aid in locating the Doppler 
sample volume [18]. 

Ill. EXPRESSIONS FOR ESTIMATOR BIAS AND VARIANCE 

Expressions for estimator bias and variance may be de
rived using a time domain approach [10]. Following the 
method of Brody, (14) can be written on the form [11] 

A - (1 + 0:; - {3;) 
W; = W 1 + {3; . (25) 
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Fig. 3. Block diagram of estimator for asymmetric analyzing intervals. The 
lower part shows reconstruction of the continuous time Doppler signal. 

i'(t) 

The random variables a; and (3; are the normalized excur- where the coefficients {b(m)} result from the convolution 
sions from the expectation values of the numerators and of { b(k)} with itself 
denominators, i.e., 

N;- (N;) 
0!; = 

(N;) 

D;- (D;) 
(3; = (D;) (26) 

D; will be close to ( D; ) when the low-pass filtering of the 
denominator is strong. The division can then be approxi
mated with a first-order series expansion 

w; = w(l + a; - f3; - a;f3; + f3f). (27) 

K-lml 

b(m) = ~ b(k) b(k + lml). 
k=l 

(30) 

The reduction to a single sum enters due to the stationar
ity, which makes (n;(k) n;(n)) a function of k - n only. 
By direct calculation, one obtains the identity 

K-1 [ K ]2 
hs = ~ b(m) = ~ b(k) . 

m= -(K-1) k= I 
(31) 

It follows from (14) and (18) that 

(32) 
From this expression, one obtains approximate values for 
the fractional bias e; and fractional variance of of the es- By combining (26), (29), and (32), the fractional vari
timators ances of the numerators can be computed from the for

mula 

E; = =- K-1 

(af) = b; 1 ~ b(m) ~n;n;(m) 
m=-(K-1) 

(33a) w w 
. [1 + <f3f>- (0!;(3;)]- 1 

\[ _]2) 2 W;- W 2 
(Tj = ~ = (0!; > 

where 

~n;n;(m) = R;}(O) w -2 (n;(k) n;(k + m)) - 1. (33b) 

+ <f3f>- 2(a;{3;). (28) Similar expressions may be derived for the fractional var
iances of the denominators and the cross correlations be
tween the numerators and the denominators The ratio w/w in the bias accounts for the nonideal fre

quency response of the FIR differentiator, while the re
maining terms represent bias due to the finite averaging 
interval. 

Expressions for ( Nf) and ( N; )2 are needed to calcu
late <af>. From (14), it follows that 

K K 

where 

<Nf> = ~ ~ b(k) b(n) ( n;(k) n;(n)) 
kal na1 and 

K-l 

= ~ b(m) (n;(k) n;(k + m)) (29) 
m=-(K-1) 

K-1 

( [3f) = b; 1 ~ b(m) ~d;d;(m) 
m=-(K-1) 

(34a) 

~d;d;(m) = R;/(0) (d;(k) d;(k + m)) - 1 (34b) 

K-1 

(a;(3;) = h;1 ~ b(m) ~n;d;(m) (35a) 
m= -(K-1) 



KRISTOFFERSEN AND ANGELSEN: MEAN FREQUENCY ESTIMATORS FOR MULTIGATED DOPPLER SYSTEMS 651 

where 

~n;d;(m) = R_;/(0) w -I (n;(k) d;(k + m)) - 1. (35b) 

The normalized covariance functions ~pq(m) are needed to 
solve the above equations. Finding these involves calcu
lations with fourth-order moments of the Doppler signal 
probability distribution. Some of the expressions are rather" 
complex, and the derivation is left for the Appendix. 

IV. NUMERICAL CALCULATIONS OF ESTIMATOR BIAS 

AND VARIANCE 

A. Selection of Estimator and Signal Parameters 

In the following, the performance of the estimators will 
be compared for signals with specified power spectra. Be
fore doing this, one must select proper differentiator filter 
coefficients. The fractional bias due to nonideal differen
tiation follows from (6) and (21) 

lw; wl 

where 

I: ... dw A,(w) wG_u(w) 

I: ... dw wG_u(w) 

s max {I A,(w)l} 
weO 

A,(w) = A(w). - jw 
)W 

(36) 

(37) 

is the fractional differentiating error for a single frequency 
input to the differentiator, and 0 is the interval where 
G_u(w) has spectral support. Thus, the peak fractional bias 
for a general signal spectrum with spectral support on 0 
is less or equal to the peak fractional differentiating error 
for a single frequency w e 0 input to the differentiator 
filter. It is, therefore, reasonable to select the coefficients 
{a( n)} that minimize the peak fractional differentiating er
ror for single frequency inputs. Such coefficients can be 
calculated using the Remez exchange algorithm [ 13], 
which makes A,(w) a minimum amplitude equiripple func
tion over a specified frequency interval. Selecting N = 8 
and the interval (- 0.8471', 0.8471') then yields the response 
shown in Fig. 4(a). The peak fractional error is seen to be 
approximately 1 percent over the specified interval. From 
(36) and Fig. 4(a), it can be seen that the fractional bias 
due to nonideal differentiation decreases with increasing 
signal bandwidth [9]. A greater analyzing range can be 
obtained by allowing a larger peak error, or by increasing 
N. 

Fig. 4(b) shows the transfer function of the correspond
ing truncated differentiator filter, both with a(O) = 0 and 
when a(O) is calculated from (11). The real part of the 
transfer function of the latter has the smallest absolute 
value for angular frequencies less than approximately 
0.571'. 

In [9], it was argued for the use of differentiator coef
ficients { a(n)} that minimized the mean square differen-

(a) 

IR.e[A(~~t)]l. a(O) ,/". 

IR.e[A(~~t)ll. a(O) froa 

(b) 

Fig. 4. FIR differentiator characteristics. (a) Fractional differentiating er
ror function for sinewave input. (b) Transfer function for the truncated 
differentiator filter. 

tiator error I A (w) - jwl2 over a specified interval. This 
yielded a relatively large fractional bias for low frequen
cies. However, the Doppler signal is always high-pass fil
tered, and the practical difference between the two ap
proaches will be small in most clinical situations. 

In the following, smoothing of the numerators and de
nominators of the estimators by pure averaging filters is 
assumed, i.e., 

b - 1 (m) =-
K 

m = 1, 2, · · · , K. ·(39) 

The resulting {b(m)} and bs become from (30) and (31) 

-b(m) = ..!_ [K- lmll -K < m < K Kz 

(40) 

In the calculations, K = 50 was selected. The spectrum 
of the input signal was assumed to be rectangular 

{ 

2
71' w(1 - ~) < w < -w(1 + ~) 

G(w) = Bw 2 2 (41) 

0 elsewhere. 

The parameter B is the fractional bandwidth of the spec
trum. By adding white noise _to the Doppler signal and 
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n0 = 0.1 

1.1 

Fig. 5. Comparison between estimator performances when B = l. The x 
axes are scaled relative to the Nyquist frequency. Left column: noiseless 
Doppler signal. Right column: SIN= 10 dB (n0 = 0.1). 

(b) 

(d) 

(f) 

(h) 

assuming a signal-to-noise ratio n0 , the following normal
ized correlation functions are obtained: 

where sine z = sin z/z and Onm is the Kronecker delta. The 
covariances ~pq(m) can now be computed from the expres
sions in the Appendix. The variances and biases for the 
estimators follow from (28) and (33)-(35). 

P:u(n) = Pyy(n) = (1 + n0 )-
1 

( 
~ . nwB ) 

• nounO + smc 2 cos nw 

Pxy(n) -pyx(n) = (1 + no)- 1 

. nwB . _ 
· smc2smnw (42) 

B. Numerical Results 

Four sets of calculations have been performed. Fig. 5 
shows results for a signal with large fractional bandwidth 
(B = 1). The left column applies with no noise present . 
In the right column, the signal-to-noise ratio is 10 dB 
(n 0 = 0.1). From top to bottom the figure shows fractional 
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Fig: 6. Comparison between estimator performances when B = 0.1. The 
figure is organized the same way as Fig. 5. 

biases, fractional standard deviations for estimators 1 and 
2, fractional standard deviations for estimators 3 and 4, 
and finally, fractional standard deviations ..; < r#) for the 
denominators. The traces labeled adc are the correspond
ing fractional standard deviations for the analog double 
correlator (see the Discussion). 

Fig. 6 is organized in the same way as Fig. 5 and shows 
the results when the fractional bandwidth B = 0.1. The 
curve labeled 2to in Fig. 6(c) is the fractional variance of 

estimator 2 with truncated differentiator filter and a(O) 

0. 
In the noiseless case with strong filtering, the biases of 

all estimators are practically the same. The peak frac
tional bias is small (- 1 percent), decreasing with increas
ing absolute signal bandwidth w B. A closer investigation 
shows that e; is nearly equal to wlw - 1 [(36)]. The bias 
is, therefore, mainly caused by the ripple in the frequency 
response of the differentiator. With 10 dB signal-to-noise 
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ratio one should, from (20) and (42), expect the fractional squared terms have larger excursions from their means 
bias to be -9 percent (e = 11(1 + n0 ) -1). Some devia- than the denominators using absolute values. In spite of 
tions from this value are seen when the absolute signal . this, the estimators with ordinary multiplication have lower 
bandwidth is small. This type of bias may be heavily re- variances than the estimators with sign multiplication. This 
duced by controlling the analyzing interval offset w adap- is due to the higher correlation between numerators and 
tively from the estimate itself, i.e., w(k + 1) = w;(k) [9]. denominators for these types. Note that the varian~es of 

The variances of the estimators increase with increasing the single term denominators D2 and D4 increase when the 
fractional bandwidth B when the mean frequency is con- maximum frequency increases to the point where aliasing 
stant. For the group employing full multiplication, there occurs (w = 0.6771" when B = 1, w = 0.957r when B = 
is little difference in performance between the types 1 d 0.1). This is of no .Practical importance since the differ
and 2d, provided the maximum signal frequency does not entiating error starts to increase at a much earlier stage. 
exceed the Nyquist limit [see Figs. 5(c) and 6(c)]. When 
the differentiator limit 0.84 1r is exceeded, the fractional 
variances of all estimators increase abrubtly. Note that, in 
the presence of noise, the single correlators in this group 
have higher variances than the double correlators, espe
cially when the differentiator filter is truncated (a21). Re
ducing B from 1 to 0.1 when the signal-to-noise ratio is 
10 dB hardly affects the variance of the estimators. This 
is not surprising; the signal is relatively wideband at this 
noise level, regardless of B. 

The result of using a nonzero a(O) when the differentia
tor filter is truncated is illustrated in Fig. 6(c). The large 
reduction in variance for low mean frequencies is appar
ent. However, a210 < a21 for high mean frequencies. The 
crossover point is approximately 0.571", which corresponds 
well with the frequency responses in Fig. 4(b). 

The estimators employing sign multiplication have in
variably higher variances than the corresponding full mul
tiplication types, and there are considerable differences in 
performance between the individual estimators in this 
group. A common characteristic is that their fractional 
variances increase heavily for the combination of low mean 
frequencies and narrow-band signals. The reason is that 
when a hard limited signal is differentiated, the differen
tiator output is nonzero only in the vicinity of a zero
crossing of the signal. When the number of zero-crossings 
during the averaging time KT5 is small, the smoothing of 
the numerator becomes insufficient and the variance in
creases. 

The full differentiator filter estimators 3d and 4d per
form fairly equally except for some small peaks in the plot 
of CJ2d forB = 0.1. In the noiseless case, their variances 
are approximately equal to that of the "full" double cor
relator l d. Type 3d is, however, somewhat more sensitive 
to noise than type d, having approximately 13 percent 
higher standard deviation in the mid-frequency range when 
SIN = 10 dB. In contrast, the variances of the single cor
relators 2 d and 4 d are fairly equal also when noise is pres
ent. 

The truncated filter estimators in the group using sign 
multiplication suffer from deficiencies: their fractional 
variances do not decrease monotonically with increasing 
mean frequency, and in the narrow-band case a31 and CJ41 

show large peaks, most severe at w = 0.571" (this phenom
enon will be explained in the next section). The noise im
munity of estimator 4t is also poor [Figs. 5(f) and 6(f)]. 

Fig. 5(g) and (h) shows that the denominators with 

V. DISCUSSION 

It is interesting to compare the results to corresponding 
calculations for continuous time estimators. Gerzberg and . 
Meindl [17] analyzed the double correlator estimator using 
a frequency domain technique due to Brody [11]. Under 
the assumption of strong filtering, they derived the follow
ing approximation to its variance: 

roo dw(w - W) 2 q~(w) 
-2 2 27r J_oo 
w (J = Ta ---:[::-::)~~ oo-dw-Gxx-·· (-w-) ]-.rz -

(43) 

where Ta is the averaging time of the estimator. Thus, in 
the continuous time case, the variance of the double cor
relator estimator depends only on the shape and bandwidth 
of the Doppler spectrum, not on the mean frequency itself. 
If the above equation is solved for the spectrum family 
described by (42), one obtains · 

(12 = ------
12(1 + n0 )

2 Kw; 

· [(1 + Bw,n0 )
2 Bwr + n~(l - (Bwr)3

)] (44) 

where Wr = wlws. For comparison, the fractional standard 
deviations resulting from the above expression when B = 
1 and n0 = 0, n0 = 0.1 are plotted in Fig. 5 (labeled adc). 
When the filtering is strong and the Nyquist limit is not 
exceeded, the variance of the discrete time double corre
lator 1 d is seen to be nearly identical to that of the cor
responding continuous time estimator. Note that the frac
tional standard deviations of most of the discrete time 
estimators show the same falloff rate as predicted by ( 44) 
(a 2 

- llw for medium or high signal-to-noise ratios). It 
is therefore likely that their variances depend on the signal 
bandwidth only. When this holds, the variance becomes 
independent of the analyzing interval offset w. 

Gerzberg and Meindl stated, without proof, that the 
variance of the analog single correlator estimator was twice 
that of the double correlator. In contrast, Angelsen found 
that their variances were equal under strong filtering [ 10]. 
This was confirmed by our results because CJ 1d = CJ2d as 
long as the maximum frequency of the signal spectrum 
does not exceed the differentiator limit. The discrete time 
single correlator estimator has, however, less noise im
munity than the double correlator. 
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It is also possible to compare our calculations to the re
sults of Hoeks [5]. He showed, by simulations, that the 
variance of the discrete time instantaneous frequency es
timator closely obeyed the expression (43) for signal-to
noise ratios greater than or equal to 10 dB. For lower sig
nal-to-noise ratios, its variance was considerably larger 
than predicted by ( 44). 

It has been shown that the bias of the discrete time mean 
frequency estimators mainly is caused by differentiating 
error. Equation (28) then implies that ( {3f) = (a;{3;). It 
follows from (28) that [ll], [17] 

a f = ( af) - ( {3f) . ( 45) 

Fi~. 5(g) and (h) reveals that <f3h = <f3h and <f3h = 
({34 ) in the interesting frequency ranges. Thus, differ
ences between estimator variances within each group { 1, 
2} and { 3, 4} are related to differences in numerator vari
ances only. The reason for the large variance of the trun
cated type 2 estimator at high frequencies is increased nu
merator variance, due to leakage of the input signal 
through the rapidly increasing real part of the transfer 
function of the truncated differentiator filter [compare to 
Fig. 4(b)]. The leakage generates a zero mean term at the 
correlator' s output which oscillates with twice the signal 
frequency. The relative contribution of this term reduces 
if K is increased. 

The variance peaks for most of the estimators employ
ing sign multiplication are caused by aliasing that occurs 
when discrete time filtering is performed on a hard limited 
signal. The aliasing becomes particularly disturbing for 
narrow-band signals, when strong harmonics of the hard 
limited signal are mapped down to frequencies in the vi
cinity of the signal frequency itself. This generates a low
frequency beat.at the correlator outputs which is difficult 
to suppress by low-pass filtering. When the signal band
width increases, the peaks are smeared out, but they still 
give an overall increase in variance. This explains why a4, 

increases in the mid-frequency range in the noiseless case 
with '1J = 1. 

The validity of the results in the narrow-band case may 
be questioned, as the requirement ( {3f) << 1 is poorly 
met, especially for estimators 1 and 2 [see Fig. 6(g) and 
(h)]. Averaging 50 samples is hardly strong filtering un
less the signal bandwidth w B exceeds - 0.171'. However, 
the differences between the estimators within each group 
{ l, 2} and { 3, 4} are caused by differences in numerator 
variances only. The relative results within each group of 
estimators are, therefore, still approximately correct. 

The variances calculated for estimator 4t are consider
ably lower than those obtained from computer simulations 
in [9]. The reason is the use of the nonzero filter coeffi
cient a(O), which was not included in our first work. The 
peaks in the variance plot for narrow-band signals were 
not revealed by the initial simulations. 

In conclusion, all of the estimators in the group using 
full multiplication yield good results. The single correlator 
estimators have somewhat less noise immunity than the 
double correlators, especially with a truncated FIR filter. 

For the double correlator, a truncation gives negligible de
terioration. In the group using sign multiplication, both 
estimators with full length differentiator filters show per
formances similar to that of the corresponding single cor
relator estimator using full multiplication. It is not advis
able to truncate the differentiator filters in this group. This 
may result in large variances for narrow-band signals and 
also the noise immunity deteriorates. For cost-effective 
hardware implementations in multigated Doppler instru
ments, the types 3d or 4d are good solutions. Their var
iances are not much larger than the "full" estimator 1 d, 
whereas an implementation of these estimators requires 
modest amounts of hardware, compared to any estimator 
from the group using full multiplication. 

APPENDIX 

CALCULATION OF THE NoRMALIZED 

AUTOCOVARIANCE FUNCTIONS 

A. Estimators Using Ordinary Multiplication 

When p, q, r, and s are zero mean, jointly Gaussian 
variables, the following relation holds [16]: 

(pqrs) = (pq) (rs) + (pr) (qs) + (ps) (qr). 

(A1) 

Equations (15b) and (33b) yield 

[ N']2 

~(0) &2 ~mn2(m) = 4 1 -
2

N 

N' N' 

· 2: 2: a(j) a(n) 
j=-Nn=-N 

· (x(k) y(k + ;) x(k + m) 

· y(k + m + n)) 

- R~(O) & 2
• (A2) 

Setting p = x(k), q = y(k + j), r = x(k + m), and s = 
y(k + m + n) in (Al) yields directly 

~mm<m) = 4& -2 [1 - N']
2 

~ ~ 
_ 2N j=-Nn=-N 

· a(j) a(n) n2(m, n, j) (A3) 

where 

fr2(m, n, ;) = Pxim + n - ;) Pxx(m) 

- Pxy(m + n) Px_im - ;). 

Similarly, 

t ( ) = 4& -2 [1 - N']
2 

~ ~ 
<>n 1n1 m 2N j= -N n= -N 

· aU) a(n) n1(m, n, j) (A4) 
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where 

2ii1(m, n, j) = Pxim + n - J) Pxim) 

- Pxy(m + n) Pxy(m - j) 

+ Pxy(m + n - J) Pxy(m) 

- Px.im + n) Pxim - j). 

The numerator covariances can be computed efficiently for 
type 2 by observing that the first term in n2 depends on 
n - j only; while the second term is a product of functions 
of n andj. In analogy with (29) and (30), one obtains 

N' N' 

2: 2: ii2(m, n, j) = Pxx(m) 
j=-Nn=-N 

where 

N+N'-iki 

N+N' 

· ~ ii(k) Pxx(m + k) 
k= -N-N' 

N' 

- [n I!.N a(n) Pxy(m + n) J 
N' 

• ~ a(J) Pxy(m - J) 
j=-N 

(A5) 

ii(k) = 2: a(J) a(j + lkl) 
J=-N 

k = -, N- N', · · · , N + N'. 

~mm(m) is, from (A6), an even function. This can be used 
for reducing the number of terms in the sum (33a). Similar 
simplifications can also be made to speed up the compu
tations for estimator 2. 

The autocovariance function of the denominator and the 
cross covariance between the numerator and the denomi
nator can also be computed following the procedure out
lined above. The results are 

-~d 1d 1 (m) = p~(m) + p~(m) (A6a) 

(A6b) 

~nid1 (m) = 2w -I [ 1 - ;~] 
N' 

2: a(n) c;(m, n) i = 1, 2 (A7a) 

where 

n=-N 

c1(m, n) = Pxy(m) Pxx(m - n) 

- Pxx(m) Pxy(m - n) 

C,(m, n) = -2pxx(m) Pxy(m - n). 

B. Estimators Using Sign Multiplication 

(A7b) 

(A7c) 

The covariance functions for this group can be com
puted using a theorem proven in [10]. It states that when 
x" x2, y 1, and y2 are zero .mean, jointly Gaussian distrib
uted variables, then 

where 

+ fi - q( 5\.Y2> 
../1 - < .Y1.Y2>2 

fi = (xi.Yt> (x2.Y2> + (x1.Y2> (x2J2) 

q = (x1y1) (x2J1) + (x1.Y2> <x2Y2> 

- Yi 
Yi = ../(yf} i = 1, 2. 

(B1) 

This formula can be applied in the same way as (A1) in 
Section A to calculate the fourth-order moments involved 
in the covariances of estimator 3 and 4. The numerator 
covariances become 

~n;m(m) = 4w - 2 
[ 1 - ;~] 

N' N' 

~ 2: a(J) a(n) iii(m, n, j) - 1 
j=-Nn=-N 

i = 3, 4 (B2a) 

where 

2n3(m, n,J) = Pxx(m) sin- 1 Pxx(m + n - J) + Pxy(m) sin- 1 Pxy(m + n - J) + R(m, n, J) - S(m, n, J) (B2b) 

iiim, n, J) = P:oc(m) sin- 1 Pxx(m + n - J) + R(m, n, J) (B2c) 

R( 
r\ _ Pxy(J) Pxy(n) - Pxy(m + n) p9 (m - J) - Q(m, n, j) Pxx(m + n - J) 

m, n, ]J - ' 2 -
v 1 - Pxx(m + n - j) 

Q(m, n, J) = Pxy(m + n) Pxy(n) - Pxy(J) Pxy(m - J) 

S( 
r\ _ -p9 (j) p9 (n) + Pxx(m + n) P.oc(m - J) + n_m, n, J) p9 (m + n - j) 

m, n, ]J - I 2 
v 1 - Pxy(m + n - J) 

T(m, n, j) = Pxy(j) Pxy(m - j) - P.oc(m + n) Pxx(n). 
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Unfortunately, no simplifications similar to (A5) seem 
possible in this case. Computation of (B2) is therefore 
fairly time consuming. There is also a problem when m + 
n - j = 0. R(m, n, j) is then not defined, since PxiO) = 
l. By setting m + n - j = rand substituting the approx
imation P.u(r) ::: l + P.u(O) r 2/2, it can be shown that 
R(m, n, j) = 0 in the limit when r goes to zero. 

For the rest of the covariance functions, we obtain 

2 ~d3d3 (m) = Pxim) sin - 1 P.u(m) + Pxy(m) sin -I Pxy(m) 

+ ../1 - p~(m) + .J1 - p~(m) - 2 

(B3a) 

~d4c4(m) = Pxx(m) sin - 1 Pxx(m) + .J 1 - p~(m) - 1 

(B3b) 

[ N'] N' 
~n;d;(m) = 2w -I 1 - 2N n=L:.N 

where 

· a(n) c;(m, n) - 1 3, 4 

2c3(m, n) = Pxy(m) sin- 1 (m - n) 

- Pxx(m) sin- 1 Pxy(m - n) 

+ Pxy(n) .J1 - p~(m - n) 

+ Pxy(n) ../1 - p;y(m - n) 

- P:cx(m) sin- 1 Pxy(m - n) 

+P.ty(n) ../1 - p~(m - n). 
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ABSTRACT 

Two sets of estimators of the center frequency and mean square 
bandwidth of a Doppler spectrum are analyzed. The first set is 
based on a linear combination of the complex autocorrelation of 
the Doppler signal for different lags. It is then shown that 
the argument <phase angle> of the complex autocorrelation 
function at unity sample lag is a close approximation to the mean 
Doppler shift, whereas its modulus <magnitude> gives information 
about the mean square bandwidth of the spectrum. Approximate 
expressions for the bias and variance of the estimators are 
derived, valid for long averaging times. The performances of the 
estimators are compared for signals with rectangular spectra and 
different signal-to-noise ratios. 





1. INTRODUCTION 

In the early phase of diagnostic Doppler ultrasound, a number of 
workers investigated time-domain methods for extracting frequency 
or, equivalently, blood velocity information from the back
scattered Doppler signal. Continuous time-domain methods were 
developed for the estimation of mean (1]-[5], RMS (6J, and 
maximum Doppler shift [7]. When relatively low-cost, real-time 
spectrum analyzers became available, these methods lost most of 
their importance. With the advent of cardiac color-flow mapping, 
the time-domain techniques have got a renewed actuality. 

Real-time flow mapping systems based on the combined use of 
multigated pulsed Doppler instruments and phased-array sector 
scanners have recently become available C8J[9J[24J. The principle 
of operation is the following: A soundbeam is swept rapidly 
across the imaged sector in a stepwise manner. Each radial 
vector in the sector image is examined with a small number of 
soundbursts, so that estimates of the velocity parameter<s> to be 
mapped are obtained for a large number of range gates. These 
parameters are coded into color, and displayed as an overlay to a 
gray-scale echo image of the surrounding tissue. The parameters 
mapped in [8][9][24] were related to the center frequency and the 
bandwidth of the Doppler spectrum. 

A parameter estimator for flow-map systems needs to be simple~ as 
the time available for processing is scarce <on the order of 1 ~s 
per sample of the complex Doppler signal>. Moreover, it is 
important that the estimator has a low stochastic uncertainty: 
The variance of a spectral parameter estimate is inversely 
related to the measurement time, so a high-variance parameter 
estimator translates directly to a low frame rate flow image. A 
moderate bias of the estimator, on the other hand, is not as 
harmful, because the color image has a relatively coarse para
meter resolution. 

Serial signal-processing is an efficient scheme for implementing 
multigated Doppler systems with a large number of range gates. 
In this concept, all signal-processing units <e.g., the frequency 
detector) are timeshared between the signals from the different 
range gates. The method was developed in the mid 70~s: Inspired 
by the well-known Radar concept of Moving Target Indication [10], 
Grandchamp [11] and Brandestini [12] developed experimental 
devices, capable of measuring velocity profiles in vitro. The 
devices employed an RF signal-processing scheme with severely 
limited ability to remove the strong, low frequency Doppler shift 
from tissue that occur in in viva measurements. Brandestini 
later improved the technique, using discrete-time signal pro
cessing in the baseband [13][14]. 

The success of the serial signal-processing scheme relies heavily 
on the quality of the parameter estimator. Brandestini's ori
ginal device employed a phase-detection method that essen
tially averaged a discrete-time approximation to the instan
taneous Doppler frequency over a time interval [13][15]. He 
later converted this technique to equivalent baseband pro-
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cessing [14]. This instantaneous fr•qu•ncy estimator exhibits 
aliasing type of phenomena for Doppler spectra with maximum 
frequency well below the Nyquist frequency [15]Q Hoeks later 
overcame these limitations by employing an adaptive interpre
tation of the instantaneous frequency, based upon the temporal 
evolution of the Doppler shift from arteries [16]. His scheme~ 
which is briefly discussed in this paper, also enables the 
measurement of Doppler frequencies exceeding the Nyquist fre
quency. The same holds far the discrete-time maan fr•quancy 
estimator developed by Angelsen and Kristaffersen [171[18]. 

In a recent work [19], Barber et al. presented a new ~instan
taneous~ frequency estimator, which turns aut to be identical to 
the detector employed in a commercially available real-time flow
map system [9][24]. This detector differs, however, from the 
instantaneous frequency estimator previously discussed, and to 
avoid ambiguity, it will be referred to as the corr•lation-anQle 
estimator in the subsequent parts of this paper. On the basis of 
experiments~ Barber et al. concluded that a ~hybrid~ estimator~ 

consisting of the correlation angle estimator for high frequen
cies and an ~approximate mean~ frequency estimator for low 
frequencies, outperformed the ordinary mean frequency estimator 
under adverse signal-to-noise ratios. However, a number of 
questions remains unanswered: Neither of the papers [19],[24] 
showed how the the output of the correlation-angle estimator was 
related to the spectrum in the general case,, and its statistical 
properties (bias~ variance> are still unknown. 

When it comes to time-domain estimation of the Doppler signal 
bandwidth, little work seems to have been published. Recently~ 

an estimator of mean-square bandwidth was proposed by Kasai et 
al. [24J, but otherwise the subject has merely been touched upon 
in a few papers [4][8]. 

The objectives of this paper are the following; 

i) on theoretical grounds, to develop a general framework far 
evaluation of a class of discrete-time spectral parameter 
estimators; 

i i) 

i i) 

apply this framework to compare the 
correlation-angle estimator to the 
estimator for arbitrary signal inputs; 

and~ finally, apply the framework to 
estimators of spectral spread. 

performances of the 
~true~ mean frequency 

establish and evaluate 

The paper is organized in the following way: Basic definitions 
and notational conventions are stated in the next section, where
as the concept of spectral parameter estimation is discussed 
in a general context in Section 3. The results derived are 
then applied to evaluate estimators of the mean, bandwidth~ and 
the variance (iae., mean-square bandwidth) of the Doppler 
spectral densitys In Section 5, simplified estimators for the 
mean and the variance of the spectral density are derived. The 
simplified mean frequency estimator coincides with the corre-
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lation-angle estimator of Barber et al., and that of the band
width is the same as the estimator of Kasai et al. Quantitative 
comparisons between the ~full~ and the simplified estimators are 
performed for signals with specified spectra and signal-to-noise 
ratios. Finally, a relation between the correlation-angle 
estimator and the discrete-time instantaneaous frequency esti
mator is established. 

2. DEFINITIONS AND NOTATIONAL CONVENTIONS 

Let ~(t) denote the complex envelope of the received signal 
in Doppler ultrasound blood velocity measurements. In a single
gate pulsed system, the signal available for analysis is (~CkT5>, 
k integer, where T5 is the time interval between the emission of 
two ultrasound bursts. In the following, T• is set to unity, 
and it is assumed that the signal originates from a time steady 
velocity field. The sequence (~(k)} is then a stationary complex 
Gaussian process [20J. As such, it is entirely characterized by 
its autocorrelation function, 

R<n> ~ <~*<k>~<k+n>> 

where the brackets denote ensemble 
asterisk denotes complex conjugate. 
fies the symmetry relation 

R<n> • R*<-n> 

The power spectrum G(w) of the 
defined as the Fourier transform of 

GCw> ~ t RCn)e-jnw 
n 

(2.1) 

expectation value and the 
The auto-correlation satis-

sampled 
RCn)~ 

Doppler 

(2.2) 

siqnal is 

(2.3) 

Note that due to the sampled nature of a PW Doppler instrument, 
G(w) is periodical with period 2w. In the following it is 
assumed that~ unless otherwise specified~ all summation indices 
run from -• to •· Similarly, where no integration limits 
are specified, it is assumed that the integration extends over 
the entire Nyquist interval -w to w. 

The angular me•n frequ•ncy of the Doppler signal is defined as 
the first-order moment of the spectral density, i.e.~ 

w = Jdw wG<w> 

Jdw G<w> 
(2.4) 

The second order moment of the spectral density (denoted mean
square <MS> frequency in subsequent parts of this paper) is the 
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square of what is commonly referred 
quency of the spectrum, 

to as the angular RMS fre-

<2.5) 

The RMS frequency does not resolve the sign of the Doppler 
shift. It is well known that the continuous time zero-crossing 
detector yields an output that is an estimate of Wrms [211. This 
is generally not the case for the discrete-time zero-crosser 
[15]. 

The angular varianca of the Doppler spectral density is a 
measure of spectral spread [4][8] • It is defined as 

v -
Jdw <w - w>

2
G<w> 

Jdw G<w> = 
(2.6) 

The spectral variance can be calculated as the difference between 
the mean-square frequency and the square of· the mean frequency. 
To avoid confusion with the variance of a parameter estimate 
<stochastic uncertainty>. the term m•an-squar• <MS> angular 
bandwidth will be used instead of spectral variance troughout 
this paper. 

The instantaneous anQular fraqu•ncy of the Doppler signal is 
defined as the time derivative of arQ<x<t>>, where arg<·> denotes 
phase angle [5]. A discrete-time approximation to the instanta
neous frequency is given by (15J[16J, 

(2.7) 

where wQ is an interval offset that can be chosen to determine 
the des1red range of variation (domain) for w1 • If the interval 
offset is zero, the range of variation becomes symmetrical around 
zero <the Nyquist interval -w tow>. 

3. GENERAL FRAMEWORK FOR ESTIMATION OF SPECTRAL PARAMETERS 

3.1 D•rivation of a sp•ctral param•t•r ••timator 

Both the mean and the MS frequencies are spectral parameters of 
the general class 

Jdw Re<A 1 <w>>G<w> 
wp • • 

Jdw Re<A2<w>>G<w> 

Re<Jdw At<w>G<w> > 

Ra<Jdw A2 <w>G<w> > 
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where Ra<A1 <w>>, i = 1,2, are appropriate spectral weighting 
functions <Re<A2 <w)} is unity for both examples given)c Alter
nately, such a parameter may be expressed as the solution of an 
integral equation on the form 

(3.2) 

In the time domain, w can be expressed as the ratio between 
the real parts of two ~inear combinations of samples of the auto
correlation function. This is realized by rewriting Eqw (3.1>, 
using the inverse Fourier transform, and interchange the order of 
integration and summation, 

Re< Jdw A1 <w> tR<n>e-jnw} Re< t at<-n>R<n> } 
n n 

wp = 
Jdw tR<n>•]nw 

= (3.3) 
Re< A2 <w> } Re< t •2<-n>R<n> ) 

n n 

where <a1 <n>> and A1 <w> are Fourier transform pairs. 

A time-domain estimator Qp for the freQuency parameter Wp can 
be established directly on the basis of Eq. <3.3>, using the 
definition Eq. <2.1>. The estimator becomes 

(3.4) 

where 

zi • Ra< tb<k> t a1 <n>~*<k>~<k-n) > 
k n 

• R•< tb<k>~*<k> E a1 <n>~<k-n> > 
k n 

i - 1,2 (3.5) 

The kernel of Eq. (3.5) is the cross correlation between one 
version of the Doppler signal that is filtered through a filter 
with impulse response <a1 (n)}, and the signal itself. The set 
(b(k)} is the real impulse response of the smoothing <averaging> 
filters for the numerator and the denominator (identical fil
tering is assumed). A practical estimator will normally use 
running averages, to allow for updating of the parameter estimate 
when the Doppler signal is nonstationary. 

The choice of coefficients <a1 (n)} for the estimator is not 
unique, because only the real part of A1 <w> contributes to 
the integrals in Eq. (3.1>. In general, the lowest variance of 
the estimator is guaranteed if the coefficients are selected such 
that Im<At<w>> = 0 [18]. The symmetry relation 
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then holds, which implies that any nonconstant real valued trans
fer function Ai<w> yields a filter with a noncausal impulse 
response (ai(n)}. In a practical estimator the duration of the 
impulse response must be finite, say 2N + 1 samples. The lack of 
causality then requires the direct doppler signal to be delayed N 
samples prior to the correlation in Eq. <3.5). However, the 
spectral weighting function can always be rewritten on the form 

where 

a 1 <n> + af<-n> 

ai<O> 

0 

(3.7) 

n < 0 

n • 0 (3.8) 

n > 0 

Any type of spectral weighting function may, therefore, be con
structed with a causal coefficient set, i.e. a1 ~n) s 0 for 
n > O~ at the expense of adding a nonzero imag1nary part to 
Ai<w>. Eq. <3.7> also shows that when A1<w> is an odd function 
<e.g., A1 <w> ~ w>, the corresponding coefficients become purely 
imaginary. If Ai<w> is even <e.q., A1 <w> = w2>, the coefficients 
become real. 

The expectation value for the numerator and the denominator of 
the estimator becomes 

where 8(0) is the frequency response of the smoothing filter at 
zero frequency. The frequency response B<w> is defined as 

B<w> = t b<k>a-Jkw 
k 

(3.10) 

The ratio between the expected values of the numerator and the 
denominator is an unbiased estimate for the frequency parameter 
~p· When the averaging time is finite, it is still possible that 
wp be biased, because of the nonzero variance of zi. Whether or 
not depends on how its numerator and denominator are correlated. 

3.2 Bias and varianc• of th• param•t•r ••timat• 

Under strong filtering, the standard deviation of the denominator 
Eq. C3e4) is small compared to its expected value. It is then a 
good approximation to substitute the division with a second-order 
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linearization [1], 

<z2>2 [~ <z1> ] - [ <z 1 - <z1>> - wp <z 2 - <z2>l -
%2 <z2> (3.11) 

Eq. (3.11> leads to the following expressions for the bias and 
variance of the parameter estimate, 

Bias<Op> 
....... 

Wp Z 
1 

[wp Var<z 2 > - Cov<z 1,z2>] (3.12) = Wp -:---:-2 
<z2> 

Var<Op> = 1 
[var<z 1> - 2wp Cov<z1,z2> + w2 Var<z 2 >] (3.13) -:---:-2 p 

<z2> 

where the covariance between the sequences z 1 and Zj is defined 
as 

(3.14> 

The expression Eq. (3.13) for the variance was derived neglecting 
the second-order terms in Eq. (3.11). The bias expression, 
therefore, is valid for a somewhat larger variance of the 
denominator than that for the variance. 

Note that 
that when 

Var<z 1 > = Cov<z 1 ,z 1 >. In the appendi:< it is shown 
{x(k)) is a complex Gaussian process. the covar1ance 

between z 1 and z 2 is given by the following frequency domain 
expression. 

Cov<z1,z2> = 1 
2 JdwJd~ B<w>G<w-n> IB<~> 1 2 <A 1 <w-Q>A!<~> 

4(211') 

+ A1<w-~>A2<w> + Af<w>A!<w-Q) + Af<w>A2<w>> (3.15> 

Under strong filtering, the bandwidth of the smoothing filter 
is much smaller than the bandwidth of the weighted Doppler 
spectrum Re<A1 <w>>G<w>. The magnitude-squared frequency res
ponse of the smoothing filter then behaves essentially as a delta 
function in the integral (3.15>. This approximation yields 

<2w> 2cov<z1z2> ~ i J dQIB<~>1 2Jdw G
2

<w><A1<w>+Af<w>><A2<w>+A!<w>> 

(3.16) 

where Wb is the equivalent angular noise bandwidth <ENBW> of 
the smoothing filter, 
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t b 2 (k) 
2w _k ______ __ 

(t b(k))
2 

k 

The latter form of the equation follows from Parseval~s theorem. 
For a Doppler spectrum with bandwidth B and a spectral weighting 
function of unity, strong filtering is obtained when Wb << 2wB. 

Inserting Eqs. (3.16) into Eqs. <3.12>~ (3.13>~ combining with 
Eq. <3.9> and rearranging terms finally yields 

Bias<O > ~ -p (3.18) 

(3.19) 

Under strong filtering both bias (if nonzero> and variance become 
proportional to the ENBW of the smoothing filter, which reduces 
in direct proportion with the averaging time <see next section>. 
Eqsa (3.18>, (3.19) thus imply that the estimator Q is 
consistent and asymptotically unbiased, regardless o~ the 
spectrum shape. Moreover, neither bias nor variance of the 
estimator is affected by a nonzero imaginary part of the filter 
transfer funtions Ai(w) <this is not necessarily true when the 
filtering is light>. The condition for Op to be unbiased 
for relatively short averaging times follows from Eq. <3.18>~ 

JdwG<w>Re<A2<w>> JdwG
2

<w>Re<At<w>>Re<A2<w>> 

• JdwG
2

<w>Ra
2

<A2<w>> Jdw G<w>Re<At<w>> (3.20) 

This equation is approximately satisfied when the spectrum is 
so narrow-band that both Ra<A 1 <w>> and Re<A2 <w>> changes 
little over its bandwidth. In the special case where the 
denominator weighting function R•<A2 <w)} is constant <e.g., in 
mean or MS frequency estimation>, the equation is satisfied for 
rectangular spectra. 

Equations (3.18> and (3.19) are discussed in greater detail for 
some important special cases of the spectral weighting functions 
later in this paper. 
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3.3 Properties of the smoothing filter 

The smoothing filters reduce the variance of the parameter 
estimate by averaging ~raw' estimates of the numerator and 
denominator over a time period equal to the duration of their 
impulse responses. This has the undesired side effect of slowing 
down the response of the estimator when the signal frequency is 
changing rapidly~ e.g., in the case of Doppler signals from the 
human arterial system. The optimal smoothing filter is the one 
with the smallest ENBW for a given duration of its impulse 
response~ If the duration of the impul~e response is M samples 
<FIR filtering>, the following relation holds, 

M 
E b 2 <k> 

M 
E b 2 Ck> 

wb = 2w 
km1 

~ 2w 
k=1 

= 2w 
1 (3a21) H H R 

(t b<k>> 2 M <E b(k) )2 
k=1 k=l 

The Schwarz inequality was used on the denominator. By inspec
tion, equality is attained when all of the coefficients {b(k)} 
are equal. The optimal shape of the smoothing filter impulse 
response is, therefore, rectangular, and its ENBW is inversely 
proportional to the duration of its impulse response. 

A commonly used smoothing filter in 
with discrete-time signal processing 
low-pass filter of the form 

multigated Doppler systems 
is a first-order recursive 

v<k+l) = a v<k> + u(k) 0 < a < 1 (3.22) 

where <u<k>> is the input and <v<k>> is the filtered sequence 
[13J[16J[17l[19l. This filter has become popular because of its 
ease in implementation. Its impulse response is a decaying 
exponential, 

{ k ~ 0 
(3.23> 

0 

The angular ENBW of the first-order recursive low-pass filter 
can be computed from (3.17). The result is 

1 - a 
(3.24) 

1 + a 

The bandwidths of the recursive and the optimal smoothing filters 
are the same when the above expression is equal to 2w/M. This is 
satisfied if 
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21T M 1 1 
<=> a • Ql (3.25) 

M + 1 <l + 1 >2 
R 

M 

where the latter approximation is valid when M is large. After M 
samples, the impulse response of the recursive filter has decayed 
to 

<M 1 
Ql e-2 = 0.135 M >> 1 <3.26) 

i.e •• 13.5 percent of its initial value. This is a very small 
reduction in time resolution compared to that of an optimal 
filter with the same noise reduction properties. 

4. ESTIMATORS OF SPECTRUM MEAN, MS BANDWIDTH, AND BANDWIDTH 

According to the definition <2.4>, the general parameter esti
mator (3.4) becomes an estimator om of the mean frequency if 
its numerator coefficients are chosen equal to <•tm<n>>, such 
that the corresponding spectral weighting function Re<Atm<w>> 
approximates the ideal sawtooth function 

- Ti' < w < 1T 

(4., 1) 

'ttl w 

The denominator weighting function is unity in mean frequency 
estimation, which yields only one nonzero denominator coeffi
cient, 

(4.2) 

where 8nk is the Kronecker delta symbol. The ideal numerator 
coefficient set can be calculated by taking the inverse Fourier 
transform of As<w> over the interval (-1T,1T). This yields the 
doubly infinite series 
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1 
=~ 

jnw 
we = 

-j ~ (-1>" 

{ on 
lnl > 0 

(4.3) 
n • 0 

which are recognized as the 
rentiator filter [17la According 
ting function does not change 
one sided by setting 

coefficients of an ideal diffe
to (3.8), the spectral weigh
if the coefficient set is made 

a~<n> = { 
n > 0 

(4.4) 
0 n S 0 

To form a practical estimator, the set <am<n>> needs to be 
nonzero on a finite interval only. The series <4.4) decays 
slowly when n increases, so that an abrupt truncation after a 
small number of terms gives large errors in the spectral weigh
ting function [17le A better approach is to determine <am(n)} 
directly, so that Re<Am<w>} is an optimal approximation to A5 <w> 
according to some performance index. One criterion which has 
been used is minimum average of the squared error 1Re<Am<w>>-wl2 
over a specified interval -P < w < P, where 0 < P ~ w [17J; 
another is minimization of the peak fractional differentiation 
error maxi<Re<Am<w>>-w>lwl over a specified interval C18J. The 
latter method yields a peak fractional error equal to 1 percent 
over an interval that spans 84 percent of the Nyquist range when 
8 nonzero coefficients are employed in <4.4). 

Assume that the spectral weighting function is chosen as a good 
approximation to w over the frequency range where G<w> has spec
tral support. It follows then from <3.18) and <3.19) that under 
strong filtering, the following relations hold for the bias and 
variance, 

Jdw a2
<w><w- w> 2 

<Jdw G<w>>
2 

(4.5) 

(4.6) 

The mean frequency estimate is unbiased for any spectrum that is 
symmetrical around its mean. Both bias (if nonzero> and variance 
are solely dependent on the spectrum shape; as long as aliasing 
does not occur, they do not change if a spectrum is translated 
along the frequency axis. 

The above results are not surprising. Eqs. <4.5), <4.6) have 
previously been derived in the continuous-time domain by Gerzberg 
and Meindl, under the assumption of an ideal differentiator 
filter and a smoothing filter with a rectangular impulse response 
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[4]. It has also been shown previously that discrete-time 
estimation gives results that compare well with continuous-time 
estimation [18]. 

Fig. 4.1 shows a rectangular Doppler spectrum with bandwidth B~ 
in the presence of additive white noise. The spectra are scaled 
such that the signal-to-noise ratio is S. The mean angular 
frequency of the composite signal/noise spectrum can be calcu
lated from the definition formula (2.4>. The result is 

(4.7) 

Therefore, an estimator of the true spectrum mean will produce a 
severely biased estimate of the signal mean frequency when the 
signal-to-noise ratio is low. According to <4.6>, additional 
bias may be present for short averaging times, since the compo
site spectrum is not symmetrical around its mean. 

G<w> 

~ ~ 
signal s 

t--
B 211'9 -.... ... 

nois• 
1 

I I -I I I ~ 

-'If 0 11' 

Fig. 4.1 Additive signal and white noise spectra. 

There are several ways to correct for the bias when the signal
to-noise ratio is finite. 6erzberg has shown that if the mean 
frequency and the power of the noise is known or can be esti
mated, e.g., in time slots when there is no signal present, the 
contribution from the noise can be subtracted away from the 
numerator and the denominator of the mean frequency estimator 
[4]. When feasible~ this technique greatly improves the noise 
immunity of the estimator. This approach has also been explored 
by Barber et ala [191. 

An alternate approach is to employ an adaptive premixing of the 
signal [17J[18J, as shown in Fig. 4.2. The underlying philosophy 
is to shift the composite spectrum down to zero mean frequency 
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prior to analysis. The lower integrator and the loop gain A1 
form an integral controller, while the upper integrator converts 
frequency to phase of the premixing signal. Equilibrium of the 
feedback loop is obtained when 

<Oz<k>> = 0 <=> (4.8) 

where the second form of the equation follows from (3.2> with 
At = Am, A2 = 1, and Wp = 0. By changing variables of integra
tion, the expected adaptive mean frequency estimate Wma = <wma> 
becomes the solution of the following integral equation, 

(4.9) 

where the second form is valid when G<w> has spectral support in 
the frequency range where Ra<Am<w>> = w. Note the difference 
from <3.2>, in that a closed form solution does not exist for 
the left version of <4.9> in the general case. 

The adaptive scheme has three favourable effects: 

a> The mean frequency of the signal input to the estimator 
becomes zero. According to <4.7>, any bias due to a finite 
signal to <white> noise ratio will then disappear. This can 
be realized from <4.8) also, because the integral of 
G<w>Re<Am<w>> over the Nyquist interval does not change if a 
constant component is added to G<w>. 

b) For spectra of the class shown in Fig. 4.1, the spectrum of 
the input signal to the estimator becomes symmetrical 
around its mean, even in the case of a finite signal-to-
noise ratio. According to (4a 6) ' any bias caused by 
a finite averaging interval then vanishes. 

c) When the mean frequency of the signal is time varying, the 
feedback forms a tracking mechanism that allows for estima
tion of frequencies exceeding the Nyquist frequency. The 
tracking breaks down when the bandwidth of the signal 
exceeds unity <i.e., the sampling rate). 

For the feedback scheme to work properly, it is important that 
the loop be made fast enough to track fast variations that may 
occur in the mean frequency of the Doppler signal from blood, 
e.ga, during the upstroke of an arterial velocity waveforms. On 
the other hand, modulation effects that broaden the spectrum of 
the signal <i<k>> may occur if the loop is made so fast that 
the standard deviation of the mean frequency estimate omf becomes 
comparable to the bandwidth of the input signal. The oop gain 
must, therefore, be designed as a compromize between these two 
requirements. Note that when the feedback is efficient, the MS 
frequency of the sequence (z(k)} coincides with the MS bandwidth 
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of the Doppler signal. 

Y<k-1> 

exp(-j(•)) 

z<k> Mean 
frequency 
estimator 

Figm 4m2a Block schematics of adaptive mean frequency estimations 

An estimator Qr of the mean-square angular bandwidth of the 
Doppler spectrum can be established from the definit1on formula 
(2.6>, 

(4.10) 

where om is the mean frequency estimate previously defined, and 
0 is an estimate of the MS frequency. The general estimator 
<5G4) becomes an estimator of the latter variable if its nume
rator coefficients <•lr(k)) are chosen such that the corre
sponding weighting function R•<AJr<w>> approximates the 
periodic parabolic function <compare w1th <2.5)) 
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- 11' < w < 1f 

<4. 11) 

As is the case in mean 
weighting function is 
coefficients yields 

frequency estimation, the denominator 
unity. Solving for the ideal numerator 

{ 
~ (-1>" In I > 0 

1 
Jdw 

2 jnw 
"2 

ap<n> = 5 w • - (4.12) 
11'2 

n - 0 3' 

These coefficients decay rapidly when n increases, and an 
estimator with a relatively small number of nonzero terms 
may, therefore, yield a weighting function that is a close 
approximation to w2 over the entire Nyquist range. 

Eq. <4.10) can be rewritten on the form 

(4 .. 13) 

where vr, Wr, Wm are the expectation values of the MS band
width and frequency, and the mean frequency in the case of an 
infinite averaging interval, 

(4.14) 

Eqs. (4.13> and (3.18) now yield directly 

Jdw s 2
<w>C<Re<Ar<w>-wr>-<R•<Am<w>>-wm> <Re<Am<w>>-3wm>l 

cJdw 6<w>l
2 

Jdw s2
<w>C2<w-w>2- vl 

c,Jdw 6(w)J2 (4.,15) 

where the latter version is valid in the frequency range where 
Re<Ar<w>> ~ w2 and Re<Am<w>> ~ w. It is assumed that the 
smoothing filters for both Om and Qr are identical. The above 
equation reveals that the estimate of the mean-square bandwidth 
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is negatively biased, even when the estimates of the MS and the 
mean frequencies both are unbiased (as is the case when· the 
spectrum is rectangular>. This unfortunate effect is caused by 
the square operator in (4.10>; when the variance of the mean 
frequency estimate is large, the center of the probability 
distribution of the squared mean frequency estimate becomes 
offset from the squared mean frequency. The bias becomes 
significant when the averaging time is so short that the variance 
of the mean frequency estimate becomes comparable to the MS 
bandwidth of the Doppler spectrum. Note that as long as aliasing 
does not occur, the bias is constant under a translation of the 
spectrum along the frequency axis. 

Under strong filtering, the variance of the MS bandwidth estimate 
becomes <from <4.13>, neglecting second order terms>, 

(4.16) 

The first and the last term can be written up directly from 
<3.16) when the spectral weighting functions Ra<Ar<w> and 
Re<Am<w>> have been chosen. The covariance term is somewhat more 
cumbersome to derive. Using the first order part of the lineari
zation (3.11> for both the mean and the MS frequency estimation 
yields after some manipulations 

Insertion into <3.16> and 
yields the variance of 
filtering, 

(4.16) and rearranging terms finally 
the MS bandwidth estimate under strong 

Jdw a2
<w>[<w-w>

2
- vJ

2 

[Jdw B<w>l2 (4.18) 

where the latter version, as usual, is valid in the frequency 
interval where R•<Ar<w>> ~ w2 and R•<Am<w)) ~ w. As was the 
case for the bias, the variance does not change if a given 
spectrum is translated along the frequency axis. 
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4.4 Estimation of bandwidth 

According to the definition <2.6>, a rectangular spectrum with 
angular bandwidth 2wB has the MS angular bandwidth 

(4.19) 

Based on this model, <4.19> suggests the following estimator 
of spectrum bandwidth, 

a,.= V12 v,. 1
12w (4 .. 20) 

Linearization of the square root to the second order gives a 
quadratic approximation, 

.... 
2w<B,- - B,-> (4.21) 

Under strong filtering, the bias and standard deviation of the 
bandwidth estimate therefore becomes approximately 

.... 
2wBias<Br> 

2 .... 
<2w> Var<B,-> z 

(4.22> 

(4 .. 23) 

Combining with <4.15> reveals that both terms in the expression 
for the bias give negative contributions for rectangular spectra; 
hence the bandwidth tends to be underestimated when the averaging 
time is short .. 

5. ESTIMATION OF SPECTRUM MEAN AND BANDWIDTH FROM THE CORRE
LATION FUNCTION AT ZERO AND UNITY LAB 

3.1 Derivation of simplified time-domain expressions for the 
mean and MS bandwidth 

The auto-correlation function for the Doppler signal at n samples 
lag can be written as 
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where w• is an arbitrary frequency. 
nential of the integrand in series 
arguments yields the approximation 

(5. 1) 

Expanding the complex expo
to the second order of its 

(5.2) 

For a unity sample lag (n • 1>, the imaginary part of this 
equation becomes 

(5.3) 

It follows that w• becomes an approximation to the mean frequency 
if it is chosen such that the right integral becomes zero. This 
holds if 

w• = arg<R<1>> <=> Jdw G<w>sin<w-w•> = 0 (5 .. 4) 

This suggests that the argument <phase angle> of the autocorre
lation function at unity lag may serve as an estimator of the 
mean Doppler shift. This quantity was referred to as the corre
lation-angle in the introduction. An estimator of the correla
tion-angle is simple to implement, since only one sample of the 
auto-cor~elation function needs to be estimated. Eq. <5.4) 
indicates that w• = w when G<w> is symmetrical around its mean. 
Moreover, according to <5.4), the correlation-angle does not 
change if a white noise component is added to the signal. 

When the spectrum is narrow-band, the sine can be linearized to 
give 

(5.5) 

The linearization gives less than 10 percent peak error for 
bandwidths less than 0.5w. So long as the bandwidth of the 
Doppler spectrum does not exceed 25 percent of the sampling 
frequency, w• becomes essentially identical to the mean fre
quency, regardless of the spectrum shape. However, a closer 
investigation shows that even for very wideband, assymetric 
spectra <triangular shape), the correlation-angle is a good 
approximation to the mean frequency. 
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Equating the real part of <5.2> with wy as chosen in (5.4) and 
rearranging terms yields similarly an estimate of the mean-square 
bandwidth, 

= 
JdwG<w>4sin2< w 2 w• 

Jdw G<w> 
<5.6) 

In the following, the quantity vy shall be referred to as the 
correlation-decay approximation to the MS bandwidth, motivated 
by the fact that it is twice the normalized distance between the 
magnitudes of R(1) and R<O>. For spectra with bandwidths 
smaller than approx 36 percent of the sampling frequency the 
below approximation gives less than 10 percent error in the MS 
bandwidth estimate <and less than 5 percent in the RMS band
width>, 

(5.7) 

This equation shows that the correlation-decay is an approxima
tion to the second-order moment centered around wy rather than 
the true spectrum mean. For most well-behaved spectra the corre
lation-angle is close to the mean frequency, so the correlation
decay is, therefore, a good approximation to the MS bandwidth
for narrow to medium bandwidth spectra. 

5m2 Properties of the correlation-angle estimator 

It follows from <5e4> that an estimator of the correlation-angle 
can be written as 

-1 = tan ~a (5 .. 8) 

where Wa is the fraction 

(5 .. 9) 

The numerator and the denominator can both be written on the form 
(3 .. 5), 

z1y • t b<k> Im<~*<k>x<k+1)} 
k 

• Ra< E E b<k>a1y<n>x*<k>x<k-n>> 
k n 
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z2• = t b(k) Re<x*<k>x<k+l)} 
k 

• Re<t t b<k>a2•<n>x*<k>x<k-n>> 
k n 

where the coefficients and the corresponding weighting functions 
are given as 

r j n • -1 

a 1•<n> = 1 <=> (5.12) 

0 elsewhere 

r 1 n = -1 

a 2 y<n> = 1 <•> (5.13) 

0 elsewhere 

Therefore, the argument Oa of the inverse tangent in <5.8> is 
an estimator of the class discussed in Section 3. The estima
tor described by (5.8)-(5.13) was referred to as the correlation
angle estimator in the introduction, and it has previously been 
investigated experimentally by Barber et al. [19]. 

Now assume that two sets of data <x1 <k>> and <x2 <k>> are avai
lable, the second set formed as a frequency shift transformation 
of the first, 

(5.14) 

Substitition into (5.8) - (5.11> then yields 

(5.15) 

This implies that the statistical properties of 0• are solely 
determined by the shape of the Doppler spectrum; the stochastic 
fluctuations of the estimate are not affected by a change in mean 
frequency for a given spectrum. 

It is interesting to compare the correlation-angle estimator to 
the ~true~ mean frequency estimator in the feedback configuration 
outlined in Section 4.2a Eqs. (4.9) and <5.4> reveal that w• = Wma if the coefficients <am<n>> of the mean frequency 
estimator are chosen according to (5e12)a The instantaneous 
frequency estimator is therefore ~autoadaptive~, in the sense 
that it in many respects behaves similar to the true mean 
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frequency estimator in a feedback configuration. Eq. (5.15> is a 
manifestation of this property. For signals with continuously 
varying frequency contents <Doppler signal from arteries>, it is, 
apparently, possible to track the evolution of the correlation
angle versus time, so that its range of variation can be extended 
beyond the Nyquist range <-w,w>. 

Note that a better approximation to <5.2> can be obtained by 
including higher order central moments of the spectrum. If two 
lags of the correlation function are known, e.g., the additional 
information may be used to eliminate errors from the third and 
fourth order central moments. Wideband autoadaptive estimators 
for the mean frequency and MS bandwidth may be derived in that 
way. 

Approximate statistical properties of the instantaneous frequency 
estimator can be derived by linearization of <5.8) and <5.9> 
around wy. This yields 

(5.16) 

where, as usual, Wa is the expected value of ~a when the ave
raging interval is infinite, and the latter approximation is 
valid when lwyl is small. According to <5.15>, neither variance 
nor bias are affected of a change of center frequency for a given 
spectrum. The variance and the bias of Oy for the spectrum G<w>, 
therefore, coincide with the same quantities of Oa for the 
spectrum 6(w+wy). With a proper shift of integration variables, 
the bias and the variance can then be written up directly from 
<3al8) - (3.19>, with weighting functions as specified in (5.12) 
and <5al3). This yields 

Jdw a2
<w>cos<w-wy)sin<w-wy> 

- wb 
cJdw 6<w>cos(w-wy)J

2 

Jdw a2
<w>sin2<w-wy) 

(5.17) 

(5.18) 

The change of denominators between the two different versions of 
(5.17) follows because of the relation <5.4>. 
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The correlation-angle estimator becomes unbiased when the 
spectrum is symmetrical around wy. For narrow-band spectra, the 
trigonometrical functions in <5.17) and <5.18> can be expanded in 
series to the first order of their arguments. The equations then 
coincide with the corresponding expressions for the ~true~ mean 
frequency estimator <<4.5> and <4.6>>. 

5.3 Properties of the correlation-decay estimator 

An estimator of the correlation-decay can be written up from 
(5., 6)' 

..... 
R<O> 

..... . ..... 
R ( 1) a -Jw• 

= 2 

..... ..... 
R<O> IR<1>1 

(5.,20) 
R<O> R<O> 

where the autocorrelation estimates can be formed in analogy 
with <3.5). This estimator has previously been used in a 
commercially available flow-map system [24]. The question that 
remains to be answered is how the performance of this simple 
estimator compares to that of the 'true' mean-square bandwidth 
estimator discussed in Section 4.2. Using the technique that led 
to (5.15>, it is straightforward to show that also v• is auto
adaptive; its stochastic properties remain unchanged under a 
shift of mean frequency for a given signal. It is, therefore, 
sufficient to study the estimator for spectra that satisfy 
wy = OG In this case, the numerator of (5.20) can be approxi
mated with 

..... ..... ..... 
R<O> IR<1> I ~ R<O> 

..... ..... ..... ..... 
a. R<O> Ra<R<l)} lm{R(l)} << Re<R<1>> (5.21) 

where the approximation is valid under strong filtering. Hence, 
the properties of the estimator (5.20> for a signal with spectrum 
S<w> coincide with those of an estimator with the simpler 
numerator (5.21> for a signal with the spectrum S<w+w.). The 
latter estimator is an the standard form (3.5), with coeffi
cients and spectral weighting functions given as 

{ 
2 n -0 

•t<n> -2 -1 <=> Re<A 1 <w>> = 4 sin2 
w (5 .. 22) - n =- 2 

0 •l••whera 

a 2 <n> = 8no <=> Re<A2<w>> = 1 <5 .. 23) 

- 22 -



It follows immediately that under strong filtering, the following 
relations hold!' 

(5.24) 

(5.25) 

In its linearized form, the expression for the variance becomes 
equivalent to the corresponding expression for Vr <Eq. <4.18>>. 
This is. however. not the case for the bias. Unlike vr, the 
estimat~r v., . becomes completely unbiased in the case of 
rectangular spectra. The linearized expression for the bias is 
identical to the bias of the MS frequency estimate alone <the 
first term in <4.12>>. 

5m4 Estimation of bandwidth 

The bandwidth may also be estimated on the basis of the simpli
fied MS bandwidth estimation scheme. From direct analogy with 
(4o20>, this estimator becomes 

a., = Vt2v., I /2w (5 .. 26) 

Under strong filtering, the bias and standard deviation of the 
bandwidth estimate therefore become 

.., -

6. NUMERICAL COMPARISONS BETWEEN THE ESTIMATORS 

6.1 Mean frequency estimation 

<5.27) 

(5 .. 28) 

A comparison between the mean frequency and the correlation-angle 
estimators has been performed for signals with specified spectra 
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and signal-to-noise ratios. For this purpose, the spectrum 
model in Fig. 4.2 was used, i.e. rectangular spectra with band
width B and signal-to-noise ratio S. It was assumed that the 
averaging filters had rectangular impulse responses of M samples 
duration. 

It has previously been shown that the correlation-angle estimator 
yields an unbiased estimate of the mean angular Doppler frequency 
for spectra of the type shown in Fig. 4.2. According to <4.7> 
and (4.5>, the mean frequency estimator will give more,than 
50 percent underestimation for S • 1. This bias vanishes 
entirely if the adaptive scheme is used. 

Eqs. (3.17>, <4.6> and (5.18> yield the following results for the 
variances, valid under strong filtering <MB >> 1>, 

s2B + 2SB2+ 1 

12(1 + s> 2 

<S2 + 2SB><B- 1 sin 2wB) + B2 
2i' 

<6. 1) 

(6.2) 

The standard deviations of the estimates are plotted versus 
bandwidth in Fig. 6.1 for S = • <noiseless case> and S = 1. 
The plots show that the mean frequency estimator has a much 
smaller variance than the correlation-angle estimator when 
B > 0.5; its noise immunity is therefore superior also. The 
reason for the difference is that the fractional uncertainty of 
the denominator of w• becomes larger when its expected value is 
reduced; this effect enters in the denominator of <5.18>, which 
is recognized as the squared magnitude of the correlation 
function at unity lag. This quantity decreases rapidly when the 
bandwidth increases. 
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1.0 

o.o 

2.0 

1.0 

B 

1.0 o.o 1.0 

a> b) 

Fig., 6.1 Standard deviations of mean frequency and corre
lation-angle estimators in units of ~M, plotted 
vs. signal bandwidth. 

a> Noiseless case., 

b> S/N = 0 dB 

6.2 Bandwidth estimation 

A corresponding comparison has been done also for the bandwidth 
estimators. The following results have been derived for Br and 
a• !I 

Jcss2 
+ 11 s + i 

- 25 -

(6.3) 



1 12[9(1 - WI sin wB> + 1J 

2w2 <1 + S> 

Note that the above results, as well as all of the subsequent 
results for the ~true~ bandwidth estimator 6r, are valid only 
when one of the two following conditions are met, 

a) both Qm and Wr are estimated from the translated signal 
<i<k>> in the adaptive scheme in Fig. 4.2; 

b) noiseless case 
does not occur 

with mean frequency so 
<i.e, I~+ O.SBI ~ 0.~>. 

small that aliasing 

Eqs. (6.3>, <6.4) are plotted in Fig. 6.2 for the noiseless case 
and when S ~ 10 <SIN= 10 dB). The correlation-decay estimator 
§• gives some underestimation for very wide-band signals; its 
maximum output is 0.7BB. The minimum signal bandwidth that can 
be resolved is determined by the signal-to-noise ratio. Conse
quently, both §r and 6y become very different from the bandwidth 
of the Doppler signal when the signal-to-noise ratio is low and 
the signal is narrow-band. 

Fig. 6.2 

1.0 

0.5 

o.o 

Expectation values 
infinite averaging 
signal bandwidth B. 

B 

1.0 

of bandwidth estimates for an 
interval, as a function of the true 

When the averaging interval is short, 6r and By become biased 
estimators of Br and By, respectivelym In the noiseless case, 
the following result is obtained from (4.18> and (4.22>, 

The bias is constant, regardless of B. However, the above 
relation is valid only under strong filtering~ which requires 
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MB >> 1e The bias is then always small compared to the bandwidth 
itself. 

out also for the bias of 
is -0.1/M, decreasing to 

unity. The reason why the 
squaring of the mean fre-

The same calculation has been carried 
§.. For small bandwidths its bias 
approx. -0.05/M when B approaches 
bias of §r is so much larger is the 
quency estimate .. 

The variances of the bandwidth estimators follow from <4.23> 
and (5.27)e In the noiseless case, the results are 

B 
= 5 

1 
- <1 - iB sin 

(6.6) 

(6.7) 

The corresponding expressions for a finite signal-to-noise ratio 
have been omitted, as they are complicated and give little 
additional insight. 

The standard deviations of the bandwidth estimates are plotted 
versus signal bandwidth in Fig. 6.3, together with the corre
sponding quantities when S/N = 10 dB. The simple estimator has a 
lower variance for large bandwidths and/or low signal-to-noise 
ratio. On the other hand, its mean is smaller in these situa
tions, so if the fractional standard deviations of the estimators 
are compared <ratio between standard deviation and mean>, the 
difference between the estimators becomes smaller. Nevertheless, 
the simple estimator has a somewhat better noise immunity than 
the full-bandwidth estimator. This is not surprising, as its 
spectral weighting function is considerably more narrow-band than 
the quadratic one. 

Note that the variances of the both estimates increase with 
decreasing signal bandwidth for small signal-to-noise ratios. 
The reason is the large derivative of square root in <4.20>, 
which, for small values of its argument, maps small fractional 
fluctuations in the MS bandwidth estimate to larger fractional 
fluctuations in the bandwidth estimate. 
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1.0 

.I ~ I 
YM Var(l:fr) 

0.5 

-. 
B 

o.o 1.0 

Fig. 6.3 Standard deviation of bandwidth estimates in units of 
~M in the noiseless case and when S/N = 10 dBm 

7. COMPARISONS BETWEEN THE INSTANTANEOUS FREQUENCY AND THE 
CORRELATION-ANGLE 

It is interesting to compare the correlation-angle estimator to a 
scheme that averages the discrete-time instantaneous frequency. 
The latter estimator has been investigated by Angelsen and 
Kristoffersen [15] and Hoeks [161m Using a basic result from 
[221, it was shown that that the probability distribution of the 
discrete-time instantaneous frequency is 

(7 .. 1) 

where w0 is the interval offset previously discussed in Section 
2, and h (A) is 

h<A> • J<l- A2>1 
+ A<w- co•-1A> 

2w <1 - A2>1•5 (7.2) 

The quantities A and D are functions of the correlation function 
at unity lag, 

A • [Rxx (1)CDS wi + Rxy<1>sin wi] /Rxx (0) -1 .S. A .s. 1 (7.3) 

2 2 

11 -
Rxx<1> Rxy ( 1) 

D • ~ 2 
Rxx<O> Rxx<O> 

The quantities Rxx<•>, Rxy(a) are the auto
lation function of the quadrature components 
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and cross-corre
(x(k)}11 (y(k)) of 



(x(k)}. For a complex Gaussian process, the following relation 
holds, 

<7.5) 

Consequently, the variable A in <7.1) can be rewritten as 

(7.6) 

It can be shown that the function h(•) is a monotonically 
increasing function of its argument. The made of the distri
bution pCw1 > is, therefore, the angular frequency where A is 
maximum. From inspection of <7.6>, this occurs when 

Therefore, the expectation value 
estimator coincides with the made 
discrete-time instantaneous frequency. 

(7.7) 

of the correlation-angle 
of the distribution of the 

Eq. <7.6> shows that A<wim+w) • ACw1m-w>. Hence, the probability 
distribution for the instantaneous frequency is symmetric around 
its mode, i.e 

-w < w i w 

It is also well known that far narrow-band spectra, the distri
bution of the instantaneous frequency is considerably wider than 
the spectral density [16]. 

Hoeks proposed an estimator that averages the discrete-time 
approximation to the instantaneous frequency, Eq. <2.7). In 
its basic version, it can be written as 

One problem with this scheme is to determine the interval offset 
w0 • According to (7.8>, the fallowing relation holds when 
w0 = wy, 

If the Brandestini scheme 
cates severe errors due 

is employed <w0 • O>, <7.8) indi-
te mapping or ~aliasing~ of the instan-
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taneous frequency in the cases when the w• is significantly 
different from zero and the width of p(wi) is large. This effect 
has been quantified previously [15J. Hoeks overcame this limita
tion by selec~ing the interval offset adaptively, i.e 

(7.11) 

where oim<k> was estimated on the basis of a running average of 
the instantaneous frequency. He demonstrated that the adaptive 
scheme worked well for S/N~s above -6 dB and signal bandwidths 
less than one half of the sampling frequency. 

One question that remains to be answered is how the variance of 
the averaged instantaneous frequency compares to that of the 
correlation-angle and the mean frequency estimators. Hoeks 
simulated the instantaneous frequency estimator on a computer, 
using signals with rectangular spectra of bandwidths 0.01, 0.1, 
and 0.3, and different SIN's [16]. In two different sets of 
simulations, he smoothed the instantaneous frequency with 
a recursive filter of the type (3.24>, using the feedback coeffi
cient a1 = 1~/16 and a2 = 31/32, respectively. He concluded that 
Var<Oim> obeyed the relation (4.6) for signal-to-noise ratios 
above 10 dB; for lower S/N~s it was considerably larger. How
ever, Hoeks conclusions were based on the assumption that the 
angular bandwidths of his smoothing filters were wb 1 • 2w/16 and 
Wb2 = 2w/32, whereas the correct ENBWs according to (3.24> were 
nearly one half of this magnitude. It follows then from his 
results that the variance of the averaged instantaneous frequency 
estimator is twice that of the true mean frequency estimator for 
signals with bandwidths .less than 0.3 and S/N~s higher than 
10 dB. This seems not unlikely, as the probability distribution 
of the instantaneous frequency is much wider than the power 
spectrum in these cases. On the other hand, the distribution of 
the instantaneous frequency and the power spectrum coincides in 
the case of white noise, so it is harder to explain the deterio
rating performance of the instantaneous frequency estimator for 
low S/N~s. The increased variance in the latter situation was 
probably caused by the adaptive determination of w

0
• 

The variance increase of the instantaneous frequency estimator 
for low S/N~s was not quite as bad as that predicted in this 
paper for the correlation-angle estimator: A detailed comparison 
to Hoeks results reveals that the instantaneous frequency 
estimator performs slightly better than the correlation-angle 
estimator for S/N = -10 dB. 

8. CONCLUDING REMARKS 

An important result of this paper is that the correlation-angle 
estimator has a higher variance than the adaptive mean frequency 
estimator for wide-band signals or/and poor signal-to-noise 
ratios. This explains why Barber et al. [19] got better results 
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with their time-domain mean frequency estimator than with 
the correlation-angle estimator for the lowest Doppler shifts, 
where their system had the smallest signal-to-noise ratio. The 
reason why they got better results with the correlation-angle for 
higher frequencies is harder to explain. Two reasons seem 
possible: Their time-domain mean frequency· estimator was 
different than the corresponding detector investigated in this 
paper; it was based on only one lag of the correlation function, 
and it must be expected to deteriorate for Doppler shifts larger 
than about one third of the sampling frequency. Secondly, they 
did not use the adaptive method to correct for bias under poor 
signal-to-noise. 

Most of the results derived in this paper are valid for strong 
filtering only, a condition which is rarely met in real-time flow 
mapping. However, there is no reason to believe that the 
individual ranking of the estimators will be very different in 
the case of short averaging intervals. 

The low bias of the correlation-decay bandwidth estimator for 
short averaging intervals makes it well suited for flow-map 
applications. Its primary feature is that the MS bandwidth is 
estimated directly, not as the difference between two high
variance quantities, as is the case with the 'ordinary' esti
mator. Bias that occurs because of the squaring of the mean 
frequency in the ordinary estimator is, therefore, avoided. 

It should finally be mentioned that there exists a number of 
ways to simplify the calculations in the estimation of corre
lations between Gaussian processes. Hard limiting of one or 
even both of the processes may reduce the hardware complexity 
strongly in a high-speed implementation. The tradeoffs involved 
are hardware complexity versus an increased variance of the 
correlation estimate [5J[18la 
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APPENDIX 

The following formula holds for the 4th order moment of the 
jointly Gaussian complex processes q,r,s,t [231, 

<q*rs*t> = <q*r><s*t> + <q*t><s*r> <At> 

The above relation can be used to calculate the covariance 
between two filtered cross correlation function estimates as 
defined in (3.5>. The covariance becomes 

= t t t t b<k>b<l><[a 1 <n>~*<k>~<k-n> + af<n>x<k>x*<k-n>l 
k 1 m n [ • A A. A. A a 2 <m>x<l>x <1-m> + a2<m>x <l>x<l-m)l 

[at<n>R<-n>+af<n>R*<-n>lR(m)J[a2<m>R<-m>+a!<m>R*<-m>l> 

• E t t t b<k>b<l><a1 <n>a!<m><x*<k>x<k-n>~<l>x*<l-m>> 
k 1 m n + •t<n>a2<m><x*<k)x(k-n>x*<l>x<l-m)) 

+ af<n>a~<m><~<k>~*<k-n>x<l>x*<l-m>> 

+ af<n>a2<m><x<k>x*<k-n>x*<l>x<l-m>> 

[at<n>R<-n> + af<n>R*<-n>l[a2<m>R<-m> + af<m>R*<-m>J> 

- t t t ! 
k 1 m n 

b(k)b<l><•t<n>a!<m><R<l-k>R*<l-k-m+n) 

+ •t<n>a2<m>R<l-k-m>R*<l-k+n> 

+ •f<n>a~<m>R<l-k+n>R*<l-k-m> 
+ af<n>a2<m>R<l-k-m+n>R*<l-k)} <A.2> 

This equation can be transformed to the frequency domain by first 
rewriting the autocorrelation function as the inverse Fourier 
transform of the power spectrum, and then interchanging the order 
of summations and integrations. This yields 
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t t t t b<k>b<l>JdwJdn G<n>G<w><a1<n>a!<m>ejw<l-k>e-Jn<l-k-m+n>. 
k 1 m n 

+ 

+ af<n>a~<m>ejw(l-k+n> 8-Jn<l-k-m> 

+ af<n>a2 <m> ejw<l-k+n-m>.-Jn<l-k>} 

= JdwJdnG<n>G<w>tb<k>e-Jk<w-n>tb<l>eJl<w-n><ta 1 <n>e-Jnnta~<m>ejmn 
k 1 n m 

-Jnn -Jmw + ta1 <n>e ta2 <m>e + 
n m 

f 
jnw -jmw + ta <n>• ta2 <m>e } 

n m 

= JdwJdn G<n>G<w> IB<w-n> 1 2<A 1 <n>A~<n> + A1 <n>A2 <w> 

+ Af<w>A!<n> + Af<w>A2 <w>> 

• JdwJdn G<w>G<w-n>IB<n>I 2<A 1 <w-n>A~<n> + A1<w-n>A2 <w> 

+ Af<w>A~<w-n> + Aflw>A2 <w>> <A.3> 

The final version was formed using the substitution n := w - n. 
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1. INTRODUCTION 

The received signal in Doppler ultrasound blood velocity measurements 

is formed by the scattering of ultrasound from a large number of randomly 

located red blood cells. The Doppler signal therefore becomes a zero 

me,an Gaussian process [5]. As such, all information is contained in 

its autocorrelation function. When the velocity field in the blood 

vessel is time steady, the Doppler signal becomes stationary [5], and 

it follows from the Wiener-Kintchine Theorem that all available infor

mation is also contained in its power spectrum. From a signal processing 

po1nt of view, this explains why spectral analysis plays such an important 

role in the interpretation of Doppler signals in blood velocity measure

ments. 

The power spectrum of the Doppler signal has a physical interpretation. 

The spectral density at a frequency fd is a rough measure of the 

fractional blood volume in the sensitivity region (sample volume) of 

the Doppler instrument that travels with velocity v, such that v 

and fd are proportionally interrelated via the Doppler equation. 

Rescaling the frequency axis of a power spectral density plot into 

velocity units therefore yields essentially the velocity distribution 

in the sample volume. Spectral analysis thus provides information about 

the entire velocity distribution. In contrast, widely used single 

frequency estimators only estimate a single parameter of this distri

bution (mean [39], maximum [40] or root mean square frequency [41]). 

The clinically most important parameter of the velocity distribution 

is probably its maximum velocity. This parameter 

may be applied to estimate the pressure drop across obstructions to 

flow, via the Bernoulli equation [42] [43]. If some minor spectral 

broadening effects are neglected, the maximum velocity corresponds to 

the maximum frequ~ncy of the Doppler spectrum, which can be detected 

using spectrum analysis. 

The velocity profiles in human arteries have pulsatile time variations, 

caused by the beating of the heart. The Doppler signal therefore becomes 

a nonstationary (evolutionary) Gaussian process. If the estimate of 

the power spectrum is formed over a so short signal segment that the 

velocity profile is essentially constant (- 10 ms), the expected value 
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of this 'shorttime spectrum' approximates the instantaneous velocity 

distribution. However, the short time available for signal analysis 

leaves errors (bias, variance) in the estimate. Frequently the signal 

to noise ratio of the measurements may be poor. The estimated velocity 

distribution therefore always has a stochastic uncertainty, which may 

be reduced by properly parametrized spectral analysis. 

Spectral analysis has a number of advantages compared to the use of 

single frequency estimators. These are 

The ratio between the signal and the noise spectral intensities 

(the 'spectral signal to noise ratio') for a narrowband signal in 

wideband noise is much larger than the total signal to noise power 

ratio. This makes a spectral estimator less sensitive to noise 

than, for example, a time domain implementation of a mean frequency 

estimator, which responds to the entire noise power spectrum. 

It is well known that narrowband noise, such as electronic RF 

interference, may cause serious problems for single frequency 

estimators [44]. In spectral analysis, ~his type of noise only 

generates stationary spectral lines. These are easily discerned 

from the more wideband, time varying Doppler spectrum. 

Doppler signals from different vessels within the same sample 

volume {especially actual using continuous wave Doppler with no 

range resolution) can often be seperated using spectrum analysis. 

The output from single frequency estimators in such a case is 

related to the sum of the individual Doppler spectra from the 

vessels. The presence of an interfering vessel may not be recog

nized by the operator, and erroneous interpretations may result 

[44]. 

Aliasing errors in pulsed Doppler systems are immediately revealed 

using spectral analysis, while normally causing large errors in 

the output from single frequency estimators. Unless the ultra

sonographer is skilled, this may be overlooked and, again, mis

interpretations are likely. 

When the velocity field is unidirectional, sampled data spectrum 

analysis of the complex Doppler signal increases the frequency 
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limit of pulsed Doppler systems with a factor 2 compared to the 

Nyquist limit PRF/2 [13]: PRF denotes the pulse repetition fre

quency (sampling frequency) of the instrument. In this report it 

shall be demonstrated that in some situations; frequencies even 

exceeding the PRF can be quantified. 

The major drawback of spectrum analysis is that it traditionally has 

been rather costly, both to perform and to display. Developments in 

technology are now changing this picture. 

A good spectrum estimator should yield low bias/ low variance spectrum 

estimates. It should also be consistent, i.e. the variance of the 

estimate should tend to zero as the length of the available data record 

increases to infinity. A nonzero bias in spectrum analysis means either 

finite r esol uti on, side 1 obe s, or spurious spectral responses. Due to 

the transit time effect, the Doppler signal always has a finite 

bandwidth, even when measuring on a vessel with a flat velocity profile 

(plug flow) [45]. Typically, the correlation time of the interesting 

frequency components in the signal is shorter than the allowable data 

collecting time for one spectrum estimate (- 10 ms). The Doppler signal 

may in fact be modeled as a relatively low order MA process [34]. 

This means that computationally efficient Fourier transform based 

spectrum estimators are well suited for our purpose, as these model 

the signal as an all-zero process. All-pole (AR) or mixed pole/zero 

(ARMA) models may have lower bias when the available data record is 

shorter than the correlation time of the signal [46], but this is rarely 

the case in our situation. 

A variety of types of spectrum analysers have earlier been designed 

for dedicated use in Doppler ultrasound applications: Banks of parallel 

filters [23] [47], sweeping filters (off line analysis) [48], time 

compression plus sweeping filter [49]. A review of their principles 

is given by Atkinson and Woodcock [24]. The modified periodogram is 

the most commonly used estimator in Doppler signal analysis today 

[20] [21] [26] [33] [50]. It is defined as the normalized magnitude squared 

Fourier transform of a sequence of samples, which is the product of 

the Doppler signal and a suitable window function. The standard 

deviation of this estimate equals its mean, regardless of the length 

of the data record (see Section 2.2.2). The modified periodogram thus 

is a high variance, nonconsistent spectrum estimator. 
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Two basic principles exist for improving the consistency of the modified 

periodogram. One is to compute the periodogram of the entire data record 

available, and smooth this 'raw' estimate in the frequency domain (the 

smoothed periodogram estimator) [2]. Traditional!~ this operation has 

be en carried out in the time domain by estimating the sample aut a

correlation function, multiply it with a 'lag window', and Fourier 

transform to obtain the power spectrum (the Blackman and Tukey method) 

[27]. A different approach is to partition the data record into a 

number of sub-sequences, possibly overlapping, compute the modified 

periodograms of each signal segment and then average to reduce the 

variance [7] [56]. The result of this operation is denoted the averaged 

modified periodogram, and the method is often referred to as the Windowed 

Overlap Segment Average (WOSA) method. The performances of both methods 

are roughly the same, but the WOSA method is computationally more 

efficient. More recently, Yuen has advocated a method that is a 

combination of the above ones, employing averaged periodograms from 

rectangular windowed, non-overlapping signal segments, and additional 

smoothing in the frequency domain [51] [52]. This method has been 

further elaborated by Nuttall and Carter; they have shown that it can 

attain the same statistical stability as the two traditional methods 

at·a lower computational cost [53]. Common for all methods is that a 

reduction in variance always leads to reduced resolution, i.e an 

increase of the bias. 

The objectives of this report are: 

a) To give a comprehensive discussion of 

in Doppler blood velocity measurements. 

spectrum analysis appl1ed 

This includes 

- understanding the properties of the spectrum estimator; 

- relating these to the measurement situation to determine how the 

spectrum estimator should be parametrized for optimal results. 

b) Pay attention to some special problems that occur in pulsed Doppler 

measurements. These are 

frequency aliasing; 

the application of analog, continuous time filters as an integral 

part of an intrinsicly discrete time system. 

c) Apply the above information to establish the system architecture 

of a real time spectrum analyser for the processing of complex 

Doppler signals. 
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The properties of the Doppler spectrum (center frequency, bandwidth and 

their rate of change, spectral dynamic range) vary between different 

clinical situations. The analyser design should contain flexibility 

to be used with near optimal qualities in all of these situations. To 

obtain thi~ it has been chosen to concentrate on the averaged modified 

periodogram spectrum estimator. This approach allows for the use of a 

Discrete Fourier Transform (DFT) computer with a relatively small number 

of points, which strongly reduces the complexity and speed requirements 

for the hardware. 

The report is organized as follows: Initial!~ the statisttcal proper

ties of the spectrum estimator are derived, assuming it is being applied 

to a stationary complex Gaussian process. It will also be focused on 

issues which lead to simpler hardware realizations (averaging of indi

vidually compressed periodograms), or improved display of the spectrum 

estimate (suppression of white noise by thresholding). These properties 

are related to the practical measurement situation in Chapter 3, which 

also contains a discussion on frequency aliasing in pulsed Doppler 

systems. Different hardware implementation schemes are then evaluated. 

Finally, the system architecture for a fast spectrum analyser is 

proposed in Chapter 5 (128 J.LS minimum computing time). The solution 

employs mixed analog/digital signal processing, based on Bucket Brigade 

Devices. It is both inexpensive and compact relative to the per

formance. Appendix I contains a discussion on the design of smoothing 

lowpass filters for pulsed Doppler instruments employing discrete time 

signal processing. 

The speed of the outlined spectrum analyser makes it suited 

for both conventional single gate pulsed and/or continuous wave Doppler 

systems, as well as multigated systems. In the latter case, the 

high speed allows a single spectrum analyser to be timeshared between 

independent signals from a 1 arge number of range gates. 

A summary of the most important results of each chapter is given at 

the end of the chapter. 
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2. MODIFIED PERIODOGRAM SPECTRUM ESTIMATION 

APPLIED TO A STATIONARY COMPLEX GAUSSIAN PROCESS 

The chapter contains the theory of the averaged modified periodogram 

spectrum estimator. Numerous investigators have analysed the periodo

gram as a spectrum estimator for real signals [1] [2][3][4)[7][56][57]. 

By far, the best analysis available on the subject seem to be the reports 

written by A. H. Nuttall [56] [57]. His analysis were made under the 

assumption that the signal was a continuous time, real Gaussian process. 

In our situation it is dealt with a signal acquisition process that is 

intrinsicly sampled, i.e. pulsed Doppler measurements. Rather than 

giving a direct review of Nuttall's results, it has been chosen to 

derive discrete time equivalents to these, under the constraint that 

the signal is a stationary complex Gaussian process. The latter 

assumption greatly simplifies the derivation of expressions for esti

mator variance. Some well known properties of the periodogram, having 

approximate validity for real signals, in fact become exact for this 

class of signals (this was also realized by Nuttall). The majority of 

the results in Sections 2.2, 2.3 and 2.6 are therefore not new, although 

the approach to the derivations may differ from the other works cited. 

2 1 Definition of terms 

The cross correlation function between two complex, stationary processes 

p(t) and q(t) is defined as 

Rpq(~) = (p*(t)q(t+~)> (2.1) 

where < > denotes ensemble expectation and * denotes complex conjugate. 

The Doppler signal i(t) in ultrasonic blood velocity measurements is 

a complex, zero mean Gaussian process [5]. It can be decomposed into 

its real quadrature components by 

i(t) = x(t) + jy(t) ( 2. 2) 

When the v e 1 o c i ty fie 1 d in the b 1 o o d v e s s e 1 is time invariant , i ( t ) 

will be stationary, and the following correlation properties hold for 

its quadrature components [5]: 
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(2.3) 

R ( 't ) = - R ( 't ) = - R ( -'t ) ( 2 • 4 ) xy yx xy 

The definitions of the correlation functions follow from (2.1). It is 

assumed that the above relations are satisfied throughout the rest of 

Chapter 2. 

The power spectrum of the stochastic process i(t) is defined as the 

Fourier transform of its autocorrelation function Rii('t): 

( 2. 5) 
-co 

Gu<"> 

a) --.J.£--L--1~---l-------.• (It 

111m in 111m ax 

b) 

\ 
-... 

Fig. 2.1 Power spectra of 

a) continuous process i(t) 

b) discrete process {i(kTs)} 

When :i(t) is sampled with angular sampling 

power spectrum of the discrete time process 

given by 

~ R--(nT )e-jnwTs L XX S 
n=-co 

(It· 

rate ws 
{i(kT

5
)} 

= 2n/T
5

, the 

is similarly 

(2.6) 

Thus, the sampled power spectrum Gix<w) is periodic with period ws. 

When i(t) is stationary, the following relation holds [2]: 
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(2.7) 

The significance of this well known equation is shown schematically in 

Fig. 2.1. The sampled power spectrum is formed by multiple translations 

of Gii((l)) along the (I)-axis. Note that since i(t) is a complex 

process, its power spectrum is generally not a symmetric function in 

(!). As long as its angular bandwidth does not exceed (l)s' i.e. 

(2.8) 

the partial spectra in Fig. 2.1.b will not overlap. Then Gii:((l)) 

can be determined unambiguously from Gix<(l)), if one from prior infor

mation knows which part of the sampled power spectrum that contains 

the spectrum of the continuous time signal. For example, if one from 

physical reasons knows that Gii((l)) only can have spectral support on 

positive frequencies with maximum frequency less than (l)s' the relation 

Gii((l)) TsGix<(l)), (!) E [O,(I)s], holds. 

Unless otherwise stated, Ts shall be set to unity in the rest of the 

report. Since the spectrum estimation described in the following is 

carried out in the discrete time domain, the unprecise but convenient 

term "spectrum" will be used to denote both Gii:((l)) and G~:i((l)). The 

only situation where one needs to distinguish be tween these is 

when (2.8) is violated. 

2.2 The averaged modified periodogram spectrum estimator 

2.2.1 Definition and expectation value 

An estimator of the sampled power spectrum G~i((l)), based on K signal 

samples centered around sample k, is given by 

where 

~(k,(I):K) = i lf(k,(I);K)I 2 (2.9) 

X<:k,(I):K) 
K 
~ w(n;K)i(k+n-K/2)e-jn(l) 

n=1 
(2.10) 
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This estimator is commonly referred to as the modified periodogram. 

The smooth, real window function {w(n;K)} is assumed to be nonzero 

only for 0 < n i K. The limits of the summation in (2.10) can therefore 

be extended to infinity, without changing the result. The window 

improves the dynamic range of the periodogram; details will be discussed 

later. To simplify the notation, the parameters k and/or K shall 

be omitted from G, X and w in situations where no ambigJlity is 

introduced. For example, all of the forms ~(w), ~(k,w) and ~(k,w;K) 

may be used when the signal is stationary. 

form G(w) is used instead of Gi_i:(w) to 

In the following, the short 

denote the sampled power 

spectrum. 

The correlation between f(k,w) and f(k,w+A) is from (2.1) 

<rtw>! (w+A) > < l l w(n)w(m)i*(n)i(m)e-j(m-n)w e-jmA> 

(2.11) 

~ w(n)w(m)R--(m-n)e-j(m-n)w e-jmA 
l XX 

n=-c:o m=-c:o 

This expression can be simplified by transforming into the frequency 

domain, using the substitution m - n = k and the Fourier transform 

relations 

ff 

w(k+m;K) !n Jdw W(w;K)ej(k+m)w (2.12) 

-n 

K 
W(w;K) l w(k;K)e-jkw_ (2.13) 

k=1 

W ( w: K) is the frequency response of the window. Using the above 

relations and (2.6), the following frequency domain expression is 

obtained for the correlation: 

Tr 

!n fdA W(A)W*(A-A)G(w-A+A) (2 .14) 

1t 

The expected value of the periodogram follows immediately from (2.9) 

and (2.14) with A = 0: 
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TC 

;TC JdA Ws(A;K)G(w-A) 

-n 

(2.15) 

(2.16) 

Hence, the expected value of the periodogram is the convolution between 

the true spectrum G(w) and the spectral window Ws(w}, i.e. the 

expected value is a smoothed version of the true power spectrum. 

Therefore, the periodogram is a biased estimator of the sampled power 

spectrum, unless the power spectrum is completely flat (white noise). 

In the latter case. the following scaling condition is required for the 

periodogram to be unbiased (from eq. (2.15)): 

TC 

h Jdw Ws(w:K) 
-n 

K 

t l w2(k;K) 

k=1 

1 (2.17) 

The first identity follows from Parseval' s theorem [2]. The above 

equation states that the area under the spectral window must equal unity. 

Good windows have real frequency responses with a narrow main lobe 

centered around w = 0, and small side lobes. The amount of bias in 

spectrum estimation is determined both from the width of the main lobe 

and the size of the side lobes. Generally spoken, a window with small 

side lobes tends to have a broad main lobe, and vice versa. The 6 dB 

angular bandwidth of the main lobe is related to K by [6] 

k 2n 
wKT s 

(2.18) 

where kw is a characteristic constant for each type of window. Thus, 

increasing the length of the data record decreases the width of the 

main lobe of Ws(w), and reduces the bias. In combination. eqs. (2.17) 

and (2.18) indicate that the spectral window will converge to a delta 

function in the limit when K -> ~. The periodogram is therefore an 

asymptotically unbiased spectrum estimator [4]. 

A large number of window types have been proposed in the literature. 

Surveys are given in [6] and [9]. The time domain versions of the 

rectangular and the Hamming windows are listed below: 
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(2.19) 

elsewhere 

{:·586[0.54 + 0.46 cos i"(k-K?)J 
(2.20) 

elsewhere 

These window types will be used in some examples later in this report. 

The rectangular window has an even time domain weighting of the signal. 

It is useful to include, since it establishes a reference for the yield 

of noneven data weighting. The choice of the Hamming window as a second 

example was done since it is incorporated in commercially available 

analog charge transfer devices intended for use in spectrum analysis. 

These devices are discussed in Chapters 4 and 5. 

The spectral windows Ws(w), eq. (2.16), for the above time windows 

have be en p 1 ott e d in dB s c a 1 e in Fig • 2 • 2 for K = 3 2 and K = 6 4 • 

The smaller side lobes and broader main lobe of the Hamming window are 

apparent. From [6] 1 kw = 1.21 for the rectangular window, while 

kw = 1.81 for the Hamming window. The peak side lobe level of the 

Hamming window is -43 dB, vs. -13 dB for the rectangular type (valid 

for continuous time versions of the windows, but since aliasing effects 

are small for actual values of K, the numbers are good approximations). 

When Fig. 2.2 is related to eq. (2.15), it becomes clear that the 

resolution of the periodogram is determined from the width of the main 

lobe. The side lobes affect the dynamic range of the periodogram, as 

side lobes of a strong frequency component may totally obscure weaker 

frequency components. The choice of window tY,pe therefore becomes a 

tradeoff in resolution vs. dynamic range. 

2.2.2 Correlation properties and variance 

We shall now analyse the variance and consistency properties of the 

modified periodogram. Observe from (2.2)-(2.4) that 

<i(k)i(n)) = Rxx<n-k) - R (n-k) +j[R (n-k) - R (n-k)] yy xy yx 
(2.21) 

0 
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( • 32, rectangular ( • 32, Hamming 

.. : . -I~ 10.;, .... · 

( a 64, rectangular ( • 64, Hamming 
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: ~ 1•1 : 
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. . . . 
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• 0 • • 

Ill !Ill II II I ' oo~~~r~~~~~~~~~~I111 1 • il'\1lt~,~~1Nf~~~flll)lf 
Fig. 2.2 dB plots of Hamming and rectangular ·spectral windows for 

K = 32 and K = 64. The x-axis are scaled relative to 

ws/2. 

The above property may equivalently to (2.3),(2.4) be taken as a 

definition of a stationary complex Gaussian process [10]. Since f(k,w) 

at a fixed w is a linear combination of zero mean complex Gaussian 

processes, it becomes itself a zero mean complex Gaussian process. It 

follows immediately that also the correlation 

(2.22) 

for all k,n and w1 ,w2 • The 4 th order moment of the complex zero 

mean jointly Gaussian variables q,r,s,t is then given by [10]: 

<q*r*st> = <q*s><r•t> + <r*s><q*t) (2.23) 

Note that if the variables had been real, there would have been one 
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additional term on the right side. Using this formula, the covariance 

between the periodogram estimate at the angular frequencies w and 

w + 11 becomes 

Cov(~(w),~(w+/1)) ~2 <f(w)f*(w)f(w+l1)f*<w+/1)) - ~(w)~(w+/1) 
K 

~2 1<f(w)!*(w+l1)>1 2 

K 

Using eq.(2.14), this expression can be converted to the form 

Cov(~(w)~(w+/1)) 

1T 

~2 (~nr1JdA W(A)W*(A-A)G(w-A-11) 12 
-n 

(2.24) 

(2.23) 

The only way one can get a sizable value of the above integral is to 

make 11 so small that the main lobes of W(A) and w*(A-11) overlap. 

Fig. 2.2 then reveals that two point estimates of the periodogram for 

practical purposes are uncorrelated when they are spaced more than one 

main lobe width apart. 

The variance of the periodogram at a fixed frequency is obtained by 

setting 11 = 0 in eq. (2.24). Comparing with (2.15) leads to the simple 

result 

Var(~(w)) (2.26) 

It is convenient to introduce the normalized term fractional yariance, 

defined as the ratio between the variance and the square of the mean 

of a stochastic variable: 

Fracvar[~(w)] 
Var{~(w)) 

<~(w))2 
1 (2.27) 

The equation illustrates the well known fact that the modified periodo

gram is a poor estimator of the power spectrum: In addition to having 

a large bias for short data records, also its fractional variance is 

very large. Furthermore, since two periodogram ordinates are uncorre

lated when their frequency arguments are spaced more than one main lobe 

width apart, the periodogram tends to fluctuate wildly around its mean 

[4]. These properties are valid regardless of K, and the modified 

periodogram is therefore a highly nonconsistent estimator of the power 
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spectrum. When K increases, the width of the main lobe of Ws(w) 

decreases, and consequently, the periodogram will fluctuate more rapidly 

around its mean. 

The simple expression (2.27) is not exact when the signal is real. 

The fractional variance of the modified periodogram when the input 

signal is real, Gaussian white noise and the rectangular window is 

employed, has been shown to be [2]: 

Fracvar[~(w)] (2.28) 

In this case, the fractional variance is a function of both K and w. 

It equals 2 for w = 0 and w = ±rr. but it decays rapidly to 1 

away from these points when K is large. The simplicity of eq. (2.27) 

is due to the fact that <:t2 (w)) = 0 when the signal is complex 

Gaussian. 

For general real, zero mean Gaussian signals, (2.27) can be shown to 

have asymptotic validity when K -> m. Except1ons are the po1nts w = 0 

and w = rr, where the fractional variance converges to 2 [4]. If one 

thinks of the periodogram as a smoothed version of a noisy, unbiased 

estimate of the periodogram, the increased variance for real signals 

can be given a intuitive explanation: Mathematical!~ such a smoothing 

may be expressed as a convolution integral similar to (2.15), where 

G(w) is replaced by the noisy estimate. For w = 0 or w = n, only 

half the main lobe of the spectral window Ws(w) will contribute to 

the smoothing, since the raw estimate must be a symmetric function in 

w when the signal is real. With w substantially away from these 

points, the entire main lobe covers independent parts of the raw 

estimate, and the efficiency of the hypothetical smoothing doubles. 

The increased variance for real signal inputs at frequencies away from 

w = 0, 1f is due to 'variance leakage' from these points, caused by 

the side lobes of the spectral window [4, p. 464]. This is confirmed 

by (2.28), where no increase in variance can be found for w = 2rrn/K, 

n = 1,2,--, K-1. These frequencies are the zeros in the frequency 

response of the rectangular window 6 and they are, therefore, not affected 

by increased variance for w = 0 or w = n. 
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2.2.3 Averaging modified periodograms 

A commonly used method for reducing the variance of the modified 

periodograms is to form a weighted average of periodograms from diffe

rent segments, possibly overlapping, of the signal [7] [56]. In this 

report, the averaged modified periodogram is defined as 

M 
l b(n)~(k+nq,~;K) 

n=1 
(2.29) 

where (K-q) samples overlap between adjacent signal segments has been 

assumed. {b(n)} are the coefficients of the averaging Finite Impulse 

Response (FIR) filter. The requirement 

M 

l b(n) 1 (2.30) 

n=1 

must be satisfied for the expected value of the averaged periodogram 

to equal that of the modified periodogram. The fractional variance 

ai of the averaged periodogram at a fixed frequency can be calculated 

from direct analogy with a similar problem discussed in [11]: 

where 

M-1 
~ \;(m)~(mq,~) 

m=-(M-1) 

M-Imi 
~(m) ~~1 ~ b(k)b(k+lml) 

k=1 

M 2 
[~ b(k)] 
k=1 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

The constant t; s is unity for a properly scaled averaging filter. 

The coefficients {b(m)} are the convolution of the impulse response 

of the FIR filter with itself. The normalized covariance function 
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{~(mq,w)} can be calculated using the technique that led to (2.24): 

(2.35) 

Proceeding similarly as for the solution of (2.11) yields the below 

expression for the time correlation of the windowed Fourier transform: 

7T 

!_ fdA W (A)G(w-A)e-jmq(w-A) 
27T s 

(2.36) 

-n 

Substitution in (2.32) then yields the normalized covariance function 

~(mq,w) 

7T 

lfdA Ws(A)G(w-A)ejmqAI 2 

-n 
7T 

lfdA Ws(A)G(w-A)I 2 

-n 

(2.37) 

For a given sampled power spectrum, the fractional variance can now be 

calculated exactly from (2e31) and (2.37). However, the above expres

sion may be greatly simplified if some approximations are made. If a 

good window is used, the integrals in (2.37) will get far the most of 

their contributions from the main lobe of the window, i.e. for A 

close to zero. If the main lobe is so narrow that the power spectrum 

varies little over its width, G(w) can be put outside the integrals in 

(2.37). The equation then simplifies to 

~(mq,w) 

n 
!Jdw W

5
(w)ejmqwl 2 

-n 

K-lmql 

ll w(k;K)w(k+lmqi:K)I 2 

k=1 
K 

ll w2 ( k ; K) I 2 

k=l 

(2.38) 

The last transition. follows by inverse Fourier transform. The co

variance function {~(mq,w)} becomes independent of w, being simply 

the normalized squared correlation function of the time window. It is 



- 17 -

observed that in this approximation,the periodograms are uncorrelated 

for lmql ) K. 

Moreover, it can be seen that X(k,ro;K) and 

· X(k+mq,ro;K) are uncorrelated when lmql ) K. Being zero mean complex 

Gaussian variables, they are then independent. It follows that modified 

periodograms from nonoverlapping signal segments are not only uncorre

lated: They are also independent. 

Specializing to the case b(m) 

eqs. (2.31), (2.33) and (2.38)) 

M 

k ~ (1 - lll>~(mq) 
m=-M 

1/M (pure averaging) yields (using 

(2.3Y) 

The formulas (2.38), (2.39) are identical to the results of Welch, valid 

for real Gaussian signals, except that he had to make reservations near 

the points ro = 0 and ro = n [7]. These were for the same reasons as 

previously discussed. Nuttall, because of his assumption of a con

tinuous time signa 1, obtained an expr es si on for the correl a t1ons 

{~(mq,ro)} similar to eq. (2.38), containing integrals instead of the 

summations [56]. For windows with rapidly decaying sidelobes, the 

results become nearly identical. 

Unlike the raw per iodo gram, the averaged pe rio do gram is a consistent 

estimator of the power spectrum when M increases and K and q are 

fixed. When M is large, its fractional variance equals cv/M (~(mq) 

is nonzero only for lmql < K). The constant cv depends on the window 

type and the degree of overlap. For nonoverl apping signal segments 

cv is unity, while it increases with increasing degree of overlap. 

However, the overlap allows for using a larger M when the total data 

record length is fixed. The net result is then a reduction in variance, 

at the cost of an increased amount of computation. 

It is of interest to quantify how the variance is affected by the degree 

of overlap between adjacent signal segments. If the fractional overlap 

(K-q)/K is denoted r, and the available data record is L samples, 

one may average over a total number of sections 

M = 1 + (~ - 1) 1:r 
- L 1 

K 1-r when L/K )) 1 

(2.40) 
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For calculation of the fractional variance the expression 

q = '(1-r)K (2.41) 

must be substituted in (2.38). Assuming L/K >> 1, the reduction in 

variance due to the overlap is 

Fig. 2.3 

r/(1-r) 

( 1-r ) ~ ~ ( mq) 

m=-r/ ( 1-r) 

a) 

L/I. 

l*·~ \\.\:·····: . 

:t.\.t ..... :. "" 

(2.42) 

1~.~ .... \\ \\~' .. ~ - 0 ............ . 
. \\ . r • O.S, rectangular 

·········:···\·~·:·····: ..... : ..... : ......... . 
· \· \ '., · r • 0 S Ha 1111· ng 

:: ·~ •• Ill 

Ir:o•.:l•·l······, -,:£~~ 
e.3 o.s · o.;:o · ''·" -

I I I I aM 

b) 

The effect of averaging modified periodograms from over

lapping signal segments: 

a) Reduction in fractional standard deviation caused by 

nonzero overlap. Valid when L >> K. 

b) Required length of data record for a specified fractional 

standard deviation of the estimate. 

The reduction in standard deviation as a function of r (the square 

root of (2 .42)) is plotted in Fig. 2.3. a for the Hamming and the 

rectangular windows. It can be seen that there is a considerable yield 

in using overlapping segments. The reduction in standard deviation is 

larger for the Hamming window than for the rectangular (0.73 vs. 0.82 

when r -> 1). However, increasing the overlap beyond a certain limit 

yields very little additional reduction in variance» while the compu

tational burden increases dramatically. This limit is smallest for the 

Hamming window (r- 0.6 vs. r- 0.85). The larger reduction in 

variance for the Hamming window occurs since its noneven time weighting 

throws away much of the data near the endpoints of each signal segment. 

Unless overlap is employed, this information is not fully taken into 

account. 
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The above results can be given an intuitive explanation by regarding 

{:f(k,w)}, w fixed, as the output of a linear filter driven with 

white noise. The complex impulse response of the f i1 t e r is 

{w(n;K)exp(-jnw)}. The 6 dB bandwidth of the sequence {X(k,w)} then 

is Afa = kw/K, and hence it must be sampled at least with a rate 

larger than kw/K (X is complex) to preserve all information. This 

indicates that the fractional overlap should exceed - (kw-1)/kw, which 

is 0.17 for the rectangular and 0.45 for the Hamming window. This 

simple argument is reasonably accurate for the Hamming window, while 

Fig. 2.3.a indicates additional yield for a considerably larger degree 

of overlap when the rectangular window is employed. The rea son for 

the discrepancy in the latter case is the large sidelobes of the 

rectangular window, which violates the assumtion of bandlimitness. The 

results are, however, qualitatively correct, in the sense that they 

indicate a more severe loss of information if overlap is not employed 

in the case of the Hamming window. 

Note that the above results were derived under the assumpt1on L >> K 

(strong averaging and steady state analysis). Nuttall has shown that 

when this assumption is violated, there exists in fact an optimum overlap 

between the signal segments. If the overlap is increased beyond this 

point, the variance increases slightly [56, p. 19]. The optimum overlap 

increases slowly with increasing L/K, being typically 65% for the 

cosine (Hanning) window. This phenomenon is a manifestation of the 

fact that it is not optimal to use an ·even weighting in the sum (2.29). 

The optimum weights can be found by solving the set of linear equations 

aai/ab(m) = 0 for {b(m)}, using (2.31) and (2.33). The details have 

been carried out by Nuttall [56, p. 26], but it turns out that the 

yield of using a noneven weighting is small. 

Another interesting question is how large the data record L should 

be chosen if the fractional variance of the spectrum estimate is to be 

smaller than a specified limit. The solution can be given graphically 

by combining (2.38)-(2.41), and plot aM vs. L/K. The result is shown 

in Fig. 2.3.b for r = 0 and r = 0.5. The rings denote possible points 

of operation (M is discrete). In agreement with Fig. 2.3.a, it is 

seen that for small aM, the necessary averaging time using ~he Hamming 

window with no overlap is nearly twice the time needed when using SO% 

overlap. 
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The expression (2.31) for the fractional variance 

estimate can be transformed to the frequency domain. 

of the spectrum 

Maximal overlap 

is assumed, i.e. q = 1. The frequency response of the averaging filter 

is then 

M 

B(w) l b(m)e-jmw (2.43) 

m=l 

From the definition (2.33), it is straigthforward to show that the 

frequency response of the filter with the impulse response (S'(m)} 

satisfies 

M 

tl(w) l se-jmw IB<w>l 2 (2.44) 

m=-M 

Combining with (2.38) and inserting into (2.31) yields the following 

frequency domain expression for the fractional variance: 

M n n 
l ~(m) JdA Jda Ws(A)Ws(a)ejm(A-a) 

a2 m=-M -n -n 
M n 

1f 7t 

B2 (0) IJdA Ws(A)I 2 

-n 

Jdx Jdw Ws(A)Ws(X-w)IB(w)l 2 

-n -n 
n 

B2 (0) IJdA Ws(X)I 2 

-n 

(2.45) 

If the filtering is strong (Mq >> K), the bandwidth of B(w) is much 

smaller than the bandwidth of the spectral window. The frequency 

response of the averaging filter can then be approximated with an ideal 

lowpass filter with DC gain B(O), and cutoff frequency equal to the 

equivalent noise bandwidth AwM/2 of the averaging filter·: 

n 
-

1
- Jdw IB(w) 12 

B2(0) -n 
(2.46) 
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The expression for the fractional variance then simplifies to 

(Aw.P.I << Awa) 

(2.47) 

Similarly, if the spectral window is approximated with the rectangular 

(boxcar) function 

(2.48) 

elsewhere 

one obtains the following relation for the strong filtering case: 

(2.49) 

Hence, under strong filtering the fractional variance of the averaged 

modified periodogram is equal to the ratio between the bandwidths of 

the averaging filter and the spectral window. The formula has general 

validity if the bandwidth of the spectral window is redefined- as 

(2.50) 

This quantity is denoted the statistical angular bandwidth of the window 

[56]. It is typically 40% larger than the 3 dB bandwidth of the 

window. 

One important conclusion can be drawn from (2.44) and (2.50): The side

lobes of the spectral window have very small influence on the statistical 

bandwidth, due to the· extremely fast rolloff of w;(w). If a signal 

record is spectrum analysed repeatedly using different windows, the 

variance of the estimate is solely given by the main lobe width of the 

window; it is hardly at all affected by the sidelobes. It follows 

that under strong filtering, the rectangular window has no resolutional 



- 22 -

advantages compared to a window with better sidelobe behaviour. This 
occurs since (2.49) implies that the transform length K can be chosen 
larger for the latter, for the same variance of the spectrum estimate 

(see Section 3.2.2). 

The relation (2.49) can be simplified further if the filter (2.29) is 

a pure averager (b(m) 

filter is from (2.46) 

1/M). The equivalent noise bandwidth of this 

n M M 
12 Jdw l l e-jmw ejnw 

M -n m=l m=1 

2n r (2.51) 

Substitution into (2.49) then yields the result Mai:af~ = 1, which holds 

for unity sampling rate. For an arbitrary sampling rate with 

MTs = LTs = T (strong filtering implies M = L - K + 1 

q = 1), one obtains 

a 2af'T - 1 a -

L when 

(2.52) 

stating that under strong averaging the product of fractional variance, 

spectral resolution and total data collecting time is unity. A reduc

tion of one of these variables implies an increase in one or both of 

the others. The above relation was originally deri-ved by Nuttall, using 

two somewhat different procedures [53], [56, eq. (22)]. He also pointed 

out that the result was identical to what Blackman and Tukey showed to 

be valid for the smoothed periodogram estimator. Therefore, under 

strong filtering, averaging periodograms of a partitioned signal sequence 

is equivalent to smoothing the raw periodogram from the entire sequence, 

provided the spectral windows are the same. 

Both (2.49) and (2.52) were derived under the assumption of maximum 

overlap (q = 1). Fig. 2.3.a indicates that the relations will be good 

approximations when the fractional overlap exceeds- 60% for the 

Hamming and 85% for the rectangular window. 

2.3 First order probability distributions of the averaged and 

the log averaged periodogram 

Additional insight into the performance of the averaged periodogram 

spectrum estimator is gained from knowledge of the its probability 



- 23 -

density for a fixed frequency. This is derived in the following. 

2.3.1 The sub-periodograms 

The modified periodogram can be split into two components. This follows 

from the definition (2.9), that can be rewritten in the form 

i1(w) = (1 (w) + r t1i (w) (2.53) 

where 

{1r(w) t Re2 [f(w)] (2.54) 

~ i (w) ! Im2 [f(w)] (2.55) 
K 

The 'sub-periodograms' ~r and ~i are computed from the real and 

the imaginary part of the Fourier transform X. The expected value of 

Gr(w) can be calculated as follows: 

<t1r(w)> = ir <lf(w)+f*<w>l 2 > 

= i <ri(w)) 

(2.56) 

where (2.22) and (2.9) have been used. It follows immediately from 

(2.53) that 

(2.57) 

This equation suggests that 2Gr or 2rii may be used as alternative 

Praw' estimators of the power spectrum. This will be utilized in 

Section 2.4. 

Similarly, the cross correlation between Re[f(w)] and Im[f(w)] is 

<Re[X(w)]Im[X(w)]) = t Im[<f2 (w))] = 0 ( 2. 58) 

Hence. the Gaussianess of the complex signal causes Re[f(w)] and 

Im[X(w)] to be uncorrelated. Now both these variables are linear 

combinations of zero mean, jointly Gaussian variables, and they are 

therefore also themselves zero mean Gaussian. It follows that for the 

class of complex Gaussian signals Rerf<w>J and lm[f(w)J are statis

tically independent. The normalized sub-periodograms 2~r(w)/<~(w)> 

and 2~i(w)/<~(w)> are then independent chi square distributed vari

ables, each with one degree of freedom <xi>· 
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Let the stochastic variable Zl'\ be chi square distributed with 1'\ 

degrees of freedom. It is well known that [4]: 

( 2. 59) 

(2.60) 

The fractional variance of the sub-periodograms therefore equals 2, i.e. 

twice the fractional variance of the modified periodogram itself. 

2.3.2 The probability distribution of the averaged periodogram 

The chi square distribution has the property that the sum of a number 

of independent chi square distributed variables itself becomes chi 

square with 1'\s degrees of freedom, where 1'\s is the sum of the 

individual degrees of freedom over the variables. It follows direcly 

from the previous paragraph that the normalized modified periodogram 

2G(w)/<t(w)) is chi square distributed with two degrees of freedom. 

For real processes» this result has asymptotic validity when K -> Q) 

[1; p. 239]. 

It has earlier been shown that periodograms from nonoverlapping signal 

segments are independent. Consequently, when averaging M periodo

grams without overlap, the normalized variable 2M~M(w)/(~(w)> is chi 

square distributed with 2M degrees of freedom. From (2.60)1 the 

fractional variance of the averaged periodogram then is 1/M, which 

agrees with the result obtained in (2.39) with r = 0. 

The question that now arises is how ~M(w) is distributed when either 

a nonzero overlap and/or a weighted average is employed in (2.29). In 

these situations, one may still calculate the fractional variance of 

the estimate from (2.31)-(2.34) and (2.38). From analogy with the 

previous discuss ion, it then seems natural to approximate the dis tr i

bution of 2Mei1M(w)/<7Hw)) with a chi square distribution with 2Me 

degrees of freedom, where Me ~ M is given by 

(2.61) 

Nuttall has shown that this is an excellent approximation to the true 
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distribution of the estimate, regardless of window type, overlap, and 

the ratio L/K [57]. A similar approach was used in [1] to derive 

asymptotic expressions for the variance of the smoothed periodogram. 

In the following. Me shall be referred to as the efficient number of 

t e rm s in the ave rag in g sum ( 2 • 2 9) • It i s the e qui v a 1 en t numb e r of 

terms M one would have to choose to obtain the same fractional variance 

using pure averaging and nonoverlapping segments. From Fig. 2.3.a, one 

has for large M's and 50% overlap the relations Me= 0.9 M for the 

Hamming window, while Me= 0.67 M for the rectangular window. 

The probability·density for the normalized spectrum estimate Gr.1 {w)/<~(w)> 
can be derived from a well known formula for transformation of proba

bility densities [4, p. 86]: 

(2.62) 

where 

Y = h(Z) <=> (2.63) 

The formula is valid provided h( •) is strictly monotonical and its 

first derivative exists for all values of its argument. Assuming no 

overla~ it follows that the normalized variable 

(2.64) 

has the probability distribution 

Ps (sM) = 2M Pz,2M(2MsM) 
M 

(2.65) 

where Pz, 11 <z> is the x2 
11 

probability density [4]: 

- n. n - 1 
Pz,TI ( z) = 2 2 qn.)-1 z2 exp(- f> z > 0 2 (2.66) 

r <a.> (2.67) 

f(a) is the Gamma function. The resulting probability densities have 

been plotted in Fig. 2.4 for M = 0.5 (which is the density of the 

sub-periodograms), 1,2,5 and 10. The distributions are skewed, with 
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tails for the smaller M's. They narrow when M 

M = 1 O, the dis tr i but ion approximates the shape of a 

From the Central Limit Theorem it follows that when 

M -> ~. the distribution will converge to a Gaussian density with unity 

mean and variance 1/M • 

Fig. 2.4 Probability densities for SM = ~MI<~M>, r = 0. 

2.3.3 Probability distribution of the log averaged periodogram 

In engineering applications one is often interested in a display 

of the power spectrum in a logarithmic scale. The probability distri

bution for the variable ~M = 10lg SM can be derived from the 

probability density of SM, using (2.62) and the relations 

~M 
[ 1 n 1 o I 1 o 1 1 o1 0 

(2.68) 

(2.69) 

The resulting probability densities are shown in Fig. 2.S.a for the 

same values of M as in Fig. 2.4. The distributions have large negative 

tails when M is smallp but their modes are all close to 0 dB. When 

M increases, the distributions approach Gaussian shape faster than the 

corresponding distributions of SM. 

The means and the standard deviations of the distributions in Fig. 2.5.a 

have been calculated numerically for various values of M. The results 
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Fig. 2.5 a) Probability densities for ~M = 10 lg ~M/<~M>' r = 0. 
b) Means and standard deviations of the distributions. 

are shown in Fig. 2.5.b. Since, from (2.64), 

(2.70) 

and <~M> is nonzero (-2.5 dB forM= 1), it follows that 10lg ~M(w) 

is a biased estimator of the dB spectrum. The bias is small for M > 5. 

Since it is independent of the mean, it can be corrected for, even if 

the exact shape of the spectrum is unknown. 

Similarly, the variance of the dB spectrum estimate satisfies the 

relation 

(2.71) 

Therefore, also the variance of the dB-spectrum estimate is independent 

of the mean. The standard deviation of ~M is approx. 5.6 dB for 

M = 1 (the raw periodogram), but decreases rapidly with increasing M. 

2.4 Ayeraging compressed periodograms 

Computing the averaged periodogram from a number of individual 'raw' 

periodograms is a simple task in a computer possessing floating point 

arithmetic. High speed spectrum analysers often have to use dedicated 

integer arithmetic hardware, and then a large number of bits is required 

to represent linear version of the periodograms (16 bits yields 48 dB 
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resolvable dynamic range). The bit requirement increases additionally 

during the accumulations of the averaging process. In this case, 

averaging of linear periodograms seems rather impractical - especially 

when the final result is to be presented in a compressed form, e.g. 

dB scale. One method of bypassing the problem is to interchange the 

order of averaging and compression, i.e. averaging individually com

pressed modified periodograms. This reduces the number of bits required 

in the averager. The cost of the reduction is an increase in variance 

compared to the initial approach. In the following,this increase shall 

be quantified for some specific forms of the compression function. 

The Type 1 averager is defined as 

1 M+l 
~M(k+-2-q,ro:K) 

1 
M 

M 

l fc[~(k+mq,ro;K)] 
m=l 

(2.72) 

is a suitable compression function which reduces the dynamic 

range of the average. It shall be assumed that q > K, i.e the 

periodograms are computed from nonoverlapping signal sequences. This 

implies that they are independent, chi square distributed variables (see 

Section 2.3.3). 

The modified periodogram is the sum of the sub-periodograms i1r(ro) 

and Gi{ro). An alternative way of averaging is to compress the sub

periodograms separately prior to summation. Hence, a Type 2 averager 

may be defined as 

2 M+l 
~M{k+-2-q, w :K) 

M 
~ l {f 0 [~r(k+mq,ro;K)] + fc[~i{k+mq,ro:K)]} {2.73) 

m=l 

The reason for including this type of averager is that it leads to a 

cost effective implementation of a Chirp Z Transform spectrum analyser 

(Section 5.2 .2). 

The compression function fc( ") should not be chosen arbitrarily. In 

order not to introduce additional bias, one must require the expected 
1 ~2 

value of the averaged compressed periodograms ~M and ~M to have a 

known bias compared to the correspondingly compressed averaged linear 

periodogram. Any bias introduced by averaging compressed raw estimates 

can then be corrected for. It is difficult to continue the discussion 
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in a general context, so we proceed with two specific forms of 

compression functions in the next sections. 

2.4.1 Logaritmic compression 

Initially a logaritmic compression function shall be studied: 

f (•) = ln(•) = ln 10 (10lg(•)) (2.74) 
c 10 

From (2.60), the expectation value of the Type 1 averager using loga

rithmic compression can be expressed in terms of the expectation value 

of the variable ~1 • eq. (2.68): 

(2.75) 

The frequency and time arguments have been omitted for clarity. One 

effect of averaging the compressed periodogram is therefore a bias term 

that is independent of the mean of the modified periodogram. It can, 

if desired, be removed by subtraction. The variance of the Type 1 

averaged estimate is 

(2.76) 

since the terms in the sum (2.72) are statistically independent when 

w is fixed. In contrast, when using the normal order of averaging 

and compression, the variance of the resulting log averaged periodogram 

becomes from (2.74) and (2.71) 

(2.77) 

To characterize the effect of the compression, the variance performance 

index of the Type 1 averager is defined as the ratio between the 

variances of the average of the individually compressed periodograms, 

and the compressed averaged periodogram, i.e. 

1 
Var(~M) Var(~1 ) 

Var(ln ffM) M Var(~M) 
(2.78) 

The scaling constant ln 10/10 disappeared through this normalization, 

showing that the performance index is independent of linear scaling of 
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the compression function. Regardless of the shape of the compression 

function, one will always have rv1 > 1. Its size thus expresses the 

deterioration of estimator performance because of the interchanged order 

of compression and averaging. 

As previously pointed out, the normalized sub-periodograms Gr/<G> and 

~i!<G> are members of the SM family defined in Section 2.3.3, with 

M = 0.5. Proceeding as above yields for the Type 2 averager 

(2.79) 

(2.80) 

The variance performance index for the Type 2 averager thus becomes 

Fig. 2.6 

Var<So.s> 

2M Var(SM) 

5.0 

.... : .. vr;;: 

10.0 15.0 20.0 
M 

Performance indices for logarithmic compression. 

(2.81) 

The square root of the indices rv1 and rv2 are plotted as a function 

of M in Fig. 2.6. The Type 1 averager is the least sensitive to an 

interchanged order of compression and averaging. When M is 

large, its increase in standard deviation levels off at approximately 

28%, while it is nearly 57% for the Type 2 averager. 

In a typical application,the compression will be incorporated as shown 

in Fig. 2.7. The periodograms (or sub-periodograms) are passed through 

a compression. prior to a B bit linear quantizer. Referred to the 
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i(k) 
(sub-) Bbit .. periodo&rl.lll r-- fc ( •) __... linear --+ averaaer r 

~~(k,w) 
or 

computation quantizer ~;(k,lll) 

Fig. 2.7 Block diagram of quantization and averaging. 

input of the compression function, the quantizer covers a total dynamic 

range 

6 max 
10lg --

6min 
(2.82) 

where Gmax' Gmin are the saturation limits of the quantizer and aq 

is the dB distance between two adjacent quantization levels. The 

question that now arises is how large aq can be chosen, without 

degrading the averaged variables ~~ and ~~. Intuitively, one should 

require the quantization to be so dense that the expected stochastic 

variations of each spectral component causes it to traverse several 

quantization levels. This can be ensured, for example, by selecting 

aq to be less than half the standard deviation of the input data to 

the quantizer. This yields the numerical results (from Fig. 2.5.b) 

aql <! Vvar(~1 >' = 2.8 dB 

Aq2 <! ~Var<~o.s>' = 4.9 dB 

(2.83) 

(2.84) 

It is possible to analyse the exact implications of this assumption, 

since the probability density of the log periodogram is known. This 

work has, however, not been carried out. -Note that when logarithmic 

compression is employed, the variances of the compressed raw estimates 

are independent of their means. This implies that also the quantization 

effects are mean independent. 

The useful dynamic range of the averaged estimates is less than 2BAq• 

since variance peaks or troughs of the input to the quantizer should 

not be allowed to cause severe saturation. The extremes of the useful 

dynamic range may be defined as the values <~>max' <~>min that has a 

fixed probability, say 10%, of causing upper resp. lower saturation 
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of the quantizer. Since 2~/<ih is chi square distributed with 2 

degrees of freedom, it follows that for the Type 1 averager 

26max 
dhmax1 = _z_,.;;;;;=-

0.1,2 

26m in 

zo.9,2 

(2.85) 

(2.86) 

where za.~ is the a 
~ degrees of freedom. 

quantile in the chi square distribution with 

The resulting 'full quality' dynamic range for 

the Type 1 averager then becomes 

2
BA zo.1.2 

a - 10lg 
q Zo.9,2 

(2.87) 

= 2.8 2B- 13.4 [dB] 

where (2.83) has been inserted. Repeating the procedure for the Type 2 

averager yields similarly 

z 
D

2 
= 2 811 - 101g O.l,l 

q Zo.9,1 

(2.88) 

= 4.9 2B - 22.3 [dB] 

Selecting 

the Type 1 

4 bit quantizatio~ hence yields 31 dB dynamic range for 

averager and 56 dB for the Type 2 version. Increasing B 

to 5 yields D1 = 76 dB, D2 = 134 dB. It is apparent that the use of 

logarit~ic compression prior to quantization is extremely bit-effi

cient, although it should be admitted that the exact implications of 

the chosen quantization have not been investigated in detail. 

2.4.2 Power function compression 

The cost of the bit reduction in the previous section was increased 

variance, caused by the interchanged order of averaging and 

compression. This can sometimes be compensated for by increasing the 

averaging time, but normally a 1 ar g e variance increase cannot be 

tolerated. Averaging compressed periodograms, where the compression 

function is less compressive than the logarithm, may then give a lower 
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increase in variance; still the bit requirements may be reduced to an 

acceptable level. An interesting family of compression functions in 

this respect are the power functions: 

(2.89) 

These functions have the factorization property 

It follows that <fc(~)) is proportional to fc((~)), with a constant 

of propor tiona 1 i ty which does not depend on the me an <~> • Power 

function compression therefore leads to a mean independent multiplica

tive bias. 

From (2.72) and (2.90) one obtains for the Type 1 averager 

<~~> = <~>a<Sf> (2.91) 

var(C~) = <C> 2a£<sia> - <sr> 2 l/M (2.92) 

where the probability distributions of SM were given in (2.64)-(2.67). 

Similarly, for the Type 2 averager: 

<c
2

> = <~>a<sa > (2.93) M O.S 

Var(C~) = <~> 2 a£<s5~s> - <sg_ 5 >2 l/2M (2.94) 

The variance performance indices for the case of power function compres

sion are defined as the ratio between the fractional variances of the 

types 1 or 2 averagers, and the fractional variance of the correspon

dingly compressed averaged periodogram. The indices therefore become 

independent of linear scaling also in this case. The mean and variance 

of the reference variable follow from analogy with the above equations: 

<~~> = <~>a<sM> (2.95) 

Var(~~) = <~>2a[<sia> - <S~>2l (2.96) 

The performance indices in the case of power function compression become 
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(2.97) 

(2.98) 

Expressions for the mean <SM> can be obtained from the probability 

density of SM, eqs. (2.65)-(2.67). Tedious, but straightforward, mani

pulations yield the simple result 

f(M+a) 

Ma r(M) 

which leads to the following solution for the fractional 

the stochastic variable S~: 

F (s a) r(m+2a) r(m) 
racvar M = 

Mar(M) 

(2.99) 

variance of 

(2.100) 

Substitution into (2.97) and (2.98) then gives the performance indices. 

The Gamma function can be calculated by numerical integration of (2.67). 

The square root of the resulting variance performance indices has been 

calculated for the compression powers a = 0.5 and a = 0.25. The 

results are shown in Fig. 2.8, which indicates that: 

i) Averaging the 'amplitude periodogram' /ir gives only slightly 

higher fractional variance than taking the square root /GM of 

the averaged periodo gram. The increase in fractional standard 

deviation levels off at approx. 4.5 % for M > 10. 

ii) The Type 2 averager with a = 0.5 corresponds from (2.53)-(2.55) 

to averaging the absolute values of the real and imaginary part 

of X: 

/2Gr
1 

+ /2'Gi'- IRe(X] I + IIm(X] I 

From Fig. 2.8, this gives less than 7% increase in fractional 

standard deviation compared to the reference ~· However, the 

increase relative to the Type 1 averager, that calculates the more 

complex expression 

is merely 2.2%. In practice, it may be far simpler to compute a 
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sum of absolute values than a full squaring/adding/square root 

operation (the so-called hypotenuse function). Fig 2.8 indicates 

that the additional variance introduced by this simplification is 

very small. 

iii) Decreasing the compression power from 0.5 to 0.25 results in a 

significant deterioration. Again,the Type 2 averager is the most 

sensitive to compression. The performance indices are still much 

lower than when logarithmic compression was used (lrvi: 1.12 vs. 

1 • 2 8 • ~ : 1 .1 9 v s. 1 • s 7 ) • 

.................. ~--························· 

··~~ . t ..... _ .... _·· ..•.. R, • • o.>s • 

.... : .. 
: : : • - 0.5 : . ··:······· "":. [r;;.··:············ ··········: 

-!!~;;., .............. ~~] 
~L---~~----~----~------~------rK 

Performance indices for power function_compression. 

A question that still remains unanswered is how large dynamic range 

one will obtain in the averaged compressed periodogram for a given number 

B bit quantization of the compressed 'raw' periodograms. We assume 

the linear quantization levels n/2B, n = 1,--, 2B. Referred to the 

input of the compression function, this corresponds to a maximum 

resolvable dynamic range 

!! 

( 2 .1 01) 
3 !! [dB] 

a 

Again, the full quality dynamic range is considerably less. As in the 

case of logarithmic compression, the high end is limited by saturation 

of the quantizer. The low end, however, now is limited by quantization 

noise. This occurs since the variance of the input variables to the 

quantizer decreases with decreasing mean, whereas the quantization steps 

are constant, aq = 2-B. An estimate of the low end of the dynamic 
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range can be found by relating Aq to the variance of the input data. 

Combining (2.92),(2.94) and (2.99) yields 

(2.102) 

( 2 .1 03) 

It has been used that f(0.5) = ;;-' and r (1) ;.. 1. In the previous 

section, the quantization steps were required to be less than half the 

standard deviation of the input data to the quantizer. In this casep 

this is equivalent to to requiring Var( •) > 2-2B+2 • Combining with 

the above equations then leads to the following lower limits: 

_B-1 _1 
2 a [f(2a+1)- r2 (a+1)] 2a (2.104) 

-1-~ _!_ 
2 a 1 [I;' r ( 2 a +0 • 5 ) - r 2 (a +0 • 5 ) ] 2 a 

1T 
(2.105) 

The saturation limits are the same as in the previous section. For 

the Type 1 averager, it is given by (2.85) with Gmax = 1: 

<~>max1 = 2 0.740 2o.1,2 
( 2 .1 06) 

Similarly, for the Type 2 case: 

<~>max2 = 1 0.370 z 0.1,1 
( 2 .1 07) 

The resulting full quality dynamic range is the ratio between (2.106) 

and ( 2 .1 04) for Type 1, and correspondingly, the ratio between ( 2 .1 07) 

and (2.105) for the Type 2 averager. For actual values of the power 

a, this yields 

rB- 4.3 [dB] a=l 

D1= 6B - 14 [dB] a=O.S (2.108) 

12B - 37 [dB] a=0.25 

rB- 5.8 [dB] a=1 

D2= 6B - 15 [dB] a=O.S (2.109) 

12B - 35 [dB] a=0.25 

Selecting 8 bit quantization and a = 1 (no compression) thus yields 

D1 = 20 dB and D2 = 18 dB. Reducing the power to a= 0.5, the full 

quality dynamic range increases to n1 = 34 dB and n2 = 33 dB. The 
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number of bits thus can be reduced significantly by selecting a < 1. 

It should be emphasized that n1 and ?2 by no means are synonymous 

with the entire dynamic range represented in the averaged compressed 

periodogram. The above relations only indicate the range where satu

ration and quantization effects safely can be neglected. Also, the 

deterioration due to quantization noise probably is very moderate until 

the standard deviation approaches the quantization steps Aq. This 

limit is found by replacing B with B+1 in the expressions. Hence, 

if somewhat increased variance in the low end of the dynamic range can 

be tolerated, the useful dynamic range is larger than indicated by D1 
and n2 • 

The express ions ( 2 .1 08) -( 2 .1 09) show an interesting phenomenon: When 

the compression power is reduced, the incremental yield in dynamic range 

for each additional bit increases, but the subtractive term also 

increases. The underlying mechanism is that when the compression power 

decreases, the variance of the compressed variable reduces. This causes 

the lowest useful quantization step to increase. The last effect 

counteracts the increase in dynamic range due to heavier compression. 

Therefore, when B is fixed, both (2.104) and (2.105) possess minimas 

as a function of a, i.e. for a given number of bits there exist powers 

aoptl• aopt 2 which maximizes the full quality dynamic range of the 

estimate. These minima can be found by a numerical search, and the 

results are listed in Table 2.1. The minima for the Type 2 averager 

are seen to be considerably smaller than the minima for the Type 1. 

The reason is that the fractional variances of the subperiodograms are 

twice that of the periodogram itself. Consequently, the latter variable 

tolerates less compression than the prior for a reduction in standard 

deviation to the same value 2-B+l. 
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B 4 5 6 7 8 

aopt1 .2 9 .14 .060 .033 .020 

min { dHw) >min1} [dB] -13 -28 -60 -127 -258 
a 

max D1 [dB] 11 27 59 125 257 
a 

lrvl (large M) 1.10 1.17 1.24 1.26 1.28 

aopt2 .17 .081 .03 9 .026 .016 

min { < ~ ( w ) > m i n2 } [dB] -19 -46 -102 -207 -400 
a 

max D2 [dB] 15 41 98 202 3 97 
a 

/rv2 (large M) 1.27 1.40 1.48 1.51 1.54 

Table 2.1 Attainable dynamic range using power function compression 

vs. number of bits quantization. 

The maximum attainable dynamic range using the power function class of 

compression functions approximately doubles (in dB scale) for each 

additional bit above 6. This result is qualitatively the same as when 

using logarithmic compression, eqs. (2.87) ,(2.88). For quantization 

levels close to unity, the power functions (2.89) in fact nearly 

coincides with a logarithmic function. This can be realized by writing 

1 
1o1g<1 - !!_>a 

2B 
1 - lOlg(l 
a 

-m 10 (2.110) 

The above expression is the dB distance between adjacent quantization 

levels, seen from the input of the compression function. In this 

approximation it is constant, i.e. corresponding to logarithmic compres

s ion. The approximation is good for m ( < 2B. When the compression 

power a is small, one must require the mean of the compressed 

periodogram to exceed a large number of the lowest quantization levels 

for the quantization noise to be small. The approximation then holds 
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over the entire full quality dynamic range. Consequently, the effective 

compression becomes nearly logarithmic when the compression power is 

small. 

The power aopt is of little practical interest, being so small that 

the corresponding variance performance indices (also 1 is ted in Table 

2.1) are comparable with the indices using logarithmic compression. 

By comparing Table 2.1 with the results from the previous section, it 

can be seen that power function compression requires approximately 2 

more bits than logarithmic compression for the same 

The latter should therefore normally be preferred, 

increase of variance is acceptable. 

dynamic range. 

if the overall 

2.4.3 Asymptotic expressions for the variance performance indices 

Asymptotic expressions for the variance performance indices when M 

is large can be derived by linearizing the compression function. Using 

logarithmic compression,one may write 

(2.111) 

The approximation is valid when SM .:: <SM>, i.e. when M is 1 arge. 

Using (2.50), the variance of ~M becomes 

[ 
10 ]2 1 

= ln 10 M (2.112) 

since 2M~M/<nM> is chi square distributed with 2M degrees of freedom 

when the signal segments are nonoverlapping. Combining with (2.78) and 

(2.81) yields the following asymptotic performance indices: 

[
ln 10]2 ~ 2 
~ Var(~1 > = 1.65 = (1.29) (2.113) 

1 [ln 10]2 var(~ ) 
2 10 0.5 

2.51 (1.59) 2 (2.114) 
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which agrees well with Fig. 2.6 (the numerical values have been 

calculated earlier# Fig. 2.5.b). 

Similarly# using power function compression one has the approximation 

+ a 

It follows from (2.65) - (2.67) that 

2 
Fracvar(SM) = a2 Fracvar(SM) = M 

(2.115) 

(2.116) 

Inserting this expression into (2.97) - (2.100) yields for large M: 

~'vl - ( f(2a+1) - 1) L - r2<a+1) a2 
(2.117) 

<in 
f(2a+0.5) 

- 1) 1 
rv2 - r2 <a+0.5) w - (2.118) 

Selecting the compression power a= 0.5 leads to the numerical values 

rv1 = # (4 - n) = 1.093 = (1.045)2 

rv2 = n - 2 = 1.142 = (1.068)2 

which agrees with Fig. 2.8. 

(2.119) 

(2.120) 

Finally, asymptotic performance indices when M is large and a -> 0 

may be derived by expanding the Gamma function in series to the second 

order in the power a in (2.117) and (2.118). By setting 

f(a + 1) = 1 + f(1)a + t r(1)a2 

f(a + 0.5) =/,T + r(0.5)a + t f(O.S)a 2 

one obtains the asymptotic expressions 

lim rv1 = f(l) - r2 (1) 
a => 0 
M -> = 

1 im rv2 
a -> 0 
M -> = 

in <In r(O.S) - r2 (0.5)) 

( 2 .121) 

(2.122) 

( 2 .123) 

(2.124) 
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The derivatives can be evaluated by differentiating (2.67): 

f(a) (2 .125) 

r (a) (2.126) 

By direct comparison with the probability distribution functions for 

SM, eq. (2.65), the following relations are realized (the numerical 

values are calculated from numerical integration of (2.125) and (2.126)): 

r<1> -0.5772 

f(1) 

r(0.5) =in" <ln(2S0 • 5 )> = -3.480 

f<o.5) =hf <ln2 (2S0 • 5 >> = 15.57 

Inserting this into (2.123), (2.124) yields finally 

1 im rvl 
M -> CD 

a -> 0 

1 im rv2 
M -> CD 

a -> 0 

[ ln 10]2 -x Var(ln s1 ) = -ro-- Var<~1 > 

t Var(ln s0 • 5 > 1 [ln 10]
2 

-x 2 --ro- Var<~o.5> 

(2.127) 

(2.128) 

(2.129) 

(2.130) 

(2.131) 

(2.132) 

which are identical to the asymptotic performance indices using loga

rithmic compression. Thus, when the compression power a is reduced 

towards zero, the performance indices become the same as when 

logarithmic compression is employed. This confirms the tendencies shown 

in Table 2.1 for small compression powers. 
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2.5 Reiecting white noise from the periodogram 

In Doppler ultrasound blood velocity measurements, the signal is always 

contaminated with white noise. Frequently the signal to noise ratio 

is poor. The time varying periodogram is often displayed in sonagram 

format (Section 3.3 ), To get a clear sonagram outline of the Doppler 

spectrum, it may be advantageous to remove the noise part of the spectrum 

estimate prior to display. Since the spectrum of white noise is flat, 

it can be removed by thresholding. The efficiency of this noise 

reduction scheme is analysed in the following, 

We assume a rectangular signal spectrum with spectral density 

s, in white noise with spectral density n, Fig. 2.9.a. The threshold 

device has the transfer function shown in Fig. 2.9.b: 

(2.133) 

elsewhere 

By choosing g
0 

= n and performing the thresholding operation 

ft(G(~)), the true signal spectrum is recovered, Fig. 2.9.c. However, 

in a practical situation,only the estimate tM(~) is known, Fig, 2.9.d. 

This estimate may have a large variance, and one must select g
0 

> n 

to obtain efficient noise suppression. The first question to be 

answered is where the threshold must be set for the noise estimate to 

be less than g
0 

with probability an. It 

large, so that the averaged periodogram ~M 

From Section 2.3 .2, the variable 2Me ~M(~) /n 

is assumed that K is 

is essentially unbiased. 

is approximately distri
2 buted x2M in the noise parts of the frequency axis. Consequently, 

e 
the threshold must satisfy 

(2.134) 

where Za,ll is the a quantile in the X~ distribution. The 

threshold has been calculated numerically as a function of Me' and it 

is plotted in Fig. 2.10.a for the probabilities an = 0.95 and 

an 0.99. With no averaging (Me = 1), g
0

/n must be set to 4.8 dB 

for an = .95. increasing to 6.6 dB for an = 0.99. The threshold 1 evel 

decreases rapidly with increasing averaging. 
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G(w) 

4 

• 
a) 

s + n .. 
In ~ ... 

' 
lJ) 

ft(g) 

b) IL • g 

go 

ft(G(w)) 

I g 0 = n I. c) 

.. (I) 

d) 

ft(~M(w)) 

e) 

-l..--.I....L-.\..-..L.. M..u.,.____u____Md~~rlt\ ~~· lJ) 

Fig. 2.9 Suppression of white noise by thresholding 
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a) b) 

Reject threshold level versus Me· Fig. 2.10 a) 

b) Critical signal to noise ratio for efficient rejectiono 

The thresholding also removes some of the frequency components in the 

signal part of the (I)-axis, as illustrated in Fig. 2.9.e. The next 

question to be answered is how large the spectral signal to noise ratio 

s/n must be for any frequency component in the signal part of the 

(I)-axis to exceed the threshold with probability as. Reasoning as above, 

one obtains 

(2.135) 

Eliminating g
0 

from (2.134) and (2.135) finally yields 

(2.136) 

This quantity has been calculated, and the result is plotted in 

Fig. 2.10.b for as = an = 0.95 and as = an= 0.99. The 'critical' 

spectral signal to noise ratio reduces strongly with increasing avera

ging, starting at 26o6 dB when Me= 1 for the detection probability 

0.99. The results in Fig. 2.10.b indicate that rejection of noise by 

thresholding is not efficient, unless either some averaging of periodo

grams is introduced, or the spectral signal to noise ratio is large. 

In the latter case, the yield of the thresholding is small anyway. 
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2.6 Computing ~he periodogram using the Discrete Fourier Transform (DFT) 

2.6.1 The ordinary DFT 

The DFT coefficients {F(n;N)} of a complex sequence {x(k)}, k = 1,--,N, 

is the Fourier transform of the sequence evaluated for w = 2nn/N, 

n = 0,--,N-1. They are given by 

F(n;N) 
N -j2nkn l i(k)e N (2.137) 

k=1 

These coefficients can be calculated efficiently in a digital computer 

by means of an N-point Fast Fourier Transform (FFT) algorithm [3]. 

The most common algorithms are of the radix 2 type, which require N 

to be a power of 2. 

The modified periodogram G(w;K) can be computed on an N point grid 

using the FFT algorithm, provided N l K [7]. This is easily recognized 

from (2.10) and (2.137), which yields 

f(K/2,2nn/N;K) 
K -j2nkn l w(k;K)i(k)e ~ 

k=1 

N -j2nkn l [w(k;K)i(k)]e N 

k=1 

(2.138) 

The above expression is the DFT of the sequence {w(k;K)i(k)], k = 1--,N, 

augmented with N - K zeros. The change of the upper limit of the 

summation can be done since w(k;K) = 0 for k > K. The periodogram 

ordinates ~(K/2,2nn/N;K) can then be constructed by squaring and 

normalizing t, eq. (2.9). An estimate of the sampled power spectrum 

outside the interval [0,2n(N-1)/N] is obtained by the periodic expan

sion 

~(K/2,2nm + 2nn/N;K) = ~(K/2,2nn/N;K) (2.139) 

This property shall be utilized in Chapter 3. 
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2.6.2 The sliding DFT 

The difference between the sliding and the ordinary DFT is that the 

input data is advanced one sample each time a new spectral component 

is computed [16]. It is defined as 

k-1 .2nmk 
-J-yr-l i(m)e (2.140) 

m=k-N 

where (k mod N) is the remainder of the division k/N, 0 ~ k mod N < N. 

The sliding Discrete Fourier Transform destroys phase information when 

applied to a general waveform, but for periodogram analysis of statio

nary stochastic signals, it is applicable (the periodogram contains no 

phase information). 

The s 1 iding transform can be computed efficiently using the Chirp Z 

Transform [16]. The sliding transformer is then a single in/single 

out device, which uses the complex Doppler signal i(k) as an input, 

and responds with Fs(k;N) on the output. It can be shown that such 

a device can also be used to compute the ordinary DFT of a signal 

sequence: Let the periodic expansion of the sequence be defined by 

i(k mod N) (2.141) 

When {ip(k)} is the input to the sliding transformer, its output will 

become periodic. In the time interval k 0,--,N-1, it is given by 

N -j2nmk 
l ip(m)e N 

m=l 

k+N-1 .2nmk 
+ l ip(m)e-J-yr-

+ 

m=N+l 

k-1 .2nmk -Jrrl ip(m)e 
m=l 

k 0, ••• , N-1 

(2.142) 

which is recognized as the ordinary DFT of theN-point sequence {i(k)}. 

Therefore, the DFT of an arbitrary waveform can be computed by feeding 

the waveform twice into the sliding transformer. Since the transformer 
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has an N sample memory, its first N - 1 output samples must be 

discarded, while the next N samples are the desired DFT coefficients. 

2.1 Summary of Chapter 2 

The properties of the averaged modified periodogram spectrum estimator 

have been studied when applied to complex Gaussian signals. The main 

results are: 

A. The 'raw' modified periodogram is a biased, high variance estimator 

of the power spectrum. The fractional variance of the estimate at 

a fixed frequency is unity, regardless of the transform length K 

and the window type. This simple result occurs only for complex 

Gaussian signals, but it has asymptotic validity when K -> ~ also 

for real Gaussian signals. The magnitude of the bias can be 

controlled by selecting proper windowing of the data sequence when 

K is large. 

B. The real and the imaginary part of the Fourier transform of the 

windowed signal sequence, Re[f(w)] and Im[:f(w)], are statisti

cally independent for any fixed w. 

C. Averaging M modified periodograms, constructed from different 

K-sample segments of the signal, reduces the fractional variance 

of the estimate to 1/Me• where Me i M is the efficient number 

of terms in the averaging sum. For nonoverlapping signal segments 

the periodograms are statistically independent, which ensures 

Me = M. When the available signal record is limited, additional 

reduction in variance can be obtained by selecting some amount of 

overlap between adjacent segments. Increasing the overlap above 

a certain limit (- SS% for the Hamming window) yields very little 

additional reduction in variance. 

D. The product of fractional variance of the spectrum estimate, 

spectral resolution and the total data collecting time is unity, 

provided the ratio record 1 ength to segment 1 ength is 1 arge, and 

the overlap between adjacent signal segments is sufficiently large. 

E. When averaging M periodograms from nonoverlapping signal segments, 
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the variable 2M~M(w)/(~M(w)) is chi square distributed with 2M 

degrees of freedom. When the segments are ove rl app ing, the dis

tribution of the variable 2MeGM(w)/(GM(w}) can be approximated 

with a chi square distribution with 2Me degrees of freedom; 

Me i M. 

F. Averaging individually compressed modified periodograms allows for 

a large reduction of bits in a digital spectrum averager device. 

The compression introduces a known bias if proper compression 

characteristics are selected (e.g., logarithmic or power function 

compression). The variance of the average of individually com

pressed periodogram is higher than if the order of averaging and 

compression is interchanged, but the increase is moderate when the 

compress ion is weak. For example, averaging the square root of 

the modified pe rio do gram gives 1 e s s than 10% higher variance 

compared to taking the square root of the averaged linear periodo

gram; the bit requirements to the averager is reduced by nearly a 

factor 2 by this operation. 

G. The amplitude periodogram is defined as 

The above expression ~an be replaced by the simpler 

IRe [X(w)] I + IIm[f(w)] I 

The expectation values of the two expressions are proportional when 

the mean (~{w)) varies. Averaging the latter expression yields 

a fractional variance of the point estimate which is only 4.5% 

higher than when averaging the amplitude periodogram ~-

H. White noise can be rejected from the averaged modified periodogram 

by thresholding. The procedure is efficient even for low spectral 

signal to noise ratios (5-10 dB) if Me is moderately large () 5). 

However, the procedure is not efficient if averaging is not 

performed. 

I. The modified periodogram can be computed efficiently by means of 

FFT or CZT techniques. An N point DFT may be used for calculating 

periodograms of different transform lengths K i N, simply by 

augmenting the sequence to be transformed with N - K zeros. 
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3. THE PERIODOGRAM IN DOPPLER ULTRASOUND SIGNAL ANALYSIS 

In this chapter, it will be focused on practical aspects of spectral 

analysis in Doppler ultrasound blood velocity measurements. Sec

tion 3.1 contains a short review of the properties of the Doppler signal, 

while limitations in the quality of the spectrum estimate arising from 

the rapid time variations of arterial velocity fields are analysed in 

Section 3 .2. Other subjects covered are display of the spectrum 

estimate, and frequency aliasing in different types of Doppler instru

ments. Finally, Automatic Gain Control of the Doppler signal prior to 

the spectrum analysis is discussed. 

3.1 Some properties of the Doppler signal in blood velocity measurements 

vessel walls 

soundbeam 

Fig. 3.1 Measurement of blood velocity by Doppler ultrasound. 

A single red blood cell travelling through the sensitivity region 

(sample volume) of the Doppler instrument with velocity v, causes a 

burst of Doppler oscillations with the frequency 

where f 
0 

i s the u 1 t r as o un d 

sound in blood (1560 m/s); and 

( 3 .1) 

carrier frequency, cb is the speed of 

a is the angle between the sound beam 
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and the velocity vector, Fig. 3.1. Fig. 3.2.a shows a typical Doppler 

return from a single scatterer. It has time duration Tt• the transit 

time of the scatterer across the sample volume, 

v cos a, 
(3.2) T = t v cos a. 

The t r an s i t 1 eng t h Ot).o is the projection of the velocity 

path into the soundbeam direction. Ot is a measure of the transit 

length in terms of wavelengths ).
0 

of the carrier frequency. The power 

spectrum of this Doppler burst is a spectral line with center frequency 

wd = 2nfd and an angular bandwidth 

( 3 • 3) 

using (3 .1) and (3 .2), Fig. 3.2 .b. The shape factor kt depends on 

the envelope of the Doppler burst (compare with (2.18)). The fractional 

bandwith Awt/wd is independent of the center frequency wd. In PW 

Doppler measurements, the transit length is bounded by the duration of 

the emitted soundburst. The maximum fractional transit length nt 

(ocurring when a = 0) typically ranges from 2 - 10, depending on the 

resolution of the system. 

In most measurement situations, scatterers with different velocities are 

present in the sample volume at the same time. It has been shown 

that the power spectrum of the resulting Doppler signal via the Doppler 

equation ( 3 .1) corresponds to a blurred (smoothed) version of the 

weightened velocity distribution in the sample volume [5]. The weigh

ting function is the soundbeam intensity across the sample volume, while 

the major contribution to the blurring is a convolution between the 

velocity distribution and a transit time kernel with frequency dependent 

spectral width given by (3.3). 

When it comes to spectrum analysis, it is an important observation that 

the Doppler signal in ultrasound blood velocity measurements always has 

a nonzero bandwidth. It follows from the above discussion that in the 

case of a uniform velocity distribution,it is rarely less than 5 - 10% 

of its center frequency. In the presence of noise,this bandwidth limits 

the accuracy by which one can measure e.g. the maximum blood velocity 

in the sample volume. 



a) 

Fig. 3.2 a) 

b) 

b) 
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G(w) 

~ 
~~. 

I 

0 (!)d 

Doppler burst from a single scatterer. 

Power spectrum of Doppler burst. 

3.2 Short time spectrum analysis of nonstationary Doppler signals 

While the theory in Chapter 2 was derived assuming stationary Doppler 

signals, applications in blood velocity measurements involve measure

ments on time varying velocity fields in the human arteries and the 

heart. The Doppler signal then becomes nonstationary (evolutionary), 

but because of its Gaussianness it is still completely characterized 

by its autocorrelation function. This now, however, becomes a function 

of both time and lag, i.e. Rii = R11 (t,t+-r:). Although the velocity 

field is pulsatile, the temporal volume flow in the vessels has lowpass 

time variation, with small components above 10-15Hz [34]. Therefore, 

in the absence of turbulence, the velocity field changes little if it 

is observed for a sufficiently short time 

should not be much 1 arge r than 10 ms. 

T. For typical arteries, T 

With in this time frame, the 

Doppler signal may be assumed to be stationary. This quasistationarity 

approach implies that, when frequency broadening effects are negligible 

(see [23] for a detailed discussion), the expected value of a periodogram 



- 52 -

computed from a 10 ms signal record correspondsto the instantaneous 

velocity distribution in the sample volume, convolved with the spectral 

window Ws(w:K), eq. (2.15). The velocity field may change signifi

cantly during the data collection if T is increased much above 10 ms. 

This would cause additional broadening of the shorttime spectrum 

during the phases of blood flow when the acceleration is 

strong. The consequences of the limited data collecting time are 

discussed below. 

3.2.1 Resolution 

The maximum frequency resolution one can obtain in periodogram spectrum 

analysis with data collecting time limited to T = 10 ms is 

where rectangular windowing has been assumed (kw = 1.21), eq. (2.18). 

For a given ultra sound carrier frequency, the corresponding maximal 

velocity resolution is (cos a = 1) 

9 • 4 cm/s 
f 0 [Mhz] 

( 3. 5) 

However, resolution and variance are inversely related when the data 

record is limited, and one should seek to reduce the resolution as 

much as possible to increase the stability of the spectrum estimate. 

According to the previous section, the minimum bandwidth of the Doppler 

spectrum is limited by the transit time effect. In a case with plug 

flow in the sample volume, the bandwidth of the spectrum estimate is 

roughly the largest of the pair (awa,awt), eqs. (2.18), (3.3). These 

equations can be combined to form the equivalent requirements [34] 

<=> ( 3. 6) 

When the shape factors kw and kt are equal, the above equation 

corresponds to requiring the data collecting time KTs to each 'raw' 

periodogram to be larger than the transit time of the scatterers. It 

follows from (3.4) that for a typical Doppler signal with fractional 

bandwidth 10%, the above condition cannot be satisfied unless the 

Doppler shift exceeds - 1 kHz. Consequently, a low variance averaged 

periodogram with resolution equal to the transit time bandwidth of the 
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signal cannot be obtained from a 10 ms signal segment, unless the 

Doppler frequency is several kHz. 

The situation is somewhat more complex when the blood velocity is time 

varying, and there are velocity gradients in the sample volume. Then 

the frequency fd that applies in the above formula is the Doppler 

shift that have the longest c orr elation time, i.e. that corresponding 

to the temporal and spatial minimum velocity. However, the minimum 

velocity is a parameter which normally is of little interest in clinical 

applications. In contrast, one most often wants to estimate the 

temporal peak, spatial maximum velocity in the sample volume. The 

resolution may then be reduced until it approaches the transit time 

bandwidth at fp, the temporal peak Doppler frequency. If the sampling 

frequency of the spectrum analyser is variable, the ratio fs/fp may 

be reduced until aliasing occurs. For a unidirectional velocity field 

its minimum value is unity. Now nt typically ranges from 2-10. 

Eq. (3.6) then indicates that a fairly small K is sufficient when 

estimation of the peak Doppler shift fp is the important issue. 

- Priestly recommends that the resolution of the spectrum analyser 

should be chosen not less than half the bandwidth of the finest spectrum 

details that is to be reproduced [4, p. 520]. In the above situation, 

with fs/fp = 1, this leads to the requirement K l 4Qt• 

3.2.2 Variance 

The f r a c t i o na 1 

dependency ai 
argument L/K 

variance of the spectrum estimate 

f(L/K;r) (see Section 2.2.2). 

can be rewritten to 

where T = LTs. Eqs. (3.5) and (3.7) then yield 

has the functional 

Using (2.18), the 

Fig. 2.3.b is replotted in Fig. 3.3 for the case 50% overlap, but now 

with velocity resolution Ava as the dependent parameter. The figure 

shows the fractional standard deviation vs. velocity resolution. The 
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Velocity resolution vs. fractional standard deviation of 

spectrum estimate (f
0 

= 1 MHz and T = 10 ms). 

y-axis is scaled in m/s, assuming f
0 

= 1 MHz and T = 10 ms. If f 0 

or T are increased, the scaling of the y-axis reduces propor

tionally. Its use is best illustrated by an example: When employing 

a pulsed Doppler instrument with Qt = 5, the fractional transit time 

bandwidth is app~oximately 10%, eq. (3.3). If the peak blood velocity 

is 2 m/ s, a resonable choice of the velocity resolution is 

Ava 0.1 m/s. Using the Hamming window, f
0 

= 2 MHz and 10 ms 

record length, the resulting fractional standard deviation of the 

estimate becomes approximately 0.7, from Fig. 3.3. Increasing the 

ultrasound carrier frequency to S MHz leads to a decrease in the 

standard deviation to 0.38. This clearly indicates that if one 

simultaneously wants good velocity resolution and low variance, the 

highest possible ultrasound carrier frequency should be employed. The 

underlying mechanism is that the Doppler shift, and thereby the signal 

bandwidth, increases with increasing carrier frequency. 

In Fig. 3.3 it is also apparent that the relative difference in reso

lution when using the Hamming and the rectangular window, decreases 

rapidly when aM reduces. The reason is that to obtain a given aM < < 1 

(strong filtering) using the rectangular window, one needs a larger 

M than when the Hamming window is used. Since the length of the data 

record is fixed, this implies that the individual segment length K 

must be chosen smaller in the case of the rectangular window. Fig. 3.3 

is merely a manifestation of what has previously been stated in (2.49). 

In fact, the two curves in Fig. 3.3 would have overlapped for small 

aM if the bandwidth definition aw~ had been used to determine the 
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constant kw in (3 .8), and the overlap had been increased to - 60% 

for the Hamming and - 85% for the rectangular window. This follows 

from (2.52) and Fig. 2.3.a. 

3.3 Display of the spectrum 

In clinical applications of Doppler ultrasound, the periodogram is 

computed in real time on a time-frequency grid, most often using DFT 

techniques. The available information is then contained in a matrix 

n -(N/2)+ l, ••• ,N/2 (3.9) 

m 0,1,2, ••• 

In the above partition of the frequency axis, the periodo gram covers a 

symmetric frequency range from -ws/2 to ws/2. Use of asymmetric 

ranges will be discussed later. The matrix {Gs(m,n)} sometimes is 

displayed as a 3 dimensional 'hidden line' plot [24][25], shown in Fig. 

3.4.a (dB scale). On this occation,the Doppler signal was measured on 

the common carotid artery using pulsed Doppler with f
0 

= 5 MHz, nt 6, 

and a broad sound beam covering the entire artery cross section. The 

display shows raw periodograms, computed using the Hamming window with 

N = K = 128 and fs = 8 kHz. 

frequency 
time 

2 kHz 

....- time 
0 - frequency 1 s 

2 kHz 0 
b) 

a) 

Fig. 3.4 Display of the spectrum estimate: 

a) Hidden line format (dB plot). 

b) Sonagram. 

A more common display format is the sonagr am (sonogram, spec tr agr am, 
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spectral display), shown in Fig. 3.4.b for the same signal. The paper 

darkening at the coordinate (m,n) is r~lated to Gs(m,n) by a 

monotonical grayscale transfer function (square root in the figure). 

The sonagram format is widely used because it is relatively easy to 

display and interprete, even though the hidden line display may provide 

more quantitative information about details of the spectral density. 

The strong, low frequency darkening of the sonagram during the upstroke 

of the velocity waveform is caused by remnants of wall motion signals. 

These artifacts can also be seen in Fig. 3.4.a. 

All sonagrams presented in this report are made using the DAISY real 

time spectrum analyser (Vingmed A/S) [12]. DAISY is based on a Hamming 

windowed sliding DFT (see Section 4.1.2), with the parameters N = K = 64. 

No averaging is employed. The sampling frequency is continuously 

variable in the range 2-40 kHz, or it may be synchronized with the PRF 

of a pulsed Doppler instrument. The sonagrams prints are made using a 

fiber optic stripchart recorder • 

. For a given type of spectrum analyser several aspects determine the 

visual quality of the sonagram; 

i) grayscale transfer function; 

ii) pixel size of the picture presented; 

iii) degree of background noise. 

i) The transfer function from power spectral density to grayscale 

should be chosen compress,ive, as a linear transfer yields uneven, almost 

unreadable sonagrams,due to the large variance of the spectrum estimate. 

A compressive transfer function (e.g. square root) both enables display 

of a higher dynamic range in spectral density, and stabilizes the effect 

of the variance. However, the compression enhances weak frequency 

components, and it is important to realize that the apparent velocity 

distributions from the sonagram are broader than the real ones. The 

effect of varying the grayscale transfer function has been demonstrated 

by others [13, p. 48]. - A heavy compression is desirable when the 

spectral density near the maximum Doppler frequency (the sonagram 

envelope) is much smaller than that of the lower frequencies. This is 

commonly the case when using CW Doppler for measurements on flow jets 

in heart lesions [13]. A large dynamic range in the spectral display 

may then be necessary to visualize the envelope of the sonagram. 
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The choice of grayscale transfer functiop depends in practice also on 

the bandwidth of the Doppler spectrum relative to the sampling frequency 

of the spectrum analyser. This is due to the fact that a broad band 

signal yields a smaller spectral density than a narrowband signal of 

the same power. Experiences with DAISY indicate that good spectral 

displays can be obtained in most situations if the spectral dynamic 

range coded into 16 shades of gray can be varied in the range 25 to 

40 dB. 

ii) The quality of the sonagram depends to some extent on the pixel 

size in the display. Generally spoken, a spectral display consisting 

of small pixels tends to look better than one with more coarse 

quantizing. The number of pixels in the frequency direction (verti

cally) normally equals N, i.e. equal to the number of signa! samples 

in the DFT. When N is small (DAISY: N = 64) an improved display is 

obtained by linear interpolation to 2N or more frequency points. 

This is shown by an experiment performed with DAISY in Fig. 3.5. The 

improvement when 128 frequency bins are displayed (lower part of the 

figure) is both due to smaller pixel size and the inherent smoothing 

effect of the interpolation. 

Unless horizontal interpolation is done, the pixel size in the time 

direction becomes equal to the processing time of the spectrum analyser. 

In Fig. 3.5, this time is 64/fs (3.8 ms for fs =17kHz, 10 ms 

for fs = 6.5 kHz). Even if DAISY does not average adjacent periodo

grams, an apparent reduction of variance results when the Doppler signal 

is oversamled (fd/fs small). The frequency resolution then degrades, 

and since the processing time decreases, the pixelsize in the time 

direction also decreases. If the sonagram is held at some distance 

from the eye, the individual spectrum estimates can no longer be 

resolved, and the sonagram appears to be smoothed. This effect is 

clearly present in Fig. 3.5. 

iii) It may be desirable to remove the backgrond noise from the sonagram 

to get a cleaner outline of the Doppler frequencies. This can be done 

employing the thresholding technique discussed in Section 2.5. However, 

bearing the earlier results in mind, efficient rejection of a white 

noise spectrum cannot be done without deterioration of the Doppler 

spectrum, unless either the spectral signal to noise ratio is large, 

or the variance of the periodogram is small. Improved capability of 
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1 s 

interpolated to 128 frequency bins 

r , 

N = 64 sliding DFT spectrum analysis (upper part) inter

polated to 128 pixels vertically (lower part). The samp

ling frequency increases continuously from 6.5 kHz to 

17 kHz during the record. 

noise reduction therefore results from the use of the averaged periodo

gram estimator when compared against the commonly used 'raw' periodo

gram • 

3.4 Discrete time spectrum analysis and frequency aliasing in different 

types of Doppler instruments. 

Proper bandlimiting is required to avoid aliasing errors in sampled 

data signal processing. In CW Doppler this a not a problem. However, 

it is an inherent part of the pulsed Doppler principle that bandlimiting 

cannot be performed. Frequency aliasing therefore often occurs, usually 

caused by pathologically high blood velocities at large ranges (- S-

15 em). It is of great clinical importance to quantify these velocities. 

So far, aliasing has been the major problem with pulsed Doppler 
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techniques applied in cardiology. Aliasing has also caused considerably 

confusion and misinterpretations in the applications part of the Doppler 

literature [13]. 

The common approach to pulsed Doppler signal processing is to smooth 

the received signal samples prior to performing the spectrum analysis. 

When the Nyquist limit is exceeded, the smoothed signal becomes an 

aliased version of the Doppler signal that corresponds to the velocity 

distribution. For that reason, it has until recently been taken for 

granted that the frequency limit of a pulsed Doppler system is the 

Nyquist limit fs/2, where fs is the pulse repetition frequency 

of the instrument. This is not the case. Several investigators have 

reported tracking methods for quantitation of mean Doppler frequencies 

exceeding the Nyquist limit [15] [35] [36]. This is possible since the 

sampling limitations for complex signals apply to the signal bandwidth, 

rather than its center frequency, eq. (2.8). Resolving these aliasing 

errors is almost trivial when complex spectrum analysis is applied, 

especially if the highpass filters of the Doppler instrument are 

implemented in discrete time. This is demonstrated in the following 

subsections. For the sake of completeness, also sampled data spectrum 

analysis of the signals from a CW Doppler instrument is discussed. 

3.4.1 CW Doppler 

In CW Doppler, the signal is a continuous time process, which is 

contaminated with wideband noise. A power spectrum is shown schemati

cally in Fig. 3.6.a. The notch in the spectrum for lwl < whp is caused 

by an efficient highpass filter in the CW Doppler instrument. It is 

inserted to remove strong, low frequency Doppler shifts from tissue. 

Thereby, unfortunately, also low Doppler frequencies from blood are 

removed. 

Aliasing errors are avoided if the signal is properly bandlimited prior 

to the sampling for spectrum analysis. The simplest way of bandlimiting 

a complex process is to lowpass filter its quadrature components using 

identical analog lowpass filters, Fig. 3.7.a. This approach leads to 

a symmetric frequency response of the bandlimiting (anti aliasing) 

filter, Fig. 3.7 .b. Hence, to satisfy (2.8), its cutoff frequency 
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a) 
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Fig. 3.6 Bandlimiting of CW Doppler signal: 

a) spectrum of received signal. 

b) spectrum of bandlimited signal. 

c) sampled power spectrum, ~sl 2~max• 

d) sampled power spectrum, ~ 52 = 1.4~max• 

f
0 

= ~ 0 /2n must be chosen less or equal to the Nyquist frequency fs/2. 

The cutoff frequency also must exceed fmax' the magnitude of the maximum 

Doppler shift present. Selecting 2~sl = ~c = ~max leads to the 

situation shown in Fig. 3.6.b and c. There is no ambiguity in the 

sampled power spectrum, since the bandlimited signal i(t) has no 

frequency components in the frequency intervals 1~1 > ~s/2. 
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i(t) 

IHa((l))l 

---1------1----I ~~ (I) 

sample 

x(kTs) 
to spectrum 

analyser 

a) Bandlimiting of complex process by lowpass filtering of 
its quadrature components. 

b) Frequency response of ideal bandlimiting filter. 

The above procedure may not be fully satisfactory if the number of 

frequency bins N of the spectrum analyser is small, and Doppler shifts 

of mainly one sign are present (N = K assumed). In this case, only 

half the period of the sampled power spectrum contains Doppler infor

mation, Fig. 3.6 .c. The resolution can be increased by reducing the 

sampling frequency to a value fs 2 which only slightly exceeds fmax· 

This reduction causes the Doppler spectrum to spread out over a larger 

fraction of the sampled power spectrum, which improves resolution when 

N is fixed, Fig. 3.6.d. However, due to aliasing of the noise spectrum, 

t h e s p e c t r a 1 s i g n a 1 to no i s e r at i o de g r ad e s w i t h 3 dB • The f i g u r e 

also shows that an asymmetric display range, e.g. [O,ws 2 ), is required 

to restore the true spectrum shape if only one frequency period of the 

sampled power spectrum is displayed. The symmetric display range 

specified in (3ol0) leads to foldover (aliasing) errors when the Nyquist 

frequency is exceeded. 

One frequency period of the sampled power spectrum covers a frequency 

window of width fs. The above example illustrates that for sonagram 

display, the user should have freedom to select the partition of this 

window into positive and negative frequencies. More precisely, the 
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sonagram data matrix (3.10) should be calculated on the frequency grid 

(3.11) 

where allowed values for Nmax are O, •• ,N-1. A proper Nmax in a 

given situation is a value which gives no aliasing of the velocity 

waveform. Aliasing is easily identified from the sonagram, as illu

strated in Fig. 3.8. In the left part of the figure the display range 

is symmetric (Nmax = N/2). In the systole, the maximum Doppler frequency 

exceeds the Nyquist limit, and foldover occurs. In the right part, 

Nmax is increased to to N-1 (the lowering of the baseline to the 

bottom of the display), and the true waveform is fully restored. 

f 

I< 1 s >I 

J 
~ 
,~,, 

t 

! _____ A -•-* 

Restoring of aliased waveform by shift of baseline. 

In a situation with offset baseline, the anti aliasing filter should 

ideally have an asymmetric frequency response, 

elsewhere 

This allows for maximum frequency resolution with no aliasing of the 

noise spectrum. Unfortunately, this type of analog filtering requires 

relatively complex electronic circuitry. A simpler approach is to use 

fs 

0 
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ordinary lowpass filters with symmetric frequency responses for band-

1 imi ting, and make the cutoff frequency vary with both sampling fr e

quency and the baseline position in the display, i.e. 

(3.13) 

where kc 0.5 if Nmax = N/2 and kc = 1.0 else. Even with a 

continuously variable sampling frequenc~ this kind of filtering is rela

tively simple to implement, using switched capacitor filters [37J. This 

type of solution allows for both optimum noise performance, with the 

baseline in the middle of the sonagram, and possibility for enhanced 

frequency resolution using offset baseline. The signal to noise ratio, 

however, deteriorates with 3 dB in the latter case. 

3.4.2 PW Doppler with discrete time highpass filtering 

A simple block diagram of the signal acquisition in a pulsed Doppler 

instrument with discrete time signal processing is shown in Fig. 3.9.a. 

The continuous time process i:(t) now represents the Doppler signal 

one would have measured if able to selectively observe the chosen sample 

volume in continuous time, without interference from surrounding blood. 

The noise bandwidth of the signal at the input of the sampler (the 

range gate) is determined by the overall bandwidth of the trans

ducer/receiver system. It is on the order of 1/Tp in a well designed 

system, where Tp is the time duration of the emitted soundburst [15]. 

Typically, this bandwidth is 10 - 100 fs, where fs denotes the pulse 

repetition frequency (PRF) of the instrument. Pulsed operation implies 

risk for both range and frequency ambiguity. A necessary condition to 

avoid range ambiguity is 

c 
f ~ J. 

s 2d 
(3.14) 

where d is the distance between the transducer and the range cell 

and ct is the speed of sound in ttssue (1540 m/s). Equality is reached 

if the emission of a soundburst follows immediately after sampling the 

echo from the previous burst ('optimal PRF'). Whether or not the 

condition (3.14) is sufficient, depends on how much the Doppler signal 

from the ambiguous sample volume(s) is attenuated. 

After the range gating, the signal is passed through a discrete time 
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Block diagram for signal acquisition in PW Doppler instru

ments with discrete time highpass filtering. 

highpass filter, which serves the same purpose as in CW Doppler. The 

frequency response of the filter is periodic with period ws' Fig. 3.9.b. 

It therefore also attenuates Doppler frequencies in the vicinity of 

± mws• m = 1,2,--. The output from the highpass filter is the signal 

available for spectrum analysis. The use of this type of Doppler 

instrument thus leads to a sampled data signal processing chain, with 

sampling frequency equal to the PRF. 

An ambiguity in Doppler frequency results from the lack of an anti 

aliasing filter prior to the sampler in the PW instrument. A signal 

x(t) with the power spectrum Gtt(w) cannot be discerned from other 

signals with the spectra Gii(w±mws), m = 1,2,--, since they all yield 

identical sampled power spectra, eq. (2.7). However, the arterial 

velocity has a continuous time variation and, provided (2.8) is not 

violated, this allows for quantification of Doppler frequencies even 

e:r.ceeding the sampling frequency. Apparently, moderate aliasing can 

be corrected for using the baseline shift technique earlier demonstrated 

in Fig. 3.8. Correction of more severe aliasing can be done using the 

display format shown in Fig. 3.10. The figure shows a sonagram of a 

time varying sampled shorttime spectrum (~(k,w:K)), displayed in the 

e:r.tended frequency range (-fs,2fs). In principle, each of the three 

partial spectra shown could represent possible Doppler spectra. Now 
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frequency aliasing can safely be excluded in the diastole, where the 

blood velocity is low. This implies that the mid partial spectrum 

correspondsto the true Doppler spectrum. Thus, the frequency ambiguity 

due to aliasing ma:v be resolved, simply by displaying the sampled powet 

spectrum over a fregue ncy range corresponding to the ttue vel oc i t:V 

variations (see also the discussion following eq. (2.8)). The common 

display format (with frequency span fs) would have led to foldover 

errors in this case, regardless of the choice of baseline position. 

time [sJ 

Fig. 3.10 Restoring of aliased waveform by displaying the sampled power 

spectrum over a range larger than ros• 

The feasability of the above 'multi-period' sonagram display format is 

verified by the experiment shown in Fig. 3 .11. In the left part of 

the sonagr am a pulsed Doppler instrument opera ted at 10.1 kHz PRF, 

while the peak maximum Doppler frequency can be identified at - 19 kHz. 

This is confirmed in the right part of the sonagram, where the PRF was 

increased to 21.2 kHz (note the difference in scaling). Although the 

upper and lower parts of the sonagram are entirely identical, the 

extended display format strongly helps in identifying the peak frequency 

when the lowest PRF is employed. The notches in the frequency response 

for frequencies close to± mws are also clearly visible in Fig. 3.11. 
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The highpass filter cutoff frequency was set to 300 Hz in the experiment. 

f 

f 5 = 21.2 kHz 

Fig. 3.11 Experimental restoring of waveform with severe aliasing 

( f 
0 

= 1 0 MHz ) • 

In principle~ frequency shifts of sizes several times the PRF may be 

quantified, simply by adding more frequency periods of the sampled 

spectrum to the display in Fig. 3.11. The limiting factor is the 

bandwidth of the signal. If it exceeds the PRF, the partial spectra 

will overlap, and the peak frequency may be difficult to identify. In 

the above example a peak frequency equal to nearly 4 times the Nyquist 

frequency was measured, even if Fig. 3.11 reveals that the signal 

bandwidth in fact did exceed fs. The peak frequency can still be 

identified, since the spectral density at the peak is much larger than 

the spectral density of the overlapping partial spectrum. However, the 

shown example is not always representative: In the experiment aliasing 

was provoked by deliberately chosing a high ultrasound frequency 

(10 MHz), and a very low PRF, while measuring on a constricted, but 

otherwise normal carotid artery. In contrast, the most severe aliasing 

>I 
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problems occur in heart lesions in 7 - 15 em depth, which necessitates 

a low PRF. Large velocity gradients in the sample volume then often 

cause the Doppler spectrum to extend from zero to the maximum frequency, 

i.e. the bandwidth of the Doppler signal is equal to its maximum 

frequency. In these situations, the spectral density may even decrease 

with frequency. In total, these effects may cause great difficulties 

in identifying frequencies larger than the sampling frequency, even when 

using the display format in Fig. 3 .11. Still, this is a factor 2 

improvement compared to what until recently was considered to be the 

frequency limit of a pulsed Doppler instrument. 

Hoeks has proposed an algorithm for automatic anti aliasing correction 

in PW Doppler systems with discrete time signal processing [15]. It 

is based on the use of a discrete time instantaneous frequency estimator. 

The underlying principle is to track the center frequency of the Doppler 

spectrum as a function of time. Thereby incremental changes in mean 

frequency can be detected without ambiguity, even if the absolute value 

of the mean frequency is larger than fs. However, the method breaks 

down when the bandwidth of the Doppler spectrum exceeds - fs/2, whereas 

the spectral method in Fig. 3.11 at least works up to a bandwidth fs. 

The spectral method of quantifying Doppler shifts above the Nyquist 

frequency has an additional important advantage compared to Hoek's 

approach: It is immediately apparent from the s-pectral display when 

the signal bandwidth exceeds f s' so one always knows for sure when 

the aliasing cannot be resolved. This is not the case using tracking 

tecn1ques; breakdown of the algorithm then leads to erroneous mean 

frequency estimates, without a clear indication of the error. Misinter

pretation of the results then seems likely. 

The synchronous operation of the PW Doppler and the spectrum analyser 

has additional implications. Since the total data collecting time T 

is fixed, both the resolution and the variance of the averaged periodo

gram become functions of KTs = K/fs. The sampling frequency now is 

determined from the the Doppler range setting. Consequently, also the 

number of data samples K to be Fourier transformed should be made 

variable. Unless this is the case, both resolution and variance will 

change with the range setting of the Doppler instrument. When optimal 

PRF is employed, the total number of signal samples L available for 

spectrum analysis becomes 
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(3.15) 

770 
d [em] 

when T !Oms. 

Thus, the available data record per spectrum estimate varies between 

the limits -50 (d = 15 em) and - 400 (d = 2 em). 

3.4.3 PW Doppler with continuous time filtering 

In cardiac applications of Doppler ultrasound, the power ratio between 

unwanted signals from tissue and the signal from blood may be extremely 

unfavorable (80-100 dB). Due to the limited dynamic range of high speed 

A/D converters presently available, PW Doppler instruments for cardiac 

applications exclusively employ analog highpass filtering for the 

rejection of wall motion signals. In the previous section it was shown 

that in pulsed Doppler systems with discrete time signal processing it 

is possible to resolve frequency shifts of magnitude equal to or greater 

than the PRF. provided the total signal bandwidth does not exceed the 

PRF. This holds also for systems with analog filtering, although some 

additional constraints are superimposed. These are analysed in the 

following. 

A conceptual block diagram of an instrument of this type is shown in 

Fig. 3.12.a. The output from the sampler (the Doppler range gate) now 

is the impulse train {i(kTs)&(t~kTs)}, which is highpass filtered and 

smoothed by an analog bandpass filter with symmetric frequency response 

H(w). A possible choice of frequency response is given in Fig. 3.12.b. 

The lower cutoff frequency of the filter is whp' while the upper cutoff 

w1p is slightly below the Nyquist frequency. It follows from the 

sampling theorem that the output signal i(t) from the bandpass filter 

is a perfect reconstruction of the continuous time Doppler signal i(t), 

if the power spectrum Gii(w) is nonzero only on the intervals 

whp < lwl < wlp• The situation then fully corresponds to the case of 

the CW Doppler with respect to choice of sampling frequency of the 

spectrum analyser, anti aliasing filtering etc. However, if Gii(w) 

has frequency components exceeding the Nyquist frequency, the smoothing 

filter causes i(t) to become an aliased version of i(t), even when 
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Fig. 3.12 Block diagram of PW Doppler instrument with analog filtering. 

the total signal bandwidth is less than ws. For example. a spectral 

component with the positive frequency ws/2 + 8, 0 < e < w
5
/2, is 

mapped to the negative frequency -ws/2 + 8 in x(t) (this can be 

realized by combining Fig. 3.12.b and Fig. 2.1.b). 
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If the upper·edge of the bandpass filter in Fig. 3.12.b could be made 

with an infinitely sharp cutoff at the Nyquist frequency, the. sampled 

power spectrum Gix<w) could have been restored without error, simply 

by sampling i'(t) synchronously with the Doppler range gating. The 

net effect of the analog bandpass filter and the sampling then would 

be discrete time highpass filtering, equivalent to the situation in 

Fig. 3.9.a. Problems are introduced when the smoothing filter has a 

cutoff edge with finite steepness. This is realized by analysing the 

situation in Fig. 3.12.a somewhat closer. A delay arTs• 0 < ar < 1, 

has been inserted between the samplers in the pulsed Doppler and the 

spectrum analyser. This delay can be modeled as a time advance with 

transfer function exp(jwarTs), preceding a sampler running synch-

ronously with the PW Doppler sampler [2, p. 118]. The transfer function 

between the discrete time sequences {i(kTs)} and {i'((k+ar)Ts)} is 

then given by [2, p. 86] 

Tl ~ tl(w-nws) 
s l 

n=-(X) 

(3.16) 

where D(w) is the overall transfer function of the smoothing filter 

and the sample delay: 

jwa T 
tl(w) ~ B(w)e r s (3.17) 

The sampled transfer function resulting from the filter design i~ Fig. 

3.12.b is shown in Fig. 3.12.c. The slow rolloff of the smoothing 

lowpass filter causes a notch at the Nyquist frequency. This is highly 

undesired, and to have it removed, the cutoff frequency of the lowpass 

filter must increased somewhat, Fig. 3.12.d. The edges of the lowpass 

filter now overlap in the sampled transfer function, and, bearing (2.7) 

in mind, it is tempting to claim that the notch is removed, Fig. 3.12.e. 

This is, however, not necessarily true. The relation (2.7) holds for 

stationary signals only. Although i(t) is stationary, the signal 

x(t) is an imperfect reconstruction. It can be shown that x(t) 

becomes nonstationary if Gii(w) has nonzero components in the regions 

where the filter edges oveJ:lap (stated without proof). Therefore, (2.7) 

does not hold when applied to the smoothed signal. 

The overall discrete time transfer function Hs(w) may be calculated 

from (3.16). Since it is periodic, it needs only to be calculated on 
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the interval 0 < w < ws. If the lowpass filtering is efficient, only 

two terms will contribute significantly to the sum (3.17) in this region, 

(3.18) 

Splitting into amplitude and phase one may write 

(3.19) 

The following relation holds when the quadrature components are filtered 

with real impulse response filters: 

il ( -w ) = il* ( w) (3.20) 

The sampled transfer function may thus be written 

(3.21) 

At the Nyquist frequenc~ the transfer function becomes real valued: 

(3.22) 

It follows that the magnitude of the sampled frequency response at the 

Nyquist frequency is highly dependent on the overall phase angle of 

the analog filter. This can in turn be written y(w) = y(w) + wArTs' 

where y(w) is the phase of the smoothing filter, and wArTs originates 

from the delay between the samplers. Inserting into (3.22) yields 

(3.23) 

Hence, when the fractional sampling delay Ar varies, the sampled 

data transfer function varies between the extremes 0 and 2IH<ws/2) I 

at the Nyquist frequency, Fig. 3 .12. f. Increasing the upper cut off 

frequency of the smoothing filter to allow for signal transmission at 

the Nyquist frequency is therefore a necessary, but not a sufficient 

condition for removing the notch near ws/2: The delay between the 

samplers in the pulsed Doppler and the spectrum analyser must also be 

set proper!~ to avoid an accidental notch in the frequency response. 

This is a nontrivial practical problem, since it is desirable to vary 

the lower and the upper cutoff frequencies of the bandpass filter 

independently in a measurement situation. Changing either of these may 

change y(ws/2), with the risk of generating a notch at the Nyquist 
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frequency. 

The plot in Fig. 3 .12.f is an oversimplification, only meant as an 

illustration of the problem: Practical filters often have strong phase 

variations in the vicinity of the cutoff frequency. Unless the 

smoothing filter is carefully designed, the sampling delay that maxi

mizes the signal transmission at the Nyquist frequency may cause strong 

ripple elsewhere in the passband. The problem of designing the 

smoothing lowpass filter for a pulsed Doppler instrument is discussed 

in detail in Appendix I for the case of all-pole filters. 

I~ 
1 s 

0 

Fig. 3.13 Sonagram recorded with unfavorable sampling delay Ar. Note 

the white band at the Nyquist frequency (f
0 

= 10 MHz, 

fs =20kHz). 

The effect on the sonagram of an unfavorable fractional sampling delay 

is shown in Fig. 3.13. The notch at the Nyquist frequency is apparent, 

although it is not very disturbing on this occation. Changing Ar 

with 0.5 would have removed the notch entirely. This was done in 

Fig. 3.11, which was recorded using the same setup as Fig. 3.13. 

Synchronized complex spectrum analysis/sampling delay positioning and 

baseline shift to correct for aliasing has previously been implemented 

in DAISY. The increased velocity limit is of great importance in 

clinical measurements [13]. 
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3.5 Automatic Gain Control of the Doppler signal 

3.5.1 Implications of Automatic Gain Control 

Experiences with DAISY indicate that it is advantageous to precede the 

spectrum analyser with an Automatic Gain Control (AGC) of the Doppler 

signal. This has also been suggested by Rittgers et al. [33]. The 

advantages with automatic gain control are: 

i) The spectrum analyser automatically adapts itself to changing input 

signal levels. This minimizes the needs for controls, and prevents 

misadjustments. 

ii) In •ome situations the signal power varies much during the heart 

cycle. A typical example is in combined mitral stenosis and mitral 

regurgitation, where the signal power in the diastole (stenosis) 

typically is much larger than the signal power in the systole 

(regurgitation). A fast AGC then enables full quality display of 

both the systolic and the diastolic frequency components. 

iii) Wall motion signals, especially valve 'clicks' in heart measure

ments, are prevented from temporarily saturating the spectrum 

analyser, and thereby causing artifacts in the sonagram. 

iv) Reduced dynamic range requirements for the spectrum analyser. 

One drawback with an AGC is that the sonagram intensities at different 

time instants no longer are related to global differences in back

scattered signal power. Another disadvantage occurs in situations where 

the Doppler signal power goes to zero during parts of the heart cycle, 

e.g. measurements on the ascending aorta in adults. When the signal 

power reduces, the AGC will amplify the background noise, which causes 

a strong, disturbing darkening of the sonagram over the entire frequency 

range. 

Both the above problems can be solved by selecting the maximum gain of 

the AGC circuit manually, while the limiting function of the AGC is 

retained at a constant level. The noise floor of the sonagram is then 

set manually, while the limiting still prevents overload of the spectrum 

analyser due to valve clicks, etc. The problem of a fluctuating noise 

floor can also be eliminated using adaptive thresholding, where the 
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reject level adjusts itself dynamical!~ according to the gain variations 

of the AGC. 

The suggested approach to automatic gain control of the Doppler signal 

is somewhat different than the approach of Rittgers et al. They employed 

an AGC which only updated its gain once per heartbeat. However, they 

were using the spectrum analyser solely in measurements on peripheral 

vessels, where wall motion signals hardly represent problems. The 

situation in measurements on the heart is quite different, and for 

reasons earlier given, a fast AGC is preferable. 

3.5.2 Analysis of an AGC scheme 

A block diagram of a useful AGC structure for the complex Doppler signal 

is shown in Fig. 3.14. The structure is similar to a scheme given in 

[23], and it has also been included in DAISY. AGC is obtained by 

comparing the average output signal amplitude of one of the quadrature 

components with a reference voltage ur. The error signal is integrated 

with time constant Ti. The output ui(t) from the integrator is 

modified by the nonlinear function a exp [p( •)], where a,p are con

stants, before being multiplied with the input signal. The nonlinear 

block ensures that the dynamic properties of the AGC become independent 

of the average input level of the Doppler signal. 

In the following, a simplified analysis of the dynamics of this scheme 

is given. The input signal to the AGC is assumed to be a sinewave, 

with a step discontinuity in amplitude, i.e. 

{u0 sin "'dt t < 0 
x(t) (3.26) 

ku 0 sin (l)dt t 2. 0 

where k,u
0 

> 0. The AGC is assumed to be in steady state for t < 0. 

The output signal amplitude is then nur/2, since the time average of 

a rectified sinewave is 2/n times its amplitude. It is also assumed 

that the signal frequency (l)d is so high that the oscillatory 

components of the gain with frequency 2m(l)d' m integer (frequency 

doubling because of the rectifier), are negligible. Under these assump

tions, the AGC will slowly modulate the envelope of the output sinewave, 

and its output can be written 
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y( t) 

x(t) 

A(t) 

Fig. 3.14 AGC block schematics. 

with the continuity condition 

lim u(t) = kur 
t -> 0+ 

t ( 0 

t 2. 0 

Y8 (t) 

I<. >I 

(3.27) 

(3.28) 

The loop equations for the AGC can be written out directly from Fig. 

3 .14: 

A(t) 

t 

ti Jdt (ur-! u(t)lsin wdtl> 
0 

t 

= +i Jdt (ur- u(t)) 
0 

A(t)x(t) 

(3.29) 

(3.30) 

(3.30) 

(3.31) 
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The above equations can be combined into one single integral equation. 

Differentiating this with respect to time leads to the simple diffe

rential equation 

du (3.32) 

which can be s_olved by integration. The resulting output envelope 

becomes 

1 

1 - ~ exp(- t ) 
JS; TA 

where the time constant TA is 

The response time of the circuit 

level u
0 

and the gain parameter 

reference level ur and p. The 

approximately (k >> 1) 

1 

(3.33) 

(3.34) 

is independent of the initial input 

a, while it is affected both by the 

' attack' response of the AG C i s 

(3.35) 

The attack recovery time Ta for the output envelope to return within 

3 dB of the reference level is 

(3.36) 

The approximation is good when k > 5 (14 dB). Correspondingly, the 

decay response becomes (k << 1) 

k 
(3.37) 

with a 3 dB decay recovery time 

Td- -[ln k + ln (/2 -1)]TA 

(3.38) 

(0.88 - 0.115 k [dB] )TA 
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The decay recovery time increases logarithmically when k decreases. 

It is therefore proportional to the dB decrease in k. A 20 dB decrease 

g i v e s a r e co v e ry t i me 3 .1 8 T A, which i s 2 • 5 t i me s 1 a r g e r than the 

corresponding attack recovery time. This may be an advantage, as one 

generally wants a very fast attack to prevent overload from valve clicks. 

However, the AGC must not be so fast that it introduces distortion of 

normal Doppler frequencies (fd ) 100Hz). Experiences with 'DAISY' 

indicate that a good compromise is TA - 20 ms. 

Fig. 3.15 shows dB plots of the time response of u(t) for some selected 

values of k. The increased decay recovery times for small k' s is 

apparent, while the attack recovery time varies little when k increases 

from 6 dB to 20 dB. 

25.0 

5.0 t 

Ta 

Fig. 3.15 Step response of AGC circuit in fig. 3.14. 

The last subject to be discussed is the setting of the reference level 

ur. The signal is Gaussian, and the following well known relation holds: 

(3.39) 

This also follows from (2.99) with M = a = 0.5. Assume that the 

spectrum analyser saturates at the input levels ±us. Allowing for 

1% probabilty of saturation then is equivalent to requiring that 
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u 2 
R (0) = [ s ] 

XX n0.005 
( 3 .40) 

where nO.OOS is the 0.005 quantile in the Gaussian (0,1) distribution. 

Combining the above equations yields 

R us 
t=- = 0.310 u 

n no.oos s 
(3.41) 

In practice, a somewhat smaller reference may be preferred. This pro-

vides some overload margin 

(e.g. wall motion signals). 

3.6 Summary of Chapter 3 

during abrupt increases in signal power 

Some aspects of spectral analysis of Doppler signals from blood has 

been discussed. The main points are: 

A. Because of the transit time effect, the Doppler signal always has 

a minimum fractional bandwidth. This limits the velocity reso

lution one can obtain, and little is gained by selecting the 

resolution of the spectrum analyser much higher than this band

width. 

B. The pulsatility of arterial blood velocities limits the data 

collecting time for spectral analysis to approximately 10 ms. This 

implies that low variance spectrum analysis with resolution equal 

to typical transit time bandwidths cannot be obtained with Fourier 

transform tecniques, unless the Doppler shift exceeds several kHz. 

C. For optimum sonagram quality in different situations, the grayscale 

transfer function should be made with a variable compression. 

Spectral components from white noise in the Doppler signal can be 

rejected from the display by thresholding the averaged periodogram. 

D. Complex spectral analysis can quantify frequencies above the 

Nyquist frequency f
5
/2. This is easy to obtain also for tradi

tional pulsed Doppler systems with smoothing lowpass filters, if 
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the sampler in the spectrum analyser runs synchronously with the 

Doppler PRF. One can identify peak velocities of pulsatile velo

city waveforms up to a limit where the signa! bandwidth exceeds 

the PRF. Identification of Doppler shifts of magnitude less than 

the PRF can be done by a simple baseline shift in the sonagram 

display. Frequencies'exceeding the PRF require the display of two 

or more frequency periods of the sampled power spectrum to be 

resolved. 

E. In the mode of operation described in point D, the maximum system 

sampling frequency is limited by the range setting of the pulsed 

Doppler instrument. 

performed by 

spectrum analyser. 

A variance/resolution tradeoff may then be 

varying the effective window length of the 

F. Synchronous operation of a sampled data spectrum analyser and a 

PW Doppler with nonideal smoothing filters may lead to a notch in 

the overall frequency response at the Nyquist frequency. The notch 

can be removed by introducing a proper phase delay between the 

Doppler range gate and the sampler for spectrum analysis. 

G. It is advantageous to precede 

aut om a tic g a in con t r o 1 I 1 im i t e r • 

the spectrum 

This reduces 

analyser with an 

the dynamic range 

requirements to the spectrum analyser. Transient saturation of 

the spectrum analyser caused by strong, low frequency signals from 

tissue can be prevented if the AGC is fast. 
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4. EVALUATION OF TWO CONCEPTS FOR REAL TIME SPECTRAL ANALYSIS 

In this chapter, two different approaches for the real time computation 

of periodograms are evaluated. The first is based on the sliding DFT, 

which allows for a simple analog hardwired solution,using the Chirp Z 

Transform (CZT) algorithm. The second concept is based on the ordinary 

Discrete Fourier Transform. 

4.1 Sliding DFT spectral analysis 

4.1.1 The Chirp Z Transform 

The CZT is an algorithm which can be used for computing the z transform 

of a sequence on spiral contours with focus z = 0 in the z-plane 

[3]. The unit circle is a limiting case of such a spiral contour, and 

the CZT may therefore be used for computing the DFT of a signal sequence. 

The sliding DFT, eq. (2.140), can be converted to the CZT format by 

successive use of the substitutions 

m = k - n 

yielding 

f(k,2n(k mod N)/N;N) 

2 2 
N -jn(k-n) -jnk l w(N-n;N)i(k-n)e N e ~ 

n=1 

.nk2 N .nn2 .n(k-n) 2 

e- 3~ l (w(n;N)e 3 ~)(i(k-n)e-J N ) 
n=1 

where 

h(n) 

2 
J1!.!l 

w(n;N)e N n = 1, .. ,N 

(4.1) 

(4.2) 

( 4 0 3) 

(4.4) 
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2 
-jn(k mod N) 

e N ( 4. 5) 

Windowing has been included to add generality. The derivation assumes 

that the window has the usual even symmetry, i.e. w(n;N) = w(N-n;N). 

Eq. (4.2) expresses that the windowed sliding DFT can be computed by 

means of two complex multipliers and a linear FIR chirp filter with 

com p 1 ex co e f f i c i en t s , as ill us t rated in Fig • 4 .1 • The s i g n a 1 i s 

premultiplied with a periodic, linear downchirp prior to entering the 

FIR-convolver. Finally, a postmultiplication with another linear down

chirp yields the Fourier coefficients Fs(k;N). The postmultiplication 

is unnecessary for periodogram computation, since multiplication with 

the chirp only represents a phase shift of each output sample from the 

convolver [16]. This phase shift will disappear in the squaring in 

(2.9). Windowing of the sliding transform is incorporated by windowing 

the complex FIR filter coefficients according to (4.3). The above 

procedure is also known as Bluestein's algorithm [17]. 

Fig. 4.1 

. k2 
-Jlt

e N 

Block diagram of the Chirp z Transform (complex variables). 
o denotes convolution. 

The Chirp Z approach can basically be used in two ways to calculate 

the ordinary DFT: 

i) Extending the length of the chirp convolver to 2N-1 coefficients, 

where last N- 1 coefficients are the periodic extension of (4 .3), 

i.e. h(n+N) = h(n). n 1, •• ,N-1. The convolver is loaded with 

data during the first N cycles of an analysis. The next N- 1 

cycles the input to the convolver must be set to zero. The output 

from the extended convolver filter is valid from sample N to 

sample 2N- 1. This algorithm is known as the conventional CZT 

[ 16] • 
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ii) The operation in i) can equally well be performed using an N 

sample filter in the sliding transform configuration (4e2) [14]. 

The convolver is loaded with the premultiplied signal during the 

first N samples, and then reloaded with the same input during 

the next N - 1 samples. This procedure yields the ordinary 

Fourier transform of the sequence (formally proved in Section 

2.6 .2). 

Note that both the above procedures require rectangular windowing of 

the coefficients in the complex convolver. The desired windowing may 

instead be inco~porated as an integral part of the premultiplication. 

The modified premultiplication waveform then becomes 

c (k) 

2 
-jnk 

--{w
0

(k;K)e N 

c(k+N) = c(k) 

k 1, • • • , K 

k K+1, •• , N (4.6) 

Both the above procedures require the signal to be available from a 

buffer memory to become practical in real time spectral analysis. 

Otherwise, procedure i) will discard half of the available data due 

to the blanking on the input. Repetition of the input signal (procedure 

ii)) is not feasible at all without a memory. 

4.1.2 Analog computation of the sliding DFT 

The Chirp Z Transform allows for relatively simple, high speed compu

tation of the sliding DFT using analog shift registers for the convolu

tion part of the transform. Suitable chirp filters for sliding trans

form computation are commercially available for N = 512 (CCD - Charge 

Coupled Device type), and N = 64 (BBD- Bucket Brigade Device type) 

[18] [19]. Application in spectrum analysis was first reported by 

Brodersen [16], while several investigators later have used these 

devices for real time processing of Doppler signals [12][20][21]. Also 

Surface Acoustic Wave (SAW) devices have been used in chirp configu

ration for analysis with extremely high processing rates [22]. 

If (4.2) is written out in terms of real and imaginary parts, the block 
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premultiplier complex convolver postmultiplier 

Re[h(n)] 

lm[h(n)] 

lm[h(n)] 

Re[h(n)] 

squarer/adder 

+ 

Re[~(k)] 

Fig. 4.2 Block diagram of the Chirp Z Transform (real variables). 

diagram in Fig. 4.2 can be drawn. The bulk part of the processing in 

the Chirp Z Transform is performed by the four chirp filters in the 

complex convolver. The filters are denoted with their impulse responses 

in the drawing. These are (from eq. (4.3)) 

Re[h(n)] 
2 

w(n;N)cos fl 
2 

Im[h(n)] = w(n;N)sin ~ 

n = 1,.. ,N (4.7) 

For periodogram computation, the post multiplication block can be 

substituted with the squaring/adding block in the lower right part of 

Fig. 4.2. 

Some selected data of chirp filters currently available are listed in 

Table 4.1 [18] [19]. Both dynamic range and coefficient accuracy are 

comparable to 10 bit digital systems. The processing capacity of the 

chips is very large: At the maximum sampling frequenc~ a 512 points 

complex sliding transform is computed in 256 J.LS, while a 64 points 

sliding transform takes only 64 J.LS. An ordinary DFT computation 

requires twice this time. Table 4.1 also shows that the sampling 
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Type N coef. error dyn. range max fs min fs comments 

R5602 64 ± 0.5 % 60 dB 1 MHz 1 kHz single filter 

R5601 512 9 bit 60 dB 2 MHz 4 kHz quad filters 

Table 4.1 Specifications for available chirp filters. 

frequency of the chirp filters must exceed a certain limit 

(1 or 4kHz) for the filters to function according to the specifi

cations. The 512 sample device (R5601) contains the entire convolver 

block in Fig. 4.2 on one chip, while the 64 sample device (R5602) is 

a single chirp filter. A 64 points sliding transformer therefore 

requires four chirp chips and two analog summation amplifiers for the 

complex convolution. The premultiplication part of the transform can 

be implemented using multiplying D/A converters (MDAC's) for multi

plication of the analog input signals with digital versions of the 

variables cos nk 2 /N and sin nk 2 /N [16]. 

A practical real time spectrum analyser based on the sliding CZT may 

be organized as shown in Fig. 4.3. A digital moving averager is included 

to reduce the variance of the spectrum estimate. An output buffer memory 

may also be desirable, to simplify the interface between the spectrum 

analyser and the display device (fibre optic recorder or video display). 

It also facilitates change of the readout format of the sonagram, for 

example baseline shifting for aliasing correction. 
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Sliding DFT Chirp Z Transform spectrum analyser. 

data 

address 

The main features of the structure shown in Fig. 4.3 are speed and 

simplicity, since the sliding transformer requires relatively modest 

amounts of electronics to be implemented. The maximum sampling fre

quency of the 512 sample filters is 2 MHz, while it is 1 MHz for 

the 64 sample version. In our applications, the maximum signal sampling 

rate is 40-50 kHz. The signal processing capacity of the devices is 

therefore poorly utilized in the shown configuration. 

Unfortunately,the sliding transform spectrum analyser has limitations: 

i) One must always have K = N, since augmenting with zeros is not 

possible using the sliding transform. When the Doppler signal is 

avai 1 able as a continuous time signal, this m~y be tolerable: The 

resolution/variance is a function of the ratio L/K, which may be 

varied solely by changing the sampling frequency of the spectrum 

analyser (compare with Fig. 3.5). However, measurements of fre

quencies above the Nyquist frequency in pulsed Doppler systems 

require the spectrum analyser to run synchronously with the Doppler 

PRF. The 512 point convolver is then unsuited since it leads 

to prohibitive data collecting times (T = 100 ms for measure

ments at 15 em depth, compare with eq. (3 .15)). The 64 sample 

solution is more suitable in this respect. The inability of 

selecting K < N is still a drawback, since it causes the variance 

and resolution to vary with the PRF (and thereby, the range setting) 

of the pulsed Doppler instrument. 

ii) There is no simple way of performing transforms of overlapping 

signal segments. A Hamming windowed averaged sliding periodogram 

analyser therefore yields approximately twice the variance of a 

comparable nonsliding analyser employing 50% overlap. In Doppler 

blood velocity measurements, with limited data collecting time, 

this is a severe drawback. 
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iii) The computation time of the sliding transform spectrum analyser 

varies with its sampling frequency. If the goal is to keep the 

total data collecting time to one averaged periodogram constant, 

the number of terms M to be summed in the moving averager must 

be a function of the sampling frequency. This complicates the 

design of the averager. 

All sonagrams in this report are made with a spectrum analyser of the 

type in Fig. 4.3, using the Hamming windowed N = 64 chirp filter 

devices for the complex convolver. No spectrum averager was available, 

so the theoretically predicted improvements using averaging have not 

been verified experimentally. The deficiency pointed out under i) 

can be clearly noticed in Fig. 3.11: the sonagram has a much 

more uneven appearance when the PRF is low. 

4.2 Ordinary DFT spectral analysis 

A block diagram for a real time spectrum analyser based on an N point 

ordinary DFT processor is shown in Fig. 4.4. a. The complex Doppler 

signal is still assumed to be available in analog form, and it is 

A/D converted before dumped into an input buffer memory. 

The DFT processor reads data from this buffer, weighted by a K-point 

window (K i N). The resolution of the spectrum analyser can be varied 

by changing K or the window type. The number of output frequency 

bins N remains constant under these parameter changes. The magnitude 

square of the DFT coefficients are written into an averag er I output 

buffer serving the same purpose as in Fig. 4.3. 

A possible input buffer organization is shown in Fig. 4.4.b [14]. The 

buffer is separated into two different parts, operating in a ping-pong 

manner: While the DFT processor is reading the K samples from one 

part. the other is filled ~ith data~ and vice versa. The scheme is 

simple, but it has the same deficiencies, both with respect to lacking 

overlap between transforms and variable processing rate, as the sliding 

periodogram analyser previously discussed. 

A more flexible input buffer is shown in Fig. 4.4.c. This buffer is 

organized as a sliding ring with a sufficient number of words () K) 

to prevent overflow. New data is written into the word which the address 

pointer WP directs at. Immediately prior to each write cycle, this 
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.!. w(n;K) 
IK 

c) 

data out 

Fig. 4.4 Ordinary DFT spectrum analyser. 

a) Block diagram. 

b) Ping-pong input buffer. 

c) Sliding ring input buffer. 

pointer is incremented (WP:=WP+l). When a new periodogram is to be 

computed, the read address pointer RP is initialized to RP = WP-K. 

After reading the contents of cell RP, the read pointer is incremented, 

a new readout then follows, and so forth. This has the effect of 

reading out the K most recent signal samples from the ring buffer. 

It may be advantageous to read the buffer contents out in the opposite 

direction of the reading in, initializing the read pointer to RP = WP. 

A time reversal has no effect on the periodogram, if simultaneously 

the r eat and imaginary parts of the signals are interchanged on the 

input to the spectrum analyser. This is realized by writing 

y(t) + jx(t) = ji*(t) (4.8) 

(4.9) 

where F{ •} denotes Fourier transform. Reading out in reverse time 

may possibly simplify the addressing circuitry of the buffer when K 

is variable. 

The sliding ring organization is similar to buffers previously used in 

time compression spectrum analysers [24]. It has the advantage of 
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allowing for a variable degree of overlap between adjacent transforms, 

provided the DFT processor is sufficiently fast. In contrast to the 

ping-pong organization, it never requires a fast DFT processor to run 

idle. It therefore allows for a constant periodogram output rate. 

regardless of the signal sampling frequency, which is an advantage 

from a display point of view. Assuming 100% duty cycle for the DFT 

processor, the fractional overlap between two adjacent signal segments 

is 

r ""' (4.10) 

where Tc is the computing time for one DFT. Consequently, the neces

sary buffer size Wb is (complex words) 

Tc 
wb > K + T 

s 
(4.11) 

The speed requirement for the DFT processor can be found from (4.10). 

Requiring 50% overlap or more (r i 0.5) for all combinations of K 

and fs implies that 

(4.12) 

Selecting (fs>max = 40 kHz and Kmin = 64 (a smaller K is hardly 

actual at this high sampling rate) requires the DFT computing time to 

be less than 0.8 ms. 

It is convenient to select the number of terms M in the spectrum 

averag er to be constant, regardless of the sampling frequency. The 

data collection time to one averaged periodogram then becomes 

(4.13) 

Averaging for 10 ms is obtained by selecting M = 12 when Tc = 0.8 ms. 

Even if M is constant, the efficient number of terms in the average 

varies continuously with KTs. In the case of Hamming windowing, the 

fractional variance of the estimate is relatively insensitive to an 

increase of the overlap above 50 - 60% (Fig. 2.3 .a). This implies 

that the fractional variance of the spectrum estimate resulting from 

the above scheme can be found approximately from Fig. 2.3.b, setting 

L 

K 
_L 
KTs 

(M-1)Tc 
1 + (4.14) 
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where also non-integer values of L/K are allowed. The above scheme 

thus provides every possibility for trading off resolution for a 

reduction in variance, either by reducing K, or by increasing the sample 

rate. 

4.3 Summary of Chapter 4 

A high speed, sliding DFT spectrum analyser can be implemented with 

relatively modest amounts of hardware using the Chirp Z transform, 

especially if spectrum averaging is not required. However, it lacks 

the possibility of employing variable transform length, which is a 

severe drawback when used with a pulsed Doppler instrument. When 

spectrum averaging is included, the sliding transform analyser yields 

an averaged periodogram with unnecessary high variance, since it is 

incapable of computing DFT's from overlapping signal segments. 

In contrast, the ordinary DFT analyser with a sliding ring input buffer 

yields a solution with maximal flexibility, provided the DFT processor 

is sufficiently fast (computing time preferably less than 1 ms). It 

offers equal or superior performance to the sliding transform analyser 

in every respect. 
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5 SYSTEM ARCHITECTURE FOR A HARDWIRED REAL TIME SPECTRUM ANALYSER 

Based on requirements stated in the previous chapters, the system 

architecture of a flexible real time spectrum analyser for analysis of 

Doppler signals from blood shall now be discussed. It is based on the 

ordinary DFT/sliding ring input buffer structure described in Sec

tion 4.2 (Fig. 4.4.a and c). It has been chosen to compute a 64 point 

DFT by feeding the signal sequence to be transformed twice through a 

sliding Chirp Z transformer. This method has earlier been discussed 

in Sections 2.6.2 and 4.1.1. The solution is partly analog, allowing 

for a minimum computation time -128 J.LS. The high speed makes the 

concept highly appealing also for multigated Doppler instruments. The 

spectrum analyser may then be shared between the signals from different 

range gates, allowing for spectrum analysis of 16 independent signals 

every- 2 ms. The details of the solution given in this chapter concern 

samples from one signal only (Doppler signal assumed to be analog), 

but the extensions to a multigated instrument are straightforward. The 

changes required are mainly in the organization of the input and output 

buffers, and some additional memory in the spectrum averager and the 

AGC. 

Recent advances in VLSI technology has resulted in commercially avai

lable single chip digital signal processors [54] [·Ss]. These are well 

suited for real time FFT computations. A solution based on two signal 

processors of the type TMS 32010 has been presented [58], computing a 

64 point spectrum in 1.5 ms. The digital signal processors are good 

alternatives to the quasi analog approach here proposed for single range 

PW or CW instrument applications. For use in multigated Dopplers, it 

is still hard to compete with the speed and compactness of the CZT 

solution. 

In the following, detailed hardware solutions will be presented only 

where the design is nontrivial. 

5.1 Doppler signal preprocessing 

A block diagram for preprocessing of the analog Doppler signal prior 

to the spectrum analysis is shown in Fig. 5.1. It comprises of anti 

aliasing filters, sample and hold, a multiplexed AGC and A/D converter, 

and finally an input buffer memory. Some control signals are also 
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indicated. The diagram is discussed in detail in the next sections. 

FC SAMPLE 

anti aliasing filters/ 
sample and hold 

AGC 
X/Y CONTROL 

automatic gain control 

Fig. 5.1 Doppler signal preprocessing. 

5.1.1 Anti aliasing filters/sample and hold 

START 
CONVERT 

WRITE 
ADDRESS 

A/D conversion/ 
input buffer 

The cutoff frequency fc of the anti aliasing filters should vary 

proportionally to the sampling frequency of the spectrum analyser. For 

maximum flexibilit~ the sampling should at choice either be free running 

at any selected frequency in the range 4-40 kHz, or, for measurements 

of frequencies above the Nyquist limit in pulsed Doppler, run synchro

nized with the range gating. In the latter case, the control logic 

must also provide the correct phase delay between the Doppler range 

gate and the spectrum analyser sampler. 

The cutoff ffequency of the anti aliasing filters should be set according 

to the following rules: 

i) Freerunning sampling, symmetrical spectral display: fc = fs/2 

ii) Freerunning sampling, asymmetrical spectral display: fc = fs 

iii) Synchronized sampling: f = (I) 

c 
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Cases i) and ii) were earlier discussed in Section 3.4.1. In case 

iii) there is no need for anti aliasing filtering; the pulsed Doppler 

instrument contains smoothing filters with cutoff at the Nyquist fre

quency. 

The above requirements can be met using switched capacitor filters. 

These are monolithic, sampled data filters with cutoff frequencies 

proportional to an external clock frequency. The control logic must 

supply the filters with clock frequencies according to the above rules. 

One of the commercial devices is particularly suitable for 

the purpose, since it contains two independent 2-pole filters on one 

chip [37]. The monolithic design guarantees close matching between the 

two filters in one device, and thus, equal filtering of the real and 

imaginary part of the Doppler signal. A suitable filter characteristic 

is 4-pole Chebychef with - 1 dB passband ripple. This yields reasona

bly steep edges with moderate circuit complexity. Although Chebychef 

filters in general introduces some phase distortion of the signal, it 

can be neglected; the spectrum of the Doppler signal is the only concern. 

Fig. 5.2 shows a control system for automatic selection of the fractional 

sampling delay ar when the spectrum analyser runs in synchronism with 

a pulsed Doppler instrument (compare with Fig. 3.12.a). The system is 

controlled by a microprocessor. A test signal with frequency fs/2 

is injected on the input of the Doppler range gate each time the PRF 

or the highpass filter setting of the Doppler instrument is changed, 

controlled by the signal MEASURE/~. At the output of the smoothing 

filte~ this appears as a sinewave (the choice of a near 90° phaselag 

in the drawing was arbitrary). The synchronism between the test signal 

and the second sample and hold causes its output to be a squarewave 

with amplitude depending strongly on ar (lower part of Fig. 5.3). The 

microprocessor adjusts the fractional delay ar between the two sam

plers, while measuring the amplitude of the squarewave. It then selects 

the value which yields the highest amplitude. This corresponds to the 

phase angle y(ws/2) = mn, m integer, in eq. (3 .22). The test signal 

can then be switched off, returning to normal measurement mode. The 

whole procedure should take no more than a few milliseconds, with minimal 

disturbance for the system operator. 

5.1.2 Automatic Gain Control 

The AGC circuit in Fig. 5.1 is basically the scheme described in 
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MEASURE/TEST 

Pulsed doppler instrument 

micro
processor 

SJ?ectrum analyser 
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Fig. 5.2 Control system for automatic selection of proper sampling 

delay Ar• The lower part of the figure shows typical 

signals under operation of the system. 

Section 3.5.2. The variable gain element is a multiplying D/A con

verter, which is multiplexed between the real and the in quadrature 

signal channels. This ensures identical treatment of both channels 

[38]. The output from the AGC integrator is A/D converted each time 

the Doppler signal is sampled. The discrete time implementation causes 

no instability problems; the sampling time Ts is at least 2 decades 

smaller than the AGC time constant. The 8 bit output from the A/D 

converter is modified through a ROM lookup table before entering the 

MDAC. The contents of this table is the function a exp[~(·)], 
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eq. (3.29). Several different ROM programs may be included to allow 

for programmable variation of AGC parameters, e.g. maximum gain, or 

the AGC time constant. 

The gain of the AGC block is a discrete variable of the form 

0, •• ,255. The minimum value for n should be restric·ted 

to approx. 5; otherwise the relative gain change between succes

sive n's becomes very large. The maximum AGC range then becomes 255/5, 

or 34 dB, which is more than adequate. Alternatively, a logarithmic 

multiplying D/A converter may be used as a gain control element. This 

would allow for a larger AGC range, but the devices are considerably 

more costly than ordinary MDAC's. 

from 
sample & hold 

Fig. 5.3 

AGC 
X/Y SELECT 

All digital AGC loop. 

+ 

An alternative, all digital implementation of the AGC feedback loop is 

obtained by moving the input to the rectifying block in Fig. 5.1 behind 

the A/D converter, as shown in Fig. 5.3. The integrator now is 

implemented in discrete time (z-1 symbolizes one sample delay). The 

ROM 2 contains the lookup table Ts(ur ~ I(•)I)/T1 • This solution 

obsoletes the A/D conversion within the feedback loopg but in order to 

maintain a constant AGC time constant, it requires a sampling frequency 

dependent scaling factor Ts/Ti in the loop. However, since the loop 

is all digital, it can easily be multiplexed between a number of 
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independent Doppler signals. The solution is therefore appealing in 

multigated systems. The approach in Fig. 5.1 is less suited in this 

respect, requiring a number of independent analog integrators. 

5.1.3 Signal A/D conversion 

The quantization noise of the signal A/D conversion may be a limiting 

factor for the dynamic range of the spectrum analyser. A Bs-bit A/D 

conversion of a real signal yields the quantization noise power [2] 

-2B 
_2_ s u2 

3 s (5.1) 

where the saturation levels of the A/D converter are ±us. The maximum 

input signal power Smax of the real signal is limited by the saturation 

of the A/D converter. Assume that the reference level of the AGC is 

set according to (3 .41). The signal to noise ratio for each of the 

quadrature components becomes, using eqs. (3.40) and (5.1) 

3 
2 no.oos 

-2B 
2 s 

::. 6Bs - 3 [dB] 

(5.2) 

For a complex Gaussian signal, the quantization noise in the real and 

~he in quadrature signal channels may be assumed to be independent. 

The total quantization noise power for the complex signal thus becomes 

2Nq. Since the class of complex Gaussian signals satisfies the relation 

R~-(0) = 2R (0) = 2R (0) (follows from the definition (2.1) using 
XX XX yy 

(2.2)-(2.4)), the relation (5.2) holds also for a complex Gaussian 

signal. Selecting Bs = 8 bits thus at best yields 45 dB signal to 

quantization noise ratio, assuming a perfectly scaled input signal to 

the A/D converter. 

Using standard ultrasound emission levels (average acoustic power 

< 100 mW/cm2 at the transducer's face), the power ratio between the 

Doppler signal and the transducer's thermal noise rarely exceeds 30-40 dB. 

When low frequency ultrasound (1-2 MHz) is employed to measure high 

velocities in deep central vessels (or in the heart), much lower signal 
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to noise ratios often occur ( < 10dB), especially in old patients. 

Occasionally, signal to noise ratios up to SO dB may be obtained, 

measuring with high freque~cy ultrasound (S-10 MHz) on the larger peri

pheral vessels (carotid or femoral arteries) in young, healthy persons. 

In this context it seems justified that using 8 bit signal quantization 

hardly represents a severe limitation- especially if the A/D converter 

is preceded a fast AGC/limiter. 

5.1.4 Doppler signal input buffer 

The design of the sliding ring input buffer can be done directly from 

its description in Section 4.2. We have earlier selected the parameters 

Kmax = N = 64 and (fs>max = 40 kHz. If the computing time require

ment Tc = 0.8 ms is adopted from Section 4.2, the minimum buffer size 

becomes 96 complex 8 bit words. 

Since the DFT is computed by a sliding CZT processor, the contents of 

the buffer memory must be replayed twice during the analysis, possibly 

in reverse time. The output from the CZT is valid during the second 

replay. 

5.2 The sliding DFT computer 

The sliding DFT computer is based on the simplified CZT block schematics 

(postmultiplication part of CZT omitted) shown in Fig. 4.2. It 

comprises of two separate parts: The premultiplier and the complex 

convol ver. 

5.2.1 The premultiplier 

A straigthforward hardware scheme for computing the premultiplying part 

of the Chirp Z Transform is shown in Fig. 5.4. Since a digital input 

buffer is employed, the data inputs (x(k)}, (y(k)} to the premultiplier 

are digital. The outputs to the complex convolver are analog. 

Initiall~ rectangular windowing of the premultiplier shall be assumed. 

The calculations to be performed t~en are (from (4.4) and (2.2)) 
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Digital premultiplier. 

x(k)cos ~2 
+ y(k)sin ~2 

Im[ic(k)] = y(k)cos ~2 
- x(k)sin ~2 

SAVE XFER 

(5.3) 

( 5. 4) 

The structure of this operation is identical with the well known FFT 

'butterfly'. The solution in Fig. 5.4 stores the sine and cosine 

coefficients in a ROM in both normal and sign inverted versions. Then 

both the above sumsof products can be computed sequentially, using a 

single multiplier/adder/accumulator. The sequence starts with clearing 

of the accumulator. The product x(k)cos(nk2/N) is then computed and 

stored in the accumulator. The next clock period the partial product 

y(k)sin(nk 2/N) is formed and added to the first partial product. The 

accumulator now contains Re[ic(k)], which is transferred to an 

intermediate storage latch L1 by means of the control signal SAVE. 

During the next cycles Im[ic(k)] is computed in a similar way. Then, 

both Re[ic(k)] and Im[ic(k)] are transferred synchronously to the 

output latches L2, L3, using the control signal XFER, and finally D/A 

converted. Necessary control signals must be provided from a simple 

sequencer circuit. 

The multiplier/adder/accumulator function is available as single chip 

devices. Unfortunately, these are relatively expensive, and it shall 

be shown in the following that the multiplier can be replaced with 

inexpensive ROM's in an elegant way, without deterioration of 

performance. This is possible since it turns out that the set 

2 2 
{ I s i n ~ k I U I c o s ~ I } k = 0 , 1 , •• , N-1 ( 5. 5) 
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contains only a small number of different elements. The set can alter

natively be written 

2 2 
j1tk j1tk 

£1Re[e N ll U IIm[e N lll 

( s. 6) 

when N is even. The last transition follows by expressing the cosine 

function in the first quadrant in terms of the sine function. An integer 

set E may now be defined as 

E 
N -1 

{e(n)} e 
n=O 

( s. 7) 

The set E contains Ne ~ N different integers, which are assumed to 

be numb e r e d in t e rm s of inc r e a s in g m a g n i tude • The s e t ( S • S ) c an 

therefore be written -

N -1 
{ s i n ( l\-e ( n ) ) } e 

L't n=O 
( 5. 8) 

An examination of the set E for the case when N is a power of 2, 

N = 2b, b integer, shows that Ne << N. Some values of Ne are listed 

in Table 5.1. Ne satisfies the empirical recursive relation 

( 5. 9) 

starting with Ne(2) = 3 (the r.elation has not been checked for b 

larger than 9 (corresponds to N = 512), and no attempt has been made 

to prove it for a general integer power). Actual values for the 

available chirp filters are N = 64 which gives Ne = 13, and N = 512 

which gives Ne = 88. 
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b 2 3 4 5 6 7 8 9 

N 4 8 16 32 64 128 256 512 

3 4 5 8 13 24 45 88 

Table 5.1 Number of elements in the set E. 

According to (5.8) one may now write 

sin 
7tk2 

sgn(sin ~) sin[~e(ms(k))] (5.10) 

k 2 nk 2 
cos~ = sgn(cos ~) sin[~e(mc(k))] (5.11) 

where s gn ( •) is the signum function. The functions {ms(k)}, {mc(k}) 

into the proper element e of the set E. Once 

established by examination of (5.7), construction 

can be done by inspection of (5.10). 

map the 

the set 

of ms(k) 

Fig. 5.5 

argument k 

E has been 

and mc(k) 

sign(x) 

I xi 

k 

sin/cos 

ADD/SUB 

~ sign out :::J _L__. 2 

MPY 8 I xsin TT ~ I 
(ROM) cos .N 

ROM-multiplication using mapping. 

The above equations suggest the use of the multiplier structure shown 

in Fig. S.S. The CHRP-MAP table contains the functions {ms(k)} and 

(mc(k)}, which are selected by the control line sin/cos. Together with 

lx(k) I and I (y(k) I, its output addresses the CHRP-MPY ROM, 

(magnitude/sign digital number representation is assumed). The 

CHRP-MPY ROM is a lookup table containing rounded products 
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{l(•)lsin(rre(n)/N)}, n = O, •• ,Ne-1. The sign of the product is 

calculated by separate processing. An 8 bit wide ROM thus provides 9 

bit product accuracy. With N = 64 

the size of the multiplier ROM 

2048 byte, which is fairly modest. 

economical and appealing. 

and 8 bit signal quantization, 

7+lbNe 11 becomes 2 = 2 byte, or 

The concept is therefore both 

The reason for not including the windowing part of the premultiplication 

directly in (5.3)-(5.4) as initially suggested in Fig. 4.4 is now 

obvious: The windowed chirps have in general a much larger value set 

than the non-windowed. This would have made the proposed mapping 

technique less efficient. Instead, the window multiplication may be 

carried out in cascade with the chirp multiplication. Windowing may 

also be performed using ROM multiplication and mapping technique, 

writing 

k=0,1, •• ,N (5.12) 

where mw(k) is a mapping function, similar to ms(k) and mc(k). and 

{ew(n)} is a value set with a small number of elements. Due to the 

even symmetry of the window, a value set with 32 elements can give an 

exact representation of any window of length K < 64. However, it has 

earlier been pointed out that it is desirable to vary the transform 

length by employing windows of different lengths, and augment with 

zeros. This can be obtaine~ simply by changing the mapping function, 

but some roundoff errors are inevitable if a number of different windows 

must share a common 32 valued set {ew(n)}. Still, a proper selection 

of this set and the corresponding mapping functions allows for the use 

of a number of quantized windows of widely different lengths, all with 

acceptable sidelobe levels. This is elaborated further in Appendix II. 

A simplified block diagram for an 8 bit N = 64 windowed premulti

plier based on the above ideas is shown in Fig. 5.6. The control sequen

cer is omitted. The number representation of the data {x(k)}, {y(k)} 

from the input buffer memory is offset binary (OB). In contrast to 

Fig. S.S, the CHIRP-MPY ROM now supplies full signed products in an 8 

bit 2-complement (2C) format to the adder/accumulator. In addition to 

the multiplication with the window, the WNDW-MPY ROM also converts the 

data back to the the offset binary format required by the D/A converters. 

The scheme allows for choice between 16 different window types 
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CLR CLK SAVE XFER 

Fig. 5.6 Digital premultiplier including windowing. 

and/or K' s by changing the window mapping function {mw(k;K)}. Use 

of 200 ns Sk x 8 bit EPROM's for the CHIRP-MPY and WNDW-ROM's and 2 

additional registers to allow for pipelining, leads to a design where 

a full complex premultiplication/windowing takes only 1 ~s. This fits 

the maximum sampling frequency of the 64 sample chirp filters used in 

the complex convol ver. The minimum computing time for the DFT thus 

becomes 128 ~s. 

5.2.2 The complex convolver 

The convolver is a fully analog computation circuit which in principle 

can be designed directly from the block diagram in Fig. 4.2. It then 

requires 4 independent 6 4 point chirp f i1 ter s, rectangular windowed, 

and 2 adder/subtractor circuits. 

A reduction of convolver complexity with a factor 2 is possible, at 

the cost of a corresponding increase in computing time. This can be 

obtained by computing the sub-periodograms ~r and ~i sequentially 

in time, rather than using the parallel! organization indicated in Fig. 

4.2. The averaged periodogram is then formed by adding 2M sub

periodograms, possibly compressed (eq. (2.73)), rather than using the 

M term version eq. (2.72). In the following, it is shown how this 

type of operation can be obtained. 
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By comparing (4.2), (2.142) and (2.10), the output of the complex con

volver can be written 

~(k) 

where 

The set 

{ic(k)}. 

n=1 
2 

jnk 
X(K/2,2nk/N;K) e N 

(5.13) 

(5.14) 

{(ic(k))p} is the periodic extension of theN-sample sequence 

We also define 

Re [~(k)] (5.15) 

(5.16) 

It has earlier been shown that Re[f(k)] and Im[f(k)] are identically 

distributed, statistically independent zero mean Gaussian variables. 

From (5.13), the same holds also for ~r(k) and Zi(k) (orthogonal 

transformation). The following definition of the sub-periodograms is 

then statistically equivalent to (2.53)~(2.55): 

i1r(K/2,2nk/N;K) (5.17) 

(5.18) 

Writing out (5.13) leads to the following results (compare with Fig. 

4.2): 

(Re[ic(k)] o Re[h(k)]) - (Im[ic(k)] • Im[h(k)]) 
(5.19) 

(Re[ic(k)] • Re[h(k)]) + (-Im[ic(k)] • Im[h(k)]) 

(Im[ic(k)] • Re[h(k)]) + (Re[ic(k)] • Im[h(k)]) (5.20) 

where ~ denotes convolution. This suggests the use of the 'residual' 

convolver configuration shown in Fig. 5.7, both for the computation of 

{Zr(k)} and {~ 1 (k)}. A slight modification of the premultiplier then 

is necessary, since computation of {Zr(k)} using (5.19) requires its 
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---.! Re [h(n)] 

-Im [~"c~--~ 
Re [x] Im [h(n)] 

c 

[
z (k) 

z:(kl 

(5.21) 

Simplified convolver for serial computation of Zr(k) and 

zi<k>. 

Hence, both {Zr(k)} and {Zi(k)} can be computed by replaying the 

windowed N-sample signal sequence to be transformed 4 times from the 

input buffer; the first 2 times the ordinary premultiplier program (4.6) 

is used, yielding a valid {Zi(k)} on the output of the convolver 

during. samples N to 2N - 1. The next 2 replays the modified 

premultiplier equation (5.21) is computed, leading to {Zr(k)} during 

samples 3N to 4 N - 1. The time for computing the full DFT thus 

increases from 2N to 4N cycles. For N = 64, this gives a minimum 

computing time 256 ~s, which still is approximately 3 times faster than 

the requirement stated for single range PW or CW Doppler instruments. 

The increased computing time is less tolerable in a multigated PW Doppler 

instrument, where the spectrum analyser is multiplexed between a large 

number of independent signals. On the other hand, this type of instrument 

tends to use PRF's in the range 5-15kHz, depending on the appli

cation. The computing time requirement Tc = 0.8 ~s for the signal 

from each range gate can therefore be r el axed considerably in this 

situation (it was set assuming 40kHz sampling rate). 

5.3 DFT Postprocessing 

A flexible structure for processing the analog outputs from the con

volver to a final moving averaged compressed periodogram is shown in 

Fig. 5.8. It comprises of some analog processing, spectrum A/D con

version, a moving averager, cancelling of white noise, a variable 

spectrum compression for sonagram display, and finally an interpolator 

circuit and an output buffer. Some brief comments shall be made on 
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Fig. 5.8 DFT postprocessing. 

5.3.1 Analog postprocessing 
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The purpose of this block is to combine the real and/or imaginary analog 

signal outputs from the complex convolver into a signal suited for 

A/D conversion. When the signal is quantized to 8 bit, the signal to 

quantization noise power ratio is maximum 45 dB (Section 5.3 .1). If 

the signal is narrowband, the ratio between the spectral densities of 

the signal and the quantization noise ratio may be considerably higher. 

A narrowband signal will concentrate over an angular bandwidth 

aroa - 2n/K, while the quantization noise spreads out over the entire 

bandwidth 2n. The spectral signal to noise ratio may therefore be as 

much as 10 lgK dB's higher than the signal to noise power ratio. 

When K = 64 and 8 bit signal quantization is employed, this means 

that the A/D conversion of the convolver outputs should be able to 

handle a dynamic range in excess of 60 dB. Limitations of the BBD 

chirp filters may degrade this expected performance somewhat, but 

probably not very much. This assumption is based on earlier experiences 

with the same chirp filters. where a 60 dB output dynamic range was 

obtained (peak spectral density with maximum amplitude single frequency 

input. relative to peak intrinsic spectral noise level with signal input 
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grounded) from an all analog sliding DFT spectrum analyser of the type 

shown in Fig. 4.3 ('DAISY', unpublished data). 

Two alternative input paths from the convolver are shown in Fig. 5.8. 

The 'Type 1' path applies if the parallel! solution (full 4-filter 

complex convolver) is chosen, while the 'Type 2' path applies for for 

serial computation of ~r(k) and ~i (k). Note that for the Type 1 

alternative,it has been chosen to compute the expression n(lzrl+l~il>l4 
rather than the sum of squares ~; + ~~. Apart from being simpler to 

implement, this approach easily allows for the necessary 60 dB dynamic 

range using analog circuitry. In contrast, the sum of squares would 

require 120 dB dynamic range on the output of an analog squaring device. 

The output from the rectifiers are passed through an analog compression 

function fca(") prior to A/D convertion for digital averaging. 

Averaging the output from the Type 2 path in Fig. 5.8 then corresponds 

ex a c t 1 y t o the Type 2 aver a g e r , e q • ( 2 • 7 3 ) , d i s c us s e d i n S e c t i on 2 • 4 • 

The net compression is the combined effect of the rectification and 

the compression, i.e. 

f c ( • ) = f c a ( 11(7)') • (5.22) 

In the following, it shall be assumed that averaging the compressed sum 

of absolute values fca(n(IZrl + 1Zii)/4K) is approximately equivalent 

I 2 2 I 
to averaging f (~) = f ( (2 + 2.)/K } ., i.e. the correspondingly c ca r 1 

compressed amplitude periodogram. This is justified by the following 

facts: 

i) The approximation 

n ( I ~ I + 12 . I ) I 4 - /22 + ~~ ' r 1 - r 1 

has a bounded peak error. The peak fractional error is -21%, 

occurring when one of the variables ~r' 2i is zero. 

ii) The below relations hold: 

This follows directly from (2.99), first with M 

then with M = 1, a= 0.5. This is equivalent to 

(5.23) 

a = 0. S, and 

(5.24) 
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ii) The fractional variance of the variable 12rl + 12il is only 

4.5% higher than the fractional variance of the variable /2; + 21: 
see Section 2.4.3. 

In total. this indicates that the probability distributionsof the two 

variables are fairly similar. It therefore seems justified that the 

analysis of the Type 1 averager, eq. (2.72), is reasonably accurate also 

for the simplified Type 1 structure in Fig. 5.8. 

Fig. 5.9 Analog postprocessor for the Type 2 convolver. 

A simple hardware solution to the analog preprocessor circuit for the 

Type 1 situation is shown in Fig. 5.9. It consists of two 'ideal' 

rectifiers Ul 6 U2 and analog compression in the amplifier U3. The 

compression occurs since the feedback across the amplifier increases 

with increasing output level. The circuit 

approximate different choices of fca(") by 

Rl - R6. 

can be taylored to 

vary in g t h e r e s i s t or s 

5.3.2 A/D conversion of the convolver outputs/spectrum averager 

A number of tradeoffs must be evaluated before this block is designed. 

Two different approaches seem practical: 

i) Select a relatively moderate compression of the form 

or, equivalently, f
0
a(") = (•)2a. This approach 

f (•) = (•)a, 
c 

ensures a low 
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variance increase from the compression, at the cost of requiring 

a relatively large number of bits B in the spectrum A/D conversion 

to allow for succicient dynamic range. Selecting B = 8 and 

a= 0.4 thenyields a maximum resolvable dynamic range Dmax = 60 dB, 

eq. (2.101), while the 'full quality' dynamic range is D1 = 41 dB, 

eqs. (2.104), (2.106). The asymptotic variance performance index 

for the Type 1 solution is rv1 = 1.14 when a = 0.4. The corre

sponding numbers for the Type 2 implementation are o2 = 41 dB 

and rv2 = 1.23. Increasing the number of bits above 8 should 

be avoided, since it implies a strong increase in the amount of 

hardware required. 

ii) For the parallel! solution it may be actual to select logarithmic 

compression and use only 4-5 bits quantization. For the serial 

type solution this is far less acceptable, since its variance 

performance index increases strongly in doing this (rv2 = 2.51 

for large M). The low number of bits permits the use of a simple 

8 bit recursive averager of the form 

~~({m+1)q,2nk/N,;k) = P~~(mq,2nk/N;k) 

where 

p = e 
-lr 

2 
1 - 1l 

+ (1-P)fc(~((m+1)q,2nk/N;K)) 

for M > 5 

(5.24) 

(5.25) 

This averager is a first order discrete time lowpass filter with 

noise reduction capability similar to that of the ordinary averager 

(2.72) (compare with eqs. (2.45},(2.46)). When the input variable 

to the recursive averager is quantized to 4-5 bits, a simple and 

fast hardware solution can be designed, using 8 bit accumulation 

and a ROM lookup table for the multiplication with the constant 

p. This allows for averaging M - 8-16 terms without overflow 

problems. This solution may be preferred in multigated instru

ments$ where high speed is essential. 

The impulse response of the recursive averager has an infinite 

tail. It decays exponentially, with a 63% decrease per MTc/2 

time units (- 5 ms). This infinte time duration makes the recur

sive averager unsuited for averaging weakly compressed periodo-

grams. With power function compression, the decay rate of the 
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impulse response becomes (-8.68/a) dB per MTc time units 

(referred to a n9ncompressed spectrum). If the recursive averager 

is employed on linear periodograms (a 1), this means that a 

spectral line needs - 5 MTc' or SO ms, to decay 40 dB. The 

recursive averager is therefore not useful, unless strong com

pression of the output from the convolver is employed. 

The choice between solutions i) and ii) must be made on a cost/benefit 

base. Solution i) yields the lowest variance, but requi~es a somewhat 

more complex averager than solution ii). 

5.3.3 Rejecting white noise 

It has earlier been shown that white noise can be removed 

from the sonogram by thresholding the averaged periodogram. Apparently, 

the same effect can be obtained by thresholding the averaged compressed 

periodogram, provided the threshold level is adjusted according to the 

compression. If the spectrum analyser includes an AGC prior to the 

signal A/D conversion, the threshold should be made time varying, since 

the varying gain causes the estimated spectral intensity of the white 

noise to fluctuate. In the following, the gain variations of the AGC 

are assumed to be slow compared to the averaging time MTc - 10 ms. 

In clinical measurements, the reject threshold will be operator adjusted, 

with setpoint such that the noise floor just disappears from the 

sonagram. If the desired threshold on the linear periodogram is g
0

, 

Fig. 2.9.b, the corresponding threshold level on the compressed periodo

gr am be comes 

(5.26) 

which is the basis for the solution indicated in Fig. 5.8. Thresholding 

is obtained by adding -gc(k) to the output from the spectrum averager. 

This yields directly the desired output when the result is positive. 

If the result is negative, the output is set to zero. The function 

-fca (As(k) g 0 ) can be calculated in advance and stored in a single 

ROM lookup table, with progammable choice of threshold g
0

• 

5.3.4 Compression for sonagram display 

According to the discussion in Section 3.3, several different com-
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pression characteristics should be included t~ ensure a good display 

in different situations. In Fig. 5.8 this is taken care of by passing 

the output from the reject function block through an additional ROM 

lookup table. If the desired compression of the linear periodogram is 

fed(•), the look up table should contain the composite function 

f d[(f - 1 (•)) 2 ]. This corrects for the initial analog compression of c ca 
the convolver output. 

5.3.5 Interpolator and output buffer 

It has earlier been pointed out that N = 64 is somewhat too few 

frequency bins for generating a high quality sonagram display. There

fore Fig. 5.8 contains an interpolator that increases the number of 

frequency bins to 128 prior to display. This can be done by adding 

the spectrum estimate to itself, delayed 1/2 spectral line, as indicated 

in the upper part of Fig. 5.10. A hardware circuit that performs this 

operation is shown in the lower part. The two latches L1 and L2 are 

clocked on opposite edges of the control signal LSBI. The contents of 

the latches then alternates between being the same, or originating from 

adjacent (noninterpolated) spectral lines. 

Finally the output from the interpolator is written ~nto an output buffer 

memory, where it is available for sonagram display or further pro

cessing, for example microcomputer assisted calculation of mean or 

maximum frequency of the spectrum. 

5.4 Concluding remarks 

The suggested hardware solution allows for great flexibility in clinical 

use. Both sampling frequency and transform length can be varied to 

select the optimum variance/resolution tradeoff in a given situation. 

If desired, the CZT part of the system can be substituted with a digital 

FFT processor. The high speed of the BBD devices makes the proposed 

concept appealing also for multigated systems. Where alternative 

solutions have been suggested, for example parallel! vs. serial compu

tation of Zr and Zi in Section 5.2.2, the final choice should be 

made on a cost/benefit basis. 

For some applications the N = 512 chirp filters discussed in Section 

4.1.2 may represent an interesting alternative. The minimum computing 
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address 

64 poi~ts to 128 points interpolator for spectrum display. 

time for one periodogram using these devices is 512 ~s, which is more 

than adequate for single range systems. However, this speed requires 

a O.S ~s cycle time also in the premultiplier, which cannot be obtained 

with the hardware outlined, unless some parallellism is included. 

Obviously, the interpolator circuit is not needed if a 512 point 

transform is computed. 

Apart from a different way of computing the DFT,there are some important 

differences between the proposed design and most Doppler signal spectrum 

analyser s previously rep or ted. The primary difference is our direct 

use of complex spectrum analysis, whereas other investigators (except 

[12] [SO]) first converted the complex Doppler signal to a real 

bandpass signal by the heterodyning operation Re[i(t)exp j2nfpt], and 

then analysed the heterodyned signal using real signal spectrum analy

sis. Typically, fp has been chosen as 0.15 PRF in pulsed Doppler 

applications [26]. Apart from being unnecessary complicated and not 
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fully utilizing the complex FFT algorithm, this approach does not easily 

allow for the the simple 'unwrapping' of aliased PW spectra demonstrated 

in Fig. 3.8. 

Another difference from previous works is the use of time compression 

to take full advantage of the large processing capacity of the chirp 

filters. Although experimental evidence for improved performance has 

not been given, it seems justified that spectrum averaging will greatly 

improve e.g. registrations of the high frequency/low signal to noise 

ratio Doppler shifts oc curing in valve incompetencies in '(:he heart. 

In this situation, it is likely that improved reject of noise due to 

averaging will become especially important. 

A hardware spectrum analyser based on the principles from Chapter 5 is 

presently being designed. The results will be presented elsewhere. 

ACKNOWLEDGEMENT 

This work has been supported by grants from the Norwegian Inst1tute of 

Technology, Trondheim. 



- 112 -

APPENDIX I 

Smoothing lowpass filters for pulsed Doppler instruments. 

Fig. I.l is a model for the sampling (range gating) and the smoothing 

lowpass filter of a pulsed Doppler instrument with analog highpass 

filtering (compare with Fig. 3.12.a). The highpass filter itself is of 

no interest for the following discussion, and it has therefore been 

left out from the figure. The desired combined transfer function of 

the sample and hold element and the lowpass filter is an ideal lowpass 

filter, with cutoff at the Nyquist frequency. Then, from Shannon's 

sampling theorem, the filter output i(t) becomes identical to the 

input signal i(t), provided its power spectrum satisfies Gii(w) = 0 

for lwl > ws/2. 

Ideal lowpass filters cannot be designed in practice. In this appendix, 

the consequences of deviations from the ideal shall be analysed. On 

this basis, 'optimal' all-pole lowpass transfer functions are derived. 

~ ( t) IJoo---.c. 

Fig. I.l 

hold 

smoothing filter H(W) 

hold x< <k+ll. )T ) 
r s 

...__ ___________ __.. x<tl 

Range gating, smoothing and sampling for spectrum analysis 

in a PW Doppler instrument with analog filtering. 

The choice of filter transfer function depends on how the signal is 

processed after the filtering. Some Doppler systems employ wideband 

analog signal processing, e.g. mean frequency estimation. In this case, 

the smoothed signal x(t) is analysed over a bandwidth much larger 

than the sampling frequency. The filtering problem is then similar to 
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that of smoothing the boxcar output from D/A-converters. An important 

difference, however, is that the spectral properties of the smoothed 

signal is the only concern; there is no requirement for phase linearity 

of the filter. Atkinson and Woodcock recently suggested the use 

of standard Butterworth filters for smoothing in this situation [24]. 

Systems with discrete time signal processing require that the sm~othed 

signal is resampled at the Doppler PRF prior to the analysis. It was 

shown in Section 3.4.3 that a careful filter design and a proper sampling 

delay both are necessary to avoid excessive ripple in the sampled 

transfer function. It turns out that a filter design that is optimal 

for use with analog signal processing is not optimal in the case of 

discrete time analysis, and vice versa. 

This appendix is organized as follows: In Section !.1 filters are 

designed that are optimal for analog mean frequency estimation. This 

is done on the basis of a set of design rules derived in the subsections 

I.1.1 and I.1.2. In Section I.2 filters suitable for discrete time 

signal processing are derived. 

I.l Smoothing filters for analog signal processing 

Fig. I.2 shows the spectrum of the sampled signal {i(Ts)o(t-kTs)}, 

where o(t) is a unity impulse at t = 0, together with frequency 

responses of both an ideal and a more practical smoothing filter. The 

frequency response of the filter should satisfy the following require

ments; 

i) resonably flat passband response, with cutoff frequency (l)c as 

close to the Nyquist frequency as possible; 

ii) efficient suppression of higher order spectra; 

iii) no more than 6-7 dB attenuation at the Nyquist frequenc~ 

The phase response of the smoothing filter is unimportant. Requirement 

iii) is a necessary condition to avoid a severe notch in the sampled 

frequency response IHs((l))l at the Nyquist frequency, eq. (3.22). The 

requirements i) and ii) are conflicting, because a large passband ripple 

normally allows for a steeper transition region of the filter. Several 

questions now arise: How large passband ripple should be tolerated? 
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Fig. 1.2. Spectrum of received signal samples and frequency responses 

of ideal and practical smoothing filters. 

Where should the passband edge roc be placed when the lowpass filter 

has a finite cutoff rate? How large stopband attenuation is required? 

These questions are answered below. 

1.1.1 Passband requirements 

A relatively large passband ripple can be tolerated if the most important 

parameter of the Doppler spectrum is its maximum frequency, because 

even a significant amount of ripple does not much affect the edges of 

the spectrum. Excessive ripple may, however, cause the mean frequency 

ro of the reconstructed signal x(t) to deviate much from the true 

mean frequency w of of the input signal i(t). Assume that a smoothing 

filter with equiripple passband characteristic is employed. Its fre

quency response can then be written 

I H(w) I (I.l) 

For simplicity, an ideal stopband has been assumed. The ripple function 

r(w) oscillates between the boundaries ±1 in the passband, as shown 

in Fig. 1.3. The fractional ripple amplitude r
0 

is assumed to be 

small and positive, 0 < r 0 << 1. In the following, the passband edge 
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of H(~) is defined to be the highest frequency ~c which satisfies 

r(~c) =- 1 (see Fig. !.2). 

IH(W) I 

1 

0~-----------------+--------.w 
0 

Fig. !.3 Equiripple filter transfer function with ideal stopband. 

The mean Doppler frequency is (assuming Gii(~) 

~c 

Jdw ~Gx.x<~> 

- -~c 
(I. 2) ~ 

~c 

Jd~ 6ii(~) 
-~c 

The mean frequency of the smoothed signal is 

~c 

Jd~ ~IH<~>I 2 Gxi<~> 

- -~c 
~ 

~c 
(I. 3) 

sd~ IH<~>I 2 Gii(~) 
-~c 

Substituting (1.1) into (1.3) and expanding the resulting expression 

in series to the first order in r
0 

then yields an approximate 

expression for the fractional mean frequency error caused by the ripple 
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we 

Jdw Gii(w) 

-we 

(1.4) 

and using the Schwarz inequality on 

the above expression, leads to the following bound for the absolute 

relative error: 

we - 2 we 

Jdw [(1)=(1)] Gii(w) Jdw r 2 (w)Gii(w) 

-we 
(I) 

-we 2 i 4r2 
er 0 we 

Jdw Gii(w) 

-we 

we 
r 2 (w)G--(w) Jdw 

-2 -2 
XX 

4r2 wrms - (I) -we 
0 c;>2 we 

(I.S) 

Jdw Gii(w) 

-2 -2 

4r2 wrms -w 
i 0 ;2 

where 

we 

Jdw w2G--(w) XX 

-2 -we 
wrms we 

Jdw Gii(w) 

-we 

The 1 as t transition in (I. S) 

in the passband. The quantity 

-we 

(I.6) 

by definition, r 2 (w) < 1 

may be termed the 

fractional Mean Square bandwidth of the spectrum [29]. The 

magnitude of the error bound therefore increases with the bandwidth of 

the spectrum. 
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The significance of (I.S) can be illustrated using the following family 

of spectra : 

(I. 7) 

elsewhere 

These spectra arise in Doppler measurements on a straight circular 

vessel with velocity profiles of the form 

v(r) 
p 

( 1 ( !.) ) vo - a (I .8) 

where v 0 is the central velocity and a is the radius of the vessel 

[5]. In deriving (I.7) it has been assumed uniform insonification of 

the entire vessel crossection and the transit time effect has been 

neglected. The parameter p is a profile factor: A parabolic velocity 

profile is obtained with p = 2, while the profile gets increasingly 

blunter when.pincreases. The family (1.7) therefore contains represen-

tative Doppler spectra 

is interesting (flow 

spectras are [28] 

-2 
wrms 

;2 
p+2 
p+1 

in situations where mean frequency estimation 
2 -2 measurements). The ratios wrms/w for these 

(1.9) 

which leads to the following error bound: 

(!.10) 

Thus, the passband ripple gives a fractional mean frequency error which 

in the case of a parabolic velocity profile is less than 1.15 times 

the fractional ripple amplitude. The error reduces with increasing 



- 118 -

bluntness of the velocity profile; the somewhat flatter profile p = 15 

yields lerl ~ 0.5 r
0

• The fractional error reduces when the bandwidth 

of the spectrum extends over several periods of r(w). This can be 

seen from eq. (I.4) (r(w) has approximately zero mean in the passband). 

Consequently, for spectra with large bandwidths, the bound (!.5) is 

overpessimistic. 

It seems justified to conclude that a small passband ripple amplitude, 

say r
0 

= 0.02-0.05, may be tolerated; it introduces very small 

errors in the mean frequency of the smoothed signal, regardless of the 

spectrum shape. 

I.1.2 Stopband requirements and the selection of cutoff frequency. 

In the stopband ( lwl > ws/2), the smoothing filter must suppress higher 

order spectras orginating from the sampling process. Since H(w) has 

a finite rolloff rate, the stopband attenuation is smallest just above 

the Nyquist frequency. Fig. I.2 reveals that a desired frequency 

component at a positive frequency w < ws/2 always is accompanied by 

an unwanted frequency component at the negative frequency frequency 

w- (.t)s· Apparently, insufficient attenuation of this component leads 

to problems in analog mean frequency estimation when i(t) has fre

quency components close to the Nyquist frequency. The ratio between 

the amplitudes of the undesired and the desired frequency component is 

from Fig. I. 2 

(1.12) 

If the input signal has the frequency w. it is straightforward to 

show that the fractional mean frequency error caused by the second order 

frequency component is 

o < < w < (.t) s I 2 , k << 1 (1.13) 

I t h a s be en a s sum e d t h at I H ( w ) I 0 

a narrow transition region, the ratio 

for lw I > ws. If IH(w) I has 

ks((.t)) will abruptly start to 

increase when (.t) exceeds the passband limit (.t)c• reaching unity at 
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the Nyquist frequency. The system limit frequency due to insufficient 

filtering of the second order frequency component may be defined to be 

the point wa where the fractional mean frequency error leal exceeds 

some predetermined limit. If maximum 5% fractional error with single 

frequency input is allowed, eq. (!.13) yields 

(I.14) 

= -16 dB 

It has been assumed that wa ~ ws/2. Hence, there are two different 

mechanisms that determine the maximum frequency limit of the conven

tional 'smoothing' pulsed Doppler systems with mean frequency esti

mators: The first is the passband attenuation itself, limiting the 

frequency response to we < ws/2. Secondly, insufficient attenuation 

of higher order spectra causes large, aliasing-like mean frequency 

errors above wa• The effective system limit frequency is therefore 

approximately the least of the pair (wc,wa). For any given filter 

structure the variables we and wa are dependent~ in the sense that 

increasing one causes the other to decrease, and vice versa. It is 

therefore natural to choose a filter design that satisfies we = wa. 

Another important parameter of the smoothing filter is its attenuation 

at the sampling frequency. Strong, low frequency- Doppler shifts from 

moving tissue is, due to the sampling~ present at w = ±nws• n = 0,1, ••• 

see Fig. I.2. In the baseband (n = 0)~ they are suppressed by efficient 

highpass filters. The higher order components must be removed by the 

smoothing filter. It is therefore important that its attenuation in 

the vicinity of ±nws• n = 1,2, •• is very large. In practice, this is 

a problem only for n = t, i.e at the sampling frequency. 

The following design criterions now seem reasonable: The passband edge 

should be forced as close to the Nyquist frequency as possible, while 

keeping the passband ripple at an acceptable level(< 5%). In addition, 

the constraint we = wa should be met. Since IH(wc) I ~ 0 dB when 

r 0 is small, the last requirement is equivalent to (from eqs. (I.12) 

and (!.14)) 

IH( '"' -,..>I = In<! w + <12 w - w
0

))1 ws we 2 s s -16 dB (I.lS) 

i.e. the passband cutoff frequency w
0 

and the -16 dB point of IH{w)l 

should be placed symmetrically around the Nyquist frequency. This may 
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well be in conflict with the constraint IH<ws/2)1 l -6 dB initially 

stated. In the following• we shall therefore be selected as a 

compromise between these requirements. The numerical value -16 dB in 

(I.15) is a direct result of selecting the maximum fractional error 

due to insufficient attenuation of second order frequency components 

to be 5%. 'If this limit had been reduced to 2%, the threshold would 

have moved down to -20 dB. Finally, the filter attenuation at the 

sampling frequency must be adequate to remove the higher order clutter 

from tissue. 

I.1.3 Optimizing the frequency response. 

Assume that the lowpass filter consists of N second order all-pole 

sections in cascade, i.e. 

n=1,N 
HL(w) = IT hn(w) (I.16) 

1 
(I.17) 

The undamped angular resonance frequency of section n is 

(I.18) 

The reason for selecting an all-pole design is its simplicity to 

implement, using standard active network designs. The transfer function 

of the sample and hold element is [2] 

sin'! -j~ 
e 

w 
(I.19) 

2 

where unity sampling frequency has been assumed. Fortunately, Hh(±ws) = O. 

which helps in attenuating the higher order clutter from 

tissue. The overall transfer function of the smoothing filter is (Fig. 

I. 2) 

(I.20) 

The problem is to select the unknown parameters {a.n•~nl, such that 

IH(w) I approximates 1 within a specified ripple tolerance r
0 

for 
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(I)< (l)·c· and approaches 0 for (I)> (l)s/2 = n. This can be obtained 

using a modified version of a design method earlier derived by Steiglitz 

[30]. By means of the iterative method of Fletcher and Powell [31] 

the following quadratic 'deadband' criterion shall be minimized: 

(1.21) 

k m 

The sets {(l)k} and {(l)m} are dense grids in the passband [0,(1)
0

) 

and in the s t o p band (I) > n , r e s p e c t i v e 1 y • Th e p a ram e t e r c i s an 

unknown gain, and w is a positive weighting coefficient for adjusting 

the relative contribution to Jr from the stopband. The error function 

e [.] is defined as 

rxl - 1 - ro lxl > 1 + ro 

erlxll lx I - 1 + ro lxl < 1 - ro (1.22) 

0 elsewhere 

The idea of this criterion is to allow for a controllable passband 

ripple amplitude r
0

, while maintaining as high stopband attenuation 

as possible. The basic difference from Steiglitz' original approach 

is that he used an ordinary least squares fit (r
0 

= 0) in the design 

of mixed poles/zeros digital filters. 

The unknown 2N + 1 parameters may be collected in a vector z: 

(I. 23) 

The minimization method of Fletcher and Powell requires the gradient 

aJrlaz to be known. This is simplified by observing that [30] 

(1.24) 

The gradient then becomes 

+ 2wc 

(1.25) 
where from (1.16) - (1.20) and (I.24) 
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o(cH(w)) 
-2cH(w) 

janw 

a z2n-1 1 - a2 w2 + j 2 ~nanw n 
n=l, •• N (1.26) 

o(cH(w)) 
-a w2 + j~nw 

-2cH(w) 
n 

oz2n 1 _ a2 w2 + j 2 ~nanw n 

n = 1, •• N (I.27) 

o(cH(w)) 

oz2N+1 
H(w) (I.27) 

The optimization problem now is entirely specified. The choice of 

stopband grid is fairly uncritical, since all-pole filters decay 

monotonically in the stopband (the zeros in Hh(w) are fixed, not 

affected by the optimization). In the computations the following grids 

were used: 

1.2n + O.Sn (m-1) 19 m 

- e 

_ 2.S(k-1) 
99 ) 

1,2, •• ,20 (I.29) 

k 1,2 ••• ,_100 (I.30) 

This has the effect of increasing the passband grid density with 

approximately 10 times in the vicinity of wc' compared to the low 

frequency region. This improves the convergence in the optimization, 

for reasons that will become clear later. - Steigliz used an even grid 

density in his work. 

The minimization of Jr was performed by the FORTRAN subroutine DFMFP 

[32]. Initial values for the search were the parameters of a 2N order 

Chebychef lowpass filter with 2 dB passband ripple. The ripple ampli

tude r
0 

was set to 0.05, and the stopband weight w was 0.01. 

In i t i a 1 v a 1 u e for t h e g a in p a ram e t e r c w a s 1 - r 
0 

• Rep e a t e d run s 

with somewhat different initial values were performed, to ensure that 

the global minimum of J r was found. The cutoff frequency we was 

adjusted manually until a good compromise between the requirements 

IH(n)l = -6 dB and IH(2n-wc>l = -16 dB was obtained. 
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1.1.4 Results 

Plots of the resulting IH(w) I, IHL(w) I and the sampled frequency 

response IHs(w)l, eq. (3.18), are shown in Fig. I.4. The left column 

shows a 4th order filter design (N 2), while the right column shows 

corresponding plots for a 6th order filter (N = 3). The filter para

meters are listed in Table I.1. 

The outlined procedure yields filter designs with, for 

practical purposes, equiripple passband transfer functions. The resul

ting ripple is marginally larger than the specified value 0.05. Both 

the shown designs has 7 dB attenuation at the Nyquist frequency. By 

inspection of Fig. I.4.a it is found that IH<ws-wc>l = 0.17 for 

N = 2, and from Fig. I.4.b IH<ws-wc>l = 0.16 for N = 3. The frac

tional error lea(wc>l in single frequency estimation then is 6.5% 

at the passband cutoff for the 4-pole, and 5.4% for the 6-pole design 

(the values for wc given in Table I.1 have been inserted in (I.13)). 

Thus, large mean frequency errors from passband attenuation and insuffi

cient attenuatrion of higher order frequency components occur at nearly 

the same frequency. 

The yield of increasing the filter order from 4 to 6 is twofold: The 

passband edge wc (and wa) increases from 0.89n to 0.945n, which 

is - 6% increase of the upper frequency limit of the system. Also, 

the rolloff rate of the filter increases, and a more efficient suppres

sion of clutter components at the sampling frequency results (comparing 

Fig. I.4.c and d: approximately 19 dB improvement). Which filter order 

one should select in a given situation depends on the application: In 

PW Dopplers for measurements on peripheral vessels (5-10 MHz ultrasound 

frequency, high PRF' s ), the wall motion clutter is confined to a frequency 

range which is a small percentage of the sampling frequency. A 4th 

order filter then probably suffices. For central applications (1-2 MHz, 

low PRF's~ the zeros in the sample and hold transfer function become 

less efficient, and the 6th order filter may be required. 

The frequency response IHL(w) I of the lowpass filters alone (excluding 

the sample and hold) are shown in Fig. I.4.e and f. It approximates a 

x/sin x response in the passband. to compensate for the rolloff of 

the sample and hold. 
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The derived filters characteristics are fairly different from the design 

recommended by Atkinson and Woodcock [24]. They stated that 

a reasonable choice of HL(w) is an 8th order Butterworth filter, with 

corner frequency 600 Hz when f s 1500 Hz. In our sealing, this 

corresponds to a Butterworth corner at O.Sn. This response is plotted 

in Fig. I.4.d for comparison. It can be seen that the Butterworth 

filter is clearly inferior to the new design: 

and hold causes passband attenuation already at 

in the vicinity of the sampling frequency is 

The rolloff of the sample 

0.3ws. The attenuation 

only 6 dB higher than 

for our 6-order de sign, in spite of the higher filter order and the 

lower corner frequency. The 20 dB attenuation at the Nyquist fre

quency also seems excessive. 

The sampled frequency responses IHs(w) I are plotted in Fig. I.4.g 

and h for some selected values of the fractional' sampling delay Ar. 

The sampling delay that maximizes the magnitude of the sampled frequency 

reponse at the Nyquist frequency is denoted Aro• From (3.23) one 

obtains 

(1.31) 

where y(w) is the overall phase angle of the smoothing filter: 

(1.32) 

The problem with notches in the sampled frequency response at the Nyquist 

frequency was illustrated schematically in Fig. 3.12.f, and 

it is also apparent from the shown plots. Selecting the delay 

Ar = Aro + O.S generates a zero in IHs(ws/2)1. Changing Ar to Aro 

removes the zero, but instead the passband ripple increases. Note that 

since the 6 pole filter has a fairly narrow transition region, the 

notch in its sampled frequency response becomes corr~spondingly narrow. 

The reason for using a denser {wk} 

in the passband becomes clear when 

grid close to the cutoff frequency 

studying Fig. I.4.b. The ripple 

oscillates increasingly faster when w increases from 0 to w
0

• 

Thus, the grid density should also increase, to ensure adequate sampling 

close to the passband edge. Besides, this has the desired effect of 

introducing a frequency dependent weighting of the passband error e[•]. 

The increased grid density causes the effective weighting per frequency 
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unit to increase near the band edge. In combination with the 'deadband' 

criterion and the increasing 'frequency' of the ripple, this weighting 

favours equiripple passband behaviour. 

To save computing time, the first part of the optimization was run 

with a relatively coarse grid in the passband (40 points). When the 

search approached minimum of Jr, the grid density was increased to 

the 100 points specified in (I.30). The increased density did not 

increase the computing time very much, since e[•] = 0 over most of 

the passband when Jr approaches minimum. The passband gradient 

computation could then be omitted in these points, because the multipli

cation with e["] in (I.2S) anyway results in zero contribution. 

It can be concluded that the filter designs given provide nearly optimal 

properties in conventional 'smoothing' pulsed Doppler systems with 

analog filtering. They may also be used with discrete time signal 

processors, to allow for measurements of frequencies exceeding the 

Nyquist frequency. In this respect,the proposed designs have nonoptimal 

passband responses, with an increasing ripple near the Nyquist fre

quency. 

N ro (l)c ~1 ((l)o)l/n ;2 <(l)o)2/n ;3 <(l)o)3/n 

2 .OS .89 .63 58 .S218 .1230 .8922 

3 .OS .94S .6642 .3 63 8 .2206 .7329 .o S71S .943 9 

Table I.1 Parameters of smoothing filters optimal for mean frequency 
estimation 

I.2 Smoothing filters for discrete time signal processing 

When discrete time signal processing is employed (frequency estimation 

or spectral analysis)» it is natural to optimize directly the sampled 

frequency response IHs((l))l. This can be performed as a straightforward 

extension of the method employed in the previous section. The necessary 

equations are given in the following. 
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1.2.1 Optimization criterion 

An appropriate criterion is 

(1.33) 

k m 

using the same definitions as in Section 1.1.3, except that the passband 

edge is fixed at we= n. The sampled frequency response is from (3.18) 

and (3.19) 

jArw • -j(2n-w)A 
H(w) + H (2n-w) r (1.34) 

In the following, A.r = A.ro shall always be selected. Substituting 

(1.31) into (I.34) and rearranging terms then yields 

0 < w < 2n (I. 3 5) 

where 

A(w) (1.36) 

Since IA(w) I = 1, it does not affect the magnitude of the sampled 

frequency response. It can, therefore, be set to unity during the 

optimization. Proceeding as in Section 1.1.3 then yields the following 

expressions for the gradient: 

n = 1,.. , 2N+1 (1.37) 

+ 2wc 

The stopband terms are the same as in the previous section. The passband 

terms become from eq. (!.35) 

a(cH(w)) e-jy(n) + [a(cH(2n-w)) e-jy(n)]* 
azn azn 

n = 1, •• ,N (1.39) 
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(1.39) 

With exception of the phase terms~ the expressions for the above terms 

have already been derived in the previous section. Eqs. (1.16), (I.17) 

and (1.19) yield 

y(n) (1.40) 

The constant n/2 originates from the sample and hold response. It 

f o 11 ow s that 

(1.41) 

n = 1, •• ,N 

(1.42) 

The optimization problem now is entirely specified. The results from 

the previous section are proper initial values for the iterations. 

1.2.2 Results 

The results are shown in Fig. I.5. The left column applies for the 4-

pole and the right for the 6-pole filter. Filters with 5% (Fig. 

I.S.a and b) and 1% (c and d) fractional ripple amplitude have been 

designed. The sampled frequency response IHs(w) I is approximately 

equiripple in all cases. 

The corresponding lowpass filter responses IH(w)l are shown in Fig. 

I.S.e and f. The stopband responses of IH(w) I are plotted in Fig. 

I.S .g (logarithmic scale). For the case of 5% ripple amplitude, these 

are similar to the results of the previou~ section. Reducing the ripple 

amplitude from 0.05 to 0.01 reduces the stopband attenuation with 

.., 6 dB. 
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Suppose that H{w) is cascaded with an ideal analog highpass filter 

with cutoff frequency whp < ws/2. The sampled frequency response of 

the combined system becomes from (3.16): 

o < I w I < whp 
{1.43) 

(I) -s 

Thus, the low frequency attenuation of the sampled frequency response 

is ultimately limited by the attenuation of IH{w) I in the vicinity 

of the sampling frequency. This is the reason why a stopband penalty 

was included also in the criterion Js• eq. {1.33). 

The sensitivity of IHs{w) I to a change in the fractional delay ll.r 

is illustrated in Fig. I.S.h (N = 3, r
0 

= 0.05). When ll.r changes 

from ll.ro' a notch appears at the Nyquist frequency, while the 

ripple increases also in some distance from the notch. 

The optimal parameter values that corresponds to the plots in Fig. I.S 

are listed in Table 1.2. 

N ro ~1 (wo)1/n ~2 (wo)2/1r ~3 (wo)3/n: 

2 .os .6194 .53 81 .1497 .9164 

3 .OS .6712 .3717 .2177 .7429 .07131 .9561 

2 .01 • 7331 .6673 .23 40 .9504 

3 .01 .7985 .4715 .3128 • 77 59 .1170 .96 81 

Table 1.2 Parameters of smoothing filters with optimal sampled fre-

quency responses. 
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APPENDIX II 

Windows of different lengths sharing a common value set 

An important aspect of the spectrum analyser concept outlined in Chapter 

5 was the ability of changing window length as a means to perform the 

resolution/variance tradeoff. When a 64 point DFT is employed, a 

sufficient range of variation for the window length K is 24-64. 

If the different time windows are denoted {w(k;K)}, the use of the 

mapping /PROM mul tipl i cation technique suggested in Fig. 5. 6 super

imposes the requirement 

31 
w(k;K) c {ew(n)} 

n=O 

k 

K 

0,--, K-1 
(II.1) 

24,--,64 

i.e. all windows need to be described in terms of a common 32 

point value set. When K < 64, the spectrum analyser demands w(k;K) = 0 

for k = K,--,63, such that zero has to be contained in the set. 

Eq. (II.1) strongly limits the degrees of freedom one has in selecting 

different window types. Since many classical windows are described in 

terms of a rised cosine function, use of the below valueset seems 

reasonable: 

ew(n) ~ 0.5 - O.S cos ~4n n = 0,--,31 (II.2) 

This allows for nearly exact representation of the following windows: 

i) K = 16,32,64: Hanning window 

w(k;K) = 0.5 - 0.5 cos 2nl k 

w(K-k;K) w(k,K) 

w(K/2,K) 1 = 0.5 - 0.5 cos 2nti 

K_ 0,1, ••• ! 1 

0.9976 

(II.3) 
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ii) 32 < K < 64 Cosine tapered (Tukey) window 

w(k,K) 

w(K-k;K) 

{

0.5 - 0.5 

1 = 0.9976 

w(k) 

cos k = 0,--,15 

k = 16,--,K-16 

iii) 16 < K < 32 Cosine tapered (Tukey) window 

w(k;K) 

w(k;K) = w(k) 

k - o.5 cos 27trr 

0.9976 

k 0,--.7 

k 8, •• ,K-8 

(II.4) 

(11.5) 

The only quantization error in the above expressions is the substitution 

of the window peak value 1 with the approximation 0.9976. In our context 

this error is of no practical importance, as it is anyway smaller than 

the resolution of an 8 bit system. 

The frequency responses of the above windows for K = 24, 32, 44 and 

64 are shown in the left column of Fig. II.1. The Hanning windows 

(Fig. II.1.c and g) have reasonably good frequency responses, whereas 

the first sidelobes of the Tukey windows (a and e) are rather high. 

In combination with the wide mainlobe, this makes the window in Fig. 

II.l.a unsuited for practical use. 

The above windows are all characterized by a rapid rolloff of their 

sidelobes. By selecting a window with a slower-rolloff, e.g. the 

Hamming window, the peak sidelobe levels may be reduced, while still 

satisfying (II.1). The Hamming window is defined as 

0.54 - 0.46 cos 2 ~k k. = o,--,K-1 (II.6) 

Since {wh(k;K)} does not match the selected valueset (II.2), a 

quantized Hamming window may be defined as 

whq(k;K) =min lwh(k;K)- ew(n)l (II.7) 
n 

i.e. by rounding off to the nearest quantization level. The resulting 
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Fig. II.l Frequency responses of time windows sharing a common 32-

element valueset. 

Left column: Hanning and Tukey windows. 

Right column: Quantized Hamming windows. 
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frequency responses are shown in the right column of Fig. II.l. The 

sidelobes of the quantized Hamming windows are relatively even, with 

peak sidelobe levels at approximately -40 dB. This is adequate for 

the purpose. Note that 30 and 60 samples quantized windows have been 

selected rather than 32 and 64, the reason being that quantized versions 

of the latter windows showed somewhat larger spurious peaks in their 

sidelobes (approx. -36 dB). 

The windows shown are probably not optimum choices in any respect under 

the constraint (II.l). It has, nevertheless, been demonstrated that 

windows of widely different lengths, sharing a common 32 point valueset, 

can be designed without excessive sidelobes. 
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ABSTRACT 

A brief review of different methods for obtaining image guided 
Doppler blood velocity measurements is given. It is argued for 
the use of a timesharing scheme where the Doppler measurement 
is turned off during the data acquisition period for a 2D image 
frame <typ. 20 ms>. The signal dropout that occurs during the 
image updating period is removed from the Doppler audio by 
insertion of a synthetic signal segment. The synthetic signal is 
generated by passing white noise through a discrete-time FIR 
filter, where the filter coefficients are a windowed version of 
the Doppler signal measured immediately prior to the imaging 
interrupt. It is shown that the artificial signal has spectral 
properties <and, thus, audible sound> similar to those of the 
real Doppler signal segment that it is based upon. The time
sharing method is analyzed and evaluated experimentally, using 
dedicated hardware. 

The proposed algorithm allows for the design of timeshared 
Doppler/imaging systems where pulsed or continuous Doppler mea
surements can be done with essentially real time imaging gui
dance. 





1. INTRODUCTION 

The combination of ultrasound echo amplitude imaging systems and 
Doppler blood velocity meters offers in most cases significant 
clinical advantages compared to stand alone Doppler equipment. 
The location of the sample volume can then be related to an echo 
image of some form <A-, B- or M- scan>, which is particularly 
important within the complex geometry of the heart. Due to 
mutual interference, independent echo/Doppler systems cannot run 
simultaneously. Several solutions to the combination problem 
have been presented: 

a) Frequency multiplexed 2D imaging 
[16lc Imaging and Doppler is 
ultrasound frequencies, and the 
separated by electronic filtering. 

and Doppler measurement 
done using different 
different echos are 

b) M/Q-mode [1J,[2J. The same transducer is used for both 
M-mode and pulsed wave <PW> Doppler. M-mode and Doppler 
information is acquired from the echo of the same ultra
sound burst. 

c) Duplex combination [3J-[5J. Every other ultrasound burst 
is used for 2D image scanning or PW Doppler measurement. 
The principle can be used with electronically steered 
scanners, or with separate Doppler and mechanical imaging 
transducers. 

d) Pulsed Doppler with simultaneous, low frame rate imaging 
[6]. In this concept, every Nth Doppler burst <N on the 
order of 10) is replaced with a short imaging pulse. An 
estimate is inserted for the missing signal sample, pro
viding continuity in the range gated signal. 

e) Frozen B-scan image [3J[5J. This consists of the sequen
tial use of a mechanically interlinked echo and Doppler 
equipmente The location of the sample volume is shown on 
a frozen B-scan image, recorded immediately prior to the 
Doppler investigation. A variation of this technique is 
to update the image using an EC6-trigger, i.e. once per 
heartbeat. The Doppler signal is lost during the image 
updating period. 

f) Fast, sequential timesharing between B-scan and Doppler 
mod• of op•ration1 [7]. The image scanning and the 
velocity measurement are made on disjointed time intervals 
of 10 ms duration or more. The Doppler signal is lost 
during the image scans, but estimates of the missing 
signal segments are provided in the audio channel to 
minimize the disturbance from the timesharing. 

All of the above solutions have shortcomings which are inherent 
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in their principles. Because of the large bandwidths and dynamic 
ranges involved, it seems to be very difficult to make method a) 
work at all. To get acceptable M-mode resolution, method b) 
requires that the Doppler measurement be performed with a short 
burst of ultrasound. This limits the signal-to-noise ratio that 
can be attained in the Doppler measurement [8]. The combination 
of Doppler and M-mode employing a common transducer is in itself 
of limited value; good quality M-mode is rarely obtained in the 
same beam direction as optimum velocity recordings [9J. 

The Duplex principle eliminates some of the drawbacks of the M/Q 
mode, but introduces a new one: The PRF of the pulsed Doppler 
measurement drops by at least a factor of two, and consequently, 
so does also the maximum velocity that can be measured without 
frequency aliasing. The Nyquist limit is a major problem in PW 
measurements in heart lesions, and any reduction of the Doppler 
PRF is highly undesirable. The Duplex mode also tends to give 
noisy, unclean Doppler signals; this occurs when reverberant 
echos from the sweeping imaging beam arrive at the same time as 
the desired direct echo from the Doppler burst [5]. 

Approach d) is not associated with a drop in the Doppler PRF. It 
has, however, other deficiencies: The relatively high frequency 
Doppler shifts from blood are obscured in the received signal by 
strong, low frequency Doppler signals from tissue. The power 
ratio between these may become extremely unfavourable <-60 dB to 
-80 dB>, but the low frequencies can still be removed efficiently 
by high-pass filtering of the range gated signalo The missing 
sample in type d) of timeshare consists of components from both 
tissue and blood, and even a slight fractional error in the 
estimate becomes large when it is compared to the amplitude of 
the signal from blood. As a result, the filtered Doppler signal 
tends to appear noisy and unclean. Further problems with the 
method are its low image update rate, and the fact that each 
image is formed with a scan rate of the beam that is only 10 
percent of that of an ordinary B-scan system. This may cause 
geometric distortion when a beating heart is imaged. Moreover, 
neither of the methods b) - d) allows for the use of continuous 
wave <CW> Doppler to overcome the limitations of pulsed Doppler 
when aliasing occurs. 

A frozen image or very low framerate imaging is acceptable for 
measurements on vessels whose movement is small, e.g., the 
carotid artery. It is normally incorporated as a mode of 
operation in Duplex instruments, to allow for full-PRF pulsed 
measurements with imaging [5J. It can also be used with CW 
Doppler. However, the absence of a real time image makes the 
method less suited for cardiology. 

The last scheme, method f), is characterized by fast alternation 
<> 15 Hz> between the 2D scanning and the Doppler measurement. 
Hence, it provides Doppler with apparently simultaneous real time 
2D imaginge There will be no mutual interference, as the two 
systems operate in different time intervals. They can therefore 
be optimized separately with regards to frequency, bandwidth, 
etc. The two systems may share a common transducer, e.g., that 
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of a phased array scanner. An image quality similar to that of 
Duplex systems can be obtained, without a reduction of the 
velocity limit in the case of PW Doppler. The method works 
even with CW Doppler. 

In its basic form, the method has two apparent drawbacks: 
Because of the gated operation, rapid changes in the velocity may 
be difficult to reproduce faithfully. Secondly, a rapid on-off 
gating of the Doppler signal is perceived as a strong degradation 
of the quality of instrument's audio output. In cardiac appli
cations this cannot be accepted, as the audio signal provides in
valuable operator feedback; its pitch information is important in 
the minimization of the angle between high-velocity blood jets 
and the soundbeam [9]. Even if aiming problems in general are 
reduced when the location of the sample volume can be related to 
a real time image, this angle can rarely be assessed from the 
image in the case of jet flow. The need for a high quality 
Doppler audio output is, therefore, essential. 

The audio disturbances are greatly reduced if the missing 
portions of the measured Doppler signals are 'filled' with signal 
segments having similar spectral properties to the ones gated out 
[7J. If these substitute segments are of sufficient quality, 
spectrum analysis of the 'filled' Doppler signal may give a 
better looking spectral display than that of the interrupted 
measured signal; the reason is that interpolated spectral 
information is then obtained during the interrupt periods. A 
simple way of performing such a signal filling is to repeat the 
most recent measured segment of the Doppler signal during the 
interrupt period [7]. However, this algorithm may give artifacts 
in the spectral display in phases of the cardiac cycle where the 
blood velocity is changing rapidly. The repetition method also 
has the limitation that it requires the interrupt to be shorter 
than the Doppler-on time. 

This paper describes a new algorithm for the synthesis of 
artificial Doppler signal segments to be used for signal filling 
in type f) of timeshare operationm Knowledge of both the 
properties of the Doppler signal and spectrum analysis techniques 
is needed in the derivation and analysis of the algorithm, so a 
brief review of these subjects is given in the next sectiona The 
basic synthesis method is then derived and analyzed in Section 3, 
followed by an experimental evaluation in Section 4. 

2. BASICS OF THE DOPPLER BLOOD VELOCITY METER. 

2m1 Signal Characteristics. 

For a Doppler instrument with ultrasound carrier frequency f0 ~ 

blood cells with velocity v give a Doppler shift 

f 2 f 
v cos ex 

d = 0 c: 

- 3 -

( 1) 



where cis the speed of sound in blood (1560 m/s), and ~is 

the angle between the beam direction and the velocity vector. 

In blood velocity measurements, the backscattered Doppler signal 
x(t) is a zero mean, complex Gaussian process [10J. In a pulsed 
Doppler system, samples <x<k>> are obtained for the time instants 
<kT5 >, k integer, where the sampling frequency fs = 1/Ts is 
the system PRF. The complex Doppler signal can be decomposed 
into its real quadrature components x and y by 

x(k) - x(k) + j y(k) (2) 

A zero-mean Gaussian process is entirely characterized in terms 
of its second order moments. All information about the velocity 
field available in the signal is therefore contained in the auto
correlation function, 

(3) 

where * denotes the complex conjugate, and < > denotes an 
ensemble expectation value. The Doppler signal from a time 
invariant velocity field is stationary [10J, which means that 
Rx~<n,k) only depends on the lag n-k. All information is then 
contained also in the pow•r •p•ctrum, 

CD 

Gxx<w> ~ t R~~<k,k+n>e-jnwT• (4) 
n•-• 

Under idealized conditions, the power spectrum becomes a mapping 
of the velocity distribution within the sample volume, such that 
the power in a small frequency interval is proportional to the 
blood volume giving rise to the Doppler shifts in that range. In 
practice, the mapping from velocity distribution to power 
spectrum is blurred by the transit time affact, which occurs 
because each scatterer that travels through the sample volume 
contributes to the signal with a finite duration Doppler burst of 
random amplitude and phase. This causes the Doppler signal to 
become incoherent; its autocorrelation function decays with 
increasing lag even in the case of plug flow. It can be shown 
that when the axial transit length Lt of the blood cells 
along the sample volume is bounded, then 

R)(X"<k,k+n> = 0 for In I > My 

where 

Lt fs 
My • = 2/\ fd Ts Y CDS ac 

Eq. (1) was used to eliminate the axial 
Y cos ~. The parameter 1\ = Lt/~0 is the 
length, measured in ultrasound wavelengths 
frequency. Eqs. (5) and (6) follow directly 
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velocity component 
normalized transit 
~D of the carrier 
from an expression 



for the autocorrelation function derived by Angelsen [10, <29) 
with z 1 = z 2 J. They imply that in the plug flow case, theo 
Doppler signal can ba modeled as a Moving Average <MA> process of 
order Mv. 

In the general case, there will be velocity gradients in the 
sample volume. The signal can then, by linearity, be modeled as 
a sum of a large number of independent MA processes of different 
orders. It then becomes a MA process of order 

where fmin is the smallest Doppler shift originating from the 
sample volume. 

The length of the sample volume .is determined by the number of 
oscillations in the Doppler burst received from a point scatterer 
that travels along the beam axis, which in turn is determined by 
both the duration of the transmitted burst and the overall system 
bandwidth. Typical values for 2A may range from 4 - 20, 
depending on the system resolution. For a Doppler shift of 
magnitude PRF/4, the order of the signal MA process then varies 
between 16 and 80. 

Alternately, the transit time effect may be described in the 
frequency domain. In the plug flow case, the transit time 
bandwidth of the Doppler signal is on the order of C111 

(8) 

With velocity gradients in the sample volume, Bt becomes a rough 
measure of the width of the finest details that can be resolved 
in the Doppler spectrum in the vicinity of the frequency fd. 

Note that <6> was derived using the far-field 
the sound field. In the near field, Mv will be 
indicated by <6>, since spectral broadening 
fluctuations in the sound field then dominates 
time broadening (17]. 

2.2 Analysis techniques. 

approximation to 
even smaller than 

caused by rapid 
over the transit-

The power spectrum is defined for an infinite observation 
interval, and gives no information about temporal variations of 
the velocity field. However, under laminar conditions, the time 
variations of the blood velocity are rather smooth; frequency 
components above 10 - 15 Hz contribute little to the flow 
waveform in the adult arterial system [121. This justifies 
the use of a quasistationary approach, in which the backscattered 
signal is assumed to be stationary when observed for a suffi-
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ciently short period of time. This period is on the order of 
10 ms for measurements in the central circulatory systema 
Spectrum analysis of a K sample signal segment with KT• ~ 10 ms 
then gives information about the instantaneous velocity distri
bution in the sample volume. 

The modified periodogram is a commonly used spectrum estimator 
for analysising Doppler signals from blood. At the time kTs, it 
is defined as 

~x>e<k,w;K> ~ 
K 

A -jnwT 2 It wa<n;K>x<k+n-K/2)e •I (9) 

n=-1 

The K sample sequence <w.<n;K>> is a smoothly tapered time window 
that reduces sidelobes 1n the spectrum estimate. It is norma
lized such that its energy <sum of squared coefficients> is 
unity. When the Doppler signal is stationary, the expectation 
value of the periodogram is (15] 

<~)()(<w;K>> = Wa<w;K> e G~)((w) ( 10) 

where • denotes convolution and 

(11) 

is a spectral window associated with the time window (wa<n;K))o 
A good spectral window has a narrow mainlobe at w = 0, and small 
sidelobesa The modified periodogram thus is a biased estimator; 
the nonzero width of its resolution window may cause blurring of 
spectrum details. This analysis broadening affect becomes 
negligible at a given Doppler frequency if the mainlobe width is 
much smaller than the transit time bandwidth at that frequency. 

The window's statistical bandwidth may be used as a measure of 
its mainlobe width. It is defined as (13] 

w5 /2 

IJdw Wa<w;K> I 
2 

1 -w5 /2 ka 
Ba A T1r ws/2 -KT's 

(12) 

Jdw 
2 

Wa<w1K> 

-w5 /2 

where the shape factor ka ~ 1 is on the order of unity 1
m Com

bining <8> and <12) now gives the equivalent requirements 

!Hanning window gives ka 2a1~ rectangular window ka 
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<=> (13) 

Note that ka was set to unity in the derivation of this for
mula, since no corresponding shape factor was included in <8>. 
The number of samples required is inversely related to the frac
tional Doppler shift fd/f 5 • For a unidirectional velocity 
field, aliasing errors occur when the fractional Doppler shift 
exceeds unity. 

Short time spectral analysis inevitably leaves uncertainty in the 
estimate. The fractional variance, defined ~s 

(14) 

where Var((•)) is the variance operator, is well suited as a 
performance measure in this respect. The following relation 
holds for the periodogram of a complex Gaussian signal [14], 

Fracvar<~~~<w;K>> = 1 (15) 

The uncertainty of the periodogram is, therefore, very large; on 
a logarithmic scale the standard deviation of the estimate is 
equal to 5.6 dB [14]. 

There are two common methods for reducing the variance of the 
modified periodogram when the length of the data record to be 
analyzed is fixed; both of which cause a decreased frequency 
resolution. One is to smooth the modified periodogram by 
convolving it with a suitable spectral window Wc<w> of band
width Be > Ba• The variance of the smoothed spectrum is then 
reduced to <see Appendix for proof) 

Fracvar<~xx<w;K> • Wc<w>> ~ (16) 

which holds when Be >> Ba· The constant k~ is approximately the 
same as ka for smoothly tapered windows. Under the same condi
tions, the resolution of the smoothed periodogram reduces to Be, 
approximately. 

A different approach to variance 
data record into M subsegments of 
overlap between adjacent segments 
[15J. The final spectrum estimate is 
of the modified periodograms of the 
the variance becomes 
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reduction is 
lengths K~ 

on the order 
then formed 
subsegments. 

to split the 
< K, with an 
of 50 percent 

as the average 
In this case, 



1 M 
Fracvar<M t ~xx<k+nq,w;K 7 )} = 

n=1 
q 2 1 <17) 

where the overlap fraction is <K'- q)/K'. The constant kM is a 
function of the overlap, being unity for nonoverlapping segments 
<q > K7

). For typical tapered windows <Hanning, e.g.> it 
increases only slightly above unity when the overlap is increased 
from zero to approx. 50 percent C14J. Apparently, the resolution 
of the averaged periodogram is the same as for a K' sample 
modified periadogram. 

The use of periodogram techniques in Doppler signal analysis can 
be justified by the fact that a K sample periodagram models the 
Doppler signal as a MA process of order K. Intuitively, selec
ting K = Mv should then be a sufficient requirement to avoid 
analysis broadening. The stronger requirement <13> occurs 
because the finite K modified periodogram is a biased estimator 
of any nonwhite spectrum, including that of a MA process of order 
K. 

3. THE MISSING SIGNAL ESTIMATOR. 

3c1 Basic approach 

An algorithm for the filling in of the missing Doppler signal 
segments during the imaging interrupt periods, a ~Missing Signal 
Estimator' <MSE>, is derived in this section. It is assumed that 
the interrupts are so short that the Doppler signal can be 
modeled as a stationary process during N samples prior to, and 
throughout the interrupta The problem can then be stated as; 
given N samples <x<k>>~ of a stationary, complex Gaussian MA 
process; how should the process be extrapolated far k > N? 

At first glance it may seem natural to do the signal filling by 
least squares linear prediction methodsc However, the corre
lation time of the Doppler signal is much shorter than the 
interrupt. Any MMSE estimate of a zero mean random process 
will rapidly decay to zero during this timeframe, implying that 
standard extrapolation algorithms will not perform well. 

A more fruitful approach is to identify a model for the Doppler 
signal on the oasis of the samples given, and let this model 
generate a synthetic Doppler signal during the interrupt. If the 
power spectrum of the Doppler signal is known, such a signal can 
be generated by passing Gaussian white noise throu~h a linear 
filter with transfer function H<w>, satisfying IH<w> I = Gxx<w>. 
The output of the filter and the real Doppler signal then would 
be sample functions from the same ensemble, with equivalent 
information contents. 

Based on the above, the following approach seems viable: A 
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spectrum estimate 6~~<w> is computed from the known signal sam
ples. The estimate is used to design a filter which satisfies 
IH<w>l2 = 6~~(w). When Gaussian white noise is passed through 
this filter, a stationary Gaussian process is synthesized. A 
segment of this process can be used as a replacement for the 
missing signal during the interrupt period. The filter design 
part of this problem is developed in the next section. A method 
for adjoining the measured and the synthesized segments in a 
smooth way is derived in Section 3.5. 

3.2 Synthesis of a Gaussian signal with a specified spectrum. 

In Section 2 it was argued for the use of standard Fourier trans
form techniques in the estimation of power spectra of Doppler 
signals from blood. The N sample modified periodogram, there
fore, forms a suitable basis for the determination of the trans
fer function of the synthesizer filter. Initially, assume that 
the filter is of an all-zero form, i.e., 

• 
H<w> = t h<m>e-jmwTs (18) 

m=-• 
where (h(m)} is a set of complex coefficients that must be 
chosen to satisfy . . 

t h<m>e-JmwTs (19) = 
m=-• 
where T(w) is an arbitrary phase function. Multiplying both 
sides of this equation with •xp(jnw> and integrating from -w./2 
to w5 /2 on both sides then yields 

w5 /2 

Jdw v~~~(N/2,WIN)ajT(W) lejnwTs (20) 

-w9 /2 

It turns out that the ~allowing phase function is advantageous; 

N 
T(w) = arg{ E w5 <k;N>~<k>a -jkwT•> 

kal 
{21) 

where <w5 <k;N>> is the 
periodogram ~~~<w1N>. 
now yields 

1 
h<n> = 

= { 0 

N point window associated with the 
Substitution of <9> and <21) in <20) 

(22) 
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The synthesizer filter thus becomes a FIR filter of order N, 
with coefficients that are simply windowed signal samples. Note 
that, because of the phase function chosen, no spectrum esti
mation needs to be carried out in the computation of the coeffi
cientsm The synthesis equation for a stationary, artificial 
Doppler signal thus becomes 

N 
x<k> = t h<n>v<k-n> 

n=l 
(23) 

where (v(n)) is a Gaussian complex white noise process with the 
properties 

<v<k>> = o 
<O*<k>v<n>>> = akn 

(24) 

(25) 

and 8kn is the Kronecker delta symbol. The synthesized signal 
is a MA process of order Ne By linearity, when the noise exci
tation is ·Gaussian, the synthesized signal is Gaussian alsoe 

The auto- and cross-correlation functions of the quadrature 
components x,y of a complex Gaussian process satisfy the sym
metry relations Rxx<k> ~ RY.y<k) and Rxy<k) = Ryx<k> [10lm It 
can be shown that the quaarature components of the synthesized 
signal will not satisfy these relations unless the excitation 
(v(k)} is complex, with identically distributed, jointly un
correlated quadrature components <stated -without proof>. For 
optimum quality synthesis it is necessary that these criteria 
be satisfied, even if the spectrum of the synthesized signal is 
the same for any type of white noise excitation <see Section 5). 
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Re<x<k>> 

Re<v<k>> 

Im<x<k>> 

Figm 1 Structure of the synthesis filter. The individual filters 
are designated with their impulse responses. 

The structure of the synthesis filter is shown in Fig. 1. The 
complex excitation requires the use of four FIR filters, each of 
order N, in a structure similar to the well known FFT butterfly. 
Note that only two filters are required if a real valued exci
tation is useda 

The computational complexity of the synthesis operation can be 
reduced by using a noise excitation with quadrature components 
that are binary distributed {-1,1}, instead of being Gaussian. 
The operations in <23) then reduce to a set of additions and 
subtractions, depending on the sign of the noise samples. With a 
reasonably large N, the synthesized signal still approximates a 
Gaussian process, according to the Central Limit Theorem. 

3.3 Spectral properties of the synthesized signal. 

It is of interest to quantify how well the properties of the 
synthesized signal approximate those of the original Doppler 
signal. The synthesized signal is· formed as a combination of 
sample functions from the two independent stochastic processes 
<x<k>> and <v<n>>, and a deterministic time window of length N 
(see Fig~ 2). Its spectrum therefore becomes a random variable; 
different sample functions of the ensemble of the measured 

- 11 ~ 



Doppler signal yield, in general, synthesized signals with dif~e
rent power spectra. It follows from <10> and the preceding 
derivation that the expected spectrum is 

2 W5 <w;N> • G~~(w) (26> 

where the subscripts 0,~ indicate averaging over the ensembles 
of the noise excitation and the Doppler signal, respectivelyo 
The convolution with the coefficient spectral window W5 <w> may 
cause the spectrum of the synthesized signal to become broader 
than the original. This effect occurs for the same reason as the 
analysis broadening effect previously discussed; its implications 
are therefore the same. By analogy with (13>, its influence on 
the spectrum at the frequency fd can be neglected if 

(27> 

Similarly, the fractional variance of the power spectrum becomes 

(28) 

The large variance implies that the power spectrum of an arbi
trary sample function of the synthesized signal may deviate 
strongly from its expected value. This type of bias differs from 
the broadening effects previously discussed; it results from the 
use of the high-variance modified periodogram to form the coeffi
cients of the synthesizer filter. If <19) were solved for the 
coefficients using a lower variance spectrum estimator, the 
variance of the spectrum of the synthesized signal would also 
become lower. However, this variance reduction would have taken 
place at the expense of a decreased frequency resolution. More
over, the simple relation between the signal samples and the 
filter coefficients would be lost. 

- 12 ~ 



ENSEMBLE <~<n>> <h<n>> 

X 

ENSEMBLE 

v 

Fig. 2. The synthesized signal as 
chastic processes X, 
window (w5 <n;N)}s 

COEFF

ICIENTS 

v<k> • h<n> 

FIR - FILTER 

a combination of the sto
V and the deterministic time 

3a4 Spectrum analysis of the synthesized signal. 

Suppose that the synthesis method is employed in a Doppler in
strument where the output of the synthesis filter is monitored by 
a K sample modified periodogram spectrum analyzer. The expected 
value of the periodogram becomes 

(29) 

Thus, the net spectral window of the combined synthesis/ana
lysis operation is the convolution between the analyzer and 
the synthesizer spectral windows. The one with the larger band
width becomes the limiting factor in terms of resolution. 

The variance of the estimate is somewhat more difficult to com
puteD Initially, assume that K >> N. The modified periodogram 
then becomes essentially unbiased, and it follows that 
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~ ~ A N 
Var<~x~<w;K>> = <<Var<G~~<w;K> l<x<k>>t>>Q>~ 

~ Var<~x~<NI2,w;N>> + <~~~<NI2,w;N>>2 

K >> N (30) 

i.e.~ its fractional variance is two. On a logarithmic scale, 
this corresponds to a standard deviation of the estimate equal to 
9.8 dB [14]. The poor performance occurs as a result of using 
high-variance spectrum estimators as the basis for both synthesis 
and analysis .. 

Assume instead that a low-variance spectrum estimator is employed 
in the analysis, e.g., the method that averages a number of K 
sample modified periodograms of signal segments with approx. 50 
percent overlap. If K << N, the finite resolution of the spec
trum estimator causes considerable smoothing of the power spec
trum (see <29))g This is equivalent to the frequency domain 
smoothing discussed in <16>; the effective analysis bandwidth now 
becomes Ba = ka/KT • If a sufficiently large number of periodo
grams is averaged, ~he variance of the analysis operation becomes 
negligible compared to the variance of the expected value over 
the ensemble of ~' and the attainable variance according to <16) 
becomes 

M 
Fracvar<t ~x~<k+nK/2,w;K>> 

n=l 
M 

Fracvar<<t ~x~<k+nK12,w;K>>o>x 
n•1 

~ 

Fracvar<Wa<w;K> • G~~<NI2,w;N>> 

~ K 
N K << N, N 

M >> i( (31) 

where ks = ka is the shape factor of the coefficient window 
<w

5
<k;N>. Therefore, if the ratio Q • N/K can be made large, a 

low-variance spectrum estimate is obtained from a synthesized 
signal based on the simple method employing windowed signal 
samples. This ratio becomes in a sense a quality measure on the 
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combined synthesis/analysis operation. The duration of the data 
segment that forms the basis for the synthesis is Tm = NTs· If 
K is adjusted such that <13) is satisfied with equality, the 
quality factor becomes 

N 
Q = K' (32) 

In Doppler/imaging timeshared operation at a fixed frame rate, 
Tm will also be fixed. The attainable quality of the combined 
synthesis/ analysis operation then improves in proportion with 
the Doppler shiftm 

3.5. Signal filling using th• synthesized signal. 

In timeshared imaging/ Doppler operation, the ,measured Doppler 
signal is interrupted on the interval N < k i N1 , and the fill
ing in of the missing samples must be performed on the basis of 
<x<k>>~- Even if a synthesis algorithm for a stationary signal 
was aer1ved in Section 3a2, it is not evident how the measured 
and the synthesized signals should be adjoined. The synthesis 
method yields a signal of infinite time duration, which needs to 
be truncated to a segment of duration on the order of N1 - N 
samples, without changing its spectrum significantly. A study of 
how the synthesized signal is generated gives insight into the 
truncation problem. To do so, (23> is rewritten as 

k-1 
~5 <k> = t O<m>h<k-m> 

m•k-N 
v k (33) 

showing that each complex noise sample O<m> excites a correspon
ding signal burst O<m><h<k-m>>, k • m+1, •• ,m+N, with random 
complex amplitude. Thus, the synthesized signal is formed by 
incoherent addition of proportional bursts with different times 
of arrival. Its power spectrum is then proportional to the 
magnitude squared Fourier Transform of each burst. Note the 
strong similarity with the way the original Doppler signal is 
generated; independent scatterers with different time of arri
val then each contribute to the signal with finite duration 
bursts of proportional shapesa Apparently, the shape of the 
expected spectrum will not change if the synthesized signal is 
truncated simply by employing a finite number of bursts. This 
is obtained by using a finite length noise excitation. 

For this situation, it is appropriate to turn on the noise exci
tation on the interval 1 i k i N1 • This yields a synthesized 
signal with a smoothly tapered envelope that is nonzero for 
1 i k < Ni + N. By inspection of <23>, this substitute segment 
can be written as 
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r 
1 

min<k,N) 
~ A A 
~ w5 <n;N>x<n>v<k-n> 

n=max{l,k-Ni+l> 

0 

k = l, •• ,Ni+N-1 

(34) 

elsewhera 

where the properties of the excitation have been defined pre
viously <<24> and (25>>. Even if this signal is of a finite 
duration, its expected power spectrum is the same, within a con
stant factor, as for the infinite sequence generated by <26). 

The normalized envelope of the substitute signal is defined as 

e<k> ~ 

{ 
0 

min<k,n) 
2 

t w5 <n;N> 
max<l,k-Ni+l) 

k =- l, ... ,Ni+N-1 

(35) 

els•wh•ra 

It increases smoothly from zero to unity during samples 1 to N 
<the square sum of the window coefficients is unity>, and de
creases to zero again from sample N1 +1 to Ni+N-1 <see Fig. 3>. 

The substitute segment must be adjoined with the measured signal 
in a way that gives a low disturbance of the output. A viable 
method is to add the substitute segment and a windowed version of 
the measured signal, i.e., 

(36) 

where {~f(k)} designates the ~filled~ Doppler signal that is 
presented to the operator. The window (Wf(k)) can be deter
mined uniquely by requiring the envelope of the filled signal to 
be time invariant, 

v k (37) 

Assuming <O<k>~*<I>> = 0 V k,l then yields 

(38) 

which is illustrated in Fig. 3. The approach chosen leads to a 
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fade out/ fade in type of use of the measured signal, with two N 
sample transition periods where tHe measured and the substitute 
segments both contribute to the output. 

Figu 3. 

<e<k>> 

Envelopes of the synthesized 
during an interrupt <Hanning 
cients assumed>. 

and the measured signals 
windowed filter coeffi-

4. EXPERIMENTAL EVALUATION. 

A hardwired 8 bit digital MSE was designed and built on 320 cm2 
of printed circuit board areas The number of samples N used in 
the synthesis filters could be chosen from the set 
{16,32,48,64,96,128,192,256}, with maximum sampling frequency 
limited to 41 kHz. A high speed/complexity ratio was made pos
sible by the use of a degenerated noise excitation; adjacent 
samples of the white noise excitation defined by (24) and (25> 
were interleaved with zeros such that only 16 complex noise 
samples contributed to the output at any time instant. The 
degenerated noise sequence can be written as 

~(k) a { 

0<16k/N) <16k mod N> • 0 
(39) 

0 elsewhere 

where (16k mod N> is the remainder of the integer division 16k/N 
<N is an integral multiple of 16). The power spectrum of the 
degenerated noise is flat, but it has, apparently, fewer degrees 
of freedom than a full-bandwidth white noise sequence. This is 
reflected by the fact that its modified periodogram is periodic, 
i.e. 

n ~ o,t, .. ,N/16 (40) 
K = mN, m • 1,2, ••• 
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The Doppler instrument was set for operation with 23 ms inter
rupti at 15 Hz repetition rate. This corresponds to 15 Hz 
imaging with 16 ms image data acquisition per frame; the addi
tional 7 ms were needed for settling of the Doppler highpass 
filters (fc = 400 Hz> after an interrupte The signal filling 
scheme outlined in the previous section was employed during each 
interrupt, using Hanning windowed filter coefficients. The 8 bit 
AID convertion was preceded by a fast AGC to reduce saturation 
effects during the synthesis data acquisition periods. 

The data collecting time to the synthesis filter Tm = N/f 5 must 
be chosen subject to conflicting requirements. It should be long 
to avoid broadening effects and give a reliable spectrum esti
mate <see <27>, (31>>. On the other hand, the quasistationarity 
assumption is violated if Tm is much larger than 10 ms. Also, 
the lengths of the transition periods in Fig. 3 increase with Tm, 
so that an increased acquisition time leads to a reduction in the 
amount of real data in the filled signal. It was found from 
experiments that a nominal value of 10 ms was a reasonable 
compromize. With f 5 as the independent variable, N was chosen 
from the available set such that Tm : 10 ms. This gives a maxi
mum spectral resolution equal to 210 Hz in the synthesized 
signal (follows from <26> and <12>>. 

The output of the MSE was evaluated by both listening to the 
quadrature components of (~f(k)} and by spectrum analysis. The 
spectrum analysis was done on a K = 64 Hanning windowed DFT 
computer with 1 ms computation time2a Modified periodograms of 
eight consecutive signal segments were averaged to reduce vari
ance; the length of the non-overlapping part of two adjacent 
segments was fixed at 1 ms, and the average was updated every 
millisecond for display and hardcopy on a stripchart recorder. A 
typical spectral display is shown in Fig. 4, together with the 
outputs of the synthesis MSE and a correspondingly parametrized 
repetition-type MSE as mentioned to in the introduction <see [7] 
for further information)e Some distortion due to undersampling 
can be noticed in both, especially during the upstroke of the 
velocity waveform. For the repetition-type MSE this shows up as 
breakups or dual upstrokes; for the synthesis type the spec
trum either breaks up, or is ~held' during the interrupt. The 
basic features of the waveform, however, are retained in both 

2pco-4, VINGMED a/s~ Harten, Norway 
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~) 

5 kHz 

b) 

C) 

Figc 4. 

1 s 

Spectral displays of signaa from the common carotid 
artery, measured with 5 MHz pulsed Doppler, sample 
volume length 11 mm, and 12.5 kHz PRF. The three 
panels show different heartbeats of a healthy person in 
steady state physiological conditions. 
a) Original signal. 
b} Timeshared operation with synthesis type MSE, 

N = 128. 
c) Timeshared operation with repetition type MSE. 
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cases~ For the case shown, the ratio 
ment with <31>, no severe increase 
in the spectral display in Figu 4(b)e 

K/N was 0.5, so in agree
of variance ·can be noticed 

The synthesis MSE was tested using a variety of signals. The 
quality of the audio output was in general very goodm For nar
row-to-medium bandwidth signals <relative to fs> it was hard to 
discriminate between the output of the MSE and the original 
noninterrupted signal. Very wideband signals, such as white 
background noise or signals from veins, had a somewhat more arti
ficial quality, although no deterioration could be noticed in the 
spectral display. In general, the audio quality of the synthesis 
type MSE approximated that of the true Doppler signal more 
closely than the repetition type MSE; the latter suffered from a 
modulation-like type of distortion, especially when law frequency 
Doppler shifts were present. 

Experiments with both Gaussian and binary excitations were per
formed, with no perceivable difference in performances Binary 
noise was preferred eventually, as it gave less quantization 
noise with the actual hardware. It was also found that a complex 
excitation performed markedly better than a real excitation with 
the same degrees of freedom. The latter tended to give rever
beration-like effects in the synthesized audio signal, especially 
when low frequency signals from tissue <wall thumps) vere pre
senta 

One problem area was moving valves in heart measurements. These 
tended to sound distorted and become elongated in time; the 
transient nature of these signals clearly violated the statio
narity assumption. Moreover, their amplitudes were normally much 
larger than the amplitude of the signal from blood, so that it 
was hard to avoid saturation in the A/D conversion. 

S. DISCUSSION AND CONCLUDING REMARKS. 

The new MSE algorithm yields a filled signal with a spectral 
display that is essentially a ~track and hold~ approximation to 
the true one: The spectrum is ~held~ during the interrupt pe
riods, and the transitions between the ~hold 7 and the 7 live, 
segments of the spectral display are smoothed by the simultaneous 
use of measured and synthesized signals in these periods. Whe
ther or not this is a good approximation to the true velocity 
waveform depends on the duration of the interrupt compared to the 
rate of change of the velocity. For an interrupt on the order of 
25 ms, the stationarity assumption is violated during the up
stroke of the velocity in an artery. Signal filling by means 
of a stationary process then inevitably leads to a spectral 
display with a poor representation of rapid velocity changes. In 
the audio signal, however, this effect is much less noticeable. 
The representation of rapid velocity changes may be improved by 
reducing the interrupt time, e.g., by using a small number of 
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scan lines in the 20 imagea 

Eq. (40) indicates that the simplified excitation (39) intro
duces deterministic components in synthesized signals of band
widths greater than 16f 5 /N (corresponding to 1600 Hz bandwidth 
for a data collection time Tm = 10 ms>. This is probably the 
reason why the audio quality of synthesized wideband signals was 
poorer than that of the more narrowband signals. This effect 
would have been avoided by the use of a full-bandwidth white 
noise excitation. 

The benefit of using a complex valued excitation was surprising 
at first. The explanation is that for low frequencies (on the 
order of 1/Tm>, the amount of data acquired to the synthesis is 
sparse, and due to random variations, the energy of the coeffi
cient set <w<k;N>Q<k>} may become unevenly distributed between 
<w<k;N>Re(~(k)}} and <w<k;N>Im(x(k)}. Because of the cross
coupling between the quadrature components illustrated in Fig. 1, 
this unbalance is not transferred to the synthesized signal when 
the excitation is complex. With a real excitation, however, the 
powers of the real and the imaginary parts of the synthesized 
signal remain unbalanced for the entire interrupt period. This 
problem is encountered in the audio only; the spectrum calculated 
on the basis of the complex signal does not depend on how the 
power is distributed between the quadrature components. 

The synthesis method derived in this paper resembles that used in 
speech processing, where white noise excitation of a programmable 
IIR filter is used to synthesize unvoiced sounds, whereas a 
deterministic impulse train excitation is used to generate voiced 
sounds. The simplified excitation (39> is in essence a hybrid of 
the two. It is interesting to note that if the single-impulse 
excitation <O<k)} = 8Nk is chosen in <34>, and the data collec
ting time Tm is chosen equal to the net interrupt time, the 
synthesis MSE degenerates to a repetition-type MSE. 

In conclusion, the new MSE scheme gives better results than the 
repetition scheme described previously. Most of the limitations 
encountered in the experiments were caused by the hardware imple
mentation, rather than being fundamental. Although this paper 
has dealt exclusively with pulsed Doppler systems, the scheme 
applies equally well to CW systems. The algorithm allows for the 
design of timeshared Doppler/real time imaging systems where high 
frame rate imaging introduces only minor disturbances or limi
tations to the Doppler measurement. 
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APPENDIX 

Variance of the Smoothed Modified Periodogram 

Assume a sampling frequency of unity <T5 = 1>. 
modified periodogram is then defined by 

w 

S<w> = Jdn Bx~<n>Wc<n-w> 
-w 

The smoothed 

<A1> 

where Wc<w> is a real valued smoothing window with statistical 
bandwidth Be >> ka/K. For simplicity, it has been assumed that 
Wc<w> is periodical with period 2w. The variance of S<w> is 
given by 

When the signal is a complex Gaussian process, the covariance of 
the modified periodogram is given by [14] 

Cov<~x~<w>,~~~<w+4>> 
w 

= ~ IJd~ W<~>W<4-~>Gxx<w-~-A> 12 

<2w> -w 
where 

W<w> 

<A3> 

<A4> 

is the frequency response of the modified periodogram time win
dow. Eq. <A3> shows that periodogram spectral estimates spaced 
more than one mainlobe width apart <4 > ka/K) are essentially 
uncorrelated. Because of the larger bandwidth of the smoothing 
window, the term Cov<~xx<n 1 >,~xx<n1 +n2 >> therefore behaves as a 
delta function in the integrand of lA2J. This gives the approxi
mation 

w w 

var<S<w>> = Jdn 1 1Wc<w-n1 >1
2 

Jdn2 cov<Bxx<n1 >,sxx<n1+n2 >> 

-w 

where <A3> has been inserted. 
the spectrum is much larger than 

Now assume that the bandwidth of 
ka/K. The frequency responses 
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W<~>, W<n2-~> then behave as delta functions in the two rightmost 
integrals in <A5), which gives the approximation 

Var(S(w)} z 
w w w 

1 
Jdn1 1Wc<w-n1 > 1

2 G~~<n 1 > Jdn2 IJd~ W<~>w<n2-~>1 2 

<2w> 2 
-w -w -w <A6> 

Finally, assume that the bandwidth of the spectrum is much larger 
than that of the smoothing window W (w)a Arguing along the same 
lines as previously then gives the ~allowing expression for the 
variance; 

Var<S<w>> z 

1 

<2w> 2 

11' 

G~~<w>J dn 1 1Wc<n1 >1
2 

-w 

w w 

Jdn2 IJd~ W<~>W<n2-~> 12 

-11' -11' <A7> 

Under the same assumptions as previously, the expected value of 
the smoothed modified periodogram becomes 

1f 1f 

<S<w>> z ~ Gx~<w> Jdn1 Wc<n 1 >J dn2 lw<n2 >1
2 

-w -w 

which yields the fractional variance 

a" a 

<AS> 

Fracvar<S<w>> = <A9> 
~ 

where Be is the statistical bandwidth of the smoothing window 
<compare with the definition (12>>, and Ba is given as 

1f w 

Jdw IJdn w < ru w < w-n > 12 I( 
4 t wa<k;K> k" 1 -11' -11' k = 1 a 

B' = 2i" = = <AlO> a w 

~!dw IW<w>I 2 J 2 K 2 2 K 
Ct wa<k;K> l 

k = 1 

The time domain version of the equation was obtained by substitu
ting <A4> into both the numerator and denominator of the fre
quency domain expression, and then interchanging the order of 
summation and integration. The bandwidth Ba is the inverse of 
what may be called the ~statistical time duration~ of the time 
window <wa<k;K>> <compare with <A4>>. The constant ka is a 
function of the window shape. It is unity for the rectangular 
window and 1.94 for the Hanning window. For smooth, tapered win
dows ka and ka become nearly equal, which implies that Ba z Ba· 

For sampling frequencies different from unity, the denominators 
of <A10) must be multiplied by T5 • 
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