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ABSTRACT 

This work is devoted to the modelling and design of ultrasonic 

transducers for cardiographic echo imaging and doppler 

velocity measurements. The model for transient wave 

propagation is based on the spatial impulse response method. 

The model is used to study the focusing of planar and 

spherical discs, and of annular arrays. The required number 

of array elements and the optimum focal length are found. The 

transmission line model is used to model the transducers. A 

design with one quarter wave matching layer and a light 

backing is found to meet the requirements for both echo 

imaging and doppler velocity measurements. The theoretical 

results are verified experimentally. A single element and a 

two element transducer are made and the measured diffraction 

patterns are in good agreement with the theory. 
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1. INTRODUCTION 

Transient field propagation from ultrasonic pistons is the 

subject of this thesis. The purpose is to develop tools to 

simulate and design transducers for both cardiographic echo 

imaging and doppler velocity measurements. 

Ultrasonic pulse echo systems are widely used in medical 

examinations. Best known is the prenatal examination, but 

also the heart, the liver and other organs are examined using 

ultrasound. 

An important parameter in an imaging system is the resolution 

of the image. In an ultrasonic imaging system it is most 

often the transducer that represents the limitation. The 

capability of the transducer to generate short pulses limits 

the depth resolution. The diffraction from the aperture 

limits the lateral resolution. 

The doppler velocity measurements have become very important 

in cardiological examination. The flow velocity of the blood 

is calculated from 

wave from the blood. 

the frequency shift in the backscattered 

A most critical parameter here is the 

sensitivity of the system. 

It is often desirable to combine imaging and velocity 

measurements in one and the same system. This requires a 

transducer with high sensitivity as well as a large bandwidth 

to produce short pulses. 

For the depth resolution to be better than one millimeter, it 

is necessary to use a frequency of at least 3 MHz. On the 

other hand the losses in biological tissue are approximately 

proportional with frequency. Thus, the sensitivity decreases 

as the frequency increases, and the choice of frequency here 

will therefore be 3 MHz. Depending on the application, 

transducers 

today. 

in the range 1-10 MHz are in use in cardiology 
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The lateral resolution is given mainly by the aperture of the 

transducer. The imaging depth ranges from about 2 em to about 

15 em. In the near field the resolution will gain from a small 

focused aperture. In the far field the resolution will gain 

from a large unfocused aperture. For heart imaging the choice 

of diameter will be in the range 10-20 mm, also limited by the 

space between the ribs. In the choice of focusing and 

apodization there are no restrictions. 

This work has two goals: 

1 • 

2. 

To develop a computer 

piston transducers and 

such. 

simulation program for analysing 

transient wave propagation from 

To design 

imaging and 

transducers for simultaneous two-dimensional 

blood velocity measurements based on 

mechanical scanning. 

The calculations of transient wave propagation are based on 

the spatial impulse response method [1,2,3]. In Chapter 2 the 

theory for this will be given. A model for the total echo 

response will be presented and losses will be included in the 

model. 

Calculations of 

line model [4]. 

the transducer. 

the transducer are based on the transmission 

In Chapter 3 this model is used to analyse 

In particular we will seek to increase the 

reducing the sensitivity. Quarterwave bandwidth without 

matching layers are well suited to meet these requirements. 

Calculations of transient fields are presented in Chapter 4. 

We shall see how the transmitted pulse and the aperture in­

fluence both the diffraction and the pressure pulse. The 

focal length is influenced both by a lens and by the 

excitation pulse, and we shall investigate the relationship. 

Dynamic focusing is achieved by controlling the time delay to 

the elements of an annular array. The number of elements 

required and the inprovement in resolution will be 

investigated. 
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Chapter 5 is the beginning of the experimental part. Here the 

design and measurements of the transducer elements will be 

presented. Chapter 6 presents the measurements of the 

diffraction fields. The measurements show that the 

calculations are in good agreement with reality. 

The echo response is the mos~ important figure for analysing 

an imaging system. Both calculations and measurements are 

presented in Chapter 7. On the basis of these it is possible 

to find the signature of different objects and obtain 

information about them. 
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2. THEORY OF TRANSIENT FIELDS 

In order to analyse a pulse echo system it is necessary to 

understand transient wave propagation. It is the pulse length 

and the beam width that gives the resolution of the image. 

The need to understand transient fields has led to the 

development of the spatial impulse response method. The 

method was initia~ed by P.R. Stepanishen [1,2,3) for uniformly 

further developed by Fink [ 5] • vibrating pistons and was 

Arditi [6) and Harris [7]. 

by Harris [8]. 

An overview of the method is given 

In this chapter we shall develop the spatial impulse response 

method. We shall demonstrate how the diffraction can be 

separated into a spatial impulse response and a surface 

velocity. Medium losses will be included, and finally we 

shall see how a pulse echo system can be modelled by the use 

of this method. 

The spatial impulse response method 

The starting ~oint for the spatial impulse response method is 

the Rayleigh integral [9], 

... 
tp(r,tl dS ( 2 . 1 ) 

s 

where tp is the velocity potential at the point ; at time t, v 
n 

is the normal velocity component at the surface S in position 
~ . ~ 

r
0

, and R is the distance between r and r
0 

as shown in fig. 2. 1. 

c is the sound velocity in the medium. 

In the strict sense this integral is valid only for a plane 

transducer in an infinite and rigid baffle. The infinite 

medium should be homogeneous, lossless and non-qispersive. 
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Fig. 2. 1. Geometry for the Rayleigh integral. 

As a typical excitation surface, consider a 3 MHz transducer 

element with diameter 12.7 mm or 25 wavelengths in water. This 

gives a highly directive beam and the influence of the baffle 

will be negligible. 

discussed later. 

The properties of the medium will be 

We assume that the normal velocity component as a function of 

time, v(t), is the same throughout the whole surface, but in 

such a manner that the amplitude, 
-+ 

A(r
0

), might vary as a 

function of position. Further, we assume that v(t) might have 

a time delay, as a function of the position. 

V ( -+r t) 
n o ' ( 2. 2) 

This form makes it possible to describe general apodization 

and focusing. The Rayleigh integral now takes the form: 

... 
lp(r,t) ( 2. 3) 

s 

By applying the convolution theorem for the Dirac o-pulse we 

can rewrite the expression 
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~ 

IJI(r,tl Jv(a) J 
-+ 

A(r
0

l 
o(t - R/c - T - o)dS do 

21TR 
s 

... 
v(t) * h(r,t) ( 2 0 4) 

Thus we have: 

... 
h ( r, t) O(t - R/c - T)dS ( 2 0 5) 

s 

This is called the spatial impulse response. We can see that 

the surface velocity v(t) of the transducer is to be convolved 

spatial. impuLse response to give the velocity 

This means that the spatial impulse response 
... 

with the 

potential.. 

corresponds to the veLocity potential in a point r at time t 

when the aperture s is excited by a o-pulse. 

The veLocity potential yields the pressure p, and the velocity 
-+ 
v: 

p(-;,t) Q 
a ... 
ot tj)(r,t) ( 2 0 6) 

... ... ... 
v(r,t) = -grad tj)(r,t) ( 2 0 7) 

Here g is the density of the medium. 

2 0 2 0 Dispersion and losses 

So far we have assumed the medium to be homogeneous, lossless 

and non-dispersive. 

conditions. 

In this section we will examine these 

An ultrasonic transducer used for cardiographic imaging is 

non-invasive. The beam penetrates the skin, fat, muscles, 

connective tissue and blood. The medium is by no means 

homogeneous. It is in fact the inhomogeneities that are the 



7 

origin of the scattered wave. The changes in acoustic 

impedance are however so small that the transmitted wave is 

not essentially decreased. Some data are listed in Table 2.1. 

Tissue Velocity Impedance 
[ m/ s J [Mrayl] 

Fat 1460 1 . 3 5 

Muscle 1540 - 1630 1 . 6 5 - 1. 7 4 

Blood 1 56 0 1. 62 

Liver 1530 - 1580 1 . 64 - 1. 68 

Kidney 1560 1. 62 

Bone 2700 - 4100 3.75 - 7.38 

Table 2. 1. Acoustic data 
from [ 1 o] . 

for some biological tissues taken 

We therefore- adopt the following model: 

- The sound propagates· in a homogeneous medium. 

- The objects are local variations in impedance and 

cwn be treated individually and independent of each 

other. 

In this model an object can also be a structure of variations 

in impedance. The layered structure of a wall should be 

treated as a single object, but the front wall and the back 

wall of the heart can be treated separately. In general it is 

reasonable to assume that two variations in impedance can be 

treated separately if the distance 

than one pulselength. 

between them is greater 

Losses in some biological tissues are shown in Table 2.2. We 

can see that the losses vary in both magnitude and frequency 

dependence. It is also here necessary to introduce some 

simplifications. We adopt the following model: 
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- The losses are the same throughout the whole medium. 

- The losses are proportional with frequency. 

This model is based on practical experience and the average 

losses are about 1 dB per MHz and em. 

Tissue Attenuation Frequency 
coefficient dependence 
at 1 MHZ ( 1-5 MHZ) 
[dB/em] 

Water 0.002 f2 

HemogJ.obin 0. 1 f1 3 

Soft tissue 0.3 - 1 . 5 f 

Muscle 1. 5 - 2.5 f 

Ivory bone 3 f 

SkuJ.l bone 1 0 f1 5 

Table 2.2. Data for losses and frequency dependence in 
bioJ.ogical tissue from [10]. 

This loss model can be included in the method with the spatial 

impuJ.se respon~e as shown by Fink [5). For a point source in 

an infinite baffle that is excited by a o-pulse, the veJ.ocity 

potential at a distance R can be written 

... 
h ( r, t l 

2 uR o(t - R/c) ( 2. 8) 

The Fourier transform with respect to time is: 

.... 
H ( r, w l 2uR e 

. w R 
- J c 

where w is the angular frequency. 

yields: 

2uR e 

. w R 
-J c e-·a.lwiR 

( 2. 9) 

Introducing the loss model 

( 2. 1 0) 



9 

Here cr is the attenuation per unit frequency and distance. The 

inverse Fourier transform gives us: 

.... 1 
h ( r, t) = 2crR 

( 2. 11 ) 
A 21T R 

Considering an aperture S the. spatial impulse response in Eq. 

(2.5) will become: 

2crR .... 
h ( r, t) dS 

A 

s ( 2. 12) 

Again we can use the convolution theorem foro-pulses. 

-+ 
h ( r, t) 

A 
s 

2 
a 

do dS 

( 2. 1 3) 

At this point we must introduce a simplification. R is the 

distance between the source and the observation point and 

therefore a variable over the aperture. For the attenuation 

however, this dependence is not important. It is in the far 

field that the. attenuation is important and there the distance 

is nearly a constant over the aperture. In the fraction which 

accounts for the losses we therefore replace the distance R 

with a constant r, which is the distance from the centre of 

the aperture to the observation point. Thus the expression 

for the losses can be put outside the integral. 

I 
2ct.r 

2 2 2 ct. r + a 

-+ 
h ( r. t) * 

-+ 

A(r
0

) I 
... 

O(t - R/c - T - o)dS do 
21TR 

s 

2ct.r 
( 2. 1 4) 

h(r,t) * l(_crr,t) 
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-+ 
h(r,tl is the spatial impulse response as in Eq . ( 2 . 5 l and 

l(a.r,tl will be called the loss function. This simplified 

expression ensures that it is only the spatial impulse 

response that depends on the aperture. 

It is important to note that the development above can be 

repeated for any loss function. The loss function that is 

used in the development is non-causal. Our knowledge about 

the losses is that the power decreases proportional with the 

frequency. Thus the module of the Fourier transform of the 

loss function can be written: 

I L ( Ul) I e-a.lwiR ( 2. 1 5) 

The next requirement is that the loss function must be causal. 

This can be achieved by letting the phase of the loss function 

be the Hilbert transform of the natural logarithm of the 

module. For computer simulations we can use the expression 

found in Oppenheim [11]: 

arg[L(UJ)]. 

where w is the 

principal value. 

1T 

~1T P flniL!Bl icotg<
8

;w)d9 

-1T 

( 2. 1 6) 

sampling frequency and P denotes the Cauchy 

By choosing this method we also have assumed 

that the function is of minimum phase. An analysis of this 

approach is given by Kuc [ 1 2] together with a Fortran 

algorithm for the Hilbert transform. In Fig. 2.2 is shown a 

computation of the loss function as a function of time with a.r 

equal to 1.72 ~s which corresponds to an attenuation of 1 

dB/em MHz and a depth of 15 em. 
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1.0 

c; 
.2 
u 
c; 

.z 
"' 0.5 "' 2 

Ill 

"' :J 
Ill 
u 

3 4 

Time (f.is) 

Fig. 2.2. The causal loss function with ~r 1 . 7 2 iJ s. 

We can see that the causal loss function goes to zero at t 

equal to zero, while the loss function in Eq. ( 2. 1 4) is 

symmetrical around t equal to zero. According to Eg. (2.14) 

the loss function is to be convolved with the spatial impulse 

response to give the attenuated spatial impulse response. If 

therefore the length of the loss function or the time constant 

~r is of the same order and longer than the non-attenuated 

impulse response, the losses will 

result. 

strongly influate on the 

Finally we will see if the losses lead to dispersion. The one 

dimensional wave equation for the velocity in 

viscuos losses is 

a medium with 

( 2. 1 7) 

where 11 and care constants. Assuming harmonic fields, the 

dispersion relation becomes 

2 
"Y 

2 
w 

2 
c 

+ jwr] ( 2. 1 8) 

Here j is the imaginary unit and -y is the propagation constant 

defined by 
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C1 ... j k ( 2. 1 9 l 

Here o. is the attenuation constant and k the wavenumber. 

Elimination of"( from Eq. (2.18) and Eq. (2.19) gives: 

2o.k 
lil 

( 2. 20 l 

( 2. 21 ) 

Introducing losses that are proportional with frequency 

we get 

k 
lil 

c 

( 2. 2 2) 

( 2. 23) 

Thus k is proportional with lil and the medium is 

non-dispersive. This is an important result because it gives 

us the possibility of doing the calculations in the time 

domain. If the losses are dB per MHz and em and the constant 

c is 1500 m/ s, the constant in Eq. ( 2. 23) becomes 

... 1. 0 1 4 

For all practical purposes we can write 

k 
lil 

c 

( 2. 2 4) 

( 2. 2 5) 

When the losses are proportional with frequency, then the 

phase and group velocity are equal, 

purposes equal to the constant c. 

2. 3. The echo response 

and for all 

So far in this chapter we have endeavoured to 

independent expressions for the diffraction and 

practical 

put 

for 

up 

the 
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losses. We can now find the pressure at a point in space as a 

function of time from 

p ( t) 
a 

Q at v(t) * h(t) * l(t) ( 2. 2 6) 

where all the symbols are defined earlier. In the next 

chapter we will develop an expression for the transducer 

transfer function and impulse response, g(t), defined by 

v ( t) g(t) * u(t) ( 2. 2 7) 

where u(t) is the generator voltage. Together with Eq. (2.26) 

this gives 

p ( t) 6 
Q 6t u(t) * g(t) * h(t) * l(t) ( 2. 2 B) 

This expression can be interpreted as a cascade of three 

networks, as shown in Fig. 2.3. 

g(t) h ( t) I ( t) p( t) 

Fig. 2.3. The network model from voltage to pressure. 

The great advantage with this model is that each network can 

be treated separately. We shall now go a step further and 

establish a total model for the echo response using the 

reciprocity theorem. 

For a passive and linear twoport the following holds: If a 

voltage V on port 1 puts up a current I through the impedance 
g 

ZL on port 2, then a voltage Vg in series with ZL on port 2 

will put up the same current I through Zg on port 1. See Fig. 

2.4 for definitions. 
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Fig. 2.4. Illustration of the reciprocity theorem. 

This is one formulation of the reciprocity theorem. A more 

general formulation can be found in [ 1 3] . When used on 

acoustic twoports the voltage must be exchanged with a force 

and the current with a velocity. 

Considering the transducer, this means that the same impulse 

response is valid for both transmission and reception. 

g(t) * u(t) 

( 2. 29) 

i ( t l g(t) * f1 (t) 

Here u ( t l is the generator voltage and v
1 

(tl is the velocity 

out of the ac~ustic port during transmission. is the 

incoming force on the acoustic port and i(t) is the current 

through the generator impedance during reception. We 

course assumed that the parameters are unchanged. 

have of 

Further we assume that the impulse response of.a point object 

can be written as s(t). 

s ( t l * p2 ( t) ( 2. 3 0 l 

Here p2 (t) is the incoming pressure on the object and v 2 (t) 

the reflected velocity from the object. If the object is 

small compared to the wavelength, then we can assume that the 

pressure is constant over the equivalent surface of the 

object, A. The force on the object is then: 
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f 
2 

( t ) = A p
2 

( t ) ( 2. 31) 

From Eqs. (2.4), (2.6) and (2.31) we get: 

A Q 
a at v

1 
(t) * h(t) ( 2. 3 2) 

The reciprocity theorem applied to the spatial impulse 

response gives us the resulting force on the transducer. 

A Q 
a 
at v2 (t) * h(t) ( 2. 3 3) 

The total echo response can then be found from Eqs. (2.29) -

( 2. 3 3) . 

i ( t) u(t) * h(t) * h(t) * g(t) * g(t) * s(t) 
at

2 
( 2. 3 4) 

It is now the current i(t) that contains the information about 

the object s(t). The representation will be perfect if g(t) 

and h(t) are o-pulses. It is therefore important to find g(t) 

and h(t) to study their influence on the total echo response. 

The next probl.em will be to find an expression for the impulse 

response of the object, s ( t). To do this we need to introduce 

a simplification. We assume that the waves at the object are 

planar, so that the ratio between pressure and velocity in the 

medium is given by the characteristic impedance, gc. The 

reflected pressure can then be written as: 

p ( t) 
r 

QC 

Using Eq. (2.30) we get: 

QC s ( t) * p2 ( t) 

( 2. 3 5) 

( 2. 3 6) 
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We can see that gc s(t) is the inverse Fourier transform of 

the well known reflection coefficient for planar waves, C(w) . 

s ( t) 
QC 

1 
2lf 

.. 
I C(w) ejwt dw ( 2" 3 7) 

From here on we can use the formulas in plane wave theory to 

find the impulse response of the object [14]. 

The above assumptions of planar waves are most likely to be 

true in the far field and for large objects. If the object is 

so large that the various contributions differ significantly 

in timedelay or magnitude it can be divided into many smaller 

objects, and the contribution from each part can be summed due 

to the principle of superposition. 

transducer is then: 

f(t)tot = 

The resulting force on the 

( 2. 3 a l 

Here is the force on the transducer from the area ~A 
n 

and together there are N such areas. Fig. 2.5 shows 

schematically the various contributions to the total echo 

res pons e in t h.i s c a s e . The area ~A 
n 

is in the position 
... 
r 

n 
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3. TRANSDUCER MODELLING AND CALCULATIONS 

In the previous chapter we summarized the diffraction theory. 

This will enable us to design an appropriate aperture 

function. In this chapter we will analyse the transducer 

itself and see how the front velocity can be calculated. We 

will also calculate the tran~fer function and the electric 

input impedance. 

As mentioned earlier, we want to design a transducer for both 

echo imaging and doppler measurements. The 

requires a pulse length that is shorter 

echo 

than 

imaging 

mm or 2 

wavelengths at 3 MHz. Thus we need a 50% bandwidth. on the 

other hand the doppler measurements require high sensitivity. 

A good doppler transducer should have an efficiency of 

than 50%. 

better 

The transducer material we will use is lead-zirconate titanate 

( PZT). The reason for this is its high coupling 

The greatest disadvantage is its high acoustic 

efficiency. 

impedance. 

The impedance varies for the different types, but is about 35 

Mrayl (10
6 kg/m2 s). This is around 20 times the impedance of 

water and biological tissue. The coupling between the 

transducer an~ the medium will therefore be poor if nothing is 

done. 

In this chapter we shall first outline a calculation model for 

the transducer. Secondly, we will use the model to 

investigate the performance of the transducer. 

3. 1. The calculation model 

A piezoelectric transducer for pressure wave generation is in 

general made of a disc of PZT with silver electrodes on both 

sides. The electrodes are the electric port, and the surfaces 

of the disc are the mechanical ports, see Fig. 3.1. When the 

transducer is in mechanical contact with air, water or 
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biological tissue, both parallel and series resonance are near 

a frequency that makes the transducer half a wavelength thick 

or possibly one half wavelength plus an integer number of 

wavelengths. At resonance the electric input impedance has a 

large real part, and power can be fed into the element. To 

gain the greatest possible relative bandwidth we chose the 

element to be half a wavelength thick. At 3 MHZ and a bulk 

velocity of 4500 m/s the thickness will be 0.75 mm. As 

mentioned earlier, the diameter of the disc in our application 

will be 10-20 mm. Thus we are dealing with thin disc 

transducers. 

Backing Load 

Electric port 

Fig. 3.1. A piezoelectric element for pressure wave 
generation. 

Three different calculation models have been used for thin 

disc transducers. The first one is the Mason model [15] which 

is an equivalent circuit consisting of passive electric 

components. The second one is the impulse response model 

[16,17]. The idea here is that an impulse is generated at the 

electrodes and is reflected back and forth in the element with 

a fractional transmission at each reflection. The last model 

is called the transmission line model and was introduced by 

Krimholtz, Leedom and Matthaei [4]. This model will be used 

here. The reason for this is that the model gives a better 

understanding of the quarterwave matching layers. 

A detailed outline of the transmission line model is given in 

[4,18,19] and will not be repeated here. 

the results as shown in Fig. 3.2. 

we will only present 
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11 tg8/z 

The transmission line model after Krimholtz, Leedom 
and Matthaei [4). 

Here the following definitions are used 

ko Ul ~ 
K 

( 3. 1 ) 

a ko t ( 3. 2) 

ko K A 

zo Ul 
( 3. 3) 

€:0 €: A 

co t 
( 3. 4) 

N h co ( 3. 5) 

And we have the following notations: 

w 

g 

K 

€:0 €: 

h 

t 

-

angular frequency 

density 

compressibility 

dielectric constant under constant strain 

piezoelectric constant 

thickness of the disc 
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A area of the disc 

ko wavenumber 

a thickness of the disc in degrees 

co capacitance of the disc 

N coupling factor 

zo acoustic. impedance of the disc 

ZL load impedance. 

ZB backing impedance 

v1 force on front port 

I 1 velocity into front port 

v2 force on back port 

12 velocity into back port 

v3 voltage on electric port 

13 current into electric port 

In solid media the wave-equation will in general have nine 

independent solutions, one pressure wave and two shear waves 

in each of the three directions of space. The transmission 

line model takes only one of these solutions into account, 

namely the pressure wave perpendicular to the disc. The model 

is therefore said to be one-dimensional. This approximation 

also applies to.the Mason model and to the impulse model. 

Fluid media and soft tissue will only propagate pressure waves 

due to the fact that the medium can only store potential 

energy in volume alteration and not in shape alteration. The 

generation of waves in these media is therefore determined by 

the normal velocity at the surface of the transducer. Modes 

that give a normal velocity on the surface of the transducer 

are therefore the most important, but the others will store 

energy and thereby increase the ring time. We will however 

concentrate on the mode that can be calculated from the 

transmission line model, but have in mind that also other 

modes can influence the acoustic field. Our primary concern 

is the field in the medium and not in the transducer itself. 

We shall now develop some mathematical expressions used in the 

calculations of the transducer. First of all, we are 

interested in the transfer function from the electric port 
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to the acoustic front port. From Fig, 3.2 we can put up the 

following equations: 

zo zo N 
v, r, j tgB + 12 j sine 

+ 13 jwC0 
( 3. 6) 

zo zo N 
vz r, j sine + 12 j tgB + 13 jwC0 

( 3. 7) 

v3 11 
N 

12 
N 

13 ( 3. 8) -- + + jwC
0 

jwC
0 

jwC
0 

All the symbols are defined in connection with Fig. 3.2 or in 

Eqs. ( 3. 1 ) - ( 3. 5) We terminate the acoustic ports so that: 

v, - ZB I1 ( 3. 9) 

v2 - ZL I2 ( 3. 10) 

From Eqs. ( 3. 6) (3.10) we can eliminate all the unknowns 

except and thereby find an electro-acoustic 

transfer function. 

B - D 

ZL A B2 

N D - C ZL + N D - AC - N - CD + 2BC 

( 3. 11 a) 

where we have defined 

A 
j 

zo 
tgB ( 3 . 11 b) 

B 
zo 

j sinS ( 3 . 1 1 c) 

c N 
jwC

0 
( 3. 11 d) 

D ZB 
zo 

+ j tgB ( 3 . 11 e) 
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Another expression of interest is the electric input 

impedance. Elimination of all the unknowns in Eqs. ( 3. 6) 

(3.10) except v
3 

and r
3 

gives: 

-- + 

J·wc
0 

w2 c 2 z 
0 0 

2Z
0

!cos9- 1) + j(ZL + z
8

)sin8 

ZLZB 
!ZL+Z

8
)cos8 + j(Z

0
- --

2
-- )sin8 
0 

( 3. 1 2) 

For system evaluations it is more convenient to calculate the 

generator voltage, v 
g 

to front velocity, 

function. If the generator impedance is Z we get: g 

+ z 
3 

transfer 

( 3 . 1 3) 

where r
2

1v
3 

is given in Eq. (3.11) and z
3 

in Eq. (3.12). The 

impulse response can now be found by inverse Fourier transfor­

mation. 

g ( t) f ( 3. 1 4 ) 

To discuss the results in Eqs. ( 3.12) to (3.14) we carry out 

a calculation of the transfer function, impulse response and 

input impedance. The data for PZ27 or PZT5A are given in [20] 

h 22x109 V/m 

Es B30 

c
0 

4350 m/s 

Z
0 

34 Mrayl (10 6 kg/sm2
) 

and we choose 

diameter: d 

thickness: t 

12.7 mm 

0.69 mm 

Taking water as the load medium and air as the backing. 
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ZL 1. 5 Mrayl 

z
6 

360 rayl 

The results of the calculations are shown in Fig. 3.3. The 

module of the transfer function and the impulse response is 

normalized so that the peak value is one. 

The transfer function shows that with the chosen thickness the 

maximum transfer is around 3 MHz. The exact frequency is 

given also by the electric generator impedance. Maximum 

transfer of power takes place when the generator impedance is 

the complex conjugated of the input impedance. In the 

calculations 50 Q has been used as the generator impedance. 

The maximum transfer will lie between the series and parallel 

resonance. In this range the module of the input impedance 

varies from a small value to a large value, depending on the 

load. 

The calculations of the input impedance also show that the 

transducer is purely capacitive for all frequencies except 

around resonance. Only in the neighbourhood of the series and 

parallel resonance the impedance has a significant real 

component and ~ossibility for input of power. 

The relative bandwidth of the transfer function is about 25/. 

and the 20 dB pulselength is about 2 ~s. This gives a depth 

resolution of 3 mm in water and in biological tissue. 

Finally, we note that the transfer function goes to zero at 

twice the resonance frequency. This gives a theoretical limit 

for the bandwidth. With a bandwidth of twice the resonance 

frequency we get a pulse that is around half a period long. 
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ELECTRIC INPUT IMPEDANCE VS. MHZ 

MODULE PHASE 
tea. ra 

1. ra 180S? 

-tea. ra~..-_.._ _ _._ _ _._ _ __, __ ...._--::=-' 
ra. ra 2. ra 4. ra e. ra 

TRANSFER FUNCTION VS. MHZ 

MODULE PHASE 
tea. ra 

-1ara. ra.._ _ _._ _ _.... __ .__ _ _._ _ _.. _ __. 
ra.ra 2.11l 4. ra 

IMPULSE RESPONSE VS. TIME CMY.SEC.) 

1. Ill.--------------, 

• 5 

Flg. 3.3. Calculations of electric input impedance, transfer 
function and impulse response for a PZ27 element 
with water load and air backing. The disc diameter 
is 12.7 mm and the centre frequency is 3 MHZ. 
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3.2. Transducer losses 

The transmission line model as described in the previous 

section is lossless. We will now include a simple loss model. 

There are two kinds of.losses that are important. The first 

is the dielectric loss in the piezoelectric element and the 

second is the acoustic propagation loss in the element itself. 

Mason includes these losses as resistances in his model [ 15). 

The dielectric loss is a resistance in parallel with the 

electric port. The acoustic propagation loss is a resistance 

in series with the acoustic load impedance. We will follow 

the same procedure. 

From Ferroperm [21] we find that the loss angle for PZ27 is 

tg 0 0. 01 6 ( 3 . 17 ) 

With the data used in the calculations in the previous section 

the value of the parallel resistance is 2500 Q. The real part 

of the input impedance can be seen in Fig. 3.3 to be far 

below this value. Thus the dielectric loss is not important 

and will not be included. 

From Frazer [ 1 9] we find that the mechanical Q-factor for a 

thin disc transducer with low coupling can be written: 

Q m 

1T 

2 
( 3 . 1 8) 

Assuming that the acoustic propagation loss can be included as 

a resistance in series with the load we can write 

Q 
m 

1T 

2 
( 3. 1 9) 
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Here R is the acoustic resistance in the element. From 
m 

Ferroperm [21] we find that the Q-factor for the element alone 

is 80. This gives a resistance of 

2 
0.66 Mrayl ( 3. 20) 

we share the loss equally between the two acoustic ports so 

that R /2 is in series with both the load at the front and the m 
back. Thus we have a loss model as shown in Fig. 3.4. 

Rm/2 Rm/2 

Fig. 3.4. Transducer loss model. 

To verify the model the input impedance was measured on an 

element in air_ The measurement is shown in Fig. 3. 5. a. 

Calculations of the input impedance with and without the loss 

are shown in Fig. 3.5.b and c. Most sensitive to the loss in 

these plots is the peak of the phase plot. For the lossless 

case the peak is at + 90 degrees, but with the loss included 

the peak is at about + 80 degrees. The latter is in much 

better agreement with the measurement. 

The measured impedance also shows a weak resonance at 2 MHz 

which is difficult to account for. We shall however, discuss 

spurious modes of vibration in Chapter 5. We also observe a 

series resonance at 5 MHz. This must be due to the inductance 

in the cable and the connector. 
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We also note that the measured module peak is higher than both 

calculated values. This is due to the fact that the peak is 

very narrow and the resolution in the calculations is 0.1 MHz, 

while in the measurement the frequency is adjusted to find the 

peak value. A serge for the peak in the calculations has shown 

that the peak value is 552 Q when the acoustic losses are 

included. This value is so high that the dielectric losses 

will influence the result. With a parallel resistance of 2500 

Q on the input, the total result will be a peak value of 452 

Q. This is in good agreement with the measurement. For an 

element with a more realistic load, the peak value will be 

below 100 Q and the dielectric losses will not be important 

anymore. In the lossless case the peak value of the module 

was found to be about 3000 Q. 

Finally, 

response. 

we will see how the loss modifies the impulse 

With the same parameters as in Fig. 3. 3' but now 

with the loss included, Fig. 3.6 shows the impulse response 

from a transducer with water load and air backing. Comparing 

this with Fig. 3.3.c we observe that the two impulse responses 

are very similar. The ringdown time is however slightly 

shorter in the latter case. 
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ELECTRIC INPUT IMPEDANCE 

a) MODULE 
[Ill 
400 

200 

l80 PHASE 

oL---L-~L-~~~~~--~ -180~--~--~--~----~--~--_J 

b) 

c) 

0 

ELECTRIC 

MOOULE 

t.li! 317.Q 

.5 

ELECTRIC 

MOOULE 

l.li! 26a.Q 

.s 

Fig. 3. 5. 

6 

INPUT IMPEDANCE VS. MHZ 

0 

PHASE 
lSILiil 

2 4 6 

a. "·r------------r-r------------

-l81il. "''-:---J...--'--..__......_ _ __. _ _... 
lil.lil 2.1i! 4.1i! 

INPUT IMPEDANCE VS. MHZ 

PHASE 
181il.lil 

6.1i! 

(\ 
lil.lilr------------r-r------------

-tea. a._ __ _,_ __ _,_ __ _._ _ __, __ ..._ _ _, 
lil.lil ~Iii ~Iii ~0 

Electric input impedance for a PZ27 element 
The disc diameter is 12.7 mm and the 
frequency is 3 MHz. 

a) Measurements 
b) Calculations from the lossless model 
c) Calculations from the model with losses. 

in air. 
centre 
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XMPULSE RESPONSE VS. TIME <MY. SEC.> 

D s 

Fig. 3.6, Impulse response for a transducer with water load 
and air backing when the losses are included. The 
disc diameter is 12.7 mm and the centre frequency 
is 3 MHZ. 

3. 3. Increase of bandwidth 

Three different methods are in use to increase the bandwidth 

of thin disc transducers. 

1. Use of a heavy backing with high impedance and high 

absorption 

2. Acoustic metching with quarter-wave matching layers 

3. Electric matching with inverse filters. 

Transducers for echo imaging are often attached to a heavy 

backing material with an acoustic impedance that matches the 

element and has high absorption. This increases the coupling 

from the element and thereby reduces the ring down time. The 

power is however coupled to the backing and the sensitivity is 

therefore reduced as well. When the transducer is also to be 

used for doppler measurements the sensitivity is of great 

importance, and this method cannot be used. 

Acoustic matching between the element and the medium will also 

increase the coupling and reduce the ring down time. In this 

case, however, the coupling is into the medium and the 

sensitivity is less effected. 
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It is well known that impedance matching between two 

transmission lines can be achieved with a quarterwave matching 

layer with an impedance which is the geometrical mean of the 

two transmission lines. A layer will however be a quarterwave 

thick for one frequency only. For transient pulses it is 

necessary that the matching has a certain bandwidth. We want 

the impulse response of the. transducer to be compact, which 

means that the half value length should be as short as 

and that the tail of the pulse is as small as possible 

possible. The impulse response is the inverse Fourier 

transform of the transfer function. The transfer function 

should therefore have the largest possible bandwidth, but 

should also be as smooth as possible. For a given bandwidth a 

gaussian function would be the optimum. 

For a finite number of layers, however, a gaussian transfer 

function cannot be achieved. We shall therefore use the 

impedances that give the maximum flat response for a finite 

number of layers. A thorough study of matching layers that 

gives maximally flat response can be found in DeSilets [22]. 

The results of this study are given 

taken from Frazer [19]. 

Layer no. 1 2 

213 1/3 
1 layer z zo -

L 

3/7 4/7 6/7 1/7 
2 layers z zo z zo 

L L 

in Table 3. 1 ' and are 

3 z 
L 

1 I 3 213 

- z zo 
L 

1/7 6/7 
- z zo 

L 

4115 11 I 15 10115 5115 14 I 15 1 I 15 1 I 15 14115 
3 layers 

Table 3.1. 

z zo z z z zo 
L L 0 L 

The impedances in the matching 
maximally flat response when z0 is 
impedance, ZL t.he load ~mpedance. 

modified load impedance. 

z 
L 

zo 

layers for 
the element 

zl· is the 
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We shall now see how the transfer function, impulse response 

and electric input impedance can be found for a transducer 

with matching layers. The input impedance in Eq. ( 3. 12) and 

the transfer function in Eq. (3.11) are still valid if the 

load impedance, is interchanged with the impedance seen 

through the matching layers, ZL'. The transformation formula 

for the impedance in the i'th layer is: 

z . 
Ol. 

2 Li + j 2 oi tgei 

2 oi + j 2 Li tgei 
( 3. 21 ) 

Here Z . is the acoustic 
Ol. 

impedance of the i'th layer and ei 

is the thickness of the i'th layer relativ to the wavelength 

measured in radians. Equation (3.21) is used successively for 

each layer from the medium to the element. 

j I th 
layer 

Fig. 3.7. Definition of the symbols used for the matching 
layers. 

To find the total transfer function for the transducer we will 

have to find the transfer function for each layer. These 

layers have neither piezoelectric coupling nor an electric 

port. The equations ( 3. 6) ( 3. 8) can therefore now be 

written for the i'th layer: 

z oi z oi 
v1i I1i j e. 

+ 1 2i e. tg j sin 
l. J. 

( 3. 2 2) 

2oi z oi 
v2i I1i sin e. 

+ 1
2i j j tg 8. 

l. J. 

( 3. 23) 
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The symbols are defined in Fig. 3.7. For calculations of the 

transfer function it is better to have the equations 

cascade form. 

v2i v 1icos a. - j z oii1i sin 8 . 
~ ~ 

j 
v1i 

sin a. r,icos a. I2i -z 
oi 

~ ~ 

on the 

( 3. 24) 

( 3. 25) 

These equations can be used to find the total transfer 

function by applying them on the layers successively from the 

element to the medium. This formulation of the problem has 

been inspired by Angelsen [23]. 

Calculations of transfer functions and impulse responses for 

transducers with 1, 2 and 3 quarterwave matching layers are 

shown in Figs. 3.8 and 3.9. The data for the element is the 

same as before, and the impedances of the matching layer are 

those found in Table 3.1. We can see that the transfer func-

tions in Fig. 3.8 are smooth and that the phases are nearly 

linear over the passband. The bandwidth increases with the 

number of layers. With one matching layer the 6 dB bandwidth 

is 1.6 MHz, with two matching layers the bandwidth is 2.3 MHz 

and with three· matching layers the bandwidth is 2.8 MHz. This 

gives us impulse responses that decrease in length with the 

number of layers, as can be seen in fig. 3.9. The 12 dB pulse 

lengths are 0.9 ~s. 0.6 ~sand 0.5 ~s with 1, 2 and 3 matching 

layers. The efficiency of the transducer is also enhanced with 

matching layers, due to the increased load impedance for the 

PZT-element. Using the loss model developed in the previous 

section, the efficiency is 68/., 94/., 97/. and 98/. with 0, 1, 2 

and 3 matching layers for a transducer with airbacking. The 

losses in the matching layers is not significant. 

The third possibility to improve the transducer transfer 

function is to use inverse filtering. Inverse filtering is in 

general of great importance in transmission systems, but will 

not be used here. In principle it is possible to shape a 

total transfer function arbitrarily with an inverse filter. 
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TRANSFER FUNCTION VS., MH:Z: 

MODULE PHASE 
1B!IIo 111 

TRANSFER FUNCTION VS. MHZ 

MC!DUL.E PHASE 
1911l. 121 

TRANSFER FUNCTION VS. MHZ 

MODULE 

1. lil 

Fig. 3.8. 

NF 3 

PHASE 
lSB. IIi 

Transfer functions for a PZ27 element with NF=1, 2 
and 3 matching layers. The disc diameter is 12.7 mm 
and the centre frequency is 3 MHz. 
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IMPULSE RESPONSE VS. TIME <MY. SEC.> 

l.li!ll-

.5 1- NF 1 

li!l.li!l (\ 

~ v 
-.5 

-1. li!l I I I I 
li!l.li!l 1. li!l 2.1i!l 3.1i!l 4.1i!l S.li!l 

IMPULSE RESPONSE VS. TIME <MY. SEC.> 

l.li!lt-

.5 1-
NF 2 

li!l.li!l A,.,, 

L\ 
v 

-. 5 

-l.li!l I I I I 
li!l.li!l 1. li!l 2.1i!l 3.1i!l 4.1i!l s.a 

IMPULSE RESPONSE VS. TIME CMY. SEC.> 

Impulse responses for a PZ27 element with NF=1, 2 
and 3 matching layers. The disc diameter is 12.7 mm 
and the centre frequency is 3 MHz. 
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An exception is of course the zeros in the original function. 

A transducer for 3 MHz has zeros at 0 and 6 MHz. If we 

however are able to make a flat transfer function in the range 

0-6 MHz, we will get an impulse response that is close to half 

a period. In practice, however, such 

filtering will be limited because of the 

ratio. 

a radical inverse 

signal to noise 

Not only the transducer should be taken into account when an 

inverse filter is designed. If good models for the echo 

response are available, the influence of the whole measuring 

system can in principle be eliminated. 
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4. CALCULATIONS OF TRANSIENT DIFFRACTION PATTERNS 

We start by developing methods for calculating the spatial 
... 

impulse response h(r,t). The velocity 

related to the impulse response through 

... ... 
~(r,t) v(t)*h(r,t) 

where * denotes the convolution and 

... 
potential ~(r,t) 

( 4. 1 ) 

is 

v ( t) is the normal 

component of the velocity at the transducer surface. 

The pressure can then be derived from 

-+ 
p( r, t) 

a ... at ~(r,t) ( 4. 2) 

where g is the density of the medium. Thus, the pressure is 

the time derivative of the convolution of the spatial impulse 

response and the transducer surface velocity. For presentation 

of the fields we will in the following use the pressure. 

Comparisons of the different apertures will be based on two 

features. One is the half value beam diameter as a function 

of depth. The second is the sidelobes and the skirts of the 

beam profile. We will calculate focal lengths as a result of 

natural focus, lenses and time delay to the elements of 

annular arrays. 

4 . 1 . Methods for calculations of the spatial impulse response 

Before starting on the numerical calculations of the spatial 

impulse response, we shall try a more intuitive approach. In 

fig. 4. 1 is shown a point, 0, above the surface, S. Points on 

the surface with the same distance to 0 are circles with 

centre at the projection of 0 on S. If the surface is excited 

with a a-pulse, the points on one circle will contribute at 

the same time to the potential at 0. The first contribution 
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0 

Fig. 4.1. Geometry for the intuitive 
spatial impulse response. 

approach to find the 

comes from the centre and subsequently circles with increasing 

diameter will contribute until the edge of 

reached. 

the surface is 

In the case of a circular aperture, it is easy to find the 

potential on the axis. As we shall see later, the area that 

contributes from a plane surface within a given time interval 

is independent of time. The potential is therefore a 

rectangular function of time, as shown in Fig. 4.2.a. The 

time t
0 

corresponds to the distance from 0 to s, and 

corresponds tci the distance from 0 to the edge of the 

aperture. In a short distance from the aperture the distance 

between and will be largest. In the far field the 

rectangular function will pass over to a a-pulse. For focused 

apertures the far field is moved into the focal plane and the 

potential function in the focal point will be a a-pulse as a 

function of time. In general this is true for all focused 

apertures. Further away outside focus the contribution from 

the edge will come first, so that t
0 

and t
1 

change places in 

Fig. 4.2.a. 

When the point 0 is off-axis, the potential will be constant 

only until the circles on S at one point pass over the edge of 

the aperture. Afterwards 

monotonically. In Fig. 4.2.b 

the 

the 

potential will decrease 

time is the minimum 
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a) 

... 
to Time 

b) 

~ .. 
to t 1 t2 Time 

c) 

Fig. 4.2. Examples of spatial impulse responses 

a) Circular aperture, on-axis 
b) Circular aperture, off-axis 
c) Rectangular aperture, on- axis 

additional delay to the edge of the aperture and the time t
2 

is the maximum additional delay to the edge of the circular 

aperture. For a point on the axis t
1 

equals t
2 

. 
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For non-circular apertures the potential is more complex. The 

potential resulting from a uniformly excited rectangular 

aperture with the observation point on-axis is shown in Fig. 

4.2.c. The time t
1 

is the minimum additional delay between 

the centre of the rectangle and the nearest sides in the 

rectangle; the time t
2 

is the delay to the two remaining sides 

in the rectangle, and the time t
3 

is the delay to the four 

corners. More complex functions will be found if the aperture 

is nonuniformly excited and focused. Only time consuming 

computer calculations can give quantitative results. 

We shall first develop in detail the spatial impulse response 

for the circular aperture and show how an analytic solution 

can be found for this case. A method to find the response from 

a focused aperture can be found in [6) and will only be listed 

here. The response from a general aperture can be found 

through purely numerical integration and will be presented in 

the end. We shall also see how the response from annular 

arrays can be found. 

y 

a 

0 

Fig. 4.3. 

R1' ---J< (y,z)' ----- / REGION II ---- / 
~--------r---------------R1 / 

Geometry 
aperture. 

(y,z) 

and definitions 

REGION I 

z 

for the planar circular 
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Fig. 4.3 shows a planar circular aperture with radius a. We 

divide the space in front of the aperture in regions I and II. 

Region is the cylinder with radius a and axis along the 

z-axis. Region II is the rest of the space. Because of the 

circular symmetry along the z-axis, we disregard the 

x-dimension which is equivalent to the y-dimension. 

For a point (y,z) in region I there are three characteristic 

distances. R
0 

is the distance to the nearest point on the 

aperture. R
1 

is the distance to the nearest point on the edge 

of the aperture. And R
2 

is the distance to the point 

edge of the aperture furthest away. 

We introduce the times 

t. 
1. 

on 

( 4. 3) 

where i 0,1,2 and cis the velocity of the medium. 

Accordingly 

( 4. 4) 

the 

At the time interval between t
0 

and t
1 

the contributions come 

from circles t'hat are completely inside the aperture. 

disregard the limitations due to the finite aperture. 

r 

We can 

Fig. 4.4. Geometry and definitions for the calculation of the 
response in the time interval t

0 
to t

1 
in Region I. 
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From Fig. 4.4 we will now find the area dS that contributes to 

the response in the time 

distance is given by 

dR c dt 

interval dt. The differential 

( 4. 5) 

From Fig. 4.4 we can see that the differential radius on the 

aperture becomes 

dr dR 
R 
r 

~hus the differential area becomes 

dS 21TR dR 

From Eq. (2.5) we get 

~ 

h ( r, t) I 21TR o(t-R/c)dS 
s 

= c 

= c 

t 1 

I o(t-R/cl d(B,) 
c 

for 

( 4. 6) 

( 4. 7) 

( 4. 8) 

We have found that the response is a constant in the time 

interval t 0 to t
1 

and equals c. 

After the time t 1 only a fraction of the aperture contributes 

to the acoustic field. This is shown in Fig. 4. 5. Here the 

aperture is seen from the front. 



Fig. 4. 5. Geometry and definitions 
the response in the time 
Region I. 
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for the calculations of 
interval t 1 to t 2 in 

We use the extended Pythagoras law on the triangle in Fig. 

4. 5. 

2 a 

We also have 

This gives 

2 
+ y 

2 
+ z 

8 2 arccos 

- 2ry cos (8/2) ( 4. 9) 

( 4. 1 0) 

[

R2 

2y 

2 2 - z + y 
( 4 . 1 1 ) 



Thus the differential area that contributes within the time 

interval dt is 

dS 9 R dR 

2 R dR arccos 

From Eq. (2.5) we get 

h ( r, t) I 2rrR o(t-R/c)dS 

s 

2 
+ y 

2 - z 

c 
rr 

arccos 

.£ arccos 
TT 

2 
+ y 

2 - z 

( 4. 1 2) 

( 4. 1 3) 
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We can see that 8 decreases monotonically from 2rr to 0 within 

the time interval from t
1 

to t
2

• The impulse response will 

within the same time interval also decrease monotonically from 

c to o. 

For region I I R
0 

is not defined. R
1 

' and R
2

' are defined in 

Fig. 4.3 for the point (y,z) ·. 

shown from the front. 

In Fig. 4. 6 the aperture is 
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Fig. 4.6. Geometry and definitions for the calculation of the 
response in Region II. 

From Fig. 4.6 we get 

2 a 2 
+ r - 2yr cos (8/2) 

This is the same as in Eq. (4.9). 

Thus we obtain 

-+ 
h ( r, t) 

for 

!::.. arccos 
1T 

2 
+ y 

( 4. 1 4) 

( 4 0 1 5) 

The difference from region I is that 9 will start from zero, 

increase to maximum rr and decrease again to zero. This gives 

a single peaked impulse response in region II. 



Fig. 4.7. 

In Fig. 
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The spatial impulse response from a planar circular 
aperture as a function of time and radial distance 
from the acoustic axis in a given distance from 
the aperture along the axis. 

4 0 7 the spatial impulse response is plotted as a 

function of time and distance from the axis. The distance 

from the aperture is 20 mm and the diameter of the aperture is 

1 2. 7 mm. We can see that the response is rectangular on the 

axis. The .time derivative is therefore two <5-pulses, the 

first at time to , the second at time t1 t2. Near the 

aperture the distance between to and t1 is largest, and if the 

excitation is short enough the pulse will consist of two 

pulses. The latter is the negative of the former, and is in 

the literature often called the edge wave. This name is due to 

the time of arrival which corresponds to the distance to the 

edge. It is not generated at the edge but as a result of the 

finite aperture. Off-axis in region I the impulse response has 

a rectangular beginning, but a monotonically decreasing end. 

This gives a pressure pulse where the edge waves are only a 

tail on the main pulse. In region II the response is a smooth 

function of time and therefore the pressure pulse will be much 

smaller than in region I. 
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Increasing the distance from the aperture, the on-axis 

response will be shorter and for the far field it can be taken 

as a o-pulse. For a given wavelength A the far field distance 

can be defined as the distance to the point where the response 

is half a wavelength long. This is 

z ( 4 • 16) 

The result is well known for continuous wave transducers [24]. 

We will now present a method for finding the spatial impulse 

response for a focused circular aperture, or rather a curved 

surface. The method that will be presented is developed by 

Arditi [6), and only the results will be given here. 

ol b) 

Ez 

Fig. 4.8. Geometry and definitions for the Arditi method. 
a) Region I 
b) Region II 

We have a circular aperture with radius a and radius of 

curvature f as shown in Fig. 4.8. Thus f is the focal length 

of the aperture and we choose the focal point to be the origo. 

The calculations are done separately for each region as shown 

in Fig. 4.8 a. and b. Region can be called the 

geometrically illuminated region and region II is the rest of 
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the space in front of the apertur, Assuming circular symmetry 

it is sufficient to find the solution in the yz-plane, 

We also introduce polar coordinates 

y R sin 8 

( 4. 17) 

z R cos 8 

It is necessary to find some characteristic distances, 

length of the normal from the observation 

aperture is defined in region I only 

for 
z < 0 
z > 0 

point to 

( 4. 1 B) 

The 

the 

The distance from the observation point to the nearest edge E1 
and to the furthest edge E

2 
is given by 

.. (f-d.,.z) 2 
( 4. 1 9) 

.. (f-d+z) 2 
( 4. 20) 

Here d is the depth of the aperture 

d f ( 1 (a If) 
2 

) ( 4. 21 ) 

Defining also the times 

( 4' 2 2) 

where i = 0,1 ,2 we can find the spatial impulse response from 

Table 4. 1. 
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... 
h ( r, t) = Region I Region I I 

z < 0 z > 0 

0 t < to to < t 

cf 
- to < t < t1 t2 < t < to 
R 

cf 
- rj(t)J arccos --- t1 < t < t2 t1 < t < t2 
Rrr 

0 

where 

11 ( t) 

and 

a ( t) 

Table 4. 1. 

a(t) 

- d/f 
sin 8 

. 

t2 < t 

+ ---
tg 8 

[, [..:..f_2_+~=::-~-:-f __ c::..2__:t_z r] 1 I 2 

t < t1 

The spatial impulse response for 
circular aperture after Arditi [6]. 

t < t1 

-

t1 < t < t2 

t2 < t 

a focused 

The spatial impulse response for three different distances 

from the aperture are shown in Fig. 4.9. Inside the focal 

plane the response is very much the same as in Fig. 4.7. At 

the focal plane the response has no rectangular parts and in 

the focal point it is a 6-pulse. Outside the focal plane the 

response is changed so that the rectangular part of the 

comes at the end. 

pulse 



h 

The ,patiai imP"''' ,,,pon'' aa a function of tim• 
and di'tance from th• z-a>i' from a focu,ed 
ciccuiat apertut'" Th' ctrawin9' ate ta<en ftom 

p.rditi f..G1· 

al z - f/G 

b) z " 0 
c)Z"'f/4 
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In the more general case with an apodized and focused aperture 

a direct numerical interpretation of the Huygen principle can 

be used. The aperture ·is divided into small elements that are 

less than half a wavelength. Each element is assumed to 

radiate uniformly into the infinite half space. In a given 

observation point in space the response from each element can 

be found and superimposed. The amplitude is given by the 

position and apodization of the element. The time of arrival 

is given by the position and focusing of the element. When 

the medium is linear, the principle of superposition tells us 

that the contribution of each element can be summed to give 

the total response in the observation point. 

this can be expressed: 

Mathematically 

h ( r, t l [ 

i 2rr 

Here we have: 

-+ 
r: position of 
-+ 
r. posi ti"on of 
~ 

A.: excitation 
~ 

T. time delay 
~ 

c: velocity of 

A. 
~ 

the 

the 

6(t -
c 

observation point 

i'th element 

of the i'th element 

of the i'th element 

the medium 

- T. ) 
~ 

( 4. 23) 

This method can be used for any aperture. The disadvantage is 

that the calculations of a more complete field are very time 

consuming. A comparison of this crude numerical approach and 

the Arditi method is shown in Fig. 4.10. Here we can see the 

response for an observation point on-axis and 10 mm from the 

aperture. The calculation by the Arditi method 

rectangular function. The numerical integration 

rectangular function with numerical noise, Here the 

gives a 

gives a 

aperture 

is divided into 18000 elements, which gives a calculation time 



a) 

0 

Fig. 

b) 

_I I 

2 0 

Time (fJs) Time (fJs) 

4. 1 0. The on-axis response at depth 10. 
circular focused aperture with diameter 
and a radius of curvature of 75.mm. 

a) Arditi method 
b) Numerical integration 
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2 

mm from a 
12.7 mm 

thirty times longer than for the Arditi method. For a 

circular focused aperture the Arditi method should be used, 

but for non-circular and apodised apertures we have to use the 

numerical integration. The numerical integration is stable, 

where as the Arditi method give problems in the focal point 

where the response is a o-pulse. 

Annular arrays are used for dynamic focusing, which means 

that one can adjust the focal length of the aperture as a 

function of time. This possibility is used in echo imaging 

during reception. A pulse is sent out with a fixed focus, but 

during reception the focal length is adjusted to match the 

depth from which the echo has its origin. At first the echoes 

come from objects close to the transducer and later on from 

objects further and further away. 

The methods developed for circular apertures can easily be 

extended to annular arrays. The response from a circular 

element with inner radius a 1 and outer radius a 2 can be found 
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by calculating the difference between the response from an 

aperture with radius a 2 and an aperture with radius a 1 . 

for element number n we have 

Thus 

... 
h ( r, t) 

n 
... 

h (r,t) 
a2 

... 
- h ( r, t) ( 4. 2 4) 

a1 

The total response from an annular array is then found by 

adding the contributions from all elements. By introducing a 

time delay on each element one can control the focal length . 

... ... 
h(r,t) [ h (r,t + t.t ) 

n n n 
( 4 . 2 5) 

Here t.tn is the time delay to the n'th element. If the array 

consists of N elements and the phase front is to be an 

approximation to a spherical surface with radius of curvature 

f
2

, we can let the outer radius of the n' th element be 

a a ( 4. 2 6) 
n 

when a is the radius of the whole aperture. This will give an 

equal area for each element. 

successive element should be 

t.t 
2 

a 
2f Nc 

2 

The time delay between each 

( 4 . 2 7 ) 

so that the time delay to the n'th element will be 

L\t 
n 

(n-1) t.t ( 4 . 2 8) 

A discussion of these· results has been given by Dietz [25]. 

Fig. 4. 1 1 . 

I· I+ 1------INI 
Time 

On-axis response from a planar annular array with 
N elements without time delay. 
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We have seen that the on-axis response from a circular 

aperture is a rectangular function. If the aperture consists 

of annular elements without time delay, the response from each 

element will arrive in time succession as illustrated in Fig. 

4 . 1 1 . Here element is the centre element and element N the 

periferal element. If the elements are given a time delay 

according to Eqs. ( 4. 27 28), the responses from each element 

will coincide at distance f
2 

from the aperture. The length of 

the spatial impulse response at the distance f
2 

from a plane 

aperture of radius a is 

- t 
0 c 

2 a - ( 4 . 2 9 ) 

when no time delay is used. When N elements are used and 

g1.ven a proper time delay the length of the impulse response 

will be devided with N. Ideally we want to make the response 

so short that it will be a a-pulse for all practical purposes. 

We can require a response that is shorter than half a period, 

A/2c. This gives us the following requirement for the number 

of elements if we want to focus at the dlstance f
2 

from the 

aperture. 

N > 
~ f 2 

2 
2 

+ a 

A/2 
( 4 . 3 0) ' 

With 0. 5 mm, f 
2 

20 mm and a 6.35 mm we get N > 3.9. 

Thus we Wlll need 4 elements to focus at a distance of 20 mm. 

This estimate is highly simplified. We don't yet know how the 

f1.eld Wlll be off-axis. However, the above approach lS 

illustrational and may serve as a rule of thumb. 

If the array addltion to the adJUstable focus f
2

, has a 

f1.xed focus f
1 

, the total focal length can be found from 

This 

- 1 
f 

lS a 

- 1 
+ 

well known 

geometr1cal optics [26]. 

( 4 . 3 1 ) 

result from th 1.n lens theory ln 
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4 . 2 . Calculated results 

In this part of the chapter we will present and discuss some 

results from the calculations. The computer programs for 

calculation of transient fields have possibilities for 

variation of many parameters and parameter combinations. It 

will therefore not be possibl~ to present a thorough analysis 

of all the possible parameter set-ups. The selections chosen 

can be seen in th& light of two requirements. The first is to 

demonstrate the potentials for studying transient fields with 

the use of these programs. The second is to run the 

calculations for the transducers of interest to the specific 

application. 

We will limit ourselves to circular apertures. In particular, 

we will look into focusing with lenses and annular arrays. To 

study transient behaviour we will excite the medium with three 

different velocities on the surface of the transducer. These 

are a continuous wave, a half wavelength pulse and the 

calculated impulse response from a transducer with one 

matching layer. The continuous wave is a reference. The half 

wavelength pulse can be regarded as the ideal echo pulse. 

While the pulse from a transducer with one matching layer is 

somewhere in b~tween. Also it is a transducer with one 

matching layer we will design for the experimental 

investigations. 

A proper 

the field 

presentation of transient fields is not easy since 

is five-dimensional. The field has four independent 

variables in space and time, and one dependent variable in the 

field amplitude. It is therefore necessary to present more 

than one plot for each field pattern. The radial symmetry 

reduces the space dimension from three to two. Therefore a 

point in space will be given by the distance from the aperture 

along the acoustic axis also called the depth and the radial 

distance from the acoustic axis. At each point in space the 

pressure or some other field value can be calculated as a 

function of time. These time functions can be presented 

directly. But for the study of beam profiles and focusing it 
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is convenient to use peak detection of pulses and amplitude 

detection of CW, so that the time dimension is left out. Thus 

we can present plots for beam profiles at a given distance 

from the aperture as a function of the distance from the axis. 

On the basis of the beam profiles we can use half value 

detection at different distances from the aperture and get a 

plot that shows the beam diam.eter as function of the distance 

from the aperture. 

In all the calculations the diameter of the aperture is 12.7 

mm and the centre frequency is 3 MHz. 

4. 2. 1. The focused circular disc 

We start by presenting the calculations for the most 

traditional aperture, a circular disc that is 

focal length is chosen to be 75 mm. 

focused. The 

Figure 4.12 shows calculations of the pressure amplitude when 

the surface velocity is generated by a continuous signal. 

Figure 4.12.a shows the half value width of the beam. We can 

see that the beam is at its narrowest at a distance of 40 mm 

from the aper~ure. This is called the beam waist and here the 

beam diameter is 2.7 mm, while it is 8.5 mm at a distance of 

150 mm, and 6.3 mm at a distance of 20 mm. The beam waist is 

not located at the focal point. This is a diffraction 

phenomenon and will be discussed in the next subsection. 

Figure 4. 12. b shows the pressure amplitude in spatial 

perspective. Also shown in the plot are the 6 dB and 12 dB 

lines relative to the spatial peak. We observe that the 

spatial peak occurs at a distance of 50 mm from the aperture. 

Figure 4.12.c shows the pressure amplitude across the beam at 

the distances z equal to 20, 30, 50, 70, 100 and 150 mm from 

the aperture. We note that the pressure has several peaks for 

z equal to 20 and 30 mm. At z equal to 50 mm the beam profile 

has become single-peaked and is the narrowest Gf those shown. 
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At the distance z equal to 70 mm we recognize the Bessel 

function or the Airy's disc. The focal plane is actually at 

75 mm, but due to numerical instability the beam profile is 

shown at 70 mm. The diameter of Airy's disc is given by [26] 

D ( 4. 3 2) 

where a is the radius of the aperture and A is the wavelength. 

For z equal to 70 mm Eq. ( 4. 31) gives a diameter of 6.7 mm. 

The first order sidelobe should be 137. of the main lobe [26]. 

We can see that this is in agreement with the calculations. 

For distances greater than the focal length the beam profile 

gets wider with increasing distance. Continuous waves have 

zeros both in the near field and in the focal plane. This is 

due to the fact that in certain locations phase cancellation 

takes place. This is a result from continuous wave theory 

[14], but the zeros are difficult to hit in a calcutation. 

In the method that is used here the spatial impulse response 

is convolved with a sinusoid. On-axis the spatial impulse 

response is a rectangular function. It is then easy to 

imagine that the result of the convolution is zero when the 

spatial impulse response is an integer number of periods long. 

Similarly, the peaks occur where the spatial impulse response 

is an odd number of half periods long. Somewhat more 

complicated is the physical explanation of the zeros in the 

focal plane, but also here the spatial impulse response is 

such that the result of the convolution is zero. 

Figure 4 . 1 3 shows the pressure field for the case when the 

transducer excites the medium with the impulse response from a 

transducer with one matching layer. Peak detection of the 

pulse is assumed in Figs. 4.13.a, band c. 



a) tsa. 

b) 

Fig. 4.12. 
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Pressure amplitude from a focused circular disc 
excited with a continuous wave signal. The 
aperture diameter is 12.7 mm, the focal length is 
75. mm and the frequency is 3 MHz. 

a. Beam diameter in mm as a function of distance 
from the aperture in mm. 

b. Beam profile as a function of distance from 
the aperture and distance from the axis both 
in mm. 
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c) 

PRESSURE BEAM PROFILE VS. MM. 

Fig. 4.12.c. 

z 20 

Beam profile as a function of distance from the 
axis at distance z from the aperture both in mm. 



a) 

b) 

Fig. 4.13. 
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Pressure from a focused circular disc excited with 
a pulse from a transducer with one matching layer. 
The aperture diameter is 12.7 mm, the focal length 
is 75.mm and the centre frequency is 3 MHz. 

a. Beam diameter in mm as a function of distance 
from the aperture in mm. 

b. Beam profile as a function of distance from 
the aperture and distance from the axis both 
in mm. 
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c) 

PRESSURE BEAM PROFILE VS, MM. 

Fig. t..13.c. 

z 150 

Beam profiles as functions of distance from the 
axis at distance z from the aperture both in mm. 
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d) 

PRESSURE VS. TIME AND RADIAL DISTANCE (M~·'Io) 
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Fig. 4.13.d. Pressure as a function of time and distance from 
the axis in mm at distance z from the aperture 
in mm. 
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Figure 4.13.a shows the half value width of the beam as a 

function of the distance from the aperture. The beam waist is 

located at 50 mm distance. There the beam diameter is 2.8 mm, 

while it is 8.8 mm at 150 mm and 7.9 mm at 20 mm. 

Figure 4.13.b shows the beam in perspective in space. The 

spatial peak is at a distance 50 mm from the aperture. 

Figure 4.13.c shows the beam profiles for the same distances 

from the aperture as in Fig. 4.12.c. Also in this case the 

profiles at distances of 20 and 30 mm have several peaks, but 

the variation is much less in the latter case. For z equal to 

5fr and 70 mm, we note that the profiles decrease monotonically 

with the distance from the axis. No sidelobes, only skirts 

can be observed. Also at distances of 100 and 150 mm we can 

see that the sidelobes are less separated from the main lobe 

than they were with CW excitation. The calculation shows that 

transient fields do not form zeros in the fields. This can be 

understood when we keep in mind that peak detection has been 

performed on two transient functions that have been convolved. 

It is difficult to imagine two transient functions giving zero 

after such a processing. 

Figure 4.13.d. shows the pressure as a function of time and 

distance from the axis at distances z equal to 20, 30, 70 and 

150 mm from the aperture. These plots show that the temporal 

peaks occur at different times at different distances from the 

axis. The pulses at different locations are different in 

shape. For all practical purposes the on-axis pulse is the 

same from z equal to 30 mm and further away, while for z equal 

to 20 mm the pulse is longer. This is due to the influence of 

the length of the spatial impulse response so close to the 

aperture. We also note that for all z the pulse gets longer 

the further away from the axis they are. 



a) 

b) 

Fig. 4.14. 
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Pressure from a focused circular disc exciting the 
medium with a half period pulse. The aperture 
diameter is 12.7 mm, the f~cal length is 75. mm 
and the centre 

a. Beam diameter in mm as a function of distance 
from the aperture in mm. 

b. Beam profile as a function of distance from 
the aperture and distance from the axis both 
in mm. 
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c) 

PRESSURE BEAM PROFILE VS. MM. 

Fig. 4.14.c 

z 20 

Beam profiles as a function of distance from the 
axis in mm at distance z from the aperture in mm. 
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PRESSURE VS. TIME AND RADIAL DISTANCE (MM.) 
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Fig. 4.14.d Pressure as a function of time and distance from 
the axis in mm at the distance z from the 
aperture in mm. 
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In Fig. 4.14 the medium is excited with a pulse that is half a 

period long. Figure 4.14.a shows the half value beam 

diameter. The beamwaist is located at depth z equal to 70 mm, 

where the diameter is 2.8 mm. At z equal to 20 mm the 

diameter is 8.8 mm and at 150 mm it is 10.3 mm. 

Figure 4.14.b shows the beam in perspective in space and we 

can see that the spatial peak is located at a depth of 60 mm. 

Figure 4.14.c shows the beam profiles when peak detection is 

used. We can see that the beam profiles at z equal to 20 and 

30 mm are essentially flat at the top. The sidelobes have 

disappeared completely and the profiles decrease monotonically 

at all distances from the aperture. 

In Fig. 4.14.d the pulses are shown as functions of time and 

distance from the axis at the same distances from the aperture 

as in Fig. 4.13.d. On the axis at z equal to 20 mm we can see 

how the length of the spatial impulse response influences the 

pressure pulse. Arriving first is a positive pulse and then a 

negative pulse due to the beginning and the end of the spatial 

impulse response. The negative pulse is the one that 

previously was refered to as the edge wave. Further away from 

the aperture,. the length of the spatial impulse response 

decreases, and in the focal point it is a 6-pulse. Here the 

pressure pulse is the time derivative of the half period. 

Also at z equal to 150 mm we can see that the spatial impulse 

response is essentially a 6-pulse. The length of the off-axis 

pressure pulse increases with distance from the axis. Some 

ripples can be observed in the neighbourhood of the strongest 

pulses. This is a numerical error due to the truncation of 

the storing arrays in the computer and is of no physical 

significance. 

A well known method to reduce sidelobes is apodization. In 

Fig. 4.15 it is shown how apodization with a cosine square 

function works on the beam profile at a distance 150 mm from 

the aperture. Figs. 4.15.a and b show the beam profile for a 

continuous wave without and with apodization. 



66 

a) 
PRESSURE BEAM PROFILE VS. MM. 

b) 
PRESSURE BEAM PROFILE VS. MM. 

'l 1. Ill 

t 
0.0 
-40.0 -20.111 0.0 20.0 40.0 

c) PRESSURE BEAM PROFILE VS. MM. d) 
PRESSURE BEAM PROFILE VS. MM. 

1. 0 1. 0 

Fig. 4. 15. Beam profiles 
aperture. The 
fo"cal length is 
3 MHZ. 

at distance 150 mm from the 
aperture diameter is 12.7 mm, the 
75. mm and the centre frequency is 

a) Continuous wave without apodization 
b) Continuous wave with apodization 
cl Transient pulse without apodization 
d) Transient pulse with apodization. 

As expected, the sidelobes are significantly reduced and the 

beam diameter increased. The interesting point is, however, 

the influence of apodization on transient fields. Fig. 4 . 1 5 c 

and d show the beam profiles for the case where the aperture 

excites the medium with a half period pulse with and without 

apodization. We can see that the influence of the apodization 

is less here, even if the skirts are reduced and the beam 

diameter is increased when apodization is used. 



Fig. 4.16. 
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PRESSURE V~ TIME ANO RACIAL DISTANCE CMM.). 

~ 

10. 

20. I I I 
11. MY. SEC. I 

Pressure as a function of time and distance from 
the axis in mm at distance 20 mm from the 
apodized aperture which excites the medium with a 
half period pulse. The aperture diameter is 12.7 
mm, the focal length is 75.mm and the centre 
frequency is 3 MHz. 

Figure 4.16 shows the pulse as a function of time and distance 

from the axis ~t a distance 20 mm from the apodized aperture 

in the transient case. Relative to Fig. 4.14 d we can see 

that the apodization has primarily changed the edge wave. The 

influence on a peak detected beam profile is therefore small. 

Thus for transient fields apodization can be used to reduce 

edge waves more than sidelobes. 

One of the most important results of the previous subsection 

was to find that the beam waist occurs at different distances 

from the aperture depending on the exciting pulse. For many 

practical purposes it is natural to define the beam waist as 

the focal point. We will do so in this subsection and call 

the actual focal length the geometrical focal length. In the 
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previous subsection we had 75 mm as the geometrical focal 

length. For the CW excitation in Fig. 4.12 the beam waist is 

at 40 mm. For the pulse from a transducer with one matching 

layer in Fig. 4.13 the beam waist is at 50 mm. And for the 

half wavelength pulse in Fig. 4.14 the beam waist is at 70 mm. 

The shortest pulse gives. a focal length in agreement with the 

geometrical focal length, while the CW excitation gives a 

focal length that is considerably shorter. 

To investigate this focusing effect in more detail we will 

calculate the fields from a planar disc with the three 

different excitations of the medium. In Fig. 4.17 the beam is 

shown as a function of distance from the aperture and beam 

profiles in perspective in space for the CW excitation. The 

beam waist is at 80 mm. In Fig. 4.18 the excitation pulse 

comes from a transducer with one matching layer. The beam 

waist is at 90 mm. In Fig. 4.19 the medium is excited with 

half a period and this gives hardly any beam waist at all. We 

also note that the near field is much smoother for the 

transient excitations than for the CW excitations. This is a 

consequence of the fact that the transient excitation case can 

be taken as an average case of a wide frequency range, thus 

the rapidly changing fields with frequency are smoothed out. 

It is easier to give an explanation of the position of the 

spatial peak rather than the beam waist. However, we can see 

from Fig. 4.17 that both the spatial peak and the beam waist 

are at 80 mm. Using the Fresnel zones [26] it is easy to show 

that the aperture is exactly the first Fresnel zone at the 

distance 

z ( 4. 3 3) 

Here a is th~ aperture radius and A the wavelength. With a 

equal to 12.7 mm and a frequency of 3 MHz we get z equal to 81 

mm. At this distance on the axis the field will have a 

maximum. We can see that the result is in good agreement with 

Fig. 4.17 where the beam waist is at 80 mm. The resolution in 

the calculation is 10 mm in the z-direction. 



a) 

Fig. 4.17. Pressure amplitude with CW excitation 
planar aperture with diameter 12.7 
frequency 3 MHz. 

7 1 

from a 
mm and 

a. Beam diameter in mm as a function of depth in 
mm. 

b. Beam profiles in perspective in space in mm. 
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a) 

b) 

:/ ........... . 
/. .... ' ............. . 

Fig. 4.18. Pressure field with medium pulse excitation from a 
planar aperture with diameter 12.7 mm and 
frequency 3 MHz. 

centre 

a. Beam diameter in mm as a function of depth in 
mm. 

b. Beam profiles in perspective in space in mm. 



a) tSJ. 

UlliL 

Fig. 4.19. 
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Pressure field with half period excitation from a 
planar aperture with diameter 12.7 mm and centre 
frequency 3 MHz. 

a. Beam diameter in mm as a function of depth in 
mm. 

b. Beam profiles in perspective in space in mm. 
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From the theory of the spatia~ impu~se response we know that 

the on-axis response is a rectangu~ar function. When a 

continuous wave is convolved with a rectangular function, the 

resu~t is maximum when the ~ength of the response is an odd 

number of half periods. From Eq. ( 4. 16) we can find that the 

spatia~ impulse response. is a ha~f period ~ong at 

( 4. 3 4) 

which is the same result as in Eq. (4.33) Thus there are an 

infinite number of spatial peaks close to the aperture, but 

the beam profile is single peaked only at the one furthest 

away from the aperture. It is reasonable to expect the beam 

waist to be there. We conclude therefore that a natural 

focusing takes place for CW excitation, and the focal length 

is 

( 4. 3 5) 

For transient excitation the focal length increases as the 

pulse length decreases. 

We know from geometrical optics that two focal lengths in a 

thin lens can ~e added inversely [26]: 

( 4. 3 6) 

Whether this is true or not in this case cannot be proved in a 

strict sense. This is due to the fact that Eq. (4.36) is 

based on geometrica~ theory, while the natural focus is a 

diffraction phenomenon. But we can verify it for our 

app~ication. We vary the aperture diameter by 12.7 mm and 15 

mm. With a frequency of 3 MHz the natural focal length is 81 

mm and 113 mm. We also vary the geometrical focal length by 

75 mm and 200 mm. The resulting foca~ lengths for the four 

different combinations are found from Eq. (4.36) and are given 

in Table 4.2. 



a) 1SL 
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c) 

Fig. 4.20. 
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b) 1!51&, 

d) 

Beam diameter in mm as a function of depth in 
mm for natural focal length NF and geometrical 
focal length GF. The aperture diameter is 12.7 mm 
and the CW excitation has a frequency of 3 MHz. 

a. GF 
b. GF 
c. GF 
d. GF 

75 
75 
200, 
200, 

NF 
NF 
NF 
NF 

81 
11 3 
81 
11 3 
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Geometrical Natural Total 
Fig. focal length focal length focal length 

a 

b 

c 

d 

Table 4.2. 

75 

75 

200 

200 

Combinations of 
lengths for Fig. 

8 1 

11 3 

8 1 

1 1 3 

natural 
4. 2 0. 

and 

39 

45 

58 

72 

geometrical focal 

In Fig. 4. 2 0 the calculations are shown for the same four 

variations of the focal lengths. We can see that the results 

are in good agreement with Table 4.2 and we conclude that the 

focal lengths can be added inversely to give a guideline to 

where the beam waist will be for our transducers. 

In this subsection we will analyse the fields of annular 

arrays. The p.urpose of annular arrays is to use dynamic 

focusing in echo imaging. The pulse is transmitted with a 

fixed focus. During reception the focal length is adjusted so 

that it equals the depth of the echo at all times. From now on 

we will use the defination of focal length as it is defined in 

geometrical optics. 

There are two properties that are important to examine in 

connection with annular arrays. The first is to find out to 

which extent a finite number of elements is capable of shaping 

a focus and how many elements that are necessary. The 

reference is the focus formed by a spherical lens. The second 

is to find out how much the resolution is improved by using 

dynamic focusing in reception. 
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From Eg. (4.30) we estimated the required number of elements 

to be four. This was based on a simple analysis of the on-axis 

field and should be regarded as a guideline only. However, we 

will start with four elements and compare with two 

elements. 

and eight 

We have seen earlier that the exciting pulse shape influences 

the field. In this subsection however, we will use the pulse 

from a transducer with one matching layer. 

In Fig. 4.21 are shown plots that are comparable with those of 

Fig. 4.13. The only difference is that while a lens is used 

in Fig. 4.13, four elements with a proper time delay are used 

in Fig. 4.21. The focal length is 75 mm for both. A 

comparison of the beam diameters as functions of depth gives 

no significant differences. The skirts of the beam profiles 

are however different, and the difference is greatest in the 

near field. The near field pressure varies more across the 

beam for the four element transducer. But generally speaking 

the four element transducer performs well. However, it is not 

a focal length of 75 mm, but rather a focal length of 20 mm 

that requires four elements according to Eq. (4.30). To 

decide how many elements that are required, we will use the 

beam diameter ~nd the beam profile plots. 

In Fig. 4.22 the beam diameter is shown as a function of depth 

for 2, 4 and 8 elements when dynamic focusing is used. The 

beam is generated by letting the focal length be equal to the 

depth at all depths. We can see that the beams from 4 and 8 

elements are essentially equal. The beam from 2 elements has 

a larger diameter than the two others in the near field. At a 

depth of 20 mm the beam diameter for 2 elements is more than 

twice the beam diameter for 4 and 8 elements. 

Fig. 4.23 shows the beam profiles as functions of distance 

from the axis at the depths z equal to 20 and 30 mm for 2, 4 

and 8 elements. The focal length is equal to the depth in all 

the plots. We can now see more clearly that two elements are 



a) 

b) 

Fig. 4.21. 
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Pressure field with medium pulse excitation from a 
planar four element annular array with aperture 
diameter 12.7 mm and centre frequency 3 MHz. 

a. Beam diameter in mm as a function of depth in 
mm. 

b. Beam profile in perspective in space in mm. 
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c) 
PRESSURE BEAM PROFILE VS. M~ 

1. 1!1 
PRESSURE BEAM PROFILE VS. MM. 

1. 1!1 

z = 20 

1!1. 1!1 11!1. 1!1 21!1. 1!1 

BEAM PROFILE VS. MM. BEAM PROFILE VS. MM. 

BEAM PROFILE VS. MM. BEAM PROFILE VS. MM. 

-Uil. 1!1 1!1. 1!1 21!1.121 

Fig. 4.21.c. Pressure beam profile as a function of distance 
from the axis at depth z in mm. 
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too small a number to give a good focus at depths of 20 and 30 

mm. Increasing to 4 elements gives a radical improvement of 

the skirts in addition to the reduction in beam diameter 

mentioned above. Increasing to 8 elements gives us further 

improvements relative to 4 elements. However, the important 

improvements take place when going from 2 to 4 elements. We 

therefore decide to use 4 elements. 

In Fig. 4.24 beam profiles are shown for an annular array with 

4 elements when the focal length is set equal to the depth at 

all the depths. Therefore when 4 elements are used for dynamic 

focusing, the beam profiles during transmission will be those 

shown 

4.24. 

in Fig. 4.21, and during reception those shown in Fig. 

For comparison of the beam profiles at a given depth we have 

used a focal length that is equal to the depth. In the 

previous subsection we have however learned that the beam 

waist is closer to the aperture than the focal point. It is 

therefore possible that another choice of focal length can 

give a better result. This possibility is investigated in 

Fig. 4.25, where beam diameter plots are shown for a 4 element 

array with the focal lengths equal to 30, 40, 50 and 75 mm. 

For f equal ~o 75 mm we can see that the beam waist is at 50 

mm. However, the beam diameter at depth 50 mm is narrower in 

the case where the focal length is equal to 50 mm. When the 

focal length is equal to 50 mm, the beam waist is at depth 40 

mm. However, the beam diameter at depth 40 mm is narrower in 

the case where the focal length is equal to 40 mm, and so on. 

This indicates that the optimum choice of focal length is to 

let it be equal to the depth where the smallest diameter is 

desired. This is true in spite of the fact that the beam 

waist then will be located closer to the aperture. 
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Fig. 4.22. 
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NA 2 

NA = 8 

0. 

Beam diameter in mm as a function of distance in 
mm from an aperture with NA elements. The 
aperture diameter is 12.7 mm. The excitation is 
the medium pulse with centre frequency 3 MHz. 
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SEAM PROFILE VS. MM. PRESSURE BEAM PROFILE VS. MM. 
1. !a 

NA = 2 
z = f = 20 

~~~~~~~dl~~~~~~LU~~~~ 

-HI. Ill -2111.111 -1111.111 

SEAM PROFILE VS. MM. PRESSURE BEAM PROFILE VS. MM. 
t. Ill 

NA = 4 NA = 4 
z = f = 20 z = f = 30 

PRESSURE BEAM PRClPil.E VS. MM. PRESSURE BEAM PROFILE VS. MM. 

1." 
NA = 8 NA = 8 
z = f = 20 z = f = 30 

Pressure beam profiles as a function of distance 
from the axis in mm at depth z in mm which equals 
the focal length f formed by an annular array with 
NA elements. Th• aperture diameter is 12.7 mm. 
The excitation is the medium pulse with centre 
frequency 3 MHz. 
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PRESSURE BEAM PROFILE VS. MM. PRESSURE BEAM PROFILE VS. MM. 
1. Ill 1. Ill 

z = 20 z = 30 

-1111.111 1111. Ill 2111. Ill 

PRE~RE BEAM PROFILE VS. MM. PRESSURE BEAM PROFILE VS. MM. 
1. I'll 1. Ill 

z = 50 

-21'11.1'11 -1111. Ill 1111. Ill 20. Ill -10. Ill 

PRESSURE BEAM PROFILE VS. MM. BEAM PROFILE VS. MM. 
1. Ill 

-10. Ill 

Fig. 4.24. Pressure beam profiles as a function of distance 
from the axis in mm at depth z in mm which equals 
the focal length formed by four annular elements. 
The aperture diameter is 12.7 mm. The excitation 
is the medium pulse with centre frequency 3 MHz. 
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f 30 f 40 

f 50 f 75 

Seam diameters as a function of depth in mm of a 
four element array with diameter 12.7 mm focused 
at f. The excitation is the medium pulse with 
centre frequency 3 MHz. 

The above result might seem a bit surprising. We can however 

find similar results in the literature on gaussian beams [27]. 

For continuous waves with a gaussian beam profile one can show 

directly that the minimum beam diameter at a given depth is 

achieved by choosing the focal length equal to the depth. The 

beam waist will however be located closer to the aperture. 

Thus we have seen that our beam from the four element array in 

this respect behaves similar to a gaussian beam. 
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Finally, we will see how the pressure is as a function of time 

and distance from the axis at depths of 20 and 30 mm. This is 

shown in Fig. 4.26 for the four element array with focal 

length equal to the depths in both cases. Comparing these 

plots with the corresponding plots in Fig. 4.13.d we can see, 

that the beam is narrower in the near field when dynamic 

focusing is used relative to a fixed focus. But now we can 

see also that the edge waves are eliminated. On the axis at 

depth 20 mm we can see that the pressure pulse has the same 

length as the excitation pulse. This is due to the fact that 

the spatial impulse response is now only about a half period 

long. This was also the reason why we in the first place 

believed that four elements would be enough. 

PRESSURE VS. TIME ANO RAOIIIL OISTIINCE CMM. >. 

r 
A 

{\ 
z = f = 20 
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Fig. 4.26. Pressure as a function of time and distance from 
the axis in mm at depth z in mm from a four 
element array focused at f. The aperture diameter 
is 12.7 mm. The excitation is the medium pulse 
with centre frequency 3 MHz. 

0 
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In this subsection we will investigate the combination of a 

fixed focus formed by a lens or a curved aperture and a 

dynamic focus formed by an annular array. In the previous 

subsections we have started out by analyzing the on-axis 

spatial impulse response. Inspired by the success of this 

approach, we will proceed in the same way. 

Our aim is to be able to focus properly in the depth range 

20-150 mm, and we will therefore need an on-axis response that 

is shorter than half a period in the same depth range. With a 

on-axis focal. length equal. to 75 mm, the length of the 

response is 0.48 iJS at depth 20 mm and 0.09 iJS at depth 150 

mm. To get an on-axis response that is shorter than half a 

period or 0. 17 iJS, it is therefore necessary to use four 

elements at depth 20 mm. At depth 150 mm however, the 

response is short enough already with one element. Looking at 

the on-axis response only, it might therefore be better to 

choose a fixed focus that gives us a response with the same 

length at depths 20 and 150 mm. With a fixed focal length 

equal. to 35 mm we get an on-axis response with length 0.29 iJS 

at 20 mm and the same at 150 mm. In this case it is 

sufficient to use two elements to get a response that is 

shorter than 0.17 iJS both at depths 20 and 150 mm. 

To check the validity of the above analysis we will. run the 

computer program for a two-element aperture with the fixed 

focal length equal to 35 mm. The plot in Fig. 4.27.a shows 

the beam diameter as a function of depth in the case where 

dynamic focusing is used. That is, we let the total focal 

length be equal to the depth at all depths. We can see that 

the beam performs well. Compared with the beam diameter plot 

for the planar two-element aperture in Fig. 4.22, we can see 

that the near field is improved by using a fixed focus in 

addition to the dynamic focus. 
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Figure 4. 27. b shows the beam profiles as a function of 

distance from the axis for the depths z equal to 20, 30, 50, 

70, 100 and 150 mm, and with the total focal length equal to 

the depth for each plot. Comparing these plots with the 

results for the four-element aperture in Fig. 4.24, we can see 

that the sidelobes or skirts in general are increased. In the 

near field the beam profiles perform well, but in the far 

field the skirts are large and might be damaging to the image. 

These results might suggest that the value of the fixed focal 

length of 35 mm was too short. To improve the far field beam 

profiles we can therefore increase the fixed focal length. Let 

us choose 55 mm. The beam diameter as a function of depth is 

shown 

used. 

in Fig. 4.28.a for the case where dynamic 

Again, the beam diameter performs well at 

focusing is 

all depths. 

The beam profiles are shown in Fig. 4.28.b. Comparing these 

with the plots in Fig. 4.27.b, we can see that the skirts in 

the far field have decreased and the skirts in the near field 

have increased as we expected. Fig. 4.28.c shows the pressure 

as a function of time and distance from the axis at the depths 

Fig. 4.27. 

a) 

Pressure from a two-element aperture with a fixed 
focal length of 35 mm when dynamic focusing is 
used. The aperture diameter is 12.7 mm and the 
excitation is the medium pulse with centre 
frequency 3 MHz. 

a. Beam diameter in mm as a function of depth in 
mm. 
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PRESSURE SEAM PROFILE VS. MM. PRESSURE BEAM PROFILE VS. MM. 
1. l!l 1. IIi 

z = f 20 30 

2111.!11 -1111.111 111.111 1111.111 

PRESSURE BEAM PROFILE VS. MM. PRESSURE BEAM PROFILE VS. MM. 
1. Ill 

z = f 70 

PRESSURE BEAM PROFILE VS. MM. PRESSURE BEAM PROFILE VS. MM. 
1. Ill 1.111 

z = f 100 f 150 

-1111.21 111.13 1111.0 2111.13 

Fig. 4.27.b. Beam profiles as a function of distance from the 
axis in mm at depth z in mm and total focal 
length f. 



89 

z eq u a 1 to 2 0 , 3 0 , 7 0 and 1 50 mm. Also here the total focal 

length f equals the depth at all depths. We can see that the 

pressure pulse is short as a function of time. It is of the 

same length as the velocity pulse generated from the 

transducer, and the influence on the 

impulse response is small. 

length of the spatial 

To complete the calculations for the two-element transducer 

with a fixed focus of 55 mm, we have in Fig. 4.29 shown the 

transmission pressure field from this transducer. That is, 

the pressure field when the total focal length is 75 mm. This 

transducer will therefore have a pressure field as shown in 

Fig. 4.29 when transmitting, and as shown in 

receiving. 

Fig. 4.28 when 

We have in this chapter shown the pressure fields of many 

different transducers. The problem is then to decide whether 

one particular design is good enough or not. The most 

important values for the resolution in the image are the beam 

Fig. 4.28. 

a) 

Pressure from a two-element aperture with a fixed 
focal length of 55 mm when dynamic focusing is 
used. The aperture diameter is 12.7 mm and the 
excitation is the medium pulse with centre 
frequency 3 MHz. 

a. Beam diameter in mm as a function of depth 
mm. 

in 
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b) 
PRESSURE BEAM PROFtl.E VS. MM. BEAM PROFILE VS. MMo 

z = f 30 

0.0 10.0 20.0 

PRESSURE BEAM PROFil.E VS. MM. PRESSURE BEAM PROFILE VS. MM. 
1. 0 1. 0 

z f 50 z = f 70 

PRESSURE BEAM PROFU.E VS. MM. PRESSURE BEAM PROFILE VS. MM. 
1. Ill 

Fig. 4.28.b. 

z = f 100 

Beam profiles as a function of distance from the 
axis in mm at depth z in mm and total focal 
length f. 
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PRESSURE VS. TIME AND RADIAL DISTANCE (MM.) 
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Fig. 4.28.c. Pressure as a function of time and distance from 
the axis in mm at depth z in mm and total focal 
length f. 
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Fig. 4.29. 
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Pressure from a two-element aperture with a fixed 
focal length of 55 mm and a total focal length of 
75 mm. The aperture diameter is 12.7 mm and the 
excitation is the medium pulse with centre 
frequency 3 MHz. 

a. Beam diameter in mm as a function of depth in 
mm. 

b. Beam profile in perspective plot in space in 
mm. 
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PRESSURE BEAM PROFILE VS. MM. BEAM PROFILE VS. MM. 
1. 0 

z = 20 

-10.0 0. 0 10.0 20.0 

PRESSURE BEAM PROFILE VS. MM. PRESSURE BEAM PROFILE VS. MM. 
!. 0 1. 0 

z = 50 

20.0 

PRESSURE BEAM PROFILE VS. MM. BEAM PROFILE VS. MM. 
!. 0 

z = 100 
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Fig. 4.29.c. Beam profiles as a function of distance from the 
axis in mm at depth z in mm. 

diameter and· the pulse length. The sidelobes, skirts and 

tails of the pulse will generate signal dependent noise. There 

is no algorithm to find the best aperture design. The 

decision must therefore be a judgement based on experience. 
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5. TRANSDUCER DESIGN AND MEASUREMENTS 

In this chapter we will demonstrate the design and the 

measurements of the transducers. In particular, we will look 

at the design of quarter wave matching layers. Critical 

design parameters will be discussed. 

The measurements presented in this chapter are the electric 

input impedance, the impulse response, the transfer function 

and the efficiency of the transducer. The transient 

diffraction fields will be presented in the next chapter. 

The most important measurements will be the impulse response 

and the efficiency of the transducer. The impulse response 

tells us how good the depth resolution will be. The 

efficiency is important for the transducer sensitivity. 

The measurements are done also to evaluate the transducer 

calculation model. The measurements of the electric input 

impedance of the transducer will be used to find the different 

modes of vibration. The transfer function can be used to find 

the modes that are coupled to the medium. 

5. 1 . Transducer design 

The only way to learn transducer design is through trial and 

error. Thus practical experience is a necessity. Some of the 

experience will, be mentioned, and in particular the 

fabrication of the quarter wave matching layer. 

At a frequency of 3 MHz a half wavelength resonator of PZT 

will be about 0.7 mm thick. A typical thickness of a quarter 

wave matching layer is 0.2 mm. It is self-evident that the 

thickness of the electrodes and of the glue layers can be 

critical; also the homogeneity of the materials, parallelity 

of the layers and the size of the solder points. This has to 

be considered in all operations involved in the transducer 

fabrication. 
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The PZT elements used in the experiments are delivered from 

Ferroperm and the material data are given in [21]. A silver 

electrode of thickness 10 ~m is deposited on each side of the 

element. The acoustic impedance of a typical PZT material is 

between 30 and 40 Mrayl ( = 1 o6 kg/m 2 s) . The impedance in 

silver is 38 Mrayl. The influence of the electrodes is 

therefore in essence that 3Z of the thickness of the resonator 

is non-piezoelectric. 

We want a high efficiency and therefore airbacking of the 

transducer. However, to get mechanical support we will use a 

porous material called divinycell. This is a stiff material 

with low density and the acoustic impedance is in the range 

0.1 to 0.4 Mrayl. The acoustic impedance looking forward from 

the ceramic through one matching layer is, according to Table 

3.2, 12 Mrayl at resonance. The result is that almost all the 

power is emitted in the forward direction. 

With this light backing we can also tolerate a glue layer of 

thickness 0.1 mm between the element and the backing. 

A glue layer between the element and the matching layer is a 

greater problem. A special high pressure method has been 

developed to ·get the glue layer as thin as a few micrometers 

[ 1 9 ] . If, however, a filled epoxy is used as the material in 

the matching layer, the whole problem can be eliminated by 

molding the epoxy straight onto the element. This requires a 

fill that will not sink to the bottom before the epoxy 

hardens. We have therefore chosen to use dolomit powder 

instead of a metal powder as fill in the epoxy. This unables 

us to make composites with as high impedances as if metal 

powder had been used, but we will only need an impedance of 

4.25 Mrayl anyway. The dolomit powder, called microdol, that 

is used here has a grain size of 1-B ~m and the composite will 

therefore be homogeneous at a frequency of 3 MHz. The epoxy 

used is Chiba Geigy XW 396-397. The density, velocity and 

impedance were measured as a function of weight percent 

microdol and the results are shown in Fig. 5. 1. The 
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Fig. 5. 1 . Density, velocity and impedance of the filled epoxy 
as a function of weight percent microdol. 

uncertainty in the velocity is about ~ 50 m/s 

impedance~ 0.1 Mrayl. 

and in the 

From the plot we can read that the desired impedance of 4.25 

Mrayl is achieved with 45Z microdol. The velocity is then 

2800 m/s and the desired thickness of a quarter wave matching 

layer at 3 MHz is therefore 0.23 mm. 

Thus, the fabrication of the quarter wave matching layer is 

done by mixing the epoxy and microdol. This mixture is 

evacuated to avoid gass bubbles and molded directly onto the 

element. After hardening the filled epoxy is ground down to 

the proper thickness. 

~ 5 IJm. 

The accuracy in the grinding process is 

In Fig. 5.2 are shown calculated impulse responses and module 

of the corresponding transfer functions for some parameter 
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settings. Figure 5.2.a shows the ideal parameter setting and 

is the same as in Figure 3.5.a. Figure 5.2.b shows the effect 

of adding 10 ~m silver electrodes. Figure 5.2.c shows the 

effect of the backing with impedance 0.4 Mrayl and a glue 

layer of 0.1 mm thickness between the backing and the element. 

The transfer function here is reduced with 2/. only relative to 

the ideal case. Figure 5.2.d shows the effect of reducing 

the impedance of the matching layer to 4.0 Mrayl. Figure 

5.2.e shows the effect of increasing the thickness of the 

matching layer to 0.25 mm. For all the plots in Fig. 5.2 the 

changes are acceptable and indicate the tolerable inaccuracies 

in the fabrication of the transducers. 
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c) IMPULSE RESPONSE VS. TIME <MY.SEC.) 
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Fig. 5.2. Acceptable changes in parameters for fabrication of 
transducers. The disc diameter is 12.7 mm and the 
centre frequency is 3 MHz. 

a. Idea.ls 
b. 10 ~m silver electrodes included 
c. Backing and glue layer included 
d. Matching layer with impedance 4.0 Mrayl instead 

of 4.25 Mrayl 
e. Matching layer with thickness 0.25 mm instead 

of 0.23 mm. 
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5. 2. Transducer measurements 

For measurement purposes the transducers are placed in a 

measurement tank from Medisonics, England. This is supplied 

with a micropositioning manipulator which has a resolution of 

0.1 mm in the transversal direction and 1.0 mm in the 

longitudinal direction. The. hydrophone is a 1 mm PVDF probe 

from the Danish Institute of Biomedical Engineering. The 

diameter of the aperture is 1.0 mm and the sensitivity is -264 

dB relative to V/~Pa in the frequency range 1-10 MHz when it 

is connected to a 1 MQ load impedance. 

The input signal to the transducer is generated 

Pulsetek pulse generator 233 which has two channels. 

capable of producing pulses as short as 10 ns. 

from a 

This is 

When a 

continuous burst is required, the pulse generator and a switch 

are used to modulate a continuous signal from a Hewlett 

Packard 3312 A Function Generator. The signal is amplified by 

a EIN 503 L Power Amplifier which has a frequency range from 1 

to 500 MHz. The output impedances of the generators are 50 Q. 

The signal from the hydrophone is amplified in a Tektronix 

Type 127-1A5 Preamplifier with a 1 MQ input. The signal is 

read from a Tektronix 2213 oscilloscope. 

shown in Fig. 5.3. 

The configuration is 

The electric input impedance of the transducer is measured 

with a Hewlett Packard 4815 A RF Vector Impedance meter. This 

can measure the module and phase in the frequency range 0.5 -

500 MHZ. 

The impulse response of the transducer is measured by exciting 

the transducer with a pulse that is shorter than 100 ns. The 

hydrophone is placed in the focal point or in the far field 

for an unfocused transducer where the spatial impulse response 

is a .S-pulse. 
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Fig. 5.3. The measuring configuration. 

The measurement of the transfer function is done with the 

hydrophone in the same position. A CW-burst is used as an 

input to the transducer and the burst centre frequency is 

varied from 0.5 to 6 MHz. 

The efficien-cy Of the transducer has been measured by 

measuring the output acoustic power with a power meter 

designed by Eng an [ 2 8] . The transducer is excited with a 3 

MHz continuous voltage of known amplitude and the input 

electric power can be 

electric input impedance. 

calculated when we have measured the 

The efficiency is then found as the 

ratio between the output acoustic power and the input electric 

power. 

A single element circular disc transducer with one quarter 

wave matching layer has been fabricated as described in the 

previous section. The diameter of the disc is 12.7 mm and the 

centre frequency is 3 MHz. 
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In Fig. 5.4.a is shown the calculated time derivative of the 

impulse response. Thus, it can be compared directly with the 

measured acoustic pressure. The 12 dB pulse length is 0.7 ~s. 

Figure 5.4.b shows the measured impulse response. Here the 12 

dB pulse length is also 0.7 ~s. The main pulse is very close 

to the calculated one. )he tail of the pulses are however 

somewhat different in the two cases. 

In Fig. 5.4.c is shown the calculated generator voltage to 

pressure transfer function for the transducer. The 6 dB 

bandwidth is 1. 7 MHZ. Fig. 5.4.d shows the measured transfer 

function. Also here the 6 dB bandwidth is 1.7 MHz. While the 

calculated transfer function has a flat top, the measured one 

has a peak at 3.5 MHz. This is in agreement with what we 

predicted in Chapter 3, a peaked transfer function gives an 

impulse response with a bigger tail. 

The 

MHz. 

efficiency of the transducer was measured to be 89Z at 3 

With the divinycell backing and the loss model developed 

in chapter 3, we get a theoretical efficiency of 92Z. This 

agreement is excellent. 

Fig. 5.5.a shows the calculated electric input impedance of 

the transduce~ and Fig. 5.5.b shows the measured electric 

input impedance. The differences between the calculated and 

the measured results are more vital here than for the impulse? 

response and the transfer function. In the measured results 

we can see a resonance at 0.6 MHz and another at 0. 9 MHZ, 

which are not present in the calculated results. At 3 MHz the 

calculated module is 36 Q and the phase is The 

measurements 

equal to -3 5° 

at 3 MHz show a module equal to 30 Q and a phase 

The shape of the plots around resonance is 

also somewhat different in the two cases. 

There are two principal reasons for the disagreement between 

the calculated and measured results. The first is that the 

parameter input to the calculation model may be different from 

the actual parameters. The second is that the model is too 
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frequency is 3 MHz. 

a. Calculated impulse response 
b. Measured impulse response 
c. Calculated transfer function 
d. Measured transfer function 

Changes in a parameter that is believed to be 

important were examined in the previous section. The results 

indicate that even if errors in the parameters may explain 

some disagreement between the calculated and measured results, 

this can not explain it all. 
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the single element 
layer. The disc 

frequency is 3 MHz. 

The model is too simple, as already stated in Chapter 3. While 

the wave equation has nine independent solutions in a solid 

medium, our model only takes one of them into account. It is 

obvious that this is the explanation for the two measured 

resonances at 0.6 and 0.9 MHz in the input impedance. The 

model has no possibility of finding those modes. It might 

also be that other modes of vibration influence the shape of 

the impedance around 3 MHz. 

The agreement between the calculations and the measurements is 

much better for the impulse response and the transfer function 

than it is for the input impedance. This can be understood 
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when recalling that the impulse response and the transfer 

function are measured with the hydrophone in the focal point. 

The reason for this placement is that the spatial impulse 

response is a a-pulse of time in the fncal point, and 

therefore the pressure will be the time derivative of the 

normal velocity on the transducer surface. The mode of 

vibration that is included in the transducer model, namely the 

pressure wave, only gives a normal velocity on longitudinal 

the surface. However, all the other modes of vibration may 

have velocity fields that are quite different and therefore 

radiate in other directions, or hardly radiate at all. This 

favours the suggestion that most of the disagreements between 

the calculated and measured input impedance are due to other 

modes of vibration rather than errors in the input parameters. 

5. 2. 2. The two-element transducer 

A two-element annular array has also been fabricated. It 

consists of a centre disc of diameter 9.7 mm and an outer ring 

with inner diameter 10.2 mm and outer diameter 13.7 mm. Also 

for this transducer the thickness resonance frequency is 3 

MHZ. The PZT-elements were glued to the divinycell backing 

which has an acoustic impedance of 0.4 Mrayl. Afterwards the 

filled epoxy was 

proper thickness. 

molded on the front and ground down to the 

This method of producing the matching layer 

gave an uncertainty in the thickness of the matching layer of 

.!:. 10 iJm. 

The calculated impulse response is shown in Fig. 5.6.a. It 

has a 1 2 dB pulse length of 0.7 iJ s. The measured impulse 

response of the 1.nner element is shown in Fig. 5. 6. b. This 

has a 1 2 dB pulse length of 0.7 iJS. The measured impulse 

response of the outer element is shown in Fig. 5. 6. c. This 

has a 1 2 dB pulse length of 0.7 j.JS. Finally, in Fig. 5.6.d is 

shown the impulse response for both the elements excited in 

parallel. The impulse responses for the inner and outer 

element were excited with the same generator voltage over the 
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d. Measurement for both elements in parallel 
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50 Q ~ine, but stil~ the response from the outer element is 

2.5 dB lower than the inner element. Also for the outer 

element we can observe a 1 MHz period tail of the pulse. 

The calculated generator voltage to pressure transfer function 

is shown in Fig. 5. 7. a .. The 6 dB bandwidth is 1. 7 MHz. The 

measured transfer function for the inner element is shown in 

Fig. 5.7.b. The 6 dB bandwidth is 1 . 6 MHZ. The measured 

is shown in Fig. transfer function for the outer element 

5. 7. c. The 6 dB bandwidth is 1.6 MHz. For the inner element 

the result is very much the same as for the single element 

transducer. The transfer function has a peak at 3.3 MHZ and 

this is in agreement with a bigger tail in the impulse 

response. For the outer element the transfer function has 

peaks at 3.4, 2.7 and 1.0 MHz. The peaks around 3 MHz can not 

be separated in the impulse response, but as mentioned above, 

we observe a weak 1 MHz period signal in the impulse response. 

The measured efficiency of the inner element is 88l and 57l of 

the outer element. As for the single element transducer the 

calculated efficiency is 92l. The calculated and measured 

efficiency are in good agreement for the inner element but in 

poor agreement for the outer element. 

The calculated electric input impedance is shown in Fig. 

5.8.a. At 3 MHz the module is 62 Q and the phase is -43°. The 

measured impedance for the inner element is shown in Fig. 

5.8.b. At 3 MHz the module is 36 Q and the phase is -44° We 

can see also that there is a resonance at 0.5 MHz and another 

at 0.75 MHZ. The shape of the plots around 3 MHz is different 

from the calculated ones for both the module and the phase. 

The measured impedance for the outer element is shown in Fig. 

5.8.c. The module at 3 MHZ is 56 Q and the phase is -· 5 8° . 

There is a strong resonance at 1 • 0 MHz and a weaker at 2.0 

The shape of the module and phase around 3 MHz is also 

here different from the calculated one. 
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The discussion of the results for the single element 

transducer is valid also for the two-element transducer. The 

disagreements between the calculations and the measurements 

are however greater for the outer element in the two-element 

transducer. This is due to the fact that the transversal 

dimension of the outer element is of the same order as the 

thickness of the element. The thickness is 0.69 mm and the 

width is 1. 75 mm. The piezoelectric ceramic that is used, PZ 
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27, have a coupling factor in the transversal direction equal 

to 0.36 while the longitudinal coupling factor is 0.69. This 

indicates that the 1 MHz resonance might be the fundamental 

resonance of the transversal pressure wave. If so, the 

wavelength should be 3.5 mm and the effective velocity 3500 

m/s. The bulk velocity for a pressure wave in PZ 27 is 4350 

m/s, but piezoelectric coupling and transversal contraction 

will reduce the effective velocity. The 1 MHz resonance is 

therefore most likely the transversal vibration mode. 

If we take into account the nine independent solutions of the 

wave equation and their harmonics and all the linear 

combinations of these, and also the uncertainty due to 

mechanical and electric coupling, we can fit almost any 

resonance frequency. This is highly speculative and we will 

therefore not do so. We just have to admit that we c:an not 

account for all the measured resonances. 

The measured efficiency of the inner and outer element differs 

with 1.9 dB. The lower efficiency of the outer element may be 

due to the fact that it is more in contact with the filled 

epoxy which fills up the space in between the elements and 

around the outer element. Also spurious modes of vibration 

close to 3 MHz· may absorb energy. 

However, the impulse responses are satisfactory. Most 

important for an annular array is the fact that the impulse 

responses are equal. We have noticed that the impulse 

response from the outer element is 2.5 dB lower than the one 

from the inner element when driven with the same generator 

voltage. The lower efficiency of the outer element accounts 

for 1.9 dB and the higher real part of the electric input 

impedance of outer element accounts for 0.2 dB. Finally all 

the other modes of vibration in the outer element will absorb 

energy due to the transient excitation. This difference in the 

magnitude of the two responses can however easily be 

compensated for. 
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6. MEASUREMENTS OF TRANSIENT DIFFRACTION PATTERNS 

The beam observation tank is used for measurements of the 

fields from the transducers. The tank and the rest of the 

measuring equipment were described in the previous chapter. An 

important parameter for the field measurements is the 

hydrophone diameter which is i .0 mm. We also recall that the 

resolution of the micro manipulator is D.1 mm in the 

transversal direction and 1.0 mm in the longitudinal 

direction. 

The lenses used in the experiments are made of a high density 

silicone called Sylgard 170 from Dow Corning. The velocity in 

the silicone is 1010 m/s, which gives a refraction index of 

1.49 relative to water. Thus we can make thin lenses, which 

give low second order aberrations (29]. The acoustic impedance 

in the silicone is 1.4 Mrayl which gives low reflection at the 

water-silicone interface. 

Calculations of the fields from a single element transducer 

are shown in c'hapters 4. 2. 1 and 4. 2. 2. In Chapter 4. 2. 1. we 

calculated the pressure fields for a disc with focal length 

equal to 75 mm. The medium was excited with a continuous 

wave, a half wavelength pulse and the pulse coming from a 

transducer with one matching layer. The half wavelength pulse 

is not available and can not be used in the measurements. The 

calculations of pressure field for the planar disc are shown 

in Chapter 4.2.2. The excitations mentioned above were used 

in this case as well. 

In Fig. 6. 1 are shown mea~urements of the half value beam 

diameter as a function of depth for both a planar and a 

focused disc with both pulse and CW excitation. 
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The measurements of the planar CW excited disc in Fig. 6.1.a 

correspond to the calculations in Fig. 4.17.a. The 

measurements show a beam waist at 75 mm where the beam 

diameter is 5.1 mm. The calculation gave us 5.0 mm at depth 

80 mm. At depth 150 mm the measurements give a diameter of 

8.8 mm, while the calculated result is 8.3 mm. This is the 

largest disagreement 

diameter outside the 

between. the measured and the calculated 

beam waist. At depth 20 mm the 

measurements show a diameter of 10.4 mm, while the calculation 

gave us 11.6 mm. The largest disagreement between the 

measurement and the calculation inside the beam waist is found 

at depth 50 mm, where the diameter is measured to be 7.6 mm 

and calculated to be 10.7 mm. 

Figure 6.1.b shows the measured beam diameter for the pulse 

excited planar disc, and corresponds to the calculations in 

Figure 4.18.a. The measurements show a beam waist at depth 90 

mm where the diameter is 6.1 mm. The calculation shows also a 

beam waist at 90 mm, but the diameter is 6.6 mm. At depth 150 

mm the measured diameter is 8.8 mm, while the calculated is 

8.6 mm. At depth 20 mm the measured diameter is 11.5 mm, 

while the calculated is 12.2 mm. The difference between the 

measured and calculated results is within 0.3 mm outside the 

beam waist and 1.0 mm inside the beam waist. 

Figure 6.1 .c shows the measured beam diameter for the CW 

excited disc with focal length 75 mm, and this corresponds to 

the calculations in Fig. 4.12.a. The measurements show a beam 

waist at depth 40 mm with diameter 2.9 mm. The 

show a beam waist at 40 mm with diameter 2.7 mm. 

mm the measurements show a diameter of 8.2 mm, 

calculations 

At depth 150 

while the 

calculation gives 8.4 mm. At 20 mm the measured diameter is 

8.2 mm and the calculated is 6.3 mm. Again the difference 

between the measured and calculated diameter is within 0.3 mm 

outside the beam waist and 1.0 mm inside the beam waist. 

Finally, Fig. 6.1 .d shows the measured beam diameter for the 

pulse excited disc with focal length 75 mm. This corresponds 
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to the calculations in Fig. 4.13.a. The measurement shows a 

beam waist at depth 50 mm with diameter 3.1 mm. Also the 

calculations give a beam waist at 50 mm, but with diameter 2.9 

mm. At depth 150 mm the measured diameter is 8.9 mm, while 

the calculated is 8.8 mm. At depth 20 mm the measured 

diameter is 8.3 mm, while the calculated is 7.9 mm. In the 

latter case the difference between measured and calculated 

diameter is within 0.5 mm inside the beam waist. 

The disagreements between measured and calculated diameters 

less than 0.5 mm are easy to account for. The hydrophone 

diameter is 1 mm and uncertainty in the position is 0.1 mm on 

each side of the beam. The calculations of diameter are based 

on a linear interpolation between the sampling points, and 

they are separated by 0.75 mm in the direction perpendicular 

to the axis. 

Inside the beam waist the disagreements between measured and 

calculated diameter are larger than outside the beam waist. In 

general the measured diameters are larger than the calculated. 

Also the disagreements are larger for CW excitation than for 

pulse excitation. The reason is that the local peaks in the 

beam are not resolved with a mm hydrophone and the measured 

peak values ~re too low. This gives too low a half value 

estimate and a larger half value diameter. The CW fields are 

more peaked than the pulsed fields and therefore show larger 

disagreements. 

The latter statement is easier to discuss after showing the 

measured beam profiles. In Fig. 6.2 are shown the measured 

beam profiles for the CW excited disc with focal lengt~1 75 mm. 

The measurements are done as a function of distance from the 

axis in depths z equal to 20, 30, 50, 70, 100 and 150 mm. The 

corresponding calculations are shown in Fig. 4.12.c. The 

resolution in the calculations is 0.5 mm. 

The generator voltage was kept constant during 

measurements of the beam profiles at the different depths~ We 
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can see that the spatial peak is at 50 mm which also is in 

agreement with the plot in Fig. 4.12.b. 

All in all the agreement between the measured and the 

calculated beam profiles is very good. The differences occur 

at the peaks and at th~ dips and zeros. This can be due to 

the size of the hydrophone and the resolution in the 

calculations. The on-axis peak at depth 20 mm is about 50/. 

higher in the calculated plot than in the measured plot. We 

can see however, that this is narrower than mm and will 

therefore be unresolved by the finite hydrophone aperture. As 

discussed above, this will give too low a measurement of the 

peak value. It is easy to see when comparing the measured and 

calculated beam profile in this case, that the measured half 

value diameter will be too large. If the on-axis peak in the 

calculated beam profile is cut down to match the measured 

profile, we can read out that the half value diameter will 

become about 8 mm the measured value was 8.3 mm. This shows 

that the size of the hydrophone can explain the disagreement. 

At depth 30 mm the calculation also shows an on-axis peak. 

This is not present in the measurements. However, the 

calculated peak is narrower than 1 mm and will therefore not 

be present in ~he measured beam profile. The same can be said 

about all the peaks in the profiles - they are not resolved by 

the hydrophone. 

At depth 70 mm the dips in the calculated beam profile are 

deeper than in the corresponding measurement. Again, we can 

blame the size of the hydrophone. 

It is very tempting to state that the hydrophone size is due 

to the non-resolved peaks and dips. However, we do not know 

if they really are present, so all we can say is that if the 

peaks and dips are there we would not be able to measure them 

anyway. 
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The agreement between the calculation and measurement is good, 

and by measuring the continuous fields we have achieved two 

things. First, we have gained confidence in our calculation 

model. Second, we have seen that a thin disc transducer 

vibrates like a piston when excited with a continuous signal. 

PRESSURE BEAM PROFILE VS. MM. 
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For echo imaging the transient field propagation is more 

important. In Fig. 6.3 are shown the measured beam profiles 

for the pulse excited disc with focal length 75 mm. By pulse 

excitation we now mean that the transducer is excited with a 

6-pulse and the medium is excited with the pulse coming from a 

transducer with one matching layer. In Ch. 5 we saw that the 

measured and 

quite equal, 

calculated transducer impulse 

and the calculated beam profiles 

will therefore correspond to the measurements 

in 

in 

responses were 

Fig. 4.13.c 

Fig. 6.3. 

At depth z equal to 20 mm both the calculated and measured 

beam profiles have three peaks. In the measurements, the 

on-axis peak is unresolved by the hydrophone. The off-axis 

peaks are higher in the measurements than in the calculation. 

At a distance 12 mm from the axis, the measurement shows a 

sidelobe which is not present in the calculation. 

At depth 30 mm both the calculated and measured beam profiles 

have two peaks. The peaks 

in the calculation. A 

in the measurements 

sidelobe can be 

measurements at distance 18 mm from the axis, 

present in the calculation. 

are higher than 

observed in the 

which is not 

From depth 50 mm and outwards, the beam profiles are 

single-peaked and decrease monotonically with distance from 

the axis. When the level of signal in the measurement is 

lower than about 3Z of the on-axis level, it disappears in the 

noise and can not be measured. 

The most obvious disagreement between the calculations and the 

measurements is the sidelobes at depths 20 mm and 30 mm. A 

more thorough investigation of the field shows that this 

sidelobe is due to a 1 MHz pulse radiating in a cone from the 

transducer. This radiation patte~n is typical for a plate 

vibration [14], and is often called a Lamb wave [30]. We can 

see from the measured beam profiles that it radiates in an 

angle of 30 degrees relative to the axis. This indicates a 

propagation velocity along the disc equal to two times the 
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velocity in water or 3000 m/s. This mode of vibration may 

correspond to the resonance at 0.9 MHZ in the measured 

electric input impedance of the transducer shown in Fig. 

5.5.b. This resonance could not be seen in the transfer 

function in Fig. 5.4.d, which was measured with the hydrophone 

in the focal point. The radiation pattern of this mode 

explains why. 

Other disagreements between the calculated and measured beam 

profiles may also be due to radiations from other modes of 

vibration. But only the above-mentioned plate mode has been 

detected separately. We know, however, that the pulse 

excitation of the transducer will excite all the modes in the 

transducer, and they may influence the radiation pattern. 

6. 2. The two-element transducer 

In the calculations in Chapter 4 we used a total diameter of 

12.7 mm for all the apertures. The diameter was kept constant 

so that we could easily compare the fields from the apertures. 

T~e fabricated two-element transducer which is described in 

Chapter 5 has a total aperture diameter of 13.7 mm, and for 

practical reas~ns it also has a distance of 0. 2 5 mm between 

the inner disc and outer ring. The calculations of this 

particular aperture will therefore have to be presented here. 

We will concentrate on the echo imaging application and 

therefore use pulse excitation only. 

The transducer is supplied with a silicone lens with focal 

length 55 mm. In Chapter 4 this was found to be the best 

fixed focal length for a two-element array. 

There are two modes in which the transducer will be used. The 

first is the transmit mode, where the focal length is set to 

75 mm. The second is the receive mode where the focal length 

is adjusted to match the depth of the incoming echo. 

receive mode is called dynamic focusing. We will analyse 

these two modes separately. 
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In Fig. 6.4.a is shown the calculated beam diameter as a 

function of depth for the transmit mode. In Fig. 6.4.b is 

shown the measured beam diameter as a function of depth for 

the transmit mode. In both cases the beam waist is found at 

depth 50 mm, where both the calculation and the measurement 

gives a diameter of 2.8 mm. Outside the beam waist the 

difference between the calculated and measured diameter is 

less than 0.3 mm. The largest difference is found at depth 40 

mm, where the measured diameter is 5.5 mm while the calculated 

diameter is 3.3 mm. At depth 20 mm the measured diameter is 

1.5 mm while the calculated diameter is 2.0 mm. We also note 

that this is much less than the corresponding diameter in Fig. 

4.29.a, where we had 5.3 mm at depth 20 mm. In that case the 

diameter was 12.7 mm and there was no space in between the 

elements. 

In Fig. 6.5 are shown the calculated beam profiles for the 

two-element transducer in transmit mode for depths z equal to 

20, 30, 50, 70, 100 and 150 mm. The corresponding 

measurements are shown in Fig. 6.6. At depth 20 mm the 

calculation shows a sidelobe which is about 40'l. of the on-axis 

peak value, while the measurements show a sidelobe which is 

about 30'l. of the on-axis peak value. At depth 30 mm we can 

see that the c~lculated profile is single peaked and has a 

indentation in the flank. The measurement at 30 mm has a 

double peak and shows no sign of the indentation. From depth 

50 mm and outwards the agreement between the calculations and 

the measurements is much better. No important differences can 

be seen outside the beam waist, but inside the beam waist the 

differences are obvious. 

The measurements of the electric input impedance of the 

two-element transducer in Chapter 5 showed many resonances in 

the structure. These modes of vibration may radiate into the 

medium and in particular influence the near field. 
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previous section we identified a plate mode that 

radiated in a ~one from the single element transducer. No 

similar mode has been detected for the two-element transducer. 

This may be due to the discontinuity represented by the space 

between the elements. No other modes can be seen separately 

in the field either. It is most likely that there are other 

modes present in the field anyway, but just obscuring the 

field as we have seen in the measurements. 

In the calculations of the field from the two-element 

aperture, it is assumed that the area in between the centre 

disc and the outer ring does not vibrate at all. The filled 

epoxy that forms the matching layer is, however, connected and 

also fills up 

This elements. 

vibration pattern 

the space between the two piezoelectric 

causes a more continuous change in the 

between the two elements for the measured 

transducer. The indentation in the flank of the calcu~ated 
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Fig. 6.5. Calculated beam profiles as a function of distance 
from the axis in mm depth z in mm the two-element 
transducer with one matching layer in the transmit 
mode. The aperture diameter is 13.7 mm, the total 
focal length is 75 mm and the fixed focal length is 
55 mm. The centre frequency is 3 MHz. 
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Measured beam profiles as a function of distance 
from the axis in mm at depth z in mm for the 
two-element transducer with one matching layer in 
the transmit mode. The aperture diameter is 13.7 
mm, the total focal length is 75 mm and the fixed 
focal length is 55 mm. The centre frequency is 3 
MHZ. 
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beam profile at depth 30 mm can be traced back to the 

discontinuity in the aperture. If we look back to Fig. 4.29.c 

we can see that the calculated beam profile at depth 30 mm has 

a double peak and no indentation. There the calculations were 

done without taking any space between the elements into 

account. This calculation is in better agreement with the 

measurement in Fig. 6.6 at depth 30 mm than was the case for 

the calculation in Fig. 6.5. However, at depth 20 mm the 

calculation in Fig. 4.29.c shows a sidelobe which is over 507. 

of the on-axis value. This is in worse agreement with the 

measurement in Fig. 6.6 than was the case for the calculation 

in Fig. 6.5. This shows that our simplified model of the 

vibration pattern on the aperture is the reason for some of 

the errors in the near field. 

Dynamic focusing is used to find the field for the two-element 

transducer in the receive mode. This means that the total 

focal length always is equal to the depth. Actually both the 

calculations and the measurements are done with a transmitting 

transducer, but due to reciprocity this makes no difference. 

In Fig. 6.7.a is 

function of depth 

receive mode.· In 

measurement. The 

shown the calculated beam diameter as a 

for the two-element transducer in the 

Fig. 6.7.b is shown the corresponding 

difference between the calculated and 

measured beam diameter is less than 0.3 mm for all depths 

except at 20 mm. At depth 20 mm the measured diameter is 1.5 

mm while the calculated diameter is 1.8 mm. We also note that 

the calculated diameter is larger at 20 mm than it is at 30 mm 

where it is 1.6 mm. 

In Fig. 6.8 are shown the calculated beam profiles for the 

two-element transducer in the receive mode for depths z equal 

to 20, 30, 50, 70, 100 and 150 mm. The time delay to the 

elements is controlled so that the focal length is equal to 

the depth in all the plots. Fig. 6.9 shows the corresponding 

measurements. At depths 20 and 30 mm the shape of the 

calculated skirts and the measured skirts are different. The 
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~eve~ is, however, about the same size. At depths 50 and 70 

mm both the ca~culated and measured beam profiles decrease 

monotonically with distance from the axis. But the level of 

the skirts in the measurements is about twice of that in the 

calculations. At depths 100 and 150 mm the skirts are 

somewhat different in shape for the calculations and the 

measurements, but more important is the fact that the level of 

the skirts is about 50'l. higher in the measurements than in the 

ca~cu~ations. We a~so note that the measured beam profi~es 

are slightly asymmetric. 

The same beam profiles as in Fig. 6.5 and Fig. 6.6 are shown 

in dB-sca~e in Fig. 6.10. Here the measurements and the 

ca~culations are plotted together. The information is of 

course the same, but here it is easier to see the skirts. The 

beam profiles from Fig. 6.8 and Fig. 6.9 are also repeated in 

dB-sca~e in Fig. 6.11. 

The discussion following 

fie~d is va~id a~so for the 

the presentation 

receive fie~d. 

of the transmit 

In addition to 

this we also have the influence of the cross-coupling between 

the e~ements and the errors caused by the differences 

the pulses from the two e~ements. 

between 

focusing requires Successful dynamic 

independently and that the pu~ses 

that the elements radiate 

from the elements are 

identica~. This wil~ never be abso~ute~y true in practice. A 

large cross-coupling between the elements will damage the 

possibi~ity of contro~~ing the foca~ ~ength. The measurements 

show, however, that the focal length is under control. But 

even a weak cross-coup~ing can 

element due to the excitation it 

e~ement is excited. 

inf~uence the pu~se from an 

gets when the neighbour 

The idea of dynamic focusing is that the fields from the 

different e~ements wi~~ interfere constructive~y in some 

regions of space and destructively in others. If, however, 

the pu~ses coming from the different e~ements are different in 

some way, a tota~ cance~~ation is not possible. A difference 
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Fig. 6.7. Beam diameter in mm as a function of depth in mm for 
the two-element transducer with one matching layer 
in recieve mode. The aperture diameter is 13.7 mm, 
the fixed focal length is 55 mm and the centre 
frequency is 3 MHz. 

a. Calculations 
b. Measurement 

in the two pulses from our transducer will therefore be seen 

as an increased level of the skirts. This is just what we 

have observed. It is therefore necessary for a successful 

array design that the impulse responses are equal for all the 

elements and that the cross-coupling is low. 

In Fig. 6.12 are shown both calculations and measurements of 

the pressure along the acoustic axis for the transmit and the 

recieve mode. We can see that the spatial peak is at 50 mm in 

the transmit mode, which is in agreement with earlier 

calculations and measurements. For the recieve mode we can 

see that the on-axis pressure increases towards the aperture 

until 30 mm. Ideally·the on-axis pressure should have followed 

a hyperbolic function when dynamic focusing is used. This 

breaks down at about 30 mm, but still the pressure at 20 mm is 

much higher in recieve mode than in transmit mode. 
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The curves in Fig. 6.12 are set equal at depth 75 mm. 

Comparing the calculations and measurements we can observe 

some disagreement in the near field. For the transmit mode 

the measured values are lower than the calculated values. This 

is in agreement with the unresolved on-axis peaks due to the 

hydrophone aperture as mentioned earlier. However, for the 

recieve mode the measurements are larger than the 

calculations. At the depth 20 mm in recieve mode we have 

observed earlier in Fig. 6.7 that the beam diameter is 

narrower in the measurements than in the calculations. These 

two observations are in agreement with each other. The reason 

for this effect might be other modes of vibration apart from 

the piston mode which obscures the near field. 
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Calculated beam profiles as a function of distance 
from the axis in mm at depth z in mm for the 
two-element transducer with one matching layer in 
receive mode with focal length f. The aperture 
diameter is 13.7 mm, the fixed focal length is 
55 mm and the centre frequency is 3 MHz. 
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Measured beam profiles as a function of distance 
from the axis in mm at depth z in mm for the 
two-element transducer with one matching layer in 
receive mode with focal length f. The aperture 
diameter is 13.7 mm, the fixed focal length is 55 
mm and the centre frequency is 3 MHz. 
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Fig. 6.10. Measured (-----) and calculated beam 
profiles in dB-scale as a function of distance from 
the axis in mm at depth z in mm for the two-element 
transducer with one matching layer in the transmit 
mode. The aperture diameter is 13.7 mm, the total 
focal length is 75 mm and the fixed focal length is 
55 mm. The centre frequency is 3 MHz. 
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Fig. 6.11. Measured (------) and calculated beam 
profiles in dB-scale as a function of distance from 
the axis in mm at depth z in mm for the two-element 
transducer with one matching layer in the receive 
mode with total focal length f. The aperture 
diameter is 13.7 mm and the fixed focal length is 
55 mm. The centre frequency is 3 MHz. 
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Fig. 6.12. Measured (-----) and calculated (----) pressure 
along acustic axis for the two-element transducer 
with one matching layer. The aperture diameter is 
13.7 mm and the fixed focal length is 55 mm. The 
centre frequency is 3 MHz. 
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7. CALCULATIONS AND MEASUREMENTS OF THE ECHO RESPONSE 

In Section 2.3 we developed the expression for the echo 

response. This is found in Eq. (2.34) 

i ( t) u(t)*h(t)*h(t)*g(t)*g(t)*s(t) ( 7 . 1 ) 

Where i ( t) is the current in the electric load impedance 

during reception. If the load impedance during reception is 

different from the generator impedance during transmission, we 

must remember that this al~o gives us different transducer 

transfer functions. This is no limitation, it only implies 

that the transducer transfer function has to be calculated 

twice. We will in the calculations and the measurements use a 

50 Q line coBnected to the transducer for both transmission 

and reception. The calculated and measured quantity will be 

the output voltage, e ( t), found from 

e ( t) R i(t) ( 7 . 2) 

where R is the transducer load. 

The expression for the echo response includes the object 

To get an expression for this object function, 

function, we had to introduce two simplifications. The first 

was to assume that the waves are planar. The second was that 

the object is planar. This gives us the possibility of using 

the formulas from plane wave theory to find tile reflection 

coefficient, C(w). And the connection was found in Eq. 

( 2. 3 7) : 

s ( t) 
QC 21T 

Jc(w)ejwt dw ( 7. 3) 

The first assumption is questionable for an object in the near 

field, but the second assumption can be accounted for by 

choosing test objects that are planar. For such objects we 

recall that the total echo response could be found by summing 
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the response from small elements of the object. This is also 

what we will do in the calculations. 

Our aim here is not to make good models for the real objects, 

but to make a good model of the echo imaging system. We will 

therefore need models of.objects that can reveal the essential 

features of the echo imaging system. Two such objects have 

been selected. The first is a planar interface between water 

and teflon perpendicular to the acoustic axis. This gives us 

a single reflection which can be regarded as the system echo 

response. The second object is a thin sheet of PVC-plastic. 

This object will be used to test the depth resolution. 

In this chapter we will use only the focused single element 

transducer. This is due to the fact that the electronics for 

dynamic focusing in real time are not available at the present 

time. The use of the single element transducer will, however, 

give us a good test of the echo response model. And also, the 

dynamic focusing will primarily improve the transversal 

resolution, and this can only be tested when the whole imaging 

system is working. This is not the case at the present time. 

The calculations of the output voltage from the transducer or 

the echo resp~nse when the object is a planar impedance 

interface, are shown in Fig. 7. 1 

With a planar impedance interface we mean an object that fills 

up the entire half space behind a certain depth and that the 

interface is perpendicular to the acoustic axis. The chosen 

depths are z equal to 20, 30, 50, 70, 100 and 150 mm. 

We 

are 

can see from the plots 

quite equal at all 

in Fig. 

depths, 

7 . 1 that the echo responses 

and they are 

autoconvolution of the transducer impulse response. 

mainly an 

The most 

obvious difference is that the echo responses at 20 and 30 mm 

are stretched out in the beginning of the pulse. Tt1e distance 

from the very first positive peak to the peak value is 0.9 ~s 

at depth 20 mm, while the same distance is 0.7 ~s at depth 150 

mm. This must be due to the influence of the spatial impulse 

response. 
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Calculations of the output voltage from the single 
element transducer as a function of time when the 
object is a planar impedance interface 
perpendicular to the acoustic axis at depth z in 
mm. The aperture diameter is 12.7 mm, the focal 
length is 75 mm and the centre frequency is 3 MHz. 
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Measurements of the output voltage from the single 
element transducer as a function of time when the 
object is a planar impedance interface 
perpendicular to the acoustic axis at depth z in 
mm. The aperture diameter is 12.7 mm, the focal 
length is 75 mm and the centre frequency is 3 MHz. 
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The echo response is a convolution of the autoconvolution of 

the transducer impulse response and the autoconvolution of the 

summation of spatial impulse responses. 

The summation of the spatial impulse responses in a certain 

depth will in general have a peak value due to the on-axis 

response 

focus and 

and a decay due to the off-axis responses. 

in the far field the spatial response will 

Around 

be a 

sharp peak compared to the transducer response. The echo 

response will therefore be close to the autoconvolution of the 

transducer response which of cours~ is the same at all depths. 

In the near field the length of the spatial response will be 

of the same order as the length of the transducer response. 

The convolution will therefore give a more stretched echo 

response, just as we have observed. 

The 12 dB pulse length of the calculated echo response is 1.3 

~sat 20 mm and 1.1 ~sat 150 mm. The increase of the pulse 

length by 0.2 ~s at depth 20 mm is all due to the stretching 

in the beginning of the pulse. 

We also observe a distinct tail on the calculated echo 

response at 1.3 ~s behind the main peak. This tail is -22 dB 

relative to the peak and the same at all depths. The distinct 

tail must be due to the tail of the transducer response. 

The measurements ?f the echo response from a single impedance 

interface are shown in Fig. 7.2. The object is a cylinder of 

teflon with diameter and length equal to 50 mm. The front end 

of the cylinder is used as the echo object. The reflection 

from the rear end of the cylinder is attenuated with more than 

100 dB in the 100 mm teflon path. The object is also large 

enough to cover all of the focused beam. 

We can see in Fig. 7.2 that the measured echo responses are 

quite equal to the calculated ones. The stretching of 

pulse in the near field can be observed here too. 

the 

The 
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distance from the very first positive peak to the main peak is 

0.9 ~s at depth 20 mm, and 0.7 ~s at 150 mm. This is in good 

agreement with the calculated results. 

The 12 dB echo pulse length at 150 mm is measured to be 1.1 ~s 

which equals the calculated result. At depth 20 mm the 

measurement shows a 12 dB pulse length of 1.0 ~s. while the 

corresponding calculation gave us 1.3 ~s. A closer inspection 

of the pulses shows that the first negative peak of the pulse 

is much smaller in the measurement than in the calculation. In 

the measurement this peak is lower than 12 dB and therefore 

reduces the 12 dB pulse length. This large first negative 

peak can be seen in the calculations at 20 and 30 mm and is 

not in agreement with the corresponding measurements. This 

error may be due to our assumption of a plane wave in the 

calculations of the echo response. In the near field of a 

focused transducer, this assumption may be too simple. 

In the measurements we can see that the tail of the pulse is 

about -19 dB relative to the main peak. This is 3 dB higher 

than calculated. The tail is a consequence of the tail in the 

transducer impulse response. This was measured in Chapter 5 

and also there the tail was found to be higher than 

calculated. ~higher tail in the measurements than in the 

calculations of the echo response could therefore have been 

expected. 

Also it should be mentioned that the measurements of the echo 

response at 20 and 30 mm are disturbed by electric ringing. 

Details 

account. 

in the pulse should therefore not be taken into 

To test the depth resolution of the imaging system we will use 

a 1.6 mm thick sheet of PVC. PVC has a velocity of 2500 m/s 

and this thickness 

biological tissue which 

Our requirement for 

biological tissue. 

will therefore correspond 

has a velocity of 1500 to 

the depth resolution was 

to mm 

1600 m/s. 

mm in 
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Calculations of the output voltage from the single 
element transducer as a function of time when the 
object is a planar double impedance interface 
perpendicular to the acoustic axis at depth z in 
mm. The aperture diameter is 12.7 mm, the focal 
length is 75 mm and the centre frequency is 3 MHz. 
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The calculations of the output voltage or the echo response 

for the double interface object, are shown in Fig. 7. 3. The 

object is 1.6 mm thick, has a velocity of 2500 m/s and an 

impedance of 3.6 Mrayl. It is placed perpendicular to the 

acoustic axis at depth z equal to 20, 30, 50, 70, 100 and 150 

mm. 

We find 

consists 

second 

that the echo response from the sheet 

of two pulses separated in time by 1.3 

pulse is the negative of the first pulse. 

in general 

i.JS. The 

The first 

pulse comes from the first impedance interface with a positive 

reflection coefficient and the second pulse comes from the 

second interface with a negative reflection coefficient. The 

double pulse is mainly a superposition of these two pulses, 

but also multiple reflections are involved. 

Whether the two pulses are resolved or not, depends on the 

detector. Let us assume a simple envelope detector and that 

the resolution criterium is that the envelope should fall 

below 50'l. of the peak value between the pulses. In this case 

we can see that the two pulses are not resolved at 20 and 30 

mm , b u t a r e r e s o 1 v e d a t 5 0 , 7 0 , 1 0 0 a n d 1 5 0 mm . 

The measurements of the echo responses from the PVC sheet are 

shown in Fig. 7.4. The general impression is the same as for 

the calculations. The echo response consists of two pulses, 

the second pulse is the negative of the first pulse. The 

distance between the pulses is 1.3 i.JS in agreement with the 

calculations. The measurements show that the response is 

mainly a superposition of the response from the front and the 

back of the sheet. In the measurement we can see that the 

second pulse is more attenuated relative to the first pulse 

compared with the calculations. This is due to the losses in 

PVC, which are not included in the calculation model. 

Using the 

calculations, 

all depths. 

same criterion for resolution 

we can see that the two pulses are 

as in 

resolved 

the 

at 

In the calculations this was not true for depths 



1 41 

20 and 30 mm. The reason for this is that the measured pulses 

are shorter than the calculated pulses, as we saw for the 

single interface object. 

With an envelope detector and the chosen resolution criterion, 

it is possible to resolve two impedance interfaces separated 

by mm in biological tissue. 

The envelope detector is however not very sophisticated. We 

have seen from both the calculations and the measurements that 

the echo response from a planar impedance interface is mainly 

an autoconvolution of the transducer impulse response. We are 

therefore faced with the problem of detecting a known signal 

in noise. To detect the impedance interface, which is the 

goal in echo imaging, we can deconvolve the incoming signal 

with the autoconvolution of the transducer impulse response. 

This can improve the depth resolution. 

Deconvolution or inverse filtering can also be used in the 

transversal direction. The calculations of the transient 

diffraction patterns in Chapter 4 and the measurements in 

Chapter 6 show that we have a good model of the wave 

propagation. This model can be used to design an inverse 

filter in th~ xransversal direction. 

The problem with using a deconvolver or an inverse filter is 

that the signal to noise ratio will be decreased. Our 

transducers are however quite efficient compared with many 

traditional echo imaging transducers. We had to design 

efficient transducers to meet the requirements for the doppler 

measurements. In the echo imaging mode this high efficiency 

gives us the possibility of using a more radical inverse 

filtering. More extensive studies are, however, required to 

find the proper design of the inverse filters. 
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8. CONCLUSIONS 

The aim of this work has been to develop a model to analyse 

transient wave propagation from ultrasonic transducers and to 

design transducers which can be used both for echo imaging and 

doppler velocity measurements. 

The model for the transient diffraction was based on the 

method with the spatial impulse response. The good agreement 

between the calculations and the measurements has proved the 

validity of this model. The computer programs are available 

for further analyses of diffraction patterns. 

The transmission line model was used to model the transducer. 

This is a well known model and we found also that it worked 

well for the vibration mode it is meant to model. Other modes 

of vibration were however found to 

for the annular array elements. 

be important, especially 

This calls for an improved 

transducer model which takes all the modes into account. 

The natural focusing effect from a piston has been analysed 

and rules of thumb to predict the location of the beam waist 

are found. More important 

focusing does. not affect 

is, 

the 

however, that this natural 

optimum focusing of the 

transducer. Just as for gaussian beams we found that the 

optimum focal length for a certain depth is to choose the 

focal length equal to the depth. 

Dynamic focusing with annular arrays has been analysed. The 

required number of elements for a planar piston of frequency 3 

MHz and diameter 12.7 mm was found to be four elements. With 

a curved aperture in addition to the focusing of the 

this number could be reduced to two elements. 

elements 

The transducers were designed with one quarter wave matching 

layer and a very light backing. This design gave us 

transducers with pulses shorter than 

higher than 50Z. The transducers are 

~s and power efficiency 

therefore well suited 

for both echo imaging and doppler velocity measurements. 
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A model of the echo response has been developed, based on a 

simple planar wave object model. The results showed that the 

depth resolution was mm. Better object models should be 

developed to study the signature of more realistic objects. 

The models for transient wave propagation developed in this 

work can be used to study and improve the imaging system. It 

gives the tool to design a signal processor that can improve 

the resolution in the image. 
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