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ABSTRACT

This work is devoted to the modelling and design of ultrasonic
transducers for cardiographic echo 1imaging and doppler
velocity measurements. The model Ffor transient wave
propagation is based on the spatial impulse response method.

The model 1is used to study the focusing of planar and

spherical discs, and of annular arrays. The required number
of array elements and the optimum focal length are found. The
transmission line model is used to model the transducers. A

design with one quarter wave matching layer and a light
backing is found to meet the requirements for bhoth echo
imaging and doppler velocity measurements. The theoretical
results are verified experimentally. A single element and a
two element transducer are made and the measured diffraction

patterns are in good agreement with the theory.
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1. INTRODUCTION

Transient field propagation from wultrasonic pistons is the
subject of this thesis. The purpose is to develop tools to
simulate and design transducers for both cardiographic echo

imaging and doppler velocity measurements.

Ultrasonic pulse echo systéms are widely wused in medical
examinations. Best known 1is the prenatal examination, but
also the heart, the liver and other organs are examined using

ultrasound.

An important parameter in an imaging system is the resolution
of the image. In an ultrasonic imaging system it is most
often the transducer that represents the limitation. The
capability of the transducer to generate short pulses limits
the depth resolution. The diffraction from the aperture

limits the lateral resolution.

The doppler velocity measurements have become very important
in cardiological examination. The flow velocity of the blood
is «calculated from the frequency shift in the backscattered
wave from the blood. A most critical parameter here 1is the

sensitivity of the system.

It is often desirable to combine imaging and velocity
measurements in one and the same system. This requires a
transducer with high sensitivity as well as a large bandwidth

to produce short pulses.

For the depth resolution to be better than one millimeter, it
is necessary to use a frequency of at least 3 MHz. on the
other hand the losses in biological tissue are approximately
proportional with frequency. Thus, the sensitivity decreases
as ;he frequency increases, and the choice of frequency here
will therefore be 3 MHz. Depending on the application,
transducers in the range 1-10 MHz are in use in cardiology

today.



The lateral resolution is given mainly by the aperture of the
transducer. The imaging depth ranges from about 2 cm to about
1% em. In the near field the resolution will gain from a small
focused aperture. In the far field the resolution will gain
from a large unfocused aperture. For heart imaging the choice
of diameter will be in the range 10-20 mm, also limited by the
space between the ribs. In the <choice of focusing and

apodization there are no restrictions.

This work has two goals:

1. To develop a computer simulation program for analysing

piston transducers and transient wave propagation from

such.
2. To design <transducers for simultaneous two-dimensional
imaging and blood velocity measurements based on

mechanical scanning.

The calculations of transient wave propagation are based on
the spatial impulse response method [1,2,3]. In Chapter 2 the
theory for this will be given. A model for the total echo
response will be presented and losses will be included in the

model .

Calculations of the transducer are based on the transmission

line model [41]. In Chapter 3 this model is wused to analyse
the transducer. In particular we will seek to increase the
bandwidth without reducing the sensitivity. Quarterwave

matching lavers are well suited to meet these requirements.

Calculations of fransient fields are presented in Chapter 4.
We shall see how the transmitted pulse and the aperture in-
fluence both the diffraction and the pressure pulse. The
faocal length is influenced both by a 1lens and by the
excitation pulse, and we shall investigate the relationship.
Dynamic focusing is achieved by controlling the time delay to
the elements of an annular array. The number of elements
required and the inprovement in resolution will be

investigated.



Chapter 5 is the beginning of the experimental part. Here the
design and measurements of the transducer elements will be
presented. Chapter 6 presents the measurements of the
diffraction fields. The measurements show that the

calculations are in good agreement with reality.

The echo response is the most important figure for analysing

an imaging system. Both calculations and measurements are
presented in Chapter 7. On the basis of these it 1s possible
to find the signature of different objects and obtain

information about them.



2. THEORY OF TRANSTIENT FIELDS

In order to analyse a pulse echo system it is necessary to
understand transient wave propagation. It i8 the pulse length

and the beam width that gives the resolution of the image.

The need to understand transient fields has led to the
development of the spatial impulse response method. The
method was initiated by P.R. Stepanishen [1,2,3] for uniformly
vibrating pistons and was further developed by Fink [s1,
Arditi [6] and Harris [7}. An overview of the method is given

by Haryris [8].

In this chapter we shall develop the spatial impulse response
method. We shall demonstrate how the diffraction can be
separated into a spatial impulse response and a surface
velocity. Medium losses will be included, and finally we
shall see how a pulse echo system can be modelled by the use

of this method.

2.3, _The spatjal impulse response method

The starting point for the spatial impulse response method is

the Rayleigh integral (9],

. vn(;o,t - R/¢)
P(r. t) =J T ds (2.1)
s

where ¢ is the velocity potential at the point ; at time t, v
is the normal velocity component at the surface S in position
§0,and R 1s the distance between f and ;D as shown in fig.2.1.

¢ is the sound velocity in the medium.

In the strict sense this integral is valid only for a plane
transducer in an infinite and rigid baffle. The infinite

medium should be homogeneous, lossless and non-dgispersive.



Fig. 2.1. Geometry for the Rayleigh integral.

As a typical excitation surface, consider a 3 MHz traﬁsducer
element with diameter 12.7 mm or 25 wavelengths in water. This
gives a highly directive beam and the influence of the baffle
will be negligible. The properties of the medium will be

discussed later.

We assume that the normal velocity component as a function of

time, v(t), is the same throughout the whole surface, but in
such a manner that the amplitude, A(;a)' might vary as a
function of position. Further, we assume that v(t) might have

-
a time delay, T(ro), as a function of the position.

-+ - -+
vn(ro,t) = A(ro ) v(t-r(rg)) (2.2)

This form makes it possible to describe general apodization

and focusing. The Rayleigh integral now takes the form:

-
pwlr,t) = ds (2.3)

-
A(ro) vit- R/c -1}
27R

S

By applying the convolution theorem for the Dirac d-pulse we

can rewrite the expression



oG
-
N A(ro)
plr,t) = viag) WITE 5(t - R/c - Tt - 0)dS do
—oo S
-
= vit) * hir,t) (2.4)
Thus we have:
-
- A(ro)
h{r,t) = EITH 8({t - R/c - T)dS (2.5)
S
This 1is called the spatial impulse response. We can see that

the surface velocity v(t) of the transducer is to be convolved
with the spatial impulse response to give the velocity
potential. This means that the spatial impulse response
corresponds to the velocity potential in a point ; at time ¢t

when the aperture S is excited by a 6-pulse.

The velocity potential yields the pressure p, and the velocity

Y
Vi

p(T.t) Pir, t) (2.6)

i
©

Q2]

ct

I p <+
vir,t) = ~-grad ¢pl{r,t) (2.7)

Here p is the density of the medium.

2.2, Dispersion_and losses

So far we have assumed the medium to be homogeneous, lossless
and non-dispersive. In this section we will examine these

conditions.

An  ultrasonic transducer used for cardiographic imaging 1is
non-invasive. The beam penetrates the skin, fat, muscles,
connective tissue and blood. The medium is by no means

homogeneous . It is in fact the inhomogeneities that are the



origin of the

impedance are however so small that the

not essentially decreased.

scattered wave.

The changes in

transmitted

wave

acoustic

is

Some data are listed in Table 2.1.

Tissue Velocity Impedance
[m/s] [Mrayl]
Fat 1460 1.35
Muscle 1540 - 1630 1.65 - 1.74
Blood 1560 1.62
Liver 1530 - 1580 1.64 - 1.68
Kidney 1560 1.62
Bone 2700 - 4100 3.75 - 7.38

Acoustic data for some biological tissues taken

from [10].

Table 2.1.

We therefore:adopt the following model:

- The sound propagates in a homogeneous medium.

- The objects are local variations in impedance and

can be treated individually and independent of each

other.

In this model an object can also be a structure of variations

in impedance. The lavyered structure of a wall should be

treated as a single object, but the front wall and the back

wall of the heart can be treated separately. In general it is

reasonable to assume that two variations in impedance can be

treated separately if the distance between them is greater

than one pulselength.

Losses 1in some biological tissues are shown in Table 2.2. We

can see that the losses vary in both magnitude and frequency

dependence. It 1is also here necessary to introduce some

simplifications. We adopt the following model:



- The losses are the same throughout the whole medium,

- The losses are proportional with fregquency.

This model is based on practical experience and the average

losses are about 1 dB per MHz and cm.

Tissue Attenuation Frequency
coefficient dependence
at 1 MHz (1-5 MHz)
{dB/cml
2
Water 0.002 f
. 1 3
Hemoglobin 0.1 f
Soft tissue 0.3 - 1.5 f
Muscle 1.5 - 2.5 ¥
Ivory bone 3 £
i S
Skull bone i0 f
Table 2.2. Data for losses and frequency dependence in

biological tissue from [101].

This loss model can be included in the method with the spatial
impulse response as shown by Fink [5]. For a polnt source in
an infinite baffle that is excited by a d-pulse, the velocity

potential at a distance R can be written

-
hi{r,t) = 7R 5{t - R/c) (2.8)

The Fourier transform with respect to time is:

SR
HZw) = =t o 0 © (2.9)
T 2wR ’
where w is the angular frequency. Introducing the loss model
vields:
LW
"'J"‘R
+ .
H (r,w) = ! e ¢ e alwir {2.10)



Here o is the attenuation per unit frequency and distance. The

inverse Fourier transform gives us:

h (F.t) = —— 55 2oR 5 (2.11)
A 2TR a R+ (t - R/c)

Considering an aperture S the. spatial impulse response in Eq.

(2.5) will become:

>
Alr ) 2aR

A 2uR a"R™ + (t - R/c - T)
S (2.12)

Again we can use the convolution theorem for &-pulses.

3

. AGT ) 2aR
h {r,t) = — 5(t -~ R/c - t - 0q) 3 3 dag dsS
A 27R a R + O
s o (2.13)
At this point we must introduce a simplification. R is the

distance between the source and the observation point and
" therefore a variable over the aperture. For the attenuation
however, this dependence is not important. It is in the far
field that the attenuation is important and there the distance
is nearly a constant over the aperture. In the fraction which
accounts for the losses we therefore replace the distance R
with a constant r, which is the distance from the centre of
the aperture to the observation point. Thus the expression

for the losses can be put outside the integral.

H

- 2ar A(;U)
h {r,t) = &d(t - R/c - 1t - ¢g)dS dgo
A 2_2 2
[V NS o + O 2WR
-0 s
- 2ar
= K em—
hir.,t) 2 2 Z (2.14)
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h(;,t) is the spatial impulse response as in Eqg. (2.5) and
l{iar.t) will be called the 1loss function. This simplified
expression ensures that it is only the spatial impulse

response that depends on the aperture.

It is important to note that the development above can be
repeated for any loss function. The loss function that is
used in the development is non-causal. Qur knowledge about
the losses 1is that the power decreases proportional with the
frequency. Thus .the module of the Fourier transform of the

loss function can be written:

IL(w)] = e ®lwIR (2.15)

The next requirement is that the loss function must be causal.
This can be achieved by letting the phase of the loss function
be the Hilbert transform of the natural logarithm of the
module. For computer simulations we can use the expression

found in QOppenheim [11]:

w
argfiL(w)l. = %; P [ln|L(8)lcotg(E%£)d8 {(2.16)
-7

where w 1is +the sampling frequency and P denotes the Cauchy
principal value. By choosing this method we also have assumed
that the function' is of minimum phase. An analysis of this
approach is given by Kuc [121 together with a Fortran
algorithm for the Hilbert transform. In Fig. 2.2 is shown a
computation of the loss function as a function of time with ar
equal to 1.72 s  which corresponds to an attenuation of 1

dB/cm MHz and a depth of 15 cm.



1.0 -
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Fig. 2.2. The causal loss function with aor = 1.72 us.

We can see that the causal loss function goes to zero at t
equal to zero, while the 1loss function in Eqg. (2.14) is
symmetrical around t equal to zero. According to Eg. (2.14)
the loss function is to be convolved with the spatial impulse
response to give the attenuated spatial impulse response. If
therefore the length of the loss function or the time constant
ar is of the same order and longer than the non-attenuated
impulse response, the losses will strongly influate on the

result.

Finally we will see if the losses lead to dispersion. The one
dimensional wave equation for the velocity in a medium with

viscuos losses is

2 2
&5 v 1 5 v Sv
> = 5 ;N — (2.17)
&x c~ ot &5t
where n and ¢ are constants. Assuming harmonic fields, the

dispersion relation becomes

2

2 w .

Y o= -~ > * Jjwn (2.18)
(o}

Here J is the imaginary unit and v is the propagation constant

defined by



12

N =+ g K (2.18)

Here o 1s the attenuation constant and k the wavenumber.

Elimination of vy from Eg. (2.18) and Eg. (2.19) gives:

2
K2 =“’—2~+u2 (2.20)
c
2ak
n = @ (2.21)
Introducing losses that are proportional with frequency
a = o w (2.22)
we get
k=2 Y1+ (o e)? (2.23)
c 0
Thus K is praoportional with w and the medium is

non-dispersive. This is an important result because 1t gives
us the possibility of doing the calculations in the time
domain. If the losses are 1 dB per MHz and cm and the constant

¢ is 1500 m/s, the constant in Eq. (2.23) becomes

1+ (o, e)? = 1.014 (2.24)

For all practical purposes we canh write

x
L}
0JlE

(2.2%5)

When the losses are proportional with frequency, then the
phase and group velocity are equal, and for all practical

purposes equal to the constant c.

2.3. The echo response

So far in this chapter we have endeavoured to put up

independent expressions for the diffraction and for the
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losses. We can now find the pressure at a point in space as a

function of time from

pl{t) = ¢ %; vit) * h(t) * 1(t) (2.286)
where all the symbols are defined earlier. In the next

chapter we will develop an expression for the transducer

transfer function and impulse response, g{t), defined by
vit) = g(t) * u(t) (2.27)
where u{(t) is the generator voltage. Together with Eq. (2.26)

this gives
pl{t) = p %? ult) * gl(t) * h(t) * 1(t) (2.28)

This expression can be interpreted as a cascade of three

networks, as shown in Fig. 2.3.

p%u(t)-’ gl(t) h(t) 1{t) F—> p(t)

Fig. 2.3. The network model from voltage to pressure.

The great advantage with this model is that each network can
be treated separately. We shall now go a step further and
establish a total model for the echo response us;ng the

reciprocity theorem.

For a passive and linear twoport the following holds: If a
voltage Vg on port 1 puts up a current I through the impedance
ZL on port 2, then a voltage vg in series with ZL on port 2
will put up the same current I through Zg on port 1. See Fig.

2.4 for definitions.



| ! Zy
1 2 Zy Zg 1 2 \Y
Fig. 2.4. Illustration of the reciprocity theorem.
This 41is one formulation of the reciprocity theorem. A more
general formulation can be found in [137. When used on
acoustic twoports the voltage must be exchanged with a force

and the current with a velocity.

Considering the transducer, this means that the same impulse

response is valid for both transmission and reception.

v1(t) = gl{t) * ul(t)
(2.29)
i(t) = gl(t) x F1(t)
Here u(t) is the generator voltage and v1(t) is the velocity
out of the acoustic port during transmission. f1(t) is the
incoming force on the acoustic port and i(t) is the current

through the generator impedance during reception. We have of

course assumed that the parameters are unchanged.

Further we assume that the impulse response of.a point object

can be written as s{t).

= *
v2(t) s{t) pz(t) (2.30)
Here pz(t) is the incoming pressure on the object and Vg (t)
the reflected velocity from the object. If the object 1is

small compared to the wavelength, then we can assume that the
pressure is constant over the equivalent surface of the

object, A. The force on the object is then:
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Fo(L) = A pz(t) ' (2.31)

From €gqs. (2.4), (2.8) and (2.31) we get:

3
= i * .
fz(t) Ao 3% v1(t) hit) {2.32)
The reciprocity theorem applied to the spatial impulse

response gives us the resulting force on the transducer.

l@

{(t) * h(t) (2.33)

-
o
i
>
o
Q)
<
[N

ot

The total echo response can then be found from Egs. (2.29) -

(2.33).

2

ult) * hi{t) * h(t) * g(t) * g(t) *x s(t)
(2.34)

ilt) = A ¢
at?

It is now the current i(t) that contains the information about
the object s(t). The representation will be perfect if glt)
and h(t) are d-pulses. It is therefore important to find g(t)

and h{t) to study their influence on the total echo response.

The next problpm will be to find an expression for the impulse
response of the object, s(t). To do this we need to introduce
a simplification. We assume that the waves at the object are
planar, so that the ratio between pressure and velocity in the
medium 1s given by the characteristic impedance, gc. The

reflected pressure can then be written as:

p.{t) = pc v, (t) (2.35)

Using Egq. (2.30) we get:

p.(t) = pc s(t) * pz(t) {(2.36)
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We can see that pc s(t) is the inverse Fourier transform of

the well known reflection coefficient for planar waves, Clw).

1
s{t) = Ez

o0
a1 jwt
Py I Clw) e dw (2.37)
oo

From here on we cah use the formulas in plane wave theory to

find the impulse response of the object [14].

The above assumptions of planar waves are most likely to be
tryue in the far field and for large objects. If the object is
so large that the various contributions differ significantly
in timedelay or magnitude it can be divided into many smallerx
objects, and the contribution from each part can be summed due
to the principle of superposition. The resulting force on the

transducer is then:

N
f(t)tot = n§1 f1n(t) (2.38)
Here f1n(t) is the force on the transducer from the area AAn
and all together there are N such areas. Fig. 2.5 shows

schematically the various contributions to the total echo

. .. . . L -+
response in this case. The area AAn is in the position r.
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3. TRANSDUCER MODELLING AND CALCULATIONS

In the previous chapter we summarized the diffraction theory.

This will enable us to design an appropriate aperture
function. in this chapter we will analyse the transducer
itself and see how the front velocity can be calculated. We
will also calculate the transfer function and the electric

input impedance.

As mentioned earlier, we want to design a transducer for both
echo imaging and doppler measurements. The echo imaging
requires a pulse length that 1is shorter than 1 mm or 2
wavelengths at 3 MHz. Thus we need a 5071 bandwidth. on the
other hand the doppler measurements require high sensitivity.
A good doppler transducer should have an efficiency of better

than 501.

The transducer material we will use is lead-zirconate titanate
(PZT). The reason for this is its high coupling efficiency.
The greatest disadvantage 1is its high acoustic impedance.
The impedance varies for the different types, but is about 3%
Mrayl (10G kg/mzs)b This is around 20 times the impedance of
water and biological tissue. The coupling between the
transducer and the medium will therefore be poor if nothing is

done.
In this chapter we shall first outline a calculation model for

the transducer. Secondly, we will wuse the model to

investigate the performance of the transducer.

3.1. The calculation model

A piezoelectric transducer for pressure wave generation is in
general made of a disc of PZT with silver electrodes on both
sides. The electrodes are the glectric port, and the surfaces
of the disc are the mechanical ports, see Fig. 3.1. When the

transducer 1is in mechanical contact with air, water or
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biological tissue, both parallel and series resonance are near
a frequency that makes the transducer half a wavelength thick
or possibly one half wavelength plus an integer number of
wavelengths. At resonance the electric input impedance has a
large real part, and power can be fed into the element. To
gain the greatest possible relative bandwidth we chose the
element to be half a wavelength thick. At 3 MHz and a bulk
velocity of 4500 m/s the thickness will be 0.75 mm. As
mentioned earlier, the diameter of the disc in our application
will be 10-20 mm. Thus we are dealing with thin disc

transducers.

Backing l.oad

__.oo_
Electric port

Fig. 3.1. A piezoelectric element for pressure wave
generation.

Three different «calculation models have been used for thin
disc transducers. The first one is the Mason model [15] which
is an equivalent <c¢ircuit consisting of passive electric
components. The second one 1is the impulse response model
[16,171. The idea here is that an impulse is generated at the
electrodes and is reflected back and forth in the element with
a fractional transmission at each reflection. The last model
is called the transmission line model and was introduced by
Krimholtz, Leedom and Matthaei [41]. This model will be used
here. The reason for this is that the model gives a better

understanding of the quarterwave matching layers.

A detailed outline of the transmission line model is given in
[4,18,19] and will not be repeated here. We will only present

the results as shown in Fig. 3.2.
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"

Co 43
V3
Fig. 3.2. The transmission line model after Krimholtz, Leedom

and Matthaei [41].

Here the following definitions are used

0 K

8 = k0 t (3.2)

7 =______k° < A (3.3)
0 w

¢, = fﬂ—;—i (3.4)

N = nhCg (3.5)

And we have the following notations:

w - angular frequency
e - density
- compressibility
€. & - dielectric constant under constant strain
- piezoelectric constant

t - thickness of the disc
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A - area of the disc

k0 - wavenumber

8 - thickness of the disc in degrees
C0 - capacitance of the disc

N - coupling factor

20 - acoustic. impedance of the disc
ZL - load impedance

ZB - backing impedance

V1 - force on front port

11 - velocity into front port

V2 = force on back port

12 - velocity into back port

v3 - voltage on electric port

13 - current into electric port

In solid media the wave-equation will in general have nine
independent solutions, one pressure wave and two shear waves
in each of the three directions of space. The transmission
line model takes only one of these solutions into account,
namely the pressure wave perpendicular to the disc. The model
is therefore said to be one-dimensional. This approximation

also applies to.the Mason model and to the impulse model.

Fluid media and soft tissue will only propagate pressure waves
due to the facf that the medium can only store potential
energy in volume alteration and not in shape alteration. The
generation of waves in these media is therefore determined by
the normal velocity at the surface of the transducer. Modes
that give a normal velocity on the surface of the transducer
are therefore the most important, but the others will store
energy and thereby increase the ring time. We will however
concentrate on the mode that can be calculated from the
transmission line model, but have in mind that also other
modes can influence the acoustic field. Our primary concern

is the field in the medium and not in the transducer itself.

We shall now develop some mathematical expressions used in the
calculations of the transducer. First of all, we are

interested in the transfer function from the electric port



to the acoustic

following eguations:

V1 = 11
V2 = I1
V3 = I1

front port.

From Fig.
1 20
2 3 sin#8
1 ZU I
2 3 tgt 3
N
2 Jwe. Y 13
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3.2 we can put up the
N
I3 Jwc {3.6)
0
N
- (3.7)
ijO
s (3.8)
J 0

All the symbols are defined in connection with Fié. 3.2 or in
Eags. (3.1)-{(3.5) We terminate the acoustic ports so that:
V1 = - ZB 11 (3.9)
V2 = - ZL I2 {(3.10)
From Eqgs. (3.6) (3.10) we can eliminate all the unknowns
except I2 and V3. and thereby find an electro-acoustic
transfer function.
fa B - D
v, 2z 2
3 L A B
N D - C ZL N D - AC - N - €Cb + 28C
{(3.11a)
where we have defined
A = ZO (3.11b)
T3 tge :
B = %0 (3.11¢)
T 4 sine -hte
C = .N (3.11¢)
JwcC
1]
1]
D = 2 (3.11e)
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Another expression of interest is the electric input
impedance. Elimination of all the unknowns in Egs. (3.86) -

(3.10) except V3 and I3 gives:

, . Zi i 1 . NZ ZZﬂ(cosa - 1) + j(ZL + 28)51n8
3 - T 2.2 zZ. 2
L 3wC w2y (2 42 )cosB + §(z - —L )sinsg
L %8 0 Z,
(3.12)

For system evaluations it is more convenient to calculate the

generator voltage, Vg . to front velocity, 12, transfer
function. If the generator impedance is Zg we get:
ii__l_i ’3 (3.13)
V. T v, 2 Z )
g 3g+3

where IZ/V3 is given in Eq. (3.11) and Z3 in Eq. (3.12). The

impulse response can now bhe found by inverse Fourier transfor-

mation.
* I3 Sut
glt) = v e dw (3.14)
oo 9
To discuss the results in Eqs. (3.12) to (3.14) we carry out

a calculation of the transfer function, impulse response and

input impedance. The data for PZ27 or PZTS5A are given in [20]

h = 22)(108 V/m
es = 830
cD = 4350 m/s
. 3] 2
Z0 = 34 Mrayl (10 kg/sm" )

and we choose

diameter: d = 12.7 mm

thickness: t 0.693 mm

Taking water as the load medium and air as the backing.
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z = 1.9 Mrayl

Z = 360 ravyl

The results of the calculations are shown in Fig. 3.3. The
module of the transfer function and the impulse response 1is

normalized so that the peak value 1is one.

The transfer function shows that with the chosen thickness the
maximum transfer is around 3 MHz. The exact frequency 1is
given also by the electric generator impedance. Maximum
transfer of power takes place when the generator impedance is
the complex conjugated of the 1input impedance. In the
calculations 50 @ has been used as the generator impedance.
The maximum transfer wilk lie between the series and parallel
resonance. In this range the module of the input impedance
varies from a small value to a large value, depending on the

load.

The calculations of the input impedance also show that the
transducer is purely capacitive for all frequencies except
around resonance. Only iﬁ the neighbourhood of the series and
parallel resonance the impedance has a significant real

componeht and possibility for input of power.

The relative bandwidth of the transfer function is about 251
and the 20 dB pulselength is about 2 us. This gives a depth

resolution of 3 mm in water and in biological tissue.

Finally, we note that the transfer function goes to zero at
twice the resonance frequency. This gives a theoretical limit
for the bandwidth. With a bandwidth of twice the resonance

freguency we get a pulse that is around half a period long.
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Fig. 3.3. Calculations of electric input impedance, transfer

function and impulse response for a Pz27 element
with water load and air backing. The disc diameter
is 12.7 mm and the centre frequency is 3 MHz.
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3.2. Transducer losses

The <transmission line model as described in the previous

section is lossless. We will now include a simple loss model.

There are two kinds of.losses that are important. The first
is the dielectric loss in the piezoelectric element and the
second 1s the acoustic propagation loss in the element itself.
Mason includes these losses as resistances in his model [15].
The dielectric loss is a resistance in parallel with the
electric port. The acoustic propagation loss is a resistance
in series with the acoustic load impedance. We will follow

the same procedure.
From Ferroperm {21] we find that the loss angle for P227 is
tg 5 = 0.016 (3.17)

With the data used in the calculations in the previous section
the value of the parallel resistance is 2500 Q. The real part
of the 1input impedance can be seen in Fig. 3.3 to be far
below this value. Thus the dielectric loss is not important
and will not be included.

From Ffazer [19] we find that the mechanical Q@-factor for a

thin disc transducer with low coupling can be written:

(——>) (3.18)

Assuming that the acoustic propagation loss can be included as

a resistance in series with the load we can write

() (3.19)
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Here Rm is the acoustic resistance in the element. From

Ferroperm [21] we find that the Q-factor for the element alone

is 80. This gives a resistance of
w Z0
Rm =3 .- g = 0.66 Mrayl (3.20)

m
We share the loss equally between the two acoustic ports so
that Rm/2 is in series with both the load at the front and the
back. Thus we have a loss model as shown in Fig. 3.4.

Rm/2 Rm/2
ZB KLM ZL
Fig. 3.4. Transducer loss model.

To verify the model the input impedance was measured on an
element in air. The measurement is shown in Fig. 3.5.a.
Calculations of the input impedance with and without the loss
are shown in Fig. 3.5.b and c. Most sensitive to the loss in
these plots 1is the peak of the phase plot. For the lossless
case the peak is at + 90 degrees, but with the 1loss included
the peak is at about + B0 degrees. The latter is in much

better agreement with the measurement.

The measured impedance also shows a weak resonance at 2 MHz
which is difficult to account for. We shall however, discuss
spurious modes of vibration in Chapter 5. We also observe a
series resonance at 5 MHz. This must be due to the inductance

in the cable and the connector.
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We also note that the measured module peak is higher than both
calculated values. This is due to the fact that the peak 1is
very narrow and the resolution in the calculations is 0.1 MHz,
while in the measurement the frequency is adjusted to find the
peak value. A serge for the peak in the calculations has shown
that the peak value is 552 Q when the acoustic losses are
included. This value is so. high that the dielectric losses
will influence the result. With a parallel resistance of 2500
Q on the input, the total result will be a beak value of 452
Q. This is in good agreement with the measurement. For an
element with a more realistic load, the peak value will be
below 100 Q and the dielectric losses will not be important
anymore. In the lossless case the peak value of the module

was found to be about 3000 Q.

Finally, we will see how the 1loss modifies the impulse
response. With the same parameters as in Fig. 3.3, but now
with the 1loss included, Fig. 3.6 shows the impulse response
from a transducer with water load and air backing. Comparing
this with Fig. 3.3.c we observe that the two impulse responses
are very similar. The ringdown time is however slightly

shorter in the latter case.
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c) Calculations from the model with losses.
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Fig. 3.6. Impulse response for a transducer with water load
and air backing when the losses are included. The
disc diameter is 12.7 mm and the centre frequency
is 3 MH=z.

3.3, Increase of bandwidth

Three different methods are in use to increase the bandwidth

of thin disc transducers.

1. Use of a heavy backing with high impedance and high
abhsorption
2. Acoustic matching with gquarter-wave matching lavers

3. Electric matching with inverse filters.

Transducers for echo imaging are often attached to a heavy
backing material with an acoustic impedance that matches the
element and has high absorption. This increases the coupling
from the element and thereby reduces the ring down time. The
power is however coupled to the backing and the sensitivity is
therefore reduced as well. When the transducer is also to be
used for doppler measurements the sensitivity 1s of great

importance, and this method cannot be used.

Acoustic matching between the element and the medium will also
increase the coupling and reduce the ring down time. In this
case, however, the coupling 1is into +the medium and the

sensitivity is less effected.
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It is well known that impedance matching between two

transmission lines can be achieved with a quarterwave matching
an impedance which is the geometrical mean of the

layer with

two transmission lines. A layer will however be a gquarterwave

thick for one frequency only. For transient pulses it 1is
necessary that the matching has a certain bandwidth. We want
the impulse response of the transducer to be compact, which
means that the half wvalue 1length should be as short as
possible and that the tail of the pulse 1is as small as
possible. The impulse response 1is the 1inverse Fourier
transform of the transfer function. The transfer function

should therefore have the 1largest possible bandwidth, but

should also be as smooth as possible. For a given bandwidth a

gaussian function would be the optimum.

For a finite number of layers, however, a gaussian transfer

function cannot be achieved. We shall therefore use the

impedances that give the maximum flat response for a finite

number of layers. A thorough study of matching layers that

gives maximally flat response can be found in De Silets {221.
The results of this study are given in Table 3.1, and are
taken from Frazer [19j.
Layer no. N 2 3 z "
L
2/3 1/3 1/3 2/3
1 layer Z Y4 - - Z Y4
L 0 L 0
3/7 417 6/1 1/7 /7 6/7
2 layers Z 4 Z 2 - Z z
L 0 L 0 L 0
4/15 11/15 10/15 5/15 14/15 1/15 1/15  14/15
3 layers Z z z Z Z 4
1}
L 0 0 L o
Table 3.1, The impedances in the matching lavers for
maximally flat response when Z is the element

impedance,

the

load

modified load impedance.

impedance.

ZL is the
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We shall now see how the transfer function, impulse response
and electric input impedance can be found for a transducer
with matching layers. The input impedance in Eq. (3.12) and
the transfer function in Eq. (3.11) are still valid if the

load impedance, z is interchanged with the impedance seen

L
through the matching layers, ZL', The transformation formula

for the impedance in the i'th layer is:

. Z g v 3 25 te8y
2L % %1 7 PR tgl ' (3.21)
oi * 3 fLi 9
Here ZOi is the acoustic impedance of the i'th layer and Bi

is8 the thickness of the i'th layer relativ to the wavelength
measured in radians. Equation (3.21) is used successively for

each layer from the medium to the element,.

144 21
O—p—
itth
'y $V1i layer szi Zii
o__
Fig. 3.7. Definition of the symbols used for the matching

layers.

To find the total transfer function for the transducer we will
have to find the transfer function for each lLayer, These
layers have neither piezoelectric coupling nor an electric
port. The equations (3.6) - (3.8) can therefore now be

written for the i'th layer:

z . z .
o1l ol
Vii " Y3 FTrg 9. " '2i T sin 8. (3.22)
k8 1
z . 7
v o= 1 oy . _—2t (3.23)

21 14 4 sin 8, 2i J tg Bi



33

The symbols are defined in Fig. 3.7. For calculations of the
transfer function it is better to have the equations on the

cascade form.

Voi = V1icos Bi - 3 ZoiI1i sin Bi (3.24)
V1 .
I2i = J Zoi sin Bi - I1icos Bi (3.25)

These equations can be wused to find the total transfer
function by applying them on the layers successively from the
element to the medium. This formulation of the problem has

been inspired by Angelsen [231].

Calculations of transfer functions and impulse responses for
transducers with 1, 2 and 3 quarterwave matching layers are
shown in Figs. 3.8 and 3.9. The data for the element is the
same as before, and the impedances of the matching layer are
those found in Table 3.1. We can see that the transfer func-~
tions in Fig. 3.8 are smooth and that the phases are nearly
linear over the passband. The bandwidth increases with the
numbexr of layers. With one matching layer the 6 dB bandwidth
is 1.6 MHz, with two matching layers the bandwidth is 2.3 MHz
and with three matching layers the bandwidth is 2.8 MHz. This
gives us impulse responses that decrease in length with the
number of layers, as can be seen in fig. 3.9. The 12 dB pulse
lengths are 0.9 ps, 0.6 ps and 0.5 ps with 1, 2 and 3 matching
layers. The efficiency of the transducer is also enhanhced with
matching layers, due to the increased load impedance for the
PZT-element. Using the loss model developed in the previous
section, the effliciency is 687, 94/, 977 and 987 with 0, 1, 2
and 3 matching layers for a transducer with airbacking. The

losses in the matching layers is not significant.

The third possibility to improve the transducer transfer
function is to use inverse filtering. Inverse filtering is in
general of great importance in transmission systems, but will
not be used here. In principle it 1is possible to shape a

total transfer funhction arbitrarily with an inverse filter.
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Fig. 3.8. Transfer functions for a PZ227 element with NF=1, 2

and 3 matching layers. The disc diametery is 12.7 mm
and the centre frequency is 3 MHz.
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2

and 3 matching layers. The disc diameter is 12.7 mm

and the centre frequency is 3 MHz.
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An exception is of course the zeros in the original function.
A transducer for 3 MHz has zeros at 0 and 6 MHz. If we
however are able to make a flat transfer function in the range
0-6 MHz, we will get an impulse response that is close to half
a period. In practice, however, such a radical inverse
filtering will be limited because of the signal to noise

ratio.

Not only the transducer should be taken into account when an
inverse filter is designed. If good models for the echo
response are available, the influence of the whole measuring

system can in principle be eliminated.
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b . CALCULATIONS OF TRANSIENT DIFFRACTION PATTERNS

We start by developing methods for calculating the spatial
-+ -+
impulse response hi(r,t). The velocity potential ¢({r,t) is

related to the impulse response through

-+ -+ .
pl{r,t) = vit)*h{r,t) (4.1)

where * denotes the convolution and v(t) is the normal

component of the velocity at the transducer surface.

The pressure can then be derived from

-+ ) -
pl{r,t) = o 3% plr,t) (4.2)
where @ 1is the density of the medium, Thus, the pressure is

the time derivative of the convolution of the spatial impulse
response and the transducer surface velocity. For presentation

of the fields we will in the following use the pressure.

Comparisons of the different apertures will be based on two
features. One is the half value beam diameter as a function
aof depth. The second is the sidelobes and the skirts of the
beam profile. IWe will calculate focal lengths as a result of
natural focus, lenses and time delay to the elements of

annular arrays.

.1 Metho o a ation f _the atia i u e _response

Before starting on the numerical calculations of the spatial
impulse response, we shall try a more intuitive approach. in
fig. 4.1 is shown a point, 0, above the surface, S. Points on
the surface with the same distance to 0 are circles with
centre at the projection of 0 on S. If the surface is excited
with a d-pulse, the points on one circle will contribute at

the same time to the potential at 0. The first contribution
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Fig. &4.1. Geometry for the intuitive approach to find the
spatial impulse response.

comes from the centre and subsequently circles with increasing
diameter will contribute until the edge of the surface 1is

reached.

In the <case of a circular aperture, it is easy to find the
potential on the axis. As we shall see later, the area that

contributes from a plane surface within a given time interval

is independent of time. The potential 1is therefore a
rectangular function of time, as shown in Fig. 4.2.a. The
time t0 corresponds to the distance from 0 to S, and t1

corresponds to the distance from 0 to the edge of the
aperture. In a short distance from the aperture the distance
between tO and t1 will be largest. In the far field the
rectangular function will pass over to a &-pulse. For focused
apertures the far field is moved into the focal plane and the
potential function in the focal point will be a §-pulse as a
function of time. In general this is true for all focused
apertures. Further away outside focus the contribution from
the edge will come first, so that tu and t1 change places in

Fig. 4.2.a.

When the point 0 is off-axis, the potential will be constant
only until the circles on S at one point pass over the edge of
the aperture. Afterwards the potential will decrease

monotonically. In Fig. L.2.b the time t1 is the minimum
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Fig. 4.2. Examples of spatial impulse responses
a) Circular aperture, on-axis
b) Circular aperture, off-axis
c) Rectangular aperture, on- axis

additional delay to the edge of the aperture and the time tz

is the maximum additional delay to the edge of

aperture. For a point on the axis t1 equals t2.

the circular
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For non-circular apertures the potential is more complex. The
potential resulting from a uniformly excited rectangular
aperture with the observation point on-axis is shown in Fig.
b.2.c. The time t1 is the minimum additional delay between
the centre of the rectangle and the nearest sides in the
rectangle; the time t2 is the delay to the two remaining sides
in the rectangle, and the time t3 is the delay to the four
corners. More complex functions will be found if the aperture
is nonuniformly excited and focused. Only time consuming

computer calculations can give gquantitative results.

We shall first develop in detail the spatial impulse response
for the circular aperture and show how an analytic solution
can be found for this case. A method to find the response from
a focused aperture can be found in [6] and will only be listed
here, The response from a general aperture can be found
through purely numerical integration and will be presented in
the end. We shall also see how the response from annular

arrays can be found.

4.1.1._ _Plapar circular aperture
Y
A R1;////p7< (Y,Z)'
P y REGION |1
a e et e ot o it o i e
) R P
REGION |
(y,2z)
0 -
z
Fig. 4.3. Geometry and definitions for the planar circular

aperture.



Fig. 4,3 shows a planar circular aperture with radius a.

divide the space in front of the aperture in regions I and

Region I is the cylinder with radius a and axis along
Z-axis. Region II is the rest of the space. Because of
circular symmetry along the z-axis, we disregard

x~-dimension which 1s equivalent to the y-dimension.

&1

We
IT.
the
the
the

For a point (y,z) in region I there are three characteristic
distances. R0 is the distance to the nearest point on the
aperture. R1 is the distance to the nearest point on the edge
of the aperture. And R2 is the distance to the point on the
edge of the aperture furthest away.
We introduce the times

ti = Ri/c' (4.3)
where i = 0,1,2 and c is the velocity of the medium.
Accordingly

t < t < t (4.4)

At the time interval between t0 and t1 the

from circles that are completely inside the aperture, We

disregard the limitations due to the finite aperture.

Fig. 4.4, Geometry and definitions for the calculation of

contributions come

can

the

response in the time interval t0 to t1 in Region 1.
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From Fig. &4&.& we will now find the area dS that contributes to
the response in the time interval dt. The differential
distance is given by

dR = ¢ dt (4.5)

From Fig. 4.4 we can see that the differential radius on the

aperture becomes
dr = ar X (4.6)
r

Thus the differential area becomes
dS = 2wr dr = 2wR dR (4.7)

From Eq. (2.5) we get

4 = A -
hiT,t) = _g 57g 0(t-R/c)ds
ty
= ¢ [ 8(t-rR/c) d(-z-’) (4.8)
t(]

= C for tQ £ € < t1

We have found that the response is a constant in the time

interval tG to t1 and equals c.

After the time t1 only a fraction of the aperture contributes
to the acoustic field. This is shown in Fig. 4.5, Here the

aperture is seen from the front.
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Fig. 4.5, Geometry and definitions for the calculations of
the response in the time interval t1 to t2 in
Region I.

We use the extended Pythagoras law on the triangle in Fig.

4.5,

a = r° ¢+ y~ -~ 2ry cos {(8/2) (4.9)

2 2 2 (4.10)

.2~ ¥ - 3 (4.11)
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Thus the differential area that contributes within the time

interval dt is

ds 8 R dR

2 R dR arccos .R (&.12)

From Egq. (2.5) we get

hir,t) | 2 sie-rrcras

27R
S
t
(= ’ R2—22+2—a2 R
=z 8{(t-R/c) arccos y d(z)
2 2
2y \R° - 2z
t
1
2.2 2 2 2
C c t ~Z + Yy - a
=7 arccos
2
2y c:zt2 - Z
for t1 < t £ t2 (4.13)

We can see that 8 decreases monotonically from 27 to 0 within
the time interval from t1 to t2. The impulse response will

within the same time interval also decrease monotonically from

c to 0.
For region I1 IQ0 is not defined. R1‘ and RZ’ are defined in
Fig. 4.3 for the point (y,z)' . In Fig. 4.8 the aperture is

shawn from the front.
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4.6 . Geometry and definitions for the calculation of the
response in Region I1I.

Fig. &.8 we get
a2 = y? + % - 2yr cos (8/2) (4.14)

is the same as in Eg. (4.9).

we obtain

-+ c
hir,t) = 7 arccos

for t, € t % t2 (4.15)

difference from region I is that 8 will start from zero,

increase to maximum T and decrease again to zero. This gives

a single peaked impulse response in region II.
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Fig. &.7. The spatial impulse response from a planar circular
aperture as a function of time and radial distance
from the acoustic axis in a given distance from
the aperture along the axis.

In Fig. 4,7 the spatial impulse response is plotted as a
function of time and distance from the axis. The distance

from the aperture is 20 mm and the diameter of the aperture is

12.7 mim. We can see that the response is rectangular on the
axis. The +time derivative is therefore two &-pulses, the
first at time to, the second at time t1 = tz‘ Near the

aperture the distance between t0 and t1 is largest, and if thg
excitation is short enough the pulse will consist of two
pulses. The latter is the negative of the former, and is in
the literature often called the edge wave. This name is due to
the time of arrival which corresponds to the distance to the
edge . It is not generated at the edge but as a result of the
finite aperture. Off-axis in region I the impulse response has
a rectangular beginning, but a monotonically decreasing end.
This gives a pressure pulse where the edge waves are only a
tail on the main pulse. In region II the response is a smooth
function of time and therefore the pressure pulse will be much

smaller than in region I.
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Increasing the distance from the aperture, the on-axis
response will be shorter and for the far field it can be taken
as a O-pulse. For a given wavelength A the far field distance
can be defined as the distance to the point where the response

is half a wavelength long. This is
2
z = a /A . (4.16)

The result is well known for continuous wave transducers [24].

L.1.2. Focused circular aperture

We will now present a method for finding the spatial impulse
response for a focused circular aperture, or rather a curved
surface. The method that will be presented is developed by

Arditi [6], and only the results will be given here.

I R
(%, N
@ 42??474zu ® ] 9 2

\

/ d
/ Rz
////F
/ 7
Ro=5a 7
Ea
Fig. 4.8. Geometry and definitions for the Arditi method.

a) Region I
b) Region II

We have a circular aperture with radius a and radius of
curvature f as shown in Fig. &.8. Thus f 1s the focal 1length
of the aperture and we choose the focal point to be the origo.
The calculations are done separately for each region as shown
in Fig. 4.8 a. and b. Region I can be called the

geometrically illuminated region and region II is the rest of
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the space in front of the apertur. Assuming circular symmetry

it is sufficient to find the solution in the yz-plane.
We also introduce polar coordinates
y = R sin 8
(&£.17)
z = R cos B
It is necessary to find some characteristic distances. The

length of the normal from the observation point to the

aperture is defined in region I only

(4.18)

N N
v A
o o

f - R
R0 = { §F + R for

The distance from the observation point to the nearest edge E1

and to the furthest edge E2 is given by

2
Hi

\l(a~-y)2 - (f—d+z)2 (4.19)

R, = V(a+y)2 + (f—d+z)2 {(4.20)

Here d 1is the depth of the aperture

a =1 -1 - (ar6r?) (4.21)

Defining also the times

ti = Rilc (4.22)

where 1 = 0,1,2 we can find the spatial impulse response from

Table &.1.
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-
hi{r,t) = Region I Region 1I1I
z <0 F4 3]
0 t < tO tO < t t < t1
cf . N
;—— tU < t < t1 t2 < t < a -
cf nit) .
E; arccos[c(t)] t1 < t‘ < t2 t1 < t < t2 t1 < < t2
0 t2 < t t < t2 < t
where
nit) = Lo d/f 1 ['Fz + R? - c2t2]
" sin 8 tg 8 2R
and
2 2 2q211/2
G(t)_[1_[f + R —czt]]/
- 2RF
Table 4.1. Thé spatial impulse response for a focused
circular aperture after Arditi [61.
The spatial impulse response for three different distances

from the aperture are shown in Fig.

plane the response
the focal plane the
the focal point it
response 1s changed

comes at the end.

is very much the same as in Fig.

response has no rectangular parts

is a d

so that the rectangular part of the

-pulse.
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9.
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the focal
[ At
and in

Outside the focal plane the
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4.,1.3. The general aperture

In the more general case with an apodized and focused aperture

a direct numerical interpretation of the Huygen principle can

be used. The aperture‘is divided into small elements that are
less than half a wavelength. Each element is assumed to
radiate uniformly into the infinite half space. In a given

observation point in space the response from each element can

be found and superimposed. The amplitude is given by the
position and apodization of the element. The time of arrival
is given by the position and focusing of the element. When

the medium is linear, the principle of superposition tells us
that the contribution of each element can be summed to give
the total response in the observation point. Mathematically

this can be expressed:

S5(t -~ ——— - 1) (4.23)

;: position of the observation point
;i: position of the i'th element
Ai: excitation of the i'th element
T time delay of the i'th element
c: velocity of the medium
This method can be used for any aperture. The disadvantage is

that the calculations of a more complete field are very time
consuming. A comparison of this crude numerical approach and
the Arditi method is shown in Fig. 4.10. Here we can see the
response for an observation point on-axis and 10 mm from the
aperture. The calculation by the Arditi method gives a
rectangular function. The numerical integration gives a
rectangular function with numerical noise, Here the aperture

is divided into 18000 elements, which gives a calculation time
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Fig. &.10. The on-axis response at depth 10. mm from a
circular focused aperture with diameter 12.7 mm
and a radius of curvature of 75.mm.

a) Arditi method
b) Numerical integration

thirty times 1longer than for the Arditi method. For a
circular focused aperture the Arditi method should be used,
but for non-circular and apodised apertures we have to use the
numerical integration. The numerical integration is stable,
where as the Arditi method give problems in the focal point

where the response is a 8-pulse.

b.1.4, Annular arrays

Annular arrays are used for dynamic focusing, which means
that one can adjust the focal length of the aperture as a
function of time. This possibility is used in echo imaging
during reception. A pulse is sent out with a fixed focus, but
during reception the focal 1length is adjusted to match the
depth from which the echo has its origin. At first the echoes
come from objects close to the transducer and latexr on from

objects further and further away.

The methods developed for circular apertures can easily be
extended to annular arrays. The response from a circular

element with inner radius a, and outer radius a, can be found
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by calculating the difference between the response from an
aperture with radius a, and an aperture with radius a, . Thus
for slement number n we have

h (T,t) = h_ (T,t) - h_ (T,t) (4.24)
n a a
2 1
The total response from an. annular array is then found by
adding the contributions from all elements. By introducing a

time delay on each element one can control the focal length.

-

h(T,t) = L h (T,t + At ) (4.25)
n n n

Here Atn is the time delay to the n'th element. If the array
consists of N elements and the phase front is to be an

approximation to a spherical surface with radius of curvature

fz' we can let the outer radius of the n'th element be
n
a = — .26
n N a (4.26)
when a is the radius of the whole aperture. This will give an
equal area for each element. The time delay between each

successive element should be

2
a
At = ZFZNC {(4.27)

so that the time delay to the n'th element will be

Atn = (n-1) At (4.28)

A discussion of these results has been given by Dietz [251.

Time

Fig. &4.11. On-axis response from a planar annular array with
N elements without time delay.
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We have seen that the on-axis response from a circular
aperture is a rectangular function. If the aperture consists
of annular elements without time delay, the response from each

element will arrive in time succession as i1llustrated in Fig.

&.11, Here element 1 is the centre element and element N the
periferal element. I¥ the elements are given a time delay
according to Egs. {(4.27 - 28), the responses from each element

will coincide at distance fz from the aperture. The length of
the spatial 1impulse response at the distance FZ from a plane

aperture of radius a is

t -t = - f + a - f (4.29)

when no time delay is used. When N elements are used and
given a proper time delay the length of the impulse response
will be devided with N. Ideally we want to make the response
so short that it will be a O8-pulse for all practical purposes.
We can require a response that is shorter than half a period,
AN/2c. This gives us the following requirement for the number
of elements if we want to focus at the distance Fz from the

aperture.,

L
N> : 2 (4.30) "
A2 ’
With A = 0.5 mm, f = 20 mm and a = 6.35 mm we get N > 3.9.

2
Thus we will need 4 elements to focus at a distance of 20 mm .

This estimate 1is highly simplified. We don't yet know how the
field will be off-axis. However, the above approach is

Lllustrational and may serve as a rule of thumb.

If the array in addition to the adjustable focus FZ‘ has a

fixed focus f1, the total focal length can be found from
¥ = f + £ (&.31)

This is a well known result fraom thin lens theory in

geometrical optics [261].
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b .2, Calculated results

In this part of the chapter we will present and discuss some

results from the calculations. The computer programs for
calculation of transient fields have possibilities for
variation of many parameters and parameter combinations. It

will therefore not be possible to present a thorough analysis
of all the possible parameter set-ups. The selections chosen
can be seen in the light of two requirements. The first is to
demonstrate the potentials for studying transient fields with
the use of these programs. The second is to run the

calculations for the transducers of interest to the specific

application.
We will limit ourselves to circular apertures. In particular,
we will look into focusing with lenses and annular arrays. To

study transient behaviour we will excite the medium with three
different velocities on the surface of the transducer. These
are a continuous wave, a half wavelength pulse and the
calculated impulse response from a transducer with one
matching layer., The continuous wave is a reference. The half
wavelength pulse can be regarded as the ideal echo pulse.
While the pulse from a transducer with one matching layer is
somewhere in between. Also it is a transducer with one
matching layér we will design for the experimental

investigations.

A  proper presentation of transient fields is not easy since
the field i1s five-dimensional. The field has four independent
variables in space and time, and one dependent variable in the
field amplitude. It is therefore necessary to present more
than one plot for each field pattern. The radial symmetry
reduces the space dimension from three to two. Therefore a
point in gpace will be given by the distance from the aperture
along the acoustic axis also called the depth and the radial
distance from the acoustic axis. At each point in space the
pressure or some other field value <can be calculated as a
function of time. These time functions can be presented

directly. But for the study of beam profiles and focusing it
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is «convenient to use peak detection of pulses and amplitude
detection of CW, so that the time dimension is left out. Thus
we can present plots for beam profiles at a given distance
from the aperture as a function of the distance from the axis.
On the basis of the beam profiles we can use half value
detection at different distances from the aperture and get a
plot that shows the beam diameter as function of the distance

from the aperture.

In all the calculations the diameter of the aperture is 12.7

mm and the centre frequency is 3 MHz.

£.2.1._ _The _focused circular disc
We start by presenting the <calculations for the most
traditional aperture, a circular disc that is focused. The

focal length is chosen to be 75 mm.

Figure t.12 shows calculations of the pressure amplitude when
the surface velocity is generated by a continuous signal.
Figure 4.12.a shows the half value width of the beam. We can
see that the beam is at its narrowest at a distance of 40 mm
from the aperture. This is called the beam waist and here the
beam diameter is 2.7 mm, while it is 8.5 mm at a distance of
150 mm, and 6.3 mm at a distance of 20 mm. The beam walst 1is
not located at the focal point. This 1is a diffraction

phenomenon and will be discussed in the next subsection.

Figure 4.12.b shows the pressure amplitude in spatial
perspective. Also shown in the plot are the § dB and 12 dB
lines 1relative to the spatial peak. We observe that the

spatial peak occurs at a distance of 50 mm from the aperture.

Figure 4,12.¢c shows the pressure amplitude across the beam at
the distances z equal to 20, 30, %0, 70, 100 and 150 mm from
the aperture. We note that the pressure has several peaks for
z equal to 20 and 30 mm. At z equal to 50 mm the beam profile

has become single-peaked and is the narrowest -of those shown.
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At the distance z eqgqual to 70 mm we recognize the Bessel
function or the Airy's disc. The focal plane is actually at
75 mm, but due to numerical instability the beam profile is

shown at 70 mm. The diameter of Airy’ s disc is given by [26]
D = 1.22 — ’ (4.32)
a

where a 1is the radius of the aperture and A is the wavelength.
For z equal to 70 mm Eq. (4.31) gives a diameter of 6.7 mm,
The first order sidelobe should be 137 of the main lobe [26].

We can see that this is in agreement with the calculations.

For distances greater than the focal length the beam profile
gets wider with increasing distance. Continuous waves have
zeros both in the near field and in the focal plane. This is
due to the fact that in certain locations phase cancellation
takes place. This is a result from continuous wave theory

[{14]), but the zeros are difficult to hit in a calcutation.

In the method that is used here the spatial impulse response
is convolved with a sinusoid. On-axis the spatial impulse
response 1s a rectangular function. It 1s then easy to
imagine that the result of the convolution is zero when the
spatial impulse response i1s an integer number of periods long.
Similarly, the peaks occur where the spatial impulse response
is an odd number of half periods long. Somewhat more
complicated i1s the physical explanation of the =zeros in the
focal plane, but also here the spatial impulse response is

such that the result of the convolution is zerxo.

Figure 4,13 shows the pressure field for the case when the
transducer excites the medium with the impulse response from a
transducer with one matching lavyer. Peak detection of the

pulse is assumed in Figs. 4.13.a, b and c.
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Pressure amplitude from a focused circular disc
excited with a continuous wave signal. The
aperture diameter is 12.7 mm, the focal length is
75. mm and the frequency 1is 3 MHz.

a. Beam diameter in mm as a function of distance
from the aperture in mm.
b. Beam profile as a function of distance from

the aperture and distance from the axis both
in mm.
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Fig. 4.12.c. Beam profile as a function of distance from the
axis at distance z from the aperture both in mm.
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Fig. 4.13. Pressure from a focused circular disc excited with
a pulse from a transducer with one matching layer.
The aperture diameter is 12.7 mm, the focal lendgth
is 75.mm and the centre frequency is 3 MHz,

a. Beam diameter in mm as a function of distance
from the aperture in mm.
b. Beam profile as a function of distance from

the aperture and distance from the axis both
in mm.
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PRESSURE BEAM PROFILE VS. MM.
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Fig. 4.13.c. Beam profiles as functions of distance from the

axis at distance z from the aperture both in mm.
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Figure &4&.13.a shows the half value width of the beam as a
function of the distance from the aperture. The beam waist 1is
located at 50 mm distance. There the beam diameter is 2.8 mm,

while it is 8.8 mm at 150 mm and 7.9 mm at 20 mm.

Figure 4.13.b shows the beam 1in perspective in space. The

spatial peak is at a distance 50 mm from the aperture.

Figure 4.13.c shows the beam profiles for the same distances
from the aperture as in Fig. 4.12.c. Also in this <case the
profiles at distances of 20 and 30 mm have several peaks, but
the variation is much less in the latter case. For z equal to
50 and 70 mm, we note that the profiles decrease monotonically
with the distance from the axis. No sidelobes, only skirts
can be observed. Also at distances of 100 and 150 mm we can
see that the sidelobes are less separated from the main lobe
than they were with CW excitation. The calculation shows that
transient fields do not form zeros in the fields. This can be
understood when we keep 1in mind that peak detection has been
performed on two transient functions that have been convolved.
It is difficult to imagine two transient functions giving zero

after such a processing.

Figure 4.13.d. shows the pressure as a function of time and
distance from the axis at distances 2z equal to 28, 36, 70 and
150 mm from the aperture. These plots show that the temporal
peaks occur at different times at different distances from the
axis. The pulses at different locations are different in
shape. For all practical purposes the on-axis pulse is the
same from z equal to 30 mm and further away, while for z equal
to 20 mm the pulse is longer. This is due to the influence of
the 1length of the spatial impulse response s0 close to the
aperture. We also note that for all z the pulse gets longer

the further away from the axis they are.
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Fig. &.1¢4 Pressure from a focused circular disc exciting the

medium with a half period pulse. The aperture

diameter is 12.7 mm, the focal length is 75. mm

and the centre

a. Beam diameter in mm as a function of distance
from the aperture in mm.

b. Beam profile as a function of distance from

the aperture and distance from the axis both
in mm.
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In Fig. 4.14 the medium is excited with a pulse that is half a

period long. Figure &4.14.2a shows the half value beam
diameter. The beamwaist is located at depth z equal to 70 mm,
where the diameter is 2.8 mm. At =z equal to 20 mm the

diameter is 8.8 mm and at 150 mm it is 10.3 mm.

Figure 4.14.b shows the beam in perspective in space and we

can see that the spatial peak is located at a depth of 60 mm.

Figure 4.14.¢ shows the beam profiles when peak detection 1is
used. We can see that the beam profiles at z equal to 20 and
30 mm are essentially Fflat at the top. The sidelobes have
disappeared completely and the profiles decrease monotonically

at all distances from the aperture.

In Fig. 4.14.d the pulses are shown as functions of time and
distance from the axis at the same distances from the aperture
as in Fig. 4.13.d. On the axis at z equal to 20 mm we can see
how the length of the spatial impulse response influences the
pressure pulse. Arriving first is a positive pulse and then a
negative pulse due to the beginning and the end of the spatial
impulse response. The negative pulse 1is the one that
previously was refered to as the edge wave. Further away from
the aperture,. the length of the spatial impulse response
decreases, and in the focal point it is a &-pulse. Here the
pressure pulse 1is the time derivative of the half period.
Also at z equal to 150 mm we can see that the spatial impulse
response is essentially a d-pulse. The length of the off-axis
pressure pulse increases with distance from the axis. Some
ripples can be observed in the neighbourhcocod of the strongest
pulses. This is a numerical error due to the truncation of
the storing arrays in the computer and is of no physical

significance.

A well known method to reduce sidelobes is apodization. In
Fig. 4.15 it is shown how apodization with a cosine square
function works on the beam profile at a distance 150 mm from
the aperture. Figs. 4.15.a and b show the beam profile for a

continuous wave without and with apodization.
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Fig. 4.1%5. B8eam profiles at distance 150 mm from the

aperture. The aperture diameéter is 12.7 mm, the

focal length is 75. mm and the centre frequency is

3 MHz.

a) Continuous wave without apodization

b) Continuous wave with apodization

c) Transient pulse without apodization

d) Transient pulse with apodization.
As expected, the sidelobes are significantly reduced and the
beam diameter increased. The interesting point 1is, however,
the influence of apodization on transient fields. Fig. 4.15% ¢

and d show the beam profiles for the case where the aperture
excites the medium with a half period pulse with and without
apodization. We can see that the influence of the apodization
is less here, even 1if the skirts are reduced and the beam

diameter is increased when apodization is used.
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Fig. &4.186. Pressure as a function of time and distance from
the axis in mm at distance 20 mm from the
apodized aperture which excites the medium with a
half period pulse. The aperture diametexr is 12.7
mm, the focal length is 75.mm and the centre

frequency is 3 MHz.

Figure 4.18 shows the pulse as a function of time and distance
from the axis at a distance 20 mm from the apodized aperture
in the transient «case. Relative to Fig. 4.14 d we can see
that the apodization has primarily changed the edge wave. The
influence on a peak detected beam profile is therefore small.
Thus for transient fields apodization can be used to reduce

edge waves more than sidelobes.

h.2.2. The planar disc and the natural focus

One of the most important results of the previous subsection
was to find that the beam waist occurs at different distances
from the aperture depending on the exciting pulse. For many
practical purposes it is natural to define the beam waist as
the focal point. We will do so in this subsection and call

the actual focal length the geometrical focal length. In the



70

previous subsection we had 759 mm as the geometrical focal

length. For the CW excitation in Fig. 4.12 the beam waist is
at 40 mm. For the pulse from a transducer with one matching
layer in Fig. 4.13 the beam walst is at 50 mm. And for the

half wavelength pulse in Fig. &#.14 the beam waist is at 70 mm.
The shortest pulse gives.a focal length in agreement with the
geometrical focal length, while the CW excitation gives a

focal length that is considerably shorter.

To 1investigate this focusing effect in more detail we will
calculate the fields from a planar disc with the three
different excitations of the medium. In Fig. 4.17 the beam is
shown as a function of distance from the aperture and beam
profiles in perspective in space for the CW excitation. The
beam waist is at 80 mm. In Fig. 4.18 the excitation pulse
comes from a transducer with one matching layer. The beam
waist is at 90 mm. In Fig. 4.19 the medium 1is excited with
half a period and this gives hardly any beam waist at all. We
also note that the near field is much smoother for the
transient excitations than for the CW excitations. This is a
consequence of the fact that the transient excitation case can
he taken as an average case of a wide frequency range, thus

the rapidly changing fields with frequency are smoothed out.

It is easier to give an explanation of fhe position of the
spatial peak rather than the beam waist. However, we can see
from Fig. 4.17 that both the spatial peak and the beam waist
are at 80 mm. Using the Fresnel zones [26)] it is easy to show
that the aperture is exactly the first fresnel zone at the

distance
2
zZ = a /A {(4.33)

Here a is the aperture radius and A the wavelength. With a

equal to 12.7 mm and a freguency of 3 MHz we get z equal to 81

mm . At this distance on the axis the field will have a
maximum. We can see that the result is in good agreement with
Fig. 4.17 where the beam waist is at 80 mm. The resolution in

the calculation is 10 mm in the z-direction.
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L.18. Pressure field with medium pulse excitation from a
planar aperture with diameter 12.7 mm and centre
frequency 3 MHz.

a. Beam diameter in mm as a function of depth in
mm.
b. Beam profiles in perspective in space in mm.
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From the theory of the spatial impulse response we know that
the on-axis response 1s a 7rectangular function. When a
continuous wave is convolved with a rectangulaxr function, the
result is maximum when the length of the response 1is an odd
number of half periods. From Eq. (4.18) we can find that the

spatlial impulse response. is a half period long at

z = a’/a (4.34)
which is the same result as in Eqg. (&.33). Thus there are an
infinite number of spatial peaks close to the aperture, but

the beam profile is single peaked only at the one furthest
away from the aperture. It is reasonable to expect the beam
waist to be there. We conclude therefore that a natural
focusing takes place for CW excitation, and the focal 1length
is

£, N (4.35)

For transient excitation the focal length increases as the

pulse length decreases.

We know from geometrical optics that two focal lengths in a

thin lens can be added inversely [26]:
£ = f + f (4.386)

Whether this is true or not in this case cannot be proved in a

strict sense, This is due to the fact that Eq. (&.38) is

based on geometrical theory, while the natural focus is a
diffraction phenomenon. But we c¢an verify it for our
application. We vary the aperture diameter by 12.7 mm and 15

mm. With a frequency of 3 MHz the natural focal length is 81
mm and 113 mm., We also vary the geometrical focal length by
75 mm and 200 mm. The resulting focal lengths for the four
different combinations are found from Eg. (4.36) and are given

in Table &.2.
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Geometrical Natural Total
Fig. focal length focal length focal length
a 75 81 39
b 75 113 3]
c 200 81 58
d 200 113 72
Tabhle 4.2. Combinations of natural and geometrical focal

lengths for Fig. 4.20.

In Fig. .20 the calculations are shown for the same four
variations of the focal lengths. We can see that the results
are in good agreement with Table 4.2 and we conclude that the
focal lengths can be added inversely to give a guldeline to

where the beam waist will be for our transducers.

4.2.3.__Annular arrays_and dynamic_focusing

In this subsection we will analyse the fields of annularx
arrays. The purpose of annular arrays is to use dynamic
focusing in echo imaging. The pulse is transmitted with a

fixed focus. During reception the focal length is adjusted so
that it equals the depth of the echo at all times. From now on
we will use the defination of focal length as it is defined in

geometrical optics.

There are two properties that are important to examine in
connection with annular arrays. The first is to find out to
which extent a finite number of elements is capable of shaping
a focus and how many elements that are necessary. The
reference is the focus formed by a spherical lens. The second
is to find out how much the resolution is improved by using

dynamic focusing in reception.
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From Eg. {4.30) we estimated the required number of elements
to be four. This was based on a simple analysis of the on-axis
field and should be regarded as a guideline only. However, we
will start with four elements and compare with two and eight

elements.

We have seen earlier that the exciting pulse shape influences
the field. In this subsection however, we will use the pulse

from a transducer with one matching layer.

In Fig. 4.21 are shown plots that are comparable with those of
Fig. 4.13. The only difference is that while a lens 1is used
in Fig. 4.13, four elements with a proper time delay are used
in Fig. 4.21. The focal length is 75 mm for both. A
comparison of the beam diameters as functions of depth gives
no significant differences. The skirts of the beam profiles
are however different, and the difference is greatest in the
near field. The near field pressure varies more across the
beam for the four element transducer. But generally speaking
the four element transducer performs well. However, it is not
a focal length of 75 mm, but rather a focal length of 20 mm
that requires four elements according to Eg. (4.30}). To
decide how many elements that are required, we will use the

beam diameter and the beam profile plots.

In Fig. 4.22 the beam diameter is shown as a function of depth
for 2, 4 and 8 elements when dynamic focusing is used. The
beam 1is generated by letting the focal length be equal to the
depth at all depths. We can see that the beams from 4 and 8
elements are essentially equal. The beam from 2 elements has
a larger diameter than the two others in the near field. At a
depth of 20 mm the beam diameter for 2 elements is more than

twice the beam diameter for 4 and 8 elements.

Fig. 4.23 shows the beam profiles as functions of distance
from the axis at the depths z equal to 20 and 30 mm for 2, &
and 8 elements. The focal length is equal to the depth in all

the plots. We can now see more clearly that two elements are
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Fig. &4.21. Pressure field with medium pulse excitation from a
planar four element annular array with aperture
diameter 12.7 mm and centre frequency 3 MHz.

a. Beam diameter in mm as a function of depth in
mm .

b. Beam profile in perspective in space in mm.
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too small a number to give a good focus at depths of 20 and 30
mm. Increasing to 4 elements gives a radical improvement of
the skirts in addition to the reduction in beam diameter
mentioned above. Increasing to B8 elements gives us further
improvements relative to 4 elements. However, the important
improvements take place when going from 2 to 4 elements. We

therefore decide to use 4 elements.

In Fig. 4.24 beam profiles are shown for an annular array with
4 elements when the focal length is set equal to the depth at
all the depths. Therefore when 4 elements are used for dynamic
focusing, the beam profiles during transmission will be those
shown 1in Fig. 4.21, and during reception those shown in Fig.

L.24.

For comparison of the beam profiles at a given depth we have
used a focal length that is equal to the depth. In the
previous subsection we have however learned that the beam
waigt is closer to the aperture than the focal point. It is
therefore possible +that another choice of focal length can
give a better result. This possibility is investigated in
Fig. 4.25, where beam diameter plots are shown for a 4 element
array with the focal lengths equal to 30, 40, 50 and 7% mm.
For f equal to 75 mm we can see that the beam waist is at 50
mm . However, Ehe beam diameter at depth 50 mm is narrower in
the case where the focal length is equal to 50 mm. When the
focal length is equal to S50 mm, the beam waist is at depth 40
mm. However, the beam diameter at depth 40 mm is narrower in
the case where the focal length is equal to 40 mm, and so on.
This indicates that the optimum choice of focal length is to
let it be equal to the depth where the smallest diameter is
desired. This is true in spite of the fact that the beam

waist then will be located closer to the aperture.
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The above result might seem a bit surprising. We can however

find similar results in the literature on gaussian beams [27].
For continuous waves with a gaussian beam profile one can show
is

The

directly that the minimum beam diameter at a given depth

achieved by choosing the focal length equal to the depth.
beam walst will however be located closer to the aperture.
Thus we have seen that our beam from the four element arvray in

this respect behaves gsimilar to a gaussian beam.
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Finally, we will see how the pressure is as a function of time
and distance from the axis at depths of 20 and 30 mm. This is
shown in Fig. 4,286 for the four element array with focal
length equal to the depths in both cases. Comparing these
plots with the corresponding plots in Fig. 4.13.d we can see,
that the beam is narrower 1in the near field when dynamic
focusing is wused relative to a fixed focus. But now we can
see also that the edge waves are eliminated. On the axis at
depth 20 mm we can see that the pressure pulse has the same
length as the excitation pulse. This is due to the fact that
the spatial impulse response is now only about a half period
long. This was also the reason why we in the first place

believed that four elements would be enough.

PRESSURE VS. TIME AND RADIAL DISTANCE (MM.).
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Fig. 4.26. Pressure as a function of time and distance from

the axis in mm at depth 2z in mm from a four
element array focused at f. The aperture diameter
is 12.7 mm, The excitation is the medium pulse
with centre frequency 3 MHz.
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h.2.6, A focused annular array

In this subsection we will investigate the combination of a
fixed focus formed by a lens or a curved aperture and a
dynamic focus formed by an annular array. In the previous
subsections we have started out by analyzing the on-axis
spatial 1impulse response. "Inspired by the success of this

approach, we will proceed in the same way.

Qur aim is to be able to focus properly in the depth range
20-150 mm, and we will therefore need an on-axis response that
is shorter than half a period in the same depth range. With a
focal length equal to 75 mm, the length of the on-axis
response 1s 0.48 us at depth 20 mm and 0.09 us at depth 150
mm. To get an on-axis response that 1s shorter than half a
period or 0.17 us , it 1is therefore necessary to use four
elements at depth 20 mm. At depth 150 mm however, the
response 1is short enough already with one element. Looking at
the on-axis response only, it might therefore be better to
choose a fixed focus that gives us a response with the same
length at depths 20 and 150 mm. With a fixed focal length
equal to 35 mm we get an on-axis response with length 0.29 us
at 20 mm and the same at 150 mm. In this case it 1is
sufficient to. use two elements to get a response that is

shorter than 0.17 ps both at depths 20 and 150 mm.

To «check the validity of the above analysis we will run the
computer program for a two-element aperture with the fixed
focal length equal to 35 mm. The plot in Fig. 4.27.a shows
the beam diameter as a function of depth in the( case where
dvynamic focusing is used. That is, we let the total focal
length be equal to the depth at all depths. We can see that
the beam performs well. Compared with the beam diameter plot
for the planar two-element aperture in Fig. 4.22, we can see
that the near field is improved by using a fixed focus in

addition to the dynamic focus.
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Figure 4.27.b shows the beam profiles as a function of
distance from the axis for the depths z equal to 20, 30, 50,
70, 100 and 150 mm, and with the total focal length equal to
the depth for each plot. Comparing these plots with the
results for the four-element aperture in Fig. 4.24, we can see
that the sidelobes or skirts in general are increased. In the
near field the beam profiles perform well, but in the far

field the skirts are large and might be damaging to the image.

These results might suggest that the value of the fixed focal
length of 35 mm was too short. To improve the far field beam

profiles we can therefore increase the fixed focal length. Let

us choose S5 mm. The beam diameter as a function of depth is
shown in Fig. 4.28.a for the case where dynamic focusing is
used. Again, the beam diameter performs well at all depths.

The beam profiles are shown in Fig. 4.28.b. Comparing these
with the plots in Fig. 4.27.b, we can see that the skirts in
the far field have decreased and the skirts in the near field
have increased as we expected. Fig. 4.28.c shows the pressure

as a function of time and distance from the axis at the depths

a)
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100, 1
€L
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&ll‘lll|4-lllll11_
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Fig. 4.27. Pressure from a two-element aperture with a fixed
focal length of 35 mm when dynamic focusing 1is
used. The aperture diameter is 12.7 mm and the
excitation 1s the medium pulse with centre
frequency 3 MHz.
a. Beam diameter in mm as a function of depth in

mm.
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z equal to 20, 30, 70 and 150 mm. Also here the total focal
length f equals the depth at all depths. We can see that the
pressure pulse is short as a function of time. It is of the
same length as the velocity pulse generated from the
transducer, and the influence on the 1length of the spatial

impulse response is small.

To complete the calculations for the two-element transducer
with a fixed focus of 55 mm, we have in Fig. 4.29 shown the
transmission pressure field from this transducer. That 1is,
the pressure field whe; the total focal length is 75 mm. This
transducer will therefore have a pressure field as shown in
Fig. 4.29 when transmitting, and as shown in Fig. 4.28 when

receiving.

We have in this chapter shown the pressure fields of many
different transducers. The problem is then to decide whether
one particular design is good enough or not. The most

important values for the resolution in the image are the bheam
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Fig. 4.28. Pressure from a two-element aperture with a fixed
focal length of 55 mm when dynamic focusing is
used. The aperture diameter is 12.7 mm and the
excitation i1s the medium pulse with centre
frequency 3 MHz.

a. Beam diameter in mm as a function of depth in

mm,
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Pressure from a two-element aperture with a fixed
focal length of 55 mm and a total focal length of
7% mm. The aperture diameter is 12.7 mm and the
excitation is the medium pulse with centre
frequency 3 MHz.

a. Beam diameter in mm as a function of depth in
mm .
b. Beam profile in perspective plot in space in

mm.
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5. TRANSDUCER DESIGN AND MEASUREMENTS

In this chapter we will demonstrate the design and the
measurements of the transducers. In particular, we will 1look
at the design of quarter wave matching layers. Critical

design parameters will be discussed.

The measurements presented in this chapter are the electric
input impedance, the impulse response, the transfer function
and the efficiency of the transducer,. The transient

diffraction fields will be presented in the next chapter.

The most important measurements will be the impulse response
and the efficiency of the transducer. The impulse response
tells us how good the depth resolution will be. The

efficiency is important for the transducer sensitivity.

The measurements are dohne also to evaluate the transducer
calculation model. The measurements of the electric input
impedance of the transducer will be used to find the different
modes of vibration. The transfer function can be used to find

the modes that are coupled to the medium.

5.1, Transducer desigan

The only way to learn transducer design is through trial and
error. Thus practical experience is a necessityc”Some of the
experience will, be mentioned, and in particular the

fabrication of the quarter wave matching layer.

At a frequency of 3 MHz a half wavelength resonator of PZT
will be about 0.7 mm thick. A typical thickness of a quarter
wave matching laver is 0.2 mm. It is self-evident that the
thickness of the electrodes and of the glue lavers can be
critical; also the homogeneity of the materials, parallelity
of the layers and the size of the solder points. This has to
be considered 1in all operations involved in the transducer

fabrication.
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The PZT elements used in the experiments are delivered from
Ferroperm and the material data are given in [211]. A silver
electrode of thickness 10 pm is deposited on each side of the
element. The acoustic impedance of a typical PZT material is
between 30 and 40 Mrayl (= 106 kg/mzs). The impedance in
silver is 38 Mrayl. The influence of the electrodes is
therefore in essence that 3/ of the thickness of the resonator

is non-piezoelectric.

We want a high efficiency and therefore airbacking of the
transducer. However, to get mechanical support we will use a
porous material called divinycell. This 1s a stiff material
with low density and the acoustic impedance is in the range
0.1 to 0.4 Mravl. The acoustic impedance looking forward from
the ¢eramic through one matching laver is, according to Table
3.2, 12 Mrayl at resonance,. The result is that almost all the

power is emitted in the forward direction.

With this light backing we can also tolerate a glue layer of

thickness 0.1 mm between the element and the backing.

A  glue layer between the element and the matching layer is a
greater problem. A special high pressure method has been
developed to 5get the glue layer as thin as a few micrometers
[191]. If, however, a filled epoxy 1is used as the material in
the matching layer, the whole problem can be eliminated by
molding the epoxy straight onto the element. This requires a
fill that will not sink to the bottom before the epoxy
hardens. We have therefore chosen to use dolomit powder
instead of a metal powder as fill in the epoxy. This unables
us to make composites with as high impedances as 1if metal
powder had been used, but we will only need an impedance of
4.25 Mrayl anyway. The dolomit powder, called microdol, that
is used here has a grain size of 1-8 um and the composite will
therefore be homogeneous at a frequency of 3 MHz. The epoxy
used is Chiba Geigy XW 396-397. The density, velocity and
impedance were measured as a function of weight percent

microdol and the results are shown 1in Fig. 5.1. The
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Fig. 5.1. Density, velocity and impedance of the filled epoxy

as a function of welight percent microdol.

uncertainty in the velocity is about + 50 m/s and in the

impedance + 0.1 Mrayl.

From the plot we can read that the desired impedance of 4.25
Mrayl is achieved with 457 microdol. The velocity is then
2800 m/s and the desired thickness of a quarter wave matching

layer at 3 MHz is therefore 0.23 mm.

Thus, the fabrication of the quarter wave matching layer is
done by mixing the epoxy and microdol. This mixture is
evacuyated to avoid gass bubbles and molded directly onto the
element. After hardening the filled epoxy 1s ground down to
the proper thickness. The accuracy in the grinding process is

+ 5 pm.

in Fig. 5.2 are shown calculated impulse responses and module

of the corresponding transfer functions for some parameter
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settings. Figure §5.2.a shows the ideal parameter setting and
is the same as in Figure 3.5.a. Figure 5.2.b shows the effect
of adding 10 um silver electrodes. Figure 5.2.c shows the
effect of the backing with impedance 0.4 Mrayl and a glue
layer of 0.1 mm thickness between the backing and the element.
The transfer function here 1s reduced with 2/ only relative to
the ideal <case. Figure 5.2.d shows the effect of reducing
the impedance of the matching laver to 4.0 Mrayl. Figure
5.2.e shows the effect of increasing the thickness of the
matching laver to 0.25% mm. For all the plots in Fig. 5.2 the
changes are acceptable and indicate the tolerable inaccuracies

in the fabrication of the transducers.
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5.2. Transducer measurements

For measurement purposes the transducers are placed in a
measurement tank from Medisonics, England. This is supplied
with a micropositioning manipulator which has a resolution of
0.1 mm in the transversal direction and 1.0 mm 1in the
longitudinal direction. The. hydrophone i1s a 1 mm PVDF probe
from the Danish Institute of Biomedical Engineering. The
diameter of the aperture is 1.0 mm and the sensitivity 1is -264
dB relative to V/uPa in the frequency range 1-10 MHz when it

is connected to a 1 MQ lcad impedance.

The input signal to the transducer 1is generated from a
Pulsetek pulse generator 233 which has two channels. This is
capable of producing pulses as short as 10 ns. When a
continuous bhurst is required, the pulse generator and a switch
are wused to modulate a continuous signal from a Hewlett
Packard 3312 A Function Generator. The signal is amplified by
a EIN 503 L Power Amplifier which has a frequency range from 1

to 500 MHz. The output impedances of the generators are 50 Q.

The signal from the hydrophone is amplified in a Tektronix
Type 127-1A5% Preamplifier with a 1 MQ input. The signal is
read from a Tektronix 2213 oscilloscope. The configuration is

shown in Fig. 5.3.

The electric input impedance of the transducer is measured
with a Hewlett Packard 4815 A RF Vector Impedance meter. This
can measure the module and phase in the freguency range 0.5 -

500 MHz.

The impulse response of the transducer is measured by exciting
the transducer with a pulse that is shorter than 100 ns. The
hydrophone is placed in the focal point or in the far field
for an unfocused transducer where the spatial impulse response

is a S-pulse.
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Fig. 5.3. The measuring configuration.

The measurement of the transfer function is done with the
hydrophone in the same position. A CW-burst is used as an
input to the transducer and the burst centre frequency 1s

varied from 0.5 to 6 MHz.

The efficiency of the transducer has been measured by
measuring the output acoustic power with a power meter
designed by Engan (281. The transducer is excited with a 3
MHz continuous voltage of known amplitude and the input
electric power can be calculated when we have measured the
2lectric input impedance. The efficiency 18 then found as the
ratio between the output acoustic power and the input electric

power .

A single element circular disc transducer with one quarter
wave matching layer has been fabricated as described in the
previous section. The diameter of the disc 1s 12.7 mm and the

centre frequency 1is 3 MHz.
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In Fig. 5.4.a is shown the calculated time derivative of the
impulse response. Thus, it can be compared directly with the

measured acoustic pressure. The 12 dB pulse length is 0.7 Hs.

Figure 5.4.b shows the measured impulse response. Here the 12
dB pulse length is also 0.7 us. The main pulse is very close
to the calculated one. The tail of the pulses are however

somewhat different in the two cases.

In Fig. 5.4.c 1is shown the calculated generator voltage to
pressure transfer function for the transducer. The 5] dB
bandwidtnh is 1.7 MH=z. Fig. 5.4.d shows the measured transfer

function. Also here the 6 dB bandwidth is 1.7 MHz. While the
calculated transfer function has a flat top, the measured one
has a peak at 3.5 MHz. This is 1in agreement with what we
predicted in Chapter 3, a peaked transfer function gives an

impulse response with a bigger tail.

The efficiency of the transducer was measured to be 8387 at 3
MHzZ . With the divinycell backing and the loss model developed
in chapter 3, we get a theoretical efficiency of 9271. This

agreement is excellent.

Fig. 5.5.a shows the calculated electric input impedance of
the transducer. and Fig. 5.5.b shows the measured electric
input impedance. The differences between the calculated and

the measured results are more vital here than for the impulse
response and the transfer function. In the measured results
we can see a resonance at 0.6 MHz and another at 0.9 MHz,
which are not present in the calculated results. At 3 MHz the
calculated module is 36 Q and the phase is ~43O. The
measurements at 3 MHz show a module equal to 30 @ and a phase
equal to —350. The shape of the plots around resonance is

also somewhat different in the two cases.

There are two principal reasons for the disagreement between
the calculated and measured results. The first is that the
parameter input to the calculation model may be different from

the actual parameters. The second is that the model is too
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Fig. 5.4. The single element transducer with one matching
layer. The disc diameter is 12.7 mm and the centre
frequency is 3 MHz.

a. Calculated impulse response
b. Measured impulse response
c. Calculated transfer function
d. Measured transfer function

simple. Changes in  a parameter that 1s believed to be
important were examined in the previous section. The results
indicate that even if errors in the parameters may explain
some disagreement between the calculated and measured results,

this can not explain it all.
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ELECTRIC INPUT IMPEDANCE VS. MHZ ELECTRIC INPUT IMPEDANCE
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Fig. 5.5. Electric input impedance of the single element
transducer with one matching layer. The disc

diameter is 12.7 mm and centre frequency is 3 MHz.

a. Calculated
b. Measured

The model 1is too simple, as already stated in Chapter 3. While
the wave equation has nine independent solutions in a solid
medium, our model only takes one of them into account. It is
obvious that this is the explanation for the two measured
resonances at 0.6 and 0.9 MHz in the input impedance. The
model has no possibility of finding those modes. It might
also be that other modes of vibration influence the shape of

the impedance around 3 MHz.

The agreement between the calculations and the measurements is
much better for the impulse response and the transfer function

than it is for the input impedance. This can be understood
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when recalling that the impulse response and the transfer
function are measured with the hydrophone in the focal point.
The reason for this placement is that the spatial impulse
response 1is a O8-pulse of time in the focal point, and
therefore the pressure will be the time derivative of the
normal velocity on the transducer surface. The mode of
vibration that is included in the transducer model, namely the
longitudinal pressure wave, only gives a normal velocity on
the surface. However, all the other modes of vibration may
have velocity fields that are quite different and therefore
radiate in other directions, or hardly radiate at all. This
favours the suggestion that most of the disagreements between
the calculated and measufed input impedance are due to other

modes of vibration rather than errors in the input parameters.

5.2.2. The two-element transducer

A two-element annular array has also bheen fabricated. It
consists of a centre disc of diameter 9.7 mm and an outer ring
with inner diameter 10.2 mm and outer diameter 13.7 mm. Also
for this transducer the thickness resonance frequency is 3
MHz . The P2ZT-elements were glued to the divinycell backing
which has an acoustic impedance of 0.4 Mrayl. Afterwards the
filled epoxy was molded on the front and ground down to the
proper thickness. This method of producing the matching laver

gave an uncertainty in the thickness of the matching layer of

+ 10 pm,

The calculated impulse response is shown in Fig. 5.6.a. 1t
has a 12 dB pulse length of 0.7 us. The measured impulse
response - of the inner element is shown in Fig. S5.6.b. This
has a 12 dB pulse length of 0.7 Hs. The measured impulse
response of the outer element is shown in Fig. 5.§nc. This

has a 12 dB pulse length of 0.7 ps. Finally, in Fig. 5.6.d 1is
shown the impulse response for both the elements excited in
parallel. The impulse responses for the inner and outer

element were excited with the same generator voltage over the
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Fig. 5.6. Impulse responses for the two-element transducer
with one matching layer. The aperture diameter 1is
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50 Q line, but still the response from the outer element 1s
2.5 dB lower than the inner element. Also for the outer

element we can observe a 1 MHz period tail of the pulse.

The calculated generator voltage to pressure transfer function
is shown in Fig. 5.7.a. .The 6 dB bandwidth 1is 1.7 MHz. The
measured transfer function for the inner element 1s shown in
Fig. 5.7.b. The 6 dB bandwidth is 1.6 MHz. The measured
transfer function for the outer element 1s shown in Fig.
5.7.c¢c. The 6 dB bandwidth is 1.6 MH=z. For the inner element
the result is very much the same as for the single element
transducer. The transfer function has a peak at 3.3 MHz2 and
this is in agreement with a bigger tall in the impulse
response. For the outer element the transfer function has
peaks at 3.4, 2.7 and 1.0 MH=z. The peaks around 3 MHz can not
be separated in the impulse response, but as mentioned above,

we observe a weak 1 MHz period signal in the impulse response.

The measured efficiency of the inner element is 887 and 57/ of
the outer element. As for the single element transducer the
calculated efficiency 1is 927%1. The calculated and measured
éfficiency are in good agreement for the inner element but in

poor agreement for the outer element.

The calculated electric input impedance is shown in Fig.
5.8.a. At 3 MHz the module is 62 Q and the phase is —430. The
measured impedance for the inner element is shown in Fig.
5.8.b. At 3 MHz the module is 36 @ and the phase is ~440. We
can see also that there is a resonance at 0.5 MHz and another
at 0.75 MHz. The shape of the plots around 3 MHz is different
from the calculated ones for both the module and the phase.
The measured impedance for the outer element is shown in Fig.
5.8.c. The module at 3 MHz is 56 Q and the phase is »580.
There is a strong resonance at 1.0 MHz and a weaker at 2.0
MHz . The shape of the module and phase around 3 MHz is also

here different from the calculated one.
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Fig. 5.7. Module of the transfer functions for the
two-element transducer with one matching layer.
The aperture diameter 1is 13.7 mm anhd the centre
frequency is 3 MH=z.
a. Calculated
b. Measurement for the inner element
c. Measurement for the outer element
The discussion of the results Ffor the single element
transducer 1is valid also for the two-element transducer. The

disagreements between the calculations and the measurements
are however greater for the outer element in the two-element
transducer. This is due to the fact that the transversal
dimension of the outer element is of the same order as the
thickness of the element. The thickness 1is 0.89 mm and the

width is 1.75 mm. The piezoelectric ceramic that is used, P2
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27, have a coupling factor in the transversal direction equal
to 0.36 while the longitudinal coupling factor is 0.69. This
indicates that the 1 MHz resonance might be the fundamental
resonance of the transversal pressure wave. If S0, the

wavelength should be 3.5 mm and the effective velocity 3500

m/s. The bulk velocity for a pressure wave in PZ 27 1is 4350
m/s, but piezoelectric coupling and transversal contraction
will reduce the effective velocity. The 1 MHz resonance 1is

therefore most likely the transversal vibration mode.

If we take into account the nine independent solutions of the
wave equation and their harmonics and all the linear
combinations of these, and also the uncertainty due to
mechanical and electric coupling, we can fit almost any
resonance frequency. This is highly speculative and we will
therefore not do so. We Jjust have to admit that we can not

account for all the measured resonances.

The measured efficiency of the inner and outer element differs
with 1.9 dB. The lowey efficiency of the outer element méy be
due to the fact that it 1s more in contact with the filled
epoxy which fills up the space in between the elements and
around the outer element. Also spurious modes of vibration

close to 3 MHz - may absorb energy.

However, the impulse responses are satisfactory. Most
important for an annular array 1s the fact that the impulse
responses are equal. We have noticed that the impulse
response from the outer element is 2.5 dB lower than the one
from the inner element when driven with the same generator
voltage. The lower efficiency of the outer element accounts
for 1.9 dB and the higher real part of the electric input
impedance of outer element accounts for 0.2 dB. Finally all
the other modes of vibration in the outer element will absorb
energy due to the transient excitation. This difference in the
magnitude of the two responses can however easily be

compensated for.
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Frg. 5.8. Electric input impedance for the two-element
transducer with one matching layer. The aperture
diameter is 13.7 mm and the centre frequency is 3
MHz .
a. Calculated
b. Measured for the inner element

. Measured for the outer element



6. MEASUREMENTS OF TRANSIENT DIFFRACTION PATTERNS

The beam observation tank is wuwsed for measurements of the
fields from the transducers. The tank and the rest of the

measuring equipment were described in the previous chapter. An

important parameter for the field measurements is the
hydrophone diameter which is 1.0 mm. We also recall that the
resolution of the micro manipulator is 0.1 mm  in the
transversal directioh and 1.0 mm in the longitudinal
direction.

The 1lenses used in the experiments are made of a high density
silicone called Sylgard 170 from Dow Corning. The velocity in
the silicone 1is 1010 m/s, which gives a refraction index of
1.493 relative to water. Thus we can make thin lenses, which
give low second order aberrations [238]. The acoustic impedance
in the silicone is 1.4 Mrayl which gives low reflection at the

water~silicone interface.

6.1. The single element transducer

Calculations of the fields from a single element transducer
are shown in Chapters 4.2.1 and 4.2.2. In Chapter 4.2.1 we
calculated the pressure fields for a disc with focal length
equal to 7% mm. The medium was excited with a continuous
wave, a half wavelength pulse and the pulse coming from a
transducer with one matching layer. The half wavelength pulse
is not available and can not be used in the measurements. The
calculations of pressure field for the planar disc are shown
in Chapter h.,2.2. The excitations mentioned above were used

in this case as well.

In Fig. 6.1 are shown measurements of the half value beam
diameter as a function of depth for both a planar and a

focused disc with both pulse and CW excitation.



The measurements of the planar CW excited disc in Fig. 6.1.a
correspond to the <calculations in Fig. 4.17.a. The

measurements show a beam waist at 75 mm where the beam

diameter is 5.1 mm. The calculation gave us 5.0 mm at depth
80 mm. At depth 150 mm the measurements give a diameter of
8.8 mm, while the calculated result is 8.3 mm. This 1is the

largest disagreement between. the measured and the calculated
diameter outside the beam waist. At depth 20 mm the
measurements show a diameter of 10.4 mm, while the calculation
gave us 11.6 mm. The largest disagreement between the
measurement and the calculation inside the beam waist is found
at depth 50 mm, where the diameter is measured to be 7.6 mm

and calculated to be 10.7 mm.

Figure ©6.t.b shows the measured beam diameter for the pulse
excited planar disc, and corresponds to the calculations in
Figure 4.18.a. The measurements show a beam waist at depth 90
mm where the diameter is 6.1 mm. The calculation shows also a
beam waist at 80 mm, but the diameter is 6.6 mm. At depth 150
mm the measured diameter is 8.8 mm, while the calculated is
8.6 mm. At depth 20 mm the measured diameter is 11.5 mm,
while the calculated 1is 12.2 mm. The difference between the
measured and calculated results is within 0.3 mm outside the

beam wailst and. 1.0 mm inside the beam waist.

Figure 6.1.¢c shows the measured beam diameter for the CW
excited disc with focal length 75 mm, and this corresponds to
the calculations in Fig. 4.12.a. The measurements show a beam
waist at depth 40 mm with diameter 2.9 mm. The calculations
show a beam waist at 40 mm with diameter 2.7 mm. At depth 150
mm the measurements show a diameter of 8.2 mm, while the
calculation gives B.4 mm. At 20 mm the measured diameter is
8.2 mm and the calculated is 6.3 mm. Again the difference
between the measured and calculated diameter is within 0.3 mm

outside the beam waist and 1.0 mm inside the beam wailst.

Finally, Fig. 6.1.d shows the measured beam diameter for the

pulsie excited disc with focal length 75 mm. This corresponds
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Fig. 6.1. Measurements of the beam diameter in mm as a
function of depth in mm for the single element
transducer with one matching layer, The aperture
diameter is 12.7 mm and the centre frequency 1is 3
MHz .
a. Planar disc, CW excitation
b. Planar disc, pulse excitation
c. Focused disc, CW excitation
d. Focused disc, pulse excitation



to the calculations in Fig. 4.13.a. The measurement shows a
beam waist at depth 50 mm with diameter 3.1 mm. Also the

calculations give a beam waist at 50 mm, but with'diameter 2.9

mm. At depth 150 mm the measured diameter is 8.9 mm, while
the calculated is 8.8 mm. At depth 20 mm the measured
diameter is 8.3 mm, while the calculated is 7.9 mm. In the

latter case the difference . between measured and calculated

diameter is within 0.5 mm inside the beam waist.

The disagreements between measured and calculated diameters
less than 0.5 mm are easy to account for. The hydrophone
diameter 1s 1 mm and uncertainty in the position is 0.1 mm on
each side of the beam. The calculations of diameter are based
on a linear interpolation between the sampling points, and
they are separated by 0.7% mm in the direction perpendicular

to the axis.

Inside the beam walist the disagreements between measured and
calculated diameter are larger than outside the beam waist. In
general the measured diameters are larger than the calculated.
Also the disagreements are larger for CW excitation than for
pulse excitation. The reason is that the local péaks in the
beam are not resolved with a 1 mm hydrophone and the measured
peak values are too low. This gives too low a half value
estimate and a‘larger half value diameter. The CW fields are
more peaked than the pulsed fields and therefore show larger

disagreements.

The latter statement 1is easlier to discuss after showing the
measured beam profiles. In Fig. 6.2 are shown the measured
beam profiles for the CW excited disc with focal length 75 mm.
The measurements are done as a function of distance from the
axlis in depths z equal to 20, 30, 50, 70, 100 and 150 mm. The
corresponding calculations are shown in Fig. &.12.c¢. The

resolution in the calculations is 0.5 mm.

The generator voltage was kept constant during the

measurements of the beam profiles at the different depths. We
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Fig. 6.2. Measured beam profiles as a function of distance
from the axis in mm at distance z in mm from the
aperture of diameter 12.7 mm and focal length of 75
mm . The excitation is a 3 MHz continuous signal.



can see that the spatial peak is at 50 mm which also is in

agreement with the plot in Fig. 4.12.b.

All in all the agreement between the measured and the
calculated beam profiles is very good. The differences occur
at the peaks and at the dips and Zeros. This can be due to
the size of the hydrophone and the 7resolution in the
calculations. The on-axis peak at depth 20 mm is about 50/
higher in the calculated plot than in the measured plot. We
can see however, that this is narrower than 1 mm and will
therefore be unresolved by the finite hydrophone aperture. As
discussed above, this will give too low a measurement of the
peak value. It is easy to see when comparing the measured and
calculated beam profile in this case, that the measured half
value diameter will be too large. If the on-axis peak in the
calculated beam profile is cut down to match the measured
profile, we can read out that the half wvalue diameter will
become about 8 mm the measured value was 8.3 mm,. This shows

that the size of the hydrophone canh explain the disagreement.

At depth 30 mm the calculation also shows an on-axis peak.
This is not present in the measurements. However, the
calculated peak 1s narrower than 1 mm and will therefore not
be present in the measured beam profile. The same can be said
about all the beaks in the profiles - they are not resolved by

the hydrophone.

At depth 70 mm the dips in the calculated beam profile are
deeper than in the corresponding measurement. Again, we can

blame the size of the hydrophone.

It is very tempting to state that the hydrophone size is due
to the non-resolved peaks and dips. However, we do not know
if they really are present, so all we can say is that if the
peaks and dips are there we would not be able to measure them

anyway.



The agreement between the calculation and measurement is good,
and by measuring the continuous fields we have achieved two
things. First, we have gained confidence in our calculation
model. Second, we have seen that a thin disc transducer

vibrates like a piston when excited with a continuous signal.
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Fig. 6.3. Measured beam profiles as a function of distance

from the axis in mm at distance 2z from the aperture
in mm from a focused disc excited with a pulse.
The aperture diameter is 12.7 mm, the focal length
is 75 mm and the centre frequency 1s 3 MHz.



For echo imaging the transient field propagation is more
important. In Fig. 6.3 are shown the measured beam profiles
for the pulse excited disc with focal length 75 mm. By pulse
excitation we now mean that the transducer is excited with a
S-pulse and the medium is excited with the pulse coming from a
transducer with one matching laver. In Ch. 5 we saw that the
measured and calculated transducer impulse responses were
quite equal, and the calculated beam profiles in Fig. 4.13.¢

will therefore correspond to the measurements in Fig. 6.3.

At depth z equal to 20 mm both the calculated and measured
heam profiles have three peaks. In the measurements, the
on-axis beak is unresolved by the hydrophone. The off-axis
peaks are higher in the measurements than in the calculation.
At a distance 12 mm from the axis, the measurement shows a

sidelobe which is not present in the calculation.

At depth 30 mm both the calculated and measured beam profiles

have two peaks. The peaks in the measurements are higher than
in the calculation. A sidelobe <can be observed in the
measurements at distance 18 mm from the axis, which is not

present in the calculation.

From depth 50 mm and outwards, the beam profiles are
single-peaked and decrease monotonically with distance from
the axis. When the level of signhal in the measurement is
lower than about 37 of the on-axis level, it disappears in the

noise and can nhot be measured.

The most obvious disagreement between the calculations and the
measurements is the sidelobes at depths 20 mm and 30 mm. A
more thorough investigation of the field shows that this
sidelobe is due to a 1t MHz pulse radiating in a cone from the
transducer. This radiation pattern is typical for a plate
vibration [14], and is often called a Lamb wave [301]. We can
see from the measured beam profiles that it radiates in an
angle of 30 degrees relative to the axis. This dindicates a

propagation velocity along the disc equal to two times the



velocity in water or 3000 m/s. This mode of vibration may
correspond ta the resonance at 0.9 MHz in the measured
electric input impedance of the transducer shown in Fig.
5.5.b. This resonance could not be seen in the transfer
function in Fig. 5.4.d, which was measured with the hydrophone
in the focal point. . The radiation pattern of this mode

explains why.

Other disagreements between the calculated and measured beam
profiles may also be due to radiations from other modes of
vibration. But only the above-mentioned plate mode has been
detected separately. We know, however, that the pulse
excitation of the transducer will excite all the modes in the

transducer, and they may influence the radiation pattern.

6.2, The two-element transducer

In the calculations in Chapter 4 we used a total diameter of
12.7 mm for all the apertures. The diameter was kept constant
so that we could easily compare the fields from the apertures.
The fabricated two-element transducer which is described in
Chapter 5 has a total aperture diameter of 13.7 mm, and for
practical reasons it also has a distance of 0.25 mm between
the inner diéc and outer ring. The calculations of this
particular aperture will therefore have to be presented here.
We will concentrate on the echo imaging application and

therefore use pulse excitation only.

The transducer 1is supplied with a silicone lens with focal
length 55 mm. In Chapter 4 this was found to be the best

fixed focal length for a two-element array.

There are two modes in which the transducer will be used. The

first is the transmit mode, where the focal length is set to

75  mm. The second is the receive mode where the focal length
is adjusted to match the depth of the incoming echo. The
receive mode is called dynamic focusing. We will analyse

these two modes separately.



In Fig. 6.4.a is shown the calculated beam diameter as a
function of depth for the transmit mode. In Fig. 6.4.b is
shown the measured beam diameter as a function of depth for
the transmit mode. In both cases the beam waist is found at
depth 50 mm, where both the calculation and the measurement
gives a diameter of 2.8 .- mm. Outside the beam walist the
difference between the calculated and measured diameter is
less than 0.3 mm. The largest difference is found at depth 40
mm, where the measured diameter is 5.5 mm while the calculated
diameter is 3.3 mm. At depth 20 mm the measured diameter is
1.5 mm while the calculated diameter is 2.0 mm. We also note
that this 1s much less than the corresponding diameter in Fig.
4.2%.a, where we had 5.3 mm at depth 20 mm. In that case the
diameter was 12.7 mm and there was no space in between the

elements.

In Fig. 6.5 are shown the calculated beam profiles for the
two-element transducer in transmit mode for depths 2z equal to
20, 30, 50, 70, 100 and 150 mm. The corresponding
measurements are shown in Fig. 6.6. At depth 20 mm  the
calculation shows a sidelobe which is about 407 of the on-axis
peak value, while the measurements show a sidelobe which 1is
about 30/ of the on-axis peak value. At depth 30 mm we can
see that the calculated profile is single peaked and has a
indentation in the flank. The measurement at 30 mm has a
double peak and shows no sign of the indentation. From depth
50 mm and outwards the agreement between the calculations and
the measurements is much better. No important differences can
be seen outside the beam waist, but inside the beam waist the

differences are obvious.

The measurements of the electric input impedance of the
two-element transducer in Chapter 5 showed many resonances in
the structure. These modes of vibration may radiate into the

medium and in particular influence the near field.
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Fig. 6.4. Beam diameter in mm as a function of depth in mm

for the two-element transducer with one matching
layer in transmit mode. The aperture diameter 1is
13.7 mm, the total focal length is 75 mm and the
fixed focal length is 55 mm,. The centre fregquency
is 3 MH=z,.

a. Calculation
b. Measurement

In the previous section we identified a plate mode that
radiated in a .cone from the single element transducer. No
similar mode has been detected for the two-element transducer.
This may be due to the discontinuity represented by the space
between the elements. No other modes can be seen separately
in the field either. It is most likely that there are other
modes present in the field anyway, but just obscuring the

field as we have seen in the measurements.

In the «calculations of the field from the two-element
aperture, it is assumed that the area in between the centre
disc and the outer ring does not vibrate at all. The filled
epoxy that forms the matching layer is, however, connected and
also fills wup the space between the two piezoelectric
elements. This causes a more continuous change in the
vibration pattern between the two elements for the measured

transducer. The indentation in the flank of the calculated
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Fig. 6.5. Calculated beam profiles as a function of distance
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transducer with one matching layer in the transmit
mode. The aperture diameter is 13.7 mm, the total
focal length is 75 mm and the fixed focal length is
55 mm. The centre frequency is 3 MHz.
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beam profile at depth 30 mm can be traced back to the
discontinuity in the aperture. If we look back to Fig. 4.29.c
we can see that the calculated beam profile at depth 30 mm has
a double peak and no indentation. There the calculations were
done without taking any space between the elements into
account. This calculation is in better agreement with the
measurement in Fig. 6.6 at depth 30 mm than was the case for
the calculation in Fig. 6.5. However, at depth 20 mm the
calculation in Fig. 4.29.c shows a sidelobe which is over 507
of the on-axis value. This is in worse agreement with the
measurement in Fig. 6.6 than was the case for the calculation
in Fig. 6.5. This shows that our simplified model of the
vibration pattern an the aperture is the reason for some of

the errors in the near field.

Dynamic focusing is used to find the flield for the two-element
transducer in the receive mode. This means that the total
focal length always is equal to the depth. Actually both the
calculations and the measurements are done with a transmitting

transducer, but due to reciprocity this makes no difference.

In Fig. 6.7.a 1s shown the calculated beam diameter as a
function of depth for the two-element transducer in the
receive mode.. In Fig. 6.7.b is shown they corresponding
measurement. The difference between the calculated and
measured beam diameter 1is less than 0.3 mm for all depths
except at 20 mm. At depth 20 mm the measured diameter is 1.5
mm while the calculated diameter is 1.8 mm. We also note that
the calculated diameter is larger at 20 mm than it is at 30 mm

where it is 1.6 mm.

In Fig. 6.8 are shown the calculated beam profiles for the
two-element transducer in the receive mode for depths 2z equél
to 20, 30, 50, 70, 100 and 150 mm. The time delay to the
elements is controlled so that the focal length is equal to
the depth in all the plots. Fig. 6.9 shows the corresponding
measurements. At depths 20 and 30 mm the shape of the

calculated skirts and the measured skirts are different. The
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level is, however, about the same size. At depths S50 and 70
mm both the calculated and measured beam profiles decrease
monotonically with distance from the axis. But the level of
the skirts 1in the measurements is about twice of that in the
calculations. At depths 100 and 150 mm the skirts are
somewhat different in .shape for the calculations and the
measurements, but more important is the fact that the level of
the skirts is about 507 higher in the measurements than in the
calculations. We also note that the measured beam profiles

are slightly asymmetric.

The same beam profiles as in Fig. 6.5 and Fig. 6.6 are shown

in dB-scale in Fig. 6.10. Here the measurements and the
calculations are plotted together, The information is of
course the same, but here it is easier to see the skirts. The

beam profiles from Fig. 6.8 and Fig. 6.9 are also repeated 1in

dB-scale in Fig. 6.11.

The discussion following the presentation of the transmit
field is valid also for the receive field. In addition to
this we also have the influence of the cross-coupling between
the elements and the errors caused by the differences between
the pulses from the two elements.

Successful dynamic focusing requires that the elements radiate
independently and that the pulses from the elements are
identical. This will never be absolutely true in practice. A
large cross-coupling between the elements will damage the
possibility of controlling the focal length. The measurements
show, however, that the focal length is under control. But
even a weak cross-coupling can influence the pulse from an
element due to the excitation it gets when the neighbour

element is excited.

The idea of dynamic focusing 1s that the fields from the
different elements will interfere <constructively in some
regions of space and destructively in others. I1+¥, however,
the pulses coming from the different elements are different in

some way, a total cancellation is not possible. A difference
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BEAM DIAMETER (MM.) VS. DEPTH (MM.)
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Fig. 6.7. Beam diameter in mm as a function of depth in mm for
the two-element transducer with one matching layer
in recieve mode. The aperture diameter is 13.7 mm,
the fixed focal length 1is 55 mm and the centre
frequency 1is 3 MHz.

a. Calculations
b. Measurement

in the two pulses from our transducer will therefore be seen
as an increased level of the skirts. This is Jjust what we
have observed. It is therefore necessary for _ a successful
array design that the impulse responses are equal for all the

elements and that the cross-coupling is low.

In Fig. 6.12 are shown both calculations and measurements of

the pressure along the acoustic axis for the transmit and the

recieve mode. We can see that the spatial peak is at 50 mm in
the transmit mode, which is in agreement with earlier
calculations and measurements. For the recieve mode we can

see that the on-axis pressure increases towards the aperture
until 30 mm. Ideally®the on-axis pressure should have followed
a hyperbolic function when dynamic focusing 1is used. This
breaks dowh at about 30 mm, but still the pressure at 20 mm 1s

much higher in recieve mode than in transmit mode.
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The curves in Fig. 6.12 are set equal at depth 75 mm.
Comparing the calculations and measurements we can observe
some disagreement in the near field. For the transmit mode
the measured values are lower than the calculated values. This
is in agreement with the unresolved on-axis peaks due to the
hydrophone aperture as mentioned earlier. However, for the
recieve mode the measurements are larger than the
calculations. At the depth 20 mm 1in recieve mode we have
observed earlier in Fig. 6.7 that the beam diameter is
narrower in the measurements than in the calculations. These
two observations are in agreement with each other. The reason
for this effect might be other modes of vibration apart Ffrom

the piston mode which obscures the near field.
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1. CALCULATIONS AND MEASU#EMENTS OF THE ECHO RESPONSE

In Section 2.3 we developed the expression for the echo

response. This is found in Eqg. {2.34%)
2 d°
ilt) = A" —= ult)*h(t)*h(t)*g(t)*xg(t)*s(t) (7.1)
ot ‘
Where 1i(t) is the current in the electric load impedance
during reception. If the load impedance during reception is

different from the generator impedance during transmission, we
must remember that this also gives us different transducer
transfer functions. This is no limitation, it only implies
that the transducer transfer function has to be calculated
twice. We will in the calculations and the measurements use a
50 @ line connected to the transducer for both transmission
and reception. The calculated and measured quantity will be

the output voltage, e(t), found from
e(t) = R i{t) (7.2)
where R is the transducer load.

The expression for the echo response 1includes the object
function, s(t). To get an expression for this object
function, we had to introduce two simplifications. The first
was to assume that the waves are planar. The second was that
the object is planar. This gives us the possibility of using
the formulas from plane wave theory to find the reflection
coefficient, Clw). And the <connection was found in Eqg.

(2.37):

slt) = ~— 1o Jcm)e:’“’t dw (7.3)
pgCc 27w

The first assumption is questionable for an object in the near
field, but the second assumption can be accounted for by
choosing test objects that are planar. For such objects we

recall that the total echo response could be found by summing



the response from small slements of the object. This is also

what we will do in the calculations.

Qur aim here is not to make good models for the real objects,
but to make a good model of the echo imaging system. We will

therefore need models of.objects that can reveal the essential

features of the echo imaging system. Two such objects have
been selected. The first is a planar interface between water
and teflon perpendicular to the acoustic axis. This gives us

a single reflection which can be regarded as the system echo
response. The second object is a thin sheet of PVC-plastic.

This object will be used to test the depth resolution.

In this chapter we will use only the focused single element
transducer. This is due to the fact that the electronics for

dynamic focusing in real time are not available at the present

time. The use of the single element transducer will, however,
give us a good test of the echo response model. And also, the
dynamic focusing will primarily improve the transversal

resolution, and this can only be tested when the whole imaging

system is working. This 1s not the case at the present time.

The calculations of the output voltage from the transducer or
the echo response when the object is a planar impedance

interface, are shown in Fig. 7.1

With a planar impedance interface we mean an object that fills
up the entire half space behind a certain depth and that the
interface 1is perpendicular to the acoustic axis. The chosen

depths are z equal to 20, 30, 506, 70, 100 and 150 mm.

We can see from the plots in Fig. 7.1 that the echo responses
are quite equal at all depths, and they are mainly an
autoconvolution of the transducer impulse response. The most

obvious difference is that the echo responses at 20 and 30 mm
are stretched out in the beginning of the pulse. The distance
from the very first positive peak to the peak value is 0.9 s
at depth 20 mm, while the same distance is 0.7 Ws at depth 150
mm . This must be due to the influence of the spatial impulse

response.
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CUTPUT VOLTAGE
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7.2, Measurements of the output voltage from the single
element transducer as a function of time when the
object is a planar impedance interface
perpendicular to the acoustic axis at depth =z in
mm. The aperture diameter is 12.7 mm, the focal

length 1s 75 mm and the centre frequency is 3 MHz.
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The echo response 1s a convolution of the autoconvolution of
the transducer impulse response and the autoconvolution of the

summation of spatial impulse responses.

The summation of the spatial impulse responses in a certain
depth will in general have a peak value due to the on-axis
response and a decay due to the off-axis responses. Around
focus and in the far field the spatial response will be a
sharp peak compared to the transducer response. The echo
response will therefore be close to the autoconvolution of the

transducer response which of course is the same at all depths.

In the near field the length of the spatial response will be
of the same order as the length of the transducer response.
The convolution will therefore give a more stretched echo

response, Just as we have observed.

The 12 dB pulse length of the calculated echo response is 1.3
us at 20 mm and 1.1 @ys at 150 mm. The increase of the pulse
length by 0.2 pys at depth 20 mm is all due to the stretching

in the beginning of the pulse.

We also observe a distinct tail on the calculated echo
response at 1.3 ups behind the main peak. This tail is -22 dB8
relative to the peak and the same at all depths. The distinct

tail must be due to the tail of the transducer response.

The measurements of the echo response from a single impedance
interface are shown in Fig. 7.2. The object is a cylinder of
teflon with diameter and length equal to S50 mm. The front end
of the cylinder is used as the echo object. The reflection
from the rear end of the cylinder is attenuated with more than
100 dB in the 100 mm teflon path. The object is also large

enough to cover all of the focused beam.

We can see in Fig. 7.2 that the measured echo responses are
quite equal to the calculated ones. The stretching of the

pulse in the near field can be observed here too. The
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distance from the very first positive peak to the main peak is
0.9 us at depth 20 mm, and 0.7 ps at 150 mm. This is in good
agreement with the calculated results.

The 12 dB echo pulse length at 150 mm 1s measured to be 1.1 ps
which equals the calculated result. At depth 20 mm the
measurement shows a 12 dB pulse length of 1.0 us, while the
corresponding calculation gave us 1.3 Jds. A closer inspection
of the pulses shows that the first negative peak of the pulse
is much smaller in the measurement than in the calculation. In
the measurement this peak is lower than 12 dB and therefore
reduces the 12 dB pulse length. This large first negative
peak can be seen in the calculations at 20 and 30 mm and is
not in agreement with the corresponding measurements. This
error may be due to our assumption of a plane wave in the
calculations of the echo response. In the near field of a

focused transducer, this assumption may be too simple.

In the measurements we canh see that the tail of the pulse is
about -19 dB relative to the main peak. This is 3 dB8  higher
than calculated. The taill is a consequence of the tail in the
transducer impulse response. This was measured in Chapter 5
and also there the tail was found to be higher than
calculated. A. higher tail in the measurements than in the
calculations of the echo response could therefore have been

expected.

Also it should be mentioned that the measurements of the echo
response at 20 and 30 mm are disturbed by electric ringing.
Details in the pulse should therefore not be taken into

account.

To test the depth resolution of the imaging system we will use
a 1.6 mm thick sheet of PVC. PVC has a velocity of 2500 m/s
and this thickness will therefore correspond to 1 mm
biological tissue which has a velocity of 1500 to 1600 m/s.
Our requirement for the depth resolution was 1 mm in

biological tissue.
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The calculations of the output voltage or the echo response
for the double interface object, are shown in Fig. 7.3. The
object is 1.6 mm thick, has a velocity of 2500 m/s and an
impedance of 3.6 Mrayl. It is placed perpendicular to the
acoustic axls at depth z equal to 20, 30, 50, 70, 100 and 150

mm.

We find that the echo response from the sheet in general
consists of two pulses separated in time by 1.3 us. The
second pulse 1is the negative of the first pulse. The first
pulse comes from the first impedance interface with a positive
reflection coefficient and the second pulse comes from the
second interface with a negative reflection coefficient. The
double pulse 1s mainly a superposition of these two pulses,

but also multiple reflections are involved.

Whether the two pulses are resolved or not, depends on the
detector. Let us assume a simple envelope detector and that
the resolution criterium is that the envelope should fall
below 507 of the peak value between the pulses. In this case
we can see that the two pulses are no; resolved at 20 and 30

mm, but are resolved at 50, 70, 100 and 150 mm.

The measurements of the echo responses from the PVC sheet are

shown in Fig. 7.4. The general impression is the same as for
the «calculations. The echo response consists of two pulses,
the second pulse is the negative of the first pulse. The

distance between the pulses 1is 1.3 ys in agreement with the
calculations, The measurements show that the response 15
mainly a superposition of the response from the front and the
back of the sheet. In the measurement we can see that the
second pulse 1s more attenuated relative to the first pulse
compared with the calculations. This is due to the losses in

PVC, which are not included in the calculation model.

Using the same criterion for resolution as in the
calculations, we can see that the two pulses are resolved at

all depths. In the calculations this was not true for depths
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20 and 30 mm. The reason for this is that the measured pulses
are shorter than the calculated pulses, as we saw for the

single interface object.

With an envelope detector and the chosen resolution criterion,
it is possible to resolve two impedance interfaces separated

by 1 mm in biological tissue.

The envelope detector is however not very sophisticated. We
have seen from both the calculations and the measurements that
the echo response from a planar impedance interface 1is mainly
an autoconvolution of the transducer impulse response. We are
therefore faced with the problem of detectiﬁg a known signal
in noise. To detect the impedance interface, which 1s the
goal in echo imaging, we can deconvolve the incoming signal
with the autoceonvolution of the transducer impulse response.

This can improve the depth resolution.

Deconvolution or inverse filtering can also be used in the
transversal direction. The calculations of the transient
diffraction patterns in Chaptexr &4 and the measurements in
Chapter & show that we have a good model of the wave
propagation. This model can be used to design an inverse

filter in the transversal direction.

The problem with using a deconvolver or an inverse filter is
that the signal to noise ratio will be decreased. Qur
transducers are however quite efficient compared with many
traditional echo imaging transducers. We had to design
efficlient transducers to meet the requirements for the doppler
measurements. Inh the echo imaging mode this high efficiency
gives us the possibility of using a more radical inverse
filtering. More extensive studies are, however, required to

find the proper design of the inverse filters.
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8. CONCLUSTIONS

The aim of this work has been to develop a model to analyse
transient wave propagation from wultrasonic transducers and to
design transducers which can be used both for echo imaging and

doppler velocity measurements.

The model for the transient diffraction was based on the
method with the spatial impulse response. The good agreement
between the calculations and the measurements has proved the
validity of this model. The computer programs are available

for further analyses of diffraction patterns.

The transmission line model was used to model the transducer.
This is a well known model and we found also that it worked
well for the vibration mode it is meant to model. Other modes
of vibration were however found to be important, especially
for the annular array elements. This calls for an improved

transducer model which takes all the modes into account.

The natural focusing effect from a piston has been analysed

and rules of thumb to predict the location of the beam waist

are found. More important is, however, that this natural
focusing does. not affect the optimum focusing of the
transducer. Just as for gaussian beams we found that the

optimum focal length for a certain depth 1is to choose the

focal length equal to the depth.

Dynamic focusing with annular arrays has been analysed. The
required number of elements for a planar piston of frequency 3
MHz and diameter 12.7 mm was found to be four elements. With
a curved aperture in addition to the focusing of the elements

this number could be reduced to two elements.

The transducers were designed with one gquarter wave matching
layer and a very 1light backing. This design gave us
transducers with pulses shorter than 1 ps and power efficiency
higher than 507. The transducers are therefore well suited

for both echo imaging and doppler velocity measurements.



A  model of the echo response has been developed, based on a
simple planar wave obiject model. The results showed that the
depth resolution was 1 mm. Better object models should be

developed to study the signature of more realistic objects.

The models for transient wave propagation developed in this
work can be used to study and improve the imaging system. It
gives the tool to design a signal processor that can improve

the resolution in the image.
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