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A pulsed ultrasonic doppler meter capable of transcutaneously measuring 

blood velocity in the human aorta and the heart has been built and 

tested, both by laboratory experiments and by in vivo tests. 

The scattering of ultrasound from blood has been studied theoretically 

and the validity of three velocity estimators is shown both theoreti­

cally and experimentally. 
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ABS'rRACT 

A pulsed ultrasonic blood velocity meter capable of measuring blood velo­

city in deep arteries such as the aorta, has been built. The intrument has 

been tested in laboratory experiments and appears to give accurate estimates 

of mean velocity. Examples of in vivo measurements are given , but due to the 

unknown angle between the velocity direction and the ultrasonic beam and diffi­

culties in obtaining uniform illumination of the artery, only relative values 

can be obtained. A sector scanning method which resolves these problems is 

discussed and by initial experiments the velocity profile in the aortic arc is 

obtained. 

A theory of the scattering of ultrasound from blood is given. The blood 

is treated as a continuum and the scattering is caused by stochastic fluctua­

tions in density and compressibility. These are caused by the stochastic fluc­

tuations in the cell concentration. The scattering cross-section is anisotro­

pic and proportional to the frequency in the fourth power. When the cell con­

centration is so low that interaction between the cells can be neglected, the 

scattering cross-section will be proportional to the mean cell concentration. 

When the concentration is raised so that interaction is strong, a decrease 

from this proportionality is found. 

An expression for the received signal in doppler measurements is given. 

From this expression the relation between the velocity field and signal corre­

lation properties and power spectrum is found. The received signal is Gaussian 

and all information of the velocity field is therefore contained in second 

moments, i.e. the auto-correlation function of the rf-signal or equivalent, the 

auto- and cross-correlation functions of the quadrature components of the rf­

signal. For stationary velocity fields the information is equivalently con­

tained in the power spectra. 

A new type of mean velocity estimator is given. It is shown that it, to­

gether with two earlier proposed estimators, gives a vector weighted average of 

the velocity field in the observation region. The estimator variance when 

finite time averaging is used is also calculated and 10 % uncertainty in prac­

tical measurements is achieved. There is no significant difference between the 

estimators. 
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1. INTRODUCTION 

1.1. Review of Ultrasound diagnostic methods. 

The use of ultrasound for transcutaneous medical diagnoses has been in­

vestigated for the past two decades. The methods used may be devided into two 

major groups 

i) Ultrasonic imaging 

ii) Ultrasonic blood velocity measurement. 

For imaging ultrasound has the great advantage over x-ray techniques in 

that images may be obtained of defects and tissue that is difficult or impos­

sible to obtain by x-rays. In addition the t.hreshold dosis for damage of tis­

sue is very much larger than what is necessary to obtain the image. Because 

of this ultrasound has become widely used in fields where x-rays has been con­

sidered too dangerous, such as diagnosis of the pregnant woman. 

The main advantage of using ultrasound in flowmetry is that measurements 

may be performed transcutaneously. In addition calibration is very simple and 

by a pulsed met.er velocity profiles may be obtained. For the last two reasons 

ultrasonic velocity meters have also been used interoperatively [63]. 

A. Ultrasonic imaging. 

The usual method for ultrasonic imaging is to transmit a short burst of 

ultrasound into the tissue. The sound is then reflected by changes of the 

acoustic parameters of· the tissue. The reflected signal is picked up by the 

same transducer as used for transmission, and amplified to get an appropriate 

signal level for processing. 

The simplest way to present the data is to trigger an ordinary y/time 

scopeby the transmitted burst. The intensity of the received signal may thus 

be displayed versus the time of arrival at the transducer. Let the x-axis 

time resolution be 6t ~sec/div. The conversion factor between the depth in 

the tissue and the screen divisions will be 

6tc 
2 

0.766·6t mm/div (1. 1) 

where c is the velocity of sound (~ 1530 m/s). This method of displaying 

the data is called A-scan. Figurel.la shows a typical A-scan of structures in 

the heart. 
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M-scan is another way of displaying the data which is analogous to the 

echosounder technique used in marine applications. A storage screen is used, 

and the ray is scanned fast vertically (typ. 13.3 ~s/div which gives 10 mm/div) 

and slowly horizontally (typ. seconds pr. frame) at the same time. 

The beam starts at the top of the frame at the transmission of each pulse, 

and is z-axis modulated by the intensity of the received signal. A reflector 

which has a fixed position then gives a horizontal line on the screen as the 

beam is moving horizontally. 

The distance of the line from the top of the screen gives the depth of the 

reflector by the conversion factor given in Eq. (1.1). If the depth of the 

reflector changes with time, the line will be curved, and the instantaneous 

depth may be read from the display. 

M-scan has its most potential area of application in the diagnoses of heart 

diseases. Figure l.lb shows a typical M-scan of the left ventricle. TheM­

scan technique can also be used to measure the diameter of the aorta for esti­

mating the volume flow of blood (see Section 7.3). 

In the B-scan technique the transducer is mechanically scanned across the 

skin. The position and direction of the transducer is measured by suitable 

mechanisms. The coordinates are transferred to the direction and location of 

a fast linear scan of the electron beam across a storage screen. This scan is 

analogous to the veritcal motion of the beam in the M-scan technique. By z­

axis modulating the beam by the intensity of the reflected signal, an image of 

the acoustic properties of the tissue may gradually be obtained by slowly scan­

ning the transducer across the skin. 

The B-scan technique can be used only with time stationary tissue because of 

the long time necessary to obtain a picture. Its area of application has been 

in the visualization of organs in the abdominal region, obsterics diagnoses 

and diagnoses of the pregnant woman. By synchronizing the display with the 

ECG signal, images of the heart in a fixed part of the cardiac cycle may be obtai­

ned by scanning over many cycles. This is called ultrasonic tomogram. 

The main disadvantage of B-scan is the long time required to obtain an 

image. This has led investigators to construct arrays of transducers so that 

the scanning may be performed electronically and thereby fast. Two major types 

of arrays have been constructed 

i) Multitransducer arrays 

ii) Phase controlled arrays. 
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FigUPe 1.1. a) Typical A-scan of echos from structures in the heart. 

b) M-scan display of echos from structures in the heart. 

The time variable depth of the structures may be observed. 
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In multitransducer arrays a single element or small group of elements of 

the array is used for transmission and reception in each period of time. By 

electronic switching, the active elements move along the array analogous to 

moving the transducer in the B-scan technique. Since the switching may be per­

formed fast, one is enabled to study moving targets. The major application of 

this technique has been in heart disease diagnoses [2], [3], [9], [10]. 

In phase controlled arrays techniques used in radar and sonar have been 

applied to medicine. By controlling the phase of each element the direction 

of energy transmission and sensitivity of reception may be controlled [8]. 

Thus a sector scan image of the tissue is obtained. The technique requires 

complex electronics and therefore several investigators try to simplify the sig­

nal processing by using ultrasonic surface wave delay lines [11]. 

A review of the most common used imaging techniques has been given by 

Wells [12]. 

The ultrasonic frequencies used for imaging are in the range of l-5 MHz, 

2 MHz beihg the most commonly used. The optimum frequency is determined by 

two factors, the absorption of the wave in the tissue and the resolution capa­

bility. To get low absorption a low frequency is favoured because the absorp­

tion increases with increasing frequency. To get a good resolution capability, 

a high frequency is favoured because the minimum pulse length is inversely pro­

portional to the frequency. 

The minimum pulse length is determined by the system bandwidth which is 

limited by the transducer. The resonance frequency of the transducer is deter­

mined by its thickness. Changing the transducer thickness, keeps the relative 

bandwidth constant, so that the absolute bandwidth increases proportional to 

the resonance frequency. 

B. Ultrasonic flowvelocity meters. 

Ultrasonic flowvelocity meters are essentially of two types 

i) Transit time meters 

ii) Dopplershift meters. 

In the first case, the difference in transit time between the upstream and 

downstream direction of an ultrasonic pulse, which crosses the vessel, is mea­

sured. This gives an estimate of the mean velocity of flow ir the traversed 

region. The meter has to be used invasively [13]. 
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Dopplermeters measure the dopplershift in frequency of ultrasound scattered 

by the concentration fluctuations of cells in blood. Of dopplermeters there 

are essentially three types 

i) Continuous wave meteres (CW) 

ii) Pulsed wave meters (PW) 

iii) Correlation meters. 

In the CW-meter [14], [17] a continuous ultrasonic beam is emitted towards 

the vessel by one transducer. The scattered ultrasound is received by another 

transducer and processed in an appropriate way. CW-velocity meters are commer­

cially available for the measurement of velocity in peripheral vessels. 

The pulsed wave meter [15], [16], [18] emits short pulses of ultrasound to­

wards the vessel. After the transmission period, the scattered signal is re­

ceived by the same transducer. Timegating of the received signals gives depth 

resolution. 

By multigating the received signal with short intervals to different chan­

nels a simultaneous observation of the velocity at different depths along the 

beam may be performed [16], [63]. This technique is suitable for measuring 

velocity profiles in pulsatile flow like in the arteries. 

To avoid range ambiguity, the reflected signal has to be received before 

the next pulse is transmitted. For observation of deep vessels a slow pulse 

rate must be used. On the other hand, to avoid velocity ambiguity, the scat­

terer cannot move more than a quarter of the ultrasonic wavelength in the direc­

tion towards or away from the transducer before it is hit by a pulse. There­

fore, to measure high veloci t.ies a high pulse repetition frequency should be 

used. These two opposing requirements can be met only when the following in­

equality holds 

(2. 7) 

v is the radial velocity component of the scatterer at distance R from the 

transducer. c is the velocity of ultrasound and f
0 

the frequency. A similar 

limit on the range velocity product to avoid ambiguity will always be present 

when a pulsed beam in some way is used. 

To increase the limit of this product, coded pulses with varying codes can 

be used [6]. Depth resolution may also be obained by emitting bandpass filte­

red noise continuously and performing correlation between the received signal 

and a delayed version of the transmitted signal [7]. By this method two trans-
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ucers have to be used for transmission and reception. If a sing1e transducer 

is used, the transmitted signal may be pulsed at a high rate to avoid velo-

city ambiguity. Range ambiguity is avoided by the correlation technique. Simi­

larily pseudorandom codes known from radar and sonar may be used [57]. In the 

special application with measurement of velocity at a fixed depth, the noise 

correlation system seems to be the simplest to realize electronically. 

Frequencies used for velocity measurements are in the range of 2-10 MHz. 

The scattering cross section of blood increases with increasing frequency in 

the fourth power (Chapter 4). Since the absorption increases with increasing 

frequency too, there is an optimum frequency for measuring velocity at a fixed 

depth [22]. This has led to a use of 5-10 MHz for peripheral arteries, while 

a lower frequency of 2-3 MHz has been used for the deeper arteries [21], [65], 

[66]. For the pulsed meter there is an additional requirement that the 

condition (2.7) on the range velocity product has to be met. This requires a 

low frequency of the ultrasound. 

By scanning the transducer mechanically or electronically [3], [4), velo­

city meters may be used to obtain images of the flow cross section. 

Besides being used for blood velocity meters, ultrasonic doppler instru­

ments are used for early detection of the motion of the fetal heart [19]. 

1.2. Aim and content of this work. 

The aim of this work was basicly to design an ultrasonic doppler apparatus 

capable of transcutaneously measuring the velocity of blood in deep arteries 

such as aorta. Out of this work grew the need for a better theoretical under­

standing of the ultrasonic scattering process in blood and how velocity could 

be calculated from the received signal. 

Transcutaneous measurement of aortic blood velocity has been reported by 

MacKay [65] and by Light& al [66] who both use a CW meter. The transducer is 

situated at the suprasternal notch as shown in Figure 1.2. 

Because of the inability of the CW-meter to resolve depth all the blood­

flow in the path of the beam is measured. There are several ramifications of 

aorta in this region, so it is not only the flow in the aorta which is measu­

red. 

Light claims to avoid this difficulty by spectrum analyzing the received 

signal. The branch arteries and veins in this region all have a large angle 
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Figure 1.2. Schematic illustration of the measurement of aortic blood velocity. 

The transducer is placed at the suprasternal notch and points to­

wards the aortic arc, The flow in aorta ascendence may be obser­

ved by holding the transducer in the C direction. Aortic blood 

flow is sometimes observable from the B route. 

of inclination to the beam. In addition the flow in some of them will be in the 

opposite direction to that in the aorta. Flow from this part therefore gives 

small frequency shifts or a frequency shift different in sign compared to that 

from the aortic arc, where the beam is almost tangential to the flow direction. 

Since there are good indications that the flow profile is almost rectangular, 

the contour of the spectrum should be an estimate of the mean aortic velocity. 

Although arguments can be given that this system works, the inability to 

resolve depth is a severe practical limitation. First of all a depth resolu­

tion enables the operator to control what region of flow he is actually measu­

ring. 

Second, all the false information is removed from the received signal. In 

this way a simple mean velocity estimator may be applied instead of the spect­

rum analysis. 

Thirdly, by focusing the beam, the velocity profile may be obtained by 

either scanning the focus across the vessel lumen or by multigating the re­

turn signal when the beam crosses the vessel [63]. 

We have chosen to build a pulsed wave velocity meter to obtain depth reso­

lution. To get a high limit of the range velocity product, as low a frequency 
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of the ultrasound as possible should be used, Eq. (2.7). Since the scattering 

cross section of blood is proportional to the frequency in the fourth power, 

the lower limit of the frequency is determined by requirements on the signal to 

noise ratio. 

Several frequencies were tried and 2 MHz seems to be the best chaise from 

several practical reasons. A S/N ratio of 20 dB is obtained in most cases, and 

S/N ratio of 30 dB has been observed. We use two pulse repetition frequencies, 

6.5 kHz and 9.75 kHz. The 9.75 kHz frequency gives a maximum measureable velo­

city of 1.7 m/s and a maximum range of 7.3 em. The 6.5 kHz frequency gives a 

maximum velocity of 1.1 m/s and a maximum range of 11 em. 

The only practical situation where the velocity limit has been violated is 

by aortic stenoses, where velocities up to 5 m/s has been measured. To observe 

such velocities a continuous wave instrument may be used since the high veloci­

ties exist only in the region of the stenosis. The location of the stenosis 

may be observed by the pulsed meter. 

Although the doppler velocity meter has been ivestigated for the past decade, 

little theoretical or experimental work has been done to study the scattering 

process, and thereby the functioning of velocity estimators based on the recei­

ved signal. The only experimental study of the scattering process to date seems 

to be that of Reid & al. [44]. 

Their conclusion that the red cells may be considered as stochastically 

independent scatterers in the concentration range of 7-40 % seems un­

likely, both from experiments we have performed and from physical reasoning 

based on the mean distance between the cells compared to their size. 

Flax& al.[48] was the first to take a step towards a theoretical description of 

the velocity meter, basing their assumptions on the work of Reid & al. Although 

their approach was very simple, they, using the results of Rice [20], showed 

some properties of the zero counting detector which proves to hold for the more 

detailed model of scattering presented in this work. 

A more detailed model of the scattering process is given by Brody [45]. He 

too bases his model on the assumption of stochastically independent scatterers 

set forth in the paper of Reid & al. He also considers timesteady velocity 

fields only. 

We felt that the assumption of independent scatterers was not valid, and we 

therefore undertook a study of the scattering process based on a model which 

takes the interaction between cells into account. Insdtead of calculating the 
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scattered field by the sum of the contribution from individual cells, we treat 

the scattering to be caused by fluctuations in the acoustic parameters of a conti­

nuum. This simplifies the calculations as long as the correlation length of 

the fluctuations are small compared to the wavelength. We are also able to 

handle nonstationary velocities, and the validity of estimators are shown for 

arbitrary timevarying velocity fields. The theory is given in Chapter 4 and 5. 

It turns out that the interaction between the cells introduces little prin­

cipal change of the results as long as the ultrasonic wavelength is large com­

pared to the correlation length for the fluctuations. The results of Flax and 

Brody are not severely degraded, except that the scattered intencity will de­

crease from the proportional dependency of the cell concentration, n
0

, when in­

teraction between the cells occur. 

Reliable calculations of the blood velocity from the received signal has 

been a problem since the earliest experiments of Satomura [14] and Franklin & 

al. [17]. The zero counting detector in various forms has been the most fre­

quently used estimator for the velocity. Early experimental evidence and the 

theoretical work of Flax & al has shown that this estimator has to be calibra-

ted after the velocity profile. 

Many workers therefore have felt that a full spectrum analysis was the best 

way to treat the information [21], [65], [66]. This, however, requires complex 

instrumentation and gives the user an overflow of data since in most applica­

tions it is only the mean velocity across the vessel lumen which is interesting. 

A spectral analysis, however, may reveal the type of flow, laminar, turbulent, 

etc. 

Until recently there has existed no satisfactory solution of this problem. 

In his Ph.D. thesis, Brody suggests an estimator that calculates the mean velo­

city in the region observed by the instrument. The estimator may be realized 

by analogue components. Independently Arts and Roevros [70] have proposed an 

estimator which is approximately equal to that given by Brody. From our theory 

of the ultrasonic scattering, we show tha·t these estimators give a vector weigh­

ted average of the velocity field across the region of observation, Chapter 5. 

The estimators of Brody and Arts and Roevros have the disadvantage that 

they use ordinary multiplcation and division. With commercially available com­

ponents it is difficult to obtain these functions with sufficient long time 

stability to an economical price. In our search for a better solution we 
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have developed an estimator which uses sgn-multiplication* instead of ordinary 

multiplication. By this, far bet~er long time stability is obtained. The neces­

sary trimming components are also fewer and the estimator proves to have a smal­

ler variance. The validity of the estimator is proved theoretically from our 

model of the scattering process. (See Section 5.2). 

The zero crossing detector has got its renesance with the invention of the 

pulsed wave meter. By timegating of the received signal and focusing the ultra­

sonic beam, the region of observation can be made so small that the velocity 

field is essentially constant within this region. In this case the spectrum of 

the received signal is so narrow that the zero counting detector works well. 

We do not consider this type of estimator here since we feel that the results 

given by Flax & al. are satisfactory. His assumption of the powerspectrum of 

the received signal follows from approximations of our theory. 

A schematic description of the functioning of dopplermeters are given in 

Chapter 2. This is done to form a basis for the understanding of the rest of 

this work. A more detailed description of our instrument is found in Chapter 7 

together with experimental studies on its functioning. In vitro measurements 

of the mean velocity of a steady and pulsatile flow, velocity profiles of stea­

dy flow and an experimental study and comparison between the Arts velocity esti­

mator and our new estimator are given. Some results of in vivo measurements of 

blood velocity in aorta are also given in this chapter. 

The aortic diameter is measured by the ordinary M-scan technique. By mea­

suring the mean velocity across the vessel with our instrument, the volume flow 

of blood may be estimated. One essential difficulty in doing this is that the 

angle of inclination between the ultrasonic beam and the flow direction is not 

known. This angle seems to be quite large for the ascending aorta. To avoid 

this difficulty Aaslid [23] has suggested to use a focused transducer to get 

a small observation region, and then scan this region across the arterial lumen. 

By suitable techniques the lumen area seen along the ultrasonic beam may be ob­

tained. Multiplicating this area with the component of the mean velocity mea­

sured (along the ultrasonic beam) the volume flow of blood is obtained, without 

knowing the angle of incidence between the beam and the flow direction. A 

mechanical sectorscanning system has therefore beer. built. There has not yet 

been time to use this system for cardiac output measurements, but an example 

of vessel-visualization is given in Chapter 7. 

* For def. of sgn multiplication see Section 5.2. 
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The functioning of the transducer is described in Chapter 3. We use ceramic 

transducer discs of a lead-zirconate-titanate composite, operating at reso-

nance in the thickness mode. The bandwidth of the transducers is limited and 

this sets a limit on the shortest pulse that may be transmitted and received. 

The length of the observation region along the ultrasonic beam is 

where c is the wave velocity and t the duration of the pulse. 
p 

ct /2, 
p 

To get a 

good longitudinal resolution of the system, a large bandwidth of the transdu­

cer is desired. This may be achieved by either backing the transducer with 

high acoustic impedance, absorbing backing or using acoustical matching layers 

to raise the acoustic load impedance seen from the transducer face. 

The first method introduces losses in the transducer which is a severe draw-

back in our application where the received signal power is low. We have there­

fore studied the effect of matching the transducer to the load both theoreti­

cally and experimentally (Section 3.4). A large increase in the transducer 

bandwidth is obtained without introducing losses in the transducer. 
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2. DOPPLER VELOCITY METERS 

To form a basis of the understanding of the rest of this work we give a 

schematic description of ultrasonic velocity meters. We start with the conti­

nuous wave meter and then describe the modifications for pulsed wave meters and 

correlation meters. More detailed descriptions of our instrument is given in 

Chapter 7. Signal to noise power ratios are compared for the instruments. 

2.1. Continuous wave meter (CW) [14], [17]. 

Measurement of blood velocity by a CW meter was first reported by Satomura [14] 

and has since then been investigated by numerous workers. A block diagram of 

the meter is shown in Figure 2.1. 

Figure 2.1. Schematic CW doppZermeter. 

The oscillator generates a continuous signal of single frequency f . This 
0 

signal is transmitted by the transducer T. The ultrasound is scattered from 

fluctuations in the concentration of cells. The scattered wave is picked up by 

the transducer R and passes through a receiving amplifier RA before it is 

analyzed. 

A typical transducer vessel configuration is shown in Figure 2.2. The acou­

stic beams when the transducers are excited separately are shown schematically. 

By reciprocity the pattern of sensitivity of the receiving transducer will be 

the same as the field pattern during emission (Section 4.3C). 

In most cases of application the vessel is in the nearfield of the trans­

ducers. For transducers that are small compared to the wavelength, the field 

in this part has a very complex dependency on space (Section 3.1). If, however, 
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the transducers are large compared to the wavelength, thenear field may be ap­

proximated by plane waves. 

Figure 2.2. Schematic representation of the vessel and trans­

ducers for transcutaneous blood velocity measure-
-+ -+ 

ment. nT and nR are the unit normal vectors 

to the transducer faces. 

The foldover between the transmitting and the receiving transducer field patterns 

determines the region of the artery that is observed. This region is shadowed 

in Figure 2.2. Asuming large transducers so that the plane wave approximation 
-+ 

may be performed, a scatterer which traverses this region with velocity v 

gives a burst of oscillations out of the receiving transducer with mean frequen-

cy (Section 5.1C) 

f = f
0

[1 - ~(cos a+ cos Sl] 
1-+-+ -+ 

f
0
[1-- v(n + n )] 

c T R 
(2. 1) 

c is the velocity of sound. 

This expression is actually valid only when v/c << l, which is true in 

our case where c ~ 1500 m/s and v ~ l m/s. Because of the finite transit 

time of the scatterer through the observation region, the received signal actu­

ally has a distribution of frequencies around f (see Section 5.1C). 



- 14 -

The doppler frequency fd is defined by 

f - f 
0 

fo -+ -+ ->-
-- v(n + n ) 

c T R 
( 2. 2) 

A scatterer moving towards gives a positive doppler frequency, while 

a scatterer with a velocity component along gives a negative doppler 

frequency. It is therefore convenient to define positive direction of Velocity 

towards 

For transducers that are not large compared to the wave length, the spec­

trum will be additionally broadened, while the mean frequency will be the same 

(see Section 5.1E). 

In the practical situation the received signal will be the sum 'from many 

scatterers. It will consist of the carrier frequency f
0 

which is reflected 

from stationary targets together with a sideband reflected from moving targets. 

To get better frequency resolution in the processing, the signal spectrum 

is shifted to lower frequencies by a synchronous demodulator. This is essen­

tially a multiplicator where the signal is multiplied with a reference signal 

of fixed frequency, f , and lowpass filtered to remove high frequency compo-
r 

nents. After the demodulation the spectrum of the signal is ?hifted an amount 

f downwards in frequency. 
r 

The earliest investigators used f ~ f for demodulation. In this way 
r 0 

the sign of the doppler frequency - and thereby the direction of flow - cannot 

be resolved, Figure 2.3a and 2.3b. For sign resolution two methods may be ap­

plied. 

The one is to use a signal with frequency 6f smaller than f 0 for demodula-

tion [63], [65], [66]. By this f
0 

will be shifted to 6f. A positive dopp-

lershift, fd, will give a frequency 6£ + fd while a negative, -fd, will give 

a frequency 6f- fd. Figure 2.3c and 2.3d shows the spectra before and after 

the demodulation in this case. 

The other way to resolve the sign of the doppl.ershift is to use the quadra­

ture components of the received signal as discussed in Chapter 5 [67]. 

In Figure 2.1 we have used the term dopplersignal for the demodulated sig-

nal. In the following we shall. use this term only when 

dopplersignal, e(t) 1 iS defined by the follOWing eqUatiOn 

e (t) 

f 
r 

The complex 

(2. 3) 
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Figure 2.3. Synchronous demodulation. 

a) Spectrum of received signal when all scatterers have 

velocities towards the transducers. 

b) Demodulated spectrum by multiplication with signal of 

frequency £
0

. 

c) Spectrum of the received signal when both signs of 

dopplershift are present. 

d) Resolution of the sign of the dopplershift by multi­

plication with a signal of frequency £
0 

- ~f. 

f 

f 

f 

f 

The high peak of the spectrum near £0 indicates the strong 

reflected signal from slowly moving targets such as 

vessel walls. 
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where e(t) is the narrowband received signal and w
0 

the angular frequency 

of the transmitted signal. 

2.2. Pulsed wave meter (PW). [15],[18]. 

Both a single transducer and double transducers may be used for the PW 

doppler meter. A diagram of the meter with a single transducer is shown in 

Figure 2.4. 

Sl 

Figure 2.4. Pulsed wave doppler meter. 

Coherent pulses of rf frequency, f
0

, oscillations are generated by the 

pulse generator which is driven by a rf oscillator at frequency f
0 

to main­

tain coherence. The pulses are transmitted by the transducer which is driven 

by the transmission amplifier, TA. During the transmission period the trans­

ducer is connected to TA by the switch Sl. After the pulse transmission the 

transducer is connected to the receiving amplifier RA. The first lowpassfil­

ter is used to remove the high frequency components generated in the multipli­

cation. The filter must have so large bandwidth that the pulses may pass with­

out distortion. 

The signal is thus demodulated. A switch, S2, closes for a very short in­

terval of time (~ 1 ~s) a varyable delay after the pulse transmission. By this 

the signal reflected from the depth corresponding to the time delay is singled 

out. The conversion between delay, T, and target depth, f, is given by the 

following equation 



C•T 
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where c is the velocity of sound (~ 1530 m/s). 

(2.4) 

To maintain signal level a holding circuit is used. A lowpassfilter remo­

ves the high frequency components introduced in the sampling. 

The signals for the PW-meter are shown in Figure 2.5. The numerical values 

are typical for a meter with £
0 

= 2 MHz. 

Transmitted coherent rf- pulses 

~ 
=lOp.s 

tr = 150 p.s 

Received rf-signal from one scatterer 

Demodulated signal 

--------------~~-----------------~r--\~--------------

Control signal for sample gate 

,~ T 

Signal after S&H 

Figure 2.5. Signals in the pulsed flowmeter. The bandwidth 

of the system determines the risetime of the pulses. 
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The dopplersignal is sampled at the pulse repetition frequency. According 

to the Shannon sampling theorem the pulse repetition frequency has to be twice 

the maximum occuring doppler frequency. Or in other words, to avoid ambiguity 

in the received phase,the scatterer cannot move more than A/4 in the direction 
-+ + 

of nT + nR without being hit by a signal. If the offset frequency method is 

used to resolve the sign of the dopplersignal, the repetition frequency has to 

be twice that of the demodulated signal. The quadrature method (Chapter 5) to 

resolve the sign of the shift, is therefore the most optimum method concerning 

sampling rate. 

If the sampling is performed before the next pulse is transmitted, range 

ambiguity is avoided because of the absorption of the wave in the tissue. For 

a given repetition frequency there is a limit on the measureable range, R. 

c 
R < 2f 

r 
( 2. 5) 

From above there is a limit of the maximum measurable velocity component along 
-+ -+ 

(nT + nR) 

v < f ·-c­
r 4f

0 
( 2. 6) 

Combining these two expressions we get the limit of the range velocity pro­

duct 

v·R < (2.7) 

The closing time of the gate is very short compared to the length of the 

transmi tt.ed pulse. The region of scatteres which are observed is therefore 

determined by the length of the pulse. The location of the observation region 

will be between cT/2 and c (T-t ) /2 
p 

in front of the transducer, for a single 

transducer (Figure 2.6a). For double transducers the location will be as shown 

in Figure 2.6b. 

Real observation regions will not have sharp boundaries as indicated in the 

figure. First of all the intensity of the transmitted beam and the sensitivity 

of the receiving transducer will have a smooth oscillatory decay at the boun­

daries. Second the system has finite bandwidth so· that the pulses have rise 

and fall times different from zero. The signal from a scatterer will there-

fore increase smoothly as the scatterer enters the observation region, (see 

Section 3.5). A theoretical and experimental study of the form and weight func­

tion of the observation region is given in [25], [26] for two focused transducers. 
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Figure 2.6. Idealized observation region for PW-meter. 

a) single transducer~ and 

b) double transducers. 

-+ -+ 
The length of the observation region along (nT + nR) is determined by the 

pulse length. As discussed at the end of Chapter l, the minimum pulse length 

is proportional to the inverse bandwidth 6f. Taking the constant of propor­

tionality to be unity, the minimum longitudinal resolution length along 
-+ -+ 

(nT + nR) is given by 

c 1 c 
26£ = 26f/f

0 
£

0 
(2. 8) 

The transversal resolution capability is determined by the beamwidth. The 

minimum focus diameter which may be obtained at a distance l from a circular 

transducer of diameter d is [74] 

d (2. 9) 

where A is the ultrasonic wavelength. This equation defines the diameter of 
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the focus by the first zero of the intensity. Actually a diameter where the 

amplitude of the field has fallen to 10 dB of the axial value would be a better 

definition. At this point the sensitivity of the system to a scatterer will be 

20 dB below that at the transducer axis. By this definition 2.22 should be ex­

changed by 1.72 in the above equation. The minimum resolution length transver­

sal to the beam direction at a distance f from the transducer will then be 

c f 1. 72-.­
f

0 
d 

where we have inserted A = c/f
0

. 

(2 .10) 

To get a small region of observation, a large, focused transducer with large 

bandwidth should be used. We also see that the minimum resolution length is in­

versely proportional to the frequency f
0

. Practical values for aortic flow 

velocity measurement from the suprasternal notch are 

d = 20 mm, f = 70 mm, f
0 

2 MHZ, /1f 150 kHz, c = 1500 m/s 

This gives 

5 mm 4.5 mm (2.12) 

2.3. The correlation doppler meter [5], [7]. 

For comparison we describe the correlation doppler meter. A diagram is 

shown in Figure 2.7. The source generates a continuous band limited random 

noise centered around the transducer resonance frequency. Pseudorandom coded 

signals may also be used. In this case the code has to be so long that range­

ambiguity is avoided or coded pulses have to be used. 

The received signal is after an amplification fed to a correlator which 

produces the crosscorrelation between the received signal and a delayed version 

of the transmitted signal. 

The output of the correlator from a stationary target is given in Figure 

2.8 for a Lorenzian shape of the noise spectrum. The signal delay time is T ' s 
while the instrument delay time is Td. When the scatterer is moV.ing, Ts 

changes and the output of the correlator will oscillate with the doppler fre­

quency. A moving target will therefore give a burst of oscillations at the 

doppler frequency when T passes 
s 

the scatterer along the direction of 

Td. T is determined by the position of 
-+ s-+ 
nT + nR. 
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Doppler signal 

Figure 2.7. Correlation system for ultrasonic doppler 

measurements. 
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Figure 2.8. Transmitted noise spectrum a)~ and output of the 

correlator from a stationary target b) [?]. 
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-+ -+ 
The longitudinal resolution of the instrument along nT + nR is the same 

as for the pulsed doppler meter with minimum pulse length. 

c 
26f 

(2.12) 

If a single transducer operation is desired, the beam may be pulsed. The pulse 

repetition rate has to be so high that it meets the criterion of the Shannon 

sampling theorem at the maximum doppler frequency present. Range ambiguity is 

avoided by the correlation process. 

2.4. Signal to noise ratio (S/N). 

In doppler measurements there are three types of disturbances or noise: 

a) Echos from targets outside the observation region caused by mul­

tiple path beams. 

b) Echos from targets other than blood in the observation region. 

c) Electronically generated noise. 

Type a) and b) noise is proportional to the transmitted power as long as 

linear elasticity is prevailed. Fortunately the strongest signal of 

this type is reflected from slowly moving targets which gives small doppler­

shifts. They may therefore be removed by suitable highpass filtering of the 

doppler signal. 

Since the doppler frequency is proportional to the utilized rf frequency, 

the cut off frequency of the highpass filter will also be proportional to the 

rf frequency used. Moreover the cut off frequency will depend upon the the 

state of activity of the person being examined, and in what part of the body 

the artery is located. In peripheral arteries the motion of artery walls and 

tissue around the artery is slower than near the heart, and a lower cut off 

frequency may therefore be used forperipheral arteries. In our case with 

aortic velocity measurement and f
0 

= 2 MHz, filters in the range of 300 -

1200 Hz are used depending on the level of activity of the subject. 

Since the lowest dopplershifts from the blood are also removed by this 

higpass filter, a systematic error is introduced in the measurement. This 

error will depend on the flow profile and the mean velocity. A further dis­

cussion of this error is given in Section 5.2E. 
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Electronically generated noise will mainly originate from the source recei­

ving transducer and from the first stage in the receiving preamplifier. For the 

CW meter the noise bandwidth is given by the bandwidth of the last filter in 

the system. 

In the PW meter the bandwidth of the preamplifier should be only slightly 

larger than that for the transducer for no degradation of the pulse risetimes 

with a minimum of noise addition. When the multiplication reference frequency 

equals f
0

, the bandwidth of the first filter should be half that of the pre­

amplifier. 

Let the noise power density out of the preamplifier (with transducer at the 

input) be N
0 

per unit frequency. If the amplifier bandwidth is ~f, the to­

tal noise power is 2N0~f. This will also be the total noise power out of the 

video amplifier. Because of the sampling, the spectrum is shifted upwards 

and downwards in frequency by multiples of the sampling frequency f . 
s 

In Figure 2.9 the noise spectrum out of the video filter is indicated sche­

matically. The bandwidth of the sampling filter is set to B. By the sampling, 

the total noise power out of the sampling filter will be the sum of the power 

contained in the shaded areas. 

Noise power density 

I 

/ 

/ 

0 

2B 

~~~------· ) ______________________________ __ 
l ~f 

.. , 

Figure 2.9. Schematic noise spectrum out of the demodulator 

filter. B is the bandwidth of the sample filter. 

f 
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The noisepower in the dopplersignal will thus be (neglecting some small boundary 

errors that may arise because f..f :1: 2 (nf + B)) 
r 

New 2NO · 2B CW meter 

NPW 
2N . 2B 

0 f 
f..f PW-meter 

r 

(2.13) 

The received signal power, S, will in both cases be proportional to the peak 

transmitted power 

s a•P 
peak 

ew- and PW-meter (2.14) 

For the ew-meter this is trivial. For the PW-meter this is given by the S&H cir­

cuit. If the minimum pulselength for the PW-meter is used, we have 

t 
p 

l 
f..f 

In this case the average transmitted power will be 

f 
p p r 

PW-meter ·-avg peak f..f 

p p 
peak 

ew-meter 
avg 

'I'he signal to noise power ratios will be in the two cases 

8
PW 

a•f..f/f P 
_a_P r avg 

PW-meter 
NPW 2B No2B avg N •- f..f 

0 f 
r 

8
ew _a_P ew-meter 

New N
0

2B avg 

(2.15) 

( 2. 16) 

(2.17) 

When the minimum pulselength, Eq. (2.15), of the PW-meter is used it has the 

same S/N ratio as the ew-meter when the avereage transmitted power is the same. 

If this minimum pulselength is not used, the PW-meter will have a poorer 

S/N-ratio than the ew-meter for the same average transmitted power. Thus, to 

get a good S/N-ratio for the PW-meter with a minimum average transmitted power, the 

minimum pulselength should be used. By this a high peak power may be trans-

mitted and thereby a large received signal power. The maximum peak power must, 

however, be kept below the threshold value for damage of tissue. There is no 
-2 

sharp definition of this value but a peak power less than l Wcm and a conti-
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-2 
nuous power less than 0.1 Wcm are usually considered safe for adult tissue 

[24]. If the peak power is limited by the damage level the S/N-ratio will de­

crease as the longitudinal resolution capability is increased. 

For aortic flow-velocity measurement a logitudinal resolution of 5 mm and 

sometimes 10 mm is satifactory. From Eq. (2.8) this requires a bandwidth of 

150 kHz and 75 kHz respectively of the transducers and the preamplifier. 

No quantitative comparison between the S/N-ratio of the correlation meter 

and the CW- and PW-meters will be given in this work. The three types of noise 

described at the beginning of this paragraph will also occur for the correlation 

meter. The correlation meter has, however, the advantage over the PW-meter in 

that it is only the multipath echoes which have a signal delay in the tissue 

equal to Td that is observed. For the PW-meter all the multipath echoes that 

arrive at the sampling point disturb the measurement. 

The only way to suppress the two first types of noise is to use a highpass 

filter as for the cw- and PW-meter. The electronic noise power is determined 

by the bandwidth of the correlator filter. This bandwidth is determined by the 

maximum doppler frequency present. 

The types of noise described above will also occur for ·che correlation 

meter. Also the finite integration time of the correlator will introduce ad­

ditional noise, because echos from targets outside the observation region are 

not fully averaged to zero. Since the echos from tissue are 40-70 dB stronger 

than those from blood, this type of noise is a drawback of the meter. 

By focusing the beam, the intensity of the transmitted field and the sensi­

tivity of the receiving transducer may be increased in the observation region. 

However, the region where the scattered signal is observed also becomes smaller. 

Hence the total received power is constant when focusing of the transduser is 

performed. Focusing will therefore not give an increase in the S/N ratio of the 

system as long as the original observation region is inside the artery. 

When the observation region without focusing is not fully inside the artery, 

however, an increase in the S/N-ratio may be obtained by focusing (so that the 

observation region is kept fully within the artery). 
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2.5. Summary. 

The basic priciples of the CW-, PW- and correlation meters have been descri­

bed. The CW-meter gives no range resolution. Range resolution may be obtained 

by the PW-meter while a limit on the maximum measurable velocity occurs. With 

a correlation meter range resolution may be obtained with no limit of the maxi­

mum measurable velocity. The range resolution capability of the PW- and corre­

lation meter is the same for equal transducer bandwidths. 

The signal to noise power ratio for the CW- and PW-meters has been compared. 

For equal average transmitted power the CW- and PW-meter have the same minimum 

S/N ratio. Since the peak transmitted power is limited to avoid damage of tis­

sue, there exists a minimum pulselength, and thereby a limited resolution capa­

bility of the PW-meter if the S/N-ratio is to be kept at the same level as for 

the CW-meter. 
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3. TRANSDUCER - THEORY AND EXPERIMENT 

For transducers we use ceramic ferroelectric discs of a sintered lead­

zirconate-titanate composition. They are operated in the thickness resonance 

mode. A survey of piezo and ferroelectric transducer materials is given in 

[27]. The most practical material for our purpose is the type PZT-SA and 

PZT-SH. (Trade mark from Brush & Clevite). They have suitable impedances so 

that matching may easily be performed. PZT-SA has the highest Curie point and 

thereby the best temperature stability. 

For single transducers we use a circular disc, for double transducers a 

circular disc divided in two halves. Typical diameters are in the range of 

15-24 mm. For resonance at 2 MHz the thickness is 1 mm. 

The focusing capabilty of lenses and spherical transducer elements has been 

studied by Schlieren techniques. 

To increase the bandwidth of the transducer, double layer acoustical impe­

dance matching has been studied theoretically and experimentally. A large in­

crease in bandwidth and a subsequently decrease in pulse rise time is obtained 

without introducing insertion losses in the transducer. 

3.1. Radiation field. Focusing. 

The field pattern from a radiator is usually divided into two parts, the 

nearfield and the farfield regions. There is no sharp definition of the boun­

dary between these regions. They are characterized by that in the farfield 

region the extent of the radiator may be neglected when the field is calcula­

ted, while this cannot be done in the nearfield region. This implies that the 

emitted wave in the farfield region will be spherical with amplitude depending 

on the direction. The beam from the radiator will diverge by an angle, 8, de­

termined by its aperture 

sin 8 = 1.11 ~ (3.1) 

where 8 is defined in Figure 3.1. A is the ultrasonic wavelength and d is 

the transducer diameter. 

The calculation of the nearfield is very complex and may only be performed 

numerically. A numerical calculation based on exact equations is also diffi­

cult because of the finite extent of the transducer disc. At the boundary of 

the disc the element is surrounded by a material with lower modulus of elasti-
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Figure 3.1. Indication of the near- and farfield regions of the 

transducer fieldpattern. 

city. Thus the oscillations of the transducer surface will have larger amp­

litude at the boundary of the disc than in the middle. The motion will also 

deviate from being normal to the surface at the boundary. 

A numerical calculation of the nearfield is given by Zemanek [29]. He has 

approximated the transducer by a piston vibrating with a uniform amplitude 

across the surface. A typical example of the result is given in Figure 3.2. 

At 2 MHz A equals 0.75 mm. The results given i.n Figure 3.2 therefore 

corresponds to a disc diameter of 7.5 mm. Our transducer has a diameter of 

more than twice this value. The pressure islands will therefore be smaller 

and more numerous. In Figure 3.3a comparison between different transducer dia­

meters is given. 

These results show that a narrowing of the beam occours at a distance of 
2 

0.8 - 0.9 a /A. This value seems to be almost independent of a. The radius 

of the beam where the intencity has fallen 6 dB is only 0.4 a. For a 2 MHz 

transducer of 20 mm diameter this corresponds to a distance of ll em. The 

diameter of the beam will be 8 mm. 

Thus a selffocusing of the beam appears outside the nearfield region. 

After this point the beam diverges accoring to Eq. (3.1). The limit between 

the near- and farfield region may therefore be taken to 
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Figure .3. 2. a) Detailed sound-pressure contours for circular uniform 

vibrating piston. 

b) Magnitude of on-axis pressure variations. The results 

are given for a/\= 5.0~ where a is the disc radius and 

\ the wavelength [29]. 

2 
z = 0.8 a j\ (3. 2) 

I 
I 

Schlieren studies of the transducer-field have not revealed this self-focus-

ing. There may be two reasons for this. The one is that the resolvability of 

the Schlieren method is too crude to detect a decrease of 6 dB in wave ampli­

tude. The other is that the self-focusing is not so large as indicated by the 

calculations. This would mean that the piston approximation of the transducer 

vibration is too crude. 

In most applications the vessel will be in the nearfield of the transducers. 

The complicated field in this region will therefore affect the velocity measure­

ment. As we shall see in Chapter 5, the measurement is affected in two ways. 

The one originates from the variations in the field amplitude which makes the 
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Figure 3.3. Comparison of computed -3 and -6 dB sound pressure contours 

for a/A= 2.?8~ 5.62~ 10 and 20. For 2 MHz transducers 

this corresponds to diameters of 4.2 mm~ 8.4 mm~ 15 mm~ 

and 2!0 mm [ 29]. 

instrument. sensitivity space dependent. The other originates from the complex 

variation of the phase of the field with position. By this different components 

of the velocity is measured at different points of space. 

The most ideal field pattern should be a plane wave. This requires that the 

transducer is much larger than the wavelength and that the point of calculation 

is not too far from the transducer face and axis. For aortic blood velocity 

measurement from the suprasternal notch, the maximum practical transducer dia­

meter is ~20 mm, whereas the aortic depth is 70 mm. Therefore the planewave 

case cannot be obtained. 

Focusing may be obtained by a transducer curved as a spherical shell, or by 

a lens in front of a plane transducer. The latter method introduces some re­

flection losses if antireflex treatment of the lens is not performed. In addi­

tion lossless lens meterial is difficult to obtain. 

Figure 3.4 illustrates the two methods of focusing. For the first method 

the focal length is given by the radius of curvature of the transducer. In the 

second method the focal length, f, is given by geometrical optics to 
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Figure 3.4. Focusing with a transducer formed as a spherical 

shell a) and using a planeconcave plastic lens b). 

f 
r 

(3.3) 

where c 
t 

is the wave velocity of the tissue, and cf is the wave velocity of 

the lens material. r is the radius of curvature for the lens surface. Since 

it is difficult to obtain cf < ct, r has to be negative, which means that 

the lens surface has to be concave. 

The minimum focal diameter, df, is determined by the diffraction of the 

beam. From wave optics [74] the first zero of the intensity gives the value 

(Section 2.2). 

(2.9) 

Lens errors increase the practical focal diameter from this lower theoretical 

limit. If a biconcave lens is used, a larger radius of curvature of the lens 

surface is obtained. For narrow focal lengths this may decrease the lens error. 

The longitudinal extent, ff, of the focus is given by 
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(3.5) 

Figure 3.5 shows a Schlieren foto of the field pattern from a curved transducer¥ 

f = 6 em, and a plane transducer with a planeconcave lens, calculated f = 6 em. 

In both cases a diameter of the main lobe at a distance of 6 em from the trans-

ducer is 

5.3 mm (3.6) 

The theoretical value is 

df = 5 mm (3.7) 

For the lens the diameter of the main lobe seems to be smaller at 5 em distance 

from the lens than at the focus. In addition there are more sidelobes for the 

lens than for curved transducer. The intensity ratio between the first side 

lobe and the main lobe is -9 dB for the lens and -13 dB for the curved trans­

ducer. This is larger than the theoretical value which is -17.5 dB [74]. 

a 

b 

6cm 

Figure 3.5. Schlieren study of fieldpattern of focused transducers. 

a) Plane transducer with Zen~ calculated f = 6 em. 

b) Curved transducer with radius 6 em. 
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3.2. Equivalent circuit of the transducer. Electrical matching. 

The transducer may approximately be considered as a threeport device. One 

port is the electrical connections while the two others are the faces which 

interchanges acoustical power with the tissue and the backing. An equivalent 

circuit of a lossless transducerdisc is given in Figure 3.6 [28], [30]. The 

circuit is obtained under the approximation that the transducer faces vibrate 

with uniform amplitude. 

j~tan~ 

·~ _, s1na 

F2 
- _1_ 

h2
Co Fl 

[[.,tv 
Face2 Face1 

Figure 3.6. Lumped parameter complete equivalent circuit for 

a thickness mode transducer disc. 

The voltage at the electrical port, V, is transformed to a force in the 

ideal transformer. The "voltages" and "currents" at the two acoustical ports 

are the forces and the velocity of vibration of the two transducerfaces. The 

parameteres in the figure are defined below. 

t Transducer thickness. 

A Transducer area. 

h Field developed/applied mechanical strain at constant charge of electro­

des - in direction normal to the faces. 
s 

E : Absolute dielectric constant at constant strain - in direction normal to 

the faces. 
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D 
vi : Velocity of longitudinal wave at constant charge of the electrodes -

in direction normal to the faces. 

p Density of the transducer material. 

c
0 

A€
8
/t: Clamped capacitance of the transducer. 

~ = hC
0

: The ideal transformer voltage ratio. 

D £
0 

= vi /2t: The open circuit resonance frequency. 

ajn = f/f : Fractional frequency deviation. 
0 

Z' 
X 

D 
Apvi : Characteristic mechanical impedance of the transducer material 

Typical values of these parameteres are given in Table 3.1. 

PROPERTIES OF FERROELECTRIC COMPOSITIONS 

Material 

Physical constantS 
95 percent BaTiOa 
5 percent CaTiOa PZT-4 PZT-5A PZT-5H PZT-7A 

•aaT I eo (free) 1200 1300 1700 3400 425 

eu8 I Eo (clamped) 910 635 830 1470 235 

hu (108 v lm) 16.7 26.8 21.5 18.0 46.6 

eaa (Cim2
) 13.5 15.1 15.8 23.3 9.7 

v,D (mls) 5630 4600 4350 4560 4830 

CuD (10'o Nlm') 17.7 15.9 14.7 15.7 17.6 

p (10 3 kglm 8) 5.55 7.5 7.75 7.5 7.6 

k, 0.384 0.513 0.486 0.505 0.49 

Z = pv 1D (108 kg/s m') 31.2 34.5 33.7 34.2 35.7 

Table 3.1 from [28]. 

Characteristic impedances and impedances pr. unit areas is denoted by unpri­

med letters in the following. The impedances used in the equivalent circuits 

are the unprimed values multiplied by the area of the transducer and are deno­

ted with a prime. 

Since we are only interested in the interaction between the front face and the 

electrical termination of the transducer, we reduce the circuit of Figure 3.6 

to a two-port given in Figure 3.7 [28]. 

TWo resonance frequencies of the transducers are often given as data. The 

one is the short circuit resonance frequency, f 0, and the other is the open cir­

cuit resonance frequency, f
0

. These may suitably be discussed with reference to 

Figure 3.7b. 
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1 : q, i z~ tan°f2 

i z~ tan a;2 

FL 
z' b 

Equivalent to 
eJ 

-~ 
1: 2cp 

4cp2 

II 
-i2Z~ cot 012 2Z 1 

b -zb 

i2Z~ tanOJ2 

v Co FL 
2Z1 

b 

Electrical gJ termination 

Figure 3.?. Equivalent twoport circuits for the transducer. 

V is the input/output voltage and F is the 

force on the transducer face. zb is the impe­

dance at the back face [28]. 

The equivalent circuit consists of a parallel tuned circuit 

0--
I 

I 

r1 
I I zl I I 

LJ 
l 

I 
I 

o- J 

o- -, 
I 

,~ 

'' Z' 1 I l 
I I .,. 

o- _I 

Front 
face 

f
0

, and a series tuned circuit 2Zb - i2Z~ tan a/2, which is at resonance at 
2 2 

2Zb - i (2Z~ cot a/2 - 2~ /nfc
0 

) . If the load and backing impedances are ap-

proximately equal the branch will short circuit the parallel resonance 

circuit. When the electrical port is open, the clamped capacitance c
0 

and the 

negative capacitance -c02 ;4~
2 

will cancel and the transducer will resonance at 

a frequency which gives cot a/2 = 0, i.e. £
0 

or its odd harmonics. The 

transducer thickness at this resonance is odd harmonics of the half wavelength, 
D 

A/2 = vf /2£0 . 

When the electrical port is short circuit, the resonance frequency is deter­

mined by that of the series resonance branch. The resonance frequency of this 

branch is therefore equal to the short circuit resonance frequency, f 0, when 

z~ zb. 
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When the transducer is driven by a low impedance source, maximum power out-­

put occurs at f 0. For a receiving transducer this frequency also gives the 

minimum internal source resistance. f 0 may be expressed by f
0 

[28] 

f' f (1 - 4CM)~ 
0 0 CE 

(3. 8) 

1 

The higher resonance frequencies in the short circuit case will not be har­

monics of f 0 because of the negative capacitance. This is easily seen by con­

sidering the resonance frequencies of the series branch. 

For ceramics the value of the negative capacitance is so high that f
0 

and 

f 0 differs by ca. 10 %. For quartz this difference is negligible. 

When Z' and z' differs and one of them becomes large, both the series 
b L 

and the parallel tuned circuit will affect the short circuit resonance. The 

resonance frequency is shifted towards lower values and becomes asymetric. 

When Z' = oo, the open circuit resonance frequency will be 
b 

transducer thickness is A/4. 

When the back impedance is zero or infinite, the two-port will be lossless. 

Approximately zero backing impedance may be obtained by mounting the trans­

ducer on a ring so that the main backing area is in contact with air only. In­

finite impedance may be obtained by backing with a quarterwave layer which is 

terminated into air. This wil~however, give a frequency dependent backing and 

in addition careful machining of the matching layer is necessary to obtain the 

right thickness. 

The following impedance theorem for lossless twoports is illustrating. 

I0redance matching theorem. 

Suppose that a load impedance, z2_, is connected to the second port of a 

ZossZess twoport circuit. The input impedance_, z1, at port no. 1 is measured. 

If port one is terminated by Z] the input impedance (Z 2 disconnected) at 

port two is z~. 

The proof of the theorem is straight forward from the T- or TI-equivalent 

of the twoport. 
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'ro apply this theorem to our case the transducer (Zb = 0 or 00 ) is loaded 

by the tissue and the input impedance z
1 

is measured. By electrical matching 

the receiver input impedance is made equal to zr. This makes the mechanical 

impedance of the transducer seen from the tissue, equal to the characteristic 

impedance of the tissue, which is real, and no acoustical reflection at the 

transducer face occurs. 

This result is obtained with no regard to the material parameters of the 

transducer. If the electromechanical coupling is low, z
1 

will have a large 

phaseangle and a lossless matching network is difficult to achieve. Therefore 

the ceramic materials are the most suitable for our application. 

When losses in the transducer, either internal or in the backing material 

occurs, this procedure will still give the right receiver impedance for maximum 

power transfer from acoustical to electrical energy. (Thevenins theorem) . At 

this value of the receiver impedance, however, there will be acoustical reflec­

tion at the transducer face. 

In our application it is the S/N-ratio which should be maximized and not 

the power transfer capabilities of the receiving transducer. For this reason 

a matching network is inserted between the transducer and the receiver so as 

to get the optimum source resistance for the preamplifier. The input impedance 

of the network seen from the transducer will then deviate from the values for 

maximum power transfer. 

3.3. Transducer bandwidth. Acoustical impedance matching. 

The relative half power bandwidth of a voltage driven transmitting trans­

ducer is given by [30]. 

(3. 9) 

as long as it is small. and are the back and load impedances of the 

transducer. For an airbacked 2 MHz transducer loaded with tissue on face l we 

have 

6 2 
1.5·10 kg/sm zb 0 z 

X 

6 2 
33.7·10 kg/sm 

6f = 60 kHz (3.10) 

Internal losses increase this bandwidth to 100 kHz. As discussed for the PW-

meter this bandwidth is sufficient to obtain a longitudinal resolution between 

5 and 10 mm. 
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To obtain a larger bandwidth a heavier loading of the transducer faces is 

necessary. There is two methods available for this. 

The one is to use a high impedance absorbing backing material. This method 

introduces losses at the low signal level during reception which is a severe 

drawback in our application, where a low S/N-ratio is a problem. 

The other method is to raise the load impedance at the front or back face 

by impedance matching layers. At the backface the matching layer is terminated 

into air to minimize power losses. If a matching on the front face only is 

used, the transducer is airbacked. 

Kossoff [28] has considered the effect on the frequency responce of trans­

ducers by matching with quarterwave transformers to raise the face impedances. 

To obatin the desired characteristic impedance of the matching layer a mixture 

of metal powder, such as tungsten or aluminium, in araldite is used. 

A large increase in bandwidth may be obtained by this method. However, it 

turns out that the risetime of pulses in wave phenomena is not uniquely deter­

mined by the bandwidth around the lowest resonance frequency. In a layered 

structure such as the transducer, there will exist an infinite number of reso-

nance frequencies which tends towards infinity in magnitude. Therefore higher 

resonance bands should be taken into account, when calculating the pulse rise­

time from the frequency response. Because of the internal loss mechanisms in 

the transducer material the higher resonance frequencies are damped. It is 

therefore sufficient to consider a few of the lowest bands. 

The significance of this phenomenon in thespace-timedomain is that several 

reflections from the faces in the structure has to occur before a steady state 

is obtained. Kossoff thus found that the risetime was first increased by in­

creasing the bandwidth. The increase then fell off and for heavy matchings, 

the risetime was essentially independent of the bandwidth around the lowest 

resonance frequency. 

The quarterwave matching has the disadvantage that it is difficult to fore­

tell the impedance of the tungsten araldite mixture. Gradients in the powder­

concentration may evolve during the solidification process. We therefore under­

took a study of matching the transducer by two layers. By this method stan­

dard materials may be used for the layers and inaccuracy in the material parame­

ters are therefor much smaller. A drawback with the double layer matching is 

that careful machining has to be performed on two layers instead of the one 

for the quarterwave matching. 
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3.4. Calculation of acoustical double layer impedance matching. 

A. General. 

Figure 3.8 schematically shows the structure of the transducer with two 

matching layers on the front face. 

Backing Transd. l.layer 2.1ayer Load 

Figure 3.8. Layered structure for double layer matching of 

the transducer to the load. The transducer is 

backed with a material of characteristic impe­

dance z
8

. 

From the impedance transformation formula for a transmission line, we may 

calculate the impedance seen from any cut to the left or to the right in the 

structure [30]. The impedance seen to the left from the interface between 

layer one and two is 

z + iz
2
tan C/,2 L 

z12 z2 
z2 + iZLtan C/,2 

C/,2 2nf/A2 

The impedance seen from the left transducer face towards the load is 

z
12 

+ iz
1
tan a

1 
zl z

1 
+ iz

12
tan a

1 

(3.11) 

(3.12) 

If a fixed real impedance zxl is wanted for a fixed frequency, the wave angle 

and must obey the foll\)wing equalities 
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These requirements may be met only when the expression for 

(3 .13) 

(3.14) 

is positive. 

A solution of the matching problem therefore exists only when the pair (z
1

,z
2

) 

belongs to a subset of the first quadrant of the plane, as indicated in Figure 

3.9. 

~ 
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Figure 3. 9. Regions in the Z 1-z 2 plane 1vhere a daub le layer 

matching is obtainable a) ZL < Zxl which is 

our case. b) ZL > zx1• 

tanar·O 
tano

2
-oo 

z.l 

Because of the periodicity of tan a we may add an integer number of half 

wavelengths to the layer thickness. The sensitivity of the matching to frequency 

will, however, increase when half wavelengths are added in the layer thickness. 

In addition the layer thickness should be as small as possible for a good agree­

ment between the transducer bandwidth and the pulse rise time. 

Both the positive and negative root of gives a solution of the 



matching problem. 

0 < f . < :\ . I 4 . For 
- l l 

- 41 -

For tana. > 0 we have 
l-

tan a. < 0 we have TI/2 
l-

0 < a. < TI/2 which gives 
l 

< a < 'IT which gives 
i -

:\./4 < t. < :\./2. 
l l - l 

In regions I and II tan a
1 

and tana
2 

will have opposite 

signs while in regions II and IV they have the same sign. The possibilities 

of the fundamental thicknesses of the matching layers are therefore 

Region: I II III IV 

tan a
1 

> 0 
t

1 
< :\

1
/4 f 1 < :\/4 ! 1 < :\/4 t

1 
< :\/4 

:\/4 < t 2 < :\/2 t2 < :\/4 :\/4 < t 2 < :\
2
/2 t 2 < :\/4 

tan a
1 

< 0 
:\/4 < f 1 < \12 \14 < tl < \12 \14 < ! 1 < :\/2 :\/4<!

1
<:\/2 

t 2 < :\/4 :\
2
/4 < t 2 < :\/2 t 2 < :\/4 :\/4 < t 2 < :\

2
/2 

Table 3.2. Thickness of the matching layers for positive and 
2 negative root of tan a1. 

To get thin layers, the positive root of tan a
1 

should be chosen in regi­

ons II and IV. In regions I and III a more detailed calculation is necessary 

to make the best choice. 

One might think that with two matching layers more internal reflections in 

the structure are necessary for a stationary field to arise, than with a single 

layer. In this way the connection between the pulse risetime and the bandwidth 

around the lowest resonance frequency should become less significant in the 

double layer case than in the single layer case. This is true for combina·tions 

of materials in regions I andiiiwhere the thickness of one of the layers always 

is above :\./4. In regions II and IV the thickness of both layers may be chosen 
l 

2 
less than Ai/4 (positive root of tan a

1
) . The following expression for 

tan(a
1

+a
2

) may be calculated. 

tan a > 0 
l 

is given in Table 3.3. 

(3.15) 

We thus see that in region II a
1

+a
2 

is less than TI/2 which is the value 

of the waveangle for a quarter wave layer. Thus the total thickness observed 

by the wave of the layers for combination of materials in this region is less 

than that for a quarter wave layer. The significance between the bandwidth 
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Region: I II III IV 

tan(a 1 +a2) > 0 > 0 < 0 < 0 
~-

Smallest 
3TI 

value of TI < a 1+a2 < o < a
1
+a2 < TI TI 

< al+a2 < TI TI 
< al+a2 2 2 2 2 

< TI 
al+a2 

around the lowest resonance frequency and the pulse risetime should therefore 

extend to higher values of the bandwidth for combinations in this region than 

for the quarter wave layer. 

B. Method of numerical calculations. -------------------------------------

a) The frequency of maximum power transmission for a voltage driven transducer 

with no backing and load matching is calculated. From the discussion above 

it follows that this frequency is equal to the resonance frequency, f~, 

of the series tuned branch in Figure 3.7b. 

b) Two materials whose impedances fit the requirements for a solution of the 

matching problem are chosen. The thickness of the layers is determined 

from Eq. (3.13) and (3.14) so that a real impedance Zxl is obtained at the 

transducer face at the frequency of maximum power transmission determined 

above. 

c) The voltage force transfer function F/V. (f) and the input admittance of 
l 

the transmitting transducer is calculated. The frequency, f
1

, for maximum 

power transmission with matching layers is found, i.e. the frequency that 

maximizes the real part R-l(f) of the input admittance of the transducer 

with matching layers. 

d) The receiving transducer and matching layers are identical to the transmit­

ting transducer. The electrical port is termiated by the resistance R(f
1

) 

parallelled with an inductance L so that the imaginary part of the input 

admittance is tuned out at f
1

. 

e) The force voltage transfer function v
0
/F(f) of the receiving transducer 

terminated as above is calculated. The total voltage insertion transfer 
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function of a transmitter and receiver system as shown in Figure 3.10 is 

calculated. The divergence of the transmitted beam is neglected so that 

all the transmitted power is considered to hit the receiving transducer 

face. The effect of the wave reflected from the receiver on the transmit-

ting transducer functioning is neglected. This is done because in the 

practical situation we are interested in the signal scattered from tissue. 

n.. 

v 
v 

Reflected wave neglected v 

Transmitter v 
v 

(f) t:l ~ i X(f) 
v = (f) 

Receiver 

Figure 3.10. a) Schematic representation of transducers for 

calculation of transducer insertion transfer 

function. 

b) Definition of input admittance Y(f)~ conduc­

tance G(f) and susceptance X(f) of the trans­

ducer. 
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c. Numerical results. 

The input conductance, phase angle of the input impedance and voltage trans­

fer function are given for three types of matching layers. 

Araldite/Aluminium Arald/Al 

Aluminium/Mixture of 15 % W in Vinyl Al/Vin 15 W 

Nickel/Magnesium Ni/Mg 

The material listed first is that which is nearest the transducer face. 

Results for the positive root of are given in Figure 3.12 a-f, 

while results for the negative root are given in Figure 3.12 i-k. 

The calculations are performed mainly for the transducer material PZT-5A. 
2 

The Arald/Al matching with the positive root at tan a
1 

has been recalculated 

for a transducer made of PZT-5H for comparison (Figure 3.12 d). 

Four values of the matching impedance have been studied. The values pr. 

unit area are 

7.4~106 kg/sm 
2 

z = 
xl 

12.0•10
6 2 

kg/sm 

24.0•10
6 

kg/sm 
2 

33.7•10
6 

kg/sm 
2 

Most of the results are given with air backing material whose characteristic 

impedance pr. unit area is 

Air: 
2 

zb = 400 kg/sm 

To illustrate the effect of a larger backing impedance the Arald/Al matching 
2 

with PZT-5A as transducer material and the positve root of tan a
1 

has been 

studied (Figure 3.12 b) with a backing impedance pr. unit area of 

6 2 
zb = 7•10 kg/sm 

The sensitivity in matching performance to inaccurate machining of the lay­

ers is studied for the Arald/Al matching with positive root of tan
2

a
1

, Figure 

3.12 c. The thickness of the layers is increased 10 % in turn, the other layer 

having the exact value. 

Curves for quarter wave matchings are given in Figure 3.12 g. Results for 

an unmatched transducer with various types of backing impedances are shown in 

Figure 3.12 h. 
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The calculations are performed for a transducer disc of 20 mm diameter and 

1 mm thickness. Data for the transducer is given in Table 3.4. 

-4 2 
t[l0- 3m] £

0
[MHz] £0[MHzJ c

0
[pF] ~[N/volt] Material A[lO m ] Z'=AZ 

X X 

[103 ohm] 

PZT-5A 3.14 1.0 2.175 1.96 2300 4.95 10.59 

PZT-5H 3.14 1.0 2.28 2.01 4100 7.38 10.74 

Table 3.4. Data for the transducer discs. 

Data for the double matching layers are given in Table 3.5 for the positive 
2 2 

root of tan a
1 

and in table 3.6 for the negative root tan a
1

. Data for the 

quarter wave matching layer is given in Table 3.7. We see that the sum of the 

wave angles for the Arald/Al composition for tan a
1 

> 0 is less than 90° as 

discussed in Section 3.4A; 

The acoustical data of Al, Ni and Mg are taken from [31] and the data for 

the Vinyl/W compositions are taken from [32]. The Araldite used is 100 parts 

of Casting Resin D and 10 parts of Hardener 951, Ciba. The ultrasonic velocity 

is measured by the transit time of a pulse through a slab and the characteristic 

impedance is calculated as pc, where p is the mass density of the slab. 

The regions in the z
1
-z

2 
plane where solutions of the matching problem 

exist,are shown in Figure 3.11 for the four values of zxl' together with the 

positions of the three types of matching layers calculated. For all values of 

zxl the Arald/Al matching belongs to region II, while the Ni/Mg matching be­

longs to region III. The Al/vin 15 w matching belongs to region II for the two 

lowest values of Zxl' while it belongs to region IV for the two largest values. 

Combination of materials which belongs to region I has not been found. 

Calculations for other combinations of materials in region II, III and IV have 

been performed, and the results given seem to be typical for each region. The 

Arald/Mg composition indicated in Figure 3.11 gives the same results as the 

Arald/Al composition. 
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zi c. Wave- Thickness zxl 
Material 

l 
angle 

[10
6 2 6 2 

kg/sm ] [m/s] a. [deg] £. [mm] [10 kg/sm ] 
l l 

61.20 .2168 7.4 

Arald 3.0 2500 
42.26 .1497 12.0 
27.69 .0980 24.0 
22.54 .0798 33.7 

4.37 .0397 7.4 

Al 17.3 6420 
9.52 .0866 12.0 

17.24 .1568 24.0 
21.79 .1982 33.7 

35.20 .3202 7.4 

Al 17.3 6420 
49.93 . 4543 12.0 
38.00 .3457 24.0 
50.42 .4587 33.7 

106.20 .2107 7.4 

Vin 15 W 5.45 1400 
96.34 .1912 12.0 
84.44 .1675 24.0 
77.60 .1539 33.7 

21.05 .1802 7.4 

53.5 6040 
27.89 .2387 12.0 

Ni 
41.27 .3532 24.0 
52.96 .4533 33.7 

113.43 .9276 7.4 

10.0 5770 
106.48 .8688 12.0 

Mg 
97.86 .8003 24.0 
94.06 .7692 33.7 

Tahle 3.5. Data for double matching layers when the positive 
2 root of tan a1 is used. 
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z. c. Wave- Thickness 2
xl Material 

l l 
angle 

6 2 6 2 
[10 kg/sm ] [m/s] a. [deg] £. [rom] [10 kg/sm ] 

l l 

118.80 .4209 7.4 

Arald 3.0 2500 
137.74 .4880 12.0 
152.31 .5397 24.0 
157.46 .5579 33.7 

175.63 1.5980 7.4 

Al 17.3 6420 
170.48 1.5511 12.0 
162.76 1. 4809 24.0 
158.21 1. 4315 33.7 

144.80 1. 317 5 7.4 

Al 17.3 6420 
130.07 1.1834 12.0 
142.00 1.2920 24.0 
129.58 1.1790 33.7 

73.80 .1464 7.4 

Vin 15 W 5.45 1400 
83.66 .1659 12.0 
95.56 .1896 24.0 

102.40 .2032 33.7 

158.95 1.3606 7.4 

Ni 53.5 6040 
152.11 1. 3021 12.0 
138.73 1.1876 24.0 
127.04 1. 0875 33.7 

66.57 .5443 7.4 

10.0 5770 
73.52 .6031 12.0 

Mg 
82.14 .6716 24.0 
85.94 .7027 33.7 

Table 3.6. Data for double matching layers when the negative 
2 root of tan a1 is used. 
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2
xl 

Layer imp. Material Wave vel. Thickness 

[10
6 

zl % W in c 
2 

kg/sm ] 
6 2 

[10 kg/sm ] Vinyl [m/s] 

7.4 3.33 4 1800 

12.0 4.24 8.7 1560 

24.0 6.0 18 1340 

33.7 7.1 40 820 

Table 3.7. Data for quarter wave matching layer of Vinyl/ 

Wolfram composite. 

D. Discussion. 

[mm] 

.2391 

.2072 

.1780 

.1089 

For the two highest values of zxl for the Al/Vin 15 W matching, and for 

all calculated values of for the Ni/Mg matching, the frequency of maximum 

conductance is shifted to a lower value than f 0. This phenomenon is exaggera-
2 

ted when the negative root of tan a
1 

is used. 

The reason for this effect is that the high impedance matching layer (Al 

and Ni) which is in contact with the transducer face, limits the amplitude of 

vibration of this face, while the back face is free to move. The node of the 

vibration is therefore shifted from the middle of the transducer thickness, 

when both faces are free, towards the front face. The resonance therefore 

changes from half wavelength towards quarter wavelength. When tan a
1 

< 0 is 

used, the thickness of these high impedance layers is increased and the effect 

is exaggerated. 

For the Arald/Al layer the thickness of both layers is increased when 

tan a
1 

< 0 is used and the performance becomes poorer. 

The positive root of gives the best result for all material combi-

nations and among these the Arald/Al composition gives by far the best result. 

The frequency response is very flat and symmetric for values of zxl up to 
6 2 

above 12.0·10 kg/sm . 

For this type of matching the 6 dB bandwidth of the total transfer function is in­

creased from ca. 3% in the airbacked unmatched case to 30%. Increasing the back-
6 2 

ing impedance to 7.0·10 kg/sm flattens the frequency response while losses are 
6 2 

introduced. The bandwidth is not markedly increased except for Zxl = 7.4·10 kg/sm, 
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F'lgur•e 3.12. Numerical calcula­

t"[on of the frequency response 

for transducers with various 

type of matching layers. Each 

column shows the results for one 

type of matching~ backing and 

transducer meterial~ the type of 

which is written on the top. 

The abcissa on all figures is 

the frequency related to the open­

circuit resonance frequency f 0. 

The upper figure shows a logarit­

mic plot of the input conductance 

which is given in mho's. The mid 

figure is the argument of the in­

put impedance in deg~ while the 

lower figure shows the total vol­

tage transfer function for the 

transmitter receiver system shown 

in Figure 3.10. 
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where the backing increases the bandwidth with 50% above the value obtained with 

matching only. The increase in bandwidth for the highest values of zxl is 

small because the backing impedance is much lower than zxl at these values, 

Eq. ( 3. 9). 

The total transmitted power of a voltage driven transducer is given by 

(3.16) 

The bandwidth of the conductance therefore gives the power transmission band­

width. When the transducer is backed, power is also radiated into the backing 

which decreases the power radiated into the tissue. 

It is interesting to note that the insertion losses for the matched and 

backed transducer are much smaller than for the unmatched and backed transducer, 

Figure 3.12 h. The high losses in the unmatched case originate from the large 

difference between the front and the back impedance of the transducer [30]. 

For the Arald/Al composition it is seen that the frequency of maximum 

v
0
;vi is shifted from the lower to the upper hump of the frequency response, 

as Z 
1 

is increased. Therefore there exists a value of above 
X 2 

12·106 kg/sm where an equal rippel of the frequency response is obtained. 

The internal losses in the transducer will decrease the ripple relative to that 

calculated. If this is not sufficient, a low impedance backing may be used to 

get low ripple. 

The increase in bandwidth for the quarter wave matched transducer is approxi­

mately the same as for the Arald/Al matched transducer. For the quarter wave 

matched transducer the frequency of maximum v
0
;vi is at the upper hump of the 

frequency response for all values of zxl calculated. Thus an equal ripple 

transducer is not obtained in this way, although the departure from equal rip­

ple is not large. Equal ripple might be obtained by choosing a thickness of the 

matching layer different from A/4 at £0. 
The single frequency matching method we have used is rather crude. Indeed, 

what we want is a good frequency response and a better method would be to choose 

the dimensions and impedances of the layers so as to get the best frequency re­

sponse in some sense. In this case a double layer matching would have an advan­

tage over the single layer matching in that more parameters are available for 

the shaping of the frequency response. The good results with the Arald/Al mat­

ching and the amount of work necessary for dimensioning the layers by a response 

shaping method, has made us postpone such a task. 
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3.5. Experimental study of trans?ucer bandwidth and pulse risetime. 

The bandwidth and pulse risetime of three transducers have been studied: 

I PZT-5A Unmatched to load and aLrbacked. 

II PZT-5H Matched with Arald/Al layers to load Zxl 

backed. 

6 2 
12·10 kg/sm and air 

III PZT-5A Unmatched transducer backed with mixture of Araldite and w, 100 g 

W/40 cc Arald. 

The Araldite for the double layer matching is 100 parts Casting Resin D 

and 10 parts of Hardener 951, Ciba. The backing is a mixture of Araldite (55 

parts Casting Resin D and 45 parts of Polyamid Hardener 846, Ciba) and tungsten. 
3 

100 g W in 40 em Araldite gives an impedance of the matching layer of 
6 2 

7.0·10 kg/sm . 

The measured input conductances of the transducers loaded with water and 

the phase angles of the input impedances are given in Figure' 3. 13. 

The unmatched and airbacked transducer has a very low phase angle near re­

sonance so that no parallel tuning inductance is used, A broad band transfor­

mer is used to raise the impedance from 8 ~ to 50 ~ which is the characteris­

tic impedance of the coax transmission cable. The Arald/Al matched and the un­

matched and backed transducer are shunted by inductances of 1.6 ~Hand 4.7 ~H 

respectively. For the matched transducer a 1:4 broad band transformer raises 

the impedance to the coax level while for the backed transducer a 9:25 trans-

former is used. 

The bandwidth of the umnatched and unbacked transducer is 100 kHz, which is 

the same as es·timated in Section 3. 3. The conductance and phase curve are 

almost the same as calculated in Figure 3.12 h, except for the resonance peak 

which is a little more damped because of the internal and the mounting los-

ses. 

The bandwidth of the matched transducer is 20 %, a little less than that 

calculated in Figure 3.12 d. The reduction is mostly at the upper end of the 

passband. Compared with Figure 3.12 c where the results for a 10 % increase 

in the layer thicknesses are given, we see that this reduction in bandwidth may 

arise when the layers are too thin. 

The measured phase angle is also larger than that calculated in Figure 

3.12 d. Besides the inaccuracy in the layer thickness, this may arise from de­

viation in the material parameters from the values used in the calculation. 
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A decrease in the clamped dielectric constant, 
s 

c , of the transducer relative to 

the piezoelectric constant h will give a rise in the impedance phase angle. 

The measrued conductance is a little less than that calculated, as for the un­

matched transducer. This may arise from internal and mounting losses. 

For the unmatched and backed transducer the bandwidth is approximately 30 %. 

The measured conductance and phase angle is similar to that calculated for 

zb 7.4•10
6 

kg/sm
2

. Also here the measured phase angle is a little higher 

than that calculated which may arise from deviations in the material parameters 

from the values used in the calculations. 

Figure 3.14 shows the pulse transmission capability for the three trans­

ducers. A rf pulse with rectangular envelope excites the transducer which ra­

diates into water. The radiated pulse is reflected from a polished slab of 

brass and received. 

The pulse risetime for the unmatched and unbacked transducer, Figure 3.14 a, 

is about 5 ~s. The pulse shown will give a resolution of 10 mm. The risetime 

is decreased to 1.5 ~s for the backed transducer, Figure 3.14 b, while a loss 

of -10 dB is introduced. Approximately the same risetime as this is obtained 

for the matched transducer with the much smaller loss of-3 dB compared to the 

unmatched and unbacked transducer. The losses probably occur in the matching. 

Figure 3.14 d shows the smallest pulse obtainable for the matched transdu­

cer without seriously degrading the amplitude. The pulselength is 2 ~s, which 

gives a ~esolution capability of 1.5 mm. The decay resonance consists of 2.5 

cycles only so that a shorter pulse may be obtained. For imaging applications 

the transducer may be excited with a short and large pulse. By this a resolu­

tion capability of 1 mm is obtainable. This is about the same resolution capa­

bility as reported by Kossoff&al [33] for the quarter wave matched transducer. 

The phase demodulated signal is shown in ·the lower trace of Figure 3.14. 

The amplitude and polarity of this signal is given by the phase difference be­

tween the received rf-pulse and the instrument local oscillator. This phase 

difference is adjusted for maximum positive amplitude. 

The demodulator bandwidth is a little smaller than the transducer bandwidth 

in Figure 3.14 b,s,d. As discussed in Section 2.2 the amplitude of the demodu­

lated pulse gives a weighting function to the observation region of the pulsed 

doppler meter. 
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a) b) 

c) d) 

Transducer pulse transmission. a) Unmatched airbacked 
transducer. b) Unmatched and backed with 100 g W/40 cm3 
Araldite. c) Arald/Al matched to load, airbacked. 
d) Shortest pulse for the Arald/Al matched transducer'. 
The upper trace is the received rf signal and the lower 
trace is the phase demodulated signal 

Hor.: 2 JJS/div 
Ver.: Upper trace 0.5 V/div 

Lower trace 0.2 V/div 
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3.6. Summary. 

The transducer functioning and field pattern has been discussed. For diag­

nostic uses the nearfield region of the transducer is used. The results of 

Zemanek [29] shows that the field in this region is very complicated. His cal­

culation is, however, based on the assumption of uniform amplitude of vibration 

for the transducer, which clearly is an approximation. A calculation which 

takes the variation in the vibration amplitude across the transducer face into 

account is therefore desirable. 

Electrical and acoustical impedance matching has been discussed. 1'he in­

crease in bandwidth of the transducer by double layer acoustical impedance 

matching of the transducer to the load has been calculated for various types 

of matching layers. 

A single frequency matching is performed and the need for dimensioning the 

matching layers by a response shaping method is discussed. 

The Arald/Al matching has been tested out experimentally for a 2 MHz trans­

ducer. It is compared to an unmatched and unbacked transducer and a transducer 

unmatched to the load and backed with a mixture of 100 g W in 40 cm3 Araldite, 
6 2 

which gives an impedance of 7 •10 kg/sm . A large decrease in pulse rise time 

to 15-20 % of the value for the unmatched and unbacked transducer is observed 

with a negligible introduction of losses. The resolution capability of the 

transducer is between 1 and 2 mm. 
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4. THE SCATTERING OF ULTRASOUND FROM BLOOD 

In this chapter we study the scattering of ultrasound from blood. We first 

discuss the physical properties of blood and argue that the scattering can be 

considered to originate from stochastic fluctuations in the acoustic parameters 

of a continuum model of blood. These parameters may in turn be expressed by 

the concentration of cells and the scattered field may, therefore, be expressed 

by the fluctuations in this concentration. 

A stochastic model for the concentration fluctuations of cells is presented 

and the stochastic properties of the cells are deduced from this model. Mathe­

matical expressions for the scattered field and the signal out of the receiving 

transducer are given. 

The wave velocity as a function of the mean cell concentration has been 

measured. The results are discussed with reference to the interaction between 

the cells and a numerical value is found for the cell concentration, above which 

the cells cannot be considered stochastically independent of each other. 

With reference to this measurement the polar diagram for the differential 

scattering crossection of blood is given. The dependency of this polar diagram 

to the cell concentration is discussed. 

4.1. Physical properties of blood. 

Blood is a mixture of corpuscles in a surrounding liquid, the plasma. The 

physical properties of this mixture is very complex. We shall here mainly con­

sider those properties which we feel are concerned with the flow of blood and 

the scattering of ultrasound from blood. 

A. Composition of blood. 

In normal man blood contains ca. 54 % (volume) liquid and ca. 46 % formed 

elements. Normal variations about these values are 5-10 % in both directions. 

The plasma is about 90 % water by weight, most of the solid content being 

plasma protein, the remainder inorganic (1 %) and organic (1 %) components. 

The plasma proteins fall into four classifications - albumins, globulins, fibri­

nogen and lipoproteins. 

Fibriniogen has the property of polymerizing to long fibrous threads, fibrin, 

under favourable circumstances. It is thus intimately concerned with the clot­

ting of blood. 

Plasma with the fibrinogen removed is called serum. 
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The formed elements consist of cells and of the blood platelets, which are 

actually minute fragments of cytoplasm of a specialized type. The cells are 

divided into two main groups, the red ceUs (erythrocytes) and the UJhite ceUs 

(leukocytes). The erythrocytes are not cells in the normal sense because they 

have no nuclei. 

We give a brief su~~ary of the size and amount of formed elements in blood. 

Erythrocytes: 
3 

The red cell count is 5 million per mm , a little more for 

men than for women. The cell is circular and flat like a biconcave disc of 

shape, with a diameter of about 7.5 vm and a thickness of about 1.5 vm. 
3 

The volume is 80-90 VID 

From the data above we can get an idea of the mean distance between the 

cells. We can put a cell in each lattice point of a rectangular lattice 

and let the ratio between the long and short lattice sides be that of the 

ratio between the diameter and the thickness of the cell, Figure 4.1. The 

long axis of the lattice will then be about 10 vm, while the small axis 

will be about 2 vm. 

+-----------10pm------- -
14---------- 75/'m ----

1.5pm 

------'* 

Figure 4.1. Mean distance calculations for red cells. 

The red cell is composed of a membrane containi.ng mostly hemoglobin inside. 

The shape of the cell has been studied by many workers. A review of this 

work is given by Y.C. Fung [34]. The shape seems to be determined by the 
;, 

osmotic pressure of the plasma across the cell membrane, and the elasticity 

of the thinwalled membrane. 

Under normal conditions the cell is thinnest at the middle as shown in 

Figure 4.1. 
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The largest possible packing without deforming the cell corresponds to a 

volume percentage of 58 [35]. 

However, the cell has the property of undergoing large deformations. 

(Without this property the flow in capillaries would not be possible). It 

is thus possible to pack the cells closer than 58% [36]. 

If there is a change in the osmotic pressure of the plasma relative to the 

cell membrane, the cell may swell from the biconcave to a more spherical 

form. The swelling may be so large that the membrane bursts. This pheno­

menon is called hemolysis. 

Leukocytes: The normal white cell count is considered to be from 5000 to 
3 

8000 pr. mm This is only l/800th of the population density of erythro-

cytes. The cells are from 10- 20 f.lm in diameter. If we put a white cell in 

each lattice point in a cubic lattice, the mean distance will be about 60 f.lm 

in all directions. Their volume occupation is l/600th of the red cell vo­

lume. 

Platelets: The normal count of platelets is 250.000- 500.000 pr. 
3 

mm , a 

concentration about l/20th of that of the red cells. Their diameter is 

only 2.5 f.lm. Put in a cubic lattice their mean distance would be 12-15 f.!m. 

This is about 5-6 times the diameter so their volume occupation is even 

less than that of the leukocytes - l/800th of the red cell volume. 

The volume percent of red cells is called the Hematocrit (HCT). This is, 

however, difficult to measure so that an operational definition of HCT has be­

come more predominant. Blood is centrifuged under standardized conditions to 

separate plasma and corpuscles. HCT is then defined as volume percent of the 

centrifuged corpuscles to the volume of the blood. If the corpuscles were 

packed so close that no room for plasma was left, this definition would coin­

cide with the previous definition. The volume percent of other cells than the 

red can be neglected. 

B. Flow of blood. 

The specific gravity of red cells is 1.10, that of plasma is 1.03. Plasma 

alone behaves like a Newtonian fluid with a coefficient of viscosity about 

1.2 cP. When whole blood is tested in a viscometer, a non-Newtonian character 

is revealed. The viscosity varies with shear-rate, HCT, temperature and dis­

ease state, if any. A review of the blood flow properties is given by Y.C. Fung 

[37] and Charm and Kurland [38]. 
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There is a question what happens to blood viscosity when the strain rate 

rate is reduced to zero. Cokelet & al [39] deduced the existence of a finite 

yield stress. They say that at vanishing shear rate the blood behaves like an 

elast.ic solid. 

The yield stress or shear strength is determined by the cell-to-cell contact 

and the cell aggregate structure. When left without shear rate the red cells 

have a tendency to cluster together on their flat side, forming rouleaux. The 

rouleaux in their turn may lump to agg:regates. The amount of rouleaux and ag­

gregates will clearly affect the yield stress. 

As the shear rate increases, the aggregates breaks down, and in large arte­

ries like aorta the blood cells should be considered as individuals. The re-

lation bet.ween the shear rate and the shear stress follows a square root law 

KY~ + C~ (4 .1) 

where T is the shear stress, y the shear rate, C the yield stress and K 

the so called Casson viscosity [38]. 

R.H. Phibbs ([35] pp 53) has quick-frozen the flow in the femoral artery 

of a rabbit in less t.han 0.1 sec. as it rushed through the artery. The frozen 

blood is then prepared and photographed. The result is shown in Figure 4.2. 

The photograph of Figure 4.2 shows a thin layer of plasma near the wall. 

This is called the marginal layer. 

The most common opinion is that the cells have a tendency of moving towards 

the axis of the artery as the shear rate increases. There is, however, some 

uncertainties about this. Some investigators (Merill & al [43] ) have failed 

to observe the effect by direct microscopic observation. We also see from 

Figure 4.2 that the marginal layer is not very distinct. However, at suffi­

ciently low flow rates it is reasonable that a marginal layer should not deve­

lop, while it should do so at higher flow rates. This might explain why the 

effect has not been observed in some cases. 

The steady flow of a Newtonian fluid through a straight circular pipe is 

governed by the Poiseuille Hagenbach equation 

4 
2!12E_ 
8VL 

(4.2) 

where Q is the volume of f~ow rate, r the radius of the tube, V the vis­

cosity and p/L the pressure gradient along the tube. 
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f 
10}1 

I 

Figure 4.2. A cross section~ 5~ thick3 of the femoral artery of 

a rabbit, quickfrozen in less than 0.1 sec. as it 

rushed through the artery and subsequently prepared 

by freeze substitution. Note: (1) Most of the cells 

are "on edge", oriented by the shear, (2) They tend 

to be oriented with major diameter parallel to the 

wall, (3) Many of the cells are deformed by the 

crowding, the HCT is 34 %. The cell-free layer at 

the wall is irregular and thin; 

a) smooth muscle of arterial wall. 

b) internal elastic membrane. 

c) erythrocyte 

d) nucleus of endothelial cell (from work of 

R.H. PhibbsJ Dept. of Biophys.~ Univ. of West 

Ontario. Published in [35]). 

When a marginal layer develops, the resistance to flow decreases because 

of the lower viscosity in the marginal layer. The layer will have a lubricating 

effect. 
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When a capillary viscometer is used and the viscosity is calculated from 

Eq. (4.2), the apparent viscosity decreases with tube diameter when the dia­

meter becomes less than 1 mm. This behaviour was reported by Fahreaus and 

Lindquist [40] who studied blood suspensions 1 and by Dix and Scott-Blair [41] 

who studied clay suspensions and referred to it as the sigma effect. 

The effect is controversial because certain investigators who have studied 

it, conclude that Fahreaus and Lindquist merely did not recognize that the 

apparent viscosity of blood varies with shear rate. They were measuring this 

change in viscosity rather than a change due to tube diameter per se. [55]. 

Cokelet [53] analyzing the data of Fahreaus and Lindquist concluded that 

an entrance effect which reduced the main concentration of cells in the tube, 

could account for a change in viscosity with tube diameter. 

We emphasize at last that the Fahreaus-Lindquist effect is due to calcula­

ting the viscosity from Poiseuilles equation and forcing into it pressure flow 

rate information obtained in the presence of, perhaps, a marginal layer and un­

known cell distribution. 

C. Scattering of ultrasound. 

Little work has been done to study the scattering of ultrasound from blood. 

The scattering has generally been thought to stem from independent particles 

(the blood cells), each giving a reflected signal with a frequency according 

to the doppler equation (2.1). 

The only experimental investigation to date has been done by Reid & al 

[44]. They conclude that in the HCT range from 7 to 40 % the scattering inten­

sity is proportional to the HCT. The scattering was also proportional to the 

frequency in the fourth power. 

Scattering from independent particles much smaller than the wavelength will 

give this result. The conclusion since then has been t.hat the blood corpuscles 

behave as independent point scatterers and the scattering is mainly due to the 

red corpuscles. 

S.W. Flax & al [48] were the first to give a theoretical investigation of 

the received signal from the blood. They used a very simple model of indepen­

dent scatterers and studied mainly the effect of the received signal on the 

zero-counting detector. 

W.R. Brody [45] has made amore thorough calculation of the received signal. 

His model is also based on the assumption of independent scatterers. He found 

that the power spectrum of the received signal was a map of the velocity profile 

in the region being studied. The power spectrum method is strictly applicable 
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only for stationary flow. It can, however, be used as a good approximation 

when the doppler shift frequencies are much larger than the frequencies asso­

ciated with the change of velocity with time. 

From the previous data given of the density of the scatterers, it seems 

unlikely that the scatterers can be considered independent. In Figure 4.2 

an example is given of the microstucture in blood during flow. The hematocrit 

is as low as 34 %, and still at this density there is a considerable deforma­

tion of the red cells because of the crowding. 

The complex form of the far field from a point-scatterer will contain the 

space-time factor 

k 

-+ 

-+ 
x (r) 

2TI 
T 

(4. 3) 
r 

x (r) is the angular dependency of the scattered field, k is the wave number 1 

A the wave length, r is the distance from the scatterer, w
0 

the angular fre­

quency and t the time. 

-+ 
Let two scatterers have the position ~l 

-+ 
and ~2 

4.3. The scattered field from an incident plane wave 

will be 

1

-+ -+ 
r - ~.I 

l 

When ~./r << l we may use the farfield approximation 
l 

1 

-+ -+ 
r - e -~. 

r l 

1 
r 

i 1,2 

Under this approximation we may also write 

-+ 
since x(r) depends slowly on space. 

as indicated in Figure 

(4. 4) 

(4. 5) 

(4. 6) 

(4. 7) 
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'\ 
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Figure 4.3. The scattering of a plane wave by two point 

particles. 

I 

Under this approximation the sum of the field from the two scatterers will 

-+ -? -+ 
6k k. - ke 

l r 

(4. 8) 

-?- -+ -+ 
If 6k (E;,

2 
- t;,

1
) equals TI, the scattered, field will be zero in this direction 

It will more generally be possible to position two scatterers so that the 

output of the receiving transducer from these two scatterers practically cancel. 

(Section 4.3C). If we move one scatterer a small distance so that the phase 

of the field varies less than 10 % in both directions at the transducer, the 

output from the two scatterers will still practically cancel. 

For a phase variation of less than 10 % we must have 

-+ 
where 6E;,. is the variation in the position of the scatterer. 

l 

(4.9) 

-+ 
When 6E;,. is 

l 
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normal to the direction of 6k,l6!. I can be very large. It is, however, pre­
l 

viously emphasized that ~./r is much smaller than unity when obtaining Eq. 
l 

(4.6). 

+ + 
In the direction of 6k we must have 16~. I < 2TI/106k. The maximum value 

l 

of 6k occurs in the reverse direction where 6k = 2k
0 

= 4TI/A. In this direc-

tion we must have l6~il < A/20 which means that the variation in ~i must be 

less than A/10. 

If we form a rectangular volume element with two sides equal to A/4 and 

the third equal to A/10, this element will contain 12000 red cells at 2 MHz 

and 100 red cells at 10 MHz, on the average. 

From the discussion above, it should follow that if the concentration of 

blood corcpuscles of all the elements of this size was the same, there should 

be no scattering of ultrasound from blood. This because the probability would 

be one, of finding a scatterer in such a position as to· cancel the output of the 

transducer from another scatterer. 

To get a scattered wave,a variation in the cell concentration between the 

elements is necessary. The deviation in the cell concentration from the mean 

value will be called the fluctuation of the concentration. The scattering may 

thus be considered to stem from the fluctuations in the cell concentration rather 

than from the cells as such. Because of the relative concentration of white 

blood cells and platelets to that of the red cells, it should also be sufficient 

to consider the red cells only as responsible for the scattering. 

Consider wave motion in a gas of small particles or a suspension of small 

particles in a liquid. A characteristic dimension is the mean collision fre­

quency, i.e. the mean number of collisions between particles pr. unit time. If 

the concentration of particles is dilute, the main type of collisions will be 

binary, i.e. only two particles are interacting during the collision. As the 

concentration increases, tripple and quadruple collisions become more probable. 

In blood at normal concentration of cells ~a. 50%), the cells are in contact 

almost all the time. The probablility that one cell at a given instant of time 

is not contacting at least one other cell is negligible. In this case the col­

lision frequency has lost its meaning or should be made infinite. 

When the collision frequency is high compared to the wave frequency, the 

medium will behave as a continuum to the wave motion. If the elasticity and 

density is constant in space and time, the medium will be completely transpa­

rent. There will only be some reflection and refraction of the wave at the boun-
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daries. However, if the elastic parameters fluctuate throughout space and/or 

time, as in blood, there will be scattering. This is analogous to the scatter­

ing from discrete particles. 

When the collision frequency is smaller than the wave frequency, the situa­

tion is different for the gas compared to the suspension of particles in the 

liquid. In the first case there will be no wave motion or the wave will be 

heavily damped. In the second case wave motion will be upheld by the liquid. 

To a first approximation we may consider the liquid a continuum with the 

wave velocity somewhat changed by the existence of the particles. However, 

when we study scattering, the discreteness of the medium will enter in, and we 

can no longer consider the scattering to stem from the fluctuations in a conti­

nuum. To obtain the scattered field we must add all the contributions from the 

individual scatterers. During this summation the scatterers may be considered 

stochastically independent of eachother. This phenomenon is considered in more 

detail in the next two paragraphs. 

Scattering of light from de~sity fluctuations in pure liquids has been stu­

died for a long time. Smoluchowski [46] was the first to suggest that the ob­

served scattering of light from homogenous liquids, could stem from the thermo­

dynamic fluctuations of the density from its mean equilibrium value. 

Einstein [47] undertook a quantitative calculation of the scattering. He 

found the interesting result that there will be an interaction only between the 

incident wave and the Fourier component of ·the fluctuation, which satisfies the 

Bragg condition of reflection. This result applies to our work as well. 

Other contributors in this field are Ornstein and Zernike [59], Komarov and 

Fischer [60]. 

4.2. Concentration fluctuations of blood cells. 

In this section we shall make a stochastic treatment of fluctuations in the 

cell concentration. To do this we study an ensemble of infinite number of blood 

flow systems. The systems are indentical in all macroscopic physical quantities 

except for the cell concentration. The cell concentration will have a stochas­

tic variation over the ensemble. 

The macroscopic physical quantities are the hydrodynamic velocity field, the 

temperature field, the mean concentration of cells in blood, the density and 

compressibility of the blood cells, the shape of the cells, the viscosity, den­

sity and compressibility of the plasma. 
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To avoid confusion we shall at once define three types of average or ex­

pectation operations we shall use. 

Def. I. 

Def. II. 

De f. III. 

Ensemble average. 

Having defined the ensemble we may give a probability measure of a 

stochastic variable of the ensemble. By the ensemble average of the 

variable we define the expectation of the variable with respect to 

this probability measure. Symbolically we denote this operation by 

a bracket, <(•)>, or E{(•) }. The last notation is more suitable for 

denoting conditional expectation E{x\y}. 

Time average 

The time average of a stochastic variable x is defined by 

-X 
l T 

lim 2T jx(t)dt 
T-+ 00 -T 

(4.10) 

For an ergodic system the time and ensemble average of a variable 

will be equal. A necessary condition for a system to be ergodic is 

that the ensemble averages of the system are stationary in time. 

Space average 

The space average of a variable X is defined by 

1 J -+ 3 (4.11) X =- x(r)dr 
v v 

v is the volume where the averaging is performed. 

This definition especially applies to the velocity field as the mean 

velocity in the observation region. For stochastic processes depen­

ding on the space this definition also applies. A process is space 

ergodic if 

X 
-+ 

<x(r,t)> (4.12) 

For the cell concentration this is the case when axial migration 

may be neglected. 
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A. Physical basis for the fluctuations. 

Microscopic fluctuations +n the macroscopic state (density, pressure, ener­

gy, electric field etc.) of a physical system is a well known phenomenon. 

Under thermodynamic equilibrium conditions, the probability of a deviation of 

a state variable from its mean value is proportional to 

e 
-(W/kT) 

(4.13) 

where W is the minimum work required to reversibly produce the deviation, k 

is the Bolzmann's constant and T is the temperature [57]. 

A loose, but intuitively attractive, interpretation of Eq. (4.13) is that 

there is an energy kT available which tends to move the system away from 

equilibrium in a random way. In the probability of a fluctuation it is the 

ratio of the energy required to produce the fluctuation to the energy available, 

that enters in by the negative exponential. 

In a weak non-equilibrium situation, such as laminar flow with modest shear 

rate, Eq. (4.13) may be considered to have local validity. Under such condi-

tions it is, however, not only the termal agitation which produces the fluctua­

tions. The flow itself should give an additional fluctuating force. In large 

deviations from equilibrium, as in turbulent flow and whirls, the fluctuations 

produced by the flow might be dominating over the thermal fluctuations. 

In our case we have a suspension of particles in a fluid where the energy 

is a complex function, not only of the local concentration, but also of the re­

lative orientations and positions of the cells. In addition to translational 

and potential energy, the cells may have rotational energy. Both translational 

and rotational motion will experience an attenuating force from the viscous 

friction of the fluid. 

At equilibrium the complex potential energy interaction between cells is 

demonstrated by the formation of roleaux and aggregates as discussed in Sec­

tion 4.1. In the presence of shear gradients in velocity the roleaux and aggre­

gates breaks down and the cells behave mostly as individuals with a large de­

gree of interaction. 

Following the situation in equilibrium, we put forth the hypothesis that 

the probability of a deviation of the number of cells in a small volume ~V 

from the mean is proportional to 

w 
- --+--

a(v) 
e (4.14) 
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As before W is the amount of energy required to produce the fluctuation. 
-+ 

a(v) is a functional of the velocity field in the neighbourhood of our element 

which influences the situation in 6v. It may be thought of as the random 

fluctuating energy available in the element. At equilibrium or uniform velo­

city we should have a = kT. 

The minimum of W determines the mean number of cells, n
0

, occupying 6v, 

i.e. 

Expanding W 

concentration, 

W(n) = 

0 

in a power series ~n n 

we get 

1 d
2

W 2 
2Td2n + 

no 

(4.15) 

is the total cell 

+ ..... (4.16) 

It seems reasonable that W may be approximated by the first term giving a 

quadratic dependency on n. This will give a Gaussian probability distribution 

for the number of cells in 6v. 

When the cells are stochastically independent of eachother, the probability 

of finding a cell in a volume 6v is independent of how many cells there al­

ready are in 6v. This is strictly true for point particles only which can be 

packed infinitely dense. For a diluted concentration of cells we may use this 

as an approximation since the probability is small that cells are so dense that 

the packing will be a problem. 

The theory of Brownian motion is a stochastic process model for such a sus­

pension of particles [51], [52]. The probability that the volume 6V will oc­

cupy N particles is given by the Poisson distribution 

P(N) 
\!N -\! 

N! e 

\! = n 6v 
0 

From this we obatin 

<N> = n 6V, 
0 

(4.17) 

(4.18) 

If \! is large, the Poisson distribution may be approximated by a Gaussian 

distribution 

P(N) 
1 

e 

(N-\!) 2 
2\! 

(4.19) 
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As increases, the interaction between the particles becomes more fre-

quent. This will increase the amount of energy necessary to produce the same 

fractional deviation of the population of 6v from the mean,as compared to 

non- interacting point particles. As a result the variance of N will de­

crease from the linear dependency of n
0 

given in Eq. (4.18), when interaction 

begins. When interaction between the cells occur, we have 

(4. 20 ) 

The concentration of cells in the volume 6V is defined by 

nT = N/6V (4.21 ) 

Inserting this in Eq. (4.18) we get 

(4.22 ) 

If we divide the region of blood in small, equal elements 6V., the concentra­
l 

tions in two different elements will be independent, since the particles are 

independent. We, there·fore, have the covariance between the concentration 

in e lement k, nTk• and that in element 9,, nT£. 

ak£ 
no 6v 

(4. 23 ) 

Here ak£ is the Kronecker delta. Passing to the limit when 6V tends to 

zero, we have 

.- ~ (4. 24 ) 

-+ 
where a(r) is the Dirac a-function . Physically volume elements 6v smaller 

than the particle size have no meaning . Use of the a-function means that the 

length of correlation for n 
T 

i s much smaller than a typical length 

scale under which we are studying the system. In our system such a typical 

scale is the wavelength. As discussed in Section 4.l,a volume element 

6V = A3
/l60 can be considered a point, because all the scatterers inside this 

element will scatter waves with practically the same phase. 



- 76 -

B. Mathematical model and correlation functions for the fluctuations. 

The force giving rise to the fluctuations is connected to the microscopic 

motion of the cells. We have already defined our ensemble as a group consis­

ting of an infinite number of systems where the hydrodynamic velocity field, 

the temperature field, the mean concentration of cells and the physical proper­

ties of cells and plasma are equal. The microscopic motion can now be desci-

bed by a stochastic concentration current following stochastic laws over the 

ensemble. This current may cause the cells to move together at one position, 

giving a rise in concentration, while a dilution is taking place at another 

position. The change in concentration is given by the divergence of the current, 
-+ 

div j. 

The stochastic properties of this current should clearly depend on the 

macroscopic motion of the blood which defines the ensemble. One should expect 

a turbulent flow to give a larger microscopic motion than laminar flow. A spi­

ral tendency in the microscopic motion of the cells could be found in laminar 

flow with large shear gradients in velocity. Spiral motion has, however, no 

divergence and will not affect the concentration of cells, so that an additio­

nal term must account for axial migration, Section 4.1B. 

++ 
Let v(r,t) be the hydrodynamic velocity field of blood. The total con-

centration current of cells may be written 

(4. 25) 

-+ 
jT is the total concentration current, nT is the total concentration, and D 

is the diffusion constant. The first term is the convection term, the second 

represents the diffusion of cells when a concentration gradient is present, and 

the third term represents the microscopic stochastic motion of the cells. The 

continuity equation for the cells may be written in terms of the concentration 
-+ 

n (r,t) 
T 

anT -+ 

~ + div jT = 0 (4.26) 

Combining Eq. (4.25) and (4.26) and taking into account that blood is incompres-

( \7-+v = 0) h 1 · sible i.e. v t e resu t lS 

an -+ 2 \7-+J. at + v·'Vn = D'V n + v (4. 27) 

We have used t.he fact that the gradients in time and space of the total concen-

tration is given by those of the fluctuation If the ensemble 

average, is not constant in space, as in axial migration, 

the gradient of nT will still be dominated by that of n. 
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Equation (4.27) is a stochastic differential equation for the fluctuation 
+ 

n. From this the stochastic properties of n may be deduced when those of j 
+ 

is established. Theoretically the stochastic properties of j may be deduced 

from a more detailed theory of the cell motion. This task, however, will be 

too ambigious for our purpose, and we shall merely state the properties by as­

sumption. 

We recall from Section 4.1 that at 2 MHz the 11 point" element of blood con­

tains 12 000 cells while at 10 MHz the content is 100. It is therefore reason-

able to assume a a-correlation for the stochast.ic current. 

+ 2 + + + + <j (r,t)> 
<jk(r,t)j,Q,(r + ~,t + T)> 

3 ok9-o<~lo(Tl (4. 28) 

+ 
jk is a component of j. 8 

k9-
is the Kronecker delta which states that two 

+ 
<j2> components of j are uncorrelated. is the variance of the magnitude of 

·+-
j. The factor 1/3 follows from isotropy and zero correlation between the com-

ponents of j. We have <j
2

> <j
1

2
> + <j

2
2

> + <j
3

2
> = 3<ji

2
>, i = 1,2,3. 

The stochastic properties of the concentration fluctuations are now con­

tained in <j
2

>. For a time steady velocity field, <j
2

>, will be independent 

of time. As discussed above, it could yet depend on space because of the 
+ 

space dependency of v. 

+ 
By the Helmholz decomposition theorem for a vector field we may express j 

+ ++ 
by a scalar potential A(r,t) and a vector potential B(r,t). 

++ 
j (r ,t) 

+ + + 
- VA(r,t) + VxB(r,t) (4.29) 

Since divcurl is a zero operator it is only the scalar potential that affects 

the concentration fluctuation. There will, therefore, be no correlation be­
+ 

tween n and B. 

An analytic solution of Eq. (4.27) in shear flow is difficult. We shall, 

therefore, only give the solution when the velocity field is zero. The solu­

tion for a uniform velocity field will be the same if we use a coordinate sys­

tem which follows the flow. The study of this special case will be a guide to 

an approximate solution in the case of shear flow. 

When the velocity field is zero, Eq. (4.27) reduces to a simple diffusion 

equation with a source term. The solution may be obtained by the Greens func­

tion method [58]. 
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00 

-+ 
jdt

1
jd

3
r

1 
-+ -+-+ -+ 

n(r,t) G(r
1
,t

1
)17;j (r - r

1
,t - t ) 

1 
-oo 

00 

jdt
1
[d

3
r

1 
-+ -+-+ -+ 

17G(r
1
,t

1
)j(r- r

1
,t - t ) 

l 
-oo 

2 
-+ -r /4Dt 

G(r,t) H (t) 
e 

(4. 30) 
(4TIDt) 3/ 2 

{: t > 0 
H (t) 

t < 0 

From this expression we may obtain the autocorrelation function for n in 

space and time 

-+ -+ -+ 
<n(r,t)n(r + ~,t + T)> 

Since the blood is at rest <j
2> is constant in both space and time and may be 

held outside the integration. 
3 

Integrating by parts over d r
1 

we get 

-+ -+ -+ 
<n(r,t)n(r + ~,t + T)> 

The Green's fur:1ction satisfies the following differential equation 
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-+ a (r) cS (t) 

IJ
2

G may be expressed by ClG/Clt and the a-functions from this equation. When 

this expression is inserted in the above integral, we get 

The integration over t
1 

in the last integral may be performed directly and 

the result is zero. In the first integral we have to differentiate between 

T > 0 and T < 0. We get 

<j2> -+ 
6D G(,S:,T) T > 0 

T < 0 

Since G is an even function in t we may write 

-+ -+ -+ <j2> 
G(t IT!) <n(r,t)n(r + .;,t + T)> 

6D 

In the limit T -+ 0 we have 

-+ -+ -+ 2 -+ 

J <n(r,t)n(r + G,t)> = <n >a (s) 

<n2> 
<j2> 

6D 
) 

(4. 31) 

(4.32) 

This shows that on the scale that we are studying the problem, the fluctuations 

at a fixed time will be a-correlated in space. Eq. (4.32) also relates the 

fluctuation of th~ stochastic current to the fluctuation in the concentration, 

via the dissipative process described by the diffusion constant. 

The variance of n given by Eq. (4.32) is infinite as for all a-correlated 

processes. As discussed in connection with Eq. (4.24), the physical quantity 

is the number of cells (or volume of cells) in a small volume 6v. The vari­

ance of this quantity will be 

2 2 
<(n6V) > = <n >6v (4. 33) 
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(4. 34) 

where the sign of equality appears when the interaction between the cells is 

weak, i.e. is low. 

A bound on the diffusion constant may be estimated from the theory of 

Brownian motion of independent particles. The mobility ,v, of a particle 
-+ 

exposed to a force, F, is defined by 

-+ 
v 

-+ 

(4. 35) 

where v is the stationary velocity of the particle. The diffusion constant 

is related to the mobility through the Einstein relation 

D kT·v (4.36) 

where k is theBoltzmann constant and T is the temperature. When the con­

centration of cellsisraised until the interaction between the cells enters, 

the mobility will decrease. We may, therefore, write 

(4.37) 

where vind is the mobility for independent cells" 

For a sphere of radius a in a liquid with viscosity v, the mobility is 

given by the Stoke's law 

-1 
(61TVa) 

We could use this formula for an approximate estimation of the mobility 

(4. 38) 

(V == 1.2 cP, Section 4.1). Taking the radius of the sphere to be 5Vm, we get 

7 
Vind == 10 m/ sNt 

The mobility may also be estimated from the red cell sedimentation rate. 

During the first hour cells sediment 2-5 mm in a 200 mm column of blood. Taking 

. 3 I 3 the volume of the cell to be 90 V , the density of the cell to be 1.1 g em and 
3 

the mean density of the surrounding blood to be 1.06 g/cm a sedimentation 

rate of 3 mm/hour gives the mobility 

7 V == 2.4·10 m/sNt 

These two values are very close, and from the Einstein relation an approxi·­

mate value of D can be given (V == 10
7 

m/sNt). 
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-14 2 
D ~ 5•10 m /sec (4.39) 

From Eq. (4.30) and Eq. (4.31) it is seen that a correlation length for n 

could be defined by 

£ = 101J)fTT (4. 40) 

If tT 1 
'. is 1 sec, we have from the two equations above 

( 4. 41) 

At 2 MHz £/A~ 3•10-
4 

while at 10 MHz £/A~ 10- 3 . As discussed above this 

dimension could clearly be considered a point. 

From Eq. (4.30) and (4.31) we have 

-+ -+ -+ 2 -+ 
<n(r,t)n(r + s,t + T)>-+ <n >a(s) ( 4. 42) 

D-+0 

The above discussion thus indicates that for all practical purposes the concen­

tration fluctuations could be considered a-correlated in space and constant in 

time. 

The results of the above discussion may be summarized in two points: For 

zero velocity field we have 

i. The fluctuation n will be a-correlated in space when T 

of the magnitude of the diffusion cons·tant D. 

0 regardless 

ii. The fluctuation n will be approximately a-correlated in space when 

T * 0 provided /DjTj/A << l. In our case the diffusion constant is so 

small that this condition will hold for all practical values of T. This 

means that the change of the correlation function with T is very slow. 

We shall now make an extrapolation of the result for the zero velocity case 

to the case of a nonzero velocity field. A physical interpretation of Eq. (4.31) 
-+ 

is that a fluctuation n at at position r at the time t diffuses out to 

the surroundings. At a time t + T the information of this fluctuation has 

passed to all space because of instantaneous effect of the diffusion process. 

The value of the correlation function will, however, be substantially dif­

ferent from zero only in a finite region of space defined by 
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E, < 9, 

where 9, is given by Eq. (4.40). 

If maxiVv. I •9,•T is much smaller than the path length VT of a fluid ele­
i l 

ment in the time T, the flow will appear locally homogeneous to the diffusion. 

This requirement may be written 

9, < < _ __,v-=--.-
maxl IJv .1 

. l 

( 4. 43) 

l 

When this condition holds, the fluctuations may be considered locally o-corre­

lated. 

By a transformation of the coordinates, the correlation function defined 

in the original coordinates becomes 

-+ -+ -+ 
<n(r,t)n(r + E,,t + T)> 

-+ 

2 -+ 
<n >0{ E, -

t+T 

f 
-+ -+ 
v[r(p) ,p]dp} (4. 44) 

t 

Here r(T) is the path of the fluid element which at time t has the position 
-+ 
r. 

The assumption of o-correlation in space for all T is equivalent to put­

ting the diffusion constant to zero. From Eq. (4.32b) we see that it is con­

sistent in the same approximation to set <j
2

> equal to zero since <n
2

> has 
-+ 

to be finite. This implies that j has to be zero in probability and 

Eq. (4.27) takes on the simple form 

Cln -+ 
- + v'Jn ()t 

with the solution 

0 

-+ -+ t -+-+ 
n(r,t) = f{r- J dp v[r(p) ,p]} 

0 

->-

(4.45) 

(4. 46) 

where r(T) once again is the path of the fluid element which at time t has 
-+ -+ 

the position r. f(r) is an arbitrary function which gives a sample function 

of the fluctuation at t = 0. Eq. (4.44) then shows that f has to be 0-

correlated in space. 

Eq. (4.46) demonstrates that the time dependency of the sample functions of 

the fluctuations is given by the convection only when diffusion is neglected. 

There will be no change with time of the sample function along a path of flow. 

We shall return to the effect of this approximation when we study the spectrum 

of the scattered ultrasound in Section 5.1 C. 



- 83 -

As discussed above <j
2

> should depend on both space and time under unstea­

dy and shear flow. As a result <n
2

> should also depend on space and time. 
-+ -+ 2 

In neglecting diffusion, j = 0, <n > will be constant along the flow path of 
-+ -+ 

a fluid element. We must, however, bear in mind that j = 0 is only an ap-

proximation, and violent motion of the blood in a local place for a short time 

may change <n
2

> rather abruptly. Therefore, <n
2

> should depend on time 

when we follow a fluid element under violent motion. 

Under steady laminar flow <n
2> will be constant for all fluid elements. 

It may yet depend on space because the shear rate depends on space. 

We, therefore, rewrite Eq. (4.44) in the form we shall use later 

(4. 47) 
-+ -+ -+ 

<n(r,t)n(r + ~,t + T)> 
2 -+ -+ 

<n (r,t)>o{~ -
t+T 

J 
-+ -+ 
v[r (p) ,p]dp} 

t 

-+ -+ 
C. Crosscorrelation between n and j,A,B. 

For zero or homogenous velocity field we get from Eq. (4.30) 

-+-+ -+ -+ 
<j(r,t)n(r + ~,t + T)> 

(4. 48) 

-+ 
When we approximate the correlation function of j by a 0-function, we must 

-+ 
bear in mind that the autocorrelation function is an even function in both ~ 

and T. We therefore have 

00 { ~ T 0 

T > 0 

jdt
1
H(t

1
)o(t

1 
+ T) 

-00 

T < 0 

-+ 
The crosscorrelation between j and n then will be 
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T > 0 

-++ + + 
<j (r,t)n(r + ~,t + T)> T 0 (4.49) 

0 T < 0 

The rules for differention of correlation functions give the correlation func­
-+ 

tion between n and the scalar potential for j. 

I 
<j2> + 

3 
G(~ 1 T) T > 0 

+ + -+ <j2> + 
<A(r,t)n(r + ~,t + T) > = 0(~) T 0 

l 
6 

0 T < 0 

where A is defined in Eq. (4.29) 

As discussed when considering the autocorrelation function for n, we may 
+ 

approximate this crosscorrelation function by o(~) for all practical values 

of T. In the general case with nonzero velocity field we may write, taking 

Eq. (4.32b) and the variation of <n
2> with space and time into account 

2 + + 
2D<n (r,t)>o(~-

t+T 

J + + 
v[r (p) ,p]dp) T > 0 

t 
2 -+ -+ 

D<n (r, t) >o (~) T 0 
+ + + 

<A(r,t)n(r + ~,t + T)> 

0 T < 0 

(4. 50) 

·+ 
r(p) is the path of the fluid element which at time t has the position 

-+ r. 

As discussed in connection with Eq. (4.29) we have 

-+-:>- -+ + -+ 
<B(r,t)n(r + ~,t + T)> 0 (4. 51) 

D. Further discussion on the assumrtion of a-correlation for the stochastic 

current. 

-+ -+ 
The solution of Eq. (4.27) with v = 0 may be rewritten in the following 

form [58] 
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n(r,t) 
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(4.52) 

+ 
The first integral represents the decay of the initial distribution, n(r,O), 

and the second integral represents the change of n caused by the stochastic 

current. Assuming the process to be stationary in space and time we have 

-+ -+ + 
<n(r,t)n(r + ~,t + T)> (4. 53) 

+ -+ 
The conditional expectation of n(~ 1 T) given n(r,O) may be obtained from 

Eq. ( 4 . 52) 1 T > 0 

(4. 54) 

+ + 
n is obtained from j by a time causal operator. When j is 6-correlated 

in time the conditional expect.ation 

will take on values diff(crent from zero only whQn t
1 

2 0. 'I'his implies that 

the last integral in Eq. (4.54) vanishes. From the o::ame equation we then see 

{ -+ I + l that E n ( [, , T ) . n ( r 1 0) J evolves by a homogenous diffusion equation 

(4. ':)')) 

·+ ·~ + -r 
If j is not a-correlated in time, E{j(r

1
,\)Jn(r,O)} will take on values 

different from zero for 

occur. 

t > 0 
1 

and an inhomogenous term in Eq. (4.55) will 

It seems reasonable that on the scale we are studying the problem Eq. (4.55) 
-+ 

should hold. This directly implies a-correlation in time for :J. The 6-corre-

lation in space must still be obtained by direct assumption comparing the cell 

scale in blood to the ultrasonic wave length. 

To obtain the full correlation function for n we must calculate 

E{n(!,T) \n(~,O) }. Assuming Eq. (4.55) to be valid this function is given once 

E{n(;,O) Jn(O,O)} is given. 'I'his is given by the history of n before t = 0. 
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-+ 
If j is the only force affecting n from t = -oo and a-correlation in 

-+ 
space of j is assumed, we have from Eq. (4.32) 

-+ -+ 2-+ -+ 
E{n(r,O) jn(O,O)} = n (O,O)a(r) ( 4. 56) 

By Eq. (4. 54) this gives, T > 0 

-+ -+ 2-+ -+ 
E{n(CTl jn(O,O)} = n (O,O)G(CTl (4. 57) 

-+ 
Averaging over 

time, putting 

n(O,O) and encountering stationary conditions in space and 
2-+ 2-+ 

<n (0,0)> = <n (r,t)> = const, we get 

-+ -+ -+ 
<n(r,t)n(r + ~,t + T)> 

2 -+ 
<n >G(~,T) T > 0 (4.58) 

Being stationary the correlation function must be symmetric in T. This implies 

that the absolute value of T should be used when T is negative. 

In Section 4.2 B we have found a decrease in the diffusion constant with 

increasing concentration of cells. Eq. (4.40) indicates a decrease in the cor­

relation length with increasing concentration. This may seem a little contra­

dictory because we have often encountered that the cells will be stochastically 

independent of eachother only at very low concentrations, and that the degree 

of interaction between the cells increases with concentration. 

The reason for this is that the scale on which we are studying the fluctua­

tions is larger than that for the neighbouring interactions between the cells. 

Information of a fluctuation is only communicated by diffusion and since trans­

lational momentum and energy willbe lost in the collision between cells, the 

diffusion constant decreases with concentration. 

On this scale the fluctuations at one specified time will be a-correlated 

in space for all practical concentrations n. The difference between the low 
2 

concentration case and the high concentration case is contained in <n >. 
2 

For low concentration between the cells we will have <n > = n
0

, while in the 

high concentration case with interaction between the cells, <n2> will decrease 

from this value as indicated in Eq. (4.34). 
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4.3. The scattering of ultrasound from concentration fluctuations of cells. 

In the usual method of blood velocity measurements by ultrasound, the inci­

dent wave is transferred from a transducer at the skin or at the vessel-surface. 

Because of the inhomogeneity of the biological tissue, the wave will undergo 

refraction and scattering on its way to the blood. In the following these ef­

fects are neglected. 

When entering the blood, the wave will pass into a medium with a velocity 

gradient. The wave motion in such a medium is generally very complex. The 

velocity of blood is, however, very small compared to that of the sound. A 

good approximation is therefore, to consider blood at rest with respect to wave­

motion [50]. 

In a liquid we generally think of longitudinal acoustical waves. In a vis­

cous liquid we may also have shear waves, but theese are heavily damped and are 

therefore neglected. 

The cells are truly anisotropic scatterers./ When blood is at rest, they 

are distributed randomly, some of them forming rouleaux and aggregates. In 

shear motion, however, the cells have a tendency of orienting themselves along 

the shear direction as discussed in the previous paragraph. This should give 

anisotropic properties concerning elastic wave motion, but there are 

arguments that the degree of anisotropy is not very high. First, the difference 

in elasticity and mass density between plasma and cells is not very high. 

Second, the packing of cells is dense. The membrane of the cells seems to be­

have like a football bladder around the hemoglobine molecules. The cells are, 

therefore, quite deformarble, providing almost the same properties of compres­

sibility in all directions of the blood. In this text we treat the blood to 

have isotropic properties concerning wave motion. 

A. Basic scattering theory. 

In wave motion the fluid elements will oscillate around their elastic equi-
+ ++ 

librium position r. Let u(r,t) be the velocity of displacement of such a 

fluid element at time t. We consider here only small displacements so that 

nonlinear terms can be neglected. The time change of the pressure, p, associa­

ted with adiabatic elastic compressions and rarefactions of the fluid can be 

written [49][54] 

dp 
dt (4.59) 



- 88 -

H is the compressibility. Sometimes the bulk modulus or modulus of compres­

sion, c = H- 1 , is used. The equation of motion for a small fluid element un­

der elastic deformation will be 

+ 
Cl(pu) = -'Vp 

Clt 

where p is the mass density of the fluid. 

(4.60) 

Both mass density and compressibility will change with time and position 

because of variations in cell concentration. 

+ 
p(r,t) 

+ + (4. 61) 
H (r, t) = Mo + x

1 
(r, t) 

Here the subscript 0 indicates mean values taken over a large volume. p
1 

and are the local deviations from theese values. If the collision fre-

quency is so high that we may consider the fluid as a continuum, and 

can be expressed directly by the fluctuation in cell concentration, n. 

+ dp + 
P1 (r,t) = dn n(r,t) 

0 

+ 
x

1 
(r,t) 

dx + 
dn n(r,t) 

0 
( 4. 62) 

When migration occurs n
0 

will be space dependent. We then define 

p
0

(r,t) = <p(r,t)> and x
0

(r,t) = <x(r,t)>. These variables vary so slowly 

in space that gradients will still mainly be given by those of p
1 

and 

If the condition on the collision frequency is not met, p
1 

and can-

not be expressed in this way by n. To treat the scattering in this case we 

have to consider individual partj.cles suspended in a liquid. We leave the more 

detailed discussion of this case until the theory of the scattering is more 

developed. 

+ + 
In wave motion the time change in pu will be dominated by that of u. 

We may, therefore, approximate Eq. (4.60) by 

+ 
Clu 1 
Clt = - p 'Vp (4. 63) 

Combining Eq. (4. 63) and Eq. (4.59) and encountering slow time dependency of 

X compared to p, we get 

l ()2 
\7 (- 'Vp) - X ~= 0 p 

Clt 
2 

(4.64) 

This is the equation governing motion of pressure waves with small apmlitude 

in blood. Using Eq. (4.61) we may reorganize Eq. (4.64) to get 
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(4. 65) 

2 1 
c 

Possible variations in c caused by migration are small and may be neglected. 

We may here remark that it is H
1
/x

0 
while it is p

1
/p which enters into the 

right side of Eq. (4. 65). }(O is the mean value while p is the total local 

value. For blood the difference between the mean and local value for p and 

x will be so small that inserting p
0 

instead of p will be a very good 

approximation. 

Eq. (4.65) has the appropriate form to be transformed into an inhomogeneous 

integral equation. We may consider it as an inhomogeneous wave equation with a 

source term determined by the solution p itself. We then have [ 49] [54] 

-+ 
p(r,t) (-+ _!_J d3c 1 

Po r,t) - 4n sl_,. -+1 
R r-[_, 

-+ 1!-tl) 
v(l <t;,,t- c 

+ 
1;-tl) P(tt-

c 

-+ 
V'p(E_,,t - 1;-tl))l 

c f (4.66) 

-+ 
Here the operator 'i7 should operate on the original space variable [_,, not 

on 1;-tl/c. R is the region containing scatterers. 

We now let the incident wave be time harmonic with angular frequency w
0

. 

-+ 
p

0 
(r,t) {

A -+ iw0 t_} 
Re p

0
(r)e (4.67) 

and x
1 

will be slowly varying with time compared to the wave. We, there-

fore, make the approximation 

(4. 68) 

-+ 
Because of the time dependency of p

1 
and H

1
, the total field p(r,t) will 

not contain a single frequency. There will be a broadening of the incident 

spectrum because of diffusion. If blood is in motion, there will also be a 
A -)-

doppler shift, as we will se later. We define the complex function p(r,t) by 
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~ {~ + iw0 t 
p(r,t) = Re p(r,t)e } 

The time dependency of p(r,t) will be slow like that for 

therefore, also approximate 

~ ~ 
p(~,t I; - tj + 

.... _ ;:c.._---'<'-:>.L.) ~ p ( ~ , t) 
c 

Eq. (4.66) now takes the form 

~ ~ 
p(r ,t) 

~ + 
p

0
(r) -

+ 
pl(~,t) 

IJ( + 
p ( ~, t) 

(4.69) 

and We, 

(4. 70) 

A + } 1/p(~,t)) (4.71) 

The last term in Eq. (4.71) may be integrated by parts and we get 

A ~ 
p(r,t) 

A + 
p

0 
(r) 

~ 

G (r) 

The first term under the integral is a monopole source term, which stems from 

the fluctuations in the compressibility. The fluctuations in the density give 

the second term, which is a dipole term. 

Eq. (4. 72) can be solved by iteration. We then write }( = ll}(l and 
1 

where u 3 ~ -+ ]2 and <[[d3rpl (-;,t)]2> pl = llP 1 
< d r}(

1 
(r,t) > = V·}(

0 = V·p
0

, v is 
v v 

an arbitrary volume greater than zero. By this normalization l-1 will be much 

smaller than unity. To abbreviate the notation we write the integral operator 

in Eq. (4.72) lJK. The equation then takes on the form 

A A 

+ lJKp (4. 73) p Po 

To a zero order approximation we write 

A A 

p Po 

Inserting this into the right side of Eq. (4.73) we get the first order approxi-

mat ion 
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By iterat.ing t::~.is :>rc,c:,~.::ure the higher orc.er approximations are 

·~Kf,., + 
.._; 

(4. 74) 

The series in Eq. (4.74) can be given a direct physical interpretation. The 

zero order field is the incident field. This is scattered and gives f-!Kp
0

, 

which we call the first order scattered field. This in turn is scattered and 
2 2A 

gives the second order scattered field f-1 K p
0

, and so on. 

If f-1 is small as in blood, the scattered field will decrease rapidly with 

increasing order. It is, therefore, sufficient to consider the first order 

scattered field, known as the Born approximation. To the first order the scat-

tered field is then 

A -+ 
p (r,t) 

s 
(4. 75) 

The validity of the Born approximation when p
1 

and ~l cannot be consi­

dered small quantities is discussed in [54] for spheres. The result shows that 

in our case the Born approximation is very good. 

When t.he cell concentration is so high that Eq. (4.62) holds we get, using 

the approximation P f'::1 Po 

A -+ 
p (r ,t) 

s fd
3c{k

0
2 1 d~ A -+ -+ -+ l dp A t O -+ -+ } -+ 

s --- p (~)G(r-~) +- dn IJ0 p
0

(s) v 0G(r-~) n(~,t) 
R ~o dno 0 Po o "' "' 

(4. 76) 

We are now in position to discuss the situation when the collision frequency 

condition is not met. As we have discussed above we may treat the scatteres as 

stochastic independent of eachother. We also consider scatterers which are 

much smaller than the wavelength and the field outside the scattering region. 

We may then neglect the variation in p
0 

and G over the scatterer, which 

gives for one scatterer 

A -+ 
p . (r,t) 

Sl 

A -+ -+ 
+ IJ p

0 
( r. ( t) ) IJ G ( r -

r. 1 r. 
l l 

-+ 
p

1 
<Ct) 

;, (t) >I d3t: 
l -+ 

v. p(t;,t) 
l 

(4. 77) 
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-+ 
v . 
~ 

is the region occupied by scatterer i and r. (t) is the path of the scat­
~ 

terer. and are the differences in compressibility and density between 

the scatterer and the average values over a large volume of the blood. The in-

tegrals we write as and 

-+ 

3 ){l ( ~,t ) 
= J d ~ 

v . 
~ 

J d3~ 
v. 
~ 

-+ 
pl ( ~,t ) 

(4. 78 ) 

When the scatterers are homogeneous, i.e. and are constants, we have 

V is the volume of the scatterer. 

pl 
- v . 
p ~ 

We thus see that a cloud of isotropic and independent scatterers may be 

represented by 

-+ 
p

1
(r,t ) 

-+ 
p (r,t ) 

-+ 
x

1
(r,t ) 

){0 

where r. (t) 
~ 

I 
-+ -+ 

yp o (r- r. (t )) 
i 

~ 

(4.79 ) 

I 
-+ -+ 

y){ o (r- r. (t )) 
i 

~ 

is the path of scatterer i. Inserting this into Eq. (4. 75 ) , 

the scattered field from such a cloud is obtained 

A -+ 
p (r,t ) 

s 
\ { 2 A -+ -+ -+ A -+ -+ -+ 
L k

0 
yxp

0
(r{ (t )) G (r- r{ (t )) + y \1 p

0
(r. ( t ) ) \/ G(r - r. (t))} 

~ ~ p ri ~ ri ~ 
i 

(4. 80 ) 

When the mean distance between the scatterers is much smaller than the wave-

length, i.e., the "point" volume element considered in Section 4.1C 

co ains many scatterers, the summation in Eq . (4.80) may be approximated by 

an l.ntegral 

A -+ 
p (r,t) 

s 

-+ 
Here we write nT ( ~,t ) 

rapidly varying function of 

-+ 
n

0 
+ n ( ~,t ) . The rest of the integrand is a very 

-+ 
~. The integral containing n

0 
will, therefore, 

disappear, and again we see that the scattering may be considered to result 

from the concentration fluctuations of cells 



A -+ 
p ( r, t) 

s 
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(4. 82) 

This result is of the same form as that for large values of n
0 

given in 

Eq. (4. 76) . It will, therefore, be used in the rest of this work. and 

y
0 

should then be defined by 

-+ -+ 

fd3t;, 
){ 1 (t;, t) 

fd3t;, 
pl(E;,,t) 

weak interaction (4.83a) y)t 
xo 

yp -+ 
v v p (t;, ,t) 

1 dx · l dp strong interaction ( 4. 83b) y)t --- yp 
xo dno o

0 
dn

0 

B. The scatterin9 of a plane wave. Experimental investigation of the problem 

of stochastic dependence-independence of the scatterers. 

We now calculate the scattered far-field (t;,ER ~ E;,/r << 1) when the inci-

dent wave is a plane wave, i.e. 

-+-+ 

A -+ 
Po (r) 

-ik r 
Ae 0 

-+ 
-+ 

A is the amplitude and k
0 

is the incident wave vector lk
0

1 = 2TI/A. 

To the first order in E;,/r we get 

I; - !I 

1 

I; 

-+ 
G(r -

-+ 
e 

r 

tl 

-+ 

-+ 
r 
r 

s) 

-+ -+ 
r - e ·t;, 

r 

l 
r 

-+ -+ 
-i(kr- k ·E;,) 

s 
e 

-+ 
k 

s 

4Tir 

-+ 
k·e 

r 

Eq. (4.82) now takes the form 

(4.84) 

(4.85) 

(4 .86) 
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The coordinates and directions are given in Figure 4.4. 

incident wave 

I 
scattering region R 

F'igu:re 4. 4. Illustrations to the scattering of a plane wave. 
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The volume integral is the Fourier space transform, " -+ n(q,t), 
-+ 

-+ 
of n(r,t) 

over the region R. By the inverse theorem we may consider n(r,t) to be 
-7 . -+-+ 

composed of plane partial waves n(q,t)e-lqr. Eq. (4.86) then shows that we 

will get constructive interaction between the incident wave and the partial 

wave, n, which satisfies the Bragg-condition of interference 

-+ 
q (4.87) 

The differential scattering crossection I(8,~) is defined by the equation 

(4.88) 

where dP is the mean power scattered in direction (8,~) through the differen­

tial solid angle dn. This gives 

2 I 2 I (8,~) ""'r < p (r,8,~,t) I > 
s 

From Eq. (4.47) we have 

(4. 89) 

When <n
2> is independent of space the scattered intensity will be propor­

tional to the volume of R. 

The space dependency of I is given by the factor 

(4. 90) 

The first term represents monopole scattering while the second represents di­

pole scattering. The scattered intensity is anisotropic in contrast to the 

conclusion of Reid & al [44]. The scattered intensity is proportional to the fre­

quency in the fourth power as found by Reid & al. Since <n2
> increases less 

than n
0 

when interaction between the cells occurs~ it will decrease from 

being proportional to n0~ Eq. (4.34)~ also in contrast to the results found 

by Reid & al. 

Treating the scattering as resulting from fluctuations in the parameters 

of a continuum,resolves the problem of calculating the correlation between the 

neighbouring cells. Because ~the wave~-IE"mg"E:h of~t:he -sound Is Tong, we may approxi-
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mate the correlation function of the parameter fluctuations by a-functions, and 

the interaction between the cells is contained in <n
2

> like discussed in Sec-

tion 4.2 D. 

If the sign of and are equal, the maximum scattered intensity 

will occur in the forwards direction. If the signs are opposite, the maximum 

scattered intensity will occur in the backwards direction. There will be direc­

tions with zero scattered intensity if 

(4.91) 

For plasma the density, p , is 1.03, while that for cells, p , is 1.10. 
p c 

A suspension of large particles in a liquid, like that of cells in the plasma, 

will give a linear dependency of the solution mass density on the mean fraction 

of cells. We thus have 

p + no(p - p ) 
p c p 

Since p > p , yp will be positive. 
c p 

(4.92) 

The compressibility of the cells is smaller than that of the plasma and 

a decrease in solution compressibility with increasing concentration of cells 

should be expected. This gives a negative value of y . 
X 

To get quantitative values of Yx' the wave velocity 

(4.93) 

as a function of the HCT is measured. The results are given in Figure 4.5. 

A physical explanation of the results can be given. At small cell concen­

trations the interaction between the cells will be weak. The compressibility 

will be determined by the plasma-plasma and the plasma-cell interaction, and 

will, therefore, be almost independent of the mean cell concentration, n
0

• 

Since the density increases linearily with n
0

, a decrease in is expec-

ted when increases from zero. 

As increases and interaction between the cells becomes more dominant, 

the compressibility will decrease, and a subsequent increase in the wave velo­

city is observed. 

The minimum of the wave velocity, therefore gives a limit of about 0.15 for 

the cell concentration above which the interaction between the cells cannot be 

neglected. 
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-+ 

Figure 4.5. Measured velocity of sound for human blood at different 

values of HCT. The measurements are described in 

Appendix II. 



- 98 -

From the measured results of c and Eqs. (4.92) and (4.93) the compressi­

bility as a function of n
0 

is calculated. The result is shown in Figure 4.6. 
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I 
!!.:: 

i5 
(/) 
(/) 

8:! 
0. 
E 
0 
u 

0 

0 ·t .4 .6 .8 
mean fractional volume of cells n0 

Figure 4.6. Variation of the compressibility x with HCT~ n0. The 

values are calcu~ated from the measured values of c 

in Figure 4. 5. 
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Throughout the whole range of n
0 

we have from Eq. (4.92) 

l dp y =---= 
p p

0 
dn

0 
(4.94) 

From Figure 4.6 we have when n
0 

is above 0.2 

(4.95) 

Because of the variation of with this expression will vary more than 

varies with 

When n
0 

is less than 0.2, dn/dn
0 

will tend to zero. The expression for 

yp and yn .in Eq. (4.83a) should then be used. We approximate the cells by 

homogeneous scatterers whose density is (J • 
c 

The compressibility is taken to 

be the extrapolation of the curve in Figure 4.6 to n
0 

= 1.0. When n
0 

< 0.2 

we obtain 

pl 
y =- v 

p p 
.064 v -0.155 v (4.96) 

V is the volume of the cell. Thus, the monopole scattering will dominate when 

n
0 

tends to zero also, although dn/dn
0 

tends to zero. 

A polar diagram for the scattered intensity is given in Figure 4.7. The 

values of and from Eq. (4.94) and Eq. (4.95) is used. 

(-0.2 + 0,065cos9 )2 

7,02 • w-2 

,4 2 .2 ,4 

Figure 4.?. Polar diagram for the differential scattering crossection 

of a plane wave from blood. HCT ~ 40-50 %. 
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The variation with of the ratio between the monopole term and the di-

pole term is given in Figure 4.8. The ratio is almost constant. 

t 

E 
-3.0 \-

(\) 

~ 
0 
a. 

"'0 

""' E ,__ 

2 
(\) 

0 a. 
0 
c 
0 
E 

-2.0 

- 1.0 

0 .2 .4 .6 .8 

mean tractional volume ofcells n0 + 

Figure 4.8. Variation of the ratio between the monopote and dipote 

terms in the scattered intensity. 
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c. The output of the receiving transducer from ultrasound scattered by blood. 

The blood vessel will normally be in the near-field or near far-field re-

gion of the transmitting and receiving transducer. When we excite the trans­

mitting transducer by a time harmonic voltage with angular frequency w
0

, the 

complex pressure amplitude of the transmitted wave may be written 

(4.97) 

When the transducer is much larger than the wavelength, we may approximate ~T 

in the near-field by 

-+ 
k 

T 

-+ -+ 
k ·r + c 
-~ T 

27f -+ 
-n 
.\ T 

where is the unit normal vector to the transducer face. 

we always have 

k ·r + const 
T 

(4.98) 

In the far-field 

(4.99) 

The origin of the coordinate system is located in the centre of the transducer 

plane. 

The scattered field may be represented by the following source density, see 

Eq. (4.82). 

2 A-+-+ -+A-+ 
-k

0 
y p (r)n(r,t) + y V(n(r,t)Vp (r)) 

X T p T 
(4.100) 

where we have omitted w in As discussed above this density is composed 

of a monopole term and dipole term, the monopole term being the largest by a 

factor 3. 

~r the receiving transducer the following reciprocity theorem holds: 

Let the transducer be excited with a voltage of angular frequency w0. 

This gives rise to an emitted pressure wave with corrrplex arrrpU·tude 

(4.101) 



where AR is the real amplitude 

sity with angular frequency wo 
region R, the output from the 

e (t) 
m 
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and <f!R the phase. If a monopole source den-

and magnitude 
-+ 

m(v.,t) excites waves in a 

receiving transducer is given by 

(4.102) 

where a is a complex constant of proportionality. The time variation of m 

is supposed to be slow compared to the time delay of the wave motion between 

the source and the transducer. 

From this expression we may also calculate the output from a dipole source 

distribution. This can be done by representing the dipole distribution by two 

identical monopole distributions with opposite sign q and -q and displaced a 

small distance 1 relative to eachother. The dipole density is then 

-+-+ 
d(r,t) == lim 

The transducer output from the dipole distribution is then 

(4.103) 

-+ 
Here again the time variation :Ln d is slow. The proofs of these two state-

ments for the uniform piston approximation of the transducer are found in Ap­

pendix III. 

When Eqs. (4.102) and (4.103) are combined with Eq. (4.100) the output of the 

receiving transducer due to the ultrasound scattered by blood is given by 

e (t) (4.104) 

When a pulsed wave meter is used, a distribution of frequencies is trans­

mitted. As shown in the previous section, the scattered intensity is propor­

tional to the fourth power of the frequency. However, the relative width of 

the frequency band is so small (200 kHz/2 MHz) that the scattering may be con­

sidered to be frequency independent across this band. The effect of pulsing 

may, therefore, be incorporated by multiplying the transmitting transducer 
-+ 

field pattern P,I' by a window function S (s). This is given by the intersec-

tion between the vessel and the range cell (see Section 2. 2). By this t.he 

region of integration may be extended to the whole space. When a continuous 
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+ 
wave meter is used, S(~ ) should be the characteristic function of the vessel. 

Using Eqs. (4.97 ) and (4.101 ) we may write this expression in a shorter 

form which we shall use later 

iw t + 

e ( t ) e 0 ! a ! Jd3~R (t) ei~(~ ) n (t,t ) (4.105 ) 
R 

where we have defined 

+ 
R(~ ) = IA(t) I 

+ + + + 
+ ..::Ia ! ~ ( ~ ) -cpT ( ~ ) - cpR(~) + .t:.A(~) (4.106) 

+ + 
~ ( ~ ) is now multiplied by S ( ~ ) . 

+ 
R ( ~ ) may be normalized in an appropriate way by taking a constant into a. 

When the transducers are large compared to the wave length, the plane wave ap­

proximation in the near-field may be acceptable, Eq. (4.98) . In this case AT 

and A will be slowly varying functions inside the observation region and 
R 

their gradients can be neglected compared to those of the phases cpT and cpR. 
+ + 

Inside the observation region we, therefore, have (Note: kT = -ks' Eq. (4.86)) 

+ 
R(~) (4.107) 

In this case we normalize R so that it is approximately unity inside the ob­

servation region. At the boundaries of the observation region the contribu-

tion from 'VAT and 'VA cannot be neglected. 
R 

The contribution to the inte-

gral from this part may, however, be neglected compared to the rest. This 

gives for large transducers: 

+ + + 

e (t ) 
iw

0
t -i[c +c ] 

3 
-i(k +k )~ 

e ae T R Jd ~R(t)n(t,t)e T R (4.108) 

+ 
where R ( ~) is given by Eq. (4.107). 

, t 
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4.4. Summary. 

The scattering of ultrasound from blood has been studied. The scattered 

wave is considered to result from fluctuations of the parameters about mean 

values in a continuum model of the blood. In this model the interaction between 

the blood cells is taken into account. Its effect is contained in the variance 

of the concentration fluctuations of cells A stochastic model of the 

concentration fluctuations of the blood cells has been given. This model en­

ables us to calculate the mean scattered intensity. 

The experimental findings of Reid & al [44] have been discussed in relation 

to our theory and measurements of the wave velocity in blood as a function of 

the mean cell concentration. We argue against three of their conclusions. 

i) The cells can be considered independent up to a concentration of 10 % in 

contrast to their value of 40 %. 

ii) The scattered intensity will be proportional to the cell concentration 

only at concentrations less than 10 %. When the cell concentration is 

above this value, the intensity will decrease from the proportional de­

pendency of the concentration. 

iii) The scattered intensity is anisotropic in contrast to their result. The 

degree of anisotropy is, however, not very high, Figure 4.7, so that 

inaccuracies in the measurements may lead to a conclusion of isotropy. 

The scattered intensity is calculated to be proportional to the frequency 

in the fourth power which is in agreement with the experimental findings of 

Reid & al. 

The output signal from the receiving transducer in blood flow measurements 

are calculated. In contrast to theresultsof Brody [45] the scattering aniso­

tropy of blood and the interaction between the cells is taken into account. 

We are also able to handle nonstationary velocity fields. 
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5. ESTIMATION OF VELOCITY OF BLOOD FROM THE RECEIVED DOPPLER-SIGNAL 

The analytic form of the received signal is given in Eq. (4.105). In this 

chapter we discuss methods of estimating the velocity of blood from this sig­

nal. We first show the relation between the received signal and the 

velocity field in the observation region, using the scattering theory developed 

in the previous chapter. Then the performance of mean velocity estimators is 

discussed, together with practical realizations of the estimators. 

The use of power spectrum estimation is briefly discussed while practical 

methods for estimating power spectra are only given by references. 

5.1. The relation between velocity field and received signal. 

A. Synchronous demodulation. Quadrature components of the received signal. 

Let 

e (t) (5.1) 

be the received signal. w
0 

is the angular frequency of the transmitted signal. 

EHt) is a complex lowpass signal. In our case w = 27T · 2 · 10
6 

s -l 

maximum angular frequency component of 
0 

and the 

4 -1 e will be of the order of 2TI•l0 S • 

The quadrature components of e(t) are defined by 

Re e(t) 
( 5. 2) 

Im e(t) 

These signals may be obtained from e(t) by multiplying with sin w
0

t and 

cos w
0
t. The multiplication is followed by a lowpass filter which removes 

the high frequency components introduced in the multiplication. This is illu­

strated in Figure 5.1. 

Assume that e(t) 
A 

is Fourier transformable with the transform E(w) i.e. 

A e (t) = e
1 

(t) + ie
2 

(t) +-+ E (W) (5. 3) 

For the complex conjugate of 
A 

e we may easily verify that 

Hence 
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e(t) = Re{e(t)eiwot} -2 sin w0 t 

-
2 cos w0 t 

X 

Fiuure b. I. 

I_ . A A 

e
1 

(t) H 2-{E (cu) + E* (-(u)} 

(5. 4) 

l A 

e (t) +-+ -:-{E (ul) - E* (-w) J 
2 2J. 

From Eq. (4.105) we have 

( s. 5) 

B. Fourier-transform and power spectrum of the rec_eived signa!..:_ 

e(t) may in general not have a Fourier-transform. We therefore study 

A (t) 
eT e (t) ·xT (t) (5.6) 

~ {: t E (-T,T] 

X,r (t) 
t fl (-T,T] 
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XT is the characteristic function of the set [-T,T]. In all practical cases 
A A 

eT will have a Fourier-transform since e will have finite energy over a fi-

nite interval of time. eT therefore belongs to L
2

[-T,T). The Fourier-trans­

form of eT(t) ,ET(w) will be 

E (W) 
T 

(5. 7) 

is the time Fourier-transform of 
-+ -+ -+ 

nT(~,t) = n(~,t)Xr. NT(~,w) may 
-r+ 

be obtained from Eq. (4.27) with a special sample function J(r,t). When the 

transducers are not large compared to the wave length ~ will have a 
-+ 

complicated variation of ~· The mathematical relation between the velocity 

field and the received signal will therefore be complicated. 

We shall in this section study the case of large transcucers only so that 

the approximation of Eq. (4.98) holds, which gives 

(5. 8) 

In this case R will be slowly varying inside the observation region. 

Taking the normation into a, R may be approximated by the characteristic 

function of the observation region. 

Eq. (5.8) shows that in this approximation the received signal is the 
-+ -+ -+ -+ 

space Fourier transform of R(~)nT(~,t) with wave vector -(kT + kR). This is 

the Bragg-condition of reflection discussed in Section 4.3B. The Fourier trans-
+ 

form of the product of two functions in r-space is equal to the convolution of 

the Fourier transforms of the individual factors in Fourier space. Thus we may 

express ET(w) by 

-i (c +c ) 
T R A -+ -+ -+ -+ 

ae R(q)*N (-(k +k ) - q,W) 
T T R 

(5. 9) 

A-)> -)> 

where R(q) is the Fourier transform of R(~) and the convolution product in 

Fourier space is defined by 

-+ -+ -+ 
X(q)*Y(k- q) 

(2'1T) n 

1 f n -+ -+ -+ 
d qX(q) Y(k - q) (5.10) 

n is the dimension of the space 

When a stochastic process, x(t), is wide sense stationary, i.e. the mean 

and covariance are independent of time, we can define the power spectrum 

G (W) by [61) 
xx 



G (W) 
XX 

or equivalently 

= lim ~ <\x (w) \
2
> 2T T 

T-+oo 

G (W) ++ R (T) 
XX XX 
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where R (T) is the autocorrelation function of x. 
XX 

-+ 
is obtained from n(~,t) by a linear operator 

(5 .lla) 

(5 .llb) 

Eq. (5.5). A neces-

sary and sufficient condition for n to be wide sense stationary is that the 

velocity field is independent of time. Through the relation, Eq. (5.5), this 

will also be a necessary and sufficient condition for @(t) and thereby 

,,
1

(t) and to be wide sense stationary. 

The problem of stationarity for e(t), F.q. ('i.l), is more complicated. It 

can bE; shown that the follo_wing re 1 ai·i ons Fln' a nncr'SSAry and sufficient con­

dition for e(t) to be wide sense stationary [61]. 

a) R (T) 
ele2 

b) (5 .12) 

As we shall see in Section 5.lD, this holds approximaLelv for steady velocity 

fir• lds when the" observation req.i on is largP alone) Vt/1 compared t.o the wave 

length. For practical band limited transducers this will be true. In this 

approximation, e (t), will be wide sense stationary whcm the VPlocit.y fiE,ld is 

tirnP-steady. 

For time-steady velocit.y fields we thEc~n have from Eq. (5.9) 

I I 2 1 I A --r ·+ ·+ -+ 2 a lim ~- < R(cJ) *N [- (k +k ) -- q,u.l] 1
1 

> 
2T T T R 

T+C0 

(5.13) 

-+ 
When the observation re9ion is small, R(q) will broaden the received spectrum. 

General properties of the correlation functions and power spectra for two 

real stochastic processes e
1 

and are 

R (T) 
eiei 

R (-T) ~ G (W) 
eiei eiei 

(5 .14) 
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If in addition e 1 
and are the quadrature components of a wide sense sta-

tionary band limited process, Eq. (5.12) holds which implies that [61] 

G"'"'(W) ee 

and G are imaginary valued 
e2el 

(5.15) 

c. The received power spectrum from a homogeneous velocity field. Effect 

of diffusion and finite transit time. 

In the case of a homogeneous velocity field we may directly calculate 
-+ 

NT(q,w) from Eq. (4.27). We assume that the observation region is large, 

so that R is constant equal to unity inside the observation region. In this 

case we use 
T -+-+ 

Jd 3r Jdt (-+ t) i (q r - wt) n r, e (5 .16) 
R -T 

which gives 
-+ -+ -+ 

-iq J (q,w) 
T 

~------~------- + boundary terms 2 -+-+ 
q D + i (w - q v) 

(5.17) 

Since R is large, the boundary terms may be neglected. From Eq. (5.13) we 

calculate the power spectrum of e(t). 

2 2 
6q o<n >v 

(5.18) 
2 2 -+-+ 2 

(q D) + (W - q V) 

v is the volume of R. We have used the a-correlation property of 
-+ 
j and the 
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relation between and 
2 

<n > 
-+ ...... 2 

from Eq. (4.32b) to calculate <IJ(q,W) I >. 

The power spectrum of 

shift frequency 

A 

e is a Lorentzian line centered around the doppler-

-+ -+ -+ wo -+ -+ -+ 
w = - (k + k ) v ==- -(n + n ) v 

d T R c T R 
(5.19) 

and are the unit normal vectors of the transmitting and receiving 

transducer surfaces. The linewidth is determined by the diffusion constant. 

Physically this is intimately connected to the lifetime of the Fourier compo­

nent of the fluctuation which interacts with the wave (see previous section). 

Following the flow we have from Eq. (4.55) 

-+ -+ 
oE{N(q,t) ln(r,O)} 'f q2DE{N(~,t) ln(;,O)} at 

-+ -+ -+ 
q - (k + k ) 

T R 

The solution of this equations is 

0 (5. 20) 

-+ -+ -+ -D 
2

t 
E{N(q,t)ln(r,O)} = N

0
(q)e q (5.21) 

-+ 
From this equation we could define a lifetime of the Fourier component N0 (q) 

T 
q 

l 
2 

Dq 

Eq. (5.18) gives the half power linewidth of the spectrum 

2 
2q D 

(5.22) 

(5. 23) 

This is twice the inverse lifetime of the interacting Fourier component. 

-+ -+ 
Let the transmitting and receiving transducers be the same, i.e. kT = kR 

-+ w
0
/c·n. The relative linewidth will be 

-+ 
where vn is the component of the velocity along n. For f

0 
value of D given by Eq. (4.39) we get 

6w l0-9 [m/s] 
w ~ lv I [m/s] 

d n 

(5. 24) 

2 MHz and the 

(5. 25) 
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Practical values of v 
n 

will be above 
-1 

10 m/s and therefore the relative 

linewidth will be very small. This is another argument that the effect of dif-

fusion may be neglected in calculating the correlation functions in Section 

4.2. 

When the observation region is smal~ additional broadening will occur due 

to the convolution with R in Eq. (5.13). Let the length of the observation 
-+ 

region in the direction of v be L. Let also the coordinate system be orien-

ted with the 

A -7-
R(q) 

-+ 
axis along v. 

sin q/2 L 

q/2 f (q2 ,q3) 

-+ -+ 

-+ 
R(q) may be approximated by 

(5.26) 

-+ 
Thus the "inaccuracy" of (k + 

T kR) along v due to the convolution between 

R and NT will be 

-+ -+ 21T 
L'l(kT + kR) l = L 

This gives a broadening of the received spectrum of 

L'lw 21T·~ 
L 

The relative broadening of the received line will be 

:\ 
2L 

(5. 27) 

(5.28) 

(5.29) 

This may also be considered to stem from the finite transit time of the 

scatterers through the observation region. Each scatterer will give a burst of 

oscillations at the doppler frequency with duration L/v. Due to the finite 

duration of these oscillations, there will be relative broadening in frequency 

of the received signal from one scatterer given by 

We thus see that when L is much larger than half the wavelength, we may 
A -+ 

consider R(q) to be a a-function in Eq. (5.9) and Eq. (5.13). 

The length of the observation region is approximately 5 mm and the wave­

length is 0.75 mm. From Eq. (5.19) we calculate the broadening of the line 

due to the finite transit time 
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(5.30) 

which is a fairly good sharpness of the line. We may also remark here that the 

broadening is symmetric, which gives (Estimator type III, Section 5.2) 

00 

00 
(5. 31) 

D. Correlation functions and power spectrum of the doppler-signal in the 

case of zero diffusion. 

From the last section it follows that the diffusion gives a negligible 

broadening of the received spectrum. To simplify the mathematical expressions 

we therefore neglect the diffusion in the following calculations. 

The autocorrelation function of the complex doppler signal may be obtained 

from Eq . ( 5 . 5 ) 

Using the o-correlation property of n given by Eq. (4. 4 7) , we may perform the 

integration over ;
2

. 

-+ 
where s is given by 

-+ 
;(p) 

i.e. 

'2 
~ + J dp ~[t(p) ,p]dp 

Tl 

is the path of the fluid element which at time 
-+ ->-
L; = ;(T2). 

(5.32) 

(5. 33) 

T
1 

has the position 
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Similarly we obtain for the correlation functions of the quadrature compo­

nents of the doppler signal 

I 1

2! 3 * ~ 2 ~ ~ ~ a d ~R(;)R(~)<n (~,~)>cos ~(~)cos ~(~) 
1 

2! 3 7 ~ 2 ~ ~ ~ !a! d ~R(~)R(~)<n (~,T~>cos ~(~)sin~(~) 

(5.34) 

The last expressions may be further simplified by the following relations 

1 
+ cos (x+y)] COS X COSy 2[cos(x-y) 

1 
cos (x+y)] sin x sin y 2[cos(x-y) -

sin x cosy I[sin(x-y) + sin (x+y)] 

We then note that the sum terms give rapidly oscillating functions compa-

red to the rest of the integrand. If the observation region is extending 

some wavelengths along v~ (as it is with band limited transducers), these 

terms will give a negligible contribution to the integral. Neglecting these 

terms we get 

(5.35) 

1 
- Im{R"'"'(T 1 ,T 2)} 
2 ee 

For timesteady velocity fields the expressions above will be functions of 

T2 - T
1 

only, Eq. (5.33). This implies that the quadrature components are 

stationary in the wide sense, as discussed in Section 5.1B. If in addition the 
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above approximation is acceptable, Eq. (5.12) is satisfied, which implies that 

that the rf-signal is stationary in the wide sense,as discussed in the same 

section. 

For large transducers where the plane wave approximation is acceptable, we 

have 

(5.36) 
-+ 
q 

In the above expressions we may then insert 

-+ 
V\)J == q 

(5.37) 

For a timesteady, rectilinear velocity field this expression is further reduced 

to 

In this case the correlation function takes the form 

R---A(T) 
ee 

-+-+ -+ 
ial 2fd 3i;R[tJR[t + ;(t)T]<n

2
(t)>eiqv (s)T 

(5.38) 

(5.39) 

In the approxima·tion of Eq. (5.35) R and R is obtained as one half 
elel e2e2 

of the real and imaginary part of the above expression, respectively. 

For further analysis we restrict ourselves to consider timesteady, recti­

linear flow only. The system of reference is oriented so that the 1;
3 

axis is 
-+ -+ 

along v. The position vector in the 1;
1

-i;L plane we call 0. As discussed at 

the end of Section 4.2B, <n
2

> should be constant along a stream line and will 

therefore not depend on 1;
3

• The correlation function of e may then be writ­

ten 

-+-+ -+ 
2 2 -+ -+ 2 -+ iq v (0) T lal jd 0f[0,v(0)T]<n (0)>e 

(5.40) 
-+ -+ 

f[0,v(0)T] 
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The power spectrum of the process may now be obtained by taking the Fourier 

transform of the correlation function 

I 1
2! 2 2 -+ a d cr<n (a)> 

·+ 
(5.41) 

v(CJ) 

where we have defined 

00 
,-+ 

F(CJ,w) J 
· -+ -iwT 

dT f(CJ ,T ]e (5 .42) 
-00 

The power spectra of and are obtained from Eq. (5.41) by the use of 

Eq. (5.15). 

The physical interpretation of the above expressions is that a fluctuation 
-+ 

travelling along a stream-line through CJ gives a burst of oscillations in the 

doppler signal as it passes through the observation region. The power spec­

trum of the burst is a frequency line given by F and centered around 
-+-+ -+ 2 -+ 

w = q v (CJ) . The average power is proportional to <n (CJ) >. 

The width of the frequency line is determined by the inverse transit time. 

To be more explicit we shall further specialize to a weighting function that is 

constant, equal to unity inside the observation region (Figure 5.2) 

-+ 
R (£;) 

-+ -+ -+ ->- -+ -+ 
H(q £;- k]- H[q{f;- L(CJ)}- k] 

H(x) is the Heavyside unit step function. We now obtain 

{ 
-+ 

- ITI -+ 
L(CJ) 

f(CJ,T) 
0 

-+-+ -+ 
l -+ w - qv (CJ) ] 
-+ 

F[CJ, 
-+ 

v(CJ) v(CJ) 

where 
-+ 

L(CJ) 
-+ 

v(CJ) 

else 
-+ 

' -+ . . . -+-+ -+ Tt (CJ) 
r (CJ) Jsln[ (w - q v (CJ) )--·- ]} 

-+ t 2 
2L (CJ) --=--·-· 1 

2 l -+-+-+ Tt(O) 
(W - q v (CJ)) -----

2 

(5.43) 

( 5. 44) 

(5. 44) 

is the transit time through the observation region of the fluid element which 
-+ 

passes through CJ. When Tt is sufficiently large, we may use the following 

approximation 
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Figure 5.2. Illustration of the observation region weighting 

function given in Eq. (5.43). 

-+-+ -+ 
l -+ 

-- F[O -+ , 
w - q v (0)] f::j 

-+ 

-+ -+-+ ->-
2TTL(o)o[w- qv (o)] 

v(O) v(O) 

~3 

(5.45) 

This approximation is useful for other forms of R(~) which appears in 

practice, provided the transit time is sufficiently large. For the general 

form of R we define the equivalent sensitivity length by 

-+ 
L(O) (5. 46) 

Equivalent to the above approximation is also to put 

For large transit times the following approximation of the power spectrum 

may therefore be used 

(5. 47) 
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In Appendix IV it is shown that this expression may be further simplified to 

(5 .48) 

-+ 
f(w) is the family curves in the a-plane satisfying the relation 

-+-+ -+ 
w q v (a) (5 .49) 

p is the arc length parameter along r. 

The above equation may be given the following physical interpretation: 

The scattering density in the a-plane giving a specified angular frequency w 
-+ 2-+ -+ 

is given by L(a)<n (a)> where a satifies Eq. (5.49). The density in the 

frequency domain is given by 

-+ 2 -+ 
L(a)<n (a)> (5.50) 

lvg:~ <a> I 

because the frequency domain and the a-plane are related through Eq. (5.49). 

The scattered intensity at a given angular frequency w is therefore given by 

integration over the curves f(w). 

Example I. Time steady plug flow in a straight vessel. 

In plug flow the velocity is constant across the vessel. The doppler 

signal is given by Eq. (5.5) with the solution in Eq. (4.46) for n. 

-+-+ 
-+) i(ql;+ 8) 
vt e 

-+-+ 
e(t) = a(t)eiqvt 

where we have defined 

(5. 51) 

The signal is'thus a stochastically amplitude modulated oscillation at the 

doppler frequency. The correlation function of the complex envelope is given 

by 

2! 3 -+ -+ -+ 2 -+ I a I d l;R ( l;) R ( l; + vT) <n ( l;) > ( 5. 52) 
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By using a system of reference oriented with the ~ 3-axis along 

we obtain 

2! 2 2 -+ -+ -+ lal d o<n (o)>f(o,v(O)L) 

-+ 
v as above, 

(5. 53) 

where f is given in Eq. (5.40). Assuming the weighting function R given in 

Eq. (5.43) and the transit length L constant across the vessel, we get 

( 5. 54) 
else 

<n
2

> is the mean fluctuation across the vessel defined by 

2 
<n >·A 

where A is the area of the vessel cross section. V = A·L is the volume of 

the observation region and Tt is the transit time. The power spectrum of the 

envelope is given by 

. 2 WTt 
2 2 sln -2-

G""'(w) = Jai v<n > -----
aa 2 

W Tt 

2 

(5.55) 

The envelope is thus lowpass with bandwidth inversely proportional to the 

transit time. We shall return to this phenomenon in Chapter 6, where we study 

the variance of mean velocity estimators. 

The correlation function of the complex doppler signal will be 

·+-+ 
iq V L 

Rr-r-(L)e 
a a 

The quadrature components of the doppler signal is given by 

-+-+ -+-+ 
a

1 
(t) cos (q v t) - a

2 
(t) sin (q v t) 

-+-+ -+-+ 
a

1 
(t) sin (q v t) + a

2 
(t) cos (q v t) 

where we have defined 

( 5. 56) 

(5. 57) 
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(5. 58) 

J 
3 -+ -+ -+ -+-+ 

a
2

(t) = Im{a(t)} = JaJ d E,;R(E: + vt)f(t:}sin(qt:+ 8) 

The correlation functions for and are 

( 5. 59) 

-+-+ -+-+ 
Cos 2 (q E: + 8) and sin 2 (q E: + 8) will be rapidly oscillating functions com-

pared to the rest of the integrand. When the observation region extends seve­
-+ 

ral wavelengths along q, we may then use the following approximation in ana-

logy to that in Eq. (5.35). 

1 
-2 RAA (T) 

a a 

0 

The correlation functions of the quadrature components are 

~~~2 jd3t:R(!)R(t 
-+ 2 -+ -+-+ 

R (T) + vT)<n (E:)>{cos qvT 
elel 

~~~2 jd3t:R(t)R(! 
-+ 2 -+ -+-+ 

R (T) + vT)<n (E:)>{cos qvt 
e2e2 

-+ ->-

(5 .60) 

-+-+ -+-+ 
+ cos (2q t: + 28+qvT)} 

->-t -+-+ - cos(2q + 28+qvT)} 

Assuming q to be along v and using the same system of reference as 

above, we get for R given by Eq. (5.43) 



R (T) 
e1e1 

R (T) 
e2e2 

R (T) 
e1e2 

where 

f(T.) { 1 

g(T) ={: 
L 

R 
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~Ja) 2v<n2>{f(T/Tt)cos qvT + g(T/Tt) 

~Jaj 2v<n2>{f(T/Tt)cos qvT - g(T/T) 
t 

1 2 2 { 2la\ v<n > f(T/Tt)sin q v T + g ( T /T t) 

- \T I IT! < 1 

0 else 

\T I < 1 

else 

sin 

sin 

sin 

sin 

q(L- vT)cos(28)~ 
qL J 

q(L - vL ) cos < 2 e) } 
qL 

q(L- VT)sin(28)} 
qL 

q(L- VT)sin(28)} 
qL 

(5. 62) 

The last term in the expressions will depend on e. For the worst case value 

of 0 its maximum value will be 1/qL = A/2TTLj~T + ~RI times that of the 

maximum value of the first. For L = 0. 8 A and single transducer, we get 

1/qL = 1/10. Normal values using band limited transducers is L = 5-20 A. 
The relative contribution of this term is therefore negligible, except when 

\T\ is in the neigbourhood of Tt. This region in T is, however, so small 

compared to the region where the first term is much larger than the last, that 

this term may be neglected for all T. This discussion gives a quantitative 

justification of the approximation performed in Eq. (5.35) and (5.60), which 

will be used in the rest of this work. 

Example II. Blunt velocity profile in a straight circular vessel. 

The time steady blunt profile in a circular tube is defined by [48] 

v(O) a < a (5.63) 

v 
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a is the radius of the tube and 0 is the radial distance from the tube axis 

to the point where the velocity is calculated. v is the mean velocity across 

the vessel. 

For p = 2 a parabolic profile is obtained and in the limit p -+ 00 plug 

flow results. Profiles for different values of p are shown in Figure 5.3. 

The mean velocity is the same for all the profiles. 

We assume that the sensitllivity length, L, defined in Eq. (5.46) and 
2 

<n > 

is constant across the vessel. Orienting the ~ 3 -axis along the tube axis we 

get from Eq. (5.40) 

-+-+ p 
2 2 

1 i q v 
0 

( 1-x ) T 

jaj <n >V·2fdxxf[v
0
(l- xp)T]e (5.64) 

0 

where v 2 
1Ta L and 

f(vT) 

If we further specialize to the form of R given in Eq. (5.43) we obtain 

jxj < L 

f(x) ( 5. 65) 
else 

Since G""(w) 
ee 

is real, it follows that R""(-T) = R*""(T). It is therefore 

sufficient to calculate 

tion takes the form 

p,-.,,-., (T) 
ee 

RA,-.,(T) 
ee 

R""(O) 
ee 

ee ee 
R"" for T > 0. The normalized autocorrelation func­

ee 

-+-+ 
iqv

0
T 1 

e 2fdx·x[l 
0 

-+-+ 
iqv

0
T 1 

e 2 J dx·x[l 

(1--~)p 
v

0 
T 

. ->-·+ p 
v OT -l q VOTX 

- -(1- xP)]e 
L 

(5.66) 

For p = 1,2 an analytic expression for the integrals may be obtained. For 

p = 4, p",.._(T) 
ee 

may be expressed by Fresnel-integrals and for arbitrary 

integrals take the form of incomplete y-functions with complex arguments. 

p the 
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3.0 

1 
I> 

~ 

0 .5 1.0 

FigW'e 5. 3. Blunt velocity profiles in a ci:r•cular tube. v is 

the mean velocity and a is the radius of the tube. 
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The normalized correlation functions for the quadrature components of the 

doppler signal are given by 

R (T) 
e.e. 

(T) 
l l 

p 
R eiei e. e. (0) 

l l 

p (T) -p (T) 
ele2 e2el 

For 0 < T < L/v
0 

p (T) p (T) 
elel e2e2 

p (T) p (T) 
el e2 e2el 

Re{p,.,,.,(T)} 
ee 

R (T) 
ele2 

R 
e

1
e

1 
(0) 

1 
2 J dx·x [1 

0 

1 
2jdx·x[l 

b 

i 1,2 

Im{p"" (T)} 
ee 

VOT 
- -(1 - xp) ]cos[q"t

0
T(l - xp)] 

L 

VOT 
- -(1 - xP)]sin[q"t

0
T(l- xP)] 

L 

(5.67) 

For T > L/v
0 

the lower integration bound is interchanged with (1 - L/v
0
T)p 

as in Eq. (5.66). Values for negative T are obtained from those of positive 

T by the even symmetry of and the odd symmetry of 

and p 
e2el 

Numerical calculations of p (T) and p (T) are given in Figure 5.4 
elel ele2 

and Figure 5.5 for the profiles shown in Figure 5.3. 

We observe that the lag enters as v
0

T which for each p is proportional 

to vT or T/Td, where v is the mean velocity and Td is the periode of 

its corresponding doppler frequency. 

-+-+ 
The length of the observation region is q L/2TI 

and Figure 5.2 gives 

L 10 
cos 

10 which from Eq. (5.36) 

The transit time will then be 10 Td, which implies that the received doppler 

signal will contain 10 oscillations. For a pulsed wave meter this corresponds 

to a length of 10 oscillations of the transmitted pulse. For single transducer 

~T ~R ~ I~T + ~RI = 2 .. e = 0 then gives 

L = 5 :\ (= 3. 75 mm for f
0 

= 2 MHz) 

Tt L/v is the average transit time through the observation region. 



1.0--

o.a 

0.6 

(:: 

1: 
~0.4 
~ :: 
<n 

0.2 

- - __ E_!VE_!_o~ ~R_!>,..-20 

--- l ""
10 coselit,.+if;i 

T1 = lOTd 

o j \ '\. / L:::f-1 I'\ \ 4== 1.:::::o/ .j. ~ ~ ;6:..\ ':::/, ! -~II \ \7' 1 "-...-----,' j q "'\ I /I\ "'-, \{,..4 ~ ~ ~ -----==-r \ 7 K' T 7 I \ 0:::::::: v <::: :;:> 

-0.2 

-0.4 

-0.6 

-0.8 

-1.0 

---

---
---

Figure 5.4. Autocorrelation functions of the quadrature components of the doppler signal for the 

blunt profiles. 

..... 
N 
,::. 



1.0--r -

.8 

l. 
F • 
~ .4 

" 
~N 
,§., .2 

_ -,. _E~£!:_OP~ ':ER_P,._oo 

L"' 10 cose l'ltf+ WF;1 

T 1 = IOTc~ 

ol v· I ['f:)<:Ctt 43:/s .\kNJ <Zb<----~ ~~ ~V =~ "\, / / 

.2 

.4 

.6 

.8 

-1.0 

Figure 5. 5. 

---

Crosscorrelation functions between the quadrature components of the doppler signal for 

the blunt profiles. 

I-' 
N 
U1 



- 126 -

Since the mean velocity of the profiles is the same, the first zero of 

P (t) seems to be determined, within the accuracy of the figure, by this 
elel 

velocity for p 2,4,8,16. Calculations for p = 3, 6 has also been performed 

and give the same result. of p 
elel 

The distance between the other zeros 

is within the accuracy of the figure, determined by the doppler frequency of 

the maximum velocity present. 

A more detailed analysis shows that these results are only approximate. 

For p = 2 they are exact in the limit of infinite transit time while for 

p = 4 they are approximate even in this limit. For p =ro the mean and max. 

velocities are equal and the result is true for all values of the transit times 

where the last term of Eq. (5.62) may be neglected. 

The approximate power spectrum when neglecting the broadening effect of the 

finite transit time, may be obtained from Eq. (5.48). Normalizing to unit total 

power we get 

4'TT 
-------

2
- wE [min(O,w

0
), max(O,w

0
)] 

1--
~) p 
wo 

0 else 

This spectrum is shown in Figure 5.6. The spectrum will also be broadened 

due to the nonzero bandwidth of F in Eq. (5.41). This bandwidth is inversely 

proportional to the velocity and thereby to the doppler frequency. Thus the 

broadening will be greatest at the upper end of the spectrum and zero at w = 0. 

This broadening will also remove the singularity for p > 2. 

As p increases, the bandwidth of GAA(W) decreases. This is directly 
ee 

reflected in an increased correlation time of the doppler signal as shown in 

Figure 5.4 and 5.5. An increase of the transit time will also decrease the 

bandwidth. However, for small values of p (= 1,2,3) the bandwidth of the 

approximate spectrum of Eq. (5.68) is so large that normal values of the tran­

sit length (L = 5-20 A) will have little effect on the bandwidth. The corre­

lation function of the doppler signal is therefore essentially independent of 

the transit length for low values of p. 

For larger values of p transit time broadening will play a dominant role 

in the total bandwidth of the signal, and in this case the correlation function 

will be more sensitive to the length of the observation region. Increasing 

this length will increase the correlation time of e(t) and in the limit 
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for o:s~ <~ 

= 0 else 

.5 1.0 .5 2.0 .5 

Figure 5.6. Power spectra of the doppler signal from the 

blunt velocity profiles. w is the mean 

angular frequency of the spectrum. 

3.0 
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p + oo the envelope of the correlation function will entirely depend on the 

length of the observation region as shown in Eq. (5.62). 

we shall return to this dependency of the correlation functions on the 

length of the observation region in the next chapter where we study the vari­

ance of mean velocity estimators. 

E. Den2endency of the received 2ower s2ectrum on the illumination of the 

artery. Broadening of the spectrum with small transducers and focusing. 

The received power spectrum will clearly depend on the illumination of the 

artery. An approximate calculation of the spectrum for special cases is given 

by Flax & al [48] and Brody [45]. We shall here only give a brief discussion 

of the effect. 

I 

artery 

w 

Figure 5.7. Received power spectrum from a parabolic profile when the 

width of the transducer beam is smaller than the artery 

cross section. 

a) The axis of the transducer' and artery coincide. The 

smallest velocities are not observed. 

b) The axis of the transducer is parallel to the axis 

of the artery but does not coincide with it, so that all 

velocities are observed but not with fuZZ weight. 

artery 
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For a single transducer and pulsed flowmeter, the observation region will 

approximately be a disc with cross section equal to that of the beam and thick­

ness determined by the transmitted pulse (Section 2.2). We have used this 

approximation in the proceeding section. If the beamwidth is smaller than 

the cross section, all velocities will not be observed with full weight. 

The received power spectrum will therefore be changed as indicated in 

Figure 5.7 for a parabolic profile. 

In most cases the transducer axis will form an angle e with the axis of 

the artery. This reduces the doppler frequency. If the size of the observation 
-+ ->-

region is so large compared to the artery that L(a) is independent of a 

over the whole artery cross section, the width of the transducer beam will have 

no effect on the received power spectrum. This is indicated in Figure 5.8. 

-+ -+ 
For L(a) to be independent of a over the artery, the length of the ob-

servation region has to be less than L
1

. If the transducer is rectangular, 

Figure 5.8. M~~mum length L1 of the observation region for 

no degradation of the power spectrum. 
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~ ~ 

L(O) will also be independent of 0 if the length of the observation region 

is larger than L
2

. For a circular transducer whose diameter compared to that 

of the artery is so large that the curvature of the beam may be neglected 

across the artery, there will be practically no degradation of the spectrum too 

when L
1 

> L
2

. 

In the discussion of the power spectra it is assumed that the transducers 

are so large that the plane-wave approximation may be performed. When this is 

not the case, there will be a change in the received power-spectrum which by 

its entrance in the formula may be divided into two groups. 

~ 

i) In the nearfield R(~) will vary across the observation region, 

giving different weight to different parts of the region. This will 

give an amplitude modulation of the received signal from a single 

scatterer and thus a broadening of the spectrum from this scatterer. 

ii) In the nearfield the phases ~T and ~R will deviate from the plane­

wave variation. This will give an additional broadening of the re­

ceived spectrum from a moving scatterer as indicated in Figure 5.9. 

The reason for these two effects is that the scatterer is illuminated with a 
~ 

distribution of plane monochromatic waves with different k-vectors. Hence, a 

distribution of doppler shifts will be reflected. Since the receiver transdu­
~ 

cer is small, it will be sensitive to a distribution of reflected k-vektors 

and thus a distribution of doppler-shifts will be received. 

The situation is somewhat analogous to the broadening of the spectrum by 
A ~ 

the convolution with R in Eq. (5.13). In this case, however, a single k-
~ 

vector is transmitted, kT' and the receiver is sensitive to a single direction 
~ ~ 

of k-vectors only, given by kR. Thus additional broadening of the spectrum 

occurs when the transducers become small. 

~ 

When focused transducers are used, there will be a broadening in the k-

spectrum of the transducer field patterns and thus a broadening of the received 

power spectrum too. 
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~of scatterer with 
constant velocity 

Lines of (<Pr+<PR) = k·TT 

in the case of small transducers 

Demodulated doppler signal 
from the scatterer 

t 

Figure 5.9. Illustration to the broadening of the received 

spectrum in the case of small transducers. 
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5.2. Velocity and velocity field estimators. 

A. General. 

By a velocity estirnator we mean a device that performs an operation on the 

received signal to get an estimate of the mean velocity of blood in the obser­

vation region. Similarly, velocity field estimators give an estimate of the 

velocity field in the observation region. 

Velocity field estimation may be obtained from the power spectrum. As 

we have seen in the previous paragraph, the power spectrum is a unique map of 

the velocity field once the transducer field patterns and the region of obser­

vation are known. The inverse map is, however, not unique. First of all only a 

component of the velocity in each point is measured. Secondly, the received 

signal isobtainedby integration over the observation region. Changes of the 

velocity field inside the observation region is not uniquely resolved. 

The pulsed and correlation velocity meter has an advantage over the continu­

ouswave meter in that a small observation region may be obtained. In many prac­

tical cases the observation region is so small that the velocity field will be 

essentially constant within this region. The region may then be scanned across 

the vessel to obtain the profile [62, 64]. In the case of nonsteady flow, a 

multigating of t.he received signal is preferable to obtain a simultaneous obser­

vation of regions of different depths along the ulstrasonic beam [63]. 

By scanning the observation region,the measured profile will be a convolu­

tion of the real profile and the observation region. The real profile may then 

be obtained by a deconvolution operation [62]. 

The power spectrum is strictly defined only for a stationary process. This 

implies that the velocity field has to be time steady. When the field is non­

steady we can estimate the power spectrum over so short an interval of time 

that the velocity field may be considered stationary in this interval. 

The finite estimation time introduces a fundamental unbiased stochastic error 

in the estimate. This error cannot be avoided unless additional information of 

the system is taken into account. Such information may be that the flow is 

periodic. This is a good approximation to the healthy cardiovascular system at 

constant conditions of moderate work. In this case estimation may be performed 

over equivalent intervals in the cardiac cycle for many cycles, to reduce the 

variance of the estimate. 

Other information may be taken into account by modelling the cardiovascular 

system, as done by Aaslid [69], and using estimation techniques as developed in 
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connection to control problems, i.e. the Kalman-Busy filter. 

Gee has to be calculated from Ge
1

e
1

, Ge
2

e
2

, Ge
2

e
1 

and Ge
1

e
2

, Eq. (5.14). 

This requires four synchronous demodulators and two power spectrum estimates. 

If the observation region is so large that e(t) can be considered wide sense 

stationary, Eq. (5.15) is valid, and only two powerspectrum estimates are 

necessary. 

When only one sign of the doppler shifts is present in the signal, e
2

(t) 

will be the Hilbert transform of e
1 

(t) multiplied by the sign of the doppler 

shift. This gives [61] 

w > 0 pos. doppler shift 
4G (W) 

elel w < 0 neg. doppler shift 
G"" (W) (5.69) 

ee 
0 else 

In this case Gee (w) may be calculated from Gc,
1

e
1 

(w) and only one spectrum 

estimate is necessary. If the sign of the dopplE~r shift is known, only one 

demodulator is necessary. 

There are two methods that avoid the difficulties above using only one spec-

trum estimate. 

The first method is to use the offset frequency technique for demodulation 

described in Chapter 2. [63], [65], [66]. 

The other method is to use the difference in the phase between the Fourier 

transform of e
1 

(t), E
1 

(w), and of e
2 

(t) ,E
2 

(w). For positive doppler frequen­

cies, i.e., velocity towards the transducer, the phase of E
1 

will be TI/2 

greater than that of 

duce a phase of E
1 

E 
2 

TI/2 

The above phenomenon 

ced by n/ 4, while that 

and e
2 

(t) -+ B (t) . A -

at this frequency. Negative doppler shifts will pro~ 

less than that of 

is used by MacKay [65]. The phase of E
1 

(W) is ad van-

of E
2 

(cu) is delayed by TI/4. By this e
1 

(t) -+ A (t) 

B then gives the signal from targets with positive 

doppler shifts, while A + B gives the signal from targets with negative dop­

pler shifts. 

Spectrum analysis may be performed by a digital computer using a Fast Fourier 

transform algorithm, or by a bank of narrow bandpass filters with center fre­

quencies spread over the interesting frequency band. The real time sweeping 

filter method used in some instruments is not applicable for blood velocity mea­

surements because of the rapid change of velocity with time. However, a sweep­

ing filter combined with time compression is useful. 
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To estimate the cross correlation spectrum G a digital computer is 
eiej 

preferable. It is, therefore, desirable t.o avoid the need for this calculation, 

and, hence, the two methods above are especially useful. 

In the offset frequency method only one demodulator and filter channel is 

necessary while complexity is increased by the offset frequency generator. 

The repetition frequency in the PW meter must be twice the maximum frequency 

occuring at the sample position. This technique, therefore, requires a higher 

repetition frequency than the quadrature method, which decreases the maximum 

measurable depth for a given velocity. 

An offset spectrum may, however, be obtained from the quadrature components 

(5. 70) 

This method is especially useful for the PW meter since minimum repetition fre­

quency for a given doppler shift may be used and only one spectrum estimation 

is necessary. 

The velocity estimators will suffer from the same shortcoming as the velo­

city field estimators in that it is only an average of the component of the vela­
-+ 

city along the k-vectors in the transducer field pattern that may be measured. 

The earliest used velocity estimator was the zero crossing detector. As 

indicated by the name, the detector essentially counts the number of zero cros­

sings of the doppler signal in a defined interval of time. This was taken as 

an estimate of the velocity. 

The estimator evidently works well when the doppler signal is composed of 

a single frequency. For pulsed and co.rrelation velocity meters with focused 

transducers the observation region may be made so small that this is approxi-

mately true. 

When the observation region cannot be made small, as for the continuous 

wave meter, the zero crossing detector has to be calibrated according to the 

actual velocity field [48]. This limits the use of this estimator. 

In many cases, as with measurements in the aorta, it is desirable to illumi­

nate the whole lumen of the artery even when using range resolution, this being 

the most practical way of getting a simultaneous observation of the whole cross 

section of flow. Here the zero crossing detector will be of no use as well. 

A very attractive velocity estimator has been suggested by Brody [45]. It 

is based on the following formula whose validity we show follows from our model 
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of the scattering of the ultrasound 

Type I (5. 71) 

v is the estimate of. the mean velocity in the observation region. The hat 

indicates an estimate and the bar indicates the mean. 

An estimator which uses only the first term of this equation has been pre­

sented by Arts and Roevros [70]. 

The estimator based on Eq. (5.71) has the advantage over the zero crossing 

detector that its validity holds regardless of the velocity profile. The mul­

tiplication may be performed by analog integrated circuits. Available multi­

plicators have, however, shown to have unacceptable long time stability for the 

instrument to be operated without access t.o skilled technical people. 

From Russgang' s Theonom [7h], it follows that an estimator based on 

the following equation cou.l d lw used a.s wo tl 

v 
TI 

const<~ (t)sgn e (t)> 2 . l 

wher•' the signum function is defined by 

{ +J 
e > 0 

l 
sgn el 

-1 E-: .-.-: 0 
l 

Type II ( 5. 72) 

(5. 73) 

This est.imat.or i;-; much s.impler r.o realize electronically and a suggestion 

is given in Figure 5.15. It proves to have very good long time stability. 

Eq. (5.'/1) may be oxpressed by 

mator operating in the frequency domain. 

canst J dell WG"""" (W) 
ee 

to form the basis of a third esti-

Type III (5. 74) 

The validity of these three estimators is proved in the following from our model 

of the scattering process. 

When noise is present in the signal, a systematic error in the estimates 

occurs. This is also discussed and it turns out that this error will be the 

same for all three estimators. When the ensemble averages are estimated by in­

tegration for a finite time, additional errors in the estimates occur. For the 
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practical realizations of estimator I and II with AGC given in Section 5.3 

this estimator uncertainty is investigated experimentally in Section 7.2B. A 

theoretical discussion of this error is given in Chapter 6. 

B. Estimator Type I, <e e > - <e e >. 
2 1 1 2 

We shall prove that the ensemble average of <e e > 
2 1 

and <e e > 
1 2 

is pro-

portional to a vector weighted average of the instantaneous velocity field in 

the observation region. This will be done for the general model with diffusion 

of the concentration fluctuations. 

Expectation value. 

From Eq. (5.5) we have 

e
1 

(t) I If 3 -+ -+ -+ 
a d ~R(~)cos W(~) n(~,t) 

(5. 75) 

e
2

(t) = lalfd3 ~R(!)sin W(t) n(!,t) 

From Eq. (4.27) and Eq. (4.29) we may express e
2 

by 

-+ 
This expression may be integrated by parts. We then invoke that IJv == 0. This 

-+ -+ 
is not strictly necessary since v V n should be written V (vn) in the case of 

a compressible fluid. The result is 

laiJd\~V(Rsinw)n + nla1Jd\;V
2

(Rsinw)n- lalfd3~V 2 (Rsinw)A 

(5. 76) 

By multiplying this expression by e
1 

(t) from Eq. (5.75) and averaging, we get 
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From Eq. (4. 47) and Eq. (4. 50) we have 

(5. 77) 

Inserting this into the expression above, the diffusion term and the stochastic 
-+ 

current term cancel. Integration over ~ 2 gives 

I If 3-+-+ -+ -+ -+ -+ 2 -+ 
<e

2
(t)e

1 
(t)> = a d ~v(~,t)9[R(~)sin ~(~) ]R(~)cos ~(~)<n (~,t)> 

Evaluating the gradient gives 

2! 3 2 2 2 -+ Ia! d ~<n >[R cos ~9~ + R sin~cos ~9R]v 

R9R may be written as 
2 

~9R . When this term is integrated by parts, we get 

<e e > 
2 1 

By evaluating the gradient of the last term and using 
2 

cos 2 ~ = 2cos ~ - 1 we 

get 

(5. 78) 
-+-+ ~2-+ 2-+ -+ L''+ 2-+] 
K1 (~,t) = 

2 
R <O[<n (~,t)>9~(i;)- -.sln2~(~)9<n (~,t)> 

Similarly we get 

• 3 -+ -+ -+ -+ 
<e

1
(t)e

2
(t)>=-Jd ~K2 (~ 1 t)v(~ 1 t) 

(5. 79) 
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The difference between these two expressions gives 

(5.80) 
~ 2 2 ~ 2 ~ 

K(s,t) = \a\ R <s)<n <s,t)> 

To get an estimate of the magnitude of the weighting factor, we may calcu-

late 
2 2 

{<e
1 

> + <e
2 

>}. From Eq. (5.75) we get 

Inserting the correlation function for n from Eq. (5.77) and integrating over 

s2' we get 

<e 2 (t)> 
1 

<e 
2

(t)> 
1 

Similarly we get 

<e 2 (t)> 
2 

2 ' 
~!3 21: ~ 2-+ 

2 
d sR (1;) [1 + cos21J;(s) ]<n (s,t) > 

The sum of these two expressions give 

~ 2 2! 3 2 ~ 2-+ 
l::_=+<e2 (t)> =\a\ d t;:R (s)<n <s,t)> 

(5.81) 

(5.82) 

(5.83) 

For large transducers where the plane wave approximation is acceptable we have 

~ -+ 
\71); == -(kT + kR) 

\V1J;\ = w0/c\~T + ~R\ (5.84) 

When the transducers become smaller, the magnitude of \71); will not change 

appreciably. An estimate of the mean velocity along \71); in the observation 

region is therefore 

v (t) 
I 

(5.85) 
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This estimator has been suggested by Brody [45]. 

-+ 
In the expression for K

1 
and we see that sin 2l/J will be a very ra-

pidly oscillating function compared to the rest of the integrand, Eq. (5.78) 

and Eq. (5. 79). This is also true for cos 2l/J in the expressions for <e
1

2
> 

and <e
2

2
>, Eq. (5.81) and Eq. (5.82). In most cases <n

2
> will be slowly 

varying with space so that V<n
2

> will be small. We may, therefore, neglect 

these terms. Under this approximation we have 

ht_ 3 2-+ 2-+ -+-+-+ 
<e

2
(t)e

1 
(t)> = -<e

1 
(t)e

2
(t)> = 

2 
fd ~R <O<n <Ct)>Vl)J(~)v(~,t) 

<e 
2

(t)> = <e 
2

(t)> = ht_ Jd3~R2 (~)<n2 (~,t)> 
l 2 2 

(5. 86) 

The following simplified expression may then be used as a velocity estimate 

c 
<e

2
(t)e

1 
(t)> 

<e 2 (t)> 
1 

c _<e
1 

(t)e2 (t)> 

W ~~ + ~ I <e 
2

(t)> 
0 T R 2 

This estimator has been suggested by Arts and Roevros [70]. 

(5.87) 

The estimator gives a vector weighted average of the velocity field inside 
-+ 

the observation region. At each point it is only the component of v along 

Vl)J that is observed. In addition different points are given different weight 

because of R. 

c. Estimator Type II, <e sgn e >. 
2 1 

The doppler signal is obtained from the concentration fluctuation by a 

linear operator, Eq. (5.5). Assuming Gaussian properties of n, Eq. (4.16), 

therefore implies Gaussian properties of the doppler signal. 

Even with non Gaussian properties of the concentration fluctuation the 

independency of n at different points in space together with 

the Central-Limit theorem [75] implies Gaussian properties of the doppler sig­

nal. To see this we approximate the integral in Eq. (5.5) by a sum over small 

cubes ~V. From the independence of n the terms of the s<~ will 

be independent random variables satisfying the requirements for the central­

Limit theorem to hold. As ~V -+ 0, the number of terms tends towards infinity 

while the variance of each term is proportional to <n 2 >~v. In the limit the 

central-Limit theorem then implies Gaussian properties of the integral. 



- 140 -

For two Gaussian variables, y
1 

and y
2

, with zero mean and distribution 

given by Eq. (VII.7) we may directly calculate 

co co co 0 

<y sgn y > 
1 2 f dyl f dy2ylp (yl ,y2) 

~00 -00 

Especially we obtain from this 

From these expressions we see that the following relations hold 

<e sgn e > 
2 1 

<I ell> 

<e sgn e > 
1 2 

<le21> 

<e e > 
1 2 

(5.88) 

( 5. 89) 

From Eq. (5.87) we then see that the following expressions may be used as a 

velocity estimate 

c 
<e

2
(t)sgn e

1 
(t)> 

<lel(t)l> 

c 
<e

1 
(t) sgn e

2 
(t) > 

<le2(t) I> 

(5. 90) 

The above result is a special case of a more general result first derived 

for Gaussian variables by Bussgang [76]. This reference states that for a 

rather general nonlinear function, g(x), the following relation holds 

<x g(x )> 
1 2 

k<x x > 
1 2 

where k is a constant of proportionality. This result was later established 

for a special class of non Gaussian variables by Barrett and Lampard [85] and 

their work was further develpoed by Brown [77]. In Appendix VIII we discuss 

condi-tions for the result to hold. 
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Remark. The following illustrates the nature of the previous two estimators. 

Neglecting diffusion and VR in Eq. (5.76) we have 

where the star indicates a generalized product, for instance ordinary or sign 

multiplication. 

We divide the region of integration into small cubes, 6v., 
l 

be considered approximately constant in this region. This gives 

In the same way we get 

Let a. be defined by 
l 

a.6v. 
l l 

-+_ 
that v. ·• ::;,ay 

(5. 92) 

(5. 93) 

(5.94) 

If a > 0 
i 

and does not vary too much with i, there is a strong indication 

that the following expression may form the basis of a mean velocity estimator 

D. 

I <e
2 

(t) * e 1 (t) > i 
<e

1 
(t) * e 1 (t) > I 

i 

Estimator Type III fdw 

-+ 
v.V1j!.a.6v. 

l l l l 

a.6v. 
l l 

WG"" (W) • 
ee 

(5. 95) 

For a stationary velocity field we shall show that the following estimator 

c 
(5.96) 

w0 1~T + ~ J Jdw G""(w) 
R · ee 

gives a vector weighted average of the velocity field in the observation region. 

To do this we show the validity of the following relations 
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2 < 2 ( ) > <e
1 

(t)> + e
2 

t (5. 98) 

In Eq. (5.14) G"'"' 
ee 

serve that Ge·e· 
]_ l 

is expressed by Gelel' Ge
2

e
2

, Ge 2e 1 and Ge 1e 2 . We ob­

are even functions of w while [Ge e - Ge e ] is odd. 
1 '2 2 l 

We therefore get 

fdw w G"'"' (w) ee 

(5. 99) 

jdW{Gele (w) + Ge e (W)} 
l 2 2 (5.100) 

The rules for the correlation functions and power spectra of the derivatives 

of a stochastic process in Appendix VI are used. The integral of the power 

spectrum is related to the correlation functions taken at zero lag as given 

in Eq s . ( 5 . 9 7 ) and ( 5 . 9 8) . 

When the observation region is so large (as in all practical cases) that 

e(t) may be considered stationary, Eq. (5.15) is valid and Eq. (5.96) takes the 

form 

(5.101) 

,__ _______________ . _________ ........, 
This is the frequency domain representation of the simplified estimator of 

Arts and Roevros. 

E. Effect of noise on estimator performance. 

The types of noise that disturb the measurement are described in Section 

2.4. Signals from slowly moving targets other than blood will give high in­

tensity of low frequency shifts which do not come from the blood flow. The 

output of the estimator will, therefore, give a too low estimate of the mean 

velocity. 

Usually this low frequency disturbance is removed by highpass filtering. 

By this the signal from the slowly moving blood is also removed. If there 

exist low velocities in the observation region this will give a velocity esti-
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mate which is too high. The error depends on the relative magnitude of the 

low frequency to the high frequency components of the signal received from the 

blood in the observation region. In Figure 5.10 the effect of this highpass 

filtering is demonstrated for a parabolic and square profile when the whole 

artery lumen is observed as in Figure 5.8. 

The electronic noise w(t) from transducer and preamplifier may be descri­

bed by its analytical signal Q(t)eiwot 

w(t) 

where 

iW t 

Reh/ (t) 0 
} 

(5 .102) 

is lowpass. By quadrature demodulation the signals on the two channels will be 

? 
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Figure 5.10. Effect of estimator performance when a highpass filter is used. 
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(5.103) 

If the transfer function of the preamplifier is symmetric around w0 , the auto­

correlation function of w will be real. Since, [61], 

RAA(T) = 2[Rw w (T) + iRw w (T)] 
ww l l 1 2 

(5.104) 

we see that the process and will be uncorrelated. By this 

<w (t)w (t)> = <w (t)w (t)> = o 
2 1 1 2 

(5 .105) 

Since e(t) and w(t) obviously are independent, we immediately have 

<s (t)s (t)> 
2 1 

(5 .106) 

<~\ (t) s
2 

(t) > 

'l'he numPrator in the estimators are, however, affected by the elfoctronic 

noise 

<s 2 (t)> 2 2 
<e 1 (t) > + <w (t-) > 

1 1 > 

<s 
2

(t)> 
2 2 

<e (t) > + <w (t) > 
2 2 2 > 

The estimator type I and III will, therefore, give a too low value, 

:::: 
v. 

or 

<s s > 
2 1 

<s 2> 
1 

- <s 

+ <s 

1
3

2 
> <e e > 

2 1 

2> <e 2> 
2 1 

- <e e > 
1 2 1 

+ <e 2> <w 2> 
2 1 1 + 2 

<e > 
1 

v' 1 
v 

l + N/S 
Estimator type I and III 

where N/S is the noise to signal power ratio. 

Similarly we get for estimator type I 

+ <w 2> 
2 

+ <e 2> 
2 

(5 .107) 

A -, v , of 

(5 .108) 

(5.109) 
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2 1 

<e e > + 
2 1 

<w w > 
2 1 
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(5.110) 

In the same way as above we get the following output of estimator type II. 

v' 1 
Estimator type II (5.111) v ----,--

1 + N/S 

We thus see that the noise immunity of all three estimators are the same. The 

noise dependency of the estimator outputs are shown graphically in Figure 5. 11. 

We see that for the reduction in estimator output to be less than 10 % the 

S/N-ration has to be greater than 9.54 dB. 

If the transfer function of the preamplifier is nonsymmetric, the expecta-

and 

estimates will occur. 

<w w > 
2 1 

will no longer be zero and a bias error in the 

For practical estimators the expectation va 1 ues are estimated for a finite 

interval of time. The electronic noise will then increase the stochastic unsys­

tematic error in the estimate in addition to the systematic error calculated 

above. 
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Figure 5.11. Reduction in estimator output when electronic 

noise is present in the signal. 

5.3. Practical estimators. 

A. Introduction. 

In the previous paragraph the estimators are given by ensemble averages. 

To calculate ensemble averages from measured data is, in general, difficult be-

cause we are observing a single event in the sample space. If, however, the 

system is ergodic, the ensemble averages are equal to the time averages by de­

finition. The flow system is ergodic when the velocity field is stationary. 

When the velocity field is stationary, the ensemble averages may, therefore, 

be estimated by a lowpass filter with real. poles only. For a nonconstant velo­

city field the ensemble averages will change with time. The lowpass filtering 

technique may still be used, but the integration time of the filter must be 

made so short that ensemble averages, and hence the velocity field, may be 
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considered essentially constant in this interval of time. 

The limited integration time introduces an unbiased stochastic error in the 

estimate which can not be avoided unless additional information of the system 

is taken into account, as discussed at the beginning of the previous paragraph. 

If the integration time is too long, error is introduced because of the 

smoothing of the lowpassfilter. Hence, for a given velocity field as a func­

tion of space and time there exists an optimum filter which minimizes the esti­

mation error. 

Estimators based on the first two principles have been built and tested out 

experimentally. The realizations are discussed in the following. Estimators 

based on the third principle are in the field of standard power spectrum esti­

mation techniques. We have performed no experimental work using this principle 

except using commercial instruments. Brody [45] has given a survey of methods 

applicable in connection to pulsatile flow. We may also refer to the general 

litterature [71], [72]. 

B. Realization of estimator type I and II. 

Figure 5.12 shows a block diagram realization of the estimator given in 

Eq. (5.85). 

To remove signals from slowly moving tissue a highpassfilter with cutoff 

frequency of about 100 Hz for peripheral arteries and from 300 - 1000 Hz for 

aorta, the last values depending on the activity of the heart. Thus,when the 

velocity becomes very small in the diastole, there will be a signal dropout at 

the input of the estimator. This is unwanted for the functioning of the divi­

sor circuit, because the numerator becomes small. This effect may be avoided 

by the use of an AGe-circuit [70] which amplifies the noise in the diastole. 

This may be done like indicated in Figure 5.13. 

The numerator is fed to a device which integrates the difference between 

the numerator and a reference voltage. The output of the integrator is fed to 

a voltage controlled amplifier. 

For the system to be stable there is a lower limit of the time constant of 

the integrator. This limit depends on the type of lowpass filter used. To 

avoid this difficulty the input of the integrator may be taken from the input 

of the filter. In this way the AGC-loop may be made so fast that the numerator 

is kept essentially constant. The divisor circuit may then be avoided. This 
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~ (t) 

Figure 5.12. Estimator based on E'q. (5.85) . 

.._ ____ . ______ _ 
ref 

Figure 5.13. AGe-arrangement to keep the numerator sufficiently large 

in the estimator of Figure 5.12. 
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is a great practical advantage because a sufficiently stable divisor circuit 

is difficult to produce. 

The voltage controlled amplifiers in Figure 5.13 must have identical char­

acteristics for the system to work. This is difficult to achieve in practice 

and it is, therefore, preferable to decouple the AGC-loop for 

The resulting practical estimator is given in Figure 5.14; 

Figure 5.14. Practical estimator based on Eq. (5.85). 

and 

Similarly, a practical estimator based on Eq. (5.87) may be obtained by 

avoiding the branch giving e
1

·e
2 

in Figure 5.14. 

A practical estimator based on Eq. (5.90) is given in Figure 5.15. This 

estimator has the advantage over the previous ones in that it does not use ordi­

nary multipliers. Hence, its long time stability is essentially given by that 

of passive components only, and exceeds that of the previous ones by a large 

amount. 

e
2

(t) is fed from the differentiator circuit to a gate a and via an in­

verter to a second gate a. These gates are complementary - one is open when 
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I a 20Hz 

Figure 5.15. Practical estimator based on Eq. (5.90). 

the other is closed. The gates are controlled by the sign of e
1 

through a 

suitable circuit K. The gain control of e
1 

is not necessary but improves 

the functioning of the system. 

The variance of the estimates will depend on the AGC-time constant. This 

is discussed in more detail in Chapter 6, while an experimental 

phenomenon is given in Chapter 7. 

5.4. Summary. 

study of this 

The mathematical relation between the velocity field in the observation 

region and the power spectrum of the received signal is given for timesteady 

flow. The effect of diffusion is discussed and it is found that it can be neg­

lected. 

When the observation region becomes small, the spectrum is broadened be­

cause of the finite transit time of blood through the observation region. Addi­

tional broadening of the spectrum occurs when the transducers become small or 

focusing is used. 
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However, the mean frequency shift of the spectrum is not affected by this 

broadening. 

The dependency of the power spectrum to the ultrasonic illumination of the 

artery is discussed. It is found that careful positioning of the transducer is 

necessary, so that the whole arterial lumen is observed, if the mean velocity 

of flow through the artery is to be measured. 

The validity of three mean velocity estimators is proved from the scatte­

ring theory developed in the previous paragraph. The expectation values give 

a vector weighted average of the velocity field in the observation region. 

When electronic noise is present in the signal, the output of the mean velo­

city estimators are reduced. For this reduction to be less than 10 % the sig­

nal to noise power ratio has to be greater than 9.55 dB, which is achieved in 

most cases. 

Practical realizations of the estimators are discussed. 
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6. VARIANCES OF MEAN VELOCITY ESTIMATORS. 

In this chapter we study the variances of the mean velocity estimators 

given in the previous chapter. The analysis is based on the theory of filte­

ring and spectral estimation of stochastic processes. A brief review of the 

necessary results is given in Appendix V together with derivations of expres­

sions for the zeroth and first moment of a power spectrum estimate. 

Estimator I is essentially a correlator. We especially emphasize the in­

fluence on the estimator variance of the velocity profile and integration time 

of the averaging filter. 

In calculating correlation functions limiting and quantization of the sig­

nals are commonly used to reduce complexity of signal processing [81], [82], 

[83] 1 [84) o 

As we have already seen for estimator II, by the use of hard limiting for 

one of the signals, the multiplier may be avoided. The hard limited signal may 

also be delayed in a digital shift register if an estimate of the value of the 

correlation function for non-zero lag is wanted. Limiting of the signals be­

fore correlation also reduces the effect of noisy variations in signal ampli­

tude as discussed by Yerbury [82]. 

As follows from Bussgang's relation, Section 5.2C, the form of the cor­

relation function when one of the signals is distorted by a nonlinear device, 

will be the same as that without distortion. If both signals pass through a 

nonlinear device, the correlation function will be distorted too. However, 

for a vast class of nonlinearities, including amplitude limiters, a peak in the 

undistorted correlation function [75] also gives a peak in the distorted cor­

relation function. For target detection in radar and sonar it is only the peak 

which is interesting, and the distortion, therefore, has a negligible effect. 

When the input signal to noise ratio of one or both of the signals is small, 

the correlation coefficient, i.e. the correlation function divided by the square 

root of the signal variances, is small. In this case the form of the correla­

tion function with limiters in both channels will be approximately the same as 

that without limiters [75]. This is a common situation when correlation is 

used. 

The uncertainty of an estimate we define as the square root of the variance. 

The variance will decrease with increasing integration time, T, of the correla-
-1 

tor and will asymptotically be ...., T when T -+ 00 (strong filtering, Section 

6 2 ) h . t . h -~ ·. D . T e uncerta1n y 1s t en "'T . 
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The variance in the estimate of the correlation function is changed when 

nonlinear devices are inserted in one or both channels. Yerbury has concide­

red the case for low values of the input signal to noise ratio. He finds that 

the variance is increased by Tr/4 when a hard limiter is inserted in one of 

the channels. This means that to obtain the same variance as without limiter 

4/n longer integration time is needed (strong filtering). Using a limiter in 
2 

both channels, the variance is increased by n /6. Similar values are given 

for a discrete time correlator by Hagen [81] and Hagen and Farley [84]. 

In our case we are estimating the correlat.ion function at zero lag with a 

signal t.o noise rat.io at both channels well above 0 dB. The normalized corre-

lation coefficient is therefore of the order of unity and the approximations 

of Yerbury and Hagen & al. are not. satisfactory. 

When the correlation coeffj d.ent between t.he signals is high, i.e. neglig-

ihlP noise, our calculations show that the correlator variance is reduced when 

han:! clipping in one of tlw cl:v.tnnPl~; is introduced. This is the situation in 

c1ur case. However, the v0loci ty is obtained as the ratio between two variables 

whi ell cannot h<' estimated wit.hout uncert.aint·y. Our calculations then show that 

althouqh the variancP of denumerat.or and numerator themselvos are reduced by 

hard clippinq in one channe 1, the variance of their rat.io is increased. It is 

found that for estimator II the avariance is increa~;erl by l .14 for parabolic 

profile, compared to that of estimator I. The ratio of the uncertainties is 

/1 ~-t-4' '= 1. 07. For the blunt prof.i.le with p = 16 the faclors are 1. 27 and 

1 • L 3 respc::c tively. 

In all our calculations Gaussian properties of the doppler signal is assumed 

in accordance with the discussion in Section 5. 2< ·. 

6 .l. lntroduct. ion. 

Realizations of the mean velocity estimators in the previous chapter may 

be written as 

k E. 
q 

k 
c 

where p and q take different forms for the three estimators. 

a) 
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p = fdLh (t- L)e 2 (L)sgn e 1 (L) 'l 
1R p 

q - J dLh ( t - L ) I e 
1 

( L) I 
lR q 

p or 

JR = (-oo, oo) 

Estimator type I b) 

Estimator type II c) 

(6.1) 

Estimator type III d) 

indicates the finite time estimate of both the velocity and the power spectrum. 

h and h are the impulse responses of t.he denumerator and numerator filters 
p q 

respectively. 

In Section 5.3 we have shown how the division may be eliminated by an AGe­

circuit in estimator type I and II. It is difficult to analyze the variance 

in this case because of the nonlinearity of the AGC-loop. We shall,therefore, 

only indicate by an example how the variance in this case is related to that 

when using a division. 

We shall study the functioning of estimator I and II for plug flow in a 

straight vessel. The quadrature components of the doppler signal are given in 

Eq. (5.57) and may be rewritten as 

++ 
e

1 
(t) = a(t)cos[q v t + 8(t)] 

( 6. 2) 
++ 

a(t)sin[q v t + 8(t)] 

a(t) and 8(t) are lowpass with bandwidth proportional to the inverse 

transit time. In taking derivatives we may, therefore, neglect the time varia-

tion of these functions compared to the doppler oscillation given by 

This gives 

++ 
q v t. 
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e
2 

<tl 
-+ -+ 

= q v e
1 

(t) (6. 3) 

and the estimator outputs are 

fdTh (t -
2 -+-+ T) e

1 
(T) 

VI(t) 
qv 

q 
fdTh (t - T)e

1 
2 

(T) 
q 

(6. 4) 

-+ -+ jdTh (t - T)je
1

(T)j 
VII (t) 

q v 
q f dTh (t - T) lel (T) I q 

If h and h 
p q 

are identical, the time dependent term will disappear and 

a sharp estimate of the velocity component of 
-+ 
v along 

-+ 
q with zero variance 

results. In fact the zero variance will also occur if no filters are used. 

This is rather strange, but as we shall see later, this is a special situation 

for plug flow. In this case the numerator and the denumerator, having nonzero 

variances themselves, are so correlated that their ratio has zero variance. 

This is not true for more realistic velocity profiles, e.g. like those shown 

in Figure 5.3. These profiles converge towards plug flow when p-+ oo, but 

numerical calculations show that the convergence of the estimator variance to 

zero with increasing p is vert slow. For p increasing from 2 to 16 gives 

a decrease in estimator variance of less than 70 %. 

When an AGe-circuit is used instead of the division, this adjusts a(t) so 

that the variation around the mean value is decreased. If the AGC-loop is made 

too fast, distortion of the doppler oscillation is introduced. Thus it is not 

possible to obatin zero variance of a(t) and a nonzero variance of the velo­

city estimate will result in the case of plug flow as well. However, experi­

ments indicate that the difference in the variance between the estimator with 

AGC and division is very small for realistic velocity profiles. (Section 7.2B). 

When the complete estimator in Eq. (5.85) is used, we get 

<e e > - <e e > 
-+-+ 2 

2 1 1 2 
q v a (t) 

(6.5) 

<e 2> 2> 2 
+ <e a (t) 

1 2 

In this estimator the rapid doppler oscillations are eliminated before filte­

ring. When an averaging filter with bandwidth 20 Hz is used, the doppler 

oscillations will have frequencies 10-100 times this bandwidth. The variances 

at the output of the filters will, therefore, be the same for this estimator 

and the simplified estimator of Arts & Roevros. 
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We now return to the general situation. In Section 5.2 we haveproved that 

k<p>/<q> gives a vector weighted average of the velocity in the observation 

region. The important question is now: To what extent does the estimators 

given in Eq. (6.1) give an approximate value of this expression. 

We shall answer this question by calculating the expectation value and 

variance of v. 
A 

A good estimator should be unbiased, i.e. v = v, and have a small vari-

ance. The requirement of being unbiased is not very strict since the bias has 

to be compared to the variance. Thus an estimator with bias may be preferred 

among unbiased estimators if it has smaller variance and the bias is small com­

pared to the square root of the variance. 

To simplify the calculations, we assume that the relative variance of the 

numerator in Eq. (6.1) is small. We may then approximate the division by a 

series expansion. To the second order we get 

a 
op 
<p> 

b 
oq 
<q> 

where we have used the notation 

ox x - <x> 

(6 .6) 

(6. 7) 

From this expression we calculate the expectation value and variance of 

the mean velocity estimate 

<v> k <p> {1- <ab> + <b 2>} 
<q> 

2 2 
{<a> - 2<ab> + <b >} 

Relative bias: 
::: 

<v> - v 

Relative variance: 

a) 

b) 

(6 .8) 

c) 

d) 
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Thus for the estimators to be rmbiased we must have <ab> 

In the following we shall relate these expressions to the velocity field 

and the integration time of the filters. 

6.2. Analytical expressions for estimator variances. 

We shall make use of the results presented in Appendix v, VI and VII. We 

also study the variances for time steady velocity profiles only. This implies 

wide sense stationarity of the doppler signal as discussed i~ Section S.lD. 

We also assume Gaussian properties of the signals and the effect of diffusion 

is neglected. The denumerator and numerator filters and integration times are 

assumed to be identical. Especially we use the de-normalization of the filter 

responces as given in Eq. (V.6). 

A. Estimator type I. 

For p and q defined in Eq. (6.lb) we obtain by the use of Eq. (V.4) 

<p(t)> <e e > 
2 l 

<q(t)> = jdTh(T)<e 
2

> = <e
1

2
> 

IR l 

(6.9) 

where the normalization of Eq. (V.6) for h is used. We thus see that the 

numerator and denumerator for themselves are unbiased, although their ratio 

may still not be. For <a
2

>, <b
2

> and <ab> given in Eq. (6.6-8) we obtain 

by the use of Eq. (V.4) 

(6.10) 

<ab> 

where we have defined the normalized covariance functions 
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(6 .ll) 

Assurninc; Gaussian properties we can relatE: t.hc covariance functions above to 

the correlation functions of the quadrature components. 

(6 .12) 

The fourth moment of four Gaussian variables may be expres~;ed by second moments, 

[75]. The foJ lowing result is t.hen obtained 

(6 .13) 

Similarly we obtain for the other covariance functions 

C. _ 2 (1 ,T ) 
e---,e

1
,e ~ J 2 

/. 1 
(6 .14) 

C 2 2 (Tl,T2) 
el ,el 

For wide sense stationary processes we obtain 
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( 6 .15) 

The correlations functions above are found in Eq. (5.35). To obtain the corre­

lation functions for the derivatives we use the formulas of Appendix VI. We 
~ ~ 

note that the derivative of R(~) will be small compared to that of cos W(~). . ~ 
we also have R(~) = 0 for T = 0. 

We thus obtain 

From the mean velocity estimator formula of Eq. (5.87) we have 

where 

is the approximate length of IN and v is the average of the velocity 

component along V¢. 

(6.16) 

(6.17) 

Let R be normalized so that its mean value over some wave lengths is unity. 

We define the sensitivity volume, S, of the observation region in analogy to the 

sensitivity length in Eq. (5.46) 

s (6.18) 

2 
The mean fluctuation, <n >, in the observation region is defined by 

(6.19) 
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The normalized covariance function of Eq. (6.11) may now be written as 

(6.20) 

where we have defined the following functions, whose expressions are obtained 

from Eq. (5.35) neglecting R(s) 

J
3-+-+ -+-+ ~-+ -+-+ ~-+ 2-+ -+ -+ 

= d l;;R(t,:)R(s) [v(t,:)V'l)J(t,:) Hv<s)V'l)J<s> ]<n (t,:)>cos[l)J<s> - l)J<t,;>] 

where we have defined the following normalized functions 

-+ 
~ -+ R<s> R(l;) =--

IS 

<i1
2

<t>> 
<n

2 
<"€> > 

<n2> 

We may here remark that 

while 

pe e (O) 
2 l 

-+-+ 
~ (t) v(s) 

A 

v 

-+ 
~ -+ ljJ ( l;) 
ljJ ( l;) 

~ 

l 

(6.21) 

(6. 22) 

(6. 23) 



where 
A 

2 
v 
::::2 
v 
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v2 = fd3i;R2<!)<n2(~)>[~<6v~(~) J2 

(6. 24) 

(6.25) 

The normalization for p and p. is, therefore, the usual one used to 
elel e2el 

define the correlation coefficient between two stochastic processes. The norma-

lization used for p •• 
e2e2 

is only "natural" in our context where the normali-

zation is determined by that we are interested in relative variances and co-

variances of p and q. 

B. Estimator type II. 

For p and q defined in Eq. (6.lc) we obtain by the use of Eq. (V.4) 

<p(t) > = jdTh(T) <e sgn e > = <e sgn e > m 2 1 2 1 

(6. 26) 

<q < t) > = J d 'T h < 'T ) < I e I > 
~ 1 

Thus the numerator and denumerator are unbiased for themselves as for estimator 

type I. 

For 
2 

<a >, and <ab> defined in Eqs. (6.6-8) we obtain 

(6.27) 

<ab> J d'Tld'T2h('Tl)h(Tl- 'T2)1;;. I I ('T2) 
1RxR e 2sgn e 1 , e 1 

where the normalized covariance functions are defined by 
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(6.28) 

c I I I I (T) el , ell 

From Eq. (5.88) we then obtain 

(6.29) 

For zero lag the covariance functions above may be caculated directy 

(6.30) 

2 
We here note that (sgne

1
) = 1, and using Eq. (6.29) we obtain 

R 2 • (0) 
2 e2el 

1T R (0) 
(6.31) 

elel 

The normalized covariance function for zero lag is, Eqs. (6.29), (6.28) and 

(6. 21) 

(6.32) 
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Similarly we obtain for the other covariance functions of Eq. (6.24) at zero 

lag 

(6. 33) 
7f 

z:; I I I I <o) = 2 - 1 
e

1 
1 e

1 

The covaria~ce functions for non-zero lag are calculated in Appendix VII and 

we merely write down the results here 

+ 

(6 .34) 

C. Estimator type III. 

We assume that Eq. (5.15) holds. In accordance with Appendix V an estimate 
A 

of GAA(W) may be 
ee 

A 

GAA(W) 
ee 

(6.35) 

where E. (W) 1 i 1,2 1 is the finite time Fouriertransform of e. (t) in the 
1. 1. 

interval [t- T,t]. From (V.23-26) we obtain 

t 

~7f f dT[-iel (T)e
1

(T) + e
2

(T)e
1

(T)) 
t-T 
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By integration of the first term we obtain 

p (t) 
a 

q (t) 
a 

t 
4 TI f d"" . ( ) ( ) 2TI [ ( t) ( t) - e ( t - ) ( t T) T t-T L e2 T el T - T e2 el 2 T el -

a) 

(6.36) 

b) 

We could also start with the simplified expression of Eq. (5.101) and use 

the following estimates 

(6.37) 

The numerator and denumerator estimates would then be 

pb(t) = Jaw iw G (w) 
lR ele2 

t 
2TI f d" 2 ( ) L e

1 
T 

T t-T 
b) 

The denumerator and numerator of the above two variants of estimator III 

are unbiased 

<p (t) > 
a 

2<p (t)> 
b 

<qa(t)> = 2<qb(t)> = 4TIR (0) 
elel 

We have used stationarity which implies 

implies <e
2

(t)e
1 

(t)> = 0. 

2 
<e (t) > 

1 

(6.39) 

const and Eq. (5.12) which 
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The finite time estimates of these two estimators will have different 

stochastic variations around the mean values and for the a) variant complex 

values of pa and qa will occur. It would therefore be reasonable to use 
A 

only the real part of Eq. (6.35) as an estimate of G"'"'(W). The ratio between 
ee 

the magnitude of the boundary terms and the integral in Eqs. (6.36a) and (6.38a) 
-1 

will, however, be "'T When the velocity is substantially different from 

zero (i.e. Re e (0) * 0), the integral term will dominate. 
2 1 

e
1 

(T)e
2

(T) may also be neglected in Eq. (6.36b) since Re
1

e
2

(0) = 0 while 

R (0) * 0. Under these approximations the two variants of the estimators 
elel 

are identical. 

We shall calculate the variance of the approximated expressions. We then 

note that we can write 

where 

p (t) 2njdT h(t - T)e
2

(T)el (T) 
IR 

q(t) 2n/dT h(t- T)e/(T) 
lR 

0 < t < T 

else 

(6.40) 

These expressions are the same as that of Estimator I and we can use Eq. 

(6.10). The integrals are of the form 

The last integral may be treated as a function of T
1 

and by partial integra­

tion the following expression for the integral is obtained. 

l T . bj_ 
-T jdT(l - T ] F(T) 

-T , T 

<a
2

>, <b
2

> and <ab> for estimator III may now be written 
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<a2> l T hl 
- jdT[l - T ] 1:. • (T) 
T T e2el,e2el -T 

<b2> 1 T hl - f dT [l - T ) s 2 2(T) (6.41) 
T T el ,el -T 

1 T hl 
<ab> - f dT [1 - T ] s ( T) 

T_T T e2el,el2 

where the covariance functions are given in Eq. (6.20). 

D. Strong filtering. 

We denote the filtering strong when the integration time of the filters are 

much longer than the correlation time of the input signals. In the frequency 

domain this means that the filter bandwidth is much smaller than the bandwidth 

of the input signal. 

In our case the filter bandwidth is 20 Hz, while the bandwidth of or 

e
2
sgn e

1 
will be twice that of the doppler signals which for parabolic profi­

les ranges from 1000-5000 Hz. The filtering is thus clearely strong. 

When a pulsed meter with small observation region is used, or the flow pro­

file is very flat, the bandwidth of the doppler signal is determined by the 

transit time (Example II, Section S.lD). For the filtering to be strong in 

this case the integration time has to be large compared to the transit time. 

As shown in Eq. (V .10) the variance of the filter output will be ,..., T -l 

For estimator I and III we may express the integral of the covariance functions 

by integrals of the power spectra 
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<ab> (6.42) 

where we have used Eq. (5.15) and the following relation for Fourier transforms 

J dt f(t)g(t) 
lR 

_l_ f dW F*(w)G(W) 
2'1T 

JR 

Due to the nonlinearities no such simple relations exists for estimator II. 

Examination shows that when the profile becomes flat (p > 3) for the blunt 

profile), the transit time will have a dominating effect in the above formulas 

so that the approximate form of in Eq. (5.47) is not useful. 

6.3. Discussions and numerical examples. 

We shall compare the variances of the three types of estimators. It is found 

that estimator I and III are equal provided pure integration is used for averag­

ing in estimator I. Estimator I and II are compared by approximate analytical 

discussions and by numerical calculations for the blunt profiles in Figure 5.3. 

A. Comparison between estimator type I and III. 

When the integration time is so large that the approximations of Eq. (6.40) 

are valid, estimator I will be identical to estimator III when the averaging 

filter of Eq. (6.40) is used. We also note that the variance of the mean fre­

quency estimate of the spectrum is independent of the spectral window used in 

the spectrum estimate (Appendix V). 

B. comvarison between estimator type I and II. 

We first discuss the case when the integration time is so short that the 

impulse responses of the filters may be approximated by a-functions. In this 

case we get 

Estimator type I: 
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<ab> 

These results are given directly by Eqs. (6.10), (6.20) and (6.23-24). From 

Eqs. (6.27), (6.32-33) and (6.23-24) we obtain 

Estimator type II 

<ab> 

2 
.! ~- 1 
2 ::2 

v 

TI 
== 2 - 1 f::j • 57 

TI 2 - 1 f::j .57 

(6. 44) 

We see that the variances of the denumerator and numerator by themselves 

are much greater for estimator type I than for estimator type II. This is due 

to the ordinary multiplication used in estimator I. By this it is the square of 

the amplitude of the doppler signal, that enters into the filters while for 

estimator II it is only the absolute value of the amplitude which enters, 

Eq. (6.4). In this way variations in the magnitude of this amplitude has much 

greater effect in the first estimator compared to the second. (See Section 7.2B). 

For the approximat1on of Eq. (6.6) to hold <b
2

> has to be small. The sig­

nals, therefore, has to be filtered so that the magnitude of <b
2

> has decrea­

sed from the values of Eqs. (6.43-44). However, to proceed with an analytical 

discussion which gives insight, although the numerical results are not fully 

correct, we insert Eqs. (6.43-44) into Eq. (6.8) 

Estimator type I 

Relative bias: 

Relative variance: 

0 

2 
v 
.:::::2 - 1 
v 

(6.45) 
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Estimator type II. 

Relative bias: 0 

(6 .46) 

Relative variance: 

The bias of both estimators are zero in this approximation. The variance 

of estimator type II is, however, TI/2 greater than that of estimator type I. 

This is interesting since it occurs although the variances of p and q are 

smallest for the last estimator. It is thus the covariance between p and q 

which is responsible for this result (Eq. (6.8)). 

The uncertainty in the velocity estimate is the square root of the vari­

ance. The ratio of the uncertainty of estimator I to estimator II is then 

ln/2'~ 1.25 in this approximation. 

When the averaging time of the filters is so long that the approximation 

of Eq. (6.6) is acceptable, numerical calculations show that the ratios of the 

estimator uncertainties are reduced to 1.07 for parabolic profile and 1.13 for 

the blunt profile with p = 16 (Example II). 

For plug flow 

~ 

2 
v 

stated in Section 6.1. 

and the relative variances will be zero as already 

For the blunt profiles in Example II, Section 5.1D, we obtain with <n
2> 

-+ 
constant and R(~) given in Eq. (5.43). 

Estimator I Relative variance: 
l 

p + 1 

( 6. 4 7) 

Estimator II Relative variance: 
TI l 
2 p + l 

When the integration time is not negligible we shall only discuss the case 

of plug flow analytically. For the blunt profile analytical solutions may be 

given for p = 1,2. These are, however, complicated and we, therefore, prefer 

to give the numerical results only. We shall in the following also specialize 

to the filter in Eq. (6.40). The variances are then given by Eq. (6.41) for 

estimator type I and by substituting the appropriate expressions for the 

covariance functions, Eq. (6.34), the expressions for estimator type II is ob­

tained. 
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Example I. Plug flow in a straight vessel. 

The correlation functions of the doppler signal for plug flow in a straight 

vessel are given in Eq. (5.62). The normalized correlation functions will be, 

neglecting the last term 

(1") (T) 
T -++ 

p = r f(Tt)cos qvT 
elel e2e2 

(T) 
1" ++ 

p (T) -p f(T) sin q v T 
ele2 e2el t 

(6. 48) 
T ++ 

p. . (T) f(-) cos qvT 
e2e2 Tt 

T -++ 
p. (T) p . (T) fCTl cos qvT 
e2el ele2 t 

The covariance functions of estimator type I will then be 

2 T 2++ 
2f (T) cos q v T 

t 

2 T 2++ 
2f (T) cos q v T (6. 49) 

t 

2 T 2++ 
2f (-)cos q v T 

Tt 

From this we have, Eq. (6. 41) 

(6. 50) 

When T and 'J\ are some periods of the doppler signal long, we may 
2++ ++ 

COS q VT = (1 + COS 2q vT) /2 by l/2 approximate 

<a2> <b2> l T [ - hl]f
2

(!_) 
T <ab> T jdT l A(-) 

T Tt T 
-T t 

2 T l 
2 

1 -
T ~< l --+ 6-2 3 Tt 
Tt 

Tt 

T 
A(-) ( 6. 51) 

Tt 
Tt[3__.!_ Tt] T 

> l 
T 3 6 T T 

t 
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Since 
2 2 <a >, <b > and <ab> are equal, both estimator bias and variance 

will be zero as already stated in Section 6.1. 

As discussed in Example I, Section 5.1D, the doppler signal is an amplitude 

modula·ted oscillation at the doppler frequency. This is also given by Eq. (6. 2). 

The bandwidth of the envelope is proportional to the inverse transit time 

Eq. (5.55), and it is therefore the ratio 

time, T, that determines <a
2

>, <b
2

> and 

of 

<ab>. 

to the filter integration 

Since all the functions of Eq. (6.48) are identical, the covariance func­

tions of estimator type II, Eq. (6.34), takes the following form 

(;II (T) 

(6.52) 

From Eq. (6.41) with the covariance functions of estimator I replaced by those 

of estimator II we obtain 

(6. 53) 

Thus for estimator II also the bias and variance are zero for plug flow as al­

ready stated in Section 6.1. 

The integral in Eq. (6.53) can only be evaluated numerically. This is done 

and the result is shown as the upper limit of the variances of estimator II 

(p = 00) for the blunt profiles in Figure 6.4 - 6. Eq. (6.51) is also shown in 

these figures as the upper limit of the variances of estimator I. The uncer­

tainty in the velocity estimate (zero) is also indicated in Figure 6.7 as the 

lower limit of the blunt profiles when p ~ 00 • 

EXamJ?le II. Blunt velocity profile in a straight circular vessel. 

We shall study the estimator variances for the profiles of Example II of 

Section 5.10. As there, we assume <n
2

> to be constant across the vessel. 

From Eq. (6.25) we obtain 

v 
p 

p + 2 vo 2 
v 

2 
I 2 

= (p + 2) (p + l) v 0 
(6. 54) 

v' = v cos8 where 8 is given in Figure 5.2. From Eqs. (6.43-44) we then 
0 0 

obtain 
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p + l 
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== 2!.. :e. +. .2 - l 
2 p + l 

1T 

2 

2 

(6.55) 

l 

Numerical calculations for nonzero lag may be performed by the .use of Eqs. 

(6.20-21-34) and Eq. (5.67). This gives for 0 ~ T ~ L/v
0 

(6.56) 

For T > L/v
0 

the lower integration limit has to be interchanged with 

(l - L/v
0
T)p as in Eq. (5.66). The values for T < 0 are obtained from those 

at T > 0 since all the functions except Pe
1

e
2 

and are even. These 

last two functions are odd. 

l -

In calculating the derivatives we have neglected the derivative of 

VOL 
~ (l - xp) since it represents only a slowly varying amplitude modula-

tion of the rapid doppler oscillation cos 
-+ -+ p 

or sin q v
0
T(l- X ) , Figure 5.4 

and 5.5. 

Numerical calculations of the estimator covariance functions are shown in 

Figures (6.1-3) for p = 2, 8, oo. We see that the lag T enters into the for-

mulas as which again is proportional to or T/Td where is the 

mean velocity of flow and 

frequency. 

Td is the periode of its corresponding doppler 

The transit length of the observation region is the same as in Figures 

5.4-5. As discussed in connection to these figures, the covariance functions 

for small values of p will be little affected by variations in the transit 

length since the bandwidth of the doppler signal is dominated by the velocity 

profile itself. For larger values of p, transit time broadening gives signi-
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ficant contribution to the total bandwidth of the doppler signal, and thus the 

correlation time increases when the transit length increases. 

<a2>, <b
2

> and <ab> are found by multiplying the curves of Figures 6.1 

6.2 and 6.3 respectively with i[l - jTj/T] and then integrating from -T to 

T (Eq. (6.41)). We then immediately see 

I. 
2 

<a >, and <ab> will be greater for estimator type I than for esti-

mator type II. This is in accordance with the previous discussion. Their 

envelope also increases monotonously with increasing p. When p increases, 

the envelope of the estimator correlation functions are limited by the 

envelope for plug flow, p = 00 • Thus <a
2

>, <b
2

> and <ab> tends to 

an upper limit when p ~ oo 

II. For small values of p, variations in the transit length has little effect 

on <a
2

>, <b
2

> and <ab> since it has little effect on the estimator co­

variance functions. The sensitivity of these functions to the transit 

length increases with increasing 

gives an increase in the value of 

p. An increase in the transit length 
2 2 

<a >, <b > and <ab>. This stems from 

the increase in the correlation time of the doppler signal which increases 

the envelope of the estimator covariance function for nonzero lag. 

III. When T << T 
t 

L/v, variations in the transit length will have little 

<a
2
>, <b

2
> and <ab>. This is because the varia-

IV. 

effect on the value of 

tion of the estimator covariance functions within [-T,T] is little affec­

ted by changes in the correlation length of the doppler signal. It is 

the values at the tails of the correlation functions which are mostly affec­

ted by changes in the correlation time. 

Thus the sensitivity to variations in the transit length increases mono­

tonously as T increases up to a limit for T ~ 00 • 

When T >> T 
t 

the integration over T in Eq. (6.41) will simply give 

the area under the estimator covariance functions. 

strong filtering discussed in Section 6. 2D, and 
-1 

be proportional to T • 

2 
<a >, 

This is the case of 

<b
2

> and <ab> will 

and are shown in Figures 6.4-6 for p = 2,8,16,oo. The 

square root of the relative variance, the relative uncertainty, of the velocity 

estimate is shown in Figure 6.7. The relative bias is practically zero. 

The discussion in point I above is immediately seen to hold. As in the 

previous discussion we also see that although the numerator and denumerator 
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variances of estimator type I are greater than those of estimator type II, the 
2 2 

variance of the velocity estimate is smaller. When <a >, <b > and <ab> 

tends to an upper limit when p -+ oo, the value for plug flow, the velocity 

variance tends to the lower limit zero. The ratio of the uncertainty of the 

velocity estimate of estimator II to estimator I is seen to have decreased to 

approximately 1.1 from the approximate value of ln/2' estimated at the begin­

ning of this section. 

In the practical estimator tested in the experiments of the next chapter 

we use an averaging filter with 3 real poles at 20 Hz. This gives an attenua­

tion of 9 dB at this frequency. The frequency response of the filter in Eq. 

(6.40) is 

e 

iWT 
2 

WT 
sin 

2 
WT 
2 

The 9 dB bandwidth of this filter is 

A 0.7 
of9dB ~ T 

(6.57) 

( 6. 58) 

{;f
9

dB = 20 Hz gives T = 35 ms. A mean velocity of 30 cm/s gives a mean dopp-

ler frequency for fo = 2 MHz of 750Hz, which gives Td = 1.33 ms. Thus 

T/Td ~ 30 and the following uncertainties in the estimates of the velocity, 

denumerator and numerator results for parabolic profile 

~ 
~ .08 Estimator I and II 

A 

v 

W> {.15 Estimator I 
~ 

.10 Estimator II 

(6.59) 

W> {"" Estimator I 
~ 

.07 Estimator II 

r Estimator I 
/<ab>' ~ 

. 07 Estimator II 

We shall return to these values in the next chapter where we experimentally 

study the estimators. 
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When the transit length is increased by a factor of two, i.e. Tt = 20 Td, 

the variances increase by 3 % for p = 2, and 15-20 % for p = 16. This 

illustrates the discussion of point II. It is also interesting to note that 

although spectral spreading due to finite transit time decreases the accuracy 

with which we can determine the velocity of one scatterer, the situation is 

opposite when many scatterers are present such as in blood. We give a physical 

explanation of this phenomenon in the next section. 

c. Relation between variances and the magnitude of the velocity. 

Theorem. For a constant geometrical form of a timesteady velocity profile we 

' obtain the following relations in the case of strong filtering, (T >> Tt). 

::~: } "' 
<ab> 

1 
A 

v 

( 6. 60) 

1 
A 

v rv 
Proof. 

From Eq. (5.39) we see that the lag T enters into the formulas of the 

correlation functions as v T. For a constant form of the velocity profile we 

therefore, by a suitable scaling, may express the estimator covariance func­

tions as functions of ~T. (By further scaling these may be written as func-

tions of where is the periode of the doppler frequency correspon­

ding to v, as we have already used in Figures 5.4-5 and 6.2-4. By using a 

filter of the form Eq. (V.9) we see from Eqs. (V.lO), (6.10) and (6.27) that 

we have to evaluate integrals of the form 

Changing variable of integration 

A 

VT
2 

X 

The integrals take the form 

(6.61) 
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will be proportional to 
::-1 
v 

then see that the relative variance is also proportional to 

From Eq. (6.8) we 

Thus the 

relative uncertainty which is the square root of the relative variance will be 
~-~ proportional to v 

Remark. 

If the integration time is not so long that the approximation of Eq. (V.7) 

may be performed, we see from Eqs. (V.4) and (V.9) that we have to evaluate 

integrals of the following form 

"' and by a change in the variables of integration r = VT 1 , s = vT 2 we obtain 

Al 2 f drdsh0(:)ho(r,.,- s)f(s) 
(VT) JRxiR VT VT 

(6.62) 

"' Thus it is VT that determines the variances. 

The physical reason for this is that the total bandwidth of the doppler 

signal is proportional to 
::::. 
v. In the time domain this implies that the corre-

"' lation time of the doppler signal is inversely proportional to v. This means 

that the stochastical variations in the amplitude of the signal become "faster", 

which in a loose way may be described as having a shorter "mean periode", see 

Figure 7.12,as v increases. 

When the doppler signal is squared or we form 

value (i.e. averaging performed over a periode 
"' 

e2el, the short-time mean 

£
0
-l) will see stochastical 

variations with "mean frequency" "'v. Thus it is the value of the integration 

time relative to $ which determines the variances. 

D. Effect of noise on estimator variance. 

The effect of noise on the estimator performance is discussed in Section 

5.2E. The electronic noise is uncorrelated with the doppler signal and has a 

frequency spectrum with zero mean frequency, i.e. <w2w
1
> = 0. Thus the expec­

tation value of thedenumerator is not affected by this type of noise. However, 

the variance of the denumerator is increased since the finite time estimate of 

<w
2
w

1
> will not be identically zero. 
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For the numerator the expectation value is affected by this noise as dis­

cussed in Section 5.2E, and the variance will be increased as for the denumera-

tor. Since and are fully uncorrelated, the ratio of these two expres-

sions will see an increased variance. Due to the hard limiter in estimator II 

the variance of this estimator will increase more by noise than that of estima­

tor I. However, for the estimators to be useful, it is shown in Section 5.2E 

that the signal to noise ratio has to be above 10 dB, and in this case the un­

certainties in the estimates are determined by the stochastic nature of the sig­

nals themselves. A signal to noise ratio above this value is obtained in most 

cases. 

6.4. Summary. 

Analytical expressions for the variances of the mean velocity estimators in 

Chapter 5 has been given. The effect of using AGC instead of division is dis­

cussed by an example. It is indicated that the variance of an estimator with 

AGC is greater than of one with division when the velocity field is nearly flat 

in the observation region. For normal velocity fields, however, the experiments 

of Section 7.2B show that the difference is negligible. 

Estimator type I and III are identical provided integration with uniform 

weight is used for averaging in estimator I. 

The variances of estimator I and II are compared and it is found that the 

variance of estimator II is only slightly greater than that of estimator I. 

When AGC is used instead of division, the experiments of Section 7.2B show that 

the situation is reversed although the difference is negligible. The variance 

of estimator II will also increase more when noise is present in the signal than 

that of estimator I. The signal to noise ratio in practical measurements is, 

however, so good that this drawback has no practical implications. 

The integration time, T, of the averaging filter will in most cases be so 

long that the filtering is strong. The variances will then be ~T- 1 . They will 
~-1 

also be ~v , for constant form of the velocity profile. This implies that the 
~-~ 

uncertainty in the velocity estimate is ~v which is demonstrated experimen-

tally in Section 7.2D. 
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7. APPARATUS AND EXPERIMENTS 

In this chapter we briefly describe the pulsed wave doppler meter which is 

developed. The velocity estimating capabilities of the instrument is tested 

in laboratory experiments both by steady and pulsatile flow. Both estimator 

type I and II are tested and we especially study the influence of the AGe­

bandwidth on the estimator linearity and variance. 

The instrument has also been tested on 18 persons for measuring aortic 

flow. A scanning method is used to obtain the velocity profile in the aortic 

arc. 

7.1. PEDOF- Pulsed Echo DOppler Flow velocity meter. 

A block diagram of the instrument is shown in Figure 7.1. The receiver 

amplifier has 70 dB gain with a 40 dB AGC capability, and a 3 dB bandwidth of 

280 kHz. As discussed in Chapter 2, this will give a minimum longitudinal 

resolution of 3 mm. For the special application of aortic flow velocity mea­

surement, the bandwidth could be decreased to 100 kHz, improving the signal to 

noise ratio with a tolerable decrease in the resolution to 7.5 mm. 

The impedance of the transducer is raised to 50 Q by a broad-band trans­

former. This is the characteristic impedance of the coax cable used as rf 

transmission line. Over 280 kHz this gives a source rms noise voltage of 0.48 ~V 

into 50 Q. The preamplifier has a noise figure of 2 dB which gives an equiva­

lent rms input noise voltage of 0.6 ~V into 50 Q. For a 20 dB signal to noise 

ratio a rms signal input voltage of 6 ~V is necessary. 

The quadrature demodulator, which is described in Section 5.1, is followed 

by a video amplifier of 20 dB gain and a bandwidth of 200 kHz. After the sample 

and hold buffer, the amplitude of the signal is observed and an AGC-signal is 

fed back to the rf-amplifier to assure maximum amplitude at the sampling posi­

tion without clipping. 

The signal received from slowly moving targets is removed by the highpass 

filters which may be selected by a front panel control, switch B. These filters 

are followed by lowpass filters which remove the high frequency components in­

troduced by the sampling. The sample filters are selected by switch Al, which 

is mechanically connected to switch A2, which in turn selects the repetition 

frequency in the generator unit, Figure 7.2. For both highpass and lowpass fil­

ters 4pole Tchebychef response is used. 
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The signal is then fed to the velocity estimator which is described in 

Section 5.3. Via a loudspeaker the doppler signal is made audible. 

The generator unit is shown in Figure 7.2. A freerunning 1.95 MHz oscil­

lator drives a counter which divides the frequency by 200 or 300, selected by 

the switch A2. This gives a repetition frequency of 9.75 kHz and 6.5 kHz which 

in turn gives a maximum range and maximum measurable velocity of 7.3 cm/1.7 m/s 

and 11 cm/1.1 m/s. 

osc 

1.956MHz 

monostable 

counter 
reset 

switch A2 

5-140J..!S Q -11--t---.:----t 
sample pos. 

3-20J..!S 

pulse length 

Q X 

0~+-----+---~----~ 

X+ y 

rf-pulse 

mute 

switch 

ro-----<o 

sample 

--------·--------0 

Figure 7.2. Generator unit for PEDOF. 

The counter triggers a monostable multivibrator which generates the pulse 

x shown in Figure 7.3. The legnth of this pulse may be adjusted between 3 

and 20 ~s. The signal x is delayed 2 ~s to give y. xmit = xy is generated 

and fed to a gate which generates the rf-pulse. The signal switch = x+y connects 
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Figure 7.3. Control signals from the generator unit. 

The counter is in the 200 mode which gives 

a repetition periode of 104 ~s, i.e. 

9.75 kHz repetition frequency. 

L 



- 188 -

the transducer to the power amplifier during the transmission. The signal 

mute = x+y reduces the gain of the receiver rf-amplifier 40 dB to avoid satu­

ration problems during the transmitting period. 

A second monostable multivibrator which generates the sample position delay, 

is triggered by x. Via the gate, a sample pulse of l ~s is generated. The 

sample pulse delay is adjustable from 5-140 ~s, giving an observation depth of 

0.5 - 11 em. 

A double power supply of ±14 V is used. The generator unit is driven by 

the negative supply only. Logic "l" then is 0 V and logic "0" is -14 V. 

The peak-to-peak amplitude of the transmitted pulse is 15 V into 50 D. 
With 60 % conversion capabilty of the transducer this gives a peak emitted 

acoustic power of 335 mW. A 10 ~s pulse then gives an average transmitted 

power of 33.5 mW at 9.75 kHz repetition frequency and 22.5 mW at 6.5 kHz repe­

tition frequency. 

7.2. Experimental laboratory studies of the instrument. 

A. Introduction and methods. 

In these tests we have been concerned with three problems: 

i) To find an optimum value of the AGC-time constant of the velocity esti­

mator (Section 5.3). We also especially emphasize the connection between 

estimator variances and this time constant as discussed in Section 6.1. 

ii) To study the velocity estimation capabilities of the instrument for a 

timesteady flow through a straight pipe. 

iii) To study the instrument capabilty to estimate pulsatile flow similar to 

that in the human aorta. 

Fori) we first use a single rf-frequency input on the instrument preampli­

fier. This simulates the echo from a single scatterer. The deviation in fre­

quency between this signal and the instrument local oscillator will be the 

doppler shift in the frequency. With this signal the linearity of the estima­

tor is tested for various AGC time constants. We especially study the distor­

tion of the single frequency signal through the AGC system and a comparison 

between this distortion and estimator nonlinearity is performed. 

Echos from timesteady flow through a straight tube is also used to study 

the effect of the AGC. 
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Figure 7.4 shows the system used to obtain timesteady flow. The area of 

the reservoir is matched to the spring constant so that the level of the liquid 

surface is kept at a constant height as the liquid flows out of the reservoir. 

A dashpot is used to attenuate oscillations. 

reservoir 

transducer 

water vessel 

Ill\ 
: .. 

Figure ?.4. Timesteady flow system. 

The transducer is mounted in a vessel of water through which the tube runs. 

The tube is straight for 50 diameters in front of the observation region. To 

control the flow velocity, the height of the outlet level of the tube is ad­

justed. 

The mean flow velocity is calculated from the measured time, t, of outflow 

of a fixed volume V. The mean velocity, v, will then be 
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v 
(7.1) v == 

t·A 

where A is the area of the tube. The error in this measurement is less than 

5 %. 

The same apparatus is used to obtain calibration curve of the instrument 

for timesteady flow. 

As discussed in Section 5.2, the velocity profile may be obtained by 

scanning the observation region across the vessel. To obtain the profile we 

have used the double layer matched transducer, described in Section 3.5, having 

a lense with focal length of 6 em, described in Section 3.1. A pulse length of 

5 ~s is used giving a longitudinal resolution of 4 mm. The lateral resolution 

is determined by the lense and is approximately 4 mm (Section 2.2). 

The transducer is kept at an angle of 45° with the tube and the position 

of the observation region is varied with a constant velocity across the tube 

(21 mm diameter). The estimator output is displayed versus time on a storage 

scope and by this the velocity profile of the time steady flow is obtained. ', 

To generate pulsatile flow a pump system shown in Figure 7.5 has been built. 

A piston pump driven by a wind shield wiper motor pumps the liquid through a 

tube that simulates the aorta. 

The velocity of the pump may be continuously varied, thus simulating diffe­

rent heart rates, while the stroke volume is constant (87 ml). In the test it 

is the integral of the instrument velocity curve which is compared to this 

stroke volume. (The "aortic" diameter and angle between ultrasonic beam and 

velocity is known). 

The liquid used for timesteady flow is cattle blood. For pulsatile flow 

measurements a mixture of oil in glycerin is used. 

B. Effect of AGC time constant on estimator linearity and variance. 

The AGC circuit is shown in Figure 7.6. Resistor R
1 

and the field effect 

transistor form a voltage controlled attenuator in front of the Op-amp, which 

has a voltage gain of 200 (46 dB) . The characteristic of the attenuator is 

given in Figure 7.7. 

P 
1 

is adjusted do that the integrator output is c,lamped at the pinchoff, 

V , of the JFET when the amplitude of 
p 

s. is small. An AGC range of 40 dB is 
l 

obtained for the whole range of y and a range of 30 dB is obtained when y is 

between -4 and -6.5 volts. 
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transduC'er 

. · ' water vessel 

.. 
.. 
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Figure ?.5. Pulsatile flow system. 

The total gain of the AGC-system is 

A(y) = A f(y) 
v 

(7.2) 

When the integrator time constant, T RC, is not too low, the integrator out-

put will normally vary only near y - the value which keeps the mean of 
0 

near -v . We may then linearize and obtain 
r 

/::,A l df f::,z 
-K/::,Z ---

A(yol f(yo> dy T 

f::,z = T6y T(y - yO) 

g(s.) 
~ 

(7.3) 



8j(t) 

2N4391 

2200 n 
10pF f 
-15v 

y ( t) 

- 192 -

Av = 200 

47k 

220 pF 

Pl 

g (si) = 
-si 2 or 
-lsi I 

Figure 7.6. AGC-system for velocity estimator I and II. 
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Figure 7.7. Characteristics of the AGC attenuator. 
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where 6A is the change in A when y changes. 

K determines the ability of the AGC-system to cancel variations in the 

signal amplitude. Since 6z is the integral of the difference between g(s.) 
1. 

and 

since 

-vr' 

{l.z 

a large value of K will keep this difference small. However, 

enters as a multiplier in the signal loop, the amount of distortion 

also increases with K as will be demonstrated. 

Ideally K should be independent of y
0

, giving differential performance 

of the AGC which is independent of the input signal level. From Figure 7.7 

it is seen that this is not fully correct, but the variations are fully within 

tolerable limits. In the experiments reported in this section, the level of 

e. is adjusted so that 
1. 

f(y
0

) ~ 0.6, giving a one-to-one correspondence be-

tween K and T. This value of also gives about the maximum K. 

Figure 7.8 gives the estimator outputs for a single frequency input to the 

amplifier. The output is given against the frequency deviation between the 

input signal and the instrument local oscillator. 

Three values of int.egrator time constants have been studied 

T 

T 

T 

0.5 ms -<-:-+ K 

3.3 ms +-+ K 

8.5 ms +-+ K 

16000 (Vs)-l 

2500 (Vs)-l 

1000 (Vs)-l 

For each value the estimators are calibrated to give 5 V output at +2.5 kHz 

frequency. 

The highest value of K shows considerable nonlinearity in the estimate, 

while the linearity for the other two values is quite acceptable. 

The wave forms out of the AGC circuit are shown in Figure 7.9 illustrating 

the distortion of the signals, especially at low frequencies. The percentage 

ratio of the power contained in the higher harmonics to the power in the funda­

mental harmonic is shown in Figure 7.10 as a function of frequency. 

The distortion in estimator II is greater than that in estimator I. This 

is reasonable since je. (t)j contains more relative power in the higher har-
2 1. 

monies than does e. (t). 
1. 
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Figure 7. 8. 
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Estimator output for 
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200 Hz '1' = 0. 5 ms 
K = 16000 (Vs)-1 

500Hz T :::: 0. 5 ms 
K = 16ooo (vsr1 

200 Hz T = 3. 3 ms 
K :::: 2500 (Vs)-1 

500 HZ T:::: 3.3 ms 
K :::: 2500 (Vs)-1 

200 Hz T = 8. 5 ms 
K = 1 ooo (vsr1 

500 Hz T = 8. 5 ms 
K:::: 1000 (Vs)-1 



- 196 -

1000 Hz T = 0. 5 ms 
K = 16000 (Vs)-1 

2500 Hz T = 0. 5 ms 
K = 16000 (Vs)-1 

1000 Hz T = 3. 3 ms 
K = 1000 rvsr1 

2500 Hz T = 3 . • 3 ms 
K = 1000 (Vs) -1 

Figure ?.9. Waveforms out of the AGC-circuit for a single 

frequency input signal. 

Upper trace: Estimator I 

Lower trace: Estimator II. 
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Figure 7.10. Power content in the higher harmonics out of 

the AGC-system relative to the power in the 

fundamental harmonic. 

T=0,5ms 

K"' 16ooo(vsr
1 

Figure 7.11. shows the estimator output from measurements of timesteady 

flow for various integrator time constants. The transducer (diam. 20 mm) forms 

an angle of 45° with the tube whose diameter is 12 mm. Thus to get the real 

flow velocities, the values in the figure should be divided by cos 45°. 

The observation region is adjusted so that the transit length of the cells 

is constant across the tube. A good indication of correct adjustment is that 

at moderate flow velocities, where a parabolic profile should be expected, a 

square spectrum of the doppler signal is obtained. 
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v :::::: 27 cm/s 

T = 3. 3 ms K = 2500 v =· 26 cm/s 

c) 

6 l 2 I ·-r~-g--:r-+ 
frequency - kHz 

T = 22 ms K = 400 v = 26 cm/s 

b) 

T = 0.5 ms K = 16000 v:::::: 27 cm/s 

d) 

e) 

Figure 7.11. Estimator output f~om measurements on timesteady para-

bolic flow for various integrator time constants. A 

lowpass filter with three real poles at 20 Hz is used. 

The measurements are independent so that the mean velo­

city differs between the experiments. e) shows the ampli­

tude spectrum from the flow analysed in b). 

Upper trace: Estimator I. Lower trace: Estimator II. 
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The estimator filter has three real poles at 20 Hz. A two pole highpass 

filter of 200Hz is used instead of the filters shown in Figure 7.1. There is 

no need for better highpass filtering since the vessel walls and surroundings 

are not moving. 

For K = 4 the estimate variance is higher for estimator I compared to 

estimator II. In this case the AGC is so slow that its effect is to divide 

p(t) with <q> (Section 6.1). Thus the estimator variance is given by that 

of p. 
;;;;:; 

The theoretical estimate of the relative uncertainty in this estimate 

is given in Example II of Section 6.3B. 

The input of the averaging filters are non-Gaussian due to the correlation 
2 

multiplication, the distribution for the first estimator being X . When the 

signals are lowpass filtered, the distribution becomes more Gaussian as is in­

dicated by Figure 7.11. However, the non-Gaussian character is especially 

demonstrated by the large positive peaks in the upper trace of Figure 7.lla, 

estimator I. No similar negative peaks exist. 

Approximating the distribution by the Gaussian type we may assume that the 

variations of the signals are within 40 (95 % confidence interval) giving an 

estimate of 

~ M' 0.17 estimator I = = 
<v> est 

est 

)7 ov > M 0.11 estimator II 
<v> est 

est 

This is in agreement with the theoretical values from Section 6.3B of 0.15 and 

0.10 respectively. 

An example of the doppler signal is shown in Figure 7.12. The other 

quadrature component is similar, shifted TI/2 in phase. When differentiating 

an additional TI/2 phase shift is obtained. The multiplication of the two sig­

nals then gives a signal with one polarity only (only one sign of doppler 

shifts present). The variations in the estimator output is caused by the 

stochastic fluctuations in the signal amplitude, as discussed in Section 6.3B. 

For estimator I the amplitude variations out of the multiplier will be 

proportional to the square of the amplitude variations in the doppler signal. 

For estimator II there is a linear proportionality between these variations, 

and this is the reason for the greater variance of estimator I. 
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Figure ?.12. Example of one of the quadrature components of the doppler 

signal. 

When the integrator time constant is reduced, the variations in the sig­

nal amplitude is also reduced. This is found as a reduction in the estimator 

uncertainty of Figure 7.11 without any other change in estimator performance. 

The difference in uncertainty between estimator I and II is also reduced and 

is negligible for K = 2500. Increasing K to 16000 reduces the estimator 

output due to distortion of the signals. Thus the maximum useful value of K 

is about 2500 as found in the single frequency study. To obtain minimum esti­

mator uncertainty without destroying estimator linearity, this value of K is 

used in the instrument. 

It is interesting to note that although considerable distortion of the 

signals occurs for this value of K (Figure 7.10), the estimator linearity 

is not markedly damaged. 

The uncertainty of the velocity estimate is approximately 

~ 0.10 
<v> est 

which is close to the theoretical value of 0.08 found in Example II of Section 

6.3B for the estimator with division. 

For estimator I the normalization factor is 

estimator II is <Je
1

J>-1 . The usefulnes of the 

while that for 

gain control is that it ad-

justs the gain so that these values are approximately constant. Now, if 

is kept near constant, <Je
1

J> will also be. Therefore, g(·) in estiamtor II 

may also be g[e. (t)] =-e.2(t). By this the amplitude variations of the inte-
J. J. 

grator output will be increased and a better AGC capability is obtained with-

out distorting the oscillations of the waveform. Since the amplitude variations 

in e2sgn el is proportional to the input amplitude variations while that of 
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e2el is proportional to the square of the input amplitude variations, the vari­

ance of estimator II will be less than that of Estimator I, even with fast AGC. 

This is demonstrated experimentally in Figure 7.13, where K is 300. 

Figure ? .13. 

Estimator outputs when 

' 

u 
(]) 
(/) 
...... 

g [e . ( t) ] = -e . 2 ( t) for both 
1.- '~-
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u 
Cll ..... 

..... 

E 
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(]) 
u 
Cll ..... 

..... 

estimator I and II. 

Upper trace: Estimator I 

Lower trace: Estimator II . 
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However, t.o use instead of 

that this form of g is used. 

simplifies the electronics so much 

The amplitude spectrum of the received signal is shown in Figure 7.lle. 

The rectangular form indicates a parabolic profile (Section 5.1D). By inspec­

tion we see that the mean frequency of the spectrum is about 700 Hz, which cor­

responds to a velocity of 27 cm/s. This value is in good agreement with the 

estimator output of 26 cm/s. 

C. Performance study with timesteady flow. 

The instrument is tested for timesteady flow obtained by the system in 

Figure 7.4 with a tube of 12 mm diameter. The transducer beam has an inclina­

tion of 45° to the flow. It may be directed opposite to the flow direction indi­

cated by a positive value of v, and along the flow direction indicated by 

negative values of v. 

To obtain small variances in the estimates, an averaging filter with three 

real poles at 1 Hz is used. The highpass filter has two poles at 200 Hz, and 

the AGC time constant is 3.3 ms (K = 2500). 

A plot of the instrument output against v cos 45, where v is calculated 

from Eq. 7.1, is shown in Figure 7.14. The two estimators resulted in such a 

small difference that they are both indicated by the same curve. 
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Figure ?.14. Calibration of the doppler meter by timesteady 

parabolic flow. The difference between the 

outputs of the two estimators are so small that 

they are indicated by one dot. 



- 203 -

The two dotted lines are obtained by linear, least squares approximation 

to the data for positive and negative velocities separately. The offset of 

the lines from the line of identity stems from the highpass filters used 

(Section 5.2E). The theoretical value of the offset (parabolic profile) is a 

little less than 4 cm/s, which is in good agreement with the experimental 

values of 3.8 cm/s. 

The velocity profile of time-steady flow in a tube of 21 mm diameter is 

measured as described in Section A. The result is given in Figure 7.15. An 

averaging filter with three real poles at 1 Hz and a highpass filter with two 

poles at 200 Hz is used. 

For the lowest velocity the measured peak velocity is almost twice the 

mean velocity measured from the time of volume outflow. This is the situation 

for parabolic profile. 

For the highest velocity the peak velocity is 54 cm/s, while the mean velo­

city measured from the time of the volume outflow is 32 cm/s. The measured 

peak velocity is, therefore, 10 cm/s less than that for parabolic flow giving 

the same mean velocity. 

This may be caused by t.he finite resolution capability of the instrument. 

By this the measured profile will be the convolution between the observation 

region and the real profile [62]. In addition the profile might be flatter 

than a parabola due to t.he anomalous viscosity of blood. 

cmtsec 
60 

50 

40 

21/cos45' 21 /COS45" 

a) v = 14 cm/s h) v 32 cm/s 

Figure 7.15. Measurement of velocity profiles for two flow velocities. 
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Because of the convolution between the observation region and the profile, 

an output of the estimator is also observed when the front of the observation 

region has passed out of the tube. This is the reasons for the tails on the 

right side of the profiles in Figure 7.15. Knowing the form of the observation 

region, the real profile may be obtained from the measured values by a deconvo­

lution process [62]. 

D. Relation between estimator uncertainty and the magnitude of the velocity. 

This problem has been discussed theoretically in Section 6.3C. The esti­

mator variances has been estimated for four values of v from the 40 rule de­

scribed in Section B. The result is shown in Table 7.1. The inverse square 

root dependency of the relative uncertainty to the velocity which is theoreti­

cally deduced, is clearly demonstrated. The bandwidth of the filter inputs 

ranges from 1000 to 2000 Hz for v ranging from 20 to 40 cm/s (the signals are 

squared). Since the averaging filter is 20 Hz only, the filtering is clearly 

strong. 

-
v cm/s 19 26 30 40 

M cm/s 2.7 2.9 3.4 3.8 

~ 0.14 0.10 0.11 0.095 
-v 

0.61 0.51 0.60 0.60 

lv' lv /-v G, 

Table ?.1. Estimated estimator variances for various 

velocities. 

E. Performance study with pulsatile flow. 

Measurements on pulsatile flow obtained by the pump system described in 

Section A is shown in Figure 7.16. Estimator type II is used with an averaging 

filter of three poles at 20 Hz. A highpass filter with two poles at 200 Hz is 

used. In a) and b) a non-focussed transducer is used, so that the whole cross­

section is approximately uniformly illuminated while in c) a lens with a focal 

length of 6 em i placed in front of the transducer. 
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Figure ?.16. Measurement of pulsatile flow on the pump model 

in Section A. 

a) Unfocussed transducer with ca. 30 pulses 
pr. minute. 

h) Unfocussed transducer with ca. 60 pulses 
pr. minute. 

c) Focussed transducer with ca. 60 pulses 
pr. minute. 

Upper trace: Output of estimator II. 

Lower trace: Integral of velocity estimate 
multiplied by the area of the 
tube. 

Below: Spectrum analysis by a Type B/65 
Sonograph, Kay Elemetrics Co. 

The pump frequency in a) is about 30 pr. minute, while in b) and c) it is 

60 pr. minute. The integral of the velocity curve is multiplied with the area 

of the tube to form an estimate of the pump stroke volume. In a) and b) this 

gives a value of 84 ml, while the value obtained from construction data is 

87 ml. It is also interesting to note that increasing the pump frequency 
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leaves the estimated stroke volume constant (as the real is) changing only the 

peak velocity with a subsequent decrease in ejection time. 

The integral in c) gives an overestimation of the stroke volume as the maxi­

mum instead of the mean velocity of the profile is measured. 

Below the scope traces a spectrum analysis of the last flow pulse in 

Figure a), the two last pulses in Figure b) and the two last full pulses in 

Figure c) is shown. The spectrum in Figure a) shows a hump at the leading 

edge of the flow pulse (arrow), due to oscillations in the pump system. It is 

seen that this hump is faithfully reproduced by the estimator. 

In Figure b) the first arrow indicates a small oscillation of the flow in 

the "diastole", ~~Which also is reproduced by the estimator. The second arrow 

indicates a dip in the frequency spectrum, which also is reproduced by the esti­

mator (last pulse) . 

The first arrow in Figure c) shows a hump in the spectrum which also is 

found at the top of the estimator output, second pulse. The second arrow 

shows a dip in the descending edge of the spectrum also reproduced by the esti­

mator, third pulse. The mean frequency in the spectrum is also well defined 

and in good agreement with the estimator output. Peak velocities of 125 cm/s 

is found in both cases. 

The ratio in Figure a) and b) of the mean frequency, deduced from the esti­

mator output, to the maximum frequency in the spectrum, at each instant of the 

time is 0.63 in a) and 0.65 in b). This indicates aprofile flatter than a 

parabola. The "blunt" profile of example II, Section 5.1D gives these values 

for p = 3.4 and 4.25 respectively. 

F. Discussion. 

The velocity estimation capabilities of estimator I and II are approximately 

equal. With the optimum value of the AGC time constant found in Section B, 

estimator uncertainties are found. These are close to the theoretical values of 

8 % found for estimators with division in Section 6.3, Example II. 

This shows that the division in the estimators is successfully substituted 

by AGC. Especially we note that, although (discussed in Section 6.1) the esti­

mator with division would have zero uncertainty for plug flow while the esti­

mator with AGC would not have, the difference between the experimental uncer­

tainty for the AGC estimator and the theoretical uncertainty of the division 

estimator is negligible for the parabolic profile. 
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The experiments of Section D also gives a very clear evidence of the inverse 

square root dependency of the uncertainty in the estimates to the velocity. 

The experiments also clearly indicate that true mean velocity estimates are 

obtained both for steady and pulsatile flow. However, for the estimates to be 

correct it is necessary that the angle between the ultrasonic beam and the flow 

direction and the illumination of the tube is carefully controlled. As this 

is difficult to do in vivo, problems arise when measurements are performed in 

the human aorta. 

7.3. In vivo measurements of aortic blood velocity and cardiac stroke volume. 

A. Methods. 

By positioning the transducer in the suprasternal notch, flow velocity in 

the ascending aorta as well as the aortic arc can be recorded, as indicated in 

Figure 1.2. By angling the beam until no velocity signal is recorded,the beam 

is normal to the aorta and in this position the aortic diameter can be calcula­

ted by the time lag between the echos from the anterior and posterior vessel 

walls. 

In order to evaluate whether these velocity and diameter measurements could 

be used for obtaining volume flow and stroke volume, the following calculations 

were performed: 

q 
2 

'Tf·d ---·v 
4 

( 7. 5) 

where q is the volume flow estimate, d is the measured aortic diameter and 

v is the measured velocity. 

Q I q(t)dt 
heart 
cycle 

where Q is the stroke volume estimate. 

co Q·HR 

where CO is the estimated cardiac output and HR is the heart rate. 

(7. 6) 

(7.7) 

A sector scanning system has also been built. A focussed transducer is 

suspended in a goniometer system as shown in Figure 7.17. By this the relative 
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Figure 7.17. Goniometer for suspension of the transducer 

in sector scanning measurements. 

position of the observation region (approximate cylinder of 5 mm diameter and 

7 mm length) may be observed and transferred to the x-y position of the beam 

of a storage tube. 

time the measured 

A reference velocity is set in the instrument and every 

velocity exceeds this threshold, the beam lights up at the 

position and a mark on the storage screen is obtained. 

By scanning across the vessel an area is obtained where the velocity exceeds 

the threshold value. The scanning has to be performed over many cycles, so that 

only a mean is obtained. By progressively lowering the velocity threshold, 

areas with velocities above defined values were obtained. 

Using the radii of the areas developed in this manner, a velocity profile 

across the lumen was constructed by plotting the radii against the threshold 

velocities. This profile is the mean for many cycles, and it must also be as­

sumed that the profile does not change during the cycle. 

B. Results. 

Figure 7.18 shows measurements of blood velocity in the ascending aorta 

from the suprasternalnotch. a) and b) are obtained at two nearby directions of 

the unfocussed transducer at the same depth, 6-7 em. 
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Figure ?.18. Measurement of blood velocity in aorta ascendence from 
the suprasternal notch. a) and b) show the results from 
two nearby directions of the unfocused transducer~ both 
depths 6-? em. Upper trace estimator type I~ lower 
trace estimator type II~ and below spectrum analysis by 
a TypeB/65 Sonograph~ Kay Elemetrics Co. 
Note that the irregularities in the estimator outputs 
are also found in the spectrum. 
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Comparison with the spectrum analysis indicates good velocity estimation 

capabilities of the estimators. The irregularities found in the estimator out­

puts are also found in the spectrum. This is best demonstrated by the flat top 

of the second pulse in a) and the small oscillations of the traces when the 

velocities fall from their maximum values in the first and the last pulse in b). 

The downward dip in the estimator outputs seen at the beginning of some 

pulses stems from the motion of the tissue when the heart starts to eject (iso­

volumetric contraction phase). This dip is also found in the spectrum. Note 

that the motion is away from the transducer as would be expected from the iso­

volumetric contraction of the heart. 

An M scan of the aorta at a position where the ultrasonic beam may be direc­

ted normal to the aorta from the suprasternal notch, is shown in Figure 7.19. 

Assuming a circular crossection of the aorta the estimates of the volume flow 

of blood and cardiac stroke volume may be calculated from Eqs. (7.5-7). This 

has been done for a group of 18 persons, and the result is given in Table 7.2. 

The measurements are performed in the ascending aorta. 

An example of a sector scan ih the aortic arc is shown in Figure 7.20. 

It can be seen that the areas are increasing as the velocity threshold is low­

ered. At low velocities an area blow the aorta appears, which probably repre­

sents velocity signals from the pulmonary artery, having a greater angle to 

the ultrasonic beam and consequently lower velocity components along the beam. 

The velocity profile was constructed by plotting the radii of the areas 

against the measured velocities. This is shown in Figure 7.21. The point on 

the velocity axis was determined by the maximum velocity measured, and the 

point on the radius axis is half the diameter measured by the echo technique. 

A curve for the profile is drawn according to the discussion,giving a rather 

flat profile in contrast to the parabola drawn for comparison. 

C. Discussions. 

The estimated values of the cardiac output in Table 7.2 are 30-70% of nor­

mal values. There are six possible error sources to the measurements: 

I A highpass filter of 4 poles at 600 Hz is used to remove the signal from 

the tissue. This will give an overestimation of the velocity (Section 5.2E). 

II Because the artery is so large compared to the transducer, it is difficult 

to obtain a uniform illumination of the whole crossection. With the center 

of the observation region in the middle of the artery, the central portion 



Peak aortic 
Patient Aortic diameter Heart rate flow "velocity" Peak aortic "flow" Stroke "volume" Cardiac "output" 
number em beats/min em/sec ml/sec ml liters/min 

l 2.2 88 50 206 28 2.5 

2 2.4 84 55 250 40 3.4 

3 2.2 60 68 280 41 2.7 

4 2.5 72 44 226 39 2.8 

5 2.4 52 39 200 33 1.7 

6 2.7 60 52 294 53 3.2 

7 2.4 64 55 257 39 2.5 

8 3.3 76 55 278 34 2.6 

9 2.9 84 42 280 38 3.2 

10 2.4 48 64 288 47 2.3 

11 2.9 60 55 363 53 3.2 I 
N 
r-' 
N 

12 2.9 66 42 275 41 2.7 

l3 2.8 96 36 220 22 2.1 

14 2.6 60 43 227 59 3.5 

15 2.7 72 40 227 43 3.1 

16 2.4 72 46 208 32 2.3 

17 2.5 80 34 166 28 2.3 

18 2.1 75 64 309 22 1.7 

Tahle 7. 2. 
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Figure ?.19. Ordinary M-scan of aorta. The two lower traces 

show the anterial and posterial wall of the aorta. 

The third trace from below is probably caused by 

a branching of the aorta. Upper trace is the ECG~ 

and second upper trace is the velocity in the 

middle of the aorta. Zero velocity indicates that 

the beam is normal to the flow direction. 
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Figure 7.20. Sector scans of the aortic arc for different 

values of the velocity threshold. 
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Velocity profile obtained from the sector 

scan in Figure 7.20. See discussion. 
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of the artery will be stronger illuminated than the periphery. This will 

give an overestimation of the velocity (Section 5.1E). 

III Electronic noise in the signal. This will give an underestimation of the 

velocity (Section 5.2E). However, we have S/N>lOdB, which assures that 

this error source will not reduce the velocity estimate more than 90 %. 

IV Stochastic errors in the velocity estimate due to the stochastic nature 

of the return signal. This is discussed in Chapter 6, and will be less 

than 10 %. Since this error is unbiased, the error in the integral of the 

velocity will be negligible. 

V Errors in the diameter measurement. This will give a relative error in 

the flow and stroke volume estimate of 

l',q 
q 

L',Q = 2 l',d 
Q d 

l',d = 2 mm and d 25 mm gives 

L',q 
q 

2 
225 0.16 

(7 .8) 

( 7. 9) 

If the error in d is unbiased, this error will give an overestimation 

of q and Q due to the square dependency of d in Eq. (7.5). 

VI A nonzero angle, 8, between the beam and the flow velocity. The estimate 

is proportional to cos e so that this error source will give an under­

estimation of the velocity. 

Source I, II and V give overestimation of the velocity and source III and 

IV are negligible. We therefore conclude that the low estimates obtained are 

caused by a nonzero angle between the ultrasonic beam and the ascending aorta. 

The angle seems to range from 35° - 70° giving reductions in the estimates of 

30-70 %. 

Light [66] indicates that in the aortic arc the velocity is tangential to 

the ultrasonic beam. By scanning with the method described above, ellipsoidal 

forms of the areas in the aortic arc is frequently found. This indicates that 

the beam in most cases is not tangential to the arc. The scan presented in 

Figure 7.20 is, however, circular indicating no significant angle between the 

aorta and the beam. 

By scanning the crossectional area, A', of the artery normal to the beam 

is obtained. This is related to the area, A, of the artery through 

A' = A/cos 8 (7.10) 

where e is the angle between the beam and the artery. 



- 216 -

By a uniform illumination of the artery, the instrument output, v', is related 

to the mean velocity v by 

v' v cos e (7.11) 

Forming the product, cos 8 is cancelled, and we obtain the volume flow. This 

has been suggested by Aaslid [23]. 

However, the measured area will not be correct due to the convolution be­

tween the velocity profile and the ultrasonic beam shown in Figure 7.22. 

Figure 7.22a indicates thecrossectionof the artery with the ultrasonic beam. 

Let A be the region in the plane covered by the arterial crossection. Let 

XA(x,y) be the characteristic function of A, i.e. 

(x,y) E A (inside the artery) 
(7.12) 

(x,y) (/_A (outside the artery) 

We also define a beam weighting function B(x-x' ,y-y') where (x,y) is the 

position of the center of the beam (indicated on the scope screen in our method). 

B is then the weight given to the point (x' ,y'). B may be approximated by a 

uniform weighting 

2 2 2 x + y < r 

B(x,y) 
2 2 2 

x + y > r 

where r is the beam radius. 

Without highpass filters the measured profile will be 

g(x,y) 
fdx'dy'v(x' ,y' )w(x,x' ;y,;y') 

fdx'dy'w(x,x',y,y') 

where the weighting function w is given by 

w(x,x' ;y,y') = B(x-x' ,y-y' )XA (x' ,y') 

(7.13) 

(7.14) 

(7.15) 

g(x,y) is thus the weighted average of the velocity field inside the beam and 

the artery. 

When highpass filters are used, velocities below a certain limit set by the 

cutoff frequency of the highpass filters, v~, are not observed. The observable 

region of the artery, 0, is those points (x,y) where v(x,y) > v~, i.e. 
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Figure 7.22. Convolution between the profile and the observation region. 
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0 = {(x,y) \v(x,y) > v~} ( 7. 16) 

The observable part of the velocity profile is 

(7.17) 

where x
0

(x,y) is the characteristic function of 0. We also obtain a new 

weighting function wo(x,x';y,y') 

w 0 (x 'xI ; y, Y I ) = B ( x-x' , y-y' ) Xo (xI , Y I ) 

With highpass filters the measured profile is 

go(x,y) 
/dx 1 dy 1 v(x 1 ,y' )w

0 
(x,x' ;y,y 1

) 

/dx'dy 1 w
0

(x,x' ;y,y') 

(7 .18) 

(7 .19) 

For blunt profiles with p being an integer, (including the parabolic) 

analytical expressions may be found for g • 
0 

Approximate evaluations of 

Eq. (7.19) may also be performed by expanding v(x' ,y 1
) in a Taylor series 

around (x,y) to the second order 

v(x',y') ov ov Mo
2

v 2 v(x,y) + ox (x 1 -x) + oy(y 1 -y) + ---2 (x'-x) 
ox 

o2
v 

+ 2 oxoy (x'-x) (y'-y) + (y'-y)2] + ..•••.. (7. 20) 

When the beam is fully inside the observable region, we obtain 

r
2 2 

g
0

(x,y) = v(x,y) + g- V v(x,y) (7. 21) 

If the second order approximation is not sufficient, we may from the mean 

value theorem of integrals, find a point inside the beam so that 

g (x,y) = v(x,y) 
0 

(7.22) 

For a parabolic profile the second order expansion of Eq. (7.20) is exact 

and Eq. (7.21) is exact as long as the beam is fully inside the artery. There 

will be a position independent reduction in the velocity measured with the 

center of the beam at (x,y) by r
2
/4a

2 
from the real velocity at. (x,y). a is 

the radius of the tube. 
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In general we may note the following 

Profile convex outwards: reduction 

Profile concave outwards: increase 

We also note that the error increases monotonously with the curvature of the 

profile. 

As the beam passes out of the observable region, the boundary conditions 

of the integration in Eq. (7.19) become more complicated. There will be an 

output of the instrument until the whole beam is outside the observable region 

of the artery. Then the instrument output will be zero. For an outwards con­

vex profile the reduction in measured velocity will, therefore, decrease as 

the beam passes out of 0 and eventually result in an increase in the measured 

velocity. 

The modified profiles for parabolic and blunt (p=4) real profile are shown 

in Figure 7.22b and c, both without highpass filter and with a highpass filter 

which cuts away velocities less than 0.2 of the maximum velocity. For a maxi­

mum velocity of 90 cm/s (2250 Hz) this corresponds to 18 cm/s (450 Hz). This 

is the values of the scan presented in Figures 7.20-21. 

From the discussions above the estimated form of the real profile in 

Figure 7.21 is drawn. A parabolic profile is drawn for comparison and we see 

that the real profile is flatter than this as should be expected. We also note 

that due to the flatness of the profile the measured profile is more pointed 

than the real. The reason for this is that V2
v increases with the distance 

from the artery axis. 

The deconvolution of Eq. (7.17) may be mathematically performed by using 

the Fourier transform [25]. However, such a deconvolution is sensitive to 

errors in the measurement, and a better approach would probably be to model 

the profile as discussed in the next chapter. 

A radius of aorta at the position of the scan greater than that obtained 

by the M-scan is indicated. This is reasonable since the M-scan is performed 

at a branching as shown in Figure 7.19 (same person). 

Using an arterial diameter of 2.65 em a mean flow of 4 1/min through the 

aortic arc is found. Taking account of 20 % to head and arms a cardiac output 

of 5 1/min is obtained. This is a normal value for a resting man. However, for 

the value to be trustworthy, two requirements are important: 

I. The area estimation has to be performed with great care since it has a 

quadratic dependency to the linear dimensions and are thus very sensitive 
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to errors in these as discussed above. 

II. Uniform illumination of the artery is required to obtain a correct mean 

value estimate. 

As discussed above, errors of these two types will result in an overestima­

tion of the flow. 

The illumination problem may be solved by scanning with a focused trans­

ducer across the artery and summing the contributions from different parts of 

the crossection. 

One limitation of this method is that it is difficult to scan in the ascen-

ding aorta, due to its location. We are, therefore, left with a scan in the 

aortic arc and the flow to the head and the arms would be unknown. 

Apart from this deficiency, the method should give an estimate of the flow 

in the aortic arc with an accuracy well within 20 %. Since the method is non­

invasive and quick, it has several advantages to existing methods. 

7.4. Phase shift counting position meter. 

By counting the phase shifts of the received signal from a single reflector, 

as the posterior cardiac wall, the relative change in position of the reflector 

is estimated. From the quadrature components of the signal the direction of 

the motion, towards or away from the transducer, may be determined. 

Figure 7.23 shows a phase shift up-down counter capable 

of A/4 in position of the reflector. The magnitude 

sin <p and that of e2 is proportional to cos <p 

the reflected rf-signal. When the distance of the 

creases by an amount ~~' the increase in <p is 

2TI 26~ -:\-

of el 

where <p 

reflector 

of counting changes 

is proportional to 

is the phase of 

to the transducer 

(7.23) 

The signals out of the two comparators are shown for constantly increasing 

and decreasing <p in Figure 7.24. 

Suppose that <p is increasing. The position of the switches in Figure 

7.23 is shown for comp II = -V. Comp I changes to -V and the upper capacitor 

is charged to -V. When comp. II changes to +V, the upper capacitor is switched 

to the integrator input and a charge c
1
·v is redrawn from c

2
. This gives a 

rise in the integrator output of 

in-
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comparators 

inverter I 
position of switches 
shown when e2 <o 

rei at ive change 

in position 

Figure ?.23. Phase shift up-down counter for measuring relative change 

in position of a single reflector. The change of \14 in 

reflector position is observed. 

<P increasing <P decreasing 

compar. I ::l I I I 
compar.ll ------.~1 I I -v 1 

time t> 

Figure ?.24. Signals out of the comparators for constantly increasing 

and de creasing <p. 
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(7.24) 

At the same time the lower capacitor c
1 

is switched to the inverter and 

loaded to -V before comp II goes to -V and the switches changes. By this 

change the lower capacitor redraws a charge c
1
.v from the integrator capaci­

tor and a rise 6v in the integrator output is obtained. 

When ~ is decreasing, a decrease 6v in the integrator output is obtai­

ned for every change in the output of comparator II. 

The distance in ~ between the changes of the comparator outputs is TI. 

From Eq. (7.23) we see that this corresponds to a change in distance between 

the transducer and the reflector. 

A 
6~ = 4 

(7.25) 

Figure 7.25 shows the estimator ouptut from measurements of the posterior 

cardiac wall. The transducer is positioned on the chest at the fourth intra­

costal space. 

The width of the ultrasonic beam introduces an error in the measurement. 

When the heart beats, thewall twistswhich give different changes in position 

of different points observed. In our measurement the transducer diameter is 

10 mm. The reliability of the measurement must, therefore, be studied in fu­

ture investigations. 

i 
E - E ~ 
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~ £ 

u N 
~ 

~ 
~ 

~ 

5 
0 

Figure ?.25. Output of phase shift counting detector from 

measurements on the posterior wall of the heart. 

Each jump represents a motion of A/4 = 0.192 mm 

of the wall. 
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7.5. Summary. 

A pulsed bidirectional ultrasonic flow velocity meter is described. It is 

shown that under idealized conditions in laboratory testing it gives an un­

biased estimate of the mean velocity of flow. The estimate uncertainty is 

about 10 % at v = 30 cm/s. The uncertainty is inversely proportional to the 

square root of the velocity. 

For using the instrument to measure aortic flow and cardiac output, practi­

cal problems arise. These are mainly 

I. The problem of uniform illumination of the artery. 

II. The unknown angle between the flow direction and the ultrasonic beam. 

Both these problems may be solved using a focused transducer and scanning the 

observation region acorss the arterial lumen. However, it seems possible to 

scan only in the aortic arc. Thus the amount of flow for head and arms would 

be unknown. 

Apart from the difficulties to obtain absolute values of the flow it seems 

possible to record relative changes in flow by holding the transducer in the 

same position and measuring at the same depth each time. Relative values are 

also sufficient for estimating the degree of backflow through the valves. 
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8 . CONCLUDING REMARKS. 

Our approach to the theoretical description of the doppler velocity meter 

may be schematically described as follows 

Deterministic 
time dependent 
velocity field 

Stochastic 
scattering 

Doppler 
signal Estimation 

Mean velocity 
or velocity 
field estimate 

Although Eq. (5.105) gives a deterministic correspondence between the velocity 
-+ 

field and the doppler signal for a given event of n(r,t), we have only stochas-
-+ 

tic knowledge of n(r,t) which introduces the stochastic nature of the scatte-

ring process. 

The properties of the deterministic profile are found in the stochastic pro­

perties of the doppler signal. Since the doppler signal is Gaussian (Section 

5.2C), its higher order distributions may be obtained once the correlation func­

tions, Re
1

e
1 

(t,T) and Re
1

e
2

(t,T) are known (the approximations of Eq. (5.35) 

are assumed to be valid). Thus all the information of the velocity profile 

contained in the doppler signal are contained in these correlation functions. 

We have already seen how R. (t,t)/R (t,t) give a vector weighted average 
e2el elel 

of the instantaneous velocity field in the observation region and how the power 

spectrum of the doppler signal, the Fouriertransform of the correlation func­

tions, may be used to deduce the form of the velocity field, Chapter 5. 

However, since the velocity field is time dependent, the stochastic proper­

ties of the doppler signal has to be evaluated for a finite time introducing 

uncertainties in the estimates. This uncertainty may be reduced if we utilize 

apriori knowledge of the flow. Up to now we have considered our stochastic 

ensemble to be defined by the velocity field (unknown). Letting the velocity 

field be a stochastic process itself its probability law would give apriori in­

formation which could be combined with the measurement to give more accurate 

estimates of the velocity field. 

Let the apriori expectation value of the mean velocity be x(t) with a 

covariance function C (t,T). Given a measurement 
XX 

y(t) x(t) + n(t) (8.1) 

where n(t) is noise and x(t) is the actual mean velocity, we can use a mini­

mum variance linear filter to combine measurement and a priori knowledge (Wiener 

filter) [86] 
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x(t) + fd't h
0

(t,'t) [y('t) - ~(T)] 
I 

(8.2) 

I is the interval of observation. The optimum filter response satisfies the 

following integral equation 

C (t,u) = fdz h
0

(t,z)C (z,u) 
xy .I yy 

(8. 3) 

Using the inverse kernel of the covariance function of y we obtain formally 

h
0

(t,'t) = fdu c (t,u)Q (u,'t) 
I xy yy 

where Q is defined by [86] 
yy 

jdu C (z,u)Q (u,'t) = o (z - 't) 
I yy yy 

The covariance function of the estimate is 

A 

c (t,'t) 
XX 

c (t,T) - Jd1: h
0

(t,T)c (t,'t) 
XX I XX 

(8. 4) 

(8. 5) 

(8.6) 

One way of obtaining apriori knowledge of x is to use a mathematical 

model of the cardiovascular system as that developed byAaslid [69]. For car­

diovascular systems that are almost periodic we can write 

(8.7) 

with the measurement 

(8. 8) 

where the index refers to the number of the periodic and the zero reference 

of time is at the beginning of each period. The above equation expresses that 

the velocity of one period is the velocity of the preceding period plus a 

noise term vk which we assume has zero mean and is uncorrelated to 
k 

x. The 

covariance function is Cvv(t,'t). We also assume that wk(t) has zero mean 
k 

and is uncorrelated to X and with the covariance function C (t,'t). 
ww 

We are now to obtain the optimum estimate of xk+l (t) given the measure­

ment set {y
1 

(t) ,y
2

(t), .... ,yk+l (t)}. The expectation value of xk+l (t) apriori 

to the measurement yk+l (t) is obtained from Eq. (8.7) 

xk+l (t) E{xk+l (t) IY1 (t) ... yk (t)} 
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Similarly the apriori covariance function is 

k+l 
C (t,T) 

XX 

Ak k 
C (t,T) + C (t,T) 

XX VV 

r-k 
where C (t,T) is the covariance function of 

XX 

{y
1 

(t) ..•. yk(t)}. The covariance function of 

ck+l(t,T) 
yy 

We now have the following iterative estimation scheme 

(8.10) 

given the measurements 

is 

(8.11) 

J 
k+l 

~(t) + dT hO (t,T) (yk+l (T) - ~(T)) 
I 

k+l 
h

0 
<t,T) 

r-k+l 
C (t,T) 

XX 

J 
k+l k+l 

du C (t,u)Q (u,T) 
I XX yy 

J k+l k+l 
dT hO (t,T)C (t,T) 

I XX 

and ck+l 
yy 

are given in Eqs. (8.10-11). 

(8.12) 

The covariance function of w is obtained by extending the calculations 

of Chapter 6 to non-zero lag. The stochastic properties of v must, however, 

be estimated from observations. It will systematically be affected by a num­

ber of factors such as the breath and changes in conditions of work. This in­

troduces difficulties in applying the above scheme. 

The filter given by Eq. (8.4) is the unrealizable one. We might also use 

the realizable Wiener filter. If x could be given a state space representa­

tion excited by white noise a Kalman filter might be used. 

However, as the theory of Chapter 6 and the experiments of Chapter 7 show, 

the uncertainties in the estimates with the averaging periode so short that the 

parameters may be considered constant, is about 10 %. For measurement of 

aortic flow and cardiac output the unknown angle and the problem of uniform 

illumination of the artery introduces more severe limitations of the method. 

The scanning method suggested in Section 7.3 seems a useful way to go to 

obtain absolute values for the flow in the aortic arc. However, the deconvolu-

tion which is necessary is sensitive to noise and according to Hottinger & al 

[25] it is difficult to perform in more than one dimension. 

A less noise sensitive approach may be to use a parametric model of the 
-+ -+ 

profile, v' (x,y,t;a(t)) and adjust a so as to get the best representation 
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of the measurements by the convoluted version of this profile (Section 7.3C) 

+ 
g~[x 1 y 1 t;a(t)] 

J dX I dy 1 V 1 [X I I Y 1 
1 t; ~ ( t) ] W 

0 
(X 1 X 1 

; Y 1 Y 1 
) 

fdx'dy'w0 <x~x';y,y') 

A useful measure of the degree of approximation of g by g' 
0 0 

J 
c 

. + 2 
fdt dxdy[g

0
(xly,t) - g0<xlylt;a<t>>J 

I 

(8.13) 

could be 

(8.14) 

The measurements ·will be given for discrete values of (x,y) as a function 

of time. If we discretize in time, we could form the set of vectors 

or in t.he vector notation 

+ w --k 

are error vecto~s. 

(8.15) 

(8.16) 

rn analogy with Eq. (8.14) we could minimize the followinq functional 

Jd (a) (8.17) 

whern ~\ are positivEe definite weight matrices. They have to Le chosen from 

the ~~ acing of the points (x. ,y.) 
l l 

if a discrete representation of Eq. (8.14) 

ls wanted. An even distribution of points in space and time then gives Sk = I. 

The usefulnes of a model is demonstrated by the following. Let v' be 

gi VC'll by 

+ ·+ 
v' (x,y;cd = a + u(x,y;a') 

1 

Then the vector that minimizes 

+ 
J (a) J + 2 

dxdy[v(x 1 y) - V 1 (x,y;a)] 

is such that 

(8.18) 

(8.19) 
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->­
fdxdy v(x,y) = jdxdy v(x,y;a

0
) (8.20) 

i.e. the flow determined by the approximate profile is identical to the actual 

flow. This is seen by differentiating Eq. (8.19) with respect to a
1

• 

When the profiles are convoluted, the minimization of Eq. (8.14) or (8.17) 

will not in general give the minimum of Eq. (8.19). When the beam diameter is 

small compared to the radius of curvature of the velocity profile, the devia­
+ 

tion between these values of a will not be great. 

If the model is a good representation of the real profile,measurements in 
+ 

a few positions only would be necessary to obtain a good value of a
0

. Thus 

this method would be much faster than a deconvolution. The scan in Section 7.3 

indicates that the following elliptical form of the blunt profile may be used 

as a model. 

+ 
v(x,y;a) a1 + v0{1 

+ 
where the parameter vector a is 

(8.21) 

Actually v
0 

will be a function of time in Eq. (8.14) or k in Eq. (8.17) 
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APPENDIX I 

Acoustic Lens Materials. 

Four types of acoustic lens materials have been studied. 

I Plexiglass. 

II Araldite Casting Resin D and Hardener 951, Ciba, composition 9:1. 

III Araldite Casting Resin D and Polyamid Hardener 846, Ciba, 

compositio~ 55:45. 

IV Hard PVC. 

Data for the materials are given in Table I.l. The focal length of a plane 

concave lens with radius of curvature of the concave face of 2.3 em is given. 

Material I II III IV 

Wave vel. m/s 3450 2420 2250 2060 

Density g/cm 
3 

1.2 l. 28 1.19 l. 35 

Impedance 10 
6 

kg/em 
2 

4.15 3.1 2.68 2.78 

Focal length em 4 6 7 8.5 

Table I-1. Data for lens materials. 

Reflec-tion losses in the lenses increase with increasing characteristic impe­

dance of the materials which increases the losses for the lower focal lengths. 
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APPENDIX II 

Measurement of Blood Velocity. 

blood sample 

Figure II. 1. Apparatus for measuring blood velocity. 

The apparatus for measuring the blood velocity is similar to the pulsed 

doppler flowmeter. Coherent ultrasonic pulses are transmitted into the blood 

sample and reflected by a polished block of brass. The received signal is 

split into two channels and phase demodulated by two signals 90° out of phase 

and synchronous to the local oscillator. Two channels are used to increase 

the accuracy of the measurement. 

The demodulated signals are observed on any/time scope so that the phase 

of the received pulse may be compared to the reference signals. When the dis­

tance between the transducer and the reflector changes, the demodulated pulses 

oscillate. One cycle of oscillation for each channel corresponds to a change 

of A/2 in ~. The zero crossings of the oscillations measure A/4 changes in 

£. Since the oscillations of the two demodulated signals are 90° out of phase, 

A/8 changes in ~ may be observed by counting the zero crossings of both chan­

nels. 

The length ~ between the transducer and the reflector is changed by an 

amount 6£ and the zero crossings of both channels are counted to be n. The 

transmitted frequency is f
0

. We than have 
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n·A/8 {II.l) 

Using the relation A c/f
0 

gives 

c = (II. 2) 
n 

Since only the zero crossings of the phase are counted there will be a 

quantification error in c 

(II.3) 

l 
(II. 4) 

c n + l 

To minimize this error n and thereby 6~ should be made large. 

We use a micrometer screw to position the transducer. Maximum 6~ = 16 mm 

which gives n "' 170. The uncertainty in the measurement of 6~ is .02 mm. 

A frequency of 2 MHz is used. 

The quantification error of c is 

.6 % (II. 5) 

while the error introduced by the uncertainty in 6~ is 

.2 % (II.6) 
c 

Since c ~ 1500 m/s, the maximum error in the measurement of c is 

12 m/s (II. 7) 

Outdated human blood from the bank was carefully centrifuged and cells and 

plasma were mixed to get samples with different cell content. Each sample was 

measured two times subsequently. If these values differed, a third measurement 

was performed. 
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APPENDIX II I 

Proof of the Reciprocity Relation for Transducers. 

We approximate the transducer by a radiating piston with a specified normal 

velocity at the surface [54]. 
-+ 

The field at a position r will be 

Figure III.1. Proof of the reciprocity relation. 

-+ 2 
p (r,t)r-Jd E;, 

R S 

-i (k 1-;-tl-wt) 
e 

(III.l) 

where S is the surface of the transducer and t is the position vector on s. 
-+ 

Let a monopole source distribution, m(r,t), be located in a region R. 

The radiated field from this distribution at a position t will be 

-+ 3 
p(f;,t)--.Jd r 

R 

1 -+ -+1 -i (k E;,-r -wt) e I -+ 
-------------- m(r,t) 

It- ~I 
(III. 2) 

The waves will hit the transducer and excite an electric voltage at the output. 

This voltage will be proportional to the integral of the complex pressure ampli­

tude over the transducer. 

e (t) "' e m (III.3) 

Interchanging the integration we see that the surface integral is proportional 
A -+ 

to pR(r). We, therefore, have 



e (t) 
m 
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This completes the proof for the monopole source density. 

++ 

(III.4) 

The dipole density d(r,t) is represented by two monopole densities q 

and -q equal in magnitude and opposite in sign, and displaced a small distance 

~ relative to eachother, i.e. 

++ 
d(r,t) lim! q(;,t) 

!+o 
q+oo 

(III. 5) 

We then have for the output from the transducer, using -a for the proportio­

nality factor in Eq. (III.4) 

Integrating the last expression by parts, we get 

iwtf 3 7 + A + ae d r lim J0·q(r,t)V'p (r) 
r 

or at last 

(III. 6) 

This completes the proof for the dipole source distribution. 
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APPENDIX IV 

Evaluation of Eq. (5.48). 

We change the variables of integration in Eq. (5.47) 

-+-+ -+ 
p

2 
= W- qv (0) (IV.l) 

p
2 

= const. defines a curve or family of curves in the ;;--plane, {f i (w,p
2

)} •· 

Let us first assume that p = const. 
2 

defines a single curve 

in Figure IV.l. This curve has a parametric representation 

r as shown 

(IV. 2) 

where is the arc length parameter of r -+-+ -+ 
oriented so that V (q v) x Clo/ Clp

1 
points out of the plane. 

Figure IV.l. The curve f(w~p 2 J of Eq. (IV.2). 

-+ 
The unit tangent vector, t, along f is 

-+ 
t 

1 (IV. 3) 

Fr~~ Sc. (IV.l) we obtain 

(IV .4) 



- 234 -

On the other hand we generally have 

d; 
a;l a;l 

dpl 1 dpl dp2 

(IV. 5) 

d;2 
a;2 a;2 

dpl dp2 
dp2 

dpl 
a;2 a;l 

d;l 
dp2 - dp2 

1 
(IV.6) 

J 
a;2 a;l 

dp2 d;2 - dpl dpl 

where J is the Jacobian of the transformation (s
1
,;

2
J + (p

1
,p

2
). Comparing 

(IV.3), (IV.4) and (IV.6) we see that the following relation holds 

++ 
1 1 a q v 

J 117~~1 ~ 

By comparing the second and the last term the Jacobian of the transformation 

is obtained 

J 
l 

(IV. 7) 

1
++-+ 

'ilq v(0) I 

Eq. (5.47) may now be written 

+ 2 + 
L[a(pl,p2) ]<n [a(pl,p2) ]>o(p2) 

I v~ ~r~ (pl ,p2) J I 
(IV.8) 

Performing the integration over p
2 

we may express the power spectrum by the 

following curve integral 

(IV. 9) 

where f(w) is the curve f(w,O). 



If the relation p = 0 
2 
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holds for a family of curves {r. (w)} 
l 

-+ 
in the a-

plane, the result will still be given by Eq. (IV.9) if we extend f(w) to be 

f(w) u r. (w) 
i l 

(IV.lO) 
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APPENDIX V 

Filtering and Spectral Estimation of Stochastic Processes. 

The correlation function between two real stochastic processes x and y 

is defined by 

(V .1) 

Similarly the covariance function between the same processes is defined by 

Suppose that the processes 

impulse responses h 
p 

and h 
q 

p (t) jd'Th (t,'T)X('T) 
IR p 

<x(t )><y(t )> 
1 2 

(V. 2) 

x and y pass through two linear filters with 

to give p(t) and q(t). We then have [75] 

q(t) = jd'Th (t,'T)y('T) 
JR q 

<p(t)> = jd'Th (t,'T)<x('T)> 
1R p 

<q(t)> = jd'Th (t,'T)<y('T)> 
IR q 

(V. 3) 

JR = ( -00 I 00) 

In the special case of wide sense stationary processes and time independent 

filters we have 

p(t) = jd'Th (t-'T)x('T) 
lR p 

<p> = <x>jd'Th ('T) 
lR p 

c ('T) 
pq 

q(t) = jd'Th (t-'T)y('T) 
IR q 

<q> <y> f d'Th ('T) 
IR q 

(V .4) 
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Especially we obtain for the covariance between p and q 

<op &:r > <[p(t) - <p(t)>][q(t) - <q(t)>]> c (0) 
pq 

(V. 5) 

In the discussion of estimator type I and II we shall assume that the de­

gain of the filters is normalized to unity, i.e. 

jdTh(t) 
R 

1 

We also consider the case of timesteady fields only. 

(V.6) 

In the case of strong filtering the bandwidth of the filters are much 

smaller than that of C 
xy 

The variation of the filter responses over the 

range where C 
xy 

is appreciably different from zero may, therefore, be neg-

lected, and we may use the following approximation 

C (T) 
pq 

jdT h (t
1

)h (tl + T)jdt
2

C (T
2

) 
R 1 p q R xy 

(V. 7) 

or especially for zero lag 

C (0) = jdT
1

h (T
1

)h (t
1

JjdT
2

C (t
2

l 
pq lR p q lR xy 

(V.8) 

Suppose that our filters are obtained by time scaling of a standard filter, h
0

, 

(e.g. unit bandwidth). The normalization of Eq. (V.6) is used. We then have 

h(T) 
l T 
- h (-) 
T 0 T 

In this case we get 

c (0) 
pq 

(V. 9) 

(V.lO) 

This means that in the case of strong filtering, the output covariance is in­

versely proportional to the integration time. 

Methods of power spectrum estimation are described in [71], [72], [78]. 

An estimate of the crosscorrelation spectrum of two real processes x(t) and 

y(t) may be obtained by multiplication of the finite time Fourier transforms 

of the processes 



G (W) 
xy 

l x*(w)Y (w) 
T T T 
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l 
T/2 . T/2 . 

J lWt J -lWt T dtx(t)e dty(t)e 
-T/2 -T/2 

The expectation value of this estimator is [78] 

<G (w)> 
xy 

G (W) 
xy 

(V .11) 

(V.l2) 

The variance of this estimate will, however, not tend to zero when T -+ 00 , [72], 

and the estimate is, therefore, convolved with a suitable spectral window 

W(W) 

G (W) 
xy 

G (W) * W(W) 
xy 

(V.l3) 

The variance of this smoothned estimate will tend to zero as T -+ 00 • The 

Fourier transform of the spectral window W(W) is called the data window, 

w(t) 

w(T) +-+W(w) 

The windows are normalized so that 

w(O) 
2
1 

jdwW(W) :::: l 
nm 

(V.l4) 

(V.l5) 

The Fourier transform of G (w) is often used as an estimate of the 
xy 

crosscorrelation function between x and y [78] 

R (T) 

l (T-Itll/2 
- J dt x[t + T/2]y[t - T/2] 
T ( -T+ I t I ) I 2 

(V.l6) 
xy 

0 else 

The expectation value of this estimator is, Eq. (V.l2) 

l [1 - _hl]R (T) 
<R (t)> = T xy 

xy 
0 

(V.l7) 
else 

Similarly we obtain for the expectation value of the Fourier transform of 

G (w), R (T) from Eq. (V .13) 
xy xy 



~ 

<R {T)> 
xy 
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{ 

(l - hl.J w{T)R (T) 
T xy 

0 else 

The zeroth and first moment of G (W) are defined by 
xy 

q = fdw G (W) 
xy 

1R 

p = fdw iw G (w) 
xy 

1R 

Inserting G 
xy 

from Eqs. (V.ll-13) we obtain 

The integration over w may be performed straight and we obtain 

(V.lB) 

(V .19) 

(V.20) 

(V. 21) 

(V .22) 

The integration over t
2 

is now easily performed and the integration over 

w is obtained from Eq. (V.l5). The result is 

2 
T/2 

q = TTI f dt x(t)y(t) 
-T/2 

For the second moment we use the following relation 

(V. 23) 

(V. 24) 

where o' is the derivative of the a-function. By performing partial integra­

tion over t
2 

and assuming W(w) to be symmetric so that 

fdw w W(w) 
JR 

we obtain 

0 

[ 

2 T/2 TI 
p_=_TI_f dt x(t)y(t) - [x(T/2) - x(-T/2)y(-T/2)] 

T -T/2 T 

------------------------------------

(V. 25) 

(V. 26) i 
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We thus see that the moments are independent of the spectral windows used. 

If we are interested in these only and not the entire spectrum, the convolu­

tion in Eq. (V.l3) is not necessary to perform. 
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APPENDIX VI 

Correlation Functions and Power Spectra for the Derivative of a Stochastic 

Process. 

Given the mean square differentiable complex processes x and y. Then 

[79] 

<x*(t )y(t )> 
1 2 

<x*<t ly<t J> 
1 . 2 

d 
~ R (t

1
,t

2
) 

a 
2 

xy 

(VI.l) 

For wide sence stationary processes we immediately obtain from these equations 

<x*(t )y(t )> 
d . 

R . (T) Rxy(t2 - tl) -R (t - t ) R (T) 
xy 1 2 at

2 
xy 2 1 xy 

(T) <:X* < t ) y < t l > 
d -k (T) R. Rxy<t2 - tl) at R (t2 - t ) 

xy 1 2 1 xy 1 xy 

(VI. 2) 

From these equations it directly follows 

Rxy.<tl,t2) 
a2 

Rxy(tl,t2) = 
dtldt2 

(VI. 3) 

R .. (T) -R (T) 
xy . xy 

For the cross power spectra we obtain 

G . (W) Y:{R . (T)} ~{R (T)} = iWG (W) 
xy xy xy xy 

(VI. 4) 

G. (W) j"{R. (T)} -f{R (T) } -iWG (W) 
xy xy xy xy 
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APPENDIX VII 

Derivation of Covariance Functions for Estimator Type II. 

Theorem. Let x and y be two Gaussian random vectors with zero mean 
-+ -+ 

dim(x) = dim(y) = 2, i.e. 

Then 

-+ 
X 

where we have defined 

<y y > 
1 2 

-+ 
y 

i 1,2 

-

(VII.l) 

Note: The normalized variables y. 
l 

enters since it is only the sign of y
1 

and which determine the value of the product. 

Proof. 

where R+ is the first and third quadrant of the y
1
-y

2 
plane while 

the second and fourth quadrant as shown in Figure VII.l. 

(VII. 2) 

R- is 



Now [79] 

where 

{ ++T!+} 
EX X y 

X 

-+ 
m 

+-+T 
<xx > 
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R- R+ 

R + R-

Figure VII.l. Definition of R+ and~. 

-1 T -+-+ T 
X - PY P + mm 

-+-+T 
y = <yy > 

-1-+ 
py y 

p 
-++T 

<x Y > 

From this equation we directly write 

<x x > 
1 2 

<x x > 
1 2 

Direct calculation gives 

-1 T 
(PY p ) 12 

2 
<xlyl><x2yl><y2 > - <xlyl><x2y2><yly2> 

D 

D 

(VII. 3) 

(VII. 4) 

(VII. 5) 
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y 
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2 2 <x y ><x y ><y > 
1 1 2 1 2 

2 - <x y ><x y ><y ><y y > 
1 2 2 1 2 1 2 

2 2 
-<x1yl><x2y2><y2 ><y1y2> + <xly2><x2y2><y1y2> 

+ ---------~~--------~2~---~~----------~~ 
D 

2 2 <x y ><x y ><y > 
1 2 2 2 1 

2 - <x y ><x y ><y ><y y > 
1 1 2 2 1 1 2 

2 -<x y ><x y ><y ><y y > 
1 2 2 1 1 1 2 

+ 2 
D 

2 + <x y ><x y ><y y > 
1 1 2 1 1 2 

2 - <x y ><x y ><y ><y y > 
1 2 2 2 1 1 2 

2 -<x y ><x y ><y ><y y > + 
+ l 1 2 1 2 1 2 

2 <x y ><x y ><y y > 
1 2 2 1 1 2 

D2 

2 2 <x y ><x y ><y ><y > 
1 2 2 1 1 2 

2 - <x y ><x y ><y ><y y > 
1 1 2 1 2 1 2 

+ 

2 

2 
D 

-<x y ><x y ><y ><y y > + 
1 2 2 2 l l 2 

+ 2 
D 

2 <x y ><x y ><y y > 
1 1 2 2 l 2 

2 2 2 
D = <y ><y > - <y y > 

1 2 1 2 

-+ 
The marginal distribution of y is 

2 2 2 
2a1 a2 (1 - p ) -+ 

p(y) 

where we have used the shorthand notation 

a 2 < 2> a 2 < 2> 
1 y1 2 y2 

p p 
y1y2 

(VII.6) 

(VII. 7) 
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From Eqs. (VII.2) and (VII.S) we see that we have to evaluate the following 

integrals 

-+ 
where we have used the even symmetry of p,p(-y) 

be further evaluated to 

...__I_l __ 2 I_d_y_l_I_dy_2_{_p_(_y l_'_y_2_) _-_p ( -y 1' y 2) } I 

Similarly we obtain 

J 2 2 -+ J 2 2 -+ d yyl p(y) - d yy p(y) 
R+ R- l 

00 00 

2fdyljdy2Yl
2
{p(yl,y2) - p(-yl,y2)} 

0 0 

f 
2 2 -+ J 2 2 -+ 

I3 = d yy2 p(y) - d YY2 p(y) 
R+ R-

00 00 

2fdylfdy2y2
2
{p(yl,y2) - p(-yl,y2)} 

0 0 

00 00 

-+ 
p(y). This expression may 

(VII. 8) 

(VI I. 9) 

(VII .10) 

(VII .11) 

To evaluate the integrals we use the following transformation for I
1

, I 2 
and I

4 

r cos e r sine (VII.l2) 



and for r
3 

y = r sin 8 
1 

-e 
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r cos 8 

2 2 2 . 2 . 
0

2 
cos 8 + 0

1 
sln 8- p0

1
0

2
sln28 

2 
-r 

2 2 2 
201 02 (1 - p ) 

} 

The integration over r may be performed straight and we obtain 

0102;{ -
'7T 2-

1 p 2 { 
Il 7T jd8 2 2 

0 2 . 28 - p0
1

0
2
sin28 o 0 2 cos 0 + 

1 
sln 

1 
2 2 2 . 2

8 0
2 

cos 0 + 0
1 

sln 

Changing variable of integration to 

z 

we obtain 

2 00 ~
-, 

1 - p jdz 
7T 0 

For r
2 

we get 

1 

z - 2pz + 1 

-· e 

2 
-r 

+ po 
1 
a 

2
sin28} 

1 
2 

z + 2pz 

2 28 2 . 28 . 28 0
2 

cos + o
1 

sln - po
1

0
2
sln 

2 2 2 
201 02 (1 - p ) 

o
2 

2
cos

2
8 + 0

1
2
sin

2
8- p0

1
o

2
sin28 

20 2o 2 (1- p 2 ) 
1 2 

(VII.l3) 

(VII.l4) 

(VII.l5) 

} 
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Here too the integration over r may be performed straight and we obtain 

3 3 2 
312 

2CJ 1 (J2 (1 - p ) 

Tf 

Tf 

2
! 2 { 1 d8cos 8 --2--2-------------
0 ( 8 2 . 28 . 28) 2 a

2 
cos + a

1 
s1n pa

1
a

2
s1n 

Using the transformation in Eq. (VII.l4) we eventually obtain 

2 2 3/2 2 00 f 1 
TI ( 1 - p ) a 1 J dz 1-2:-__;:=------=-

0 L(z - 2pz + 1)
2 

1 1 (VII.l6) 

For r
3 

we use the transformation in Eq. (VII.l3) instead of that in 

Eq. (VII.l2). r
3 

will therefore, be equal to r
2 

when we interchange a
1 

and 

2 2 3/2 2 00 { 1 1 

+ 1)2} 
I3 (1 - p ) CJ2 fdz 2 

1)2 2 
(VII.l7) 

Tf 
0 (z - 2pz + (z + 2Pz 

By the same calculation as above we obtain for I4 

2 
(l -

2 3/2 
fdzz{ 2 

1 l 
2

} (VII.l8) I4 p ) 0 1°2 
+ 1)2 

+ 
(z2 Tf 

2pz + 2pz 0 (z - + 1) 

The following formulas for the indefinite integrals hold 

I dz l z ± p 
2 

arctan + c 
h 2~ h ' 

z ± 2pz + l 2 
- p - p 

(VII .19) 

J 
dz z ± p 

(z2 + 1)2 p2) (z2 ± 2pz 2(1- ± 2pz + l) 

1 z ± p 
+ c + 

2(1- p2)3/2 
arctan 

h i 
- p 
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f zdz -----
(z2 ± 2pz + 1)

2 
l ± pz 

-+ 
p z ± p 

2 372 arctan + C 
2(1 ·- p) h-p2 

(VII.l9) 

By using these formulas we finally obtain for the integrals 

2 
Il - arcsin p 

TI 

I2 =~a 2
{ph 

TI l 
- p 

2' 
+ arcsin p} 

(VII. 20) 

2 2 £7 p} I3 = -a {p 1 - p + arcsin 
TI 2 

~' 2 2 
p arcsin p} I4 - a a { p + 

TI l 2 

Our expectation value may now be written as, Eqs. (VII.2), (VII.5), (VII.B-11) 

and (VII. 20) 

2 { 2 2 - a<y > + S<y > + Y 
TI l 2 

From Eq. (VII.6) we obtain by direct calculation 

<x y ><x y > + <x y ><x y > -
<x y ><x y ><y y > 

l l 2 l l 2 
l l 2 2 l 2 2 l 

<y y >[l -
l 2 

< 2> 
yl 

2 
<y y > ] l 2 

(VII. 21) 

<x y ><x y ><y y > 
l 2 2 2 l 2 

< 2> 
y2 

(VII. 22) 

Inserting these expressions into Eq. (VII.2l), Eq. (VII.l) is obtained q.e.d. 
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Application I x
1 

Stationarity is assumed. We then have 

R (T) <e
1

(t)e
1

(t + T)sgn e
1

(t)sgn e
1

(t + T)> 
e

1
sgn e

1
,e

1
sgn e

1 

The normalized correlation function corresponding to the covariance function 

of Eq. (6.28) will be 

R2 
e

1
sgn e

1 
(0) 

P (T)arcsin p (T) +A- p
2 

(T) 
elel elel elel 

where p is defined in Eq. (6.21). 
elel 

Thus 

The normalized covariance function is obtained by subtracting 

R2 
e

1
sgn 

l 

(VII. 24) 

(VII. 25) 

This covariance function is obtained in a simpler way [81] from Price's 

theorem [80]. To use Price's theorem to calculate the other correlation func­

tions of estimator type II seems to be more complicated than to prove the gene­

ral theorem of ours. 

Application II e
1 

(t + T) • 

By direct insertion into Eq. (VII.l) we obtain (stationary case) 
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(VII. 26) 

The normalized correlation function corresponding to the covariance function in 

Eq. (6. 28) will be 

(VII. 27) 

where p. and P are defined in Eq. (6.21). 
e2el elel 

The normalized covariance function of Eq. (6.28) is obtained by subtrac­

ting 

e ><e sgn e > 
1 1 1 

1 

Thus 

(VII. 28) 

Application III 

By direct insertion into Eq. (VII.l) we obtain (stationary case) 

(VII.29) 



- 251 -

We shall assume that Eq. (5.12) holds, which,together with the formulas of 

Appendix VI imply 

(VII. 30) 

The normalized correlation function corresponding to the covariance func-

tion of Eq. (6.28) will be 

(VII. 31) 

where p .. , p. , and p are defined in Eq. (6.21). The normalized 
e2e2 e2el elel 

covariance function of Eq. (6.28) is obtained by subtracting 

1 

Thus 

- 1 (VII. 32) 

Low signal to noise ratio. 

This is the case studied by Yerbury. Let x(t) and y(t) be the corre­

lator inputs and let x
1 

= x(t), y
1 

= y(t), x
2 

= x(t + T), y
2 

= y(t + t). 

When the noise processes on the two channels are uncorrelated and the signal 

to noise ratios are small, we may approximate 



<x y > 
1 1 

which gives 

<x y > 
1 2 

<x Y > 
2 1 
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<x Y > 
2 2 

<x(t)sgn y(t)x(t + T)sgn y(t + T)> 

0 

~ R (T)arcsin p (T) 
Tf XX yy 

This may directly be obtained by approximating the expectation value by 

<x(t)x(t + T)><sgn y(t)sgn y(t + T)> 

(VII. 33) 

since x(t) and y(t) are uncorrelated Gaussian and thereby independent. 
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APPEND! X VII I 

Bussgang's relation for non Gaussian signals. 

We here discuss conditions for the extension of Bussgang's relation to non 

Gaussian signals. The discussion is an extension of the work of Barret and 

Lampard [85] to get the weakest conditions on the non-linearity and the process 

obtainable by their metho~ for the relation to hold. Barret and Lampard used 

anexpansionof the second order probability density function px
1

x
2

(x
1

,x
2

) in 

a series of polynomials {8 } and {~ } which were orthogonal with respect to 
n n 

the marginal distributions Pxl (x
1

) and Px
2

(x
2

) respectively. 

i.e. 

where 

00 00 

p (x
1

>p (x
2

> I I a e (x 1 >~ (x 2 > 
xl x2 m=O n=O mn m n 

00 

f dxl Pxl (xl) em (xl)~n (xl) 
-00 

0 
mn 

00 

p (xl) 
xl 

P (x2) 
x2 

0 
mn 

00 

00 

jdx
1 

p (x
1

,x
2

) 
_oo xlx2 

The requirement on for this to hold is that 

i) 
is square integrable 

ii) All moments of and are finite. 

(VIII .1) 

The first requirement assures that p /~ belongs to a Hilbert space 
xlx2 xlx2 

of square integrable functions defined on R 2 with inner product 

00 00 

(f,g) Jdx
1 

jdx
2
f(x

1
,x

2
)g(x

1
,x

2
) (VIII. 2) 

-oo -oo 
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This Hilbert space is separable, i.e. functions with finite norm may be expres­

sed by an infinite series of an orthonormal basis of the form {hmn(x1 ,x2)} = 
{um(x

1
)vn(x

2
)}. The orthonormality requirement may be written 

(h ,h ) 
mn pq 

00 00 

~Ldxl_Ldx2 hmn (xl ,x2) hpq (xl ,x2) 

00 

0 0 
mp nq 

co 

(VIII. 3) 

Thus {u } and {v } forms orthonormal basises of square integrable functions 
m n 

defined on IR. 

The first requirement may also be expressed as 
00 00 

jdxl jdx2p(xllx2)p(xllx2) < oo 
-00 -00 

The second requirement assures that u and v of the form 
m n 

lp (xl)
1 e (xl) 

x1 m 

(VIII.4) 

lp (x
2

)' 1./J (x
2

) 
x 2 n 

where e and 1./J are polynomials of degree m and n will have finite 
m n 

norm. This is established since their norms will be of the form 

00 

_Ldxlpxl (xl)82m(xl) 

00 

_Ldx2px2(x2)1./J2n(x2) 

which are linear combina·tions of moments of degree up to 2m of pxl for urn 

and 2n of for v . 
n 

The orthonormality of {u } and 
m 

{v } 

orthonormal with the weight functions 

(u ,u ) 
m n 

(v ,v ) 
m n 

co 

jdx p (x)8 (x)8 (x) 
_

00 
x 1 m n 

00 

fdx p (x)l./J (x)l./J (x) 
-oo ~2 m n 

n 
implies that {e } and {1./J } are 

m n 
and respectively, Eq. (VIII.3). 

0 
mn 

(VIII. 5) 

0 
mn 
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From the above follows that 

00 00 

00 00 

/p (x
1

)p (x
2

)' l L a e (x )\jJ (x ) 
x1 x2 m~O n=O mn m 1 n 2 

(VIII. 6) 

This is the same as Eq. (VIII .1). The coefficient a may be obtained by multi-
pq 

plying both sides with u v , integrating,and using the orthonormality relation, 
p q 

Eq. (VIII.5) which gives 

a 
pq 

00 00 

The polynomials may be constructed from 
2 

{l,x,x , .... } 

(VIII. 7) 

by using the Gram-

Schmidt orthogonalization procedure and the orthonormality requirement, Eq. 

(VIII.5). Chasing e
0 

= I)J
0 

= 1, 

[ 85] 

eo (xl) 1 

xl - <x > 

el (xl) 
1 

01 

2 
<[x - <x >]2> 01 1 1 

e
1 

= a x + b 1 1 1' 
we obtain 

I)Jo (x2) 1 

x2 - <x > 

I)Jl (x2) 
2 

02 
(VIII. 8) 

2 
<[x 

2 
02 - <x >] > 

2 2 

Barrett and Lampard further specializes to the class of distributions where 

{a } is diagonal. Suppose that a nonlinear function may be expressed by the 
mn 

following series 

00 

From the orthonormality condition Eq. (VIII.S) we obtain 

c 
n 

00 

which specially gives 

(VIII. 9) 

(VIII .10) 
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00 

co jdx2px (x2)g(x2) <g(x ) > 
2 

-00 2 

00 

( x2 - <x2>) = 
jdx2px (x2)g(x2) cl 

-00 2 CJ2 

For the covariance between and 

< [ x
1 

- <x >] [ g (x ) - <g (x ) >] > 
l . 2 2 

<a 8 (x ) 
l l l 

o \ c a 
l 1· n ln 

n=ol 

00 

l c \jJ (x2)> 
n=l n n 

<g(x )[x -
2 2 

CJ2 

we obtain 

But since we have assumed {a 
mn 

diagonal, we obtain 

o c a 
l 1 11 

From Eq. (VIIT.7) WP have 

all 

<[x - <x >][x - <x >]> 
l l 2 2 ---

0102 

Thus we finally obtain 

(VIII.ll) 

<x >]> 
2 

(VIli .12) 

n< [x: ·~·· <xl> ][g( X2) ~~g:2;~;~[~}~- ·~~~; ~ f~~-<:: ::::: ( x,J [~2 . <~ >~J 

(VIII .13) 

In the proof we only need 8
1

, lj!
1

, and lj!
0 

to be of the form given in Eq. 

(VIII.8). Thus the rest of the basis functions need not to be expressed by poly­

nomials as given by Eq. (VIII. 4) . II v 
0

1! will always be finite since 

00 

jdx p (x) 
-oo x2 
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For and to be finite 
2 2 

<x > and <x > 
l 2 

must be finite (this implies 

<x
1
>, <x

2
>, finite) which is the physical requirement of the finite power in 

the signals. 

The requirement for Eq. (VIII.9) to hold is that g(x
2

) lpx
2 

(x
2

)' is square 

integrable, i.e. 

00 

2 
<g (x )> 

2 jdx2px (x2)g2(x2) < oo 
-00 2 

(VIII .14) 

This implies that 

00 

L c v (x
2

) 
n=O n n 

(VIII.l5) 

which with the special form of 

Eq. (VIII.9). 

v given in Eq. (VIII.4) is identical to 
n 

For the sgn function we obtain 

00 

l 

which implies that the theorem holds in our case. The validity of the estimator 

equations are therefore also proved for a class of non Gaussian signals, namely 

those signals where 

a) the condition i) holds and {a } is diagonal 
mn 

b) 
2 

<x > 
l 

and 
2 

<x > 
2 

have finite energy. 

Brown [77] has extended the result to hold for a wider class of distribu­

tions where {a } is nondiagonal. Requiring that the form of u and v 
mn n n 

in Eq. (VIII.4) exists (all moments finite) he shows. 

Theorem. 

(VIII .16) 

if, and only if, there exists a sequence of real constants 

m = 1,2, .•••. 

00 

l 
(K = I c d ) 

02 m=l m m 

{d } with d l 
m m 

Thus the validity of estimator type II is shown to hold for a wide class of 

signals including the Gaussian type. In Chapter 7 we shall obtain experimental 

evidence for the usefulness of the estimator. 
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